JP5570953B2 - 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法 - Google Patents

不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法 Download PDF

Info

Publication number
JP5570953B2
JP5570953B2 JP2010258309A JP2010258309A JP5570953B2 JP 5570953 B2 JP5570953 B2 JP 5570953B2 JP 2010258309 A JP2010258309 A JP 2010258309A JP 2010258309 A JP2010258309 A JP 2010258309A JP 5570953 B2 JP5570953 B2 JP 5570953B2
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
trench
buried
floating gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010258309A
Other languages
English (en)
Other versions
JP2012109466A (ja
Inventor
史隆 荒井
渉 坂本
史恵 菊島
博行 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010258309A priority Critical patent/JP5570953B2/ja
Priority to US13/237,425 priority patent/US9293547B2/en
Priority to SG2011069010A priority patent/SG181213A1/en
Priority to SG2014009864A priority patent/SG2014009864A/en
Publication of JP2012109466A publication Critical patent/JP2012109466A/ja
Application granted granted Critical
Publication of JP5570953B2 publication Critical patent/JP5570953B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42336Gate electrodes for transistors with a floating gate with one gate at least partly formed in a trench
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/41Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明の実施形態は、不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法に関する。
NAND型フラッシュメモリなどの不揮発性半導体記憶装置において、高集積化を図るために、メモリセルが微細化されると、隣接ビット線間距離が小さくなる。このため、隣接するゲート電極間の寄生容量が増大し、メモリセルトランジスタのゲート長が10nm台以下の世代では、書き込み速度の大幅な低下を招いていた。
特開2008−283095
本発明の一つの実施形態の目的は、隣接する浮遊ゲート電極間の間隔を増大させることなく、隣接する浮遊ゲート電極間の寄生容量を低減することが可能な不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法を提供することである。
実施形態の不揮発性半導体記憶装置によれば、半導体基板と、第1方向に延び、前記第1方向と交差する第2方向に互いに隣接するアクティブエリアに前記半導体基板を分割するトレンチと、前記第2方向に延びる制御ゲート電極と、前記第2方向に延び、前記制御ゲート電極のひとつに隣接するセレクトゲート電極と、前記制御ゲート電極と前記半導体基板との間に配置された電荷蓄積層と、前記セレクトゲート電極を含み、メモリセルのひとつとビット線との間に接続されたセレクトトランジスタと、前記第1方向に延びるようにして前記トレンチ内に形成され、前記第2方向に隣接する電荷蓄積層間に配置されるとともに、前記セレクトゲート電極下に延びる空隙と、前記セレクトゲート電極下に延びる空隙に隣接するようにして前記セレクトゲート電極下の前記トレンチ内に設けられた埋め込み絶縁膜とを備える。
図1は、第1実施形態に係る不揮発性半導体記憶装置のメモリセルの概略構成を示す斜視図である。 図2は、第2実施形態に係る不揮発性半導体記憶装置のメモリセルアレイの概略構成を示す回路図である。 図3は、図2のRA部分の概略構成を示す平面図である。 図4は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図5は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図6は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図7は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図8は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図9は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図10は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図11は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図12は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図13は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図14は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図15は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図16は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図17は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図18は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図19は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図20は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図21は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図22は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図23は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図24は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図25は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図26は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。 図27は、第4実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。
以下、実施形態に係る不揮発性半導体記憶装置について図面を参照しながら説明する。なお、これらの実施形態により本発明が限定されるものではない。また、説明において上下左右等の方向は、後述する半導体基板のメモリセルが形成された側の面を上とした場合における相対的な方向を指す。すなわち、説明における方向と重力加速度方向に対しての方向とが異なる場合がある。
(第1実施形態)
図1は、第1実施形態に係る不揮発性半導体記憶装置のメモリセルの概略構成を示す斜視図である。
図1において、半導体基板1には、ビット線方向DBにトレンチ2が形成され、半導体基板1に形成されるメモリセルのアクティブエリアが分離されている。なお、メモリセルにおけるアクティブエリアは、メモリセルに設けられたメモリトランジスタのチャネル領域および直列に接続されたメモリセル間の領域(例えばソース/ドレイン領域)を言う。また、半導体基板1の材質としては、例えば、Si、Ge、SiGe、SiC、SiSn、PbS、GaAs、InP、GaP、GaN、GaInAsPまたはZnSeなどから選択することができる。
そして、トレンチ2には、埋め込み絶縁膜3が埋め込まれている。なお、埋め込み絶縁膜3は、例えば、CVD酸化膜やALD酸化膜またはCVD酸化膜やSOG酸化膜などの有機溶剤に可溶な無機ポリマーを用いることができる。なお、トレンチ2に埋め込まれる埋め込み絶縁膜の構成は必ずしも1層構造でなくてもよく、2層以上であってもよい。
また、半導体基板1上のアクティブエリアには、トンネル絶縁膜5を介して浮遊ゲート電極6がメモリセルごとに形成されている。この浮遊ゲート電極6は電荷蓄積層として用いることができる。なお、トンネル絶縁膜5としては、例えば、熱酸化膜であってもよいし、熱酸窒化膜であってもよい。あるいは、CVD酸化膜であってもよいし、CVD酸窒化膜であってもよい。あるいは、Siを挟んだ絶縁膜であってもよいし、Siがドット状に埋め込まれた絶縁膜であってもよい。浮遊ゲート電極6は、N型不純物またはP型不純物がドーピングされた多結晶シリコンであってもよいし、Mo、Ti、W、AlまたはTaなどを用いたメタル膜あるいはポリメタル膜であってもよい。
浮遊ゲート電極6上には、電極間絶縁膜7を介して制御ゲート電極8がワード線方向DWに形成されている。なお、制御ゲート電極8は、ワード線の一部を構成することができる。ここで、浮遊ゲート電極6と制御ゲート電極8との間のカップリング比を向上させるため、浮遊ゲート電極6の側壁に回り込むように制御ゲート電極8を形成することができる。
制御ゲート電極8上には、シリサイド層9が形成され、シリサイド層9上には、カバー絶縁膜10が形成されている。なお、電極間絶縁膜7としては、例えば、シリコン酸化膜またはシリコン窒化膜を用いることができる。あるいは、ONO膜などのシリコン酸化膜とシリコン窒化膜との積層構造であってもよい。あるいは、酸化アルミニウムまたは酸化ハフニウムなどの高誘電率膜であってもよいし、シリコン酸化膜またはシリコン窒化膜などの低誘電率膜と高誘電率膜との積層構造であってもよい。制御ゲート電極8は、N型不純物またはP型不純物がドーピングされた多結晶シリコンであってもよい。あるいは、制御ゲート電極8は、Mo、Ti、W、AlまたはTaなどを用いたメタル膜あるいはポリメタル膜であってもよい。制御ゲート電極8としてメタル膜あるいはポリメタル膜を用いる場合、シリサイド層9はなくてもよい。シリサイド層9としては、例えば、CoSi、NiSi、PtSi、WSiまたはMoSiなどを用いることができる。また、カバー絶縁膜10としては、例えば、シリコン酸化膜を用いることができる。
ここで、トレンチ2内に埋め込まれた埋め込み絶縁膜3の一部が除去されることで、ワード線方向DWに隣接する浮遊ゲート電極6間に空隙AG1が形成されている。空隙AG1は、トレンチ2に入り込むように形成されることで、浮遊ゲート電極6の下面よりも深い位置まで至るようにしてもよい。また、空隙AG1は、制御ゲート電極8下に潜るようにしてトレンチ2に沿って連続して形成することができる。
また、カバー絶縁膜10は、浮遊ゲート電極6間が完全に埋め込まれないようにして制御ゲート電極8間に掛け渡される。このことで、ビット線方向DBに隣接する浮遊ゲート電極6間に空隙AG2が形成されている。なお、空隙AG2は、上下が非対称になるように形成することができ、その上端は尖塔形状を持つことができる。
ここで、浮遊ゲート電極6間に空隙AG1、AG2(例えば、空気の比誘電率は1)を設けることにより、浮遊ゲート電極6間に絶縁体(例えば、シリコン酸化膜の比誘電率は3.9)が埋め込まれた場合に比べて浮遊ゲート電極間の寄生容量を低減することができる。このため、浮遊ゲート電極間の寄生容量に起因した隣接セル間の電界の干渉を低減することができ、セルトランジスタのしきい値電圧の分布幅を小さくすることができる。
また、空隙AG1は、制御ゲート電極8下に潜るようにしてトレンチ2に沿って連続して形成することにより、制御ゲート電極8と半導体基板1との間のフリンジ容量を低減することができる。このため、浮遊ゲート電極6と制御ゲート電極8とのカップリング比を向上させることができ、書き込み電圧を低下させることができる。
(第2実施形態)
図2は、第2実施形態に係る不揮発性半導体記憶装置のメモリセルアレイの概略構成を示す回路図である。
図2において、メモリセル部R1には、セルトランジスタMTがロウ方向およびカラム方向にマトリックス状に配置されている。そして、複数のセルトランジスタMTが直列に接続され、この直列回路の両端にセレクトトランジスタSTが接続されることでNANDストリングNSが構成されている。また、カラム方向にはビット線BLが配置され、ロウ方向にはワード線WLおよびセレクトゲート電極SGが配置されている。
そして、同一カラムのNANDストリングNSは、セレクトトランジスタSTを介して同一のビット線BLに接続されている。そして、同一ロウのセルトランジスタMTは、同一のワード線WLに接続され、同一ロウのセレクトトランジスタSTは、同一のセレクトゲート電極SGに接続されることで、NANDブロックNBが構成されている。
また、メモリセル部R1の横にはワード線引き出し部R2が設けられている。ワード線引き出し部R2には、メモリセル部R1から引き出されたワード線WLおよびセレクトゲート電極SGが配置されている。
図3は、図2のRA部分の概略構成を示す平面図である。
図3において、ビット線方向DBにはトレンチTCが形成され、アクティブエリアAAはトレンチTCにて分離されている。また、ワード線方向DWには、ワード線WLおよびセレクトゲート電極SGが形成されている。そして、セレクトゲート電極SG間には、ビットコンタクト部R3が設けられ、ビットコンタクト部R3のアクティブエリアAA上には、ビットコンタクトBCが形成されている。また、ワード線引き出し部R2のアクティブエリアAA上には、メモリセル部R1から引き出されたワード線WLのコンタクトをとるワードコンタクトWCが設けられるとともに、メモリセル部R1から引き出されたセレクトゲート電極SGのコンタクトをとるセレクトゲートコンタクトSCが設けられている。
そして、メモリセル部R1のトレンチTC内では、図1の埋め込み絶縁膜3の一部が除去されることで、メモリセル部R1にはトレンチ2に沿って空隙AG1が形成されている。また、ワード線引き出し部R2のトレンチTC内では、図1の埋め込み絶縁膜3が除去されないようにすることで、ワード線引き出し部R2には空隙AG1が形成されないようにされている。ここで、空隙AG1は、制御ゲート電極8下に潜るようにして隣接するメモリセルに渡って連続して形成されるとともに、セレクトゲート電極SG下において分断されている。また、ビットコンタクト部R3のトレンチTCでは、埋め戻し絶縁膜RBが空隙AG1に埋め戻されることで、ビットコンタクト部R3では空隙AG1が除去されている。
ここで、ワード線引き出し部R2に空隙AG1が形成されないようにすることにより、ワード線引き出し部R2の広いトレンチTC上で細いワード線WLが空中に浮いたままになるのを防止することができる。このため、パターン飛びやパターン倒れなどを防止することができ、ワード線WL間でショート不良などが発生するのを抑制することができる。
また、ビットコンタクト部R3のトレンチTCでは、埋め戻し絶縁膜RBにて空隙AG1を埋め戻す。このことにより、ビットコンタクトBCの位置が左右いずれかのトレンチTC側にずれた場合においても、ビットコンタクトBCが空隙AG1を介して基板に突き抜けるのを防止することができる。
(第3実施形態)
図4〜図26は、第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。なお、図4(b)〜図12(b)、図15(c)、図17(c)、図19(b)〜図26(b)は図3のA−A線で切断した断面図、図4(a)〜図12(a)、図16(c)、図18(c)は図3のA´−A´線で切断した断面図、図13(a)〜図15(a)、図17(a)、図19(c)〜図26(c)は図3のB−B線で切断した断面図、図13(b)、図16(a)、図18(a)は図3のB´−B´線で切断した断面図、図14(b)、図15(b)、図17(b)、図19(d)〜図26(d)は図3のC−C線で切断した断面図、図16(b)、図18(b)は図3のC´−C´線で切断した断面図、図15(d)、図17(d)、図19(a)〜図26(a)は図3のD−D線で切断した断面図、図16(d)、図18(d)は図3のD´−D´線で切断した断面図である。
図4において、熱酸化などの方法を用いることにより、半導体基板1上にトンネル絶縁膜5を形成する。そして、CVDなどの方法を用いることにより、トンネル絶縁膜5上に浮遊ゲート電極材6´を成膜する。
次に、図5に示すように、CVDなどの方法を用いることにより、浮遊ゲート電極材6´上にハードマスクM1を形成する。なお、ハードマスクM1としては、例えば、シリコン酸化膜またはシリコン窒化膜を用いることができる。
次に、図6に示すように、フォトリソグラフィ技術を用いることにより、開口部K1、K1´が設けられたレジストパターンR1をハードマスクM1上に形成する。
次に、図7に示すように、レジストパターンR1をマスクとしてハードマスクM1をパターニングした後、そのハードマスクM1をマスクとして浮遊ゲート電極材6´、トンネル絶縁膜5および半導体基板1をエッチングすることにより、半導体基板1にトレンチ2、2´を形成する。
次に、図8に示すように、CVDまたはSOG(塗布)などの方法を用いることにより、トレンチ2、2´全体が埋め込まれるようにして埋め込み絶縁膜3をハードマスクM1上に形成する。
次に、図9に示すように、CMPなどの方法を用いることにより、埋め込み絶縁膜3を薄膜化し、ハードマスクM1の表面を露出させる。
次に、図10に示すように、ウェットエッチングなどの方法を用いることにより、ハードマスクM1を除去する。なお、ハードマスクM1がシリコン窒化膜の場合、ウェットエッチングの薬液はホット燐酸を用いることができる。そして、RIEなどの異方性エッチングを用いることにより、埋め込み絶縁膜3の一部を除去し、浮遊ゲート電極材6´の側壁の一部を露出させる。なお、浮遊ゲート電極材6´の側壁の一部を露出させる場合、埋め込み絶縁膜3は、トンネル絶縁膜5より上に残存させることが好ましい。また、埋め込み絶縁膜3がSOG酸化膜の場合、希フッ酸を用いたウェットエッチングにて埋め込み絶縁膜3の一部を除去するようにしてもよい。
次に、図11に示すように、CVDなどの方法を用いることにより、浮遊ゲート電極材6´の側壁が覆われるようにして浮遊ゲート電極材6´上に電極間絶縁膜7を形成する。なお、電極間絶縁膜7は、例えば、ONO膜などの多層構造であってもよい。
次に、図12に示すように、CVDなどの方法を用いることにより、制御ゲート電極材8´を電極間絶縁膜7上に成膜する。
次に、図13に示すように、CVDなどの方法を用いることにより、キャップ絶縁膜11を制御ゲート電極材8´上に形成する。なお、キャップ絶縁膜11としては、例えば、シリコン酸化膜またはシリコン窒化膜を用いることができる。そして、スピンコートなどの方法を用いることにより、キャップ絶縁膜11上にレジスト膜R2を塗布する。
次に、図14に示すように、フォトリソグラフィ技術を用いることにより、レジスト膜R2に開口部K2を形成する。
次に、図15および図16に示すように、開口部K2が設けられたレジスト膜R2をマスクとしてキャップ絶縁膜11をパターニングした後、そのキャップ絶縁膜11をマスクとして制御ゲート電極材8´、電極間絶縁膜7および浮遊ゲート電極材6´をエッチングすることにより、メモリセルごとに分離された浮遊ゲート電極6を形成するとともに、電極間絶縁膜7を介して浮遊ゲート電極6上に配置された制御ゲート電極8およびセレクトゲート電極12をワード線方向に形成する。ここで、セレクトゲート電極12は、電極間絶縁膜7に設けられた開口部K2´を介してその下の浮遊ゲート電極6と接続される。
ここで、例えば、埋め込み絶縁膜3および電極間絶縁膜7がシリコン酸化膜などの同様の材質の膜で構成されているものとすると、浮遊ゲート電極6の側壁の電極間絶縁膜7を縦方向にエッチングする分だけ埋め込み絶縁膜3がエッチングされる。このため、この時のトレンチ2、2´上の電極間絶縁膜7の下面から見た時の埋め込み絶縁膜3の落ち込み量Xは、トレンチ2、2´上の電極間絶縁膜7の下面から電荷蓄積層6上の電極間絶縁膜7の上面までの高さXとほぼ一致する。また、埋め込み絶縁膜3と浮遊ゲート電極材6´との選択比は100%でないので、浮遊ゲート電極材6´をエッチングする時にも埋め込み絶縁膜3がエッチングされ、埋め込み絶縁膜3はさらにα(α<X)分だけ落ち込む。
次に、図17および図18に示すように、フォトリソグラフィ技術を用いることにより、図3のワード線引き出し部R2が覆われるようにレジストパターンR3を埋め込み絶縁膜3およびキャップ絶縁膜11上に形成する。そして、ウェットエッチングなどの方法を用いることにより、図3のメモリセル部R1の埋め込み絶縁膜3の一部をトレンチ2に沿って除去し、ワード線方向DWに隣接する浮遊ゲート電極6間に空隙AG1を形成する。この時、空隙AG1は、制御ゲート電極8下に潜るようにしてトレンチ2に沿って連続して形成することができる。また、空隙AG1は、セレクトゲート電極12下で分断されるようにして、セレクトゲート電極12下の一部では埋め込み絶縁膜3が高さ方向に完全に残るようにすることができる。
ここで、トレンチ2上では、制御ゲート電極8下が空隙AG1で繋がるようにするため、制御ゲート電極のゲート長L分だけ埋め込み絶縁膜3を横方向にエッチングする必要がある。この時、埋め込み絶縁膜3を横方向にエッチングする場合、埋め込み絶縁膜3は両側からエッチングされる。このため、埋め込み絶縁膜3は図15の状態からL/2だけさらに落ち込む。この時の埋め込み絶縁膜3のオーバーエッチング量をβ(β<L/2)とすると、トレンチ2上の電極間絶縁膜7の上面から見た時の空隙AG1の深さDは、X+α+L/2+βとなる。
すなわち、α<Xかつβ<L/2という条件を考慮すると、トレンチ2上の電極間絶縁膜7の上面から見た時の空隙AG1の深さDは、X+L/2≦D<2X+Lという条件を満たす。
ここで、X+L/2≦D<2X+Lという条件を満たすように空隙AG1の深さDを設定することにより、埋め込み絶縁膜3のエッチング量を最小限に抑えつつ、制御ゲート電極8下が空隙AG1で繋がるように空隙AG1を形成することができる。このため、埋め込み絶縁膜3をエッチングする際にトンネル絶縁膜5および電極間絶縁膜7がエッチングされるのを抑制しつつ、浮遊ゲート電極6間の寄生容量に起因した隣接セル間の電界の干渉を低減することができる。
また、埋め込み絶縁膜3のウェットエッチングを行う際に、ワード線引き出し部R2をレジストパターンR3にて覆うことにより、ワード線引き出し部R2に空隙AG1が形成されないようにすることができる。このため、ワード線引き出し部R2の広いトレンチTC上で細いワード線WLが空中に浮いたままになるのを防止することができ、パターン飛びやパターン倒れなどを防止することができる。
次に、図19に示すように、CVDなどの方法を用いることにより、露出面全体が覆われるようにスペーサ絶縁膜13を形成する。なお、スペーサ絶縁膜13としては、例えば、シリコン酸化膜を用いることができる。
次に、図20に示すように、プラズマCVDなどの方法を用いることにより、制御ゲート電極8間に架け渡されるようにカバー絶縁膜10を形成し、ビット線方向DBに隣接する浮遊ゲート電極6間に空隙AG2を形成する。なお、カバー絶縁膜10としては、例えば、シリコン酸化膜を用いることができる。また、制御ゲート電極8上にカバー絶縁膜10を形成する場合、空隙AG1、AG2がカバー絶縁膜10にて埋め込まれないようにするために、カバレッジの悪い条件に設定することができる。
次に、図21に示すように、フォトリソグラフィ技術およびドライエッチング技術を用いることにより、図3のビットコンタクト部R3のカバー絶縁膜10を除去する。
次に、図22に示すように、CVDなどの方法を用いることにより、ビットコンタクト部R3のトレンチ2内が埋め戻されるように埋め戻し絶縁膜14をカバー絶縁膜10上に形成する。なお、埋め戻し絶縁膜14としては、例えば、シリコン酸化膜を用いることができる。
次に、図23に示すように、CVDなどの方法を用いることにより、埋め戻し絶縁膜14上にストッパ膜15を形成する。なお、ストッパ膜15としては、例えば、シリコン窒化膜を用いることができる。
次に、図24に示すように、CVDなどの方法を用いることにより、ストッパ膜15上に層間絶縁膜16を形成する。なお、層間絶縁膜16としては、例えば、NSG膜、PSG膜、BSG膜、BPSG膜またはHDP膜を用いることができる。そして、ストッパ膜15をストッパとしてCMPを行うことにより、層間絶縁膜16を平坦化する。
次に、図25に示すように、フォトリソグラフィ技術およびドライエッチング技術を用いることにより、図3のビットコンタクトBCに対応した開口部17を層間絶縁膜16に形成する。
次に、図26に示すように、コンタクト電極18を開口部17に埋め込むことにより、図3のビットコンタクト部R3にビットコンタクトBCを形成する。なお、コンタクト電極18は、例えば、n多結晶シリコンまたはWなどの金属を用いることができる。
ここで、ビットコンタクト部R3のトレンチ2内を埋め戻し絶縁膜14にて埋め戻すことにより、開口部17の位置がトレンチ2側にずれた場合においても、開口部17が半導体基板1に突き抜けるのを防止することができる。
(第4実施形態)
図27は、第4実施形態に係る不揮発性半導体記憶装置の製造方法を示す断面図である。なお、図27(a)は図3のD−D線で切断した断面図、図27(b)は図3のA−A線で切断した断面図、図27(c)は図3のB−B線で切断した断面図、図27(d)は図3のC−C線で切断した断面図である。
図27において、上述して第3実施形態では、図19の工程でスペーサ絶縁膜13を形成してから図20の工程でカバー絶縁膜10を形成する方法について説明したが、図19の工程でスペーサ絶縁膜13を形成することなく図20の工程でカバー絶縁膜10を形成するようにしてもよい。
ここで、スペーサ絶縁膜13を省略することにより、スペーサ絶縁膜13の膜厚分だけ空隙AG1、AG2を拡大することができ、浮遊ゲート電極6間の寄生容量をより一層低減することができる。
なお、スペーサ絶縁膜13を省略した場合、埋め戻し絶縁膜14またはストッパ膜15の膜厚を調整することにより、ビットコンタクト部R3のトレンチ2内を埋め戻すことができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 半導体基板、2、2´ トレンチ、3 埋め込み絶縁膜、5 トンネル絶縁膜、6 浮遊ゲート電極、7 電極間絶縁膜、8 制御ゲート電極、9 シリサイド層、10 カバー絶縁膜、AG1、AG2 空隙、R1 メモリセル部、R2 ワード線引き出し部、R3 ビットコンタクト部、NB NANDブロック、NS NANDストリング、BL ビット線、MT セルトランジスタ、ST セレクトトランジスタ、AA アクティブエリア、BC ビットコンタクト、WC ワードコンタクト、SC セレクトゲートコンタクト、WL ワード線、SG、12 セレクトゲート電極、RB 埋め戻し絶縁膜、6´ 浮遊ゲート電極材、8´ 制御ゲート電極材、M1 ハードマスク、R1〜R3 レジストパターン、K1、K2、K1´、K2´ 開口部、11 キャップ絶縁膜、13 スペーサ絶縁膜、14 埋め戻し絶縁膜、15 ストッパ膜、16 層間絶縁膜、17 開口部、18 コンタクト電極

Claims (7)

  1. 半導体基板と、
    第1方向に延び、前記第1方向と交差する第2方向に互いに隣接するアクティブエリアに前記半導体基板を分割するトレンチと、
    前記第2方向に延びる制御ゲート電極と、
    前記第2方向に延び、前記制御ゲート電極のひとつに隣接するセレクトゲート電極と、
    前記制御ゲート電極と前記半導体基板との間に配置された電荷蓄積層と、
    前記セレクトゲート電極を含み、メモリセルのひとつとビット線との間に接続されたセレクトトランジスタと、
    前記第1方向に延びるようにして前記トレンチ内に形成され、前記第2方向に隣接する電荷蓄積層間に配置されるとともに、前記セレクトゲート電極下に延びる空隙と、
    前記セレクトゲート電極下に延びる空隙に隣接するようにして前記セレクトゲート電極下の前記トレンチ内に設けられた埋め込み絶縁膜とを備えることを特徴とする不揮発性半導体記憶装置。
  2. 前記制御ゲート電極のゲート長をL、前記トレンチ上の電極間絶縁膜の下面から前記電荷蓄積層上の前記電極間絶縁膜の上面までの高さをXとすると、前記トレンチ上の前記電極間絶縁膜の上面から見た時の前記空隙の深さDは、X+L/2≦D<2X+Lという条件を満たすことを特徴とする請求項に記載の不揮発性半導体記憶装置。
  3. 前記空隙は、前記電荷蓄積層の下面よりも深い位置まで至っていることを特徴とする請求項1または2に記載の不揮発性半導体記憶装置。
  4. 前記メモリセルから引き出されたワード線が配置されたワード線引き出し部をさらに備え、
    前記ワード線引き出し部のアクティブエリアを分離するトレンチ上では前記埋め込み絶縁膜と前記電極間絶縁膜が接していることを特徴とする請求項1からのいずれか1項に記載の不揮発性半導体記憶装置。
  5. ビットコンタクトが形成されるビットコンタクト部をさらに備え、
    前記ビットコンタクト部のアクティブエリアを分離するトレンチ内に形成された空隙を埋め戻す埋め戻し絶縁膜をさらに備えることを特徴とする請求項1からのいずれか1項に記載の不揮発性半導体記憶装置。
  6. 半導体基板上にトンネル絶縁膜を介して浮遊ゲート電極材を成膜する工程と、
    前記浮遊ゲート電極材および前記トンネル絶縁膜を介して前記半導体基板にトレンチをビット線方向に形成する工程と、
    前記トレンチ内に埋め込み絶縁膜を形成する工程と、
    前記埋め込み絶縁膜および前記浮遊ゲート電極材上に電極間絶縁膜を形成する工程と、
    前記電極間絶縁膜上に制御ゲート電極材を成膜する工程と、
    前記制御ゲート電極材、前記電極間絶縁膜および前記浮遊ゲート電極材をパターニングすることにより、メモリセルごとに分離された浮遊ゲート電極を形成するとともに、前記浮遊ゲート電極上に配置された制御ゲート電極をワード線方向に形成する工程と、
    前記トレンチ内に埋め込まれた埋め込み絶縁膜の少なくとも一部を除去することで、前記ワード線下に潜るようにして前記トレンチに沿って配置された空隙を、前記ワード線方向に隣接する前記電荷蓄積層間に形成する工程とを備え
    前記トレンチ内に埋め込まれた埋め込み絶縁膜の少なくとも一部を除去する時に、前記メモリセルから引き出されたワード線が配置されるワード線引き出し部をレジストで覆うことを特徴とする不揮発性半導体記憶装置の製造方法。
  7. 半導体基板上にトンネル絶縁膜を介して浮遊ゲート電極材を成膜する工程と、
    前記浮遊ゲート電極材および前記トンネル絶縁膜を介して前記半導体基板にトレンチをビット線方向に形成する工程と、
    前記トレンチ内に埋め込み絶縁膜を形成する工程と、
    前記埋め込み絶縁膜および前記浮遊ゲート電極材上に電極間絶縁膜を形成する工程と、
    前記電極間絶縁膜上に制御ゲート電極材を成膜する工程と、
    前記制御ゲート電極材、前記電極間絶縁膜および前記浮遊ゲート電極材をパターニングすることにより、メモリセルごとに分離された浮遊ゲート電極を形成するとともに、前記浮遊ゲート電極上に配置された制御ゲート電極をワード線方向に形成する工程と、
    前記トレンチ内に埋め込まれた埋め込み絶縁膜の少なくとも一部を除去することで、前記ワード線下に潜るようにして前記トレンチに沿って配置された空隙を、前記ワード線方向に隣接する前記電荷蓄積層間に形成する工程と、
    前記トレンチ内に埋め込まれた埋め込み絶縁膜の少なくとも一部を除去した後、ビットコンタクトが形成されるビットコンタクト部のアクティブエリアを分離するトレンチ内に形成された空隙を埋め戻し絶縁膜にて埋め戻す工程とを備えることを特徴とする不揮発性半導体記憶装置の製造方法。
JP2010258309A 2010-11-18 2010-11-18 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法 Active JP5570953B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010258309A JP5570953B2 (ja) 2010-11-18 2010-11-18 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法
US13/237,425 US9293547B2 (en) 2010-11-18 2011-09-20 NAND EEPROM with perpendicular sets of air gaps and method for manufacturing NAND EEPROM with perpendicular sets of air gaps
SG2011069010A SG181213A1 (en) 2010-11-18 2011-09-21 Nonvolatile semiconductor memory device and method for manufacturing nonvolatile semiconductor memory device
SG2014009864A SG2014009864A (en) 2010-11-18 2011-09-21 Nonvolatile semiconductor memory device and method for manufacturing nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010258309A JP5570953B2 (ja) 2010-11-18 2010-11-18 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法

Publications (2)

Publication Number Publication Date
JP2012109466A JP2012109466A (ja) 2012-06-07
JP5570953B2 true JP5570953B2 (ja) 2014-08-13

Family

ID=46063531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258309A Active JP5570953B2 (ja) 2010-11-18 2010-11-18 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法

Country Status (3)

Country Link
US (1) US9293547B2 (ja)
JP (1) JP5570953B2 (ja)
SG (2) SG2014009864A (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603890B2 (en) 2010-06-19 2013-12-10 Sandisk Technologies Inc. Air gap isolation in non-volatile memory
US8946048B2 (en) 2010-06-19 2015-02-03 Sandisk Technologies Inc. Method of fabricating non-volatile memory with flat cell structures and air gap isolation
US8492224B2 (en) 2010-06-20 2013-07-23 Sandisk Technologies Inc. Metal control gate structures and air gap isolation in non-volatile memory
JP5591668B2 (ja) * 2010-11-30 2014-09-17 株式会社東芝 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法
US8778749B2 (en) 2011-01-12 2014-07-15 Sandisk Technologies Inc. Air isolation in high density non-volatile memory
US9136128B2 (en) 2011-08-31 2015-09-15 Micron Technology, Inc. Methods and apparatuses including memory cells with air gaps and other low dielectric constant materials
US9082714B2 (en) * 2011-09-22 2015-07-14 Intel Corporation Use of etch process post wordline definition to improve data retention in a flash memory device
US9123714B2 (en) 2012-02-16 2015-09-01 Sandisk Technologies Inc. Metal layer air gap formation
JP2013197482A (ja) * 2012-03-22 2013-09-30 Toshiba Corp 不揮発性半導体記憶装置の製造方法および不揮発性半導体記憶装置
KR101926359B1 (ko) * 2012-04-06 2018-12-07 삼성전자주식회사 반도체 소자 및 그의 제조 방법
US20130307044A1 (en) * 2012-05-15 2013-11-21 Hiroyuki Kinoshita Selective Air Gap Isolation In Non-Volatile Memory
KR101986126B1 (ko) * 2012-07-18 2019-06-05 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법
KR20140020476A (ko) 2012-08-08 2014-02-19 에스케이하이닉스 주식회사 반도체 메모리 소자 및 이의 제조방법
US20140138761A1 (en) * 2012-11-16 2014-05-22 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of semiconductor device
US9123577B2 (en) 2012-12-12 2015-09-01 Sandisk Technologies Inc. Air gap isolation in non-volatile memory using sacrificial films
JP2014138101A (ja) * 2013-01-17 2014-07-28 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
JP2014157123A (ja) 2013-02-18 2014-08-28 Toshiba Corp 試料、試料作成装置および試料観察方法
KR20140109105A (ko) 2013-03-05 2014-09-15 에스케이하이닉스 주식회사 반도체 소자 및 이의 제조 방법
JP6176844B2 (ja) 2013-08-06 2017-08-09 東芝メモリ株式会社 不揮発性半導体記憶装置
US9257570B2 (en) 2013-09-12 2016-02-09 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing the same
US9349740B2 (en) 2014-01-24 2016-05-24 Sandisk Technologies Inc. Non-volatile storage element with suspended charge storage region
CN104835773B (zh) * 2014-02-08 2018-12-21 中芯国际集成电路制造(上海)有限公司 一种制作半导体器件的方法
US10453855B2 (en) 2017-08-11 2019-10-22 Micron Technology, Inc. Void formation in charge trap structures
US10164009B1 (en) 2017-08-11 2018-12-25 Micron Technology, Inc. Memory device including voids between control gates
US10446572B2 (en) 2017-08-11 2019-10-15 Micron Technology, Inc. Void formation for charge trap structures
US10680006B2 (en) 2017-08-11 2020-06-09 Micron Technology, Inc. Charge trap structure with barrier to blocking region
US11309433B2 (en) * 2020-03-18 2022-04-19 Winbond Electronics Corp. Non-volatile memory structure and manufacturing method thereof
CN113540105B (zh) * 2020-04-14 2023-11-03 中芯国际集成电路制造(上海)有限公司 一种半导体器件及形成方法
US20230140646A1 (en) * 2021-11-03 2023-05-04 Winbond Electronics Corp. Semiconductor structure and method of forming the same

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979004A (en) 1988-01-29 1990-12-18 Texas Instruments Incorporated Floating gate memory cell and device
US5792706A (en) 1996-06-05 1998-08-11 Advanced Micro Devices, Inc. Interlevel dielectric with air gaps to reduce permitivity
US5783481A (en) 1996-06-05 1998-07-21 Advanced Micro Devices, Inc. Semiconductor interlevel dielectric having a polymide for producing air gaps
US5880026A (en) 1996-12-23 1999-03-09 Texas Instruments Incorporated Method for air gap formation by plasma treatment of aluminum interconnects
JPH11126819A (ja) 1997-06-20 1999-05-11 Nippon Steel Corp 半導体装置及びその製造方法
US6211561B1 (en) 1998-11-16 2001-04-03 Conexant Systems, Inc. Interconnect structure and method employing air gaps between metal lines and between metal layers
US6071805A (en) 1999-01-25 2000-06-06 Chartered Semiconductor Manufacturing, Ltd. Air gap formation for high speed IC processing
US6022802A (en) 1999-03-18 2000-02-08 Taiwan Semiconductor Manufacturing Company Low dielectric constant intermetal dielectric (IMD) by formation of air gap between metal lines
US6815329B2 (en) 2000-02-08 2004-11-09 International Business Machines Corporation Multilayer interconnect structure containing air gaps and method for making
JP4493182B2 (ja) 2000-08-23 2010-06-30 株式会社ルネサステクノロジ 半導体装置
MY128644A (en) 2000-08-31 2007-02-28 Georgia Tech Res Inst Fabrication of semiconductor devices with air gaps for ultra low capacitance interconnections and methods of making same
TWI227043B (en) 2000-09-01 2005-01-21 Koninkl Philips Electronics Nv Method of manufacturing a semiconductor device
KR100396470B1 (ko) * 2001-02-19 2003-09-03 삼성전자주식회사 비트라인 콘택패드를 갖는 불휘발성 메모리 장치 및 그제조방법
KR100436673B1 (ko) * 2001-05-28 2004-07-02 가부시끼가이샤 도시바 반도체 장치 및 그 제조 방법
JP4439142B2 (ja) 2001-06-26 2010-03-24 株式会社東芝 不揮発性半導体メモリの製造方法
US6825058B2 (en) * 2001-06-28 2004-11-30 Sharp Laboratories Of America, Inc. Methods of fabricating trench isolated cross-point memory array
US6627529B2 (en) 2002-02-07 2003-09-30 Micron Technology, Inc. Capacitance reduction by tunnel formation for use with semiconductor device
DE10255117A1 (de) 2002-11-26 2004-06-17 Infineon Technologies Ag Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung
US7045849B2 (en) * 2003-05-21 2006-05-16 Sandisk Corporation Use of voids between elements in semiconductor structures for isolation
JP2005039216A (ja) 2003-06-23 2005-02-10 Toshiba Corp 不揮発性半導体記憶装置
JP2005026589A (ja) * 2003-07-04 2005-01-27 Toshiba Corp 半導体記憶装置及びその製造方法
US7169667B2 (en) 2003-07-30 2007-01-30 Promos Technologies Inc. Nonvolatile memory cell with multiple floating gates formed after the select gate
JP2005116970A (ja) 2003-10-10 2005-04-28 Toshiba Corp 不揮発性半導体記憶装置
US7238575B2 (en) 2004-03-10 2007-07-03 Promos Technologies, Inc. Fabrication of conductive lines interconnecting conductive gates in nonvolatile memories, and non-volatile memory structures
JP4331070B2 (ja) 2004-08-06 2009-09-16 株式会社東芝 半導体記憶装置
JP2006196843A (ja) * 2005-01-17 2006-07-27 Toshiba Corp 半導体装置およびその製造方法
US7259038B2 (en) 2005-01-19 2007-08-21 Sandisk Corporation Forming nonvolatile phase change memory cell having a reduced thermal contact area
JP2006228893A (ja) 2005-02-16 2006-08-31 Renesas Technology Corp 半導体装置及びその製造方法
US7348618B2 (en) 2005-03-30 2008-03-25 Intel Corporation Flash memory cell having reduced floating gate to floating gate coupling
JP2006302950A (ja) 2005-04-15 2006-11-02 Renesas Technology Corp 不揮発性半導体装置および不揮発性半導体装置の製造方法
JP4316540B2 (ja) 2005-06-24 2009-08-19 株式会社東芝 不揮発性半導体記憶装置及び不揮発性半導体記憶装置の製造方法
JP4731262B2 (ja) 2005-09-22 2011-07-20 ルネサスエレクトロニクス株式会社 不揮発性半導体記憶装置および、不揮発性半導体記憶装置の製造方法
KR100784860B1 (ko) 2005-10-31 2007-12-14 삼성전자주식회사 비휘발성 메모리 장치 및 그 제조 방법
EP1804293A1 (en) 2005-12-30 2007-07-04 STMicroelectronics S.r.l. Process for manufacturing a non volatile memory electronic device
JP2007250656A (ja) * 2006-03-14 2007-09-27 Toshiba Corp 半導体装置とその製造方法
EP1835530A3 (en) * 2006-03-17 2009-01-28 Samsung Electronics Co., Ltd. Non-volatile memory device and method of manufacturing the same
JP4762041B2 (ja) * 2006-04-24 2011-08-31 株式会社東芝 不揮発性半導体メモリ
JP2007299975A (ja) 2006-05-01 2007-11-15 Renesas Technology Corp 半導体装置およびその製造方法
EP1881527A1 (en) * 2006-07-17 2008-01-23 STMicroelectronics S.r.l. Process for manufacturing a semiconductor wafer having SOI-insulated wells and semiconductor wafer thereby manufactured
US7881113B2 (en) 2007-02-07 2011-02-01 Micron Technology, Inc. Relaxed metal pitch memory architectures
JP2008283095A (ja) * 2007-05-14 2008-11-20 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2009010088A (ja) * 2007-06-27 2009-01-15 Toshiba Corp 半導体装置とその製造方法
JP2009059931A (ja) 2007-08-31 2009-03-19 Toshiba Corp 不揮発性半導体記憶装置
US20090087562A1 (en) 2007-09-27 2009-04-02 Long Hua Lee Method of preparing cross-linked organic glasses for air-gap sacrificial layers
US7829268B2 (en) 2007-10-17 2010-11-09 Tokyo Electron Limited Method for air gap formation using UV-decomposable materials
JP2009194244A (ja) * 2008-02-15 2009-08-27 Toshiba Corp 半導体記憶装置及びその製造方法
JP4703669B2 (ja) * 2008-02-18 2011-06-15 株式会社東芝 半導体記憶装置及びその製造方法
JP4729060B2 (ja) 2008-02-26 2011-07-20 株式会社東芝 半導体記憶装置の製造方法
JP2009212218A (ja) 2008-03-03 2009-09-17 Toshiba Corp 半導体記憶装置及びその製造方法
JP4956500B2 (ja) * 2008-07-22 2012-06-20 株式会社東芝 半導体記憶装置及びその製造方法
JP2010080853A (ja) * 2008-09-29 2010-04-08 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
JP2010087159A (ja) 2008-09-30 2010-04-15 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
US8105867B2 (en) 2008-11-18 2012-01-31 Sandisk 3D Llc Self-aligned three-dimensional non-volatile memory fabrication
JP2010153458A (ja) 2008-12-24 2010-07-08 Toshiba Corp 半導体装置の製造方法および半導体装置
JP2010153623A (ja) * 2008-12-25 2010-07-08 Toshiba Corp 半導体装置の製造方法
JP2010161301A (ja) * 2009-01-09 2010-07-22 Toshiba Corp 半導体記憶装置及びその製造方法
KR20100102982A (ko) * 2009-03-12 2010-09-27 삼성전자주식회사 반도체 장치
JP4923078B2 (ja) 2009-03-23 2012-04-25 株式会社東芝 半導体記憶装置及びその半導体記憶装置の製造方法
JP2010272638A (ja) 2009-05-20 2010-12-02 Toshiba Corp 半導体記憶装置およびその製造方法
US8546239B2 (en) 2010-06-11 2013-10-01 Sandisk Technologies Inc. Methods of fabricating non-volatile memory with air gaps
US8946048B2 (en) * 2010-06-19 2015-02-03 Sandisk Technologies Inc. Method of fabricating non-volatile memory with flat cell structures and air gap isolation
US8603890B2 (en) * 2010-06-19 2013-12-10 Sandisk Technologies Inc. Air gap isolation in non-volatile memory
US8492224B2 (en) * 2010-06-20 2013-07-23 Sandisk Technologies Inc. Metal control gate structures and air gap isolation in non-volatile memory
KR20120025315A (ko) 2010-09-07 2012-03-15 삼성전자주식회사 반도체 소자 및 그 제조 방법
SG10201408390TA (en) 2010-11-18 2015-01-29 Toshiba Kk Nonvolatile semiconductor memory device and manufacturing method of nonvolatile semiconductor memory device
JP2013105990A (ja) 2011-11-16 2013-05-30 Toshiba Corp 不揮発性半導体記憶装置

Also Published As

Publication number Publication date
US20120126303A1 (en) 2012-05-24
JP2012109466A (ja) 2012-06-07
US9293547B2 (en) 2016-03-22
SG2014009864A (en) 2014-05-29
SG181213A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5570953B2 (ja) 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法
US10546869B2 (en) Semiconductor device
US10937797B2 (en) Three-dimensional semiconductor memory devices
KR102461150B1 (ko) 3차원 반도체 메모리 장치
KR102553126B1 (ko) 채널 구조체를 갖는 메모리 장치
US8980712B2 (en) 3D non-volatile memory device and method for fabricating the same
EP3493260A1 (en) Three-dimensional semiconductor memory devices and methods of fabricating the same
US20170278936A1 (en) Semiconductor devices and methods of manufacturing the same
KR102644525B1 (ko) 수직형 반도체 소자
JP5591668B2 (ja) 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法
KR101747577B1 (ko) 수직 nand 성능 향상 및 수직 스케일링을 위한 국부 매몰 채널 유전체
JP2008244485A (ja) 不揮発性メモリ素子及びその製造方法
KR20150126524A (ko) 반도체 메모리 장치 및 그 제조 방법
JP5796029B2 (ja) 半導体装置および半導体装置の製造方法
US20200091176A1 (en) Integrated circuit device and method of manufacturing the same
US11778825B2 (en) Method of fabricating a vertical semiconductor device
KR20150116175A (ko) 소스라인 저항 감소를 위한 비휘발성 메모리 장치
JP5388993B2 (ja) 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法
KR102661853B1 (ko) 3차원 반도체 메모리 소자
US11728246B2 (en) Semiconductor device having a stack including electrodes vertically stacked on a substrate and electronic system including the same
US11456316B2 (en) Semiconductor device having word line separation layer
US20140042513A1 (en) Non-volatile semiconductor storage device
JP2012199313A (ja) 不揮発性半導体記憶装置
JP5591667B2 (ja) 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法
US11462553B2 (en) Semiconductor device having vertical fence structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140625

R151 Written notification of patent or utility model registration

Ref document number: 5570953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350