JP5234118B2 - 固体電解質、固体電解質シートおよび固体電解質の製造方法 - Google Patents

固体電解質、固体電解質シートおよび固体電解質の製造方法 Download PDF

Info

Publication number
JP5234118B2
JP5234118B2 JP2010545119A JP2010545119A JP5234118B2 JP 5234118 B2 JP5234118 B2 JP 5234118B2 JP 2010545119 A JP2010545119 A JP 2010545119A JP 2010545119 A JP2010545119 A JP 2010545119A JP 5234118 B2 JP5234118 B2 JP 5234118B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
garnet
type compound
ion conductor
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010545119A
Other languages
English (en)
Other versions
JPWO2011007445A1 (ja
Inventor
博司 陶山
浩二 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2011007445A1 publication Critical patent/JPWO2011007445A1/ja
Application granted granted Critical
Publication of JP5234118B2 publication Critical patent/JP5234118B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Description

本発明は、粒間抵抗を低減した固体電解質、固体電解質シートおよび固体電解質の製造方法に関する。
近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を集めている。
現在市販されているリチウム電池は、可燃性の有機溶剤を溶媒とする有機電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、液体電解質を固体電解質に変えて、電池を全固体化した全固体型リチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れている。
このような固体電解質の一例としては、酸化物固体電解質が知られている。酸化物固体電解質については、例えば非特許文献1において、ガーネット型化合物のLiLaZr12が開示されている。LiLaZr12は、バルクとしてのLiイオン伝導性が高いため、電池の高出力化に有効である。また、特許文献1にも、ガーネット型化合物(固体イオン伝導体)が開示されている。一方、特許文献2には、固体電解質層に有機高分子化合物を含有させ、固体電解質層の柔軟性を確保することが記載されている。
特表2007−528108号公報 特開2004−95342号公報
Ramaswamy Murugan et al., "Fast Lithium Ion Conduction in Garnet-Tyape Li7La3Zr2O12", Angew. Chem. Int. Ed. 2007, 46, 7778-7781
従来から、固体電解質のLiイオン伝導性の向上が求められている。非特許文献1に記載されたガーネット型化合物(LiLaZr12)の粒子は、バルクとしてのLiイオン伝導性は高いものの、粒子が硬いため粒子同士が点接触しかできず、粒間抵抗が高くなるという問題がある。本発明は、上記問題点に鑑みてなされたものであり、粒間抵抗を低減した固体電解質を提供することを主目的とする。
上記目的を達成するために、本発明においては、Liイオン伝導性を有するガーネット型化合物を主成分とする固体電解質であって、上記ガーネット型化合物の粒間に、上記ガーネット型化合物よりも粒径が小さく、かつ、上記ガーネット型化合物と面接触するリン酸基含有Liイオン伝導体を有することを特徴とする固体電解質を提供する。
本発明によれば、硬いガーネット型化合物の粒間に、塑性変形可能な柔らかいリン酸基含有Liイオン伝導体を配置することで、粒間抵抗を低減することができる。
上記発明においては、上記リン酸基含有Liイオン伝導体の含有量が、19体積%未満であることが好ましく、2体積%〜16体積%の範囲内であることがより好ましい。全体としてのLiイオン伝導性に優れた固体電解質を得ることができるからである。
上記発明においては、上記ガーネット型化合物が、LiLaZr12であることが好ましい。バルクとしてのLiイオン伝導性に優れているからである。
上記発明においては、上記リン酸基含有Liイオン伝導体が、LiPOであることが好ましい。塑性変形しやすく、ガーネット型化合物と充分に面接触することができるからである。
また、本発明においては、ポリマー繊維からなる基板と、上記基板の空隙部分に形成された固体電解質部とを有する固体電解質シートであって、上記固体電解質部が、上述した固体電解質から構成されていることを特徴とする固体電解質シートを提供する。
本発明によれば、ポリマー繊維からなる基板を用いることで、柔軟性に優れた固体電解質シートを得ることができる。
また、本発明においては、Liイオン伝導性を有するガーネット型化合物を主成分とする固体電解質の製造方法であって、上記ガーネット型化合物、および上記ガーネット型化合物よりも粒径が小さいリン酸基含有Liイオン伝導体を混合し、原料組成物を得る混合工程と、上記原料組成物をプレスし、上記リン酸基含有Liイオン伝導体を塑性変形させることで、上記ガーネット型化合物の粒間に、上記ガーネット型化合物と面接触する上記リン酸基含有Liイオン伝導体を配置するプレス工程と、を有することを特徴とする固体電解質の製造方法を提供する。
本発明によれば、ガーネット型化合物およびリン酸基含有Liイオン伝導体を組合せることで、粒間抵抗を低減した固体電解質を得ることができる。
本発明においては、粒間抵抗を低減した固体電解質を得ることができるという効果を奏する。
本発明の固体電解質の一例を示す概略断面図である。 本発明の固体電解質シートの一例を示す概略斜視図である。 本発明の固体電解質の製造方法の一例を示す概略断面図である。 インピーダンス測定より得られたLiイオン伝導度を示すグラフである。
以下、本発明の固体電解質、固体電解質シートおよび固体電解質の製造方法について、詳細に説明する。
A.固体電解質
まず、本発明の固体電解質について説明する。本発明の固体電解質は、Liイオン伝導性を有するガーネット型化合物を主成分とする固体電解質であって、上記ガーネット型化合物の粒間に、上記ガーネット型化合物よりも粒径が小さく、かつ、上記ガーネット型化合物と面接触するリン酸基含有Liイオン伝導体を有することを特徴とするものである。
本発明によれば、硬いガーネット型化合物の粒間に、塑性変形可能な柔らかいリン酸基含有Liイオン伝導体を配置することで、粒間抵抗を低減することができる。本発明においては、硬いが、Liイオン伝導性が高く電位窓の広いガーネット型化合物と、Liイオン伝導性は高くないが、電位窓の広く柔らかいリン酸基含有Liイオン伝導体とを組合せることで、粒間抵抗を低減した固体電解質を得ることができる。さらに、リン酸基含有Liイオン伝導体の含有量を所定の範囲内とすることで、全体としてのLiイオン伝導性に優れた固体電解質を得ることができる。なお、全体としてのLiイオン伝導性とは、バルクとしてのLiイオン伝導性と、粒間でのLiイオン伝導性との両方を考慮したものをいう。また、従来、粒間抵抗を低減させるために焼成を行うことが知られているが、本発明においては、焼成を行う必要が無いため、製造コストの低減、加工性の向上を図ることができる。
また、本発明におけるガーネット型化合物およびリン酸基含有Liイオン伝導体は、例えば酸化物固体電解質である。このような無機化合物は、通常は硬いため、両者を組合せても粒間抵抗の低減には寄与しないことが想定される。これに対して、本発明は、リン酸基含有Liイオン伝導体が、塑性変形可能な柔らかさを有することに着目し、粒間抵抗の低減を図ったものであるといえる。
図1は、本発明の固体電解質の一例を示す概略断面図である。図1に示される固体電解質10は、Liイオン伝導性を有するガーネット型化合物1を主成分とし、ガーネット型化合物1の粒間に、ガーネット型化合物1よりも粒径が小さく、かつ、ガーネット型化合物1と面接触するリン酸基含有Liイオン伝導体2が配置されているものである。リン酸基含有Liイオン伝導体2は、通常、ガーネット型化合物1よりも柔らかいため、後述するプレス工程により容易に塑性変形する。そのため、リン酸基含有Liイオン伝導体2は、ガーネット型化合物1の粒間を埋めるように配置され、その結果、ガーネット型化合物1の粒間抵抗を低減することができる。
以下、本発明の固体電解質について、構成ごとに説明する。
1.ガーネット型化合物
まず、本発明におけるガーネット型化合物について説明する。本発明におけるガーネット型化合物は、Liイオン伝導性を有する酸化物固体電解質である。
ここで、ガーネット型の結晶構造を有する化合物は、一般的に、A(SiOで示される化合物である。この結晶構造において、AおよびBは8配位ないし6配位のカチオンである。また、個々のSiO四面体は相互にイオン結合により格子間のBカチオンと結合している。一方、従来知られているLiLa12(M=Nb、Ta)で表される化合物も、理想的なガーネット型の結晶構造に類似する結晶構造を有することが知られている(特表2007−528108号公報参照)。本発明においては、このようなLiイオン伝導性をする化合物を、ガーネット型化合物と称する。
ガーネット型化合物としては、例えば、Li3+x2−v12で表される化合物(以下、化合物(I)と称する場合がある)を挙げることができる。ここで、A、G、MおよびBは金属カチオンである。xは、0≦x≦5を満たすことが好ましく、4≦x≦5を満たすことがより好ましい。yは、0≦y≦3を満たすことが好ましく、0≦y≦2を満たすことがより好ましい。zは、0≦z≦3を満たすことが好ましく、1≦z≦3を満たすことがより好ましい。vは、0≦v≦2を満たすことが好ましく、0≦v≦1を満たすことがより好ましい。なお、Oは部分的に、または、完全に二価アニオンおよび/または三価のアニオン、例えばN3−と交換されていても良い。
化合物(I)において、Aは、Ca、Sr、BaおよびMg等のアルカリ土類金属カチオン、または、Zn等の遷移金属カチオンであることが好ましい。また、Gは、La、Y、Pr、Nd、Sm、Lu、Eu等の遷移金属カチオンであることが好ましい。また、Mは、Zr、Nb、Ta、Bi、Te、Sb等の遷移金属カチオンを挙げることができる。また、Bは、例えばInであることが好ましい。また、本発明においては、MがZrであることが好ましい。特に、本発明においては、ガーネット型化合物がLiLaZr12であることが好ましい。バルクとしてのLiイオン伝導性に優れているからである。
本発明におけるガーネット型化合物は、通常、粒子状である。ガーネット型化合物の平均粒径は、例えば0.01μm〜100μmの範囲内、中でも0.1μm〜10μmの範囲内であることが好ましい。なお、平均粒径は、コールターカウンター(粒度分布計)により算出することができる。上記範囲内であれば、良好なLiイオン伝導性を発揮することができるからである。また、ガーネット型化合物は、通常、後述するリン酸基含有Liイオン伝導体よりも硬い性質を有する。ガーネット型化合物の硬さは、微小圧縮試験機(例えば島津社製MCT−W500)により評価することができる。具体的には、粒子破壊硬度(測定粒子径5μm)が、例えば100MPa〜2000MPaの範囲内、中でも300MPa〜2000MPaの範囲内、特に500MPa〜2000MPaの範囲内であることが好ましい。また、ガーネット化合物は、バルクとしてのLiイオン伝導性に優れていることが好ましい。バルクとしてのLiイオン伝導は、例えば10−6S/cm以上であることが好ましく、例えば10−4S/cm以上であることがより好ましい。また、本発明におけるガーネット型化合物は、例えば、固相法により合成することができる。
2.リン酸基含有Liイオン伝導体
次に、本発明におけるリン酸基含有Liイオン伝導体について説明する。本発明におけるリン酸基含有Liイオン伝導体は、通常、Li元素およびリン酸基(PO骨格)を有する化合物である。また、リン酸基含有Liイオン伝導体としては、例えば、Liイオン伝導性を有する酸化物固体電解質を挙げることができる。
リン酸基含有Liイオン伝導体の一例としては、Li3−xPO4−yで表される化合物(以下、化合物(II)と称する場合がある)を挙げることができる。ここで、xは0≦x<3を満たすことが好ましく、yは0≦y<4を満たすことが好ましい。特に、本発明においては、化合物(II)がLiPOであることが好ましい。
また、リン酸基含有Liイオン伝導体の他の例としては、NASICON(LISICON)型構造を有する化合物を挙げることができる。NASICON(LISICON)型構造を有する化合物としては、例えば、Li(XはTi、Zr、Ge、In、Ga、SnおよびAlからなる群から選択される少なくとも1種であり、YはB、Al、Ga、In、C、Si、Ge、Sn、SbおよびSeからなる群から選択される少なくとも1種であり、a〜eは、0.5<a<5.0、0.5≦b<3.0、0≦c<2.98、0.02<d≦3.0、2.0<c+d<4.0、3.0<e≦12.0の関係を満たす)で表される化合物(以下、化合物(III)と称する場合がある)を挙げることができる。特に、本発明においては、LiTiAlまたはLiTiSiが好ましい。
また、リン酸基含有Liイオン伝導体の他の例としては、窒素を含有するものを挙げることができる。窒素を含有するリン酸基含有Liイオン伝導体の一例としては、Li3−xPO4−yで表される化合物(以下、化合物(IV)と称する場合がある)を挙げることができる。ここで、xは0≦x<3を満たすことが好ましく、yは0≦y<4を満たすことが好ましく、zは0<y≦4を満たすことが好ましい。なお、化合物(IV)は、例えば化合物(II)を窒化することにより得ることができる。
また、窒素を含有するリン酸基含有Liイオン伝導体の他の例としては、窒素を含有し、かつ、NASICON(LISICON)型構造を有する化合物を挙げることができる。このような化合物としては、例えば、Li(XはTi、Zr、Ge、In、Ga、SnおよびAlからなる群から選択される少なくとも1種であり、YはB、Al、Ga、In、C、Si、Ge、Sn、SbおよびSeからなる群から選択される少なくとも1種であり、a〜fは、0.5<a<5.0、0.5≦b<3.0、0≦c<2.98、0.02<d≦3.0、2.0<c+d<4.0、3.0<e≦12.0、0.002<f<2.0の関係を満たす)で表される化合物(以下、化合物(V)と称する場合がある)を挙げることができる。特に、本発明においては、LiTiAlまたはLiTiSiが好ましい。なお、化合物(V)は、例えば化合物(III)を窒化することにより得ることができる。
窒素を含有するリン酸基含有Liイオン伝導体の合成方法としては、例えば、窒化前の化合物(原料化合物)と、窒化剤である尿素とを混合し、熱処理する方法を挙げることができる。この場合、窒化剤の量で、窒化の程度を調整することができる。また、例えば上述した化合物(IV)を得る場合、原料化合物としてLiPOを用いることができる。さらに、LiCOおよび(NH)HPOを所定の量で混合し、メカニカルミリングを行うことにより、LiPOの近傍組成を有する化合物を合成しても良い。熱処理の温度は、通常、窒化剤が分解する温度以上の温度であり、例えば100℃〜800℃の範囲内であることが好ましい。また、熱処理の時間は、例えば10分〜5時間の範囲内であることが好ましい。さらに、焼成時の雰囲気は、特に限定されるものではないが、例えば大気雰囲気;窒素雰囲気およびアルゴン雰囲気等の不活性ガス雰囲気;アンモニア雰囲気および水素雰囲気等の還元雰囲気;真空等を挙げることができ、中でも不活性ガス雰囲気、還元雰囲気、真空が好ましく、特に還元雰囲気が好ましい。得られる化合物の酸化劣化を防止することができるからである。
また、窒素を含有するリン酸基含有Liイオン伝導体は、原料化合物に単にNが吸着したものではなく、Nが化学結合した状態で、リン酸基含有Liイオン伝導体内に存在するものであることが好ましい。
本発明におけるリン酸基含有Liイオン伝導体は、通常、粒子状である。リン酸基含有Liイオン伝導体の平均粒径は、例えば0.01μm〜100μmの範囲内、中でも0.01μm〜10μmの範囲内であることが好ましい。なお、平均粒径の算出方法は、ガーネット型化合物の場合と同様である。また、本発明において、リン酸基含有Liイオン伝導体は、通常、ガーネット型化合物の粒間に配置されるため、その粒径はガーネット型化合物の粒径よりも小さくなる。
リン酸基含有Liイオン伝導体は、通常、上述したガーネット型化合物よりも柔らかい性質を有する。リン酸基含有Liイオン伝導体の硬さは、微小圧縮試験機(例えば島津社製MCT−W500)により評価することができる。具体的には、粒子破壊硬度(測定粒子径5μm)が、例えば0.001MPa〜500MPaの範囲内、中でも0.001MPa〜300MPaの範囲内であることが好ましい。また、リン酸基含有Liイオン伝導体は、バルクとしてのLiイオン伝導性に優れていることが好ましい。バルクとしてのLiイオン伝導は、例えば10−9S/cm以上であることが好ましく、例えば10−6S/cm以上であることがより好ましい。
3.固体電解質
本発明の固体電解質は、上述したガーネット型化合物およびリン酸基含有Liイオン伝導体を有するものである。さらに、この固体電解質は、ガーネット型化合物を主成分とする。ここで、「ガーネット型化合物が主成分である」とは、固体電解質におけるガーネット化合物の含有量が50体積%以上であることをいい、80体積%以上であることが好ましく、80体積%〜99体積%の範囲内であることがより好ましい。ガーネット化合物の含有量が少なすぎると、全体としてのLiイオン伝導性が低くなる可能性があり、ガーネット化合物の含有量が多すぎると、粒間抵抗を充分に低減できない可能性があるからである。
また、本発明においては、固体電解質におけるリン酸基含有Liイオン伝導体の含有量が、ガーネット型化合物の粒間を埋める程度の量であることが好ましい。粒間抵抗を低減でき、かつ、全体としてのLiイオン伝導性に優れた固体電解質とすることができるからである。リン酸基含有Liイオン伝導体の含有量は、50体積%以下であることが好ましく、19体積%未満であることがより好ましく、18体積%以下であることがさらに好ましく、16体積%以下であることが特に好ましい。リン酸基含有Liイオン伝導体の含有量が多すぎると、全体としてのLiイオン伝導性が低くなる可能性があるからである。一方、固体電解質におけるリン酸基含有Liイオン伝導体の含有量は、2体積%以上であることが好ましく、4体積%以上であることがより好ましく、6体積%以上であることがさらに好ましい。リン酸基含有Liイオン伝導体の含有量が少なすぎると、粒間抵抗を充分に低減できない可能性があるからである。
なお、本発明の固体電解質は、上述したガーネット化合物およびリン酸基含有Liイオン伝導体のみを含有するものであっても良く、さらに、その他の成分を有するものであっても良い。
本発明の固体電解質の形状としては、例えばペレット状を挙げることができる。ペレット状の固体電解質の厚さは、固体電解質の用途によって異なるものであるが、例えば0.01μm以上、中でも0.1μm以上、特に1μm以上であることが好ましい。固体電解質の厚さが小さすぎると、デンドライト貫通による短絡が生じやすくなるからである。一方、ペレット状の固体電解質の厚さは、例えば1000μm以下、中でも100μm以下、特に30μm以下であることが好ましい。固体電解質の厚さが大きすぎると、電池の容量が小さくなる可能性があるからである。
本発明の固体電解質の用途としては、例えばリチウム電池の固体電解質層を挙げることができる。すなわち、本発明においては、上記固体電解質を用いた固体電解質層を有することを特徴とする全固体リチウム電池を提供することができる。また、本発明の固体電解質は、電解液を用いたリチウム電池のセパレータ層として用いることもできる。この場合、固体電解質の空孔が非常に小さければ、デンドライト貫通による短絡を効果的に抑制することができる。
B.固体電解質シート
次に、本発明の固体電解質シートについて説明する。本発明の固体電解質シートは、ポリマー繊維からなる基板と、上記基板の空隙部分に形成された固体電解質部とを有する固体電解質シートであって、上記固体電解質部が、上述した固体電解質から構成されていることを特徴とするものである。
本発明によれば、ポリマー繊維からなる基板を用いることで、柔軟性に優れた固体電解質シートを得ることができる。
図2は、本発明の固体電解質シートの一例を示す概略斜視図である。図2に示される固体電解質シート20は、ポリマー繊維からなる基板と、その基板の空隙部分を埋めるように形成された固体電解質部を有するものである。さらに、固体電解質部は、上記「A.固体電解質」に記載した固体電解質から構成されている。また、固体電解質シート20は、ポリマー繊維からなる基板を有することから、捲回可能なシートとなる。
本発明における基板は、ポリマー繊維からなるものである。上記ポリマー繊維としては、例えば、ポリアクリロニトリル、ポリエステル、ポリイミド、ポリアミド、ポリテトラフルオロエチレン、ポリオレフィン等を挙げることができる。上記基板の空隙率は、特に限定されるものではないが、例えば80%以下、中でも30%以下であることが好ましい。さらに、上記基板の厚さは、例えば、0.01μm〜100μmの範囲内、中でも1μm〜100μmの範囲内であることが好ましい。
また、本発明における固体電解質部は、基板の空隙部分に形成されるものであり、中でも、基板の空隙部分を埋めるように形成されていることが好ましい。例えば、後述するセパレータ層形成用シートとして有用だからである。また、固体電解質部は、少なくとも基板の空隙部分に形成されていれば良く、さらに基板の表面(片面または両面)に形成されていても良い。さらに、固体電解質部は、密着性を向上させる結着材を含有していても良い。結着材としては、例えばPTFE等のフッ素含有ポリマーを挙げることができる。
本発明の固体電解質シートの用途としては、例えばリチウム電池の固体電解質層形成用シートを挙げることができる。すなわち、本発明においては、上記固体電解質シートを用いた固体電解質層を有することを特徴とする全固体リチウム電池を提供することができる。また、本発明の固体電解質シートは、電解液を用いたリチウム電池のセパレータ層形成用シートとして用いることもできる。この場合、固体電解質の空孔が非常に小さければ、デンドライト貫通による短絡を効果的に抑制することができる。また、本発明の固体電解質シートの製造方法としては、例えば、ガーネット型化合物およびリン酸基含有Liイオン伝導体を混合した原料組成物を、ポリマー繊維からなる基板に塗布し、プレスする方法を挙げることができる。
C.固体電解質の製造方法
次に、本発明の固体電解質の製造方法について説明する。本発明の固体電解質の製造方法は、Liイオン伝導性を有するガーネット型化合物を主成分とする固体電解質の製造方法であって、上記ガーネット型化合物、および上記ガーネット型化合物よりも粒径が小さいリン酸基含有Liイオン伝導体を混合し、原料組成物を得る混合工程と、上記原料組成物をプレスし、上記リン酸基含有Liイオン伝導体を塑性変形させることで、上記ガーネット型化合物の粒間に、上記ガーネット型化合物と面接触する上記リン酸基含有Liイオン伝導体を配置するプレス工程と、を有することを特徴とするものである。
本発明によれば、ガーネット型化合物およびリン酸基含有Liイオン伝導体を組合せることで、粒間抵抗を低減した固体電解質を得ることができる。
図3は、本発明の固体電解質の製造方法の一例を示す概略断面図である。図3に示される製造方法においては、まずLiイオン伝導性を有するガーネット型化合物1と、ガーネット型化合物よりも小さいリン酸基含有Liイオン伝導体2とを所定の割合で混合し、原料組成物を得る(図3(a))。次に、原料組成物をプレスし、柔らかいリン酸基含有Liイオン伝導体2を塑性変形させることで、ガーネット型化合物1の粒間に、ガーネット型化合物1と面接触するリン酸基含有Liイオン伝導体2を配置する(図3(b))。これにより、ガーネット型化合物1の粒間を埋めるようにリン酸基含有Liイオン伝導体2が形成された固体電解質10が得られる。
以下、本発明の固体電解質の製造方法について、工程ごとに説明する。
1.混合工程
本発明における混合工程は、ガーネット型化合物と、上記ガーネット型化合物よりも粒径が小さいリン酸基含有Liイオン伝導体とを混合し、原料組成物を得る工程である。なお、本発明に用いられるガーネット型化合物およびリン酸基含有Liイオン伝導体については、上記「A.固体電解質」に記載した内容と同様であるので、ここでの記載は省略する。また、ガーネット型化合物およびリン酸基含有Liイオン伝導体の使用量等についても、上記の内容と同様である。特に本発明においては、原料組成物におけるリン酸基含有Liイオン伝導体の含有量が、19体積%未満であることが好ましい。全体としてのLiイオン伝導性に優れた固体電解質を得ることができるからである。
2.プレス工程
本発明におけるプレス工程は、上記原料組成物をプレスし、上記リン酸基含有Liイオン伝導体を塑性変形させることで、上記ガーネット型化合物の粒間に、上記ガーネット型化合物と面接触する上記リン酸基含有Liイオン伝導体を配置する工程である。
本発明においては、通常、リン酸基含有Liイオン伝導体を塑性変形させる圧力以上の圧力でプレスを行う。プレス時の圧力としては、リン酸基含有Liイオン伝導体の種類により異なるものであるが、例えば1Pa〜100MPaの範囲内、中でも1MPa〜30MPaの範囲内であることが好ましい。圧力が小さすぎると、粒間抵抗を充分に低減できない可能性があり、圧力が大きすぎると、ガーネット型化合物の破壊等が生じる可能性があるからである。また、圧力を加える時間としては、例えば1分間〜30分間の範囲内である。また、原料組成物をプレスする方法としては、例えば、公知のプレス機を用いる方法を挙げることができる。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
以下に実施例を示して本発明をさらに具体的に説明する。
[実施例1]
まず、ガーネット型化合物の合成を行った。具体的には、Ramaswamy Murugan et al., “Fast Lithium Ion Conduction in Garnet-Tyape Li7La3Zr2O12”, Angew. Chem. Int. Ed. 2007, 46, 7778-7781に記載された方法と同様の方法により、LiLaZr12(平均粒径3μm)を得た。次に、リン酸基含有Liイオン伝導体としてLiPO(平均粒径1μm)を用意した。次に、LiLaZr12およびLiPOを、LiPOの含有量が4.1体積%となるように混合し、原料組成物を得た。次に、得られた原料組成物を、直径10mmのセラミックス製の筒状部材の内部に配置し、1tonの圧力条件でプレスすることで、ペレット状の固体電解質を得た。
[実施例2〜6]
LiPOの含有量を、それぞれ、8.1体積%、11.9体積%、15.5体積%、19.0体積%および34.6体積%に変更したこと以外は、実施例1と同様にして固体電解質を得た。
[比較例1、2]
LiPOの含有量を、それぞれ、0体積%および100体積%に変更したこと以外は、実施例1と同様にして固体電解質を得た。
[評価]
実施例1〜6および比較例1、2で得られた固体電解質を用いて、インピーダンス測定を行った。インピーダンスの測定条件は、電圧振幅30mV、測定周波数0.1MHz〜1MHz、測定温度50℃、拘束圧6Nとした。インピーダンス測定より得られたLiイオン伝導度を表1および図4に示す。
Figure 0005234118
表1および図4に示されるように、LiPO(リン酸基含有Liイオン伝導体)が19.0体積%未満である場合に、全体としてのLiイオン伝導度が顕著に向上することが確認された。
1 … ガーネット型化合物
2 … リン酸基含有Liイオン伝導体
10 … 固体電解質
20 … 固体電解質シート

Claims (7)

  1. Liイオン伝導性を有するガーネット型化合物を主成分とする固体電解質であって、
    前記ガーネット型化合物の粒間に、前記ガーネット型化合物よりも粒径が小さく、かつ、前記ガーネット型化合物と面接触するリン酸基含有Liイオン伝導体を有することを特徴とする固体電解質。
  2. 前記リン酸基含有Liイオン伝導体の含有量が、19体積%未満であることを特徴とする請求項1に記載の固体電解質。
  3. 前記リン酸基含有Liイオン伝導体の含有量が、2体積%〜16体積%の範囲内であることを特徴とする請求項1に記載の固体電解質。
  4. 前記ガーネット型化合物が、LiLaZr12であることを特徴とする請求項1から請求項3までのいずれかの請求項に記載の固体電解質。
  5. 前記リン酸基含有Liイオン伝導体が、LiPOであることを特徴とする請求項1から請求項4までのいずれかの請求項に記載の固体電解質。
  6. ポリマー繊維からなる基板と、前記基板の空隙部分に形成された固体電解質部とを有する固体電解質シートであって、
    前記固体電解質部が、請求項1から請求項5までのいずれかの請求項に記載の固体電解質から構成されていることを特徴とする固体電解質シート。
  7. Liイオン伝導性を有するガーネット型化合物を主成分とする固体電解質の製造方法であって、
    前記ガーネット型化合物、および前記ガーネット型化合物よりも粒径が小さいリン酸基含有Liイオン伝導体を混合し、原料組成物を得る混合工程と、
    前記原料組成物をプレスし、前記リン酸基含有Liイオン伝導体を塑性変形させることで、前記ガーネット型化合物の粒間に、前記ガーネット型化合物と面接触する前記リン酸基含有Liイオン伝導体を配置するプレス工程と、
    を有することを特徴とする固体電解質の製造方法。
JP2010545119A 2009-07-17 2009-07-17 固体電解質、固体電解質シートおよび固体電解質の製造方法 Active JP5234118B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062967 WO2011007445A1 (ja) 2009-07-17 2009-07-17 固体電解質、固体電解質シートおよび固体電解質の製造方法

Publications (2)

Publication Number Publication Date
JPWO2011007445A1 JPWO2011007445A1 (ja) 2012-12-20
JP5234118B2 true JP5234118B2 (ja) 2013-07-10

Family

ID=43449061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010545119A Active JP5234118B2 (ja) 2009-07-17 2009-07-17 固体電解質、固体電解質シートおよび固体電解質の製造方法

Country Status (4)

Country Link
US (1) US8574772B2 (ja)
JP (1) JP5234118B2 (ja)
CN (1) CN102132357B (ja)
WO (1) WO2011007445A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160065133A (ko) * 2013-10-07 2016-06-08 콴텀스케이프 코포레이션 Li 이차 전지용 가넷 물질
KR101627848B1 (ko) * 2013-10-21 2016-06-08 재단법인 포항산업과학연구원 리튬 이차 전지용 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US10770750B2 (en) 2015-03-31 2020-09-08 Murata Manufacturing Co., Ltd. Lithium ion conductor, solid electrolyte layer, electrode, battery, and electronic device

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8449790B2 (en) * 2010-06-28 2013-05-28 Ut-Battelle, Llc Solid lithium ion conducting electrolytes and methods of preparation
JP2012190566A (ja) * 2011-03-08 2012-10-04 Sekisui Chem Co Ltd 多層の膜電極接合体の製造方法及び積層型電池
JP5720589B2 (ja) * 2012-01-26 2015-05-20 トヨタ自動車株式会社 全固体電池
KR101945968B1 (ko) * 2012-03-01 2019-02-11 엑셀라트론 솔리드 스테이트 엘엘씨 고용량 고체상 복합물 양극, 고체상 복합물 분리막, 재충전가능한 고체상 리튬 전지 및 이의 제조 방법
CN102617140B (zh) * 2012-03-05 2014-08-06 内蒙古工业大学 一种锑掺杂的类石榴石结构的锂离子晶态固体电解质材料及其合成方法
US10084168B2 (en) 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
WO2014132333A1 (ja) * 2013-02-26 2014-09-04 株式会社 日立製作所 全固体リチウムイオン二次電池
JP6228767B2 (ja) * 2013-07-09 2017-11-08 Fdk株式会社 固体電解質用材料、固体電解質、および全固体電池
DE102013222784A1 (de) * 2013-11-08 2015-05-13 Robert Bosch Gmbh Elektrochemische Zelle und Verfahren zu deren Herstellung
JP6233049B2 (ja) * 2014-01-24 2017-11-22 富士通株式会社 複合固体電解質、及び全固体電池
JP6081400B2 (ja) * 2014-03-18 2017-02-15 本田技研工業株式会社 固体電解質、複合電解質、及びそれらを備えるリチウムイオン二次電池。
CN104953175A (zh) * 2014-03-28 2015-09-30 比亚迪股份有限公司 一种锂离子电池固体电解质及其制备方法和锂离子电池
JP6394057B2 (ja) * 2014-05-15 2018-09-26 富士通株式会社 固体電解質構造体、及び全固体電池
EP3283450A4 (en) 2015-04-16 2018-10-17 QuantumScape Corporation Setter plates for solid electrolyte fabrication and methods of using the same to prepare dense solid electrolytes
US10411296B2 (en) 2015-05-07 2019-09-10 Kabushiki Kaisha Toyota Jidoshokki Structural body containing garnet-type ionic conductor
WO2017112804A1 (en) 2015-12-21 2017-06-29 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
WO2018027200A1 (en) 2016-08-05 2018-02-08 Quantumscape Corporation Translucent and transparent separators
WO2018075809A1 (en) 2016-10-21 2018-04-26 Quantumscape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
JP2018160444A (ja) * 2017-03-23 2018-10-11 株式会社東芝 二次電池、電池パック、及び車両
CN106848392A (zh) * 2017-03-28 2017-06-13 上海交通大学 抑制全固态电池中锂枝晶生长的固态电解质及其制备方法
US11489193B2 (en) 2017-06-23 2022-11-01 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
JP2019021585A (ja) * 2017-07-20 2019-02-07 トヨタ自動車株式会社 非水電解液二次電池
CN107464950A (zh) * 2017-07-27 2017-12-12 中国科学院化学研究所 一种高盐浓度固体电解质及应用
JP2019046721A (ja) * 2017-09-05 2019-03-22 トヨタ自動車株式会社 スラリー、固体電解質層の製造方法、及び、全固体電池の製造方法
WO2019090360A1 (en) 2017-11-06 2019-05-09 Quantumscape Corporation Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
JP6988472B2 (ja) * 2017-12-28 2022-01-05 トヨタ自動車株式会社 電池
JP7028097B2 (ja) * 2018-07-27 2022-03-02 トヨタ自動車株式会社 固体電解質層
EP3883035A4 (en) * 2018-11-16 2022-01-05 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY WITH USE OF IT
CN110451800B (zh) * 2019-08-27 2021-12-07 江西理工大学 一种含铌玻璃固态电解质及其制备方法
TWI727587B (zh) 2019-12-31 2021-05-11 財團法人工業技術研究院 前驅物結構、其疊層膜與使用其之離子導電層的製造方法
US20210257656A1 (en) * 2020-02-14 2021-08-19 GM Global Technology Operations LLC Lithium phosphate coating for lithium lanthanum zirconium oxide solid-state electrolyte powders
CN111276737B (zh) * 2020-02-18 2021-04-20 浙江大学 一种石榴石型复合电解质材料及其制备方法和应用
NL2030828B1 (en) 2022-02-04 2023-08-11 Real Scientists Ltd A thin film energy storage device
WO2024107405A1 (en) 2022-11-14 2024-05-23 Piersica, Inc. Polymer composition and methods for making same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164783A (ja) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd 電極、電池、およびその製造方法
JP2007528108A (ja) * 2004-03-06 2007-10-04 ヴェップナー ヴェルナー 化学的に安定な固体のリチウムイオン伝導体
JP2008021416A (ja) * 2006-07-10 2008-01-31 Idemitsu Kosan Co Ltd 固体電解質シート
JP2008112661A (ja) * 2006-10-31 2008-05-15 Ohara Inc リチウムイオン伝導性固体電解質およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4043296B2 (ja) * 2002-06-13 2008-02-06 松下電器産業株式会社 全固体電池
JP2004095342A (ja) 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd 全固体電池とその製造方法
US20060063051A1 (en) * 2004-09-20 2006-03-23 Jang Bor Z Metal-air battery with ion-conducting inorganic glass electrolyte
JP5153065B2 (ja) * 2005-08-31 2013-02-27 株式会社オハラ リチウムイオン二次電池および固体電解質
US8268488B2 (en) * 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
CN101235557B (zh) * 2008-03-12 2010-06-02 长春理工大学 一种制备稀土石榴石型化合物纳米纤维的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528108A (ja) * 2004-03-06 2007-10-04 ヴェップナー ヴェルナー 化学的に安定な固体のリチウムイオン伝導体
JP2006164783A (ja) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd 電極、電池、およびその製造方法
JP2008021416A (ja) * 2006-07-10 2008-01-31 Idemitsu Kosan Co Ltd 固体電解質シート
JP2008112661A (ja) * 2006-10-31 2008-05-15 Ohara Inc リチウムイオン伝導性固体電解質およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160065133A (ko) * 2013-10-07 2016-06-08 콴텀스케이프 코포레이션 Li 이차 전지용 가넷 물질
KR20210102457A (ko) * 2013-10-07 2021-08-19 퀀텀스케이프 배터리, 인코포레이티드 Li 이차 전지용 가넷 물질
KR102368632B1 (ko) * 2013-10-07 2022-02-28 퀀텀스케이프 배터리, 인코포레이티드 Li 이차 전지용 가넷 물질
KR102478029B1 (ko) * 2013-10-07 2022-12-15 퀀텀스케이프 배터리, 인코포레이티드 Li 이차 전지용 가넷 물질
KR101627848B1 (ko) * 2013-10-21 2016-06-08 재단법인 포항산업과학연구원 리튬 이차 전지용 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US10770750B2 (en) 2015-03-31 2020-09-08 Murata Manufacturing Co., Ltd. Lithium ion conductor, solid electrolyte layer, electrode, battery, and electronic device

Also Published As

Publication number Publication date
CN102132357B (zh) 2013-03-13
US20120100433A1 (en) 2012-04-26
US8574772B2 (en) 2013-11-05
WO2011007445A1 (ja) 2011-01-20
CN102132357A (zh) 2011-07-20
JPWO2011007445A1 (ja) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5234118B2 (ja) 固体電解質、固体電解質シートおよび固体電解質の製造方法
Wang et al. Bidirectionally Compatible Buffering Layer Enables Highly Stable and Conductive Interface for 4.5 V Sulfide‐Based All‐Solid‐State Lithium Batteries
JP5594379B2 (ja) 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池
KR102128405B1 (ko) 재충전가능한 전기화학 전지
US9350013B2 (en) Method for producing electrode assembly
JP5072110B2 (ja) リチウム電池に用いる正極材料
KR101302858B1 (ko) 리튬 이온 배터리용 캐소드 활성 물질 및 이를 제조하는 방법
CN111213261B (zh) 电极层叠体、全固态层叠型二次电池及其制造方法
US20140220436A1 (en) Method for producing electrode assembly, electrode assembly, and lithium battery
KR101886358B1 (ko) Latp 함유 양극 복합재를 갖는 전고체 전지 및 이의 제조 방법
EP3579324A1 (en) All-solid-state battery and manufacturing method therefor
CN110235284B (zh) 全固态电池用电极的制造方法以及全固态电池的制造方法
EP3780239A1 (en) Fully solid-state secondary battery and method of manufacturing same
CN105655571B (zh) 电极材料、电极用糊及锂离子电池
US20210013543A1 (en) Solid electrolyte sheet, negative electrode sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery
JP2011081915A (ja) 固体電解質、当該固体電解質を含む固体電解質膜及び当該固体電解質を用いた全固体リチウム二次電池
JPWO2019212026A1 (ja) イオン伝導性粉末、イオン伝導性成形体および蓄電デバイス
US20150249265A1 (en) All solid-state battery and method for producing same
CN111247673B (zh) 活性物质层形成用组合物、电池、电极片及相关制造方法
US20150249264A1 (en) Positive electrode material, all solid-state battery, and methods respectively for producing positive electrode material and all-solid state battery
JP2013045738A (ja) 固体電解質焼結体、及びその製造方法、並びに全固体リチウム電池
CN102339999B (zh) 一种聚阴离子复合材料及其制备方法和用途
CN113614977B (zh) 全固态锂离子二次电池及其制造方法、以及负极用层叠片
US20170005324A1 (en) Anode compartment with a collector made of amorphous-alloy
JP2020107594A (ja) 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池、並びに、これらの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R151 Written notification of patent or utility model registration

Ref document number: 5234118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3