JP4901204B2 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
JP4901204B2
JP4901204B2 JP2005359336A JP2005359336A JP4901204B2 JP 4901204 B2 JP4901204 B2 JP 4901204B2 JP 2005359336 A JP2005359336 A JP 2005359336A JP 2005359336 A JP2005359336 A JP 2005359336A JP 4901204 B2 JP4901204 B2 JP 4901204B2
Authority
JP
Japan
Prior art keywords
circuit
potential
transistor
bit line
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005359336A
Other languages
English (en)
Other versions
JP2007164891A (ja
Inventor
洋 前嶋
浩司 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005359336A priority Critical patent/JP4901204B2/ja
Priority to US11/534,846 priority patent/US7453742B2/en
Publication of JP2007164891A publication Critical patent/JP2007164891A/ja
Application granted granted Critical
Publication of JP4901204B2 publication Critical patent/JP4901204B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits

Landscapes

  • Read Only Memory (AREA)

Description

この発明は、半導体集積回路装置に係わり、特に、電気的に書き換えが可能な不揮発性半導体メモリを有した半導体集積回路装置に関する。
NAND型フラッシュメモリ等に使用される電荷転送型センスアンプにおいて、電荷を転送するトランジスタのゲートを制御する電圧を、ビット線クランプ電圧と呼ぶ。
ビット線クランプ電圧は、読み出し時、ビット線をプリチャージする電位に設定され、プリチャージ終了後のセンス動作においてはビット線からセンスアンプへ電荷を転送する電位に設定される。
ビット線クランプ電圧は、ビット線クランプ電圧生成回路によって生成される。この生成回路には、イントリンシック型トランジスタを含むオペレーショナルアンプ(以下オペアンプという)が使用される。イントリンシック型トランジスタは、しきい値電圧が0V付近の低しきい値トランジスタである。低しきい値トランジスタを含むオペアンプを、ビット線クランプ電圧生成回路に使用する理由は、センスアンプの“1”、“0”判定のための電位Vsen(約0.35V)と同等の低い電位を生成する必要があるためである。
しかしながら、イントリンシック型トランジスタは、製造工程で生ずるしきい値のばらつきが大きい。このため、トランジスタの温度依存性も考慮すると、オペアンプの動作可能な電圧範囲が制限されることになる。回路全体としても、オペアンプの電圧範囲が制限されるため、動作可能な電圧範囲を充分に得ることは難くなる。
例えば、低温ではトランジスタのしきい値は高くなる。さらに、しきい値のばらつきが高めに振れてしまうと、しきい値が、オペアンプの入力電圧Vclampref、例えば、0.35Vを超えてしまうことがある。このような状態となると、オペアンプは動作しない。
反対に、しきい値のばらつきが低めに振れてしまうと、オペアンプのトランジスタは、Vgs−Vth<Vdsの関係が満たせず、飽和領域動作をしなくなる。上記同様、オペアンプは動作しない。
このように、ビット線クランプ電圧生成回路は、イントリンシック型トランジスタを含むオペアンプを使用するため、動作電圧マージンが狭い、という事情がある。
この発明は、動作電圧マージンが広いビット線クランプ電圧生成回路を備えた半導体集積回路装置を提供する。
実施形態に係る半導体集積回路装置は、ビット線と、センスアンプと、前記ビット線と前記センスアンプとの間に設けられた電荷転送トランジスタと、前記電荷転送トランジスタのゲートに与えるビット線クランプ電圧を生成するビット線クランプ電圧生成回路と、を備え、前記ビット線クランプ電圧生成回路は、入力段、及び出力段を有するカレントミラー回路と、前記カレントミラー回路の入力段と第1基準電位との間に設けられた抵抗分割回路と、前記抵抗分割回路の出力と前記カレントミラー回路の出力段との間に設けられた電位設定回路と、前記カレントミラー回路の入力段の電位と参照電位とを比較して前記カレントミラー回路を制御し、イントリンシック型トランジスタ以外のトランジスタを用いて構成されるオペレーショナルアンプと、を含み、前記ビット線クランプ電圧を、前記カレントミラー回路の出力段から取得し、前記電位設定回路は、第1の抵抗、及び前記第1の抵抗に直列に接続された第1のトランジスタを含む第1の回路と、第2の抵抗、及び前記第2の抵抗に直列に接続された第2のトランジスタを含む第2の回路と、を備え、前記第1のトランジスタは、読み出し動作時において前記ビット線を充電するときにオン状態にされ、それによって前記第1の抵抗に第1の電圧降下が引き起こされ、前記抵抗分割回路の出力ノードの電位に前記第1の電圧降下が加えられ、前記第2のトランジスタは、メモリセルからデータが読み出された後に、前記センスアンプに前記データに対応する電荷が転送されるときにオン状態にされ、それによって、前記第2の抵抗に前記第1の電圧降下とは異なる第2の電圧降下が引き起こされ、前記抵抗分割回路の出力ノードの電位に前記第2の電圧降下が加えられる
この発明によれば、動作電圧マージンが広いビット線クランプ電圧生成回路を備えた半導体集積回路装置を提供できる。
以下、この発明の実施形態を、図面を参照して説明する。この説明に際し、全図にわたり、共通する部分には共通する参照符号を付す。
(第1実施形態)
図1は、この発明の第1実施形態に係る半導体集積回路装置の一例を示すブロック図である。第1実施形態は、半導体集積回路装置の一例とし、NAND型フラッシュメモリを示すが、この発明はNAND型フラッシュメモリ以外のメモリにも適用することができる。
メモリセルアレイ1には、不揮発性半導体メモリセルがマトリクス状に配置される。不揮発性半導体メモリセルの一例は、フラッシュメモリセルである。
カラム制御回路2は、メモリセルアレイ1のビット線を制御し、メモリセルのデータ消去、メモリセルへのデータ書き込み、及びメモリセルからのデータ読み出しを行う。カラム制御回路2は、メモリセルアレイ1に隣接して設けられる。
ロウ制御回路3は、メモリセルアレイ1のワード線を選択し、消去、書き込み、及び読み出しに必要な電位を印加する。
ソース線制御回路4は、メモリセルアレイ1のソース線を制御する。
Pウェル制御回路5は、メモリセルアレイ1が形成されるP型セルウェルの電位を制御する。
データ入出力バッファ6は、カラム制御回路2にIO線対IO、IOnを介して電気的に接続され、外部のホスト(図示せず)に外部I/O線を介して電気的に接続される。データ入出力バッファ6には、例えば、入出力バッファ回路が配置される。データ入出力バッファ6は、書き込みデータの受け取り、読み出しデータの出力、及びアドレスデータやコマンドデータの受け取りを行う。データ入出力バッファ6は、受け取った書き込みデータをIO線対IO、IOnを介してカラム制御回路2に送り、また、カラム制御回路2から読み出したデータをIO線対IO、IOnを介して受け取る。さらに、メモリセルアレイ1のアドレスを選択するために外部から入力されたアドレスデータを、カラム制御回路2やロウ制御回路3に、ステートマシン8を介して送る。また、外部ホストからのコマンドデータを、コマンドインターフェイス7に送る。
コマンドインターフェイス7は、外部制御信号線を介して外部ホストからの制御信号を受け、データ入出力バッファ6に入力されたデータが書き込みデータなのか、あるいはコマンドデータなのか、あるいはアドレスデータなのかを判断し、コマンドデータであれば、コマンドデータとしてステートマシン8に転送する。
ステートマシン8は、フラッシュメモリ全体の管理を行う。外部ホストからのコマンドデータを受け、読み出し、書き込み、消去、及びデータの入出力管理を行う。
図2は、図1に示すメモリセルアレイ1の一例を示す図である。
図2に示すように、メモリセルアレイ1は複数のブロック、例えば、1024個のブロックBLOCK0〜BLOCK1023に分割される。ブロックは、例えば、消去の最小単位である。各ブロックBLOCKiは複数のNAND型メモリユニット、例えば、8512個のNAND型メモリユニットを含む。この例では、各NAND型メモリユニットは2つの選択トランジスタSTD、STSと、これらの間に、直列に接続された複数のメモリセルM(本例では4つ)を含む。NAND型メモリユニットの一端は選択ゲート線SGDに繋がる選択トランジスタSTDを介してビット線BLに接続され、その他端は選択ゲート線SGSに繋がる選択ゲートSTSを介して共通ソース線C-sourceに接続される。各メモリセルMはワード線WLに繋がる。0から数えて偶数番目のビット線BLeと、奇数番目のビット線BLoとは、互いに独立してデータの書き込みと読み出しとが行われる。1本のワード線WLに繋がる8512個のメモリセルのうち、例えば、ビット線BLeに接続される4256個のメモリセルに対して同時にデータの書き込みと読み出しとが行われる。各メモリセルMが記憶する1ビットのデータが4256個のメモリセル分集まって、ページという単位を構成する。ページは、例えば、読み出しの最小単位である。1つのメモリセルMで2ビットのデータを記憶する場合、4256個のメモリセルは2ページ分のデータを記憶する。同様に、ビット線BLoに接続される4256個のメモリセルで別の2ページが構成され、ページ内のメモリセルに対して同時にデータの書き込みと読み出しとが行われる。
図3は、チップレイアウトの一例を示す平面図である。
図3に示すように、半導体チップ100には、メモリセルアレイ領域102、ロウデコーダ領域104、ページバッファ領域106、周辺回路領域108、チャージポンプ回路領域110、及びパッド領域112が設けられる。
本例では、メモリセルアレイ領域102は二箇所有り、それぞれにメモリセルアレイ1がレイアウトされる。
ロウデコーダ領域104は、メモリセルアレイ領域100の、ロウ方向に沿った両端に配置され、それぞれにロウ制御回路3がレイアウトされる。
ページバッファ領域106、周辺回路領域108、チャージポンプ回路領域110、及びパッド領域112は、メモリセルアレイ領域100の、カラム方向に沿った一端に順次配置される。
ページバッファ領域106には、カラム制御回路、例えば、ページバッファがレイアウトされる。ページバッファはデータ回路の一種であり、メモリセルアレイ1へ書き込む、例えば、1ページ分の書き込みデータを一時的に記憶したり、メモリセルアレイ1から読み出した、例えば、1ページ分の読み出しデータを一時的に記憶したりする。
周辺回路領域108には、カラム系制御回路2、データ入出力バッファ6、コマンドインターフェイス7、及びステートマシン8がレイアウトされる。
チャージポンプ回路110には、チャージポンプ回路がレイアウトされる。チャージポンプ回路は昇圧回路の一種であり、書き込み、消去に必要とされる電源電位、例えば、外部電源電位よりも高い電位や、チップ内部で使用されるチップ内電源電位を発生させる。
本例では、パッド領域112は一箇所有り、チップの一つの辺に沿って配置される。パッド領域112には、パッドがレイアウトされる。パッドは、半導体チップ100と、外部との接続点である。パッドは、例えば、データ入出力バッファ6、及びコマンドインターフェイス7に接続される。
(電荷転送型センスアンプの概念)
図4は、電荷転送型センスアンプの概念を示す図である。図4には、シングルエンド型の電荷転送型センスアンプを示す。
NAND型フラッシュメモリのセンスアンプとして、一般的に使用されているのが、シングルエンド型の電荷転送型センスアンプ10である。このセンスアンプ10は、例えば、ページバッファに内蔵され、図4に示すように、ビット線BLに、電荷転送トランジスタ12を介して接続される。電荷転送トランジスタ12のゲートは、ビット線クランプ電圧BLCLAMPによって制御される。ビット線クランプ電圧BLCLAMPは、ビット線クランプ電圧生成回路14によって生成される。図5に、読み出し動作時におけるビット線、センスアンプ側ノードn0、及びビット線クランプ電圧BLCLAMPの電位波形を示す。
図5に示すように、まず、ビット線クランプ電圧生成回路14は、一回目の立ち上がりで、“Vpre+Vthn”となる電圧BLCLAMPを生成する。Vthnは、電荷転送トランジスタ12のしきい値である。電荷転送トランジスタ12はオンし、ビット線BLは、しきい値Vthn分下がった電位Vpreに充電される(時刻t1)。
ビット線BLを電位Vpreに充電した後、電圧BLCLAMPを0Vとして、ビット線BLを、センスアンプ10から切断する。この状態で、NANDストリング(図示せず)の選択ゲートを導通させると、ビット線BLの電位は、メモリセルが記憶しているデータに応じて変化する。メモリセルがデータ“0”を記憶しているとき、メモリセルはオフする。このため、ビット線BLの電位は、電位Vpreからほとんど下がらない。対して、メモリセルがデータ“1”を記憶しているとき、メモリセルはオンするので、ビット線BLの電位は、電位Vpreから電位VSS(例えば、0V)に向かって下がる(時刻t2)。
次いで、ビット線クランプ電圧生成回路14は、“Vsen+Vthn”となる電圧BLCLAMPを生成する。Vsenは、センスアンプ10の、“1”なのか“0”なのかを判定する判定しきい値である。ビット線BLの電位が電位Vsen以下、又は未満に下がっていると、電荷転送トランジスタ12はオンし、ビット線BLからセンスアンプ10に向かって電荷が転送される(時刻t3)。電荷転送トランジスタ12がオンすると、電位Vpreに充電されていたセンスアンプ側のノードn0は、電位Vsen付近まで下がる。これを受けてセンスアンプ10は、“1”データである、と判断し、ビット線BLに現れた微少電位差を、より大きな電位差に増幅する。反対に、ビット線BLの電位が電位Vsenを超える、又は以上を維持していると、電荷転送トランジスタ12はオフするので、電荷は転送されない。ノードn0は、電位Vpreを保つ。これを受けてセンスアンプ10は、“0”データである、と判断する(時刻t4)。
このように、ビット線クランプ電圧BLCLAMPは、電荷転送トランジスタ12のしきい値Vthnに、電位Vpre(約0.6V)や、電位Vsen(約0.35V)を加算した電位をとる。
(ビット線クランプ電圧生成回路)
ビット線クランプ電圧BLCLAMPは、ビット線クランプ電圧生成回路14において生成される。この発明の第1実施形態に係る半導体集積回路装置が備えるビット線クランプ電圧生成回路14の一構成例を図6に示し、その回路の一例を図7に示す。
図6に示すように、ビット線クランプ電圧生成回路14は、カレントミラー回路20、抵抗分割回路22、電位設定回路24、しきい値加算回路28、及びオペレーショナルアンプ(以下オペアンプという)28を含む。
カレントミラー回路20は、入力段n1、及び出力段n2を有する。抵抗分割回路22は、カレントミラー回路20の入力段n1と第1基準電位との間に設けられる。本例の第1基準電位は、例えば、接地電位VSSである。
電位設定回路24は、抵抗分割回路22の出力n3とカレントミラー回路20の出力段n2との間に設けられる。本例は、しきい値加算回路26を有しており、電位設定回路24の出力n4は、しきい値加算回路26を介して出力段n2に接続される。
しきい値加算回路26は、電荷転送トランジスタ12のしきい値分の電位を加算する回路であり、電荷転送トランジスタ12におけるしきい値落ちを防いでいる。しきい値加算回路26は、必要に応じて設けられれば良い。本例のしきい値加算回路26は、図7の回路図に示すように、電荷転送トランジスタ12とサイズ、及びしきい値が同じであるトランジスタ30を含む。本例のトランジスタ30のゲートは、電流通路の一端に接続される。いわゆるダイオード接続である。ゲートに接続された電流通路の一端(アノード)は、出力段n3に接続され、電流通路の他端(カソード)は、電位設定回路24の出力n4に接続される。
オペアンプ28は、カレントミラー回路20の入力段n1の電位と参照電位Vrefとを比較して、カレントミラー回路20を制御する。参照電位Vrefの一例は、電源電位VDD(2.5V)のほぼ半分の1.2Vである。本例のオペアンプ28は、イントリンシック型トランジスタ以外のトランジスタを用いて構成される。オペアンプ28の一回路例を図8に示す。図8に示すように、オペアンプ28は、イントリンシック型トランジスタ以外のトランジスタ、一回路例においては、全てエンハンスメント型のNチャネル型トランジスタを用いて構成される。
ビット線クランプ電圧BLCLAMPは、カレントミラー回路20の出力段n2から得られる。
図7の回路図に示すように、本例のカレントミラー回路20は、第1トランジスタ32と、第2トランジスタ34とを含む。第1トランジスタ32は、電流通路の一端を第2基準電位に接続し、その他端を入力段n1に接続し、ゲートにオペアンプ28の出力outを受ける。第2トランジスタ34は、電流通路の一端を第2基準電位に接続し、その他端を出力段n2に接続し、ゲートにオペアンプ28の出力outを受ける。本例の第2基準電位は電源電位VDDである。第1基準電位は電源電位VDDよりも低い電位であり、本例では上述の通り接地電位VSSである。本例の第1トランジスタ32、及び第2トランジスタ34はPチャネル型トランジスタである。
電位設定回路24は、抵抗分割回路22の出力n3の電位に、さらに、別の電位を加算する。出力n3の電位は、本例では、0.35Vである。この電位は、ビット線クランプ電圧生成回路14が生成する最低の電位である(ただし、接地電位VSSを除く。本例では、ビット線クランプ電圧BLCLAMPの電位を接地電位とする回路については省略する)。この最低の電位は、例えば、センスアンプ10の、“1”なのか“0”なのかを判定する判定しきい値に等しい。電位設定回路24が加算する電位は、スイッチ信号SW_1〜SW_Nによって変更される。例えば、加算する電位は、図5の読み出し動作波形に示したように、ビット線BLを充電するときと、メモリセルからデータを読み出した後、ビット線BLの電荷をセンスアンプ10に転送するときとで変更される。
図7の回路図に示すように、本例の電位設定回路24は、Nチャネル型トランジスタ36(36_1〜36_N)と抵抗38(38_1〜38_N)とが直列に接続された回路40をN個含む。N個の回路40_1〜40_Nは、抵抗分割回路22の出力n3と電位設定回路24の出力n4との間に、並列に接続される。スイッチ信号SW_1〜SW_Nは、トランジスタ36_1〜36_Nのゲートに入力される。例えば、スイッチ信号SW_1〜SW_Nは、いずれか一つが“H”レベルとなることによって、トランジスタ36_1〜36_Nのいずれか一つを導通させる。これにより、電位設定回路24は、抵抗分割回路22の出力n3の電位に、抵抗38_1〜38_Nのいずれか一つの電圧降下に応じた電位を加算して出力する。抵抗38_1〜38_Nは、それぞれ異なった抵抗値を持つ。その抵抗値が、例えば、ほぼ0であり、抵抗の両端に電圧降下をほぼ生じないときには、出力n3の電位(本例では0.35V)が、出力n4に対してほぼ出力される。また、0.25Vの電位降下を生ずるときには、出力n3の電位に0.25Vを加算した電位(本例では0.6Vとなる)が、出力n4に対して出力される。このように、電位設定回路24は、スイッチ信号SW_1〜SW_Nを制御することで、複数のビット線クランプ電圧BLCLAMPを設定することができる。
図9は、この発明の参考例に係るビット線クランプ電圧生成回路を示す回路図である。
図9に示すように、参考例に係るビット線クランプ電圧生成回路は、参照電位Vclamprefを、BLCLAMP用参照電位発生回路から発生する。参照電位Vclamprefは、0.35Vである。オペアンプ100は、参照電位Vclamprefと、ノードn5の電位とを比較して、Pチャネル型トランジスタ102を制御し、ビット線クランプ電圧生成回路の出力n6の電位(ビット線クランプ電圧BLCLAMP)を決める。ノードn5の電位は、0.35Vである。
オペアンプ100は、その入力に、参照電位Vclampref、及びノードn5の電位を受ける。これら電位は、0.35Vという低い電位である。このような低い電位を取り扱うために、オペアンプ100には、低しきい値トランジスタ、即ち、しきい値がほぼ0Vのイントリンシック型トランジスタが必要である。そのようなオペアンプ100の一例を、図10に示す。しかし、イントリンシック型トランジスタを含むオペアンプ100を使用するビット線クランプ電圧生成回路は、背景技術の欄において説明したように、動作電圧マージンが狭い、という事情がある。
対して、第1実施形態に係る半導体集積回路装置は、カレントミラー回路20を有する。本例のカレントミラー回路20の入力段n1は、抵抗分割回路22の高電位側に接続される。このため、抵抗分割回路22の抵抗R1、R2の抵抗比、及びカレントミラー回路20のPチャネル型トランジスタ32、34のミラー比を調整することで、抵抗分割回路22の出力n2の電位を、低しきい値のイントリンシック型トランジスタを用いることなく、低い電位、例えば、センスアンプ10の判定しきい値に等しい電位、例えば、0.35Vに設定することができる。抵抗分割回路22の出力n2は、本例では、電位設定回路24、及びしきい値加算回路26を介して、カレントミラー回路20の出力段n2に接続される。そして、ビット線クランプ電圧BLCLAMPを出力段n2から得る。
このように、第1実施形態によれば、イントリンシック型トランジスタを用いずに、ビット線クランプ電圧BLCLAMPを生成できるので、オペアンプの動作可能な電圧範囲が、イントリンシック型トランジスタのしきい値ばらつきに制限されることがない。
従って、動作電圧マージンが広いビット線クランプ電圧生成回路を備えた半導体集積回路装置が得られる。NAND型フラッシュメモリ全体としても、ビット線クランプ電圧生成回路14の動作電圧マージンが広がるので、充分に広い動作可能な電圧範囲を得ることができる。
特に、動作電圧マージンの拡大は、電源電位VDDの下限値VDDminにおいて大きい。下限値VDDminは、動作可能な最低の電源電位である。イントリンシック型トランジスタを用いたビット線クランプ電圧生成回路を備えたNAND型フラッシュメモリは、下限値VDDminは、イントリンシック型トランジスタを使用するオペアンプにて律速される。対して、第1実施形態によれば、イントリンシック型トランジスタを使用するオペアンプが無いので、下限値VDDminが、このオペアンプによって律速されることがない。この結果、下限値VDDminを、下げることが可能となる。
動作可能な電圧範囲の拡大、及び下限値VDDminの低下は、電源電位VDDの変動に起因する誤動作が少なく、ユーザーにとっては、NAND型フラッシュメモリの使い勝手が良くなる、という利点をもたらす。
また、その製造においては、動作可能な電圧範囲が広がるから、この範囲を超過するようなNAND型フラッシュメモリが製造されることが少なくなる。これは、製造歩留りの向上に寄与し、製造コストの低下に有利である。
さらに、第1実施形態に係る半導体集積回路装置によれば、抵抗分割回路22の抵抗比、及びカレントミラー回路20のミラー比を調整することで、抵抗分割回路22の出力n2の電位を、0.35V未満に設定することも可能である。これは、ビット線クランプ電圧生成回路14が生成できるビット線クランプ電圧BLCLAMPの下限が下がる、という利点をもたらす。つまり、今後の微細化の促進や、低消費電力化のために電源電位VDDが低下すると、センスアンプ10の判定しきい値も低下する。このため、ビット線クランプ電圧生成回路14は、0.35V以下のビット線クランプ電圧BLCLAMPを生成しなければならなくなる。第1実施形態によれば、0.35V以下のビット線クランプ電圧BLCLAMPを生成することも可能であるので、今後も進むと予想される電源電位VDDの低下にも対応することができる。
(第2実施形態)
図11は、この発明の第2実施形態に係る半導体集積回路装置が備えるビット線クランプ電圧生成回路の一構成例を示す回路図である。
図11に示すように、第2実施形態は、第1実施形態のカレントミラー回路20の出力段n2に、ビット線クランプ電圧BLCLAMPを電荷転送トランジスタ12のゲートに伝える配線を駆動する駆動回路を設けたものである。本例では、出力段n2に、もう一段のオペアンプ42を配置し、Pチャネル型トランジスタ44をオペアンプ42の出力により制御して、トランジスタ44と抵抗R3とのノードn7からビット線クランプ電圧BLCLAMPを取り出す。
第1実施形態では、出力段n2に接続される負荷が大きい場合には応答が遅くなり、ビット線クランプ電圧BLCLAMPが所定の電位に到達するまで時間がかかることがある。例えば、カレントミラー回路20の出力段n2に接続される負荷は、第1実施形態では、電荷転送トランジスタ12のゲートであり、出力段n2には複数の電荷転送トランジスタ12のゲートが接続される。メモリセルアレイの高集積化や、ページサイズの増大が進むと、ビット線の数が増える。ビット線の数が増えると、電荷転送トランジスタ12の数も増える。このため、出力段n2に接続される負荷は、今後、増大する可能性が高い。
第2実施形態では、カレントミラー回路20の出力段n2を、オペアンプ42で、一旦切る。これにより、出力段n2に接続される負荷は、オペアンプ42を構成するトランジスタのゲートのみとできる。これにより、メモリセルアレイの高集積化や、ページサイズの増大が進んだ場合においても、出力段n2の負荷の増大を抑制する。また、出力段n2に接続される負荷を、オペアンプ42を構成するトランジスタのゲートのみとして、第1実施形態に比較して出力段n2の負荷を軽減できる。
従って、第2実施形態によれば、第1実施形態に比較して出力段n2の負荷を軽減できることで、第1実施形態に比較して高速な動作が可能となる。
以上、この発明を第1、第2実施形態により説明したが、この発明は第1、第2実施形態に限定されるものではなく、その実施にあたっては発明の要旨を逸脱しない範囲で種々に変形することが可能である。
また、各実施形態は種々の段階の発明を含んでおり、各実施形態において開示した複数の構成要件の適宜な組み合わせにより、種々の段階の発明を抽出することが可能である。
また、実施形態は、この発明をNAND型フラッシュメモリに適用した例に基づき説明したが、この発明はNAND型フラッシュメモリに限られるものではなく、AND型、NOR型等、NAND型以外のフラッシュメモリにも適用することができる。さらに、これらフラッシュメモリを内蔵した半導体集積回路装置、例えば、プロセッサ、システムLSI等もまた、この発明の範疇である。
図1はこの発明の第1実施形態に係る半導体集積回路装置の一例を示すブロック図 図2は図1に示すメモリセルアレイの一例を示す図 図3はチップレイアウトの一例を示す平面図 図4は電荷転送型センスアンプの概念を示す図 図5は読み出し動作時におけるビット線、センスアンプ側ノード、及びビット線クランプ電圧の電位波形を示す電位波形図 図6はこの発明の第1実施形態に係る半導体集積回路装置が備えるビット線クランプ電圧生成回路の一構成例を示すブロック図 図7は図6に示すビット線クランプ電圧生成回路の一回路例を示す回路図 図8は図6に示すオペアンプの一回路例を示す回路図 図9はこの発明の参考例に係るビット線クランプ電圧生成回路の回路図 図10は図9に示すオペアンプの回路図 図11はこの発明の第2実施形態に係る半導体集積回路装置が備えるビット線クランプ電圧生成回路の一構成例を示す回路図
符号の説明
BL、BLe、BLo…ビット線、n1…カレントミラー回路の入力段、n2…カレントミラー回路の出力段、BLCLAMP…ビット線クランプ電圧、10…センスアンプ、12…電荷転送トランジスタ、14…ビット線クランプ電圧生成回路、20…カレントミラー回路、22…抵抗分割回路、24…電位設定回路、26…しきい値加算回路、28…オペレーショナルアンプ(オペアンプ)、32…Pチャネル型トランジスタ。

Claims (6)

  1. ビット線と、
    センスアンプと、
    前記ビット線と前記センスアンプとの間に設けられた電荷転送トランジスタと、
    前記電荷転送トランジスタのゲートに与えるビット線クランプ電圧を生成するビット線クランプ電圧生成回路と、を備え、
    前記ビット線クランプ電圧生成回路は、
    入力段、及び出力段を有するカレントミラー回路と、
    前記カレントミラー回路の入力段と第1基準電位との間に設けられた抵抗分割回路と、
    前記抵抗分割回路の出力と前記カレントミラー回路の出力段との間に設けられた電位設定回路と、
    前記カレントミラー回路の入力段の電位と参照電位とを比較して前記カレントミラー回路を制御し、イントリンシック型トランジスタ以外のトランジスタを用いて構成されるオペレーショナルアンプと、を含み、
    前記ビット線クランプ電圧を、前記カレントミラー回路の出力段から取得し、
    前記電位設定回路は、第1の抵抗、及び前記第1の抵抗に直列に接続された第1のトランジスタを含む第1の回路と、第2の抵抗、及び前記第2の抵抗に直列に接続された第2のトランジスタを含む第2の回路と、を備え、
    前記第1のトランジスタは、読み出し動作時において、前記ビット線を充電するときにオン状態にされ、それによって前記第1の抵抗に第1の電圧降下が引き起こされ、前記抵抗分割回路の出力ノードの電位に前記第1の電圧降下が加えられ、
    前記第2のトランジスタは、メモリセルからデータが読み出された後に、前記センスアンプに前記データに対応する電荷が転送されるときにオン状態にされ、それによって、前記第2の抵抗に前記第1の電圧降下とは異なる第2の電圧降下が引き起こされ、前記抵抗分割回路の出力ノードの電位に前記第2の電圧降下が加えられることを特徴とする半導体集積回路装置。
  2. 前記電位設定回路と前記カレントミラー回路の出力段との間に、前記電荷転送トランジスタのしきい値分の電位を加算するしきい値加算回路を、さらに、備えることを特徴とする請求項1に記載の半導体集積回路装置。
  3. 前記カレントミラー回路の出力段に、前記ビット線クランプ電圧を前記電荷転送トランジスタのゲートに伝える配線を駆動する駆動回路を、さらに、備えることを特徴とする請求項1または請求項2に記載の半導体集積回路装置。
  4. 前記カレントミラー回路は、電流通路の一端を第2基準電位に接続し、その他端を前記入力段に接続し、ゲートに前記オペレーショナルアンプの出力を受ける第3のトランジスタと、電流通路の一端を前記第2基準電位に接続し、その他端を前記出力段に接続し、ゲートに前記オペレーショナルアンプの出力を受ける第4のトランジスタとを含むことを特徴とする請求項1乃至請求項3いずれか一項に記載の半導体集積回路装置。
  5. 前記電位設定回路は、前記抵抗分割回路の出力の電位に、さらに、前記第1の回路または前記第2の回路によって別の電位を加算し、加算する電位を前記第1のトランジスタまたは前記第2のトランジスタによって変更することを特徴とする請求項1乃至請求項3いずれか一項に記載の半導体集積回路装置。
  6. 前記電位設定回路は、第3の抵抗及びこれに直列に接続された第5のトランジスタからなる第3の回路を更に含み、
    前記第5のトランジスタは、前記読み出し動作時に、前記ビット線を充電する時、及び前記メモリセルからデータが読み出された後に前記センスアンプに転送される時以外の場合にオン状態にされ、それによって、前記第1及び第2の電圧降下とは異なる第3の電圧降下が引き起こされ、前記抵抗分割回路の出力ノードの電位に前記第3の電圧降下が加えられることを特徴とする請求項1乃至請求項5のいずれか一項に記載の半導体集積回路装置。
JP2005359336A 2005-12-13 2005-12-13 半導体集積回路装置 Expired - Fee Related JP4901204B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005359336A JP4901204B2 (ja) 2005-12-13 2005-12-13 半導体集積回路装置
US11/534,846 US7453742B2 (en) 2005-12-13 2006-09-25 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359336A JP4901204B2 (ja) 2005-12-13 2005-12-13 半導体集積回路装置

Publications (2)

Publication Number Publication Date
JP2007164891A JP2007164891A (ja) 2007-06-28
JP4901204B2 true JP4901204B2 (ja) 2012-03-21

Family

ID=38139136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359336A Expired - Fee Related JP4901204B2 (ja) 2005-12-13 2005-12-13 半導体集積回路装置

Country Status (2)

Country Link
US (1) US7453742B2 (ja)
JP (1) JP4901204B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960078B2 (ja) * 2006-12-22 2012-06-27 株式会社東芝 不揮発性半導体記憶装置
JP4504397B2 (ja) * 2007-05-29 2010-07-14 株式会社東芝 半導体記憶装置
US7596035B2 (en) * 2007-06-29 2009-09-29 Micron Technology, Inc. Memory device bit line sensing system and method that compensates for bit line resistance variations
JP2009151886A (ja) * 2007-12-21 2009-07-09 Toshiba Corp 半導体記憶装置
US20090235040A1 (en) * 2008-03-14 2009-09-17 Chilumula Ajaya K Programmble memory appratus, systems, and methods
JP2009295221A (ja) * 2008-06-04 2009-12-17 Toshiba Corp 半導体記憶装置
JP5193701B2 (ja) * 2008-06-30 2013-05-08 株式会社東芝 半導体記憶装置
US8270242B2 (en) 2009-06-25 2012-09-18 Atmel Corporation Sense amplifier apparatus and methods
JP2011210348A (ja) * 2010-03-11 2011-10-20 Sony Corp 制御電圧生成回路及びそれを備えた不揮発性記憶装置
JP4982606B2 (ja) * 2010-12-22 2012-07-25 株式会社東芝 半導体記憶装置およびその制御方法
JP2012203931A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 半導体記憶装置
CN103093821B (zh) * 2011-11-04 2016-11-09 上海华虹宏力半导体制造有限公司 一种嵌位电压产生电路
JP5667260B1 (ja) 2013-08-20 2015-02-12 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置
US9542981B2 (en) * 2013-08-21 2017-01-10 Globalfoundries Inc. Self-timed, single-ended sense amplifier
KR20170008365A (ko) 2015-07-13 2017-01-24 에스케이하이닉스 주식회사 전압 레벨 쉬프터, 이를 이용하는 내장형 비휘발성 메모리 및 시스템
US9666258B2 (en) * 2015-08-11 2017-05-30 International Business Machines Corporation Bit line clamp voltage generator for STT MRAM sensing
US10318726B2 (en) * 2016-04-18 2019-06-11 Qualcomm Incorporated Systems and methods to provide security to one time program data
US9887011B1 (en) 2017-02-06 2018-02-06 Macronix International Co., Ltd. Memory with controlled bit line charging
JP6501325B1 (ja) * 2018-01-30 2019-04-17 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置
JP2020102291A (ja) 2018-12-25 2020-07-02 キオクシア株式会社 半導体装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497708B2 (ja) * 1997-10-09 2004-02-16 株式会社東芝 半導体集積回路
US6535415B2 (en) * 1999-02-22 2003-03-18 Hitachi, Ltd. Semiconductor device
US6563746B2 (en) * 1999-11-09 2003-05-13 Fujitsu Limited Circuit for entering/exiting semiconductor memory device into/from low power consumption mode and method of controlling internal circuit at low power consumption mode
JP2001184881A (ja) * 1999-12-28 2001-07-06 Toshiba Corp 不揮発性半導体メモリの読み出し回路
JP3943790B2 (ja) * 2000-02-24 2007-07-11 株式会社東芝 負電位検知回路及びこの負電位検知回路を備えた半導体記憶装置
JP3866481B2 (ja) * 2000-05-12 2007-01-10 株式会社東芝 半導体集積回路
JP4413406B2 (ja) * 2000-10-03 2010-02-10 株式会社東芝 不揮発性半導体メモリ及びそのテスト方法
ITRM20010001A1 (it) * 2001-01-03 2002-07-03 Micron Technology Inc Circuiteria di rilevazione per memorie flash a bassa tensione.
US6721203B1 (en) * 2001-02-23 2004-04-13 Western Digital (Fremont), Inc. Designs of reference cells for magnetic tunnel junction (MTJ) MRAM
US6370061B1 (en) * 2001-06-19 2002-04-09 Advanced Micro Devices, Inc. Ceiling test mode to characterize the threshold voltage distribution of over programmed memory cells
US6907497B2 (en) * 2001-12-20 2005-06-14 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
JP3707680B2 (ja) * 2002-01-25 2005-10-19 松下電器産業株式会社 駆動電圧制御装置
JP2003273654A (ja) * 2002-03-15 2003-09-26 Seiko Epson Corp 温度特性補償装置
US6711068B2 (en) * 2002-06-28 2004-03-23 Motorola, Inc. Balanced load memory and method of operation
US7196931B2 (en) * 2002-09-24 2007-03-27 Sandisk Corporation Non-volatile memory and method with reduced source line bias errors
US6700814B1 (en) * 2002-10-30 2004-03-02 Motorola, Inc. Sense amplifier bias circuit for a memory having at least two distinct resistance states
JP3913704B2 (ja) * 2003-04-22 2007-05-09 株式会社東芝 不揮発性半導体記憶装置及びこれを用いた電子装置
US6765374B1 (en) * 2003-07-10 2004-07-20 System General Corp. Low drop-out regulator and an pole-zero cancellation method for the same
KR100515060B1 (ko) * 2003-08-13 2005-09-14 삼성전자주식회사 비트 라인의 프리차지 레벨을 일정하게 유지하는 불휘발성반도체 메모리 장치

Also Published As

Publication number Publication date
US20070133316A1 (en) 2007-06-14
US7453742B2 (en) 2008-11-18
JP2007164891A (ja) 2007-06-28

Similar Documents

Publication Publication Date Title
JP4901204B2 (ja) 半導体集積回路装置
KR100697053B1 (ko) 불휘발성 메모리와 불휘발성 메모리의 기록방법
JP6164713B1 (ja) 半導体記憶装置
US7280407B2 (en) Semiconductor memory device including floating gates and control gates, control method for the same, and memory card including the same
US8000143B2 (en) Nonvolatile memory device including circuit formed of thin film transistors
JP4303004B2 (ja) 低電圧不揮発性半導体メモリ装置
JPH07249294A (ja) 半導体集積回路装置
CN101231886A (zh) Nand快闪存储器件与改善nand快闪存储器件中单元特性的方法
JP7078663B2 (ja) 半導体記憶装置
JPH04186598A (ja) 不揮発性半導体記憶装置
US10083755B2 (en) Discharge circuit and semiconductor memory device
US8258817B2 (en) Semiconductor integrated circuit
JP4846814B2 (ja) 不揮発性半導体記憶装置
JP2008262669A (ja) 半導体記憶装置
JP2021125277A (ja) 半導体記憶装置
JP2006311579A (ja) 検知回路
JP3294153B2 (ja) 半導体メモリ
JP2009252290A (ja) 半導体集積回路およびその動作方法
JP6290034B2 (ja) 不揮発性半導体記憶装置、及びその読み出し方法
US20170351312A1 (en) Semiconductor device
KR102328355B1 (ko) 반도체 기억장치 및 프리차지 방법
TWI727809B (zh) 半導體存儲裝置及預充電方法
US10861560B2 (en) Semiconductor memory device
JP2007172743A (ja) 記憶装置
JP2024046271A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees