JP4868097B1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP4868097B1
JP4868097B1 JP2011531275A JP2011531275A JP4868097B1 JP 4868097 B1 JP4868097 B1 JP 4868097B1 JP 2011531275 A JP2011531275 A JP 2011531275A JP 2011531275 A JP2011531275 A JP 2011531275A JP 4868097 B1 JP4868097 B1 JP 4868097B1
Authority
JP
Japan
Prior art keywords
amount
exhaust
purification catalyst
reducing intermediate
exhaust purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011531275A
Other languages
English (en)
Other versions
JPWO2012029187A1 (ja
Inventor
寿丈 梅本
耕平 吉田
三樹男 井上
悠樹 美才治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP4868097B1 publication Critical patent/JP4868097B1/ja
Publication of JPWO2012029187A1 publication Critical patent/JPWO2012029187A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1614NOx amount trapped in catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/007Storing data relevant to operation of exhaust systems for later retrieval and analysis, e.g. to research exhaust system malfunctions

Abstract

内燃機関において、機関排気通路内に炭化水素供給弁(15)と、排気浄化触媒(13)とが配置される。炭化水素供給弁(15)が5秒以内の周期でもって炭化水素が供給されると排気浄化触媒(13)内には還元性中間体が生成され、この還元性中間体によってNOの浄化処理が行われる。機関運転時にNOを還元するのに必要な還元性中間体の要求生成量が算出され、還元性中間体の生成量がこの要求生成量となるように炭化水素の供給量および供給周期が制御される。
【選択図】図1

Description

本発明は内燃機関の排気浄化装置に関する。
機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOを吸蔵し流入する排気ガスの空燃比がリッチになると吸蔵したNOを放出するNO吸蔵触媒を配置し、NO吸蔵触媒上流の機関排気通路内に吸着機能を有する酸化触媒を配置し、NO吸蔵触媒からNOを放出すべきときには酸化触媒上流の機関排気通路内に炭化水素を供給してNO吸蔵触媒に流入する排気ガスの空燃比をリッチにするようにした内燃機関が公知である(例えば特許文献1を参照)。
この内燃機関ではNO吸蔵触媒からNOを放出すべきときに供給された炭化水素が酸化触媒においてガス状の炭化水素とされ、ガス状の炭化水素がNO吸蔵触媒に送り込まれる。その結果、NO吸蔵触媒から放出されたNOが良好に還元せしめられることになる。
特許第3969450号
しかしながらNO吸蔵触媒は高温になるとNO浄化率が低下するという問題がある。
本発明の目的は、排気浄化触媒の温度が高温になっても高いNO浄化率を得ることのできる内燃機関の排気浄化装置を提供することにある。
本発明によれば、機関排気通路内に排気ガス中に含まれるNOと改質された炭化水素とを反応させて窒素および炭化水素を含む還元性中間体を生成させるための排気浄化触媒を配置し、排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると還元性中間体を生成して生成された還元性中間体の還元作用により排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素濃度の振動周期を予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、機関運転時にNOを還元するのに必要な還元性中間体の要求生成量を算出し、還元性中間体の生成量が要求生成量となるように排気浄化触媒に流入する炭化水素濃度の振幅および振動周期を制御するようにした内燃機関の排気浄化装置が提供される。
排気浄化触媒の温度が高温になっても高いNO浄化率を得ることができる。
図1は圧縮着火式内燃機関の全体図である。
図2は触媒担体の表面部分を図解的に示す図である。
図3は排気浄化触媒における酸化反応を説明するための図である。
図4は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。
図5はNO浄化率を示す図である。
図6Aおよび6Bは排気浄化触媒における酸化還元反応を説明するための図である。
図7Aおよび7Bは排気浄化触媒における酸化還元反応を説明するための図である。
図8は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。
図9はNO浄化率を示す図である。
図10は排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。
図11は排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。
図12は排気浄化触媒の酸化力と要求最小空燃比Xとの関係を示す図である。
図13は同一のNO浄化率の得られる、排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示す図である。
図14は炭化水素濃度の振幅ΔHとNO浄化率との関係を示す図である。
図15は炭化水素濃度の振動周期ΔTとNO浄化率との関係を示す図である。
図16は排気浄化触媒への流入排気ガスの空燃比の変化等を示す図である。
図17は吸蔵NO量NOXAのマップを示す図である。
図18はNO吐き出し速度NOXBを示す図である。
図19は燃料噴射時期を示す図である。
図20は追加の燃料WRのマップを示す図である。
図21A,21B,21CはNO放出率を示す図である。
図22Aおよび22Bは還元性中間体保持時間等を示す図である。
図23Aおよび23Bは還元性中間体生成率K,Kを示す図である。
図24Aおよび24Bは還元性中間体の最大生成量Mを示す図である。
図25Aおよび25Bは燃料供給量W等のマップを示す図である。
図26はNO浄化率とNO吸蔵率を示す図である。
図27は第2のNO浄化方法から第1のNO浄化方法に切換えられる際の排気ガスの空燃比(A/F)in等の変化を示すタイムチャートである。
図28はNO浄化制御を行うためのフローチャートである。
図29Aおよび29Bは排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。
図30はスロットル弁の開度θBのマップを示す図である。
図31は第2のNO浄化方法から第1のNO浄化方法に切換えられる際の排気ガスの空燃比(A/F)in等の変化を示すタイムチャートである。
図32はNO浄化制御を行うためのフローチャートである。
図33はリッチ制御時におけるタイムチャートを示す図である。
図34Aおよび34Bは補正係数を示す図である。
図1に圧縮着火式内燃機関の全体図を示す。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結される。排気タービン7bの出口は排気管12を介して排気浄化触媒13の入口に連結され、排気浄化触媒13の出口は排気ガス中に含まれる微粒子を捕集するためのパティキュレートフィルタ14に連結される。排気浄化触媒13上流の排気管12内には圧縮着火式内燃機関の燃料として用いられる軽油その他の燃料からなる炭化水素を供給するための炭化水素供給弁15が配置される。図1に示される実施例では炭化水素供給弁15から供給される炭化水素として軽油が用いられている。なお、本発明はリーン空燃比のもとで燃焼の行われる火花点火式内燃機関にも適用することができる。この場合、炭化水素供給弁15からは火花点火式内燃機関の燃料として用いられるガソリンその他の燃料からなる炭化水素が供給される。
一方、排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路16を介して互いに連結され、EGR通路16内には電子制御式EGR制御弁17が配置される。また、EGR通路16周りにはEGR通路16内を流れるEGRガスを冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管19を介してコモンレール20に連結され、このコモンレール20は電子制御式の吐出量可変な燃料ポンプ21を介して燃料タンク22に連結される。燃料タンク22内に貯蔵されている燃料は燃料ポンプ21によってコモンレール20内に供給され、コモンレール20内に供給された燃料は各燃料供給管19を介して燃料噴射弁3に供給される。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。排気浄化触媒13の下流には排気浄化触媒13の温度を検出するための温度センサ23が取付けられており、パティキュレートフィルタ14にはパティキュレートフィルタ14の前後の差圧を検出するための差圧センサ24が取付けられている。また、排気マニホルド5の集合部には空燃比センサ25が配置されている。これら温度センサ23、差圧センサ24、空燃比センサ25および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、炭化水素供給弁15、EGR制御弁17および燃料ポンプ21に接続される。
図2は排気浄化触媒13の基体上に担持された触媒担体の表面部分を図解的に示している。この排気浄化触媒13では図2に示されるように例えばアルミナからなる触媒担体50上には貴金属触媒51,52が担持されており、更にこの触媒担体50上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOに電子を供与しうる金属から選ばれた少くとも一つを含む塩基性層53が形成されている。排気ガスは触媒担体50上に沿って流れるので貴金属触媒51,52は排気浄化触媒13の排気ガス流通表面上に担持されていると言える。また、塩基性層53の表面は塩基性を呈するので塩基性層53の表面は塩基性の排気ガス流通表面部分54と称される。
一方、図2において貴金属触媒51は白金Ptからなり、貴金属触媒52はロジウムRhからなる。即ち、触媒担体50に担持されている貴金属触媒51,52は白金PtおよびロジウムRhから構成されている。なお、排気浄化触媒13の触媒担体50上には白金PtおよびロジウムRhに加えて更にパラジウムPdを担持させることができるし、或いはロジウムRhに代えてパラジウムPdを担持させることができる。即ち、触媒担体50に担持されている貴金属触媒51,52は白金Ptと、ロジウムRhおよびパラジウムPdの少なくとも一方とにより構成される。
炭化水素供給弁15から排気ガス中に炭化水素が噴射されるとこの炭化水素は排気浄化触媒13において改質される。本発明ではこのとき改質された炭化水素を用いて排気浄化触媒13においてNOを浄化するようにしている。図3はこのとき排気浄化触媒13において行われる改質作用を図解的に示している。図3に示されるように炭化水素供給弁15から噴射された炭化水素HCは触媒51によって炭素数の少ないラジカル状の炭化水素HCとなる。
なお、燃料噴射弁3から燃焼室2内に燃料、即ち炭化水素を膨張行程の後半或いは排気行程中に噴射してもこの炭化水素は燃焼室2内又は排気浄化触媒13において改質され、排気ガス中に含まれるNOはこの改質された炭化水素によって排気浄化触媒13で浄化される。従って本発明では炭化水素供給弁15から機関排気通路内に炭化水素を供給する代りに、膨張行程の後半或いは排気行程中に燃焼室2内に炭化水素を供給することもできる。このように本発明では炭化水素を燃焼室2内に供給することもできるが、以下炭化水素を炭化水素供給弁15から機関排気通路内に噴射するようにした場合を例にとって本発明を説明する。
図4は炭化水素供給弁15からの炭化水素の供給タイミングと排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化とを示している。なお、この空燃比(A/F)inの変化は排気浄化触媒13に流入する排気ガス中の炭化水素の濃度変化に依存しているので図4に示される空燃比(A/F)inの変化は炭化水素の濃度変化を表しているとも言える。ただし、炭化水素濃度が高くなると空燃比(A/F)inは小さくなるので図4においては空燃比(A/F)inがリッチ側となるほど炭化水素濃度が高くなっている。
図5は、排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させることによって図4に示されるように排気浄化触媒13への流入排気ガスの空燃比(A/F)inを変化させたときの排気浄化触媒13によるNO浄化率を排気浄化触媒13の各触媒温度TCに対して示している。本発明者は長い期間に亘ってNO浄化に関する研究を重ねており、その研究課程において、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると、図5に示されるように400℃以上の高温領域においても極めて高いNO浄化率が得られることが判明したのである。
更にこのときには窒素および炭化水素を含む多量の還元性中間体が塩基性層53の表面上に、即ち排気浄化触媒13の塩基性排気ガス流通表面部分54上に保持又は吸着され続けており、この還元性中間体が高NO浄化率を得る上で中心的役割を果していることが判明したのである。次にこのことについて図6Aおよび6Bを参照しつつ説明する。なお、これら図6Aおよび6Bは排気浄化触媒13の触媒担体50の表面部分を図解的に示しており、これら図6Aおよび6Bには排気浄化触媒13に流入する炭化水素の濃度が予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動せしめたときに生ずると推測される反応が示されている。
図6Aは排気浄化触媒13に流入する炭化水素の濃度が低いときを示しており、図6Bは炭化水素供給弁15から炭化水素が供給されて排気浄化触媒13に流入する炭化水素の濃度が高くなっているときを示している。
さて、図4からわかるように排気浄化触媒13に流入する排気ガスの空燃比は一瞬を除いてリーンに維持されているので排気浄化触媒13に流入する排気ガスは通常酸素過剰の状態にある。従って排気ガス中に含まれるNOは図6Aに示されるように白金51上において酸化されてNOとなり、次いでこのNOは白金51から電子を供与されてNO となる。従って白金51上には多量のNO が生成されることになる。このNO は活性が強く、以上このNO を活性NO と称する。
一方、炭化水素供給弁15から炭化水素が供給されると図3に示されるようにこの炭化水素は排気浄化触媒13内において改質され、ラジカルとなる。その結果、図6Bに示されるように活性NO 周りの炭化水素濃度が高くなる。ところで活性NO が生成された後、活性NO 周りの酸素濃度が高い状態が一定時間以上継続すると活性NO は酸化され、硝酸イオンNO の形で塩基性層53内に吸収される。しかしながらこの一定時間が経過する前に活性NO 周りの炭化水素濃度が高くされると図6Bに示されるように活性NO は白金51上においてラジカル状の炭化水素HCと反応し、それにより還元性中間体が生成される。この還元性中間体は塩基性層53の表面上に付着又は吸着される。
なお、このとき最初に生成される還元性中間体はニトロ化合物R−NOであると考えられる。このニトロ化合物R−NOは生成されるとニトリル化合物R−CNとなるがこのニトリル化合物R−CNはその状態では瞬時しか存続し得ないのでただちにイソシアネート化合物R−NCOとなる。このイソシアネート化合物R−NCOは加水分解するとアミン化合物R−NHとなる。ただしこの場合、加水分解されるのはイソシアネート化合物R−NCOの一部であると考えられる。従って図6Bに示されるように塩基性層53の表面上に保持又は吸着されている還元性中間体の大部分はイソシアネート化合物R−NCOおよびアミン化合物R−NHであると考えられる。
一方、図6Bに示されるように生成された還元性中間体の周りを炭化水素HCが取り囲んでいると還元性中間体は炭化水素HCに阻まれてそれ以上反応が進まない。この場合、排気浄化触媒13に流入する炭化水素の濃度が低下せしめられ、それによって酸素濃度が高くなると還元性中間体周りの炭化水素は酸化せしめられる。その結果、図6Aに示されるように還元性中間体と活性NO とが反応するようになる。このとき活性NO は還元性中間体R−NCOやR−NHと反応してN,CO,HOとなり、斯くしてNOが浄化されることになる。
このように排気浄化触媒13では、排気浄化触媒13に流入する炭化水素の濃度を高くすることにより還元性中間体が生成され、排気浄化触媒13に流入する炭化水素の濃度を低くして酸素濃度を高くすることにより活性NO が還元性中間体と反応し、NOが浄化される。即ち、排気浄化触媒13によりNOを浄化するには排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させる必要がある。
無論、この場合、還元性中間体を生成するのに十分高い濃度まで炭化水素の濃度を高める必要があり、生成された還元性中間体を活性NO と反応させるのに十分低い濃度まで炭化水素の濃度を低下させる必要がある。即ち、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅で振動させる必要がある。なお、この場合、生成された還元性中間体が活性NO と反応するまで、十分な量の還元性中間体R−NCOやR−NHを塩基性層53上に、即ち塩基性排気ガス流通表面部分24上保持しておかなければならず、そのために塩基性の排気ガス流通表面部分24が設けられている。
一方、炭化水素の供給周期を長くすると炭化水素が供給された後、次に炭化水素が供給されるまでの間において酸素濃度が高くなる期間が長くなり、従って活性NO は還元性中間体を生成することなく硝酸塩の形で塩基性層53内に吸収されることになる。これを回避するためには排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の周期でもって振動させることが必要となる。
そこで本発明による実施例では、排気ガス中に含まれるNOと改質された炭化水素とを反応させて窒素および炭化水素を含む還元性中間体R−NCOやR−NHを生成するために排気浄化触媒13の排気ガス流通表面上には貴金属触媒51,52が担持されており、生成された還元性中間体R−NCOやR−NHを排気浄化触媒13内に保持しておくために貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、塩基性の排気ガス流通表面部分54上に保持された還元性中間体R−NCOやR−NHの還元作用によりNOが還元され、炭化水素濃度の振動周期は還元性中間体R−NCOやR−NHを生成し続けるのに必要な振動周期とされる。因みに図4に示される例では噴射間隔が3秒とされている。
炭化水素濃度の振動周期、即ち炭化水素HCの供給周期を上述の予め定められた範囲内の周期よりも長くすると塩基性層53の表面上から還元性中間体R−NCOやR−NHが消滅し、このとき白金Pt53上において生成された活性NO は図7Aに示されるように硝酸イオンNO の形で塩基性層53内に拡散し、硝酸塩となる。即ち、このときには排気ガス中のNOは硝酸塩の形で塩基性層53内に吸収されることになる。
一方、図7BはこのようにNOが硝酸塩の形で塩基性層53内に吸収されているときに排気浄化触媒13内に流入する排気ガスの空燃比が理論空燃比又はリッチにされた場合を示している。この場合には排気ガス中の酸素濃度が低下するために反応が逆方向(NO →NO)に進み、斯くして塩基性層53内に吸収されている硝酸塩は順次硝酸イオンNO となって図7Bに示されるようにNOの形で塩基性層53から放出される。次いで放出されたNOは排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
図8は塩基性層53のNO吸収能力が飽和する少し前に排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを一時的にリッチにするようにした場合を示している。なお、図8に示す例ではこのリッチ制御の時間間隔は1分以上である。この場合には排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸収されたNOは、排気ガスの空燃比(A/F)inが一時的にリッチにされたときに塩基性層53から一気に放出されて還元される。従ってこの場合には塩基性層53はNOを一時的に吸収するための吸収剤の役目を果している。
なお、このとき塩基性層53がNOを一時的に吸着する場合もあり、従って吸収および吸着の双方を含む用語として吸蔵という用語を用いるとこのとき塩基性層53はNOを一時的に吸蔵するためのNO吸蔵剤の役目を果していることになる。即ち、この場合には、機関吸気通路、燃焼室2および排気浄化触媒13上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、排気浄化触媒13は、排気ガスの空燃比がリーンのときにはNOを吸蔵し、排気ガス中の酸素濃度が低下すると吸蔵したNOを放出するNO吸蔵触媒として機能している。
図9は、排気浄化触媒13をこのようにNO吸蔵触媒として機能させたときのNO浄化率を示している。なお、図9の横軸は排気浄化触媒13の触媒温度TCを示している。排気浄化触媒13をNO吸蔵触媒として機能させた場合には図9に示されるように触媒温度TCが300℃から400℃のときには極めて高いNO浄化率が得られるが触媒温度TCが400℃以上の高温になるとNO浄化率が低下する。
このように触媒温度TCが400℃以上になるとNO浄化率が低下するのは、触媒温度TCが400℃以上になると硝酸塩が熱分解してNOの形で排気浄化触媒13から放出されるからである。即ち、NOを硝酸塩の形で吸蔵している限り、触媒温度TCが高いときに高いNO浄化率を得るのは困難である。しかしながら図4から図6A,6Bに示される新たなNO浄化方法では図6A,6Bからわかるように硝酸塩は生成されず或いは生成されても極く微量であり、斯くして図5に示されるように触媒温度TCが高いときでも高いNO浄化率が得られることになる。
そこで本発明では、機関排気通路内に排気ガス中に含まれるNOと改質された炭化水素とを反応させるための排気浄化触媒13を配置し、排気浄化触媒13の排気ガス流通表面上には貴金属触媒51,52が担持されていると共に貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、排気浄化触媒13は、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素濃度の振動周期をこの予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、機関運転時にNOを還元するのに十分な量の還元性中間体を生成しうるように排気浄化触媒13に流入する炭化水素濃度の振幅および振動周期を制御し、それにより排気ガス中に含まれるNOを排気浄化触媒13において還元するようにしている。
即ち、図4から図6A,6Bに示されるNO浄化方法は、貴金属触媒を担持しかつNOを吸収しうる塩基性層を形成した排気浄化触媒を用いた場合において、ほとんど硝酸塩を形成することなくNOを浄化するようにした新たなNO浄化方法であると言うことができる。実際、この新たなNO浄化方法を用いた場合には排気浄化触媒13をNO吸蔵触媒として機能させた場合に比べて、塩基性層53から検出される硝酸塩は極く微量である。なお、この新たなNO浄化方法を以下、第1のNO浄化方法と称する。
次に図10から図15を参照しつつこの第1のNO浄化方法についてもう少し詳細に説明する。
図10は図4に示される空燃比(A/F)inの変化を拡大して示している。なお、前述したようにこの排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化は同時に排気浄化触媒13に流入する炭化水素の濃度変化を示している。なお、図10においてΔHは排気浄化触媒13に流入する炭化水素HCの濃度変化の振幅を示しており、ΔTは排気浄化触媒13に流入する炭化水素濃度の振動周期を示している。
更に図10において(A/F)bは機関出力を発生するための燃焼ガスの空燃比を示すベース空燃比を表している。言い換えるとこのベース空燃比(A/F)bは炭化水素の供給を停止したときに排気浄化触媒13に流入する排気ガスの空燃比を表している。一方、図10においてXは、生成された活性NO が硝酸塩の形で塩基性層53内に吸蔵されることなく還元性中間体の生成のために使用される空燃比(A/F)inの上限を表しており、活性NO と改質された炭化水素とを反応させて還元性中間体を生成させるには空燃比(A/F)inをこの空燃比の上限Xよりも低くすることが必要となる。
別の言い方をすると図10のXは活性NO と改質された炭化水素とを反応させて還元性中間体を生成させるのに必要な炭化水素の濃度の下限を表しており、還元性中間体を生成するためには炭化水素の濃度をこの下限Xよりも高くする必要がある。この場合、還元性中間体が生成されるか否かは活性NO 周りの酸素濃度と炭化水素濃度との比率、即ち空燃比(A/F)inで決まり、還元性中間体を生成するのに必要な上述の空燃比の上限Xを以下、要求最小空燃比と称する。
図10に示される例では要求最小空燃比Xがリッチとなっており、従ってこの場合には還元性中間体を生成するために空燃比(A/F)inが瞬時的に要求最小空燃比X以下に、即ちリッチにされる。これに対し、図11に示される例では要求最小空燃比Xがリーンとなっている。この場合には空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させることによって還元性中間体が生成される。
この場合、要求最小空燃比Xがリッチになるかリーンになるかは排気浄化触媒13の酸化力による。この場合、排気浄化触媒13は例えば貴金属51の担持量を増大させれば酸化力が強まり、酸性を強めれば酸化力が強まる。従って排気浄化触媒13の酸化力は貴金属51の担持量や酸性の強さによって変化することになる。
さて、酸化力が強い排気浄化触媒13を用いた場合に図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、空燃比(A/F)inが低下せしめられたときに炭化水素が完全に酸化されてしまい、その結果還元性中間体を生成することができなくなる。これに対し、酸化力が強い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると空燃比(A/F)inがリッチにされたときに炭化水素は完全に酸化されることなく部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成されることになる。従って酸化力が強い排気浄化触媒13を用いた場合には要求最小空燃比Xはリッチにする必要がある。
一方、酸化力が弱い排気浄化触媒13を用いた場合には図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、炭化水素は完全に酸化されずに部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成される。これに対し、酸化力が弱い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると多量の炭化水素は酸化されることなく単に排気浄化触媒13から排出されることになり、斯くして無駄に消費される炭化水素量が増大することになる。従って酸化力が弱い排気浄化触媒13を用いた場合には要求最小空燃比Xはリーンにする必要がある。
即ち、要求最小空燃比Xは図12に示されるように排気浄化触媒13の酸化力が強くなるほど低下させる必要があることがわかる。このように要求最小空燃比Xは排気浄化触媒13の酸化力によってリーンになったり、或いはリッチになったりするが、以下要求最小空燃比Xがリッチである場合を例にとって、排気浄化触媒13に流入する炭化水素の濃度変化の振幅や排気浄化触媒13に流入する炭化水素濃度の振動周期について説明する。
さて、ベース空燃比(A/F)bが大きくなると、即ち炭化水素が供給される前の排気ガス中の酸素濃度が高くなると空燃比(A/F)inを要求最小空燃比X以下とするのに必要な炭化水素の供給量が増大し、それに伴なって還元性中間体の生成に寄与しなかった余剰の炭化水素量も増大する。この場合、NOを良好に浄化するためには前述したようにこの余剰の炭化水素を酸化させる必要があり、従ってNOを良好に浄化するためには余剰の炭化水素量が多いほど多量の酸素が必要となる。
この場合、排気ガス中の酸素濃度を高めれば酸素量を増大することができる。従ってNOを良好に浄化するためには、炭化水素が供給される前の排気ガス中の酸素濃度が高いときには炭化水素供給後の排気ガス中の酸素濃度を高める必要がある。即ち、炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅を大きくする必要がある。
図13は同一のNO浄化率が得られるときの、炭化水素が供給される前の排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示している。図13から同一のNO浄化率を得るためには炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅ΔHを増大させる必要があることがわかる。即ち、同一のNO浄化率を得るにはベース空燃比(A/F)bが高くなるほど炭化水素濃度の振幅ΔTを増大させることが必要となる。別の言い方をすると、NOを良好に浄化するためにはベース空燃比(A/F)bが低くなるほど炭化水素濃度の振幅ΔTを減少させることができる。
ところでベース空燃比(A/F)bが最も低くなるのは加速運転時であり、このとき炭化水素濃度の振幅ΔHが200ppm程度あればNOを良好に浄化することができる。ベース空燃比(A/F)bは通常、加速運転時よりも大きく、従って図14に示されるように炭化水素濃度の振幅ΔHが200ppm以上であれば良好なNO浄化率を得ることができることになる。
一方、ベース空燃比(A/F)bが最も高いときには炭化水素濃度の振幅ΔHを10000ppm程度にすれば良好なNO浄化率が得られることがわかっている。従って本発明では炭化水素濃度の振幅の予め定められた範囲が200ppmから10000ppmとされている。
また、炭化水素濃度の振動周期ΔTが長くなると炭化水素が供給された後、次に炭化水素が供給される間、活性NO 周りの酸素濃度が高くなる。この場合、炭化水素濃度の振動周期ΔTが5秒程度よりも長くなると活性NO が硝酸塩の形で塩基性層53内に吸収され始め、従って図15に示されるように炭化水素濃度の振動周期ΔTが5秒程度よりも長くなるとNO浄化率が低下することになる。従って炭化水素濃度の振動周期ΔTは5秒以下とする必要がある。
一方、炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になると供給された炭化水素が排気浄化触媒13の排気ガス流通表面上に堆積し始め、従って図15に示されるように炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になるとNO浄化率が低下する。そこで本発明では炭化水素濃度の振動周期が0.3秒から5秒の間とされている。
次に図16から図20を参照しつつ排気浄化触媒13をNO吸蔵触媒として機能させた場合のNO浄化方法について具体的に説明する。このように排気浄化触媒13をNO吸蔵触媒として機能させた場合のNO浄化方法を以下、第2のNO浄化方法と称する。
この第2のNO浄化方法では図16に示されるように塩基性層53に吸蔵された吸蔵NO量ΣNOXが予め定められた許容量MAXを越えたときに排気浄化触媒13に流入する排気ガスの空燃比(A/F)inが一時的にリッチにされる。排気ガスの空燃比(A/F)inがリッチにされると排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸蔵されたNOが塩基性層53から一気に放出されて還元される。それによってNOが浄化される。
吸蔵NO量ΣNOXは例えば機関から排出されて塩基性層53に吸蔵される吸蔵NO量から算出される。本発明による実施例では機関から単位時間当り排出されて塩基性層53に吸蔵される吸蔵NO量NOXAが噴射量Qおよび機関回転数Nの関数として図17に示すようなマップの形で予めROM32内に記憶されており、この吸蔵NO量NOXAから吸蔵NO量ΣNOXが算出される。この場合、前述したように排気ガスの空燃比(A/F)inがリッチにされる周期は通常1分以上である。
図18は排気ガスの空燃比(A/F)inがリーンのときに排気浄化触媒13から吐き出される吸蔵NOの吐き出し速度NOXDを示している。前述したように硝酸塩の形で吸蔵しているNOは排気浄化触媒13の温度TCが上昇すると熱分解して吐き出され、このときのNO吐き出し速度NOXD、即ち単位時間当りに吐き出されるNO量NOXDは排気浄化触媒13の温度TCが450℃程度の熱分解開始温度を越えると急激に上昇する。
この第2のNO浄化方法では図19に示されるように燃焼室2内に燃料噴射弁3から燃焼用燃料Qに加え、追加の燃料WRを噴射することによって排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリッチにされる。なお、図19の横軸はクランク角を示している。この追加の燃料WRは燃焼はするが機関出力となって現われない時期に、即ち圧縮上死点後ATD90°の少し手前で噴射される。この燃料量WRは噴射量Qおよび機関回転数Nの関数として図20に示すようなマップの形で予めROM32内に記憶されている。無論、この場合炭化水素供給弁15からの炭化水素の供給量を増大させることによって排気ガスの空燃比(A/F)inをリッチにすることもできる。
さて、本発明では通常は第1のNO浄化方法が用いられ、このとき炭化水素供給弁15からの炭化水素供給量および噴射時期を変化させることによって炭化水素濃度の振幅ΔHおよび振動周期ΔTが機関の運転状態に応じた最適値となるように制御される。この場合、前述したようにNOの浄化に対しては還元性中間体が中心的後割合を果しており、従って還元性中間体の生成に注目して炭化水素濃度の振幅ΔHおよび振動周期ΔTを制御することが最も適切であると考えられる。
そこで本発明では前述したようにNOを還元するのに充分な量の還元性中間体を生成しうるように排気浄化触媒13に流入する炭化水素濃度の振幅ΔHおよび振動周期ΔTが制御される。もう少し具体的に言うと、本発明では、機関運転時にNOを還元するのに必要な還元性中間体の要求生成量が算出され、還元性中間体の生成量がこの要求生成量となるように排気浄化触媒13に流入する炭化水素濃度の振幅ΔHおよび振動周期ΔTが制御される。
そこでまず初めに還元性中間体の要求生成量について説明する。
さて、還元性中間体R−NCDやR−NHは一つのNOから一つ生成される。従ってNOを還元するのに必要な還元性中間体の要求生成量(mol)は還元すべきNO量(mol)に一致することになる。この場合、この還元すべきNO量は機関から排出されて排気浄化触媒13に流入する流入NO量と、排気浄化触媒13に吸蔵されていて排気浄化触媒13から放出される放出NO量との和になる。従ってこれら流入NO量と放出NO量との和が還元性中間体の要求生成量を表していることになる。排気浄化触媒13にNOが吸蔵されていない場合には放出NO量は零となり、従ってこの場合には流入NO量が還元性中間体の要求生成量を表すことになる。
なお、還元性中間体の生成量を要求生成量に維持することができれば還元すべきNOの全てを浄化することができる。従って本発明では前述したように還元性中間体の生成量が要求生成量となるように排気浄化触媒13に流入する炭化水素濃度の振幅ΔHおよび振動周期ΔTが制御される。
さて、本発明による実施例では還元性中間体の要求生成量として単位時間当りの要求生成量、即ち要求生成速度が用いられており、同様に流入NO量および放出NO量として単位時間当りの流入NO量、即ちNO流入速度と単位時間当りの放出NO量、即ちNO放出速度とが用いられている。この場合にはNO流入速度とNO放出速度との和が還元性中間体の要求生成速度を表していることになる。
図21Aおよび21Bは排気浄化触媒13にNOが吸蔵されている状態で第1のNO浄化方法によるNO浄化処理が行われたときに排気浄化触媒13から放出されるNO放出率と排気浄化触媒13の温度TCとの関係、およびNO放出率と炭化水素濃度の振幅ΔHとの関係を夫々示している。図21Aに示されるように排気浄化触媒13の温度TCが高くなるとNO放出率が高くなる。
一方、排気浄化触媒13に流入する排気ガス中の酸素濃度が低下すると排気浄化触媒13からNOが放出され、このとき酸素濃度の低下量が大きいほどNOの放出量が増大する。従って図21Bに示されるように炭化水素濃度の振幅ΔHが大きくなるとNO放出率が高くなる。ところで機関の運転状態が定まると排気浄化触媒13の温度TCおよび炭化水素濃度の振幅ΔHがおおよそ定まり、従って機関の運転状態が定まるとNO放出率が定まる。従って本発明による実施例では単位時間当りのNO放出率NOXDが燃料噴射弁3からの燃料の噴射量Qと機関回転数Nの関数として図21Cに示すようなマップの形で予めROM32内に記憶される。
本発明では排気浄化触媒13に吸蔵されている吸蔵NO量にNO放出率を乗算することによって、即ち吸蔵NO量とNO放出率から放出NO量が算出される。この場合、本発明による実施例では吸蔵NO量が図16に示されるΣNOXとして常時算出されており、この吸蔵NO量ΣNOXにNO放出率NOXDを乗算することによってNO放出速度(ΣNOX・NOXD)が算出される。一方、NO流入速度は図17に示されるマップの値NOXAとなる。従って還元性中間体の要求生成速度は(ΣNOX・NOXD+NOXA)で表されることになる。なお、この場合、(ΣNOX・NOXD+NOXA)に、本発明による排気浄化装置に対し要求されている浄化率を乗算することによって還元性中間体の要求生成速度とすることができる。
次に図22Aおよび図22Bを参照しつつ排気浄化触媒13の塩基性層53上に生成された還元性中間体を保持しておくことにできる還元性中間体保持時間について説明する。排気浄化触媒13の温度TCが上昇すると生成された還元性中間体が塩基性層53から脱離しやすくなる。従って図22Aに示されるように排気浄化触媒13の温度TCが高くなるにつれて還元性中間体保持時間が短かくなる。
さて、還元性中間体保持時間に比べて炭化水素濃度の振動周期ΔTが長くなると還元性中間体が存在しない期間が生じるようになり、NO浄化率が低下してしまう。このような還元性中間体の存在しない期間が生じないようにするには炭化水素濃度の振動周期ΔTを還元性中間体保持時間と等しくするか、或いは還元性中間体保持時間よりも短かくする必要がある。従って炭化水素の振動周期ΔTは図22Bに示されるように排気浄化触媒13の温度TCが高くなるほど短かくされる。図22Aおよび図22Bに示す関係は予めROM32内に記憶されている。
次に図23Aおよび23Bを参照しつつ炭化水素の供給量WFについて説明する。図23Aおよび図23Bは、供給された炭化水素により還元性中間体が生成されるときの還元性中間体生成率Kと排気浄化触媒13の温度TCとの関係、および還元性中間体生成率Kと燃料噴射弁3からの噴射量Qとの関係を夫々示している。
還元性中間体は排気浄化触媒13が活性化すると急激に上昇する。従って図23Aに示されるように還元性中間体生成率Kは排気浄化触媒13の温度TCが高くなると急激に上昇し、その後温度TCの上昇に伴って少しずつ増大する。
一方、噴射量Qが増大すると、即ち、機関負荷が高くなると機関から排出されるNO量が増大し、従って炭化水素の要求供給量も増大する。しかしながら炭化水素の供給量を増大しすぎると炭化水素の消費量が過度に増大する。従ってこのように炭化水素の消費量が過度に増大しないようにするために噴射量Qが増大すると図23Bに示されるように還元性中間体生成率Kが低下せしめられる。図23Aおよび図23Bに示される関係は予めROM32内に記憶されている。
炭化水素の供給量WFに両還元性中間体生成率K,Kを乗算すると生成される還元性中間体量(WF・K・K)となる。本発明ではこの還元性中間体量(WF・K・K)が還元性中間体の要求生成量とされる。従って炭化水素の供給量WFは還元性中間体の要求生成量を(K・K)で除算した値となる。このようにして炭化水素の供給量WFが算出される。即ち、炭化水素濃度の振幅ΔHが決定される。
即ち、本発明では、排気浄化触媒13内に保持される還元性中間体の保持時間と、供給された炭化水素により還元性中間体が生成されるときの還元性中間体生成率K,Kとが予め記憶されており、還元性中間体の要求生成量、還元性中間体の保持時間および還元性中間体生成率K,Kから排気浄化触媒13に流入する炭化水素濃度の振幅および振動周期が算出される。
なお、本発明による実施例では図23Aに示される還元性中間体生成率Kとして単位時間当りの還元性中間体生成率が用いられており、従ってこの実施例では次に炭化水素の供給が行われるまでの還元性中間体の生成量は(WF・F・F)に炭化水素の供給周期ΔTを乗算した値となる。従ってこの場合には炭化水素の供給量WFは還元性中間体の要求生成量を(K・K・ΔT)で除算した値となる。
次に炭化水素の供給量WFを求める簡便な方法について図24Aから25Bを参照しつつ説明する。
図24Aは、還元性中間体保持時間や還元性中間体生成率を用いて得られた、或いは実験により得られた還元性中間体の生成可能な最大生成量Mを示しており、図24Aからわかるようにこの最大生成量Mは燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数となる。一方、図24Bは図24Aの原点0を通る直線MX上における還元性中間体の最大生成量Mの変化を示している。なお、図24AにおいてMa1,Ma2,Mmax,Mb1,Mb2,Mb3は等最大生成量線を示しており、Mmaxは最大の最大生成量Mが得られる等最大生成量線を示している。
図24Aおよび図25Bからわかるように機関回転数Nが低くなりかつ噴射量Qが少なくなるほど最大生成量Mは小さくなり、機関回転数Nが高くなりかつ噴射量Qが増大するほど最大生成量Mが小さくなる。
なお、この実施例では実際にはMが単位時間当りの最大生成量、即ち還元性中間体の生成可能な最大生成速度を表わしている。この最大生成速度Mが得られるときの炭化水素の供給量Wと炭化水素の供給周期ΔTが噴射量Qおよび機関回転数Nの関数として夫々図25Aおよび図25Bに示されるようなマップの形で予めROM32に記憶されている。
従って図25Aに示される炭化水素の供給量Wは各運転状態における最大供給量を表しており、従って炭化水素の供給量は図25Aに示される最大供給量Wでもって制限されることになる。一方、還元性中間体の要求生成量が最大生成量Mよりも少ないときには炭化水素の供給量を図25Aに示される最大供給量Wよりも少なくすれば還元性中間体の生成量を要求生成量とすることができる。
このときこの実施例では炭化水素の供給量は機関の運転状態に応じた図25Aに示される最大供給量Wに(還元性中間体の要求生成速度/還元性中間体の最大生成速度M)を乗算した値とされ、炭化水素の供給周期は機関の運転状態に応じた図25Bに示される周期ΔTとされる。このようにこの実施例では、還元性中間体を生成可能な最大生成量Mが予め記憶されており、この最大生成量Mと還元性中間体の要求生成量から排気浄化触媒13に流入する炭化水素濃度の振幅ΔHおよび振動周期ΔTが算出される。
次に本発明によるNOの放出制御について説明する。
図26は第1のNO浄化方法によりNOの浄化処理が行われているときのNO浄化率と、第2のNO浄化方法が用いられているときの排気浄化触媒13へのNO吸蔵率とを示している。本発明ではNO浄化率がNO吸蔵率よりも高いときには、即ち排気浄化触媒13の温度TCが比較的高いときには第1のNO浄化方法が用いられ、NO吸蔵率がNO浄化率よりも高いとき、即ち排気浄化触媒13の温度TCが低いときには第2のNO浄化方法が用いられる。従って機関始動時には通常第2のNO浄化方法が用いられ、排気浄化触媒13の温度TCが高くなると第2のNO浄化方法から第1のNO浄化方法に切換えられる。
一方、第1のNO浄化方法によりNOの浄化処理を行っているときに浄化すべきNO量が急激に増大すると、増大したNOを還元するのに必要な量の還元性中間体を生成しえなくなる場合が生じる。本発明による実施例では図24Aに示される還元性中間体の生成可能な最生成量MがROM32内に予め記憶されており、還元性中間体の要求生成量が最大生成量Mを越えたときにNOを還元するのに必要な量の還元性中間体を生成しえないと判断される。
ところでこのようにNOを還元するのに必要な量の還元性中間体を生成しえない場合には、即ち還元性中間体の要求生成量が図24Aに示される最大生成量Mよりも大きくなった場合には、何らかの手を打たない限り排気浄化触媒13から多量のNOが排出されてしまう。このように還元性中間体の要求生成量が図24Aに示される最大生成量Mよりも大きくなる代表的な場合は多量のNOが排気浄化触媒13に吸蔵されている状態で第2のNO浄化方法から第1の浄化方法に切換えられたときである。
このときには排気浄化触媒13に吸蔵されているNOが急激に放出されるために還元性中間体の要求生成量が図24Aに示される最大生成量Mよりも大きくなる。このとき本発明による一実施例では、NOの還元に使用される炭化水素量を増量するために炭化水素の供給量が増大せしめられ、それにより排気浄化触媒13に流入する排気ガスの空燃比が一時的にリッチにされる。図27はこのときの、即ち第2のNO浄化方法から第1のNO浄化方法に切換えられたときのタイムチャートを示している。
なお、図27には追加の燃料WRの噴射期間と、炭化水素WRの供給タイミングと、排気浄化触媒13に流入する排気ガスの空燃比(A/F)inの変化と、排気浄化触媒13に吸蔵される吸蔵NO量ΣNOXの変化とが示されている。図27に示されるように吸蔵NO量ΣNOXが正の値のときに第2のNO浄化方法から第1のNO浄化方法に切換えられると排気浄化触媒13からはNOが放出される。このときには放出されたNOを還元するために追加の燃料WRが供給され、流入空燃比(A/F)inが一時的にリッチにされる。その後第1のNO浄化方法によるNOの浄化処理が開始される。
図28にこの実施例を実行するためのNO浄化制御ルーチンを示す。このルーチンは一定時間毎の割込みによって実行される。
図28を参照するとまず初めにステップ60において第2のNO浄化方法が用いられているときに排気浄化触媒13へのNO吸蔵率が第1のNO浄化方法によりNOの浄化処理が行われているときのNO浄化率よりも低いか否かが判別される。NO吸蔵率がNO浄化率よりも高いときにはステップ61に進んで第2のNO浄化方法が実行される。
即ち、ステップ61では図17に示すマップから単位時間当りの吸蔵NO量NOXAが算出され、図18に示す関係からNO吐き出し速度NOXBが算出される。次いでステップ62では次式に基づいて第1のNO浄化方法によるNO浄化作用中に排気浄化触媒14に吸蔵されるNO量ΣNOXが算出される。
ΣNOX←ΣNOX+NOXA−NOXD
次いでステップ63では吸蔵NO量ΣNOXが許容値MAXを越えたか否かが判別される。ΣNOX>MAXになるとステップ64に進んで図20に示すマップから追加の燃料量WRが算出され、追加の燃料の噴射作用が行われる。次いでステップ65ではΣNOXがクリアされる。
一方、ステップ60においてNO吸蔵率がNO浄化率よりも低いと判断されたときにはステップ66に進んで図17に示すマップから単位時間当りの吸蔵NO量、即ちNO流入速度NOXAが算出され、図21Cに示すマップから単位時間当りのNO放出率NOXDが算出される。次いでステップ67では図24Aに示される関係から還元性中間体の最大生成速度Mが算出される。次いでステップ68ではNO流入速度NOXAとNO放出速度(NOXD・ΣNOX)との和NXが算出される。次いでステップ69ではこの和NXが還元性中間体の最大生成速度Mよりも大きいか否かが判別される。
和NXが最大生成速度Mよりも小さいときにはステップ70に進んで第1のNO浄化方法によるNOの浄化処理が行われる。即ち、ステップ70では還元性中間体の要求生成速度RMが算出される。この実施例では和NXが要求生成速度RMとされる。この場合、この和NXに、本発明による排気浄化装置に対し要求されている浄化率を乗算することによって要求生成速度RMとすることもできる。この場合にはRM<NXとなる。
次いでステップ71では図25Aに示すマップから算出された炭化水素の最大供給量Wに(要求生成速度RM/最大生成速度M)を乗算することによって炭化水素の供給量WF(=(RM/M)・W)が算出される。次いでステップ72では図25Bに示すマップから炭化水素の供給周期ΔTが算出される。次いでステップ73では算出された供給量WFおよび供給周期ΔTでもって炭化水素の供給制御が行われる。
一方、ステップ69においてNO流入速度とNO放出速度との和NXが還元性中間体の最大生成速度Mよりも大きいと判断されたときにはステップ74に進んで吸蔵されているNOを還元するのに必要な追加の燃料量が算出され、追加の燃料の噴射作用が行われる。次いでステップ75ではΣNOXがクリアされる。
図29Aから図32に別の実施例を示す。この実施例では、NOを還元するのに必要な量の還元性中間体を生成しえないときには還元性中間体の生成に使用される炭化水素量を増大するために炭化水素濃度の振幅ΔHを変化させることなくベース空燃比(A/F)bが小さくされる。即ち、図29Aに示す状態から図29Bに示す状態とされる。
このように炭化水素濃度の振幅ΔHを変化させることなくベース空燃比(A/F)bが小さくされると炭化水素が供給されたときの最小空燃比がかなり小さくなり、その結果還元性中間体の生成に使用される炭化水素量が増大する。その結果、還元性中間体の生成量が増大され、多量のNOを処理できることになる。
本発明による実施例では図29Aに示される通常の運転時に比べてスロットル弁10の開度を小さくすることによりベース空燃比(A/F)bが小さくされる。この実施例では図29Aに示される通常の運転時におけるスロットル弁10の開度θAと図29Bに示されるようにベース空燃比(A/F)bが小さくされるときのスロットル弁10の開度θBとが予め求められており、これらの開度θA,θBは噴射量Qおよび機関回転数Nの関数としてマップの形で予めROM32内に記憶されている。図30はROM32内に記憶されている開度θBのマップを示している。
この実施例では図31に示されるように第2のNO浄化方法から第1のNO浄化方法に切換えられると切換え直後に一時的にベース空燃比(A/F)bが小さくされる。
図32にこの実施例を実行するためのNO浄化制御ルーチンを示す。このルーチンも一定時間毎の割込みによって実行される。なお、このルーチンにおけるステップ80から89は図28に示されるルーチンのステップ60から69と同じであり、また図32に示すルーチンのステップ92から95は図28に示されるルーチンのステップ70から73と同じである。
即ち、図32を参照するとまず初めにステップ80において第2のNO浄化方法が用いられているときの排気浄化触媒13へのNO吸蔵率が第1のNO浄化方法によりNOの浄化処理が行われているときのNO浄化率よりも低いか否かが判別される。NO吸蔵率がNO浄化率よりも高いときにはステップ81に進んで第2のNO浄化方法が実行される。
即ち、ステップ81では図17に示すマップから単位時間当りの吸蔵NO量NOXAが算出され、図18に示す関係からNO吐き出し速度NOXBが算出される。次いでステップ82では次式に基づいて第1のNO浄化方法によるNO浄化作用中に排気浄化触媒14に吸蔵されるNO量ΣNOXが算出される。
ΣNOX←ΣNOX+NOXA−NOXD
次いでステップ83では吸蔵NO量ΣNOXが許容値MAXを越えたか否かが判別される。ΣNOX>MAXになるとステップ84に進んで図20に示すマップから追加の燃料量WRが算出され、追加の燃料の噴射作用が行われる。次いでステップ85ではΣNOXがクリアされる。
一方、ステップ80においてNO吸蔵率がNO浄化率よりも低いと判断されたときにはステップ86に進んで図17に示すマップから単位時間当りの吸蔵NO量、即ちNO流入速度NOXAが算出され、図21Cに示すマップから単位時間当りのNO放出率NOXDが算出される。次いでステップ87では図24Aに示される関係から還元性中間体の最大生成速度Mが算出される。次いでステップ88ではNO流入速度NOXAとNO放出速度(NOXD・ΣNOX)との和NXが算出される。次いでステップ89ではこの和NXが還元性中間体の最大生成速度Mよりも大きいか否かが判別される。
和NXが最大生成速度Mよりも小さいときにはステップ90に進んで第1のNO浄化方法による通常のNOの浄化処理が行われる。即ち、ステップ90では記憶されている通常の運転時におけるスロットル弁10の開度θAが算出され、スロットル弁10の開度がこの開度θAとされる。次いでステップ90では還元性中間体の要求生成速度RMが算出される。この実施例では和NXが要求生成速度RMとされる。この場合、前述したようにこの和NXに、本発明による排気浄化装置に対し要求されている浄化率を乗算することによって要求生成速度RMとすることもできる。
次いでステップ93では図25Aに示すマップから算出された炭化水素の最大供給量Wに(要求生成速度RM/最大生成速度M)を乗算することによって炭化水素の供給量WF(=(RM/M)・W)が算出される。次いでステップ94では図25Bに示すマップから炭化水素の供給周期ΔTが算出される。次いでステップ95では算出された供給量WFおよび供給周期ΔTでもって炭化水素の供給制御が行われる。
一方、ステップ89においてNO流入速度とNO放出速度との和NXが還元性中間体の最大生成速度Mよりも大きいと判断されたときにはステップ91に進んでベース空燃比(A/F)bを小さくするためのスロットル弁10の開度θBが図30に示されるマップから算出され、スロットル弁10の開度がこの開度θBとされる。次いでステップ92に進む。
このように図27から図31に示される実施例では、NOを還元するのに必要な量の還元性中間体を生成しえないときには還元性中間体の生成又はNOの還元に使用される炭化水素量が一時的に増大される。
次に図33を参照しつつ更に別の実施例について説明する。図33は第2のNO浄化方法が用いられている場合において排気浄化触媒13に吸蔵されたNOを放出させるために燃焼室2内に追加の燃料WRを供給して排気浄化触媒13に流入する排気ガスの空燃比を一時的にリッチにした場合を示している。なお、図33においてTXは排気浄化触媒13の活性化温度を示しており、従って図33は追加の燃料WRが供給される前は、即ち流入空燃比(A/F)inをリッチにするためのリッチ制御が行われる前は排気浄化触媒13の温度TCが活性化温度TX以下である場合を示している。
図33に示されるようにリッチ制御が開始されると燃焼室2から排出される炭化水素の酸化反応熱によって排気浄化触媒13の温度TCが急速に上昇し、活性化温度TXを越える。一方、リッチ制御が開始されても燃焼室2から排出された炭化水素は排気浄化触媒13内に貯蔵されている酸素を消費するために使用され、従ってリッチ制御が開始されても排気浄化触媒13に流入する排気ガスの流入空燃比(A/F)bはすぐにはリッチにならない。
さて、リッチ制御が開始されて流入空燃比(A/F)inが小さくなると排気浄化触媒13に吸蔵されているNOが急激に放出される。このとき図33においてtで示されるように排気浄化触媒13の温度TCが活性化温度TX以上となりかつ流入空燃比(A/F)inがリーンとなっている期間が存在する。この期間tにおいて第1のNO浄化方法によるNOの浄化処理を行うと放出されたNOにより還元性中間体が生成され、この還元性中間体により放出されたNOが還元される。従ってこの実施例ではこの還元性中間体を生成可能な期間tに炭化水素WFが供給され、第1のNO浄化方法によるNOの浄化処理が行われる。
一方、リッチ制御の完了後にも図33においてtで示されるように排気浄化触媒13の温度TCが活性化温度TX以上となりかつ流入空燃比(A/F)inがリーンとなっている期間が存在する。この期間tにおいても第1のNO浄化方法によるNOの浄化処理を行うと放出されたNOにより還元性中間体が生成される。この場合にもこの還元性中間体により放出されたNOが還元される。しかしながらこの場合にはむしろ生成された還元性中間体を蓄積しておくためにこの還元性中間体を生成可能な期間tにおいても炭化水素WFが供給される。
即ち、この実施例では追加の燃料WRが供給されてから排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリーンからリッチに切替わる前の還元性中間体生成可能期間t、および排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリッチからリーンに切替わった後の還元性中間体生成可能期間tに排気浄化触媒13において還元性中間体を生成しうるように炭化水素WFが供給される。
一方、排気浄化触媒13が熱劣化するか或いは硫黄被毒するとNO吸蔵能力や還元性中間体の保持能力が低下する。従ってこの場合には排気浄化触媒13の熱劣化や硫黄被毒に応じてNOの吸蔵可能量や図22Aに示される還元性中間体保持時間を修正することが好ましい。図34AはNOの吸蔵可能量対する補正係数を示しており、図34Bは還元性中間体保持時間に対する補正係数を示している。
図34Aに示されるようにNOの吸蔵可能量に対する補正係数は車輌の走行距離が長くなるほど、即ち排気浄化触媒13の熱劣化或いは硫黄被毒量が増大するほど小さくなる。この場合例えば図16に示される許容値MAXにこの補正係数を乗算すると第2のNO浄化方法が用いられているときのリッチ制御の周期は車輌の走行距離が長くなるほど短かくされる。一方、図34Bに示されるように還元性中間体保持時間に対する補正係数は硫黄被毒量が増大するほど小さくなる。この場合例えば図22Bに示されるΔTにこの補正係数を乗算すると炭化水素の供給周期ΔTは硫黄被毒量が増大するほど短かくされる。
なお、別の実施例として排気浄化触媒13上流の機関排気通路内に炭化水素を改質させるための酸化触媒を配置することもできるし、排気浄化触媒13上流の機関排気通路内にNOを吸蔵或いは保持する触媒を配置することもできる。このようにNOを吸蔵或いは保持する触媒を配置した場合にはこの触媒からのNOの放出作用も考慮に入れてNOの浄化制御が行われる。
4…吸気マニホルド
5…排気マニホルド
7…排気ターボチャージャ
12…排気管
13…排気浄化触媒
14…パティキュレートフィルタ
15…炭化水素供給弁

Claims (13)

  1. 機関排気通路内に排気ガス中に含まれるNOと改質された炭化水素とを反応させて窒素および炭化水素を含む還元性中間体を生成させるための排気浄化触媒を配置し、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、該排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると該還元性中間体を生成して生成された還元性中間体の還元作用により排気ガス中に含まれるNOを還元する性質を有すると共に、該炭化水素濃度の振動周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、機関運転時にNOを還元するのに必要な還元性中間体の要求生成量を算出し、還元性中間体の生成量が該要求生成量となるように排気浄化触媒に流入する炭化水素濃度の振幅および振動周期を制御するようにした内燃機関の排気浄化装置。
  2. 該還元性中間体の要求生成量が、機関から排出されて排気浄化触媒に流入する流入NO量と、排気浄化触媒に吸蔵されていて排気浄化触媒から放出される放出NO量との和でもって表される請求項1に記載の内燃機関の排気浄化装置。
  3. 排気浄化触媒に吸蔵されていて排気浄化触媒から放出されるNOのNO放出率が予め記憶されており、排気浄化触媒に吸蔵されている吸蔵NO量と該NO放出率から放出NO量が算出される請求項2に記載の内燃機関の排気浄化装置。
  4. 排気浄化触媒内に保持される還元性中間体の保持時間と、供給された炭化水素により還元性中間体が生成されるときの還元性中間体生成率とが予め記憶されており、該還元性中間体の要求生成量、還元性中間体の保持時間および還元性中間体生成率から排気浄化触媒に流入する炭化水素濃度の振幅および振動周期が算出される請求項1に記載の内燃機関の排気浄化装置。
  5. 還元性中間体の生成可能な最大生成量が予め記憶されており、この最大生成量と該還元性中間体の要求生成量から排気浄化触媒に流入する炭化水素濃度の振幅および振動周期が算出される請求項1に記載の内燃機関の排気浄化装置。
  6. 上記炭化水素濃度の振動周期が0.3秒から5秒の間である請求項1に記載の内燃機関の排気浄化装置。
  7. NOを還元するのに必要な量の還元性中間体を生成しえないときには還元性中間体の生成又はNOの還元に使用される炭化水素量を一時的に増大するようにした請求項1に記載の内燃機関の排気浄化装置。
  8. 還元性中間体を生成可能な最大生成量が予め記憶されており、該還元性中間体の要求生成量が該最大生成量を越えたときにNOを還元するのに必要な量の還元性中間体を生成しえないと判断される請求項7に記載の内燃機関の排気浄化装置。
  9. NOを還元するのに必要な量の還元性中間体を生成しえないときにはNOの還元に使用される炭化水素量を増量するために炭化水素の供給量が増大せしめられて排気浄化触媒に流入する排気ガスの空燃比が一時的にリッチにされる請求項7に記載の内燃機関の排気浄化装置。
  10. NOを還元するのに必要な量の還元性中間体を生成しえないときには還元性中間体の生成に使用される炭化水素量を増大するためにベース空燃比が小さくされる請求項7に記載の内燃機関の排気浄化装置。
  11. 排気浄化触媒に吸蔵されたNOを放出させるために燃焼室内に追加の燃料を供給して排気浄化触媒に流入する排気ガスの空燃比を一時的にリッチにするようにした場合において、該追加の燃料が供給されてから排気浄化触媒に流入する排気ガスの空燃比がリーンからリッチに切替わる前の還元性中間体生成可能期間、および排気浄化触媒に流入する排気ガスの空燃比がリッチからリーンに切替わった後の還元性中間体生成可能期間に排気浄化触媒において還元性中間体を生成しうるように炭化水素が供給される請求項1に記載の内燃機関の排気浄化装置。
  12. 上記貴金属触媒は白金Ptと、ロジウムRhおよびパラジウムPdの少くとも一方とにより構成される請求項1に記載の内燃機関の排気浄化装置。
  13. 上記排気浄化触媒の排気ガス流通表面上にアルカリ金属又はアルカリ土類金属又は希土類又はNOに電子を供与しうる金属を含む塩基性層が形成されており、該塩基性層の表面が上記塩基性の排気ガス流通表面部分を形成している請求項1に記載の内燃機関の排気浄化装置。
JP2011531275A 2010-08-30 2010-08-30 内燃機関の排気浄化装置 Expired - Fee Related JP4868097B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065186 WO2012029187A1 (ja) 2010-08-30 2010-08-30 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP4868097B1 true JP4868097B1 (ja) 2012-02-01
JPWO2012029187A1 JPWO2012029187A1 (ja) 2013-10-28

Family

ID=45772318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011531275A Expired - Fee Related JP4868097B1 (ja) 2010-08-30 2010-08-30 内燃機関の排気浄化装置

Country Status (10)

Country Link
US (2) US8679410B2 (ja)
EP (1) EP2447488B1 (ja)
JP (1) JP4868097B1 (ja)
KR (1) KR101326348B1 (ja)
CN (1) CN103003539B (ja)
BR (1) BRPI1012614A2 (ja)
CA (1) CA2752774C (ja)
ES (1) ES2554637T3 (ja)
RU (1) RU2489578C2 (ja)
WO (1) WO2012029187A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118254A1 (ja) * 2012-02-07 2013-08-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2014125620A1 (ja) * 2013-02-15 2014-08-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2016044551A (ja) * 2014-08-19 2016-04-04 トヨタ自動車株式会社 内燃機関の制御装置および制御方法
US9623375B2 (en) 2010-03-15 2017-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1012611B1 (pt) 2010-03-15 2020-08-11 Toyota Jidosha Kabushiki Kaisha Sistema de purificação de exaustão de motor de combustão interna
EP2460987B1 (en) 2010-04-01 2016-08-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method for internal combustion engine
US9108153B2 (en) 2010-07-28 2015-08-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9121325B2 (en) 2010-08-30 2015-09-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
ES2554637T3 (es) 2010-08-30 2015-12-22 Toyota Jidosha Kabushiki Kaisha Dispositivo de purificación de gases de escape para motor de combustión interna
CN103154454B (zh) 2010-10-04 2015-07-01 丰田自动车株式会社 内燃机的排气净化装置
WO2012046333A1 (ja) * 2010-10-04 2012-04-12 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2012053117A1 (ja) 2010-10-18 2012-04-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5168411B2 (ja) 2010-12-06 2013-03-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN103492684B (zh) 2010-12-20 2016-02-03 丰田自动车株式会社 内燃机的排气净化装置
BRPI1014480B1 (pt) 2010-12-24 2022-02-22 Toyota Jidosha Kabushiki Kaisha Sistema de purificação do escapamento de motor de combustão interna
JP5131392B2 (ja) 2011-02-07 2013-01-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2012108063A1 (ja) 2011-02-10 2012-08-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9010097B2 (en) 2011-03-17 2015-04-21 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
CN102834595B (zh) * 2011-04-15 2015-08-05 丰田自动车株式会社 内燃机的排气净化装置
WO2013069085A1 (ja) 2011-11-07 2013-05-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9097157B2 (en) 2011-11-09 2015-08-04 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9028763B2 (en) 2011-11-30 2015-05-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
CN103228882B (zh) 2011-11-30 2015-11-25 丰田自动车株式会社 内燃机的排气净化装置
CN104813001B (zh) * 2012-11-29 2017-10-03 丰田自动车株式会社 内燃机的排气净化装置
WO2014122728A1 (ja) * 2013-02-05 2014-08-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2873818B1 (en) * 2013-02-27 2019-10-23 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of an internal combustion engine
JP6090051B2 (ja) 2013-08-08 2017-03-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5991285B2 (ja) * 2013-08-26 2016-09-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8883102B1 (en) * 2014-01-14 2014-11-11 Ford Global Technologies, Llc Methods for controlling nitrous oxide emissions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514090A (ja) * 2003-05-06 2007-05-31 カタリティカ エナジー システムズ, インコーポレイテッド パルス化した燃料流れを使用して内燃機関エンジンの排出物制御を改善するためのシステムおよび方法
JP2008267217A (ja) * 2007-04-18 2008-11-06 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008286186A (ja) * 2007-03-19 2008-11-27 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008543559A (ja) * 2005-06-21 2008-12-04 エクソンモービル リサーチ アンド エンジニアリング カンパニー 燃焼生成物中のNOxを還元する触媒の組み合わせ方法及び装置

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075274A (en) 1989-03-15 1991-12-24 Kabushiki Kaisha Riken Exhaust gas cleaner
US5052178A (en) 1989-08-08 1991-10-01 Cummins Engine Company, Inc. Unitary hybrid exhaust system and method for reducing particulate emmissions from internal combustion engines
US5057483A (en) 1990-02-22 1991-10-15 Engelhard Corporation Catalyst composition containing segregated platinum and rhodium components
JP2605586B2 (ja) 1992-07-24 1997-04-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6667018B2 (en) 1994-07-05 2003-12-23 Ngk Insulators, Ltd. Catalyst-adsorbent for purification of exhaust gases and method for purification of exhaust gases
JP3436427B2 (ja) 1994-10-21 2003-08-11 株式会社豊田中央研究所 排ガス浄化用触媒及び排ガス浄化方法
EP0710499A3 (en) 1994-11-04 1997-05-21 Agency Ind Science Techn Exhaust gas purifier and method for purifying an exhaust gas
DE19714536A1 (de) * 1997-04-09 1998-10-15 Degussa Autoabgaskatalysator
EP0982487B1 (en) 1997-05-12 2003-07-16 Toyota Jidosha Kabushiki Kaisha Exhaust emission controlling apparatus of internal combustion engine
JP3456408B2 (ja) 1997-05-12 2003-10-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
GB9713428D0 (en) 1997-06-26 1997-08-27 Johnson Matthey Plc Improvements in emissions control
DE19746658A1 (de) * 1997-10-22 1999-04-29 Emitec Emissionstechnologie Verfahren und Vorrichtung zur Regelung des Temperaturbereiches eines NOx-Speichers in einer Abgasanlage eines Verbrennungsmotors
FR2778205B1 (fr) 1998-04-29 2000-06-23 Inst Francais Du Petrole Procede d'injection controlee d'hydrocarbures dans une ligne d'echappement d'un moteur a combustion interne
US7707821B1 (en) 1998-08-24 2010-05-04 Legare Joseph E Control methods for improved catalytic converter efficiency and diagnosis
US6718756B1 (en) 1999-01-21 2004-04-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifier for use in internal combustion engine
JP2000257419A (ja) 1999-03-03 2000-09-19 Toyota Motor Corp 排気浄化方法及び装置
US6685897B1 (en) 2000-01-06 2004-02-03 The Regents Of The University Of California Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures
US6311484B1 (en) 2000-02-22 2001-11-06 Engelhard Corporation System for reducing NOx transient emission
DE10023439A1 (de) 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür
JP4889873B2 (ja) * 2000-09-08 2012-03-07 日産自動車株式会社 排気ガス浄化システム、これに用いる排気ガス浄化触媒及び排気浄化方法
JP3617450B2 (ja) 2000-12-20 2005-02-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2002066155A1 (fr) 2001-02-19 2002-08-29 Toyota Jidosha Kabushiki Kaisha Catalyseur de clarification de gaz d'échappement
JP2002364415A (ja) 2001-06-07 2002-12-18 Mazda Motor Corp エンジンの排気浄化装置
LU90795B1 (en) 2001-06-27 2002-12-30 Delphi Tech Inc Nox release index
US6677272B2 (en) 2001-08-15 2004-01-13 Corning Incorporated Material for NOx trap support
US7165393B2 (en) 2001-12-03 2007-01-23 Catalytica Energy Systems, Inc. System and methods for improved emission control of internal combustion engines
US20030113242A1 (en) 2001-12-18 2003-06-19 Hepburn Jeffrey Scott Emission control device for an engine
WO2003071106A1 (fr) 2002-02-19 2003-08-28 Kabushiki Kaisha Chemical Auto Filtre de purification des gaz d'echappement des diesels
JP3963130B2 (ja) 2002-06-27 2007-08-22 トヨタ自動車株式会社 触媒劣化判定装置
ATE421375T1 (de) 2002-07-31 2009-02-15 Umicore Ag & Co Kg Verfahren zur regenerierung eines stickoxid- speicherkatalysators
JP2004068700A (ja) 2002-08-06 2004-03-04 Toyota Motor Corp 排気ガス浄化方法
KR100636567B1 (ko) 2002-09-10 2006-10-19 도요다 지도샤 가부시끼가이샤 내연 기관의 배기 정화 장치
US7332135B2 (en) * 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
EP1563169A1 (en) 2002-11-15 2005-08-17 Catalytica Energy Systems, Inc. Devices and methods for reduction of nox emissions from lean burn engines
JP4385593B2 (ja) 2002-12-10 2009-12-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE10300298A1 (de) 2003-01-02 2004-07-15 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
DE10308287B4 (de) 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Verfahren zur Abgasreinigung
US7043902B2 (en) 2003-03-07 2006-05-16 Honda Motor Co., Ltd. Exhaust gas purification system
US6854264B2 (en) 2003-03-27 2005-02-15 Ford Global Technologies, Llc Computer controlled engine adjustment based on an exhaust flow
JP4288985B2 (ja) 2003-03-31 2009-07-01 株式会社デンソー 内燃機関の排気浄化装置
DE10315593B4 (de) 2003-04-05 2005-12-22 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
US6983589B2 (en) 2003-05-07 2006-01-10 Ford Global Technologies, Llc Diesel aftertreatment systems
JP4158697B2 (ja) 2003-06-17 2008-10-01 トヨタ自動車株式会社 内燃機関の排気浄化装置および排気浄化方法
CA2527006A1 (en) 2003-06-18 2004-12-29 Johnson Matthey Public Limited Company System and method of controlling reductant addition
GB0318776D0 (en) 2003-08-09 2003-09-10 Johnson Matthey Plc Lean NOx catalyst
JP4020054B2 (ja) 2003-09-24 2007-12-12 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP4039349B2 (ja) * 2003-10-08 2008-01-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3876874B2 (ja) 2003-10-28 2007-02-07 トヨタ自動車株式会社 触媒再生方法
CN100420829C (zh) * 2003-12-01 2008-09-24 丰田自动车株式会社 压缩点火式内燃机的废气净化装置
GB0329095D0 (en) 2003-12-16 2004-01-14 Johnson Matthey Plc Exhaust system for lean burn IC engine including particulate filter
US20050135977A1 (en) 2003-12-19 2005-06-23 Caterpillar Inc. Multi-part catalyst system for exhaust treatment elements
JP4321332B2 (ja) 2004-04-01 2009-08-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4232690B2 (ja) 2004-05-24 2009-03-04 トヨタ自動車株式会社 内燃機関の排気浄化装置に適用される燃料添加制御方法、及び排気浄化装置
JP4338586B2 (ja) 2004-05-26 2009-10-07 株式会社日立製作所 エンジンの排気系診断装置
US7137379B2 (en) 2004-08-20 2006-11-21 Southwest Research Institute Method for rich pulse control of diesel engines
JP3852461B2 (ja) 2004-09-03 2006-11-29 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
DE602004007276T2 (de) 2004-11-23 2008-03-06 Ford Global Technologies, LLC, Dearborn Verfahren und Vorrichtung zur NOx-Umsetzung
RU2007147908A (ru) 2005-06-03 2009-09-10 Эмитек Гезельшафт фюр Эмиссионстехнологи мбХ (DE) Способ и устройство для обработки отработавших газов, образующихся при работе двигателей внутреннего сгорания
US7685813B2 (en) 2005-06-09 2010-03-30 Eaton Corporation LNT regeneration strategy over normal truck driving cycle
US7743602B2 (en) 2005-06-21 2010-06-29 Exxonmobil Research And Engineering Co. Reformer assisted lean NOx catalyst aftertreatment system and method
JP4464876B2 (ja) 2005-07-01 2010-05-19 日立オートモティブシステムズ株式会社 エンジンの制御装置
JP2007064167A (ja) 2005-09-02 2007-03-15 Toyota Motor Corp 内燃機関の排気浄化装置および排気浄化方法
FR2890577B1 (fr) 2005-09-12 2009-02-27 Rhodia Recherches & Tech Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme
US7063642B1 (en) 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
JP4548309B2 (ja) 2005-11-02 2010-09-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7412823B2 (en) 2005-12-02 2008-08-19 Eaton Corporation LNT desulfation strategy
JP4270201B2 (ja) 2005-12-05 2009-05-27 トヨタ自動車株式会社 内燃機関
JP5087836B2 (ja) 2005-12-14 2012-12-05 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2007260618A (ja) 2006-03-29 2007-10-11 Toyota Motor Corp 排ガス浄化触媒及び排ガス浄化装置
JP2007297918A (ja) 2006-04-27 2007-11-15 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008002451A (ja) 2006-05-23 2008-01-10 Honda Motor Co Ltd ディーゼルエンジン用排気ガス浄化装置およびディーゼルエンジンの排気ガスの浄化方法
WO2007136141A1 (ja) 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha 内燃機関の排気浄化装置
JP5373255B2 (ja) 2006-05-29 2013-12-18 株式会社キャタラー NOx還元触媒、NOx還元触媒システム、及びNOx還元方法
US7562522B2 (en) 2006-06-06 2009-07-21 Eaton Corporation Enhanced hybrid de-NOx system
JP4404073B2 (ja) 2006-06-30 2010-01-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2008004493A1 (en) * 2006-07-04 2008-01-10 Toyota Jidosha Kabushiki Kaisha Exhaust purifier of internal combustion engine and method of exhaust purification
JP4487982B2 (ja) 2006-07-12 2010-06-23 トヨタ自動車株式会社 内燃機関の排気浄化システム
US7614214B2 (en) 2006-07-26 2009-11-10 Eaton Corporation Gasification of soot trapped in a particulate filter under reducing conditions
US7624570B2 (en) 2006-07-27 2009-12-01 Eaton Corporation Optimal fuel profiles
JP4155320B2 (ja) 2006-09-06 2008-09-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4329799B2 (ja) 2006-09-20 2009-09-09 トヨタ自動車株式会社 内燃機関の空燃比制御装置
DE502006004606D1 (de) 2006-10-06 2009-10-01 Umicore Ag & Co Kg Stickoxidspeicherkatalysator mit abgesenkter Entschwefelungstemperatur
JP4733002B2 (ja) 2006-11-24 2011-07-27 本田技研工業株式会社 内燃機関の排ガス浄化装置
EP2224116B1 (en) 2006-12-22 2011-11-23 Ford Global Technologies, LLC An internal combustion engine system and a method for determining a condition of an exhaust gas treatment device in a such a system
JP4221025B2 (ja) 2006-12-25 2009-02-12 三菱電機株式会社 内燃機関の空燃比制御装置
JP4221026B2 (ja) 2006-12-25 2009-02-12 三菱電機株式会社 内燃機関の空燃比制御装置
US20080196398A1 (en) 2007-02-20 2008-08-21 Eaton Corporation HC mitigation to reduce NOx spike
JP4665923B2 (ja) 2007-03-13 2011-04-06 トヨタ自動車株式会社 触媒劣化判定装置
JP4420048B2 (ja) 2007-03-20 2010-02-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2008255858A (ja) 2007-04-03 2008-10-23 Yanmar Co Ltd ディーゼルエンジン用黒煙浄化装置
JP4702318B2 (ja) 2007-04-10 2011-06-15 トヨタ自動車株式会社 内燃機関の排気浄化システム
US7788910B2 (en) 2007-05-09 2010-09-07 Ford Global Technologies, Llc Particulate filter regeneration and NOx catalyst re-activation
JP4304539B2 (ja) 2007-05-17 2009-07-29 いすゞ自動車株式会社 NOx浄化システムの制御方法及びNOx浄化システム
JP5590640B2 (ja) 2007-08-01 2014-09-17 日産自動車株式会社 排気ガス浄化システム
JP5067614B2 (ja) 2007-08-21 2012-11-07 株式会社デンソー 内燃機関の排気浄化装置
JP5037283B2 (ja) 2007-09-26 2012-09-26 本田技研工業株式会社 内燃機関の排気浄化装置
JP2009114879A (ja) 2007-11-02 2009-05-28 Toyota Motor Corp 内燃機関の排気浄化装置
US8074443B2 (en) 2007-11-13 2011-12-13 Eaton Corporation Pre-combustor and large channel combustor system for operation of a fuel reformer at low exhaust temperatures
JP4428443B2 (ja) 2007-12-18 2010-03-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2239432B1 (en) 2007-12-26 2013-05-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP2009162157A (ja) * 2008-01-08 2009-07-23 Honda Motor Co Ltd 内燃機関の排気浄化装置
WO2009087818A1 (ja) 2008-01-08 2009-07-16 Honda Motor Co., Ltd. 内燃機関の排気浄化装置
JP2009209839A (ja) 2008-03-05 2009-09-17 Denso Corp 内燃機関の排気浄化装置
JP2009221939A (ja) 2008-03-14 2009-10-01 Denso Corp 排気浄化システムおよびその排気浄化制御装置
JP2009275666A (ja) 2008-05-16 2009-11-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP4527792B2 (ja) 2008-06-20 2010-08-18 本田技研工業株式会社 排ガス浄化装置の劣化判定装置
JP5386121B2 (ja) 2008-07-25 2014-01-15 エヌ・イーケムキャット株式会社 排気ガス浄化触媒装置、並びに排気ガス浄化方法
JP5157739B2 (ja) 2008-08-11 2013-03-06 日産自動車株式会社 排ガス浄化システム及びこれを用いた排ガス浄化方法
KR101020819B1 (ko) 2008-11-28 2011-03-09 기아자동차주식회사 흡장형 NOx 촉매의 후분사용 가변 분사장치와 그 분사방법
EP2357038A4 (en) 2008-12-03 2014-11-05 Daiichi Kigenso Kagaku Kogyo EMISSION CONTROL CATALYST, EMISSION CONTROL DEVICE THEREFOR AND EMISSION CONTROL
US20100154387A1 (en) 2008-12-19 2010-06-24 Toyota Jidosha Kabushiki Kaisha Abnormality detection device for reductant addition valve
WO2010108083A1 (en) 2009-03-20 2010-09-23 Basf Catalysts Llc EMISSIONS TREATMENT SYSTEM WITH LEAN NOx TRAP
US9662611B2 (en) 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
US8353155B2 (en) 2009-08-31 2013-01-15 General Electric Company Catalyst and method of manufacture
KR101091627B1 (ko) 2009-08-31 2011-12-08 기아자동차주식회사 배기 시스템
US20110120100A1 (en) 2009-11-24 2011-05-26 General Electric Company Catalyst and method of manufacture
KR102014664B1 (ko) 2010-02-01 2019-08-26 존슨 맛쎄이 퍼블릭 리미티드 컴파니 NOx 흡수제 촉매
US8459010B2 (en) 2010-02-26 2013-06-11 General Electric Company System and method for controlling nitrous oxide emissions of an internal combustion engine and regeneration of an exhaust treatment device
RU2479730C1 (ru) 2010-03-15 2013-04-20 Тойота Дзидося Кабусики Кайся Система очистки выхлопных газов двигателя внутреннего сгорания
RU2485333C1 (ru) 2010-03-15 2013-06-20 Тойота Дзидося Кабусики Кайся Система очистки выхлопных газов двигателя внутреннего сгорания
EP2460988B1 (en) 2010-03-15 2016-11-09 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
BRPI1012611B1 (pt) 2010-03-15 2020-08-11 Toyota Jidosha Kabushiki Kaisha Sistema de purificação de exaustão de motor de combustão interna
EP2460997B1 (en) 2010-03-18 2018-05-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of an internal combustion engine
ES2567463T3 (es) 2010-03-23 2016-04-22 Toyota Jidosha Kabushiki Kaisha Dispositivo de purificación de gases de escape de motor de combustión interna
EP2460987B1 (en) 2010-04-01 2016-08-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method for internal combustion engine
ES2554637T3 (es) 2010-08-30 2015-12-22 Toyota Jidosha Kabushiki Kaisha Dispositivo de purificación de gases de escape para motor de combustión interna
ES2600959T3 (es) 2010-09-02 2017-02-13 Toyota Jidosha Kabushiki Kaisha Método de purificación de NOx de un sistema de purificación de gases de escape de un motor de combustión interna
US8701390B2 (en) 2010-11-23 2014-04-22 International Engine Intellectual Property Company, Llc Adaptive control strategy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514090A (ja) * 2003-05-06 2007-05-31 カタリティカ エナジー システムズ, インコーポレイテッド パルス化した燃料流れを使用して内燃機関エンジンの排出物制御を改善するためのシステムおよび方法
JP2008543559A (ja) * 2005-06-21 2008-12-04 エクソンモービル リサーチ アンド エンジニアリング カンパニー 燃焼生成物中のNOxを還元する触媒の組み合わせ方法及び装置
JP2008286186A (ja) * 2007-03-19 2008-11-27 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008267217A (ja) * 2007-04-18 2008-11-06 Toyota Motor Corp 内燃機関の排気浄化装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9623375B2 (en) 2010-03-15 2017-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
WO2013118254A1 (ja) * 2012-02-07 2013-08-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2639419A1 (en) * 2012-02-07 2013-09-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
EP2639419A4 (en) * 2012-02-07 2014-10-15 Toyota Motor Co Ltd EXHAUST PURIFYING DEVICE FOR INTERNAL COMBUSTION ENGINE
WO2014125620A1 (ja) * 2013-02-15 2014-08-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2016044551A (ja) * 2014-08-19 2016-04-04 トヨタ自動車株式会社 内燃機関の制御装置および制御方法

Also Published As

Publication number Publication date
BRPI1012614A2 (pt) 2020-06-02
RU2011139708A (ru) 2013-04-10
US8679410B2 (en) 2014-03-25
ES2554637T3 (es) 2015-12-22
WO2012029187A1 (ja) 2012-03-08
CA2752774C (en) 2014-02-18
US20120275963A1 (en) 2012-11-01
CN103003539B (zh) 2015-03-18
EP2447488A1 (en) 2012-05-02
EP2447488A4 (en) 2012-12-19
RU2489578C2 (ru) 2013-08-10
US20140127101A1 (en) 2014-05-08
CA2752774A1 (en) 2012-02-29
KR20120053483A (ko) 2012-05-25
JPWO2012029187A1 (ja) 2013-10-28
KR101326348B1 (ko) 2013-11-11
US9238200B2 (en) 2016-01-19
CN103003539A (zh) 2013-03-27
EP2447488B1 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP4868097B1 (ja) 内燃機関の排気浄化装置
JP5168412B2 (ja) 内燃機関の排気浄化装置
JP5182429B2 (ja) 内燃機関の排気浄化装置
JP5196027B2 (ja) 内燃機関の排気浄化装置
JP5067511B2 (ja) 内燃機関の排気浄化装置
JP5131392B2 (ja) 内燃機関の排気浄化装置
JP5182428B2 (ja) 内燃機関の排気浄化装置
JP5152416B2 (ja) 内燃機関の排気浄化装置
WO2012140784A1 (ja) 内燃機関の排気浄化装置
JP5152415B2 (ja) 内燃機関の排気浄化装置
JP5136694B2 (ja) 内燃機関の排気浄化装置
JP5131393B2 (ja) 内燃機関の排気浄化装置
JP5177302B2 (ja) 内燃機関の排気浄化装置
JP5561059B2 (ja) 内燃機関の排気浄化装置
JP5131389B2 (ja) 内燃機関の排気浄化装置
JP5152417B2 (ja) 内燃機関の排気浄化装置
JP5168410B2 (ja) 内燃機関の排気浄化装置
JP5131394B2 (ja) 内燃機関の排気浄化装置
JP2013015117A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R151 Written notification of patent or utility model registration

Ref document number: 4868097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees