WO2013069085A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2013069085A1
WO2013069085A1 PCT/JP2011/075618 JP2011075618W WO2013069085A1 WO 2013069085 A1 WO2013069085 A1 WO 2013069085A1 JP 2011075618 W JP2011075618 W JP 2011075618W WO 2013069085 A1 WO2013069085 A1 WO 2013069085A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
purification catalyst
exhaust purification
catalyst
exhaust gas
Prior art date
Application number
PCT/JP2011/075618
Other languages
English (en)
French (fr)
Inventor
悠樹 美才治
吉田 耕平
三樹男 井上
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180013300.8A priority Critical patent/CN103998731B/zh
Priority to PCT/JP2011/075618 priority patent/WO2013069085A1/ja
Priority to EP11858470.5A priority patent/EP2628912B1/en
Priority to BR112014000026-3A priority patent/BR112014000026B1/pt
Priority to ES11858470.5T priority patent/ES2633727T3/es
Priority to JP2012524990A priority patent/JP5354104B1/ja
Priority to US13/580,000 priority patent/US9034268B2/en
Publication of WO2013069085A1 publication Critical patent/WO2013069085A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2832Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support granular, e.g. pellets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2027Sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9037More than three zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/912HC-storage component incorporated in the catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • a hydrocarbon supply valve is disposed in the engine exhaust passage, an exhaust purification catalyst is disposed in the engine exhaust passage downstream of the hydrocarbon supply valve, and a noble metal catalyst is supported on the exhaust gas flow surface of the exhaust purification catalyst.
  • a basic exhaust gas flow surface portion is formed around the noble metal catalyst, and during the operation of the engine, hydrocarbons are injected with a predetermined cycle within 5 seconds from the hydrocarbon supply valve, and thereby into the exhaust gas.
  • An internal combustion engine that purifies NO x contained therein is known (see, for example, Patent Document 1). In this internal combustion engine, a high NO x purification rate can be obtained even when the temperature of the exhaust purification catalyst becomes high.
  • An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that can obtain a higher NO x purification rate.
  • a hydrocarbon supply valve for supplying hydrocarbons is disposed in the engine exhaust passage, and reformed with NO x contained in the exhaust gas in the engine exhaust passage downstream of the hydrocarbon supply valve.
  • An exhaust purification catalyst for reacting with hydrocarbons is disposed, and a noble metal catalyst is supported on the exhaust gas flow surface of the exhaust purification catalyst, and a basic exhaust gas flow surface portion is formed around the noble metal catalyst.
  • an exhaust gas purification apparatus for an internal combustion engine in which the injection period of hydrocarbons from the hydrocarbon supply valve is controlled so as to vibrate with a period within the predetermined range described above, hydrocarbons to the downstream portion of the exhaust purification catalyst.
  • an exhaust gas purification apparatus for an internal combustion engine in which an exhaust gas purification catalyst is formed so that the adhesivity of the gas is higher than the adherability of hydrocarbons to the upstream portion of the exhaust gas purification catalyst.
  • An extremely high NO x purification rate can be obtained not only when the temperature of the exhaust purification catalyst is low but also when it is high.
  • FIG. 1 is an overall view of a compression ignition type internal combustion engine.
  • FIG. 2 is a view schematically showing the surface portion of the catalyst carrier.
  • FIG. 3 is a view for explaining an oxidation reaction in the exhaust purification catalyst.
  • FIG. 4 is a diagram showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
  • FIG. 5 is a graph showing the NO x purification rate.
  • 6A and 6B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
  • 7A and 7B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
  • FIG. 8 is a diagram showing a change in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
  • FIG. 9 is a diagram showing the NO x purification rate.
  • FIG. 10 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
  • FIG. 11 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
  • FIG. 12 is a diagram showing the relationship between the oxidizing power of the exhaust purification catalyst and the required minimum air-fuel ratio X.
  • FIG. 13 is a graph showing the relationship between the oxygen concentration in the exhaust gas and the amplitude ⁇ H of the hydrocarbon concentration, with which the same NO x purification rate can be obtained.
  • FIG. 14 is a graph showing the relationship between the amplitude ⁇ H of the hydrocarbon concentration and the NO x purification rate.
  • FIG. 15 is a graph showing the relationship between the vibration period ⁇ T of the hydrocarbon concentration and the NO x purification rate.
  • FIGS. 16A and 16B are views showing hydrocarbon injection time and the like.
  • FIG. 17 is a diagram showing changes in the air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst.
  • FIG. 18 is a diagram showing a map of the exhausted NO x amount NOXA.
  • FIG. 19 shows the fuel injection timing.
  • FIG. 20 is a diagram showing a map of the hydrocarbon supply amount WR.
  • FIG. 21 is a flowchart for performing NO x purification control.
  • FIG. 22 is a diagram for explaining the adhesion of hydrocarbon molecules.
  • FIG. 23A is an enlarged view showing an embodiment of the exhaust purification catalyst.
  • FIG. 23A is an enlarged view showing an embodiment of the exhaust purification catalyst.
  • FIG. 23B is an enlarged view showing an embodiment of the exhaust purification catalyst.
  • FIG. 24 is an enlarged view showing an embodiment of the exhaust purification catalyst.
  • FIG. 25 is an enlarged view showing an embodiment of the exhaust purification catalyst.
  • FIG. 26A is an enlarged view showing an embodiment of the exhaust purification catalyst.
  • FIG. 26B is an enlarged view showing an embodiment of the exhaust purification catalyst.
  • Fig. 1 shows an overall view of a compression ignition type internal combustion engine.
  • 1 is an engine body
  • 2 is a combustion chamber of each cylinder
  • 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber
  • 4 is an intake manifold
  • 5 is an exhaust manifold.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8.
  • a throttle valve 10 driven by a step motor is arranged in the intake duct 6, and a cooling device 11 for cooling intake air flowing in the intake duct 6 is arranged around the intake duct 6.
  • the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7.
  • the outlet of the exhaust turbine 7b is connected to the inlet of the exhaust purification catalyst 13 via the exhaust pipe 12, and the outlet of the exhaust purification catalyst 13 is connected to the inlet of the particulate filter 14 for collecting particulates contained in the exhaust gas.
  • a hydrocarbon supply valve 15 for supplying hydrocarbons composed of light oil and other fuels used as fuel for the compression ignition internal combustion engine is disposed.
  • light oil is used as the hydrocarbon supplied from the hydrocarbon supply valve 15.
  • the present invention can also be applied to a spark ignition type internal combustion engine in which combustion is performed under a lean air-fuel ratio.
  • the hydrocarbon supply valve 15 supplies hydrocarbons made of gasoline or other fuel used as fuel for the spark ignition type internal combustion engine.
  • each fuel injection valve 3 is connected to a common rail 20 via a fuel supply pipe 19, and this common rail 20 is connected to a fuel tank 22 via an electronically controlled fuel pump 21 with variable discharge amount.
  • the fuel stored in the fuel tank 22 is supplied into the common rail 20 by the fuel pump 21, and the fuel supplied into the common rail 21 is supplied to the fuel injection valve 3 through each fuel supply pipe 19.
  • the electronic control unit 30 comprises a digital computer and is connected to each other by a bidirectional bus 31.
  • ROM read only memory
  • RAM random access memory
  • CPU microprocessor
  • input port 35 and output port 36 It comprises.
  • a temperature sensor 23 for detecting the temperature of the exhaust purification catalyst 13 is attached downstream of the exhaust purification catalyst 13, and the particulate filter 14 has a differential pressure for detecting the differential pressure before and after the particulate filter 14.
  • a sensor 24 is attached. Output signals of the temperature sensor 23, the differential pressure sensor 24, and the intake air amount detector 8 are input to the input port 35 via the corresponding AD converters 37, respectively.
  • the accelerator pedal 40 is connected to a load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40.
  • the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 ° is connected to the input port 35.
  • the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 10, the hydrocarbon supply valve 15, the EGR control valve 17, and the fuel pump 21 through corresponding drive circuits 38.
  • FIG. 2 schematically shows the surface portion of the catalyst carrier carried on the substrate of the exhaust purification catalyst 13.
  • noble metal catalysts 51 and 52 are supported on a catalyst support 50 made of alumina, for example, and further on this catalyst support 50, potassium K, sodium Na, cesium Cs. selected from an alkali metal, barium Ba, alkaline earth metals such as calcium Ca, rare earth and silver Ag, such as lanthanides, copper Cu, iron Fe, the metal which can donate electrons to NO x, such as iridium Ir, such as A basic layer 53 containing at least one of the above is formed.
  • the exhaust gas flows along the catalyst carrier 50, it can be said that the noble metal catalysts 51 and 52 are supported on the exhaust gas flow surface of the exhaust purification catalyst 13. Further, since the surface of the basic layer 53 is basic, the surface of the basic layer 53 is referred to as a basic exhaust gas flow surface portion 54.
  • the noble metal catalyst 51 is made of platinum Pt
  • the noble metal catalyst 52 is made of rhodium Rh.
  • any of the noble metal catalysts 51 and 52 can be composed of platinum Pt.
  • palladium Pd can be further supported on the catalyst carrier 50 of the exhaust purification catalyst 13, or palladium Pd can be supported instead of rhodium Rh. That is, the noble metal catalysts 51 and 52 supported on the catalyst carrier 50 are composed of at least one of platinum Pt, rhodium Rh, and palladium Pd.
  • FIG. 3 schematically shows the reforming action performed in the exhaust purification catalyst 13 at this time.
  • the hydrocarbon HC injected from the hydrocarbon feed valve 15 is converted into a radical hydrocarbon HC having a small number of carbons by the catalyst 51.
  • FIG. 4 shows the supply timing of hydrocarbons from the hydrocarbon supply valve 15 and changes in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13. Since the change in the air-fuel ratio (A / F) in depends on the change in the concentration of hydrocarbons in the exhaust gas flowing into the exhaust purification catalyst 13, the air-fuel ratio (A / F) in shown in FIG. It can be said that the change represents a change in hydrocarbon concentration. However, since the air-fuel ratio (A / F) in decreases as the hydrocarbon concentration increases, the hydrocarbon concentration increases as the air-fuel ratio (A / F) in becomes richer in FIG.
  • FIG. 5 shows a change in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 as shown in FIG. 4 by periodically changing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13.
  • the present inventor has conducted research on NO x purification over a long period of time, and in the course of research, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is set to an amplitude within a predetermined range and a predetermined range. As shown in FIG. 5, it was found that an extremely high NO x purification rate can be obtained even in a high temperature region of 400 ° C. or higher when the vibration is made with the internal period.
  • FIGS. 6A and 6B schematically show the surface portion of the catalyst carrier 50 of the exhaust purification catalyst 13, and in these FIGS. 6A and 6B, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is predetermined. The reaction is shown to be presumed to occur when oscillated with an amplitude within a range and a period within a predetermined range.
  • FIG. 6A shows a case where the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is low
  • FIG. 6B shows that the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 when hydrocarbons are supplied from the hydrocarbon supply valve 15 is high. It shows when
  • the first produced reducing intermediate this time is considered to be a nitro compound R-NO 2.
  • this nitro compound R-NO 2 becomes a nitrile compound R-CN, but since this nitrile compound R-CN can only survive for a moment in that state, it immediately becomes an isocyanate compound R-NCO.
  • This isocyanate compound R-NCO becomes an amine compound R-NH 2 when hydrolyzed.
  • a reducing intermediate is generated by increasing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13, and after reducing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13,
  • the reducing intermediate reacts with active NO x * or oxygen, or self-decomposes, thereby purifying NO x . That is, in order to purify NO x by the exhaust purification catalyst 13, it is necessary to periodically change the concentration of hydrocarbons flowing into the exhaust purification catalyst 13.
  • the hydrocarbon supply cycle is lengthened, the period during which the oxygen concentration is increased after the hydrocarbon is supplied and before the next hydrocarbon is supplied, and therefore the active NO x * is reduced to the reducing intermediate. Without being generated in the basic layer 53 in the form of nitrate. In order to avoid this, it is necessary to oscillate the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 with a period within a predetermined range.
  • NO x contained in the exhaust gas is reacted with the reformed hydrocarbon to generate reducing intermediates R-NCO and R-NH 2 containing nitrogen and hydrocarbons.
  • noble metal catalysts 51 and 52 are supported on the exhaust gas flow surface of the exhaust purification catalyst 13, and the generated reducing intermediates R-NCO and R-NH 2 are held in the exhaust purification catalyst 13. Therefore, a basic exhaust gas flow surface portion 54 is formed around the noble metal catalysts 51 and 52, and the reducing intermediates R-NCO and R-NH held on the basic exhaust gas flow surface portion 54 are formed.
  • the vibration period of the hydrocarbon concentration is the vibration period necessary to continue to produce the reducing intermediates R—NCO and R—NH 2 .
  • the injection interval is 3 seconds.
  • the reducing intermediates R-NCO and R-NH 2 are formed on the surface of the basic layer 53.
  • the active NO x * produced on the platinum Pt 53 diffuses into the basic layer 53 in the form of nitrate ions NO 3 ⁇ as shown in FIG. 7A, and becomes nitrate. That is, at this time, NO x in the exhaust gas is absorbed in the basic layer 53 in the form of nitrate.
  • FIG. 7B shows a case where the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made the stoichiometric air-fuel ratio or rich when NO x is absorbed in the basic layer 53 in the form of nitrate. Is shown.
  • the reaction proceeds in the reverse direction (NO 3 ⁇ ⁇ NO 2 ), and thus the nitrates absorbed in the basic layer 53 are successively converted into nitrate ions NO 3.
  • And released from the basic layer 53 in the form of NO 2 as shown in FIG. 7B. The released NO 2 is then reduced by the hydrocarbons HC and CO contained in the exhaust gas.
  • FIG. 8 shows a case where the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 is temporarily made rich slightly before the NO x absorption capacity of the basic layer 53 is saturated. Yes.
  • the time interval of this rich control is 1 minute or more.
  • the air-fuel ratio (A / F) in of the exhaust gas is lean
  • the NO x absorbed in the basic layer 53 temporarily makes the air-fuel ratio (A / F) in of the exhaust gas rich.
  • the basic layer 53 serves as an absorbent for temporarily absorbing NO x .
  • the basic layer 53 temporarily adsorbs NO x, thus using term of storage as a term including both absorption and adsorption
  • the basic layer 53 temporarily the NO x It plays the role of NO x storage agent for storage. That is, in this case, the ratio of air and fuel (hydrocarbon) supplied into the exhaust passage upstream of the engine intake passage, the combustion chamber 2 and the exhaust purification catalyst 13 is referred to as the exhaust gas air-fuel ratio. 13, the air-fuel ratio of the exhaust gas is acting as the NO x storage catalyst during the lean occludes NO x, the oxygen concentration in the exhaust gas to release NO x occluding the drops.
  • FIG. 9 shows the NO x purification rate when the exhaust purification catalyst 13 is made to function as a NO x storage catalyst in this way.
  • the horizontal axis in FIG. 9 indicates the catalyst temperature TC of the exhaust purification catalyst 13.
  • the exhaust purification catalyst 13 functions as a NO x storage catalyst, as shown in FIG. 9, an extremely high NO x purification rate is obtained when the catalyst temperature TC is 300 ° C. to 400 ° C., but the catalyst temperature TC is 400 ° C. the NO x purification rate decreases when a high temperature of more.
  • the NO x purification rate decreases when the catalyst temperature TC exceeds 400 ° C.
  • the nitrate is thermally decomposed and released from the exhaust purification catalyst 13 in the form of NO 2 when the catalyst temperature TC exceeds 400 ° C. Because. That is, as long as NO x is occluded in the form of nitrate, it is difficult to obtain a high NO x purification rate when the catalyst temperature TC is high.
  • the new NO x purification method shown in FIGS. 4 to 6A and 6B as can be seen from FIGS. 6A and 6B, nitrate is not produced or is produced in a very small amount, and thus shown in FIG. Thus, even when the catalyst temperature TC is high, a high NO x purification rate can be obtained.
  • the hydrocarbon supply valve 15 for supplying hydrocarbons is arranged in the engine exhaust passage, and reformed with NO x contained in the exhaust gas in the engine exhaust passage downstream of the hydrocarbon supply valve 15.
  • An exhaust purification catalyst 13 for reacting with the hydrocarbons is disposed, and noble metal catalysts 51 and 52 are supported on the exhaust gas flow surface of the exhaust purification catalyst 13 and around the noble metal catalysts 51 and 52 are basic.
  • the exhaust gas distribution surface portion 54 is formed, and the exhaust purification catalyst 13 determines the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 with an amplitude within a predetermined range and a period within a predetermined range.
  • the NO x purification methods shown in FIGS. 4 to 6A and 6B almost form nitrates when an exhaust purification catalyst carrying a noble metal catalyst and forming a basic layer capable of absorbing NO x is used. It can be said that this is a new NO x purification method that purifies NO x without any problems. In fact, when this new NO x purification method is used, the amount of nitrate detected from the basic layer 53 is very small compared to when the exhaust purification catalyst 13 functions as a NO x storage catalyst.
  • This new NO x purification method is hereinafter referred to as a first NO x purification method.
  • FIG. 10 shows an enlarged view of the change in the air-fuel ratio (A / F) in shown in FIG.
  • the change in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 simultaneously indicates the change in the concentration of hydrocarbons flowing into the exhaust purification catalyst 13.
  • ⁇ H indicates the amplitude of the change in the concentration of hydrocarbon HC flowing into the exhaust purification catalyst 13
  • ⁇ T indicates the oscillation period of the concentration of hydrocarbon flowing into the exhaust purification catalyst 13.
  • (A / F) b represents the base air-fuel ratio indicating the air-fuel ratio of the combustion gas for generating the engine output.
  • this base air-fuel ratio (A / F) b represents the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 when the supply of hydrocarbons is stopped.
  • X is the air-fuel ratio (A / F) used for producing the reducing intermediate without the generated active NO x * being occluded in the basic layer 53 in the form of nitrate.
  • the air / fuel ratio (A / F) in is set to be higher than the upper limit X of the air / fuel ratio. It needs to be lowered.
  • X in FIG. 10 represents the lower limit of the concentration of hydrocarbons required for reacting active NO x * with the reformed hydrocarbon to produce a reducing intermediate, which is reducible.
  • the hydrocarbon concentration needs to be higher than the lower limit X.
  • whether or not the reducing intermediate is generated is determined by the ratio of the oxygen concentration around the active NO x * to the hydrocarbon concentration, that is, the air-fuel ratio (A / F) in, and the reducing intermediate is generated.
  • the above-described upper limit X of the air-fuel ratio necessary for this is hereinafter referred to as a required minimum air-fuel ratio.
  • the required minimum air-fuel ratio X is rich. Therefore, in this case, the air-fuel ratio (A / F) in is instantaneously required to generate the reducing intermediate. The following is made rich: On the other hand, in the example shown in FIG. 11, the required minimum air-fuel ratio X is lean. In this case, the reducing intermediate is generated by periodically reducing the air-fuel ratio (A / F) in while maintaining the air-fuel ratio (A / F) in lean.
  • the oxidizing power of the exhaust purification catalyst 13 depends on the oxidizing power of the exhaust purification catalyst 13. In this case, for example, if the amount of the precious metal 51 supported is increased, the exhaust purification catalyst 13 becomes stronger in oxidizing power, and if it becomes more acidic, the oxidizing power becomes stronger. Therefore, the oxidizing power of the exhaust purification catalyst 13 varies depending on the amount of noble metal 51 supported and the strength of acidity.
  • the air-fuel ratio (A / F) in is periodically decreased while maintaining the air-fuel ratio (A / F) in lean as shown in FIG.
  • the air-fuel ratio (A / F) in is lowered, the hydrocarbon is completely oxidized, and as a result, a reducing intermediate cannot be generated.
  • the exhaust purification catalyst 13 having a strong oxidizing power is used, if the air-fuel ratio (A / F) in is periodically made rich as shown in FIG. 10, the air-fuel ratio (A / F) in is rich.
  • the air-fuel ratio (A / F) in is periodically decreased while maintaining the air-fuel ratio (A / F) in lean as shown in FIG.
  • some of the hydrocarbons are not completely oxidized but are partially oxidized, that is, the hydrocarbons are reformed, thus producing a reducing intermediate.
  • the exhaust purification catalyst 13 having a weak oxidizing power if the air-fuel ratio (A / F) in is periodically made rich as shown in FIG. 10, a large amount of hydrocarbons are not oxidized. The exhaust gas is simply exhausted from the exhaust purification catalyst 13, and the amount of hydrocarbons that are wasted is increased. Therefore, when the exhaust purification catalyst 13 having a weak oxidizing power is used, the required minimum air-fuel ratio X needs to be made lean.
  • the required minimum air-fuel ratio X needs to be lowered as the oxidizing power of the exhaust purification catalyst 13 becomes stronger, as shown in FIG. In this way, the required minimum air-fuel ratio X becomes lean or rich due to the oxidizing power of the exhaust purification catalyst 13, but hereinafter the case where the required minimum air-fuel ratio X is rich is taken as an example.
  • the amplitude of the change in the concentration of the inflowing hydrocarbon and the oscillation period of the concentration of the hydrocarbon flowing into the exhaust purification catalyst 13 will be described.
  • the air-fuel ratio (A / F) in is set to be equal to or less than the required minimum air-fuel ratio X.
  • the amount of hydrocarbons necessary for the increase increases, and the amount of excess hydrocarbons that did not contribute to the production of the reducing intermediate also increases.
  • the amount of oxygen can be increased by increasing the oxygen concentration in the exhaust gas.
  • it is necessary to increase the oxygen concentration in the exhaust gas after the hydrocarbon feed when the oxygen concentration in the exhaust gas before the hydrocarbons are fed is high. That is, it is necessary to increase the amplitude of the hydrocarbon concentration as the oxygen concentration in the exhaust gas before the hydrocarbon is supplied is higher.
  • FIG. 13 shows the relationship between the oxygen concentration in the exhaust gas before the hydrocarbon is supplied and the amplitude ⁇ H of the hydrocarbon concentration when the same NO x purification rate is obtained.
  • FIG. 13 shows that in order to obtain the same NO x purification rate, it is necessary to increase the amplitude ⁇ H of the hydrocarbon concentration as the oxygen concentration in the exhaust gas before the hydrocarbon is supplied is higher. That is, in order to obtain the same NO x purification rate, it is necessary to increase the amplitude ⁇ T of the hydrocarbon concentration as the base air-fuel ratio (A / F) b increases. In other words, in order to remove the NO x well it can reduce the amplitude ⁇ T of the hydrocarbon concentration as the base air-fuel ratio (A / F) b becomes lower.
  • the base air-fuel ratio (A / F) b becomes the lowest during the acceleration operation.
  • the amplitude ⁇ H of the hydrocarbon concentration is about 200 ppm, NO x can be purified well.
  • the base air-fuel ratio (A / F) b is usually larger than that during acceleration operation. Therefore, as shown in FIG. 14, when the hydrocarbon concentration amplitude ⁇ H is 200 ppm or more, a good NO x purification rate can be obtained. become.
  • the base air-fuel ratio (A / F) b is the highest, a good NO x purification rate can be obtained by setting the amplitude ⁇ H of the hydrocarbon concentration to about 10000 ppm. Therefore, in the present invention, the predetermined range of the amplitude of the hydrocarbon concentration is set to 200 ppm to 10000 ppm.
  • the vibration period ⁇ T of the hydrocarbon concentration becomes longer, the period during which the oxygen concentration around the active NO x * becomes higher after the hydrocarbon is supplied and then the hydrocarbon is supplied next becomes longer.
  • the vibration period ⁇ T of the hydrocarbon concentration becomes longer than about 5 seconds, the active NO x * starts to be absorbed in the basic layer 53 in the form of nitrate, and therefore the vibration of the hydrocarbon concentration as shown in FIG.
  • the vibration period ⁇ T of the hydrocarbon concentration needs to be 5 seconds or less.
  • the vibration period ⁇ T of the hydrocarbon concentration becomes approximately 0.3 seconds or less, the supplied hydrocarbon begins to accumulate on the exhaust gas flow surface of the exhaust purification catalyst 13, and accordingly, the vibration of the hydrocarbon concentration as shown in FIG.
  • the vibration period of the hydrocarbon concentration is set to be between 0.3 seconds and 5 seconds.
  • the hydrocarbon concentration amplitude ⁇ H and the vibration period ⁇ T become optimum values according to the operating state of the engine by changing the hydrocarbon injection amount and injection timing from the hydrocarbon supply valve 15.
  • the hydrocarbon injection amount WT capable of obtaining the optimum hydrocarbon concentration amplitude ⁇ H is shown in FIG. 16A as a function of the injection amount Q from the fuel injection valve 3 and the engine speed N.
  • Such a map is stored in the ROM 32 in advance.
  • the vibration period ⁇ T of the optimum hydrocarbon concentration, that is, the hydrocarbon injection period ⁇ T is also stored in advance in the ROM 32 in the form of a map as shown in FIG. 16B as a function of the injection amount Q from the fuel injection valve 3 and the engine speed N. Is remembered.
  • the NO x purification method when the exhaust purification catalyst 13 functions as a NO x storage catalyst will be specifically described with reference to FIGS.
  • the NO x purification method when the exhaust purification catalyst 13 functions as the NO x storage catalyst will be referred to as a second NO x purification method.
  • the air-fuel ratio (A / F) in of the gas is temporarily made rich.
  • Occluded amount of NO x ⁇ NOX is calculated from the amount of NO x exhausted from the engine, for example.
  • the ROM32 in the form of a map as shown in FIG. 18 as a function of the discharge amount of NO x NOXA the injection quantity Q and the engine speed N which is discharged from the engine per unit time,
  • the occluded NO x amount ⁇ NOX is calculated from this exhausted NO x amount NOXA.
  • the period during which the air-fuel ratio (A / F) in of the exhaust gas is made rich is usually 1 minute or more.
  • the air / fuel ratio (A / F) in of the gas is made rich.
  • the horizontal axis of FIG. 19 indicates the crank angle.
  • This additional fuel WR is injected when it burns but does not appear as engine output, that is, slightly before ATDC 90 ° after compression top dead center.
  • This fuel amount WR is stored in advance in the ROM 32 as a function of the injection amount Q and the engine speed N in the form of a map as shown in FIG.
  • the air-fuel ratio (A / F) in of the exhaust gas can be made rich by increasing the amount of hydrocarbon injection from the hydrocarbon feed valve 15.
  • FIG. 21 shows the NO x purification control routine. This routine is executed by interruption every predetermined time.
  • step 60 Whether the temperature TC of the exhaust purification catalyst 13 from the output signal of the temperature sensor 23, first, at step 60 the reference exceeds the activation temperature TC 0 is determined to FIG.
  • the routine proceeds to step 61, where the NO x purification action by the first NO x purification method is performed. That is, the injection time WT corresponding to the operating state is calculated from the map shown in FIG. 16A, the injection cycle ⁇ T corresponding to the operating state is calculated from the map shown in FIG. 16B, and the calculated injection time WT and injection cycle are calculated. Hydrocarbon is injected from the hydrocarbon feed valve 15 in accordance with ⁇ T.
  • step 60 when it is determined in step 60 that TC ⁇ TC 0, that is, when the exhaust purification catalyst 13 is not activated, the routine proceeds to step 62 where the NO x purification action by the second NO x purification method is performed. That is, the discharge amount of NO x NOXA per unit time is calculated from the map shown in FIG. 18 at step 62.
  • step 63 the stored NO x amount ⁇ NOX is calculated by adding the exhausted NO x amount NOXA to ⁇ NOX.
  • step 64 it is judged if the occluded NO x amount ⁇ NOX exceeds the allowable value MAX.
  • the routine proceeds to step 65, where an additional fuel amount WR is calculated from the map shown in FIG. 20, and an additional fuel injection action is performed.
  • step 66 ⁇ NOX is cleared.
  • the hydrocarbons when hydrocarbons are supplied from the hydrocarbon supply valve 15, the hydrocarbons spread over the entire exhaust purification catalyst 13. Adhering sequentially, the radical hydrocarbons produced at this time react with active NO x * to produce a reducing intermediate.
  • This reducing intermediate is attached or adsorbed on the surface of the basic layer 53. After that, the hydrocarbon attached around the reducing intermediate is oxidized and disappears, and when the oxygen concentration around the reducing intermediate becomes high, the reducing intermediate reacts with active NO x * and oxygen. Alternatively, it self-decomposes to become N 2 , CO 2 , H 2 O, and thus NO x is purified.
  • NO x contained in the exhaust gas is temporarily held on the exhaust purification catalyst 13 in the form of reducing intermediate is then purified . Therefore, in order to purify NOx well, it is necessary to produce as much reducing intermediate as possible.
  • the reducing intermediate is generated from radical hydrocarbons, and the radical hydrocarbons are generated from hydrocarbons adhering to the exhaust purification catalyst 13. Therefore, in order to increase the amount of reducing intermediates generated, It is necessary to attach as much hydrocarbon as possible to the exhaust purification catalyst 13.
  • hydrocarbons supplied from the hydrocarbon supply valve 15 are cracked when flowing into the exhaust purification catalyst 13, and at this time, the number of hydrocarbon molecules decreases and the number of hydrocarbon molecules increases.
  • Such a cracking action of hydrocarbons is continuously performed while the hydrocarbons flow through the exhaust purification catalyst 13, so that the number of carbon atoms of the hydrocarbon molecules in the exhaust purification catalyst 13 is downstream as shown in FIG.
  • the number of hydrocarbon molecules increases downstream.
  • the smaller the number of carbon atoms in the hydrocarbon molecule the more easily the reducing intermediate is generated.
  • the larger the number of hydrocarbon molecules the larger the amount of reducing intermediate. Therefore, in order to generate as much reducing intermediate as possible on the exhaust purification catalyst 13, the adhesion of hydrocarbon molecules to the exhaust purification catalyst 13 becomes more downstream as shown in FIG. Need to be high.
  • the exhaust purification catalyst 13 is formed so that the hydrocarbon adhesion to the downstream portion of the exhaust purification catalyst 13 is higher than the hydrocarbon adhesion to the upstream portion of the exhaust purification catalyst 13. I have to. In this case, as can be seen from FIG. 22, it is preferable to gradually increase the adhesion of hydrocarbons to the exhaust purification catalyst 13 as it goes downstream of the exhaust purification catalyst 13.
  • the adhesion of hydrocarbons to the downstream portion of the exhaust purification catalyst 13 is made higher than the adhesion of hydrocarbons to the upstream portion of the exhaust purification catalyst 13.
  • Various embodiments of the exhaust purification catalyst 13 will be sequentially described.
  • FIGS. 23A, 23B and 24 will be described.
  • the structure of the downstream portion of the exhaust purification catalyst 13 is compared with the structure of the upstream portion of the exhaust purification catalyst 13.
  • An example is shown in which the hydrocarbon is more adherent to the catalyst 13.
  • the exhaust purification catalyst 13 is composed of two catalysts, an upstream catalyst 13a and a downstream catalyst 13b, and the base materials of these upstream catalyst 13a and downstream catalyst 13b are For example, it is formed from cordierite.
  • a catalyst carrier made of alumina, for example, is supported on the base material of the upstream catalyst 13a and the downstream catalyst 13b, and noble metal catalysts 51 and 52 are supported on the catalyst carrier 50 as shown in FIG. And a basic layer 53 is formed.
  • the upstream side catalyst 13a of the exhaust purification catalyst 13 includes a plurality of exhaust flow passages 70 extending in the axial direction of the exhaust purification catalyst 13, as shown in FIG. It flows straight toward the axial direction of the catalyst 13. That is, the exhaust gas flow structure in the upstream portion of the exhaust purification catalyst 13 is a straight flow type in which exhaust gas flows in a plurality of exhaust flow passages 70 extending in the axial direction of the exhaust purification catalyst 13.
  • the downstream catalyst 13b of the exhaust purification catalyst 13 has a honeycomb-like cross-sectional shape, and this downstream catalyst 13b is separated by the partition wall 71 and the axis of the exhaust purification catalyst 13 A plurality of exhaust flow passages 72, 73 extending in the direction are provided.
  • the exhaust flow passage 72 and the exhaust flow passage 73 are alternately arranged with the partition wall 71 therebetween, the exhaust flow passage 72 is opened at its upstream end, and the exhaust flow passage 73 is opened at its downstream end. Accordingly, the exhaust gas that has flowed into the exhaust flow passage 72 flows through the partition wall 71 and into the exhaust flow passage 73 as indicated by arrows. That is, in the embodiment shown in FIG. 23A, the exhaust gas distribution structure in the downstream portion of the exhaust purification catalyst 13 has the exhaust gas flowing in the partition walls 71 of the exhaust flow passages 72 and 73 extending in the axial direction of the exhaust purification catalyst 13. It is a wall flow type.
  • the wall flow type downstream catalyst 13b has higher adhesion of hydrocarbons to the exhaust purification catalyst 13. Therefore, in this embodiment, in the downstream portion of the exhaust purification catalyst 13 The hydrocarbon adherence to the exhaust gas is higher than the hydrocarbon adherence to the upstream portion of the exhaust purification catalyst 13. Accordingly, the amount of hydrocarbons attached to the exhaust purification catalyst 13 increases, and as a result, the amount of reducing intermediates produced in the exhaust purification catalyst 13 increases, so that the NOx purification rate is increased.
  • the downstream catalyst 13b is used as a particulate filter. Therefore, in this embodiment, the particulate filter 14 shown in FIG. 1 is omitted.
  • the exhaust purification catalyst 13 is composed of two catalysts, an upstream catalyst 13a and a downstream catalyst 13b.
  • the exhaust flow structure of the upstream catalyst 13a is such that the exhaust gas is an exhaust purification catalyst.
  • a straight flow type that flows in a plurality of exhaust flow passages 74 extending in the 13 axial directions is formed.
  • the base material of the upstream catalyst 13a is also formed of cordierite.
  • the downstream catalyst 13b of the exhaust purification catalyst 13 is composed of an aggregate of pellet-shaped catalysts.
  • a catalyst carrier made of, for example, alumina is supported on the base material of the upstream catalyst 13a and the pellet-like downstream catalyst 13b.
  • 52 are supported and a basic layer 53 is formed.
  • the pellet-like downstream catalyst 13b has higher adhesion of hydrocarbons to the exhaust purification catalyst 13 than the straight flow type upstream catalyst 13a. Therefore, also in this embodiment, the exhaust purification catalyst 13 The hydrocarbon adherence to the downstream portion of the exhaust gas is higher than the hydrocarbon adherence to the upstream portion of the exhaust purification catalyst 13. Accordingly, the amount of hydrocarbons attached to the exhaust purification catalyst 13 increases, and as a result, the amount of reducing intermediates produced in the exhaust purification catalyst 13 increases, so that the NOx purification rate is increased.
  • the exhaust purification catalyst 13 is composed of two catalysts, an upstream catalyst 13a and a downstream catalyst 13b, and the base material of these upstream catalyst 13a and downstream catalyst 13b is, for example, a cord. Formed from lights.
  • a catalyst carrier made of alumina for example, is supported on the base material of the upstream catalyst 13a and the downstream catalyst 13b.
  • a basic layer 53 is formed while being supported.
  • the exhaust flow structure of the upstream side catalyst 13a of the exhaust purification catalyst 13 has a straight flow type in which the exhaust gas flows in a plurality of exhaust flow passages 75 extending in the axial direction of the exhaust purification catalyst 13.
  • the exhaust flow structure of the downstream catalyst 13b of the purification catalyst 13 is also a straight flow type in which the exhaust gas flows in a plurality of exhaust flow passages 76 extending in the axial direction of the exhaust purification catalyst 13.
  • the cross-sectional area of the exhaust flow passage 76 of the downstream catalyst 13b is formed smaller than the cross-sectional area of the exhaust flow passage 75 of the upstream catalyst 13a.
  • each exhaust flow passage 76 in the downstream portion of the exhaust purification catalyst 13 is formed smaller than the cross-sectional area of the exhaust flow passage 75 in the upstream portion of the exhaust purification catalyst 13, the downstream side compared to the upstream portion.
  • the part has higher adhesion of hydrocarbons to the exhaust purification catalyst 13. Accordingly, the amount of hydrocarbons attached to the exhaust purification catalyst 13 increases, and as a result, the amount of reducing intermediates produced in the exhaust purification catalyst 13 increases, so that the NOx purification rate is increased.
  • FIG. 25 shows an example in which the base material of the downstream portion of the exhaust purification catalyst 13 is a base material that has higher hydrocarbon adhesion to the exhaust purification catalyst 13 than the base material of the upstream portion of the exhaust purification catalyst 13. An example is shown.
  • the exhaust purification catalyst 13 is composed of two catalysts, an upstream catalyst 13a and a downstream catalyst 13b.
  • a metal base made of a thin metal plate is used as the base of the upstream catalyst 13a
  • the base of the downstream catalyst 13b is a cordierite base, silicon carbide base It is formed from a material or a ceramic substrate such as an alumina titanium substrate.
  • a catalyst carrier made of alumina is supported on the base material of the upstream catalyst 13a and the downstream catalyst 13b.
  • a basic layer 53 is formed while being supported.
  • the exhaust purification catalyst 13 is made of a ceramic base material such as a cordierite base material, a silicon carbide base material, or an alumina titanium base material, compared with the case where the base material is made of a metal base material.
  • the adhesion of hydrocarbons to the catalyst 13 is high. Therefore, also in this embodiment, the adhesion of hydrocarbons to the downstream part of the exhaust purification catalyst 13 is more than the adhesion of hydrocarbons to the upstream part of the exhaust purification catalyst 13. Also gets higher. Accordingly, the amount of hydrocarbons attached to the exhaust purification catalyst 13 increases, and as a result, the amount of reducing intermediates produced in the exhaust purification catalyst 13 increases, so that the NOx purification rate is increased.
  • 26A and 26B show an example in which the catalyst composition of the downstream portion of the exhaust purification catalyst 13 is a catalyst composition in which the adhesion of hydrocarbons to the exhaust purification catalyst 13 is higher than that of the upstream portion of the exhaust purification catalyst 13. Is shown.
  • the exhaust purification catalyst 13 is composed of an upstream catalyst portion 13a and a downstream catalyst portion 13b, and the base materials of these upstream catalyst portion 13a and downstream catalyst portion 13b are, for example, It is formed from cordierite formed integrally. Furthermore, in this embodiment, zeolite is contained on the base material of the downstream catalyst portion 13b.
  • the zeolite can also be contained on the base material of the upstream catalyst portion 13a, but in this case, a larger amount of zeolite is contained on the base material of the downstream catalyst portion 13b than the upstream catalyst portion 13a. I'm damned.
  • a catalyst carrier made of alumina for example, is supported on the base material of the upstream catalyst portion 13a and the downstream catalyst portion 13b, and this catalyst carrier 50 is supported on the catalyst carrier 50 as shown in FIG. Is supported with noble metal catalysts 51 and 52 and a basic layer 53 is formed.
  • the downstream portion of the exhaust purification catalyst 13 contains a larger amount of zeolite than the upstream portion of the exhaust purification catalyst 13, or the zeolite is only in the downstream portion of the exhaust purification catalyst 13. It is included.
  • zeolite has a function of adhering and retaining a large amount of hydrocarbons. Therefore, in this way, a larger amount of zeolite is present in the downstream portion of the exhaust purification catalyst 13 than in the upstream portion of the exhaust purification catalyst 13. If the zeolite is contained, or if zeolite is contained only in the downstream portion of the exhaust purification catalyst 13, the downstream portion becomes more adherent to the exhaust purification catalyst 13 than the upstream portion. Accordingly, the amount of hydrocarbons attached to the exhaust purification catalyst 13 increases, and as a result, the amount of reducing intermediates produced in the exhaust purification catalyst 13 increases, so that the NOx purification rate is increased.
  • the exhaust purification catalyst 13 is composed of a plurality of catalyst portions 77a to 77e, and the base material of these catalyst portions 77a to 77b is formed of an integrally formed cordierite.
  • a catalyst carrier made of alumina is supported on the base material.
  • noble metal catalysts 51 and 52 are supported on the catalyst carrier 50 and a basic layer 53 is formed. Yes.
  • the content of alumina is gradually increased from the upstream side toward the downstream side. That is, the content of alumina is gradually increased in the order of the catalyst portion 77a, the catalyst portion 77b, the catalyst portion 77c, the catalyst portion 77d, and the catalyst portion 77e. Therefore, in this embodiment, in the downstream portion of the exhaust purification catalyst 13. As compared with the upstream side portion of the exhaust purification catalyst 13, a larger amount of alumina is contained.
  • the specific surface area of the catalyst carrier increases. Therefore, as the alumina content increases, the adhesion of hydrocarbons to the exhaust purification catalyst 13 increases. Therefore, in this embodiment, the adherence of hydrocarbons to the exhaust purification catalyst 13 is higher in the downstream portion than in the upstream portion. Therefore, also in this embodiment, the amount of hydrocarbons attached to the exhaust purification catalyst 13 increases, and as a result, the amount of reducing intermediates produced in the exhaust purification catalyst 13 increases, so that the NOx purification rate is increased. .
  • an oxidation catalyst for reforming hydrocarbons can be disposed in the engine exhaust passage upstream of the exhaust purification catalyst 13.

Abstract

 内燃機関において、機関排気通路内に炭化水素供給弁(15)と、排気浄化触媒(13)とが配置される。機関運転時に排気浄化触媒(13)に流入する炭化水素の濃度変化の振幅が予め定められた範囲内の振幅となるように炭化水素供給弁(15)からの炭化水素の噴射量が制御されると共に、排気浄化触媒(13)に流入する炭化水素の濃度が予め定められた範囲内の周期でもって振動するように炭化水素供給弁(15)からの炭化水素の噴射周期が制御される。排気浄化触媒(13)の下流側部分への炭化水素の付着性が排気浄化触媒(13)の上流側部分への炭化水素の付着性よりも高くなるように排気浄化触媒(13)を形成する。

Description

内燃機関の排気浄化装置
 本発明は内燃機関の排気浄化装置に関する。
 機関排気通路内に炭化水素供給弁を配置し、炭化水素供給弁下流の機関排気通路内に排気浄化触媒を配置し、排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、機関運転時に炭化水素供給弁から5秒以内の予め定められた周期でもって炭化水素の噴射し、それによって排気ガス中に含まれるNOxを浄化するようにした内燃機関が公知である(例えば特許文献1を参照)。この内燃機関では排気浄化触媒の温度が高温になっても高いNOx浄化率を得ることができる。
WO2011/114499A1
 この内燃機関では排気浄化触媒が高温になっても高いNOx浄化率を得ることができるが、更に高いNOx浄化率を得ることが望まれている。
 本発明の目的は、更に高いNOx浄化率を得ることのできる内燃機関の排気浄化装置を提供することにある。
 本発明によれば、炭化水素を供給するための炭化水素供給弁を機関排気通路内に配置し、炭化水素供給弁下流の機関排気通路内に排気ガス中に含まれるNOxと改質された炭化水素とを反応させるための排気浄化触媒を配置し、排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOxを還元する性質を有すると共に、炭化水素濃度の振動周期を予め定められた範囲よりも長くすると排気ガス中に含まれるNOxの吸蔵量が増大する性質を有しており、機関運転時に排気浄化触媒に流入する炭化水素の濃度変化の振幅が上述の予め定められた範囲内の振幅となるように炭化水素供給弁からの炭化水素の噴射量が制御されると共に、排気浄化触媒に流入する炭化水素の濃度が上述の予め定められた範囲内の周期でもって振動するように炭化水素供給弁からの炭化水素の噴射周期が制御される内燃機関の排気浄化装置において、排気浄化触媒の下流側部分への炭化水素の付着性が排気浄化触媒の上流側部分への炭化水素の付着性よりも高くなるように排気浄化触媒を形成した内燃機関の排気浄化装置が提供される。
 排気浄化触媒の温度が低いときはもとより高温のときでも極めて高いNOx浄化率を得ることができる。
図1は圧縮着火式内燃機関の全体図である。 図2は触媒担体の表面部分を図解的に示す図である。 図3は排気浄化触媒における酸化反応を説明するための図である。 図4は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。 図5はNOx浄化率を示す図である。 図6Aおよび6Bは排気浄化触媒における酸化還元反応を説明するための図である。 図7Aおよび7Bは排気浄化触媒における酸化還元反応を説明するための図である。 図8は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。 図9はNOx浄化率を示す図である。 図10は排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。 図11は排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。 図12は排気浄化触媒の酸化力と要求最小空燃比Xとの関係を示す図である。 図13は同一のNOx浄化率の得られる、排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示す図である。 図14は炭化水素濃度の振幅ΔHとNOx浄化率との関係を示す図である。 図15は炭化水素濃度の振動周期ΔTとNOx浄化率との関係を示す図である。 図16Aおよび16Bは炭化水素の噴射時間等を示す図である。 図17は排気浄化触媒への流入排気ガスの空燃比の変化等を示す図である。 図18は排出NOx量NOXAのマップを示す図である。 図19は燃料噴射時期を示す図である。 図20は炭化水素供給量WRのマップを示す図である。 図21はNOx浄化制御を行うためのフローチャートである。 図22は炭化水素分子の付着性を説明するための図である。 図23Aは排気浄化触媒の一実施例を示す拡大図である。 図23Bは排気浄化触媒の一実施例を示す拡大図である。 図24は排気浄化触媒の一実施例を示す拡大図である。 図25は排気浄化触媒の一実施例を示す拡大図である。 図26Aは排気浄化触媒の一実施例を示す拡大図である。 図26Bは排気浄化触媒の一実施例を示す拡大図である。
 図1に圧縮着火式内燃機関の全体図を示す。
 図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
 一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結される。排気タービン7bの出口は排気管12を介して排気浄化触媒13の入口に連結され、排気浄化触媒13の出口は排気ガス中に含まれるパティキュレートを捕集するためのパティキュレートフィルタ14の入口に連結される。排気浄化触媒13上流の排気管12内には圧縮着火式内燃機関の燃料として用いられる軽油その他の燃料からなる炭化水素を供給するための炭化水素供給弁15が配置される。図1に示される実施例では炭化水素供給弁15から供給される炭化水素として軽油が用いられている。なお、本発明はリーン空燃比のもとで燃焼の行われる火花点火式内燃機関にも適用することができる。この場合、炭化水素供給弁15からは火花点火式内燃機関の燃料として用いられるガソリンその他の燃料からなる炭化水素が供給される。
 一方、排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路16を介して互いに連結され、EGR通路16内には電子制御式EGR制御弁17が配置される。また、EGR通路16周りにはEGR通路16内を流れるEGRガスを冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管19を介してコモンレール20に連結され、このコモンレール20は電子制御式の吐出量可変な燃料ポンプ21を介して燃料タンク22に連結される。燃料タンク22内に貯蔵されている燃料は燃料ポンプ21によってコモンレール20内に供給され、コモンレール21内に供給された燃料は各燃料供給管19を介して燃料噴射弁3に供給される。
 電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。排気浄化触媒13の下流には排気浄化触媒13の温度を検出するための温度センサ23が取付けられており、パティキュレートフィルタ14にはパティキュレートフィルタ14の前後の差圧を検出するための差圧センサ24が取付けられている。これら温度センサ23、差圧センサ24および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、炭化水素供給弁15、EGR制御弁17および燃料ポンプ21に接続される。
 図2は排気浄化触媒13の基体上に担持された触媒担体の表面部分を図解的に示している。この排気浄化触媒13では図2に示されるように例えばアルミナからなる触媒担体50上には貴金属触媒51,52が担持されており、更にこの触媒担体50上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOxに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性層53が形成されている。排気ガスは触媒担体50上に沿って流れるので貴金属触媒51,52は排気浄化触媒13の排気ガス流通表面上に担持されていると言える。また、塩基性層53の表面は塩基性を呈するので塩基性層53の表面は塩基性の排気ガス流通表面部分54と称される。
 一方、図2において貴金属触媒51は白金Ptからなり、貴金属触媒52はロジウムRhからなる。なおこの場合、いずれの貴金属触媒51,52も白金Ptから構成することができる。また、排気浄化触媒13の触媒担体50上には白金PtおよびロジウムRhに加えて更にパラジウムPdを担持させることができるし、或いはロジウムRhに代えてパラジウムPdを担持させることができる。即ち、触媒担体50に担持されている貴金属触媒51,52は白金Pt、ロジウムRhおよびパラジウムPdの少なくとも一つにより構成される。
 炭化水素供給弁15から排気ガス中に炭化水素が噴射されるとこの炭化水素は排気浄化触媒13において改質される。本発明ではこのとき改質された炭化水素を用いて排気浄化触媒13においてNOxを浄化するようにしている。図3はこのとき排気浄化触媒13において行われる改質作用を図解的に示している。図3に示されるように炭化水素供給弁15から噴射された炭化水素HCは触媒51によって炭素数の少ないラジカル状の炭化水素HCとなる。
 図4は炭化水素供給弁15からの炭化水素の供給タイミングと排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化とを示している。なお、この空燃比(A/F)inの変化は排気浄化触媒13に流入する排気ガス中の炭化水素の濃度変化に依存しているので図4に示される空燃比(A/F)inの変化は炭化水素の濃度変化を表しているとも言える。ただし、炭化水素濃度が高くなると空燃比(A/F)inは小さくなるので図4においては空燃比(A/F)inがリッチ側となるほど炭化水素濃度が高くなっている。
 図5は、排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させることによって図4に示されるように排気浄化触媒13への流入排気ガスの空燃比(A/F)inを変化させたときの排気浄化触媒13によるNOx浄化率を排気浄化触媒13の各触媒温度TCに対して示している。本発明者は長い期間に亘ってNOx浄化に関する研究を重ねており、その研究課程において、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると、図5に示されるように400℃以上の高温領域においても極めて高いNOx浄化率が得られることが判明したのである。
 更にこのときには窒素および炭化水素を含む多量の還元性中間体が塩基性層53の表面上に、即ち排気浄化触媒13の塩基性排気ガス流通表面部分54上に保持又は吸着され続けており、この還元性中間体が高NOx浄化率を得る上で中心的役割を果していることが判明したのである。次にこのことについて図6Aおよび6Bを参照しつつ説明する。なお、これら図6Aおよび6Bは排気浄化触媒13の触媒担体50の表面部分を図解的に示しており、これら図6Aおよび6Bには排気浄化触媒13に流入する炭化水素の濃度が予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動せしめたときに生ずると推測される反応が示されている。
 図6Aは排気浄化触媒13に流入する炭化水素の濃度が低いときを示しており、図6Bは炭化水素供給弁15から炭化水素が供給されて排気浄化触媒13に流入する炭化水素の濃度が高くなっているときを示している。
 さて、図4からわかるように排気浄化触媒13に流入する排気ガスの空燃比は一瞬を除いてリーンに維持されているので排気浄化触媒13に流入する排気ガスは通常酸素過剰の状態にある。このとき排気ガス中に含まれるNOの一部は排気浄化触媒13上に付着し、排気ガス中に含まれるNOの一部は図6Aに示されるように白金51上において酸化されてNO2となり、次いでこのNO2は更に酸化されてNO3となる。また、NO2の一部はNO2 -となる。従って白金Pt51上にはNO2 - とNO3とが生成されることになる。排気浄化触媒13上に付着しているNOおよび白金Pt51上において生成されたNO2 -とNO3は活性が強く、従って以下これらNO、NO2 -およびNO3を活性NOx *と称する。
 一方、炭化水素供給弁15から炭化水素が供給されるとこの炭化水素は排気浄化触媒13の全体に亘って順次付着する。これら付着した炭化水素の大部分は順次酸素と反応して燃焼せしめられ、付着した炭化水素の一部は順次、図3に示されるように排気浄化触媒13内において改質され、ラジカルとなる。従って、図6Bに示されるように活性NOx *周りの炭化水素濃度が高くなる。ところで活性NOx *が生成された後、活性NOx *周りの酸素濃度が高い状態が一定時間以上継続すると活性NOx *は酸化され、硝酸イオンNO3 -の形で塩基性層53内に吸収される。しかしながらこの一定時間が経過する前に活性NOx *周りの炭化水素濃度が高くされると図6Bに示されるように活性NOx *は白金51上においてラジカル状の炭化水素HCと反応し、それにより還元性中間体が生成される。この還元性中間体は塩基性層53の表面上に付着又は吸着される。
 なお、このとき最初に生成される還元性中間体はニトロ化合物R-NO2であると考えられる。このニトロ化合物R-NO2は生成されるとニトリル化合物R-CNとなるがこのニトリル化合物R-CNはその状態では瞬時しか存続し得ないのでただちにイソシアネート化合物R-NCOとなる。このイソシアネート化合物R-NCOは加水分解するとアミン化合物R-NH2となる。ただしこの場合、加水分解されるのはイソシアネート化合物R-NCOの一部であると考えられる。従って図6Bに示されるように塩基性層53の表面上に保持又は吸着されている還元性中間体の大部分はイソシアネート化合物R-NCOおよびアミン化合物R-NH2であると考えられる。
 一方、図6Bに示されるように生成された還元性中間体の周りに炭化水素HCが付着しているときには還元性中間体は炭化水素HCに阻まれてそれ以上反応が進まない。この場合、排気浄化触媒13に流入する炭化水素の濃度が低下し、次いで還元性中間体の周りに付着している炭化水素が酸化せしめられて消滅し、それにより還元性中間体周りの酸素濃度が高くなると、還元性中間体は図6Aに示されるように活性NOx *と反応するか、周囲の酸素と反応するか、或いは自己分解する。それによって還元性中間体R-NCOやR-NH2はN2,CO2,H2Oに変換せしめられ、斯くしてNOxが浄化されることになる。
 このように排気浄化触媒13では、排気浄化触媒13に流入する炭化水素の濃度を高くすることにより還元性中間体が生成され、排気浄化触媒13に流入する炭化水素の濃度を低下させた後、酸素濃度が高くなったときに還元性中間体が活性NOx *や酸素と反応し、或いは自己分解し、それによりNOxが浄化される。即ち、排気浄化触媒13によりNOxを浄化するには排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させる必要がある。
 無論、この場合、還元性中間体を生成するのに十分高い濃度まで炭化水素の濃度を高める必要があり、生成された還元性中間体を活性NOx *や酸素と反応させ、或いは自己分解させるのに十分低い濃度まで炭化水素の濃度を低下させる必要がある。即ち、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅で振動させる必要がある。なお、この場合、生成された還元性中間体R-NCOやR-NH2が活性NOx *や酸素と反応するまで、或いは自己分解するまでこれら還元性中間体を塩基性層53上に、即ち塩基性排気ガス流通表面部分54上に保持しておかなければならず、そのために塩基性の排気ガス流通表面部分54が設けられている。
 一方、炭化水素の供給周期を長くすると炭化水素が供給された後、次に炭化水素が供給されるまでの間において酸素濃度が高くなる期間が長くなり、従って活性NOx *は還元性中間体を生成することなく硝酸塩の形で塩基性層53内に吸収されることになる。これを回避するためには排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の周期でもって振動させることが必要となる。
 そこで本発明による実施例では、排気ガス中に含まれるNOxと改質された炭化水素とを反応させて窒素および炭化水素を含む還元性中間体R-NCOやR-NH2を生成するために排気浄化触媒13の排気ガス流通表面上には貴金属触媒51,52が担持されており、生成された還元性中間体R-NCOやR-NH2を排気浄化触媒13内に保持しておくために貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、塩基性の排気ガス流通表面部分54上に保持された還元性中間体R-NCOやR-NH2はN2,CO2,H2Oに変換せしめられ、炭化水素濃度の振動周期は還元性中間体R-NCOやR-NH2を生成し続けるのに必要な振動周期とされる。因みに図4に示される例では噴射間隔が3秒とされている。
 炭化水素濃度の振動周期、即ち炭化水素HCの供給周期を上述の予め定められた範囲内の周期よりも長くすると塩基性層53の表面上から還元性中間体R-NCOやR-NH2が消滅し、このとき白金Pt53上において生成された活性NOx *は図7Aに示されるように硝酸イオンNO3 -の形で塩基性層53内に拡散し、硝酸塩となる。即ち、このときには排気ガス中のNOxは硝酸塩の形で塩基性層53内に吸収されることになる。
 一方、図7BはこのようにNOxが硝酸塩の形で塩基性層53内に吸収されているときに排気浄化触媒13内に流入する排気ガスの空燃比が理論空燃比又はリッチにされた場合を示している。この場合には排気ガス中の酸素濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、斯くして塩基性層53内に吸収されている硝酸塩は順次硝酸イオンNO3 -となって図7Bに示されるようにNO2の形で塩基性層53から放出される。次いで放出されたNO2は排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
 図8は塩基性層53のNOx吸収能力が飽和する少し前に排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを一時的にリッチにするようにした場合を示している。なお、図8に示す例ではこのリッチ制御の時間間隔は1分以上である。この場合には排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸収されたNOxは、排気ガスの空燃比(A/F)inが一時的にリッチにされたときに塩基性層53から一気に放出されて還元される。従ってこの場合には塩基性層53はNOxを一時的に吸収するための吸収剤の役目を果している。
 なお、このとき塩基性層53がNOxを一時的に吸着する場合もあり、従って吸収および吸着の双方を含む用語として吸蔵という用語を用いるとこのとき塩基性層53はNOxを一時的に吸蔵するためのNOx吸蔵剤の役目を果していることになる。即ち、この場合には、機関吸気通路、燃焼室2および排気浄化触媒13上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、排気浄化触媒13は、排気ガスの空燃比がリーンのときにはNOxを吸蔵し、排気ガス中の酸素濃度が低下すると吸蔵したNOxを放出するNOx吸蔵触媒として機能している。
 図9は、排気浄化触媒13をこのようにNOx吸蔵触媒として機能させたときのNOx浄化率を示している。なお、図9の横軸は排気浄化触媒13の触媒温度TCを示している。排気浄化触媒13をNOx吸蔵触媒として機能させた場合には図9に示されるように触媒温度TCが300℃から400℃のときには極めて高いNOx浄化率が得られるが触媒温度TCが400℃以上の高温になるとNOx浄化率が低下する。
 このように触媒温度TCが400℃以上になるとNOx浄化率が低下するのは、触媒温度TCが400℃以上になると硝酸塩が熱分解してNO2の形で排気浄化触媒13から放出されるからである。即ち、NOxを硝酸塩の形で吸蔵している限り、触媒温度TCが高いときに高いNOx浄化率を得るのは困難である。しかしながら図4から図6A,6Bに示される新たなNOx浄化方法では図6A,6Bからわかるように硝酸塩は生成されず或いは生成されても極く微量であり、斯くして図5に示されるように触媒温度TCが高いときでも高いNOx浄化率が得られることになる。
 そこで本発明では、炭化水素を供給するための炭化水素供給弁15を機関排気通路内に配置し、炭化水素供給弁15下流の機関排気通路内に排気ガス中に含まれるNOxと改質された炭化水素とを反応させるための排気浄化触媒13を配置し、排気浄化触媒13の排気ガス流通表面上には貴金属触媒51,52が担持されていると共に貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、排気浄化触媒13は、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOxを還元する性質を有すると共に、炭化水素濃度の振動周期をこの予め定められた範囲よりも長くすると排気ガス中に含まれるNOxの吸蔵量が増大する性質を有しており、機関運転時に排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させ、それにより排気ガス中に含まれるNOxを排気浄化触媒13において還元するようにしている。
 即ち、図4から図6A,6Bに示されるNOx浄化方法は、貴金属触媒を担持しかつNOxを吸収しうる塩基性層を形成した排気浄化触媒を用いた場合において、ほとんど硝酸塩を形成することなくNOxを浄化するようにした新たなNOx浄化方法であると言うことができる。実際、この新たなNOx浄化方法を用いた場合には排気浄化触媒13をNOx吸蔵触媒として機能させた場合に比べて、塩基性層53から検出される硝酸塩は極く微量である。なお、この新たなNOx浄化方法を以下、第1のNOx浄化方法と称する。
 次に図10から図15を参照しつつこの第1のNOx浄化方法についてもう少し詳細に説明する。
 図10は図4に示される空燃比(A/F)inの変化を拡大して示している。なお、前述したようにこの排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化は同時に排気浄化触媒13に流入する炭化水素の濃度変化を示している。なお、図10においてΔHは排気浄化触媒13に流入する炭化水素HCの濃度変化の振幅を示しており、ΔTは排気浄化触媒13に流入する炭化水素濃度の振動周期を示している。
 更に図10において(A/F)bは機関出力を発生するための燃焼ガスの空燃比を示すベース空燃比を表している。言い換えるとこのベース空燃比(A/F)bは炭化水素の供給を停止したときに排気浄化触媒13に流入する排気ガスの空燃比を表している。一方、図10においてXは、生成された活性NOx *が硝酸塩の形で塩基性層53内に吸蔵されることなく還元性中間体の生成のために使用される空燃比(A/F)inの上限を表しており、活性NOx *と改質された炭化水素とを反応させて還元性中間体を生成させるには空燃比(A/F)inをこの空燃比の上限Xよりも低くすることが必要となる。
 別の言い方をすると図10のXは活性NOx *と改質された炭化水素とを反応させて還元性中間体を生成させるのに必要な炭化水素の濃度の下限を表しており、還元性中間体を生成するためには炭化水素の濃度をこの下限Xよりも高くする必要がある。この場合、還元性中間体が生成されるか否かは活性NOx *周りの酸素濃度と炭化水素濃度との比率、即ち空燃比(A/F)inで決まり、還元性中間体を生成するのに必要な上述の空燃比の上限Xを以下、要求最小空燃比と称する。
 図10に示される例では要求最小空燃比Xがリッチとなっており、従ってこの場合には還元性中間体を生成するために空燃比(A/F)inが瞬時的に要求最小空燃比X以下に、即ちリッチにされる。これに対し、図11に示される例では要求最小空燃比Xがリーンとなっている。この場合には空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させることによって還元性中間体が生成される。
 この場合、要求最小空燃比Xがリッチになるかリーンになるかは排気浄化触媒13の酸化力による。この場合、排気浄化触媒13は例えば貴金属51の担持量を増大させれば酸化力が強まり、酸性を強めれば酸化力が強まる。従って排気浄化触媒13の酸化力は貴金属51の担持量や酸性の強さによって変化することになる。
 さて、酸化力が強い排気浄化触媒13を用いた場合に図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、空燃比(A/F)inが低下せしめられたときに炭化水素が完全に酸化されてしまい、その結果還元性中間体を生成することができなくなる。これに対し、酸化力が強い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると空燃比(A/F)inがリッチにされたときに一部の炭化水素は完全に酸化されることなく部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成されることになる。従って酸化力が強い排気浄化触媒13を用いた場合には要求最小空燃比Xはリッチにする必要がある。
 一方、酸化力が弱い排気浄化触媒13を用いた場合には図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、一部の炭化水素は完全に酸化されずに部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成される。これに対し、酸化力が弱い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると多量の炭化水素は酸化されることなく単に排気浄化触媒13から排出されることになり、斯くして無駄に消費される炭化水素量が増大することになる。従って酸化力が弱い排気浄化触媒13を用いた場合には要求最小空燃比Xはリーンにする必要がある。
 即ち、要求最小空燃比Xは図12に示されるように排気浄化触媒13の酸化力が強くなるほど低下させる必要があることがわかる。このように要求最小空燃比Xは排気浄化触媒13の酸化力によってリーンになったり、或いはリッチになったりするが、以下要求最小空燃比Xがリッチである場合を例にとって、排気浄化触媒13に流入する炭化水素の濃度変化の振幅や排気浄化触媒13に流入する炭化水素濃度の振動周期について説明する。
 さて、ベース空燃比(A/F)bが大きくなると、即ち炭化水素が供給される前の排気ガス中の酸素濃度が高くなると空燃比(A/F)inを要求最小空燃比X以下とするのに必要な炭化水素の供給量が増大し、それに伴って還元性中間体の生成に寄与しなかった余剰の炭化水素量も増大する。この場合、NOxを良好に浄化するためには前述したようにこの余剰の炭化水素を酸化させる必要があり、従ってNOxを良好に浄化するためには余剰の炭化水素量が多いほど多量の酸素が必要となる。
 この場合、排気ガス中の酸素濃度を高めれば酸素量を増大することができる。従ってNOxを良好に浄化するためには、炭化水素が供給される前の排気ガス中の酸素濃度が高いときには炭化水素供給後の排気ガス中の酸素濃度を高める必要がある。即ち、炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅を大きくする必要がある。
 図13は同一のNOx浄化率が得られるときの、炭化水素が供給される前の排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示している。図13から同一のNOx浄化率を得るためには炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅ΔHを増大させる必要があることがわかる。即ち、同一のNOx浄化率を得るにはベース空燃比(A/F)bが高くなるほど炭化水素濃度の振幅ΔTを増大させることが必要となる。別の言い方をすると、NOxを良好に浄化するためにはベース空燃比(A/F)bが低くなるほど炭化水素濃度の振幅ΔTを減少させることができる。
 ところでベース空燃比(A/F)bが最も低くなるのは加速運転時であり、このとき炭化水素濃度の振幅ΔHが200ppm程度あればNOxを良好に浄化することができる。ベース空燃比(A/F)bは通常、加速運転時よりも大きく、従って図14に示されるように炭化水素濃度の振幅ΔHが200ppm以上であれば良好なNOx浄化率を得ることができることになる。
 一方、ベース空燃比(A/F)bが最も高いときには炭化水素濃度の振幅ΔHを10000ppm程度にすれば良好なNOx浄化率が得られることがわかっている。従って本発明では炭化水素濃度の振幅の予め定められた範囲が200ppmから10000ppmとされている。
 また、炭化水素濃度の振動周期ΔTが長くなると炭化水素が供給された後、次に炭化水素が供給される間において、活性NOx *周りの酸素濃度が高くなる期間が長くなる。この場合、炭化水素濃度の振動周期ΔTが5秒程度よりも長くなると活性NOx *が硝酸塩の形で塩基性層53内に吸収され始め、従って図15に示されるように炭化水素濃度の振動周期ΔTが5秒程度よりも長くなるとNOx浄化率が低下することになる。従って炭化水素濃度の振動周期ΔTは5秒以下とする必要がある。
 一方、炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になると供給された炭化水素が排気浄化触媒13の排気ガス流通表面上に堆積し始め、従って図15に示されるように炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になるとNOx浄化率が低下する。そこで本発明では炭化水素濃度の振動周期が0.3秒から5秒の間とされている。
 さて、本発明による実施例では、炭化水素供給弁15からの炭化水素噴射量および噴射時期を変化させることによって炭化水素濃度の振幅ΔHおよび振動周期ΔTが機関の運転状態に応じた最適値となるように制御される。この場合、本発明による実施例ではこの最適な炭化水素濃度の振幅ΔHを得ることのできる炭化水素噴射量WTが燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図16Aに示すようなマップの形で予めROM32内に記憶されている。また、最適な炭化水素濃度の振動周期ΔT、即ち炭化水素の噴射周期ΔTも燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図16Bに示すようなマップの形で予めROM32内に記憶されている。
 次に図17から図20を参照しつつ排気浄化触媒13をNOx吸蔵触媒として機能させた場合のNOx浄化方法について具体的に説明する。このように排気浄化触媒13をNOx吸蔵触媒として機能させた場合のNOx浄化方法を以下、第2のNOx浄化方法と称する。
 この第2のNOx浄化方法では図17に示されるように塩基性層53に吸蔵された吸蔵NOx量ΣNOXが予め定められた許容量MAXを越えたときに排気浄化触媒13に流入する排気ガスの空燃比(A/F)inが一時的にリッチにされる。排気ガスの空燃比(A/F)inがリッチにされると排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸蔵されたNOxが塩基性層53から一気に放出されて還元される。それによってNOxが浄化される。
 吸蔵NOx量ΣNOXは例えば機関から排出されるNOx量から算出される。本発明による実施例では機関から単位時間当り排出される排出NOx量NOXAが噴射量Qおよび機関回転数Nの関数として図18に示すようなマップの形で予めROM32内に記憶されており、この排出NOx量NOXAから吸蔵NOx量ΣNOXが算出される。この場合、前述したように排気ガスの空燃比(A/F)inがリッチにされる周期は通常1分以上である。
 この第2のNOx浄化方法では図19に示されるように燃焼室2内に燃料噴射弁3から燃焼用燃料Qに加え、追加の燃料WRを噴射することによって排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリッチにされる。なお、図19の横軸はクランク角を示している。この追加の燃料WRは燃焼はするが機関出力となって現われない時期に、即ち圧縮上死点後ATDC90°の少し手前で噴射される。この燃料量WRは噴射量Qおよび機関回転数Nの関数として図20に示すようなマップの形で予めROM32内に記憶されている。無論、この場合炭化水素供給弁15からの炭化水素の噴射量を増大させることによって排気ガスの空燃比(A/F)inをリッチにすることもできる。
 図21にNOx浄化制御ルーチンを示す。このルーチンは一定時間毎の割込みによって実行される。
 図21を参照するとまず初めにステップ60において温度センサ23の出力信号から排気浄化触媒13の温度TCが活性化温度TC0を越えているか否かが判別される。TC≧TC0のとき、即ち排気浄化触媒13が活性化しているときにはステップ61に進んで第1のNOx浄化方法によるNOx浄化作用が行われる。即ち、図16Aに示されるマップから運転状態に応じた噴射時間WTが算出され、図16Bに示されるマップから運転状態に応じた噴射周期ΔTが算出され、これら算出された噴射時間WTおよび噴射周期ΔTに従って炭化水素供給弁15から炭化水素が噴射される。
 一方、ステップ60においてTC<TC0であると判断されたとき、即ち排気浄化触媒13が活性化していないときにはステップ62に進んで第2のNOx浄化方法によるNOx浄化作用が行われる。即ち、ステップ62では図18に示すマップから単位時間当りの排出NOx量NOXAが算出される。次いでステップ63ではΣNOXに排出NOx量NOXAを加算することによって吸蔵NOx量ΣNOXが算出される。次いでステップ64では吸蔵NOx量ΣNOXが許容値MAXを越えたか否かが判別される。ΣNOX>MAXになるとステップ65に進んで図20に示すマップから追加の燃料量WRが算出され、追加の燃料の噴射作用が行われる。次いでステップ66ではΣNOXがクリアされる。
 さて、前述したように第1のNOx浄化方法を用いると排気浄化触媒13が高温になっても高いNOx浄化率を得ることができる。本発明者はこの第1のNOx浄化方法を用いたときのNOx浄化率を更に高めることについて研究を重ね、その結果、排気浄化触媒13への炭化水素分子の付着性がNOx浄化率の向上に大きな影響を与えていることが判明したのである。そこでまず初めにこのことについて図22を参照しつつ説明する。
 前述したように、第1のNOx浄化方法によるNOx浄化作用が行われているときには、炭化水素供給弁15から炭化水素が供給されるとこの炭化水素は排気浄化触媒13の全体に亘って順次付着し、このとき生成されたラジカル状の炭化水素が活性NOx *と反応して還元性中間体が生成される。この還元性中間体は塩基性層53の表面上に付着又は吸着される。その後、還元性中間体の周りに付着している炭化水素が酸化せしめられて消滅し、それにより還元性中間体周りの酸素濃度が高くなると、還元性中間体は活性NOx *や酸素と反応し、或いは自己分解してN2,CO2,H2Oとなり、斯くしてNOxが浄化される。
 さて、第1のNOx浄化方法によるNOx浄化作用のもとでは、排気ガス中に含まれるNOxは一旦、還元性中間体の形で排気浄化触媒13上に保持され、次いで浄化される。従ってNOxを良好に浄化するためにはできるだけ多くの還元性中間体を生成させることが必要となる。この場合、還元性中間体はラジカル状の炭化水素から生成され、ラジカル状の炭化水素は排気浄化触媒13に付着した炭化水素から生成されるので、還元性中間体の生成量を増大させるにはできるだけ多くの炭化水素を排気浄化触媒13に付着させることが必要となる。
 ところで、炭化水素供給弁15から供給された炭化水素は排気浄化触媒13に流入するとクラッキングされ、このとき炭化水素分子の炭素数が小さくなると共に炭化水素分子の個数が増大する。このような炭化水素のクラッキング作用は炭化水素が排気浄化触媒13内を流通する間、継続して行われ、従って図22に示されるように排気浄化触媒13内における炭化水素分子の炭素数は下流にいくほど小さくなると共に、炭化水素分子の個数は下流にいくはど増大する。この場合、炭化水素分子の炭素数が小さいほど還元性中間体は生成されやすく、また当然のことながら炭化水素分子の個数が多いほど多量の還元性中間体が生成される。従って、排気浄化触媒13上においてできるだけ多くの還元性中間体を生成するためには、図22に示されるように排気浄化触媒13の下流にいくほど排気浄化触媒13への炭化水素分子の付着性を高くする必要がある。
 そこで本発明では、排気浄化触媒13の下流側部分への炭化水素の付着性が排気浄化触媒13の上流側部分への炭化水素の付着性よりも高くなるように排気浄化触媒13を形成するようにしている。この場合、図22からわかるように排気浄化触媒13の下流にいくに従って次第に排気浄化触媒13への炭化水素の付着性を高くすることが好ましい。
 次に図23Aから図26Bを参照しつつ、排気浄化触媒13の下流側部分への炭化水素の付着性を排気浄化触媒13の上流側部分への炭化水素の付着性よりも高くするようにした排気浄化触媒13の種々の実施例について順次説明する。
 まず初めに図23A、23Bおよび図24について説明すると、これら図23A、23Bおよび24には、排気浄化触媒13の下流側部分の構造を排気浄化触媒13の上流側部分の構造に比べて排気浄化触媒13への炭化水素の付着性が高くなる構造にした実施例が示されている。
 即ち、図23Aに示される実施例では、排気浄化触媒13が上流側触媒13aと下流側触媒13bとの二つの触媒から構成されており、これら上流側触媒13aと下流側触媒13bの基材は例えばコージライトから形成されている。これら上流側触媒13aと下流側触媒13bの基材上には例えばアルミナからなる触媒担体が担持されており、図2に示されるようにこの触媒担体50上には貴金属触媒51,52が担持されていると共に塩基性層53が形成されている。
 排気浄化触媒13の上流側触媒13aは図23Aに示されるように排気浄化触媒13の軸線方向に延びる複数の排気流通路70を具備しており、排気ガスがこれら排気流通路70内を排気浄化触媒13の軸線方向に向けってまっすぐに流れる。即ち、排気浄化触媒13の上流側部分の排気流通構造は、排気ガスが排気浄化触媒13の軸線方向に延びる複数の排気流通路70内を流れるストレートフロー型をなしている。
 一方、図23Aに示される実施例では、排気浄化触媒13の下流側触媒13bはハニカム状の断面形状を有しており、この下流側触媒13bは隔壁71によって分離されかつ排気浄化触媒13の軸線方向に延びる複数の排気流通路72,73を具備している。排気流通路72と排気流通路73は隔壁71を隔てて交互に配置されており、排気流通路72はその上流端が開放されており、排気流通路73はその下流端が開放されている。従って、排気流通路72内に流入した排気ガスは、矢印で示すように隔壁71内を流れて排気流通路73内に流入する。即ち、図23Aに示される実施例では、排気浄化触媒13の下流側部分の排気流通構造は、排気ガスが排気浄化触媒13の軸線方向に延びる各排気流通路72,73の隔壁71内を流れるウォールフロー型をなしている。
 ストレートフロー型の上流側触媒13aに比べてウォールフロー型の下流側触媒13bの方が排気浄化触媒13への炭化水素の付着性が高く、従ってこの実施例では、排気浄化触媒13の下流側部分への炭化水素の付着性が排気浄化触媒13の上流側部分への炭化水素の付着性よりも高くされている。従って排気浄化触媒13への炭化水素の付着量が増大し、その結果、排気浄化触媒13における還元性中間体の生成量が増大するためにNOx浄化率が高められることになる。なお、この実施例では下流側触媒13bがパティキュレートフィルタとして用いられており、従ってこの実施例では図1に示されるパティキュレートフィルタ14は省略される。
 図23Bに示される実施例でも、排気浄化触媒13は上流側触媒13aと下流側触媒13bとの二つの触媒から構成されており、上流側触媒13aの排気流通構造は、排気ガスが排気浄化触媒13の軸線方向に延びる複数の排気流通路74内を流れるストレートフロー型をなしている。この上流側触媒13aの基材もコージライトから形成されている。一方、この実施例では、排気浄化触媒13の下流側触媒13bはペレット状触媒の集合体から構成されている。なお、これら上流側触媒13aとペレット状の下流側触媒13bの基材上には例えばアルミナからなる触媒担体が担持されており、図2に示されるようにこの触媒担体50上には貴金属触媒51,52が担持されていると共に塩基性層53が形成されている。
 この実施例でも、ストレートフロー型の上流側触媒13aに比べてペレット状の下流側触媒13bの方が排気浄化触媒13への炭化水素の付着性が高く、従ってこの実施例でも、排気浄化触媒13の下流側部分への炭化水素の付着性が排気浄化触媒13の上流側部分への炭化水素の付着性よりも高くされている。従って排気浄化触媒13への炭化水素の付着量が増大し、その結果、排気浄化触媒13における還元性中間体の生成量が増大するためにNOx浄化率が高められることになる。
 図24に示される実施例でも、排気浄化触媒13が上流側触媒13aと下流側触媒13bとの二つの触媒から構成されており、これら上流側触媒13aと下流側触媒13bの基材は例えばコージライトから形成されている。これら上流側触媒13aと下流側触媒13bの基材上には同様に例えばアルミナからなる触媒担体が担持されており、図2に示されるようにこの触媒担体50上には貴金属触媒51,52が担持されていると共に塩基性層53が形成されている。
 この実施例では、排気浄化触媒13の上流側触媒13aの排気流通構造は、排気ガスが排気浄化触媒13の軸線方向に延びる複数の排気流通路75内を流れるストレートフロー型をなしており、排気浄化触媒13の下流側触媒13bの排気流通構造も、排気ガスが排気浄化触媒13の軸線方向に延びる複数の排気流通路76内を流れるストレートフロー型をなしている。しかしながら,この実施例では、図24に示されるように、上流側触媒13aの排気流通路75の断面積に比べて下流側触媒13bの排気流通路76の断面積が小さく形成されている。
 このように排気浄化触媒13の下流側部分の各排気流通路76の断面積を排気浄化触媒13の上流側部分の排気流通路75の断面積よりも小さく形成すると上流側部分に比べて下流側部分の方が排気浄化触媒13への炭化水素の付着性が高くなる。従って排気浄化触媒13への炭化水素の付着量が増大し、その結果、排気浄化触媒13における還元性中間体の生成量が増大するためにNOx浄化率が高められることになる。
 図25は、排気浄化触媒13の下流側部分の基材として、排気浄化触媒13の上流側部分の基材に比べ排気浄化触媒13への炭化水素の付着性が高くなる基材を用いた実施例を示している。
 図25に示されるようにこの実施例においても、排気浄化触媒13は上流側触媒13aと下流側触媒13bとの二つの触媒から構成されている。しかしながら、この実施例では、上流側触媒13aの基材として金属製の薄板からなるメタル基材が用いられており、これに対し下流側触媒13bの基材としてはコージライト基材、炭化珪素基材或いはアルミナチタン基材等のセラミック基材から形成されている。これら上流側触媒13aと下流側触媒13bの基材上には同様に例えばアルミナからなる触媒担体が担持されており、図2に示されるようにこの触媒担体50上には貴金属触媒51,52が担持されていると共に塩基性層53が形成されている。
 排気浄化触媒13の基材がメタル基材から形成されている場合に比べてコージライト基材、炭化珪素基材或いはアルミナチタン基材等のセラミック基材から形成されている場合の方が排気浄化触媒13への炭化水素の付着性が高く、従ってこの実施例でも、排気浄化触媒13の下流側部分への炭化水素の付着性が排気浄化触媒13の上流側部分への炭化水素の付着性よりも高くなる。従って排気浄化触媒13への炭化水素の付着量が増大し、その結果、排気浄化触媒13における還元性中間体の生成量が増大するためにNOx浄化率が高められることになる。
 図26Aおよび26Bは、排気浄化触媒13の下流側部分の触媒組成として、排気浄化触媒13の上流側部分に比べ排気浄化触媒13への炭化水素の付着性が高くなる触媒組成を用いた実施例を示している。
 即ち、図26Aに示される実施例では、排気浄化触媒13が上流側触媒部分13aと下流側触媒部分13bから構成されており、これら上流側触媒部分13aと下流側触媒部分13bの基材は例えば一体的に形成されたコージライトから形成されている。更にこの実施例では、下流側触媒部分13bの基材上にはゼオライトが含有せしめられている。
 この場合、上流側触媒部分13aの基材上にもゼオライトを含有せしめることができるが、この場合には上流側触媒部分13aに比べて多量のゼオライトが下流側触媒部分13bの基材上に含有せしめられる。なお、この実施例においても、上流側触媒部分13aと下流側触媒部分13bの基材上には例えばアルミナからなる触媒担体が担持されており、図2に示されるようにこの触媒担体50上には貴金属触媒51,52が担持されていると共に塩基性層53が形成されている。
 このようにこの実施例では、排気浄化触媒13の下流側部分には排気浄化触媒13の上流側部分に比べて多量のゼオライトが含まれているか、或いは排気浄化触媒13の下流側部分にのみゼオライトが含まれている。よく知られているようにゼオライトは多量の炭化水素を付着し保持する機能を有しており、従ってこのように、排気浄化触媒13の下流側部分に排気浄化触媒13の上流側部分に比べ多量のゼオライトを含有させるか、或いは排気浄化触媒13の下流側部分にのみゼオライトを含有させると上流側部分に比べて下流側部分の方が排気浄化触媒13への炭化水素の付着性が高くなる。従って排気浄化触媒13への炭化水素の付着量が増大し、その結果、排気浄化触媒13における還元性中間体の生成量が増大するためにNOx浄化率が高められることになる。
 図26Bに示される実施例では、排気浄化触媒13が複数の触媒部分77aから77eから構成されており、これら触媒部分77aから77bの基材は一体形成のコージライトから形成されている。この基材上にはアルミナからなる触媒担体が担持されており、図2に示されるようにこの触媒担体50上には貴金属触媒51,52が担持されていると共に塩基性層53が形成されている。
 この実施例では、上流側から下流側に向けてアルミナの含有量が次第に増大せしめられている。即ち、触媒部分77aから触媒部分77b、触媒部分77c、触媒部分77d、触媒部分77eの順にアルミナの含有量が次第に増大せしめられており、従ってこの実施例では、排気浄化触媒13の下流側部分には排気浄化触媒13の上流側部分に比べて多量のアルミナが含有されていることになる。
 アルミナの含有量が増大すると触媒担体の比表面積が増大し、従ってアルミナの含有量が増大するほど排気浄化触媒13への炭化水素の付着性が高くなる。従ってこの実施例では上流側部分に比べて下流側部分の方が排気浄化触媒13への炭化水素の付着性が高くなる。従ってこの実施例でも、排気浄化触媒13への炭化水素の付着量が増大し、その結果、排気浄化触媒13における還元性中間体の生成量が増大するためにNOx浄化率が高められることになる。
 なお、別の実施例として排気浄化触媒13上流の機関排気通路内に炭化水素を改質させるための酸化触媒を配置することもできる。
 4  吸気マニホルド
 5  排気マニホルド
 7  排気ターボチャージャ
 12  排気管
 13  排気浄化触媒
 14  パティキュレートフィルタ
 15  炭化水素供給弁

Claims (14)

  1.  炭化水素を供給するための炭化水素供給弁を機関排気通路内に配置し、炭化水素供給弁下流の機関排気通路内に排気ガス中に含まれるNOxと改質された炭化水素とを反応させるための排気浄化触媒を配置し、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、該排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOxを還元する性質を有すると共に、該炭化水素濃度の振動周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOxの吸蔵量が増大する性質を有しており、機関運転時に排気浄化触媒に流入する炭化水素の濃度変化の振幅が該予め定められた範囲内の振幅となるように炭化水素供給弁からの炭化水素の噴射量が制御されると共に、排気浄化触媒に流入する炭化水素の濃度が予め定められた範囲内の周期でもって振動するように炭化水素供給弁からの炭化水素の噴射周期が制御される内燃機関の排気浄化装置において、排気浄化触媒の下流側部分への炭化水素の付着性が排気浄化触媒の上流側部分への炭化水素の付着性よりも高くなるように排気浄化触媒を形成した内燃機関の排気浄化装置。
  2.  排気浄化触媒の下流側部分の構造を排気浄化触媒の上流側部分の構造に比べて排気浄化触媒への炭化水素の付着性が高くなる構造とした請求項1に記載の内燃機関の排気浄化装置。
  3.  排気浄化触媒の上流側部分の排気流通構造を、排気ガスが排気浄化触媒の軸線方向に延びる複数の排気流通路内を流れるストレートフロー型とし、排気浄化触媒の下流側部分の排気流通構造を、排気ガスが排気浄化触媒の軸線方向に延びる各排気流通路の隔壁内を流れるウォールフロー型とした請求項2に記載の内燃機関の排気浄化装置。
  4.  排気浄化触媒の上流側部分の排気流通構造を、排気ガスが排気浄化触媒の軸線方向に延びる複数の排気流通路内を流れるストレートフロー型とし、排気浄化触媒の下流側部分をペレット状触媒の集合体から構成した請求項2に記載の内燃機関の排気浄化装置。
  5.  排気浄化触媒の上流側部分および排気浄化触媒の下流側部分が排気浄化触媒の軸線方向に延びる複数の排気流通路を具備しており、排気浄化触媒の下流側部分の各排気流通路の断面積を排気浄化触媒の上流側部分の排気流通路の断面積よりも小さくした請求項2に記載の内燃機関の排気浄化装置。
  6.  排気浄化触媒の下流側部分の基材として、排気浄化触媒の上流側部分の基材に比べ排気浄化触媒への炭化水素の付着性が高くなる基材を用いた請求項1に記載の内燃機関の排気浄化装置。
  7.  排気浄化触媒の下流側部分の基材としてメタル基材を用い、排気浄化触媒の上流側部分の基材としてコージライト基材を用いた請求項6に記載の内燃機関の排気浄化装置。
  8.  排気浄化触媒の下流側部分の触媒組成として、排気浄化触媒の上流側部分に比べ排気浄化触媒への炭化水素の付着性が高くなる触媒組成を用いた請求項1に記載の内燃機関の排気浄化装置。
  9.  排気浄化触媒の下流側部分には排気浄化触媒の上流側部分に比べて多量のゼオライトが含まれているか、或いは排気浄化触媒の下流側部分にのみゼオライトが含まれている請求項8に記載の内燃機関の排気浄化装置。
  10.  排気浄化触媒の下流側部分には排気浄化触媒の上流側部分に比べて多量のアルミナが含有されている請求項8に記載の内燃機関の排気浄化装置。
  11.  上記排気浄化触媒内において排気ガス中に含まれるNOxと改質された炭化水素とが反応して窒素および炭化水素を含む還元性中間体が生成され、上記炭化水素の噴射周期は還元性中間体を生成し続けるのに必要な周期である請求項1に記載の内燃機関の排気浄化装置。
  12.  上記炭化水素の噴射周期が0.3秒から5秒の間である請求項10に記載の内燃機関の排気浄化装置。
  13.  上記貴金属触媒は白金Pt、ロジウムRhおよびパラジウムPdの少なくとも一つにより構成される請求項1に記載の内燃機関の排気浄化装置。
  14.  上記排気浄化触媒の排気ガス流通表面上にアルカリ金属又はアルカリ土類金属又は希土類又はNOxに電子を供与しうる金属を含む塩基性層が形成されており、該塩基性層の表面が上記塩基性の排気ガス流通表面部分を形成している請求項1に記載の内燃機関の排気浄化装置。
PCT/JP2011/075618 2011-11-07 2011-11-07 内燃機関の排気浄化装置 WO2013069085A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180013300.8A CN103998731B (zh) 2011-11-07 2011-11-07 内燃机的排气净化装置
PCT/JP2011/075618 WO2013069085A1 (ja) 2011-11-07 2011-11-07 内燃機関の排気浄化装置
EP11858470.5A EP2628912B1 (en) 2011-11-07 2011-11-07 Exhaust cleaning device for internal combustion engine
BR112014000026-3A BR112014000026B1 (pt) 2011-11-07 2011-11-07 sistema de purificação de exaustão de motor de combustão interna
ES11858470.5T ES2633727T3 (es) 2011-11-07 2011-11-07 Dispositivo de limpieza de gases de escape para motor de combustión interna
JP2012524990A JP5354104B1 (ja) 2011-11-07 2011-11-07 内燃機関の排気浄化装置
US13/580,000 US9034268B2 (en) 2011-11-07 2011-11-07 Exhaust purification system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075618 WO2013069085A1 (ja) 2011-11-07 2011-11-07 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2013069085A1 true WO2013069085A1 (ja) 2013-05-16

Family

ID=48223817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075618 WO2013069085A1 (ja) 2011-11-07 2011-11-07 内燃機関の排気浄化装置

Country Status (7)

Country Link
US (1) US9034268B2 (ja)
EP (1) EP2628912B1 (ja)
JP (1) JP5354104B1 (ja)
CN (1) CN103998731B (ja)
BR (1) BR112014000026B1 (ja)
ES (1) ES2633727T3 (ja)
WO (1) WO2013069085A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342700A (ja) * 2005-06-08 2006-12-21 Toyota Motor Corp 内燃機関の排気ガス浄化装置
JP2009165922A (ja) * 2008-01-11 2009-07-30 Toyota Motor Corp 排ガス浄化用触媒
JP2009167973A (ja) * 2008-01-18 2009-07-30 Mazda Motor Corp 排気ガス浄化触媒装置及び排気ガス浄化方法
WO2011114499A1 (ja) 2010-03-15 2011-09-22 トヨタ自動車株式会社 内燃機関の排気浄化装置

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075274A (en) 1989-03-15 1991-12-24 Kabushiki Kaisha Riken Exhaust gas cleaner
US5052178A (en) 1989-08-08 1991-10-01 Cummins Engine Company, Inc. Unitary hybrid exhaust system and method for reducing particulate emmissions from internal combustion engines
US5057483A (en) 1990-02-22 1991-10-15 Engelhard Corporation Catalyst composition containing segregated platinum and rhodium components
JP2605586B2 (ja) 1992-07-24 1997-04-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6667018B2 (en) 1994-07-05 2003-12-23 Ngk Insulators, Ltd. Catalyst-adsorbent for purification of exhaust gases and method for purification of exhaust gases
EP0710499A3 (en) 1994-11-04 1997-05-21 Agency Ind Science Techn Exhaust gas purifier and method for purifying an exhaust gas
WO1998051919A1 (fr) 1997-05-12 1998-11-19 Toyota Jidosha Kabushiki Kaisha Appareil de reduction des emissions de gaz d'echappement pour moteur a combustion interne
JP3456408B2 (ja) 1997-05-12 2003-10-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
GB9713428D0 (en) 1997-06-26 1997-08-27 Johnson Matthey Plc Improvements in emissions control
FR2778205B1 (fr) 1998-04-29 2000-06-23 Inst Francais Du Petrole Procede d'injection controlee d'hydrocarbures dans une ligne d'echappement d'un moteur a combustion interne
US7707821B1 (en) 1998-08-24 2010-05-04 Legare Joseph E Control methods for improved catalytic converter efficiency and diagnosis
US6718756B1 (en) 1999-01-21 2004-04-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifier for use in internal combustion engine
JP2000257419A (ja) 1999-03-03 2000-09-19 Toyota Motor Corp 排気浄化方法及び装置
US6685897B1 (en) 2000-01-06 2004-02-03 The Regents Of The University Of California Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures
US6311484B1 (en) 2000-02-22 2001-11-06 Engelhard Corporation System for reducing NOx transient emission
DE10023439A1 (de) 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür
US7229947B2 (en) 2001-02-19 2007-06-12 Toyota Jidosha Kabushiki Kaisha Catalyst for hydrogen generation and catalyst for purifying of exhaust gas
JP2002364415A (ja) 2001-06-07 2002-12-18 Mazda Motor Corp エンジンの排気浄化装置
LU90795B1 (en) 2001-06-27 2002-12-30 Delphi Tech Inc Nox release index
US6677272B2 (en) 2001-08-15 2004-01-13 Corning Incorporated Material for NOx trap support
AU2002346663A1 (en) 2001-12-03 2003-06-17 Catalytica Energy Systems, Inc. System and methods for improved emission control of internal combustion engines
US7082753B2 (en) 2001-12-03 2006-08-01 Catalytica Energy Systems, Inc. System and methods for improved emission control of internal combustion engines using pulsed fuel flow
US20030113249A1 (en) 2001-12-18 2003-06-19 Hepburn Jeffrey Scott System and method for removing SOx and particulate matter from an emission control device
KR100764337B1 (ko) 2002-02-19 2007-10-05 가부시끼가이샤 케미컬 오토 디젤 배기 가스의 정화 필터
JP3963130B2 (ja) 2002-06-27 2007-08-22 トヨタ自動車株式会社 触媒劣化判定装置
DE60230977D1 (de) 2002-07-31 2009-03-12 Umicore Ag & Co Kg Verfahren zur Regenerierung eines Stickoxid-Speicherkatalysators
JP2004068700A (ja) 2002-08-06 2004-03-04 Toyota Motor Corp 排気ガス浄化方法
US7332135B2 (en) * 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
AU2003295681A1 (en) 2002-11-15 2004-06-15 Catalytica Energy Systems, Inc. Devices and methods for reduction of nox emissions from lean burn engines
JP4385593B2 (ja) 2002-12-10 2009-12-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE10300298A1 (de) 2003-01-02 2004-07-15 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
DE10308287B4 (de) 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Verfahren zur Abgasreinigung
US7043902B2 (en) 2003-03-07 2006-05-16 Honda Motor Co., Ltd. Exhaust gas purification system
US6854264B2 (en) 2003-03-27 2005-02-15 Ford Global Technologies, Llc Computer controlled engine adjustment based on an exhaust flow
JP4288985B2 (ja) 2003-03-31 2009-07-01 株式会社デンソー 内燃機関の排気浄化装置
DE10315593B4 (de) 2003-04-05 2005-12-22 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
US6983589B2 (en) 2003-05-07 2006-01-10 Ford Global Technologies, Llc Diesel aftertreatment systems
JP4158697B2 (ja) 2003-06-17 2008-10-01 トヨタ自動車株式会社 内燃機関の排気浄化装置および排気浄化方法
DE602004006415T2 (de) 2003-06-18 2008-01-10 Johnson Matthey Public Ltd., Co. Verfahren zur steuerung der reduktionsmittelzugabe
GB0318776D0 (en) 2003-08-09 2003-09-10 Johnson Matthey Plc Lean NOx catalyst
JP4020054B2 (ja) 2003-09-24 2007-12-12 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP3876874B2 (ja) 2003-10-28 2007-02-07 トヨタ自動車株式会社 触媒再生方法
WO2005054637A1 (ja) 2003-12-01 2005-06-16 Toyota Jidosha Kabushiki Kaisha 圧縮着火式内燃機関の排気浄化装置
GB0329095D0 (en) 2003-12-16 2004-01-14 Johnson Matthey Plc Exhaust system for lean burn IC engine including particulate filter
US20050135977A1 (en) 2003-12-19 2005-06-23 Caterpillar Inc. Multi-part catalyst system for exhaust treatment elements
JP4321332B2 (ja) 2004-04-01 2009-08-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4232690B2 (ja) 2004-05-24 2009-03-04 トヨタ自動車株式会社 内燃機関の排気浄化装置に適用される燃料添加制御方法、及び排気浄化装置
JP4338586B2 (ja) 2004-05-26 2009-10-07 株式会社日立製作所 エンジンの排気系診断装置
WO2006023079A2 (en) 2004-08-20 2006-03-02 Southwest Research Institute Method for rich pulse control of diesel engines
JP3852461B2 (ja) 2004-09-03 2006-11-29 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
EP1662102B1 (en) 2004-11-23 2007-06-27 Ford Global Technologies, LLC Method and apparatus for conversion of NOx
JP2006291873A (ja) * 2005-04-12 2006-10-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008542609A (ja) 2005-06-03 2008-11-27 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング 内燃機関の排出ガスの処理方法と装置
US7685813B2 (en) 2005-06-09 2010-03-30 Eaton Corporation LNT regeneration strategy over normal truck driving cycle
US7803338B2 (en) 2005-06-21 2010-09-28 Exonmobil Research And Engineering Company Method and apparatus for combination catalyst for reduction of NOx in combustion products
US7743602B2 (en) 2005-06-21 2010-06-29 Exxonmobil Research And Engineering Co. Reformer assisted lean NOx catalyst aftertreatment system and method
JP4464876B2 (ja) 2005-07-01 2010-05-19 日立オートモティブシステムズ株式会社 エンジンの制御装置
JP2007064167A (ja) 2005-09-02 2007-03-15 Toyota Motor Corp 内燃機関の排気浄化装置および排気浄化方法
FR2890577B1 (fr) 2005-09-12 2009-02-27 Rhodia Recherches & Tech Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme
US7063642B1 (en) 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
JP4548309B2 (ja) 2005-11-02 2010-09-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7412823B2 (en) 2005-12-02 2008-08-19 Eaton Corporation LNT desulfation strategy
JP4270201B2 (ja) 2005-12-05 2009-05-27 トヨタ自動車株式会社 内燃機関
JP5087836B2 (ja) 2005-12-14 2012-12-05 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2007260618A (ja) * 2006-03-29 2007-10-11 Toyota Motor Corp 排ガス浄化触媒及び排ガス浄化装置
JP2007297918A (ja) 2006-04-27 2007-11-15 Toyota Motor Corp 内燃機関の排気浄化装置
WO2007136141A1 (ja) 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha 内燃機関の排気浄化装置
JP5373255B2 (ja) 2006-05-29 2013-12-18 株式会社キャタラー NOx還元触媒、NOx還元触媒システム、及びNOx還元方法
US7562522B2 (en) 2006-06-06 2009-07-21 Eaton Corporation Enhanced hybrid de-NOx system
JP4404073B2 (ja) 2006-06-30 2010-01-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4487982B2 (ja) 2006-07-12 2010-06-23 トヨタ自動車株式会社 内燃機関の排気浄化システム
US7614214B2 (en) 2006-07-26 2009-11-10 Eaton Corporation Gasification of soot trapped in a particulate filter under reducing conditions
US7624570B2 (en) 2006-07-27 2009-12-01 Eaton Corporation Optimal fuel profiles
JP4155320B2 (ja) 2006-09-06 2008-09-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4329799B2 (ja) 2006-09-20 2009-09-09 トヨタ自動車株式会社 内燃機関の空燃比制御装置
ATE439903T1 (de) 2006-10-06 2009-09-15 Umicore Ag & Co Kg Stickoxidspeicherkatalysator mit abgesenkter entschwefelungstemperatur
JP4733002B2 (ja) 2006-11-24 2011-07-27 本田技研工業株式会社 内燃機関の排ガス浄化装置
EP1936164B1 (en) 2006-12-22 2010-06-30 Ford Global Technologies, LLC An internal combustion engine system and a method for determining a condition of an exhaust gas treatment device in such a system
JP4221026B2 (ja) 2006-12-25 2009-02-12 三菱電機株式会社 内燃機関の空燃比制御装置
JP4221025B2 (ja) 2006-12-25 2009-02-12 三菱電機株式会社 内燃機関の空燃比制御装置
US20080196398A1 (en) 2007-02-20 2008-08-21 Eaton Corporation HC mitigation to reduce NOx spike
JP4665923B2 (ja) 2007-03-13 2011-04-06 トヨタ自動車株式会社 触媒劣化判定装置
JP4710924B2 (ja) 2007-03-19 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4420048B2 (ja) 2007-03-20 2010-02-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2008255858A (ja) 2007-04-03 2008-10-23 Yanmar Co Ltd ディーゼルエンジン用黒煙浄化装置
JP4702318B2 (ja) 2007-04-10 2011-06-15 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP4710866B2 (ja) 2007-04-18 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7788910B2 (en) 2007-05-09 2010-09-07 Ford Global Technologies, Llc Particulate filter regeneration and NOx catalyst re-activation
JP4304539B2 (ja) 2007-05-17 2009-07-29 いすゞ自動車株式会社 NOx浄化システムの制御方法及びNOx浄化システム
JP5590640B2 (ja) 2007-08-01 2014-09-17 日産自動車株式会社 排気ガス浄化システム
JP5067614B2 (ja) 2007-08-21 2012-11-07 株式会社デンソー 内燃機関の排気浄化装置
JP5037283B2 (ja) 2007-09-26 2012-09-26 本田技研工業株式会社 内燃機関の排気浄化装置
JP2009114879A (ja) 2007-11-02 2009-05-28 Toyota Motor Corp 内燃機関の排気浄化装置
US8074443B2 (en) 2007-11-13 2011-12-13 Eaton Corporation Pre-combustor and large channel combustor system for operation of a fuel reformer at low exhaust temperatures
JP4428443B2 (ja) 2007-12-18 2010-03-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2239432B1 (en) 2007-12-26 2013-05-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
US8434296B2 (en) 2008-01-08 2013-05-07 Honda Motor Co., Ltd. Exhaust emission control device for internal combustion engine
JP2009209839A (ja) 2008-03-05 2009-09-17 Denso Corp 内燃機関の排気浄化装置
JP2009221939A (ja) 2008-03-14 2009-10-01 Denso Corp 排気浄化システムおよびその排気浄化制御装置
JP4527792B2 (ja) 2008-06-20 2010-08-18 本田技研工業株式会社 排ガス浄化装置の劣化判定装置
JP5386121B2 (ja) 2008-07-25 2014-01-15 エヌ・イーケムキャット株式会社 排気ガス浄化触媒装置、並びに排気ガス浄化方法
JP5157739B2 (ja) 2008-08-11 2013-03-06 日産自動車株式会社 排ガス浄化システム及びこれを用いた排ガス浄化方法
KR101020819B1 (ko) 2008-11-28 2011-03-09 기아자동차주식회사 흡장형 NOx 촉매의 후분사용 가변 분사장치와 그 분사방법
US8337791B2 (en) 2008-12-03 2012-12-25 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Exhaust gas purification catalyst, exhaust gas purification apparatus using the same and exhaust gas purification method
US20100154387A1 (en) 2008-12-19 2010-06-24 Toyota Jidosha Kabushiki Kaisha Abnormality detection device for reductant addition valve
WO2010108083A1 (en) 2009-03-20 2010-09-23 Basf Catalysts Llc EMISSIONS TREATMENT SYSTEM WITH LEAN NOx TRAP
US9662611B2 (en) 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
KR101091627B1 (ko) 2009-08-31 2011-12-08 기아자동차주식회사 배기 시스템
US8353155B2 (en) 2009-08-31 2013-01-15 General Electric Company Catalyst and method of manufacture
WO2011114498A1 (ja) 2010-03-15 2011-09-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
US20110120100A1 (en) 2009-11-24 2011-05-26 General Electric Company Catalyst and method of manufacture
HUE027305T2 (en) 2010-02-01 2016-10-28 Johnson Matthey Plc Oxidation catalyst
US8459010B2 (en) 2010-02-26 2013-06-11 General Electric Company System and method for controlling nitrous oxide emissions of an internal combustion engine and regeneration of an exhaust treatment device
WO2011114500A1 (ja) 2010-03-15 2011-09-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2402572B1 (en) 2010-03-15 2014-08-06 Toyota Jidosha Kabushiki Kaisha Method of operating an exhaust purification system for an internal combustion engine
CN102782274B (zh) 2010-03-18 2015-05-13 丰田自动车株式会社 内燃机的排气净化装置
WO2011118044A1 (ja) 2010-03-23 2011-09-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
ES2590924T3 (es) 2010-04-01 2016-11-24 Toyota Jidosha Kabushiki Kaisha Método de purificación de gases de escape para motor de combustión interna
CN103003539B (zh) 2010-08-30 2015-03-18 丰田自动车株式会社 内燃机的排气净化装置
JP5168412B2 (ja) 2010-09-02 2013-03-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8701390B2 (en) 2010-11-23 2014-04-22 International Engine Intellectual Property Company, Llc Adaptive control strategy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342700A (ja) * 2005-06-08 2006-12-21 Toyota Motor Corp 内燃機関の排気ガス浄化装置
JP2009165922A (ja) * 2008-01-11 2009-07-30 Toyota Motor Corp 排ガス浄化用触媒
JP2009167973A (ja) * 2008-01-18 2009-07-30 Mazda Motor Corp 排気ガス浄化触媒装置及び排気ガス浄化方法
WO2011114499A1 (ja) 2010-03-15 2011-09-22 トヨタ自動車株式会社 内燃機関の排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2628912A4 *

Also Published As

Publication number Publication date
US20130115138A1 (en) 2013-05-09
CN103998731A (zh) 2014-08-20
EP2628912A4 (en) 2016-01-20
BR112014000026A2 (pt) 2017-02-07
CN103998731B (zh) 2016-11-16
JPWO2013069085A1 (ja) 2015-04-02
EP2628912A1 (en) 2013-08-21
ES2633727T3 (es) 2017-09-25
US9034268B2 (en) 2015-05-19
BR112014000026B1 (pt) 2021-02-09
EP2628912B1 (en) 2017-05-03
JP5354104B1 (ja) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5182429B2 (ja) 内燃機関の排気浄化装置
JP5196027B2 (ja) 内燃機関の排気浄化装置
WO2012029187A1 (ja) 内燃機関の排気浄化装置
JP5218672B2 (ja) 内燃機関の排気浄化装置
JP5131392B2 (ja) 内燃機関の排気浄化装置
JP5067511B2 (ja) 内燃機関の排気浄化装置
JP5288055B1 (ja) 内燃機関の排気浄化装置
JP5152416B2 (ja) 内燃機関の排気浄化装置
JP5152415B2 (ja) 内燃機関の排気浄化装置
JP5880776B2 (ja) 内燃機関の排気浄化装置
JP5177302B2 (ja) 内燃機関の排気浄化装置
WO2014178110A1 (ja) 内燃機関の排気浄化装置
JP6090051B2 (ja) 内燃機関の排気浄化装置
JP5131389B2 (ja) 内燃機関の排気浄化装置
JP5561059B2 (ja) 内燃機関の排気浄化装置
JP5152417B2 (ja) 内燃機関の排気浄化装置
WO2014125620A1 (ja) 内燃機関の排気浄化装置
JP5168410B2 (ja) 内燃機関の排気浄化装置
JP5131390B2 (ja) 内燃機関の排気浄化装置
JP5354104B1 (ja) 内燃機関の排気浄化装置
WO2014049690A1 (ja) 内燃機関の排気浄化装置
JP5741643B2 (ja) 内燃機関の排気浄化装置
JP2015209803A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012524990

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13580000

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011858470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011858470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7421/DELNP/2012

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014000026

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014000026

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140102