JP3850264B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP3850264B2
JP3850264B2 JP2001331396A JP2001331396A JP3850264B2 JP 3850264 B2 JP3850264 B2 JP 3850264B2 JP 2001331396 A JP2001331396 A JP 2001331396A JP 2001331396 A JP2001331396 A JP 2001331396A JP 3850264 B2 JP3850264 B2 JP 3850264B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
circuit
level
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001331396A
Other languages
English (en)
Other versions
JP2003133935A (ja
Inventor
忠昭 山内
武郎 岡本
淳子 松本
増成 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2001331396A priority Critical patent/JP3850264B2/ja
Priority to TW091117297A priority patent/TW557564B/zh
Priority to US10/211,289 priority patent/US6717460B2/en
Priority to KR10-2002-0046226A priority patent/KR100467252B1/ko
Priority to DE10236192A priority patent/DE10236192A1/de
Priority to CNB021282617A priority patent/CN1248234C/zh
Publication of JP2003133935A publication Critical patent/JP2003133935A/ja
Application granted granted Critical
Publication of JP3850264B2 publication Critical patent/JP3850264B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/109Control signal input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4072Circuits for initialization, powering up or down, clearing memory or presetting
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1087Data input latches
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Dram (AREA)
  • Control Of Electrical Variables (AREA)
  • Logic Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は半導体装置に関し、特に、この半導体装置の内部電圧を外部電源電圧から生成する内部電圧発生回路の構成に関する。より特定的には、内部電圧の発生動作を停止するディープパワーダウンモードの制御の構成に関する。
【0002】
【従来の技術】
図21は、従来のダイナミック・ランダム・アクセス・メモリ(DRAM)のアレイ部の構成を概略的に示す図である。図21において、ビット線BLおよびZBLとワード線WLの交差部に対応してメモリセルMCが配置される。図21においては、ビット線BLとワード線WLの交差部に対応して配置されるメモリセルMCを代表的に示す。メモリセルMCは、行列状に配列され、各メモリセル行に対応してワード線WLが配置され、各メモリセル列に対応してビット線BLおよびZBLの対が配置される。このビット線対の一方のビット線とワード線の交差部に対応してメモリセルMCが配置される。
【0003】
ビット線BLおよびZBLに対し、スタンバイ状態時に、ビット線BLおよびZBLをビット線プリチャージ電圧Vblレベルにプリチャージしかつイコライズするビット線イコライズ回路BPEと、活性化時、ビット線BLおよびZBLの電圧を差動増幅しかつラッチするセンスアンプSAが設けられる。このセンスアンプSAに対して、センスアンプ活性化信号/SAPの活性化時導通し、センスアンプSAにハイレベル電源ノードのアレイ電源電圧Vddsを伝達するセンス電源線に結合するセンス活性化トランジスタASPTと、センスアンプ活性化信号SANの活性化時導通し、活性化時センスアンプSAのローレベル電源ノードを接地電圧Vssを伝達するセンス接地線に結合するセンスアンプ活性化トランジスタASNTが設けられる。
【0004】
メモリセルMCは、この電荷の形態で情報を記憶するメモリキャパシタMQと、ワード線WL上の信号電圧に従ってメモリセルキャパシタMQを対応のビット線BL(またはZBL)に結合するアクセストランジスタMTを含む。このアクセストランジスタMTは、通常、NチャネルMOSトランジスタ(絶縁ゲート型電界効果トランジスタ)で構成され、そのバックゲートに、負のバイアス電圧Vbbが与えられる。負のバイアス電圧VbbをアクセストランジスタMTのバックゲートに与えることにより、しきい値電圧の安定化、信号線と基板領域との間の寄生容量の低減およびアクセストランジスタのドレイン/ソースの接合容量の低減の実現を図る。
【0005】
ビット線イコライズ回路BPEは、アレイ電源電圧Vddsの中間電圧(Vdds/2)のビット線プリチャージ電圧Vblをビット線イコライズ指示信号BLEQに従ってビット線BLおよびZBLに伝達する。
【0006】
ワード線WLは、選択時、アレイ電源電圧Vddsよりも高い電圧レベルの高電圧Vppレベルに駆動される。選択ワード線WLを高電圧Vppレベルに駆動することにより、メモリセルのアクセストランジスタMTのしきい値電圧損失を伴うことなくメモリキャパシタMQの記憶ノードに、アレイ電源電圧VddsレベルのHデータを格納する。
【0007】
メモリキャパシタMQは、データを記憶するストレージノードと対向する電極ノード(セルプレートノード)に、一定のセルプレート電圧Vcpを受ける。通常、このセルプレート電圧Vcpも、アレイ電源電圧Vddsの中間電圧(Vdds/2)の電圧レベルである。
【0008】
上述のように、DRAMにおいては、それぞれ電圧レベルの異なる複数種類の電圧が用いられる。これらの複数種類の電圧を、外部で発生してDRAMに与える場合、システムの規模が大きくなり、またシステム全体の消費電流も増大する(配線損失が生じるため)。また、DRAMにおいても、電源端子数が増大する。したがってこれらの複数種類の電圧は、DRAM内部で生成される。
【0009】
図22は、DRAMの内部電圧に関連する部分の構成を概略的に示す図である。図22において、DRAMは、行列状に配列される複数のメモリセル(図21のメモリセルMC)を有するメモリセルアレイ902と、外部からのコマンドCMDに従って、このコマンドが指定する動作モードを実現するための動作制御信号を生成する制御回路904と、制御回路904の制御のもとに活性化され、外部からの行アドレス信号RAに従ってメモリセルアレイ902のアドレス指定された行に対応して配置されたワード線を選択状態へ駆動するための行選択回路906と、制御回路904により選択的に活性化され、活性化時、行選択回路906により選択された行上のメモリセルのデータを検知し増幅しかつラッチするセンスアンプ群908と、制御回路904の制御のもとに動作し、活性化時、外部からの列アドレス信号CAに従ってメモリセルアレイ902のアドレス指定された列に対応するメモリセルを選択する列選択回路910と、外部電源電圧EXVDDに従って各種内部電源Vpp、Vbb、Vbl、Vcp、Vdds、およびVddpを生成する内部電圧発生回路900を含む。
【0010】
内部電圧発生回路900からの周辺電源電圧Vddpは、制御回路904および行選択回路906へ与えられる。内部電圧発生回路900からの高電圧Vppは、また、行選択回路906へ与えられる。行選択回路906においては、周辺電源電圧Vddpを動作電源電圧として受ける行デコード回路により行選択信号が生成され、この行選択信号に従って選択された行に対応して配置されたワード線へ高電圧Vppレベルのワード線選択信号を伝達するワードドライバとが配置される。
【0011】
メモリセルアレイ902へは、ビット線プリチャージ電圧Vbl、セルプレート電圧Vcp、およびこのアレイの基板領域に印加される負のバイアス電圧Vbbが与えられる。センスアンプ群908へは、アレイ電源電圧Vddsが動作電源電圧として与えられる。列選択回路910へは、通常、周辺電源電圧Vddpが動作電源電圧として与えられる(列選択信号がアレイ電源電圧Vddsレベルであっても良い)。
【0012】
制御回路904等の周辺回路を周辺電源電圧Vddpで動作させ、メモリセルアレイ902に関連するセンスアンプ群908をアレイ電源電圧Vddsに従って動作させることにより、周辺回路を高速動作させて高速アクセスを実現し、またメモリセルのアクセストランジスタおよびメモリセルキャパシタの絶縁耐圧を保証して安定にデータを記憶する。
【0013】
図23は、図22に示す内部電圧発生回路900の構成を概略的に示す図である。図23において、内部電圧発生回路900は、外部電源電圧EXVDDから一定の定電流を生成する定電流源950と、定電流源950からの定電流を電圧に変換してそれぞれ、高電圧用の基準電圧Vrefd、周辺電源電圧用の基準電圧Vrefpおよびアレイ電源電圧用の基準電圧Vrefsを生成する基準電圧発生回路951、952、953と、外部電源電圧EXVDDを動作電源電圧として受けて負電圧Vbbを生成する負電圧発生回路954と、外部電源電圧EXVDDを動作電源電圧として受けて、高電圧Vppを生成する高電圧発生回路955を含む。
【0014】
負電圧発生回路954は、定電流源950の駆動電流に対応する大きさの電流を動作電流として発振動作を行なう発振回路と、この発振回路の出力信号に従ってチャージポンプ動作を行なって負電圧を発生するポンプ回路を含む。
【0015】
高電圧発生回路955は、定電流源950の駆動電流により動作電流が決定され、所定の周期で発振動作を行なう発振回路と、この発振回路の発振信号に従ってチャージポンプ動作を行なって高電圧Vppを生成するポンプ回路と、このポンプ回路の出力電圧をレベルシフトして、基準電圧発生回路951からの基準電圧Vrefdとを比較し、その比較結果に従ってポンプ動作を選択的に活性化する回路とを含む。
【0016】
負電圧発生回路954においても、負電圧Vbbの電圧レベルを検出する回路を設けられているが、通常、MOSトランジスタ(絶縁ゲート型電界効果トランジスタ)のしきい値電圧を用いたレベル検出回路が、この負電圧Vbbのレベル検出のために用いられる。
【0017】
内部電圧発生回路900は、さらに、基準電圧発生回路952からの基準電圧Vrefpに基いて外部電源電圧EXVDDから周辺電源電圧Vddpを生成する周辺電源回路956と、基準電圧発生回路953からの基準電圧Vrefsに従って外部電源電圧EXVDDからアレイ電源電圧Vddsを生成するアレイ電源回路957と、アレイ電源電圧Vddsから、その中間電圧レベルのセルプレート電圧Vcpを生成するセルプレート電圧発生回路958と、アレイ電源電圧Vddsを動作電源電圧として受け、その中間電圧レベルのビット線プリチャージ電圧Vblを生成するプリチャージ電圧発生回路959を含む。
【0018】
周辺電源回路956は、この半導体記憶装置において内部動作が行われるアクティブサイクル時に動作して、大きな電流駆動力で外部電源電圧EXVDDから周辺電源電圧Vddpを生成し、内部回路動作時における周辺電源電圧Vddpの低下を抑制するためのアクティブ電源回路950aと、スタンバイ状態時およびアクティブサイクル時に常時動作し、小さな消費電流で外部電源電圧EXVDDから周辺電源電圧Vddpを生成するスタンバイ電源回路950bを含む。このスタンバイ電源回路950bにより、スタンバイサイクル時において、リーク電流などにより、周辺電源電圧Vddpの電圧レベルが低下するのを防止する。
【0019】
アレイ電源回路957は、同様、アクティブサイクル時に活性化され、大きな電流駆動力で、外部電源電圧EXVDDからアレイ電源電圧Vddsを生成するアクティブ電源回路957aと、スタンバイサイクル時およびアクティブサイクル時において動作し、小さな消費電流で、このアレイ電源電圧Vddsのリーク電流による低下を抑制するスタンバイ電源回路957bを含む。
【0020】
セルプレート電圧発生回路958およびプリチャージ電圧発生回路959は、それぞれ、このアレイ電源電圧Vddsの1/2の電圧レベルの中間電圧を、それぞれ、セルプレート電圧Vcpおよびビット線プリチャージ電圧Vblとして生成する。
【0021】
図24は、図23に示す周辺電源回路956の構成の一例を示す図である。図24において、アクティブ電源回路956aは、活性化時、基準電圧Vrefpと周辺電源線960上の周辺電源電圧Vddpとを比較する比較回路961と、比較回路961の出力信号に従って外部電源ノードから周辺電源線969へ電流を供給する電流ドライブトランジスタ962と、アクティブサイクル指示信号ACTに従って比較回路961の動作電流経路を形成する電源活性化トランジスタ963と、アクティブサイクル指示信号ACTの非活性化時、外部電源ノードと比較回路961の出力ノードとを結合するPチャネルMOSトランジスタ964を含む。
【0022】
スタンバイ電源回路956bは、周辺電源線969上の周辺電源電圧Vddpと基準電圧Vrefpとを比較する比較回路965と、比較回路965の出力信号に従って外部電源ノードから周辺電源線969へ電流を供給する電流ドライブトランジスタ966を含む。
【0023】
アクティブ電源回路956aにおいて、電流ドライブトランジスタ962がPチャネルMOSトランジスタで構成され、電源活性化トランジスタ963は、NチャネルMOSトランジスタで構成される。アクティブサイクル指示信号ACTがLレベルのときには、電源活性化トランジスタ963がオン状態、MOSトランジスタ964がオン状態となる。この状態においては、電流ドライブトランジスタ962のゲートは、外部電源電圧EXVDDレベルであり、電流ドライブトランジスタ962はオフ状態を維持する。また比較回路961も、その動作電流の経路が遮断されるため、比較動作が停止される。
【0024】
アクティブサイクル指示信号ACTがHレベルとなると、電源活性化トランジスタ963がオン状態となり、比較回路961の動作電流が流れる経路が形成される。またMOSトランジスタ964がオフ状態となり、外部電源ノードと比較回路961の出力ノードとを切離す。この状態において、電源ドライブトランジスタ962は、基準電圧Vrefpと周辺電源電圧Vddpの差に応じた電流を外部電源ノードから周辺電源線969に供給する。たとえば、周辺電源電圧Vddpが、基準電圧Vrefpよりも低い場合には、比較回路960の出力信号が電圧差に応じてローレベルとなり、電流ドライブトランジスタ962が、外部電源ノードから周辺電源線960に電流を供給する。周辺電源電圧Vddpが、基準電圧Vrefpよりも高くなった場合には、比較回路961の出力信号はHレベルとなり、電源ドライブトランジスタ962はオフ状態を維持する。
【0025】
スタンバイ電源回路956bは、このアクティブ電源回路950aが、アクティブサイクル指示信号ACTがHレベルの活性状態のときに行う動作と同様の動作を行なう。このスタンバイ電源回路956bは、単に周辺電源線969の周辺電源電圧Vddpがスタンバイ時においてリーク電流により低下するのを防止するだけであり、比較回路965の動作電流および電源ドライブトランジスタ966の駆動電流は小さくされる。
【0026】
一方、内部電源回路956aは、周辺電源電圧Vddpを利用する回路動作時において、大きな電流が消費されるため、この大きな消費電流を補償するため、比較回路961および電流ドライブトランジスタ962は、大きな電流駆動力を有し、周辺電源電圧Vddpを所定の電圧レベルに維持する。安定状態時においては、したがってこの図25に示す構成においては、周辺電源電圧Vddpは、基準電圧Vrefpと同一の電圧レベルとなる。
【0027】
アレイ電源回路957も、図24に示す周辺電源回路956と同様の構成を有する。アレイ電源回路957においては、基準電圧Vrefpに代えて、基準電圧Vrefsが用いられ、生成される電源電圧は、周辺電源電圧Vddpではなく、アレイ電源電圧Vddsである。
【0028】
半導体装置においては、システム規模が増大するにつれ、発熱などを防止するため、低電力消費が強く要求される。特に、電池を電源とする携帯機器の用途においては、この電池寿命の観点からも消費電流を低減する必要がある。特に、データのアクセスが行なわれないスタンバイ状態は、実際にデータ処理が行われる時間よりもその時間が長くまた、DRAMにおいては単にデータを保持することが要求されるだけであり、このスタンバイ状態時の消費電流を低減することが強く要求される。
【0029】
このようなスタンバイ状態時における消費電流を低減する1つの方法として、従来パワーダウンモードという動作モードが用いられている。このパワーダウンモードにおいては、データ保持に関係しないアドレス入力バッファ回路などにおいて、動作電源電圧の供給を停止する。これにより、データ保持に無関係な回路の直流電流経路を遮断して、回路のリーク電流を低減し、消費電流を低減する。
【0030】
しかしながら、最近、さらにスタンバイ電流を低減することが要求され、このような超低スタンバイ電流の要求に従って、「ディープパワーダウンモード」と呼ばれるモードが用いられる。このディープパワーダウンモード時においては、内部電圧発生回路の内部電圧発生動作を停止させる。ただし、パワーダウンモードは外部からのコマンドにより設定されるため、コマンドを受けるコマンドデコーダ等のパワーダウンモード解除に関連する回路には、電源電圧が与えられる。
【0031】
図25は、ディープパワーダウンモードの制御を行なう部分の構成を概略的に示す図である。図25において、制御回路904は、外部からのコマンドCMDが、ディープパワーダウンモードを指定するときには、周辺電源電圧Vddpレベルのパワーカット信号PCUTを生成する。ディープパワーダウンモード時においては、定電流源950および基準電圧発生回路952の動作を停止させるため、これらの外部電源電圧を動作電源電圧として受ける回路を制御するために、制御回路904からのパワーカット信号PCUTは、レベル変換回路960により、外部電源電圧EXVDDレベルの振幅を有するパワーカットイネーブル信号PCUTeに変換される。基準電圧発生回路952および定電流源950は、このパワーカットイネーブル信号PCUTeが活性化されると、定電流発生動作および基準電圧発生動作を停止する。このパワーカットイネーブル信号PCUTeは、また周辺回路にも与えられ、各周辺回路の電流経路が遮断される。
【0032】
ディープパワーダウンモード時において、必要な回路部分以外において、電流が消費されないため、また周辺回路の電流経路の遮断により、リーク電流の発生が防止され、消費電流を大きく低減することができる。
【0033】
【発明が解決しようとする課題】
図26は、図25に示すレベル変換回路960の構成の1例を示す図である。図26において、レベル変換回路960は、制御回路904の出力するパワーカット信号PCUTを受けるインバータIV1と、ノードND0と接地ノードの間に接続されかつそのゲートにインバータIV1の出力信号を受けるNチャネルMOSトランジスタNQ1と、ノードND1と接地ノードの間に接続されかつそのゲートに制御回路904からのパワーカット信号PCUTを受けるNチャネルMOSトランジスタNQ2と、外部電源ノードとノードND0の間に接続されかつそのゲートがノードND1に接続されるPチャネルMOSトランジスタPQ1と、外部電源ノードと内部ノードND1の間に接続されかつそのゲートがノードND0に接続されるPチャネルMOSトランジスタPQ2と、ノードND1の信号を反転してパワーカットイネーブル信号PCUTeを生成するインバータIV2を含む。インバータIV1は、周辺電源電圧Vddpを動作電源電圧として受け、インバータIV2は外部電源電圧EXVDDを動作電源電圧として受ける。
【0034】
この図26に示すレベル変換回路においては、パワーカット信号PCUTがLレベルのときには、インバータIV1が出力するMOSトランジスタNQ1がオン状態、MOSトランジスタNQ2がオフ状態となる。したがって、ノードND0が、MOSトランジスタNQ1により放電されて、その電圧レベルが低下し、MOSトランジスタPQ2のコンダクタンスが上昇し、ノードND1の電圧レベルが上昇する。応じて、MOSトランジスタPQ1のコンダクタンスが低下し、ノードND0は、接地電圧レベルとなり、ノードND1は、MOSトランジスタPQ2により充電されて、外部電源電圧EXVDDレベルとなる。この状態においては、ノードND1の信号を受けるインバータIV2の出力するパワーカットイネーブル信号PCUTeは、Lレベルとなる。
【0035】
逆に、パワーカット信号PCUTがHレベルのときには、インバータIV1の出力信号がLレベルであり、MOSトランジスタNQ1がオフ状態、MOSトランジスタNQ2がオン状態となる。この状態では、上述の状態と逆に、ノードND1が接地電圧レベル、ノードND0が、外部電源電圧EXVDDレベルとなり、パワーカットイネーブル信号PCUTeが、外部電源電圧EXVDDレベルの信号となる。すなわち、このレベル変換回路960は、制御回路904からのパワーカット信号PCUTの論理レベルを維持しつつ、その振幅を変換している。
【0036】
周辺電源電圧Vddpは、外部電源電圧EXVDDに従って生成される。したがって、この外部電源電圧EXVDDの投入時においては、図27に示すように、周辺電源電圧Vddpは、外部電源電圧EXVDDよりも遅れて安定化する。このとき、レベル変換回路960において、ノードND1がHレベルに保持されている場合には、パワーカットイネーブル信号PCUTeがLレベルであり、確実に、定電流源950および基準電圧発生回路952が動作して周辺電源電圧Vddpを所定の電圧レベルにまで上昇させることができる。
【0037】
しかしながら、この外部電源電圧EXVDDの投入時においては、周辺電源電圧Vddpは接地電圧レベルであり、パワーカット信号PCUTもLレベルである。このときまた、図26に示すインバータIV1の出力信号もLレベルであり、MOSトランジスタNQ1およびNQ2がともにオフ状態となる。この状態で、外部電源電圧EXVDDの電圧レベルが上昇した場合、内部ノードND0およびND1の電圧レベルは不定状態であり、図27に示すように、ノードND1の電圧レベルが中間電圧レベルに上昇することが考えられる。このノードND1の電圧レベルが中間電圧レベルに上昇した場合、インバータIV2の出力するパワーカットイネーブル信号PCUTeが、中間電圧レベルとなり、定電流源950および基準電圧発生回路952は、中途半端に、その定電流発生動作および基準動作発生動作が禁止されるため、基準電圧Vrefpが所定の電圧レベルにまで上昇せず、周辺電源電圧Vddpを所定の電圧レベルにまで上昇させることができなくなる。
【0038】
また、電源投入時において、図28に示すように、外部電源電圧EXVDDの安定化に従って、この中間電圧レベルのパワーカットイネーブル信号PCUTeがHレベルに設定された場合には、定電流源950および基準電圧発生回路952の動作は完全に停止されるため、周辺電源電圧Vddpは生成されない。この状態においては、制御回路904からのパワーカット信号PCUTがLレベルの状態を維持するため、このレベル変換回路960の電源投入時の不安定な状態に従って、パワーカットイネーブル信号PCUTeが、電源投入時に初期設定された状態を維持するため、所望の電圧レベルの周辺電源電圧Vddpを生成することができない状態が継続される。
【0039】
このような状態が、実使用時において発生した場合、外部でこのパワーカットイネーブル信号PCUTeのデッドロック状態における周辺電源電圧の非発生を検出することができず、システム全体の誤動作を生じる。
【0040】
また、ディープパワーダウンモードは、外部からのコマンドに従ってエントリおよびイグジットが設定される。したがって、このコマンドを受付けるために、少なくともこのディープパワーダウンモードを指定するコマンドに関連する回路部分に対しては、ディープパワーダウンモード時においても、動作電源電圧を供給する必要がある。
【0041】
図29は、ディープパワーダウンモードを指定するディープパワーダウンコマンドに関連する回路に対して動作電源電圧を供給するための基準電圧発生回路952の構成の一例を示す図である。図29において、周辺電源回路952は、外部電源電圧EXVDDから参照電圧Vrefp0を生成する参照電圧発生回路970と、この参照電圧Vrefp0をバッファ処理して基準電圧Vrefpを生成するアナログバッファを含む。参照電圧発生回路970は、その消費電流を低減するために電流駆動能力は十分小さくされる。アナログバッファを用いて、この参照電圧Vrefp0をバッファ処理(増幅)することにより、高速で、基準電圧Vrefp0を安定化し、かつ安定に、この基準電圧Vrefpを周辺電源回路へ供給することができる。
【0042】
アナログバッファは、外部電源ノードとノードND2の間に接続されかつそのゲートがノードND2に接続されるPチャネルMOSトランジスタND2と、外部電源ノードとノードND3の間に接続されかつそのゲートがノードND2に接続されるPチャネルMOSトランジスタPQ4と、ノードND2とノードND4の間に接続されかつそのゲートに参照電圧Vrefp0を受けるNチャネルMOSトランジスタNQ3と、ノードND3とノードND4の間に接続されかつそのゲートがノードND3に接続されるNチャネルMOSトランジスタNQ4と、ND4と接地ノードの間に接続される定電流源971と、ノードND4と接地ノードの間に接続されかつそのゲートに基準電圧安定化検出信号PORsを受けるNチャネルMOSトランジスタNQ5を含む。
【0043】
このアナログバッファは、MOSトランジスタPQ3およびPQ4がカレントミラー段を構成し、MOSトランジスタNQ3およびNQ4が差動段を構成する。参照電圧Vrefp0が、基準電圧Vrefpよりも高い場合には、ノードND3の電圧レベルが上昇し、基準電圧Vrefpの電圧レベルが上昇する。一方、参照電圧Vrefp0が、基準電圧Vrefpよりも低い場合には、ノードND3の電圧レベルが低下し、基準電圧vrefpの電圧レベルが低下する。したがって、この基準電圧Vrefpは、参照電圧Vrefp0と同じ電圧レベルとなる。
【0044】
基準電圧安定化検出信号PORsは、外部電源電圧EXVDDの投入時に、アレイ電源用の基準電圧Vrefsの電圧レベルが所定電圧レベルに到達するかまたは所定の電圧レベルで安定化すると活性化され、このアナログバッファの動作電流を大きくし、高速で、基準電圧Vrefpを安定状態へ駆動する。
【0045】
しかしながら、周辺電源回路952が、ディープパワーダウンモード時においても、ディープパワーダウンモード解除のコマンドを受け付けるために制御回路を活性化させる必要があり、活性化されている場合には、このディープパワーダウンモード時においても基準電圧Vrefpを生成する必要がある。この場合には、ディープパワーダウンモード解除時において、基準電圧安定化検出信号PORsを非活性状態のLレベルに保持する必要がある。すでに、ディープパワーダウンモード時においても、基準電圧発生回路952が動作し基準電圧Vrefpが生成されており、必要以上に電流が消費されるのを防止するためである。
【0046】
この基準電圧安定化検出信号PORsは、図24に示す他の基準電圧発生回路951および953へも与えられる。この基準電圧安定化検出信号に従って、これらの基準電圧発生回路のアナログバッファの動作電流を電源投入時において大きくする必要があるためである。
【0047】
図30は、周辺電源用の基準電圧以外の基準電圧を発生する基準電圧発生回路のアナログバッファの構成を概略的に示す図である。図30に示す基準電圧発生回路におけるアナログバッファは、外部電源ノードとノードND5の間に、電流遮断用のPチャネルMOSトランジスタPQ4が配置されることを除いて、図29に示すアナログバッファと同じ構成である。したがって図30に示すアナログバッファの図29に示すアナログバッファと対応する構成要素については、同一参照番号を付してその詳細説明は省略する。
【0048】
電流遮断用のPチャネルMOSトランジスタPQ4のゲートに、パワーカットイネーブル信号PCUTeが与えられる。この図30に示す基準電圧発生回路においては、ディープパワーダウンモード時において、パワーカットイネーブル信号PCUTeが、外部電源電圧EXVDDレベルとなり、MOSトランジスタPQ4がオフ状態となり、基準電圧Vrefは接地電圧レベルに低下する。ディープパワーダウンモード解除時においては、この基準電圧Vrefを高速で安定状態へ駆動するため、基準電圧検出信号PORsをHレベルに設定する必要がある。
【0049】
図29に示す基準電圧発生回路とこの図30に示す基準電圧発生回路に対しては、同じ基準電圧検出信号PORsが与えられる。したがって、ディープパワーダウンモード解除時において、このディープパワーダウン時においても動作する図29に示す基準電圧発生回路において基準電圧安定化検出信号PORsをLレベルに設定した場合、図30に示す基準電圧安定化検出信号PORsもLレベルとなる。したがって、このディープパワーダウンモード解除時においては、この基準電圧発生回路のアナログバッファの電流駆動能力は、正常状態時の定電流源971により与えられる動作電流だけであり、高速で基準電圧Vrefを安定化させることができない。したがって、この基準電圧Vrefに基いて、アレイ電源電圧などの内部電源電圧が生成され、このアレイ電源電圧に従って、中間電圧が生成されるため、高速で内部電圧を所定電圧レベルに駆動することができなくなるという問題が生じる。
【0050】
図31は、基準電圧安定化検出信号発生部の構成を概略的に示す図である。図31においては、アレイ電源電圧に対する基準電圧Vrefsの安定化を検出する電圧安定検出回路975により、基準電圧安定化検出信号PORsが生成される。この場合、図31に示す基準電圧発生回路に対する基準電圧安定化検出信号PORsは、ディープパワーダウンモード解除時において非活性状態に維持するために、この電圧安定検出回路975にディープパワーダウンモード指示信号DPDを与える。この場合、電圧安定検出回路975からの基準電圧安定化検出信号PORsがすべての基準電圧発生回路に共通に与えられるため、図30に示す基準電圧発生回路も、ディープパワーダウンモード解除時において、電流源となるMOSトランジスタNQ5を活性化することができない。
【0051】
このディープパワーダウンモード解除時において、ディープパワーダウンモード解除指示信号DPDWを発生して、電圧安定検出回路975の検出動作を停止させる場合、このディープパワーダウンモード解除指示信号DPDWとしては、パワーカットイネーブル信号PCUTeの立下がりに応答して所定期間活性状態となる信号を発生する必要がある。ディープパワーダウンモード解除指示信号DPDWを発生する回路において電流が消費され、消費電流が増大する。
【0052】
また、電圧安定検出回路975においては、常時、この基準電圧Vrefsの電圧レベルを検出する動作を行なわせ、図29に示す基準電圧発生回路に対し、基準電圧安定化検出信号PORsとディープパワーダウンモード解除指示信号DPDWの論理をとった信号を電流制御信号として与えることが考えられる。しかしながら、この場合においても、ディープパワーダウンモード解除指示信号DPDWを発生する回路を設ける必要があり、消費電流が増大する。
【0053】
また、このようなディープパワーダウンモード解除指示信号DPDWを利用する場合、前述のパワーカットイネーブル信号PCUTeと同様の問題が生じ、電源投入時においてディープパワーモード解除指示信号DPDWが電源投入時において誤って活性化されると、基準電圧を高速で安定状態に設定することができず、応じて内部電圧の安定化が遅れる。
【0054】
それゆえに、この発明の目的は、内部電源電圧回復時に内部電源電圧に関連する内部電圧を高速で安定化させることのできる内部電圧発生回路を提供することである。
【0055】
この発明の他の目的は、電源電圧投入時高速で確実に内部電圧を生成することのできる内部電圧発生回路を提供することである。
【0056】
この発明のさらに他の目的は、電源投入時正確に内部電源電圧を生成することのできる内部電圧発生回路を提供することである。
【0057】
この発明のさらに他の目的は、ディープパワーダウンモード解除時において高速で内部電源電圧を生成することのできる内部電圧発生回路を提供することである。
【0058】
この発明のさらに他の目的は、ディープパワーダウンモード時の消費電流を増加させることなくディープパワーダウンモード解除時において内部電圧生成用の基準電圧を高速でかつ安定に生成することのできる内部電圧発生回路を提供することである。
【0059】
【課題を解決するための手段】
この発明の第1の観点に係る半導体装置は、第1の電源電圧を動作電源電圧として受け、動作モード指示に従って、第1の電源制御信号を生成する制御回路と、この第1の電源制御信号を第2の電源電圧レベルの振幅の第2の電源制御信号に変換して出力するためのレベル変換回路と、このレベル変換回路の出力信号を第2の電源電圧投入時に所定の電圧レベルに設定するための初期化回路と、第2の電源制御信号に従って選択的に活性化され、活性化時、第2の電源電圧から第1の電源電圧を生成する電源回路を含む。
【0060】
好ましくは、レベル回路は、相補信号を出力する第1および第2の出力ノードを有する。この構成において、初期化回路は、第1の出力ノードと第2の電源電圧を供給する電源ノードの間に接続される第1の容量素子と第2の出力ノードと第2の電源電圧と極性の異なる電圧を供給する参照ノードとの間に接続される第2の容量素子の少なくとも一方を含む。
【0061】
これに代えて、好ましくは、レベル変換回路は、第2の電源電圧を動作電源電圧として受け、レベル変換回路の出力ノードの電圧をラッチしかつ転送するラッチ回路とを備える。
【0062】
またこれに代えて、好ましくは、初期化回路は、第2の電源電圧の投入を検出する電源投入検出回路と、この電源投入検出回路の出力信号とレベル変換回路の出力信号とを受けて第2の制御信号を生成する論理回路とを含む。
【0063】
この発明の第2の観点に係る半導体装置は、第1の電源電圧を受け、第1の電源電圧から第2の電源電圧を生成する内部電圧発生回路と、第2の電源電圧を動作電源電圧として受け、外部からの動作モード指示に従って内部動作制御信号を生成する内部回路と、この内部回路からの所定の制御信号の振幅を第1の電源電圧レベルの振幅に変換して特定動作制御信号を生成するレベル変換回路と、この第1の電源電圧を動作電源電圧として受け、特定動作制御信号に論理処理を施してバッファ制御信号を生成する論理回路と、この論理回路の出力するバッファ制御信号に従って第2の電源電圧を伝達する電源線を、第1の電源電圧を供給する電源ノードに結合するスイッチ回路を含む。
【0064】
好ましくは、スイッチ回路は、Pチャネルの絶縁ゲート型電界効果トランジスタである。
【0065】
好ましくは、内部電圧発生回路は、特定動作制御信号に応答して選択的に活性化され、活性化時、第1の電源電圧から所定の電圧レベルの基準電圧を生成する基準電圧発生回路と、この基準電圧と第2の電源電圧とを比較し、その比較結果に従って第1の電源電圧を供給する電源ノードから第2の電源電圧を伝達する電源線との間に電流を流す内部電源回路とを含む。
【0066】
この発明の第3の観点に係る半導体装置は、第1の電源電圧から第2の電源電圧を生成する第1の内部電源回路と、第2の電源電圧を動作電源電圧として受け、与えられた動作モード指示信号に従って動作制御信号を生成する第1の内部回路と、第1の電源電圧を動作電源電圧として受け、第1の内部回路からの特定の動作制御信号を第1の電源電圧レベルの振幅の信号に変換するレベル変換回路と、このレベル変換回路の出力信号に従って選択的に活性化され、活性化時、第1の電源電圧から第2の電源電圧と異なる内部電圧を生成する内部電圧発生回路とを含む。第1の内部電源回路は、レベル変換回路の出力信号と独立に動作する。
【0067】
好ましくは、第1の内部電源回路は、少なくともこの半導体装置のスタンバイ状態において動作して第1の電源電圧から第2の電源電圧を生成する。
【0068】
好ましくは、第1の内部電源回路は、レベル変換回路の出力信号に従って選択的に活性化され、活性化時、一定の電流を生成する定電流源と、この定電流源の生成する定電流を電圧に変換して基準電圧を生成する電流/電圧変換回路と、レベル変換回路の出力信号に従って定電流源と相補的に活性化され、活性化時、電流/電圧変換回路の出力ノードを、第1の電源電圧を供給する電源ノードに結合するスイッチ回路と、この電流/電圧変換回路の出力ノードの電圧と第2の電源電圧を伝達する電源線の電圧とを比較し、該比較結果に従って電源線と第1の電源電圧を供給する電源ノードとの間で電流を流す内部電源回路とを含む。
【0069】
好ましくは、スイッチ回路は、電源ノードと電流/電圧変換回路の出力ノードとの間に接続され、そのゲートにレベル変換回路の出力信号を受けるNチャネルの絶縁ゲート型電界効果トランジスタである。
【0070】
またこれに代えて、好ましくは、スイッチ回路は、レベル変換回路の出力信号に応答して選択的に導通し、導通時、電源ノードと電流/電圧変換回路の出力ノードを電気的に接続するPチャネルの絶縁ゲート型電界効果トランジスタである。
【0071】
この発明の第4の観点に係る半導体装置は、内部電源線の電圧を動作電源電圧として受け、動作モード指示信号に従って内部動作制御信号を生成する内部制御回路と、この内部制御回路からの特定の動作制御信号を第1の電源電圧レベルの振幅の信号に変換するレベル変換回路と、このレベル変換回路の出力信号と第1および第2のモードの一方を指定するモード指示信号とに従って有効動作制御信号を生成するモード制御回路と、このモード制御回路からの有効動作制御信号に応答して選択的に活性化され、活性化時、第1のモードにおいては第1の電源電圧から第2の電源電圧を内部電源線に生成し、かつ第2のモード時においては、第1の電源電圧に対応する電圧を前記内部電源線に生成する内部電源回路を含む。
【0072】
好ましくは、モード制御回路は、モード指示信号が第1のモードを指定するときには、レベル変換回路の出力信号に従って有効動作制御信号を選択的に活性化し、モード指示信号が第2のモードを指定するときには、レベル変換回路の出力信号に係らず、内部電源回路を常時活性状態とする論理レベルに有効動作制御信号を設定する。
【0073】
この発明の第5の観点に係る半導体装置は、動作モード指示信号に応答して選択的に活性化され、活性化時、第1の電源電圧から第1の参照電圧を発生するための第1の参照電圧発生回路と、第1の電源電圧を動作電源電圧として受け、第1の参照電圧に対応する電圧レベルの第1の基準電圧を生成する第1の基準電圧発生回路と、動作モード指示信号に応答して選択的に活性化され、活性化時、第1の電源電圧から第2の参照電圧を生成する第2の参照電圧発生回路と、第1の電源電圧を動作電源電圧として受け、第2の参照電圧に従って第2の参照電圧に対応する電圧レベルの第2の基準電圧を生成する第2の基準電圧発生回路と、第1の参照電圧と第1の基準電圧との電圧関係に基いて第1の基準電圧が所定の電圧レベルに到達したことを検出する基準電圧レベル検出回路と、この基準電圧レベル検出回路の出力信号と動作モード指示信号とに従って電源制御信号を生成する電源制御回路と、第1の基準電圧発生回路に配置され、電源制御信号に応答して、第1の基準電圧発生回路の電流駆動力を増大させるための第1の補助回路と、第2の基準電圧発生回路に配置され、電源制御信号に応答して第2の基準電圧発生回路の電流駆動力を増大させる第2の補助回路と、動作モード指示信号に応答して第1の基準電圧発生回路の出力ノード出圧を所定電圧レベルへ固定するための電圧固定回路とを含む。
【0074】
好ましくは、基準電圧レベル検出回路は、第1の参照電圧を動作電源電圧として受け、かつ第1の基準電圧を入力信号として受けるインバータと、このインバータの入出力信号に従ってラッチノードの信号の論理レベルが設定されるラッチ回路と、このラッチ回路の出力信号をバッファ処理して出力するバッファ回路とを含む。
【0075】
好ましくは、基準電圧レベル検出回路は、動作モード指示信号に応答して、基準電圧レベル検出回路の出力信号を保持するためのラッチ回路を含む。
【0076】
これに代えて好ましくは、基準電圧レベル検出回路は、第1の参照電圧を動作電源電圧として受け、かつ第1の基準電圧を入力信号として受けるインバータと、第1の電源電圧を動作電源電圧として受け、相補信号を第1および第2のラッチノードに生成するラッチ回路と、インバータの出力信号に従って、第1のラッチノードを第1の電圧レベルに駆動するための第1の電圧設定素子と、第1の基準電圧に従ってラッチ回路の第2のラッチノードの電圧を第1の電圧レベルに駆動するための第2の電圧設定素子と、このラッチ回路の出力信号をバッファ処理して出力するバッファ回路を含む。
【0077】
好ましくは、基準電圧レベル検出回路は、さらに、動作モード指示信号の活性化時、第1の電圧設定素子の電圧設定操作を検知する検知回路を含む。
【0078】
また、好ましくは、第2の電圧設定素子は、第1の電源電圧の電圧レベルに従ってその電流駆動力が変更されるトランジスタ素子を含む。
【0079】
第2の電源制御信号を生成するレベル変換回路の出力信号を、第2の電源電圧投入時に所定電圧レベルに設定する初期化回路を設けることにより、第2の電源電圧投入時、確実にこのレベル変換回路の出力信号の電圧が不定状態になるのを防止することができ、確実に、第2の電源制御信号を所定電圧レベルに設定することができる。これにより、電源投入時、この第2の電源制御信号が不安定な電圧レベルとなるのを防止でき、電源回路から所定の第1の電源電圧を生成することができる。
【0080】
また、動作制御信号を生成する内部回路の電源線を、特定のバッファ制御信号に従って第1の電源電圧供給ノードに結合することにより、電源投入時において、この内部回路の動作電源電圧を第1の電源電圧に設定することができ、応じて、内部回路を動作させて、特定の動作制御信号を所定の論理レベルに設定することができる。
【0081】
また、特定のバッファ制御信号を生成する第1の内部回路と、常時動作する第1の内部電源回路とが、第2の電源電圧を動作電源電圧として使用することにより、この電源投入時において動作制御信号が既に所定の状態に設定されており、内部動作を正確に所定の状態に設定することができる。
【0082】
また、内部電源線の電圧レベルがモードに応じて異なる場合には、このモードを指定する信号と特定の動作制御信号に従って有効動作制御信号を生成し、この有効動作制御信号に従って内部電源回路の動作を制御することにより、電源投入時において、動作制御信号に従って正確に所定の電圧レベルの内部基準電圧を生成することができる。
【0083】
また、動作モード指示信号に応答して基準電圧発生回路の出力ノードを特定動作モード期間中においては所定電圧レベルに固定し、特定動作モード解除時にこの基準電圧発生回路の出力ノードの基準電圧が所定の電圧レベルに到達したことを検出し、その検出結果と動作モード指示に従って電源制御信号を生成し、この電源制御信号に従って基準電圧発生回路の電流駆動能力を調整することにより、ディープパワーダウンモード解除時において、確実に、パワーダウンされた基準電圧を、高速で、その電流駆動能力を増大させて所定の電圧レベルにまで駆動することができ、安定にかつ高速で基準電圧を生成することができる。
【0084】
【発明の実施の形態】
[実施の形態1]
図1はこの発明の実施の形態1に従う内部電圧発生回路の要部の構成を概略的に示す図である。図1においては、パワーカットイネーブル信号PCUTeを発生する回路の構成を概略的に示す。図1に示す構成においては、制御回路904からのパワーカット信号PCUTの振幅を変換するレベル変換回路960において、ノードND0に、容量素子1が接続され、またノードND1に容量素子2が接続される。
【0085】
容量素子1は、ノードND0と接地ノードの間に接続され、容量素子2は、外部電源ノードとノードND1の間に接続される。これらの容量素子1および2は、MOSキャパシタで構成される。すなわち、容量素子1は、NチャネルMOSトランジスタで構成され、容量素子2が、PチャネルMOSトランジスタで構成される。
【0086】
このレベル変換回路960の出力部に、さらに、インバータ3IV2の出力信号に従って、ノードND1を選択的に外部電源電圧EXVDDレベルに充電するPチャネルMOSトランジスタ4が設けられる。インバータIV2からパワーカットイネーブル信号PCUTeが出力されて、図25に示す定電流源950等へ与えられる。この図1に示すレベル変換回路960の他の構成は、図26に示すレベル変換回路960の構成と同じであり、対応する部分には同一参照符号を付し、それらの詳細説明については省略する。
【0087】
図2は、図1に示すパワーカットイネーブル信号発生部の動作を示す信号波形図である。以下、図2を参照して、図1に示す回路の動作について説明する。
【0088】
外部電源電圧EXVDDが投入されると、外部電源ノードの外部電源電圧EXVDDの電圧レベルが上昇する。この外部電源電圧EXVDDの電圧レベルの上昇に従って、容量素子2の容量結合により、ノードND1の電圧レベルが上昇する。この電源投入時においては周辺電源電圧Vddpは、まだ生成されていない。外部電源電圧EXVDDに従って、周辺電源電圧用内部電源回路(周辺電源回路)956により、周辺電源電圧Vddpが生成される。したがって、外部電源電圧EXVDDの投入時においては、制御回路904の出力するパワーカット信号PCUTおよびインバータIV1の出力信号はともにLレベルであり、MOSトランジスタNQ1およびNQ2は、ともにオフ状態にある。
【0089】
したがって、ノードND0およびND1が電気的にフローティング状態にあるため、容量素子2により、ノードND1の電圧レベルが電源電圧EXVDDの電圧レベルの上昇とともに上昇する。ノードND1の電圧レベルがインバータ3の入力論理しきい値電圧を越えて上昇すると、インバータ3の出力信号がLレベルとなり、MOSトランジスタ4がオン状態となり、ノードND1が外部電源電圧レベルに駆動されて、その電圧レベルが、インバータ3およびMOSトランジスタ4によりラッチされる。ノードND0と接地ノードとの間には容量素子1が結合されており、電源投入時においてノードND0を接地電圧レベルに保持する。従って、この電源投入時において、MOSトランジスタPQ2がオン状態を維持しており、外部電源電圧投入時において、ノードND1の電圧レベルを確実に上昇させる。
【0090】
このラッチ状態においては、ノードND1が外部電源電圧レベルに保持されるため、インバータIV2の出力する信号パワーカットイネーブル信号PCUTeはLレベルに固定される。したがって、ノードND1の電圧レベルが電源投入時に中間電圧レベルに上昇しても、確実に、インバータIV2およびMOSトランジスタ4により、ノードND1は外部電源電圧EXVDDレベルに保持されて、パワーカットイネーブル信号PCUTeが確実にLレベル保持される。
【0091】
上述のように、この電源投入時において、パワーカットイネーブル信号PCUTeがLレベルに設定されるため、図25に示す定電流源950が動作して定電流を供給し、基準電圧発生回路952および周辺電源回路956により、周辺電源電圧Vddpが所定の電圧レベルに駆動されて安定化される。
【0092】
この周辺電源電圧Vddpが安定化されると、制御回路904からのパワーカット信号PCUTがLレベルに設定され、インバータIV1の出力信号がHレベルとなる。インバータIV1の出力信号がHレベルに立上ると、レベル変換回路960において、MOSトランジスタNQ1がオン状態、MOSトランジスタNQ2がオフ状態となる。応じて、ノードND0が接地電圧レベルに放電され、MOSトランジスタPQ2がオン状態となり、ノードND1が外部電源電圧レベルに充電される。この状態においては、インバータIV2の出力するパワーカットイネーブル信号PCUTeがLレベルに維持され、MOSトランジスタ4も導通状態を維持する。
【0093】
以上のように、外部電源電圧EXVDDが投入されると、容量素子2の容量結合が生じ、また容量素子1によりMOSトランジスタPQ2がオン状態を維持するため、ノードND1の電圧レベルが上昇し、インバータIV2の出力する信号は、確実にLレベルとなる。したがって、パワーカットイネーブル信号PCUTeは、外部電源電圧EXVDDの投入後、確実にLレベルに維持される。
【0094】
通常動作モード時において、ディープパワーダウンモードを設定する場合には、制御回路904へコマンドCMDとして、ディープパワーダウンモードコマンドDPDが与えられ、制御回路904からのパワーカット信号PCUTがHレベルに設定される。
【0095】
パワーカット信号PCUTがHレベルに設定されると、インバータIV1の出力信号がLレベルとなる。インバータIV2およびMOSトランジスタ4により構成されるラッチ回路のラッチ能力が十分小さくされており、パワーカット信号PCUTに従って、ノードND1がMOSトランジスタNQ2により放電されて接地電圧レベルとなり、またノードND0が、MOSトランジスタPQ1により充電されて、外部電源電圧EXVDDレベルとなる。応じて、インバータIV2の出力するパワーカットイネーブル信号PCUTeがHレベルとなり、定電流源950の基準電流発生動作が停止され、応じて内部の各規準電圧の発生動作が停止し、内部電圧の発生が停止される。
【0096】
このディープパワーダウンモード時において、インバータIV2の出力信号PCUTeに従って、MOSトランジスタ4がオフ状態となり、ノードND1に対する充電動作が停止される。従って、ディープパワーダウンモード時において、たとえ制御回路904に対し周辺電源電圧の供給を停止してもパワーカットイネーブル信号PCUTeは、外部電源電圧EXVDDが供給されているため、Hレベルに維持される。
【0097】
基準電圧発生回路の動作の非活性化においては、周辺電源電圧に関連する基準電圧を除く基準電圧は、それらの発生動作が禁止される。周辺電源電圧に対する基準電圧については、周辺回路の構成に応じて異なる。後に説明するように、周辺回路において制御回路904が他の回路と共通に周辺電源電圧を受けている場合には、このディープパワーダウンモード時においても周辺電源電圧用の基準電圧は、発生する必要がある。これはディープパワーダウンモード解除のためのコマンドを受け付ける必要があり、ディープパワーダウンモード時において、常時、コマンドをモニタする必要があるためである。
【0098】
制御回路904が、他の回路と別系統で周辺電源電圧を受けている場合には、制御回路を除く周辺回路に対する周辺電源電圧の発生は停止される。この場合、制御回路を除く周辺回路に対して周辺基準電圧発生回路が配置されている場合には、この周辺基準電圧発生回路はディープパワーダウンモード時において基準電圧発生動作が停止され、一方、制御回路に対する基準電圧発生回路は、基準電圧を発生する。
【0099】
また、周辺電源電圧Vddpについて、ディープパワーダウンモードを指定するコマンドDPDに従って動作する回路に対しては、常時、周辺電源電圧Vddpを与える必要がある。このディープパワーダウンモードの設定のための制御動作に関連しない周辺回路に対しては、周辺電源電圧Vddpの供給をパワーカットイネーブル信号PCUTeに従って停止する。
【0100】
インバータ3およびMOSトランジスタ4で構成されるラッチ回路は、そのラッチ能力が十分に小さくされており、MOSトランジスタNQ2のオン状態時においては、ノードND1は、接地電圧レベルへ放電され、MOSトランジスタ4はオフ状態を維持する。
【0101】
図1に示すように、レベル変換回路960の内部ノードND1に、外部電源投入時、その電圧レベルを、外部電源電圧レベルに駆動してラッチするラッチ回路および容量素子を設けることにより、このレベル変換回路960の内部ノードND1の電圧レベルが、電源投入時、不定状態となるのを防止して、確実にノードND1の電圧レベルを外部電源電圧EXVDDレベルに設定するができる。これにより、電源投入時において確実にパワーカットイネーブル信号PCUTeを非活性状態のLレベルに設定することができる。
【0102】
なお、ノードND0は、容量素子1により、その電圧レベルの浮き上がりが抑制され、MOSトランジスタPQ2をオン状態に設定している。ノードND1が外部電源電圧レベルに設定されるとMOSトランジスタPQ2は、ソース/ドレインが同一電圧レベルとなり、そのゲート電圧が不定状態であってもオフ状態となり、また、ノードND1が外部電源電圧レベルに保持され、MOSトランジスタPQ1が、そのゲート電圧とソース電圧とが等しくなってオフ状態となる。従って、インバータIV2およびMOSトランジスタ4で構成されるラッチ回路と容量素子2により、電源投入時においてノードND2の電圧レベルが十分に上昇させることができる場合には、この容量素子1は省略されても良い。
【0103】
以上のように、電源投入においてレベル変換回路の出力ノードND1を外部電源電圧EXVDDレベルに保持することにより、レベル変換回路960の内部ノードND0およびND1が中間電圧レベルに浮き上がるのを防止でき、不安定な状態のパワーカットイネーブル信号PCUTeが生成されるのを防止することができる。
【0104】
特に、このレベル変換回路の出力部に、外部電源ノードとノードND1との間に容量素子を接続することにより、その容量結合によりノードND1の電圧レベルを外部電源電圧レベルの上昇に従って上昇させ、ノードND1の電圧レベルが不定状態となるのを防止することができ、確実に、電源投入時から、パワーカットイネーブル信号PCUTeを、不活性状態のLレベルに指示することができ、周辺電源回路等において、確実に、電源電圧発生動作を行なわせることができ、内部電圧を確実に生成することができる。
【0105】
なお、図1に示す構成において、インバータIV1の出力信号をMOSトランジスタNQ2のゲートに与える場合、2段の縦続接続されるインバータをレベル変換回路の出力ノードND1に接続し、その最終段のインバータの出力信号に従って、ノードND1を接地電圧レベルに駆動する構成が用いられても良い。これらの2段のインバータの動作電源電圧としては、外部電源電圧を与える。最終段のインバータからパワーカットイネーブル信号PCUTeが出力される。
【0106】
この構成においては、ノードND1の電圧レベルが浮き上がったときには、2段のインバータの最終段のインバータの出力信号がHレベルとなり、初期設定のための放電用MOSトランジスタがオン状態となり、ノードND1を接地電圧レベルに保持する。すなわち、2段のインバータと1つのMOSトランジスタとでノードND1を接地電圧レベルに保持するラッチ回路を構成する。
【0107】
ノードND1の電圧レベルがローレルであれば、最終段のインバータの出力信号がLレベルとなり、このMOSトランジスタがオフ状態となる。従って、ノードND1の電圧を確実に接地電圧レベルに保持するために、初段のインバータの入力論理しきい値は、十分に小さくする。このような構成であっても、上述の図1に示す構成と同様の効果を得ることができる。
【0108】
以上のように、この発明の実施の形態1に従えば、外部電源電圧レベルのパワーカットイネーブル信号を生成するレベル変換回路の出力ノードに容量素子およびラッチ回路を設け、そのレベル変換回路の内部ノードの電圧が不安定となるのを防止しており、確実に、所望の電圧レベルのパワーカットイネーブル信号を生成して、電源投入において、内部電源電圧生成動作が禁止されるのを防止することができる。
【0109】
また、このラッチ回路の次段に、電源投入検出信号とラッチ回路の出力信号を受ける論理ゲートを配置することにより、確実に、通常動作時のモード設定に悪影響を及ぼすことなく、電源投入時においてパワーカットイネーブル信号を非活性状態に保持することができる。
【0110】
[実施の形態2]
図3は、この発明の実施の形態2に従う内部電圧発生部の構成を概略的に示す図である。図3において、内部電圧発生回路は、レベル変換回路960の出力信号を受けるインバータ回路15と、インバータ回路15の出力信号ZPCUTeがLレベルのとき導通し、周辺電源線960を外部電源電圧EXVDDレベルに充電するPチャネルMOSトランジスタ17を含む。
【0111】
レベル変換回路960は、先の図1に示す構成と同様の構成を有し、制御回路904からのパワーカット信号PCUTの論理レベルを維持して、その振幅を変換して、Hレベルが外部電源電圧レベルのパワーカットイネーブル信号PCUTeを生成する。このレベル変換回路960からのパワーカットイネーブル信号PCUTeは、定電流源950などへ与えられる。なお、このレベル変換回路960において、ラッチ回路および容量素子が設けられていなくてもよい。
【0112】
図4は、図3に示す内部電圧発生部の動作を示すタイミング図である。以下、図4を参照して、図3に示す内部電圧発生部の動作について説明する。
【0113】
外部電源電圧EXVDDが投入されるとき、レベル変換回路960において、図1に示すノードND1が、接地電圧レベルまたはそれに近い電圧レベルに保持された場合、レベル変換回路960の出力するPCUTeがHレベルとなり、インバータ15が出力する信号ZPCUTeが、Lレベルに設定され、MOSトランジスタ17がオン状態となる。応じて、周辺電源線960が外部電源ノードに電気的に接続され、周辺電源電圧Vddpが、電源電圧EXVDDレベルとなる。
【0114】
したがって、制御回路904が、この外部電源電圧EXVDDを動作電源電圧として動作し、パワーカット信号PCUTを、初期状態のLレベルに設定する。応じて、このレベル変換回路960において、図1に示すMOSトランジスタNQ1がオン状態、MOSトランジスタNQ2がオフ状態となり、このノードND1が外部電源電圧EXVDDレベルに充電され、パワーカットイネーブル信号PCUTeがLレベルに設定される。
【0115】
このパワーカットイネーブル信号PCUTeがLレベルに設定されると、定電流源950が、安定に定電流を発生させ、この定電流を受ける基準電圧発生回路および内部電源回路が内部電圧発生動作を行なう。
【0116】
この内部電圧発生時において、パワーカットイネーブル信号PCUTeがLレベルに設定されると、インバータ15の出力信号ZPCUTeがHレベルとなり、MOSトランジスタ17はオフ状態を維持する。したがって、周辺電源電圧Vddpは、外部電源ノードから分離され、周辺電源回路により、所定の電圧レベルに設定される。
【0117】
なお、ディープパワーダウンモードが設定されると、レベル変換回路960の出力するパワーカット信号PCUTがHレベルとなり、インバータ15の出力信号ZPCUTeが、Lレベルとなり、MOSトランジスタ17がオン状態となる。この場合、制御回路904が、コマンドCMDを受け付けており、このディープパワーダウンモード時においても動作する必要があり、特に問題は生じない。
【0118】
以上のように、この発明の実施の形態2に従えば、外部電源電圧EXVDDの投入時において、レベル変換回路の内部ノードが不定状態になり、その電圧レベルが浮き上がり、応じて、パワーカットイネーブル信号PCUTeの電圧レベルが上昇し、ディープパワーダウンモードが設定された状態に近い状態に初期設定された場合には、周辺電源線960を外部電源ノードに結合する。これにより、制御回路904が外部電源電圧を動作電源電圧として動作して、パワーカット信号PCUTをLレベルに初期設定する。応じて、レベル変換回路960を正確に、初期設定することができ、パワーカットイネーブル信号PCUTeを、非活性状態の接地電圧レベルに維持することができる。
【0119】
これにより、電源投入時のパワーカットイネーブル信号PCUTeの電圧レベルの上昇による内部電源電圧発生動作のデッドロックを禁止することができ、電源投入後、安定に内部電圧を確実に生成することができる。
【0120】
[実施の形態3]
図5は、この発明の実施の形態3に従う内部電圧発生回路の構成を概略的に示す図である。図5において、パワーカットイネーブル信号PCUTeは、周辺電源電圧Vddpを設定する回路部分には与えられない。すなわち、パワーカットイネーブル信号PCUTeは、高電圧用の基準電圧Vrefdを生成する基準電圧発生回路951と、アレイ電源電圧用の基準電圧Vrefsを生成する基準電圧発生回路953へ与えられ、基準電圧発生回路952は、ディープパワーダウンモード時においても、定電流源950からの定電流に従って基準電圧Vrefpを生成する。周辺電源回路956においては、スタンバイ電源回路956bが、このディープパワーダウンモードにおいても動作し、基準電圧Vrefsと周辺電源線上の電圧とに従って周辺電源電圧Vddpを生成して制御回路904へ与える。
【0121】
一方、アレイ電源回路957においては、スタンバイ電源回路957bに対しパワーカットイネーブル信号PCUTeが与えられる。アクティブ電源回路956aおよび957aは、ディープパワーダウンモード時においては、活性化信号(ACT)が非活性状態であり、ともに、非活性状態を維持する。
【0122】
また、パワーカットイネーブル信号PCUTeが、負電圧発生回路954、高電圧発生回路955、セルプレート電圧発生回路958、およびプリチャージ電圧発生回路959へ与えられる。
【0123】
したがって、本実施の形態3においては、周辺電源電圧Vddpに関連する基準電圧発生回路952およびスタンバイ電源回路956bは、ディープパワーダウンモード時においても動作して、周辺電源電圧Vddpを生成し、残りの電圧発生部は、その電圧発生動作を、ディープパワーダウンモード時に停止する。
【0124】
制御回路904は、周辺電源電圧Vddpを動作電源電圧として受けて動作し、外部からのコマンドに従って、パワーカット信号PCUTを生成する。レベル変換回路960は、この制御回路904からのパワーカット信号PCUTのレベルを変換してパワーカットイネーブル信号PCUTeを生成する。パワーカット信号PCUTとパワーカットイネーブル信号PCUTeは、論理レベルは同じである。
【0125】
外部電源電圧EXVDDの投入時、レベル変換回路960の内部ノードの電圧レベルが不定状態となり、不安定な電圧レベルのパワーカットイネーブル信号PCUTeが生成された状態を考える。この状態においても、外部電源電圧EXVDDが投入に従って、定電流源950および基準電圧発生回路952は、このパワーカットイネーブル信号PCUTeと独立に動作して、基準電圧Vrefpを生成する。周辺電源回路956が、外部電源電圧EXVDDを動作電源電圧として動作し、基準電圧Vrefpに従って周辺電源電圧Vddpを生成する。
【0126】
周辺電源電圧Vddpが外部電源電圧EXVDDの投入に従って生成されると、制御回路904の出力するパワーカット信号PCUTがLレベルに初期設定され、また、その反転信号が、Hレベルとなる。応じて、レベル変換回路960において内部ノード(図1のノードND0およびND1)の電圧レベルが初期化され、パワーカットイネーブル信号PCUTeは、Lレベルに設定される。
【0127】
これにより、残りの電圧発生部においても、内部電圧を発生する回路が動作し、正確に、内部電圧を生成することができる。これにより、電源電圧投入時のレベル変換回路960の不安定な内部状態による内部電圧発生動作のデッドロックを防止することができる。
【0128】
[変更例]
図6は、この発明の実施の形態3の変更例の構成を概略的に示す図である。図6においては、周辺電源電圧Vddpを動作電源電圧として利用する回路が、ディープパワーダウンモードを設定するためのDPD制御回路24と、他のアドレスデコーダおよびメモリセル選択回路などの周辺回路26に分割される。DPD制御回路24は、例えば、コマンドCMDをデコードする回路と、このコマンドデコード回路の出力信号がディープパワーダウンモードエントリを示すときにセットされ、かつディープパワーダウンモードの解除を指定するときリセットされるフリップフロップを含む。
【0129】
このDPD制御回路24に対してDPD電源回路20が設けられ、周辺回路26に対し、周辺電源回路22が配置される。この周辺電源回路22は、スタンバイモード時に、リーク電流を補償するスタンバイ電源回路22aと、アクティブサイクル時に、大きな電流駆動力で周辺電源電圧Vddpを生成するアクティブ電源回路22bを含む。このスタンバイ電源回路22aに対し、パワーカットイネーブル信号PCUTeが与えられる。
【0130】
これらのDPD電源回路20および周辺電源回路22に対しては、基準電圧発生回路952からの基準電圧Vrefpが与えられる。これらの基準電圧発生回路952およびDPD電源回路20は、パワーカットイネーブル信号PCUTeと独立に常時動作する。
【0131】
この図6に示す構成の場合、ディープパワーダウンモードに関連する必要最小限の回路のみを常時動作させ、データアクセスに関連する周辺回路26においては、ディープパワーダウンモード時、電源電圧の供給を停止する。この図6に示す構成においても、DPD制御回路24は、外部電源電圧EXVDDが投入されて、DPD電源回路20の出力する周辺電源電圧Vddpが安定化すると、パワーカット信号PCUTをLレベルに初期設定し、その反転信号がLレベルに初期設定される。したがって、パワーカット信号PCUTを受けるレベル変換回路は、その内部ノードが初期状態に設定され、パワーカットイネーブル信号PCUTeはLレベルに設定される。これにより、周辺電源回路のスタンバイ電源回路22aが周辺電源電圧Vddpを生成することができる。
【0132】
また、他のアレイ電源電圧および負電圧などの内部電圧を発生する回路部分においても、パワーカットイネーブル信号PCUTeが、DPD電源回路20の出力する周辺電源電圧Vddpが安定化するとLレベルに設定されるため、確実に、所定の内部電圧を生成することができる。
【0133】
以上のように、この発明の実施の形態3に従えば、ディープパワーダウンモードに関連する回路に対し常時電源電圧を与えて動作させており、外部電源電圧投入時においても、このパワーカット信号をLレベルに初期設定して、パワーカットイネーブル信号PCUTeをLレベルに設定することができる。これにより、内部電圧を確実に発生させることができ、内部電圧発生が停止されるデッドロック状態を防止することができ、安定に内部電圧を生成することができる。
【0134】
[実施の形態4]
図7は、この発明の実施の形態4に従う内部電圧発生回路の構成を概略的に示す図である。この図7に示す内部電圧発生回路は、図5に示す内部電圧発生回路と以下の点が異なっている。すなわち、パワーカットイネーブル信号PCUTeが、定電流源950および周辺用の基準電圧Vrefpを生成する基準電圧発生回路952に対しても与えられる。この基準電圧発生回路952の出力ノードと外部電源ノードとの間に、そのゲートにパワーカットイネーブル信号PCUTeを受けるNチャネルMOSトランジスタ30が接続される。このNチャネルMOSトランジスタ30は、低しきい値電圧VthnのMOSトランジスタである。
【0135】
レベル変換回路960において、電源投入時、その内部状態が不安定となり、パワーカットイネーブル信号PCUTeがハイレベルとなったとき、MOSトランジスタ30がオン状態となる。特に、パワーカットイネーブル信号PCUTeが、外部電源電圧EXVDDレベルに設定された場合には、このMOSトランジスタ30が強いオン状態となり、基準電圧Vrefpは、EXVDD−Vthnの電圧レベルにクランプされる。したがって、このMOSトランジスタ30の供給する電圧に従って、周辺電源回路956において、スタンバイ電源回路が動作して、周辺電源電圧Vddpを発生する。この周辺電源電圧Vddpが生成されると、制御回路904からのパワーカット信号PCUTおよびその反転信号が、それぞれLレベルおよびHレベルとなり、レベル変換回路960が初期設定され、その出力するパワーカットイネーブル信号PCUTeは、確実に、Lレベルに設定される。
【0136】
MOSトランジスタ30のしきい値電圧Vthnを十分小さくすることにより、確実に、基準電圧Vrefpの電圧レベルを、パワーカットイネーブル信号PCUTeの電圧レベルに応じた電圧レベルに設定して、周辺電源電圧Vddpを生成することができる。この場合、パワーカットイネーブル信号PCUTeの電圧レベルが、外部電源電圧EXVDDレベルよりも低い場合でも、制御回路等の構成要素のMOSトランジスタのしきい値電圧よりも高い電圧レベルに周辺電源電圧Vddpの電圧レベル設定されると、制御回路904が動作して、パワーカット信号PCUTをLレベルに設定することができる。また、この状態において、レベル変換回路960に対して相補信号を生成するためのインバータ(図1のインバータIV1)の出力信号がレベル変換回路960の内部ノード放電用のMOSトランジスタ(図1に示すMOSトランジスタNQ1)のしきい値電圧以上の電圧レベルとなれば、この図1に示すMOSトランジスタNQ1をオン状態として、図1に示すレベル変換回路960の内部ノードND0を接地電圧レベル、また、ノードND1を外部電源電圧EXVDDレベルに設定することができ、確実にパワーカットイネーブル信号PCUTeを、接地電圧レベルに保持することができる。
【0137】
パワーカットイネーブル信号PCUTeがLレベルに設定されると、MOSトランジスタ30はオフ状態となり、基準電圧発生回路952により、所定の電圧レベルの基準電圧Vrefpが生成される。
【0138】
[変更例]
図8は、この発明の実施の形態4の変更例の構成を示す図である。図8においては、図7に示すNチャネルMOSトランジスタ30に代えて、パワーカットイネーブル信号PCUTeを受けるインバータ32と、このインバータ32の出力信号に従って基準電圧発生回路952の出力ノードを外部電源ノードに結合するPチャネルMOSトランジスタ34が設けられる。インバータ32へは、動作電源電圧として外部電源電圧EXVDDが与えられる。この図8に示す内部電圧発生回路の他の構成は、図7に示す内部電圧発生回路の構成と同じである。
【0139】
定電流源950および基準電圧発生回路952は、パワーカットイネーブル信号PCUTeに応じてディープパワーダウンモード時その動作が停止される。周辺電源回路956は、この基準電圧発生回路952の出力ノードの電圧Vrefpに従って周辺電源電圧を生成する。
【0140】
したがって、外部電源電圧EXVDDの投入時、パワーカットイネーブル信号PCUTeの電圧レベルが、レベル変換回路960の内部ノードの不安定状態により上昇した場合、インバータ32により、MOSトランジスタ34をオン状態として、基準電圧Vrefpを外部電源電圧EXVDDレベルに設定することができる。このインバータ32をレシオ回路で構成し、その入力論理しきい値を十分低い電圧レベルに設定することにより、パワーカットイネーブル信号PCUTeが、中間電圧レベルであっても確実に、この基準電圧Vrefpを、外部電源電圧EXVDDレベルに設定して、周辺電源電圧Vddpを生成することができる。
【0141】
パワーカットイネーブル信号PCUTeがローレベルのときには、インバータ32の出力信号は外部電源電圧EXVDDレベルであり、MOSトランジスタ34を確実にオフ状態とすることができる。したがって、この状態においては、定電流源950および基準電圧発生回路952により基準電圧Vrefpを確実に生成することができる。
【0142】
以上のように、この発明の実施の形態4に従えば、ディープパワーダウンモード時においては、定電流源およびそれぞれの基準電圧発生回路の動作を停止させ、この周辺電源電圧を生成するための基準電圧発生回路の出力ノードをパワーカットイネーブル信号PCUTeに従って外部電源電圧に対応する電圧レベルに駆動しており、パワーカットイネーブル信号PCUTeの電圧レベルが電源投入時においてハイレベルとなっても、周辺電源回路956が、周辺電源電圧Vddpを生成して、レベル変換回路の不安定状態を解除することができる。これにより、電源投入時のレベル変換回路の内部ノードの不安定状態による内部電圧発生のデッドロックを防止することができ、安定に内部電圧を生成することができる。
【0143】
[実施の形態5]
図9は、この発明の実施の形態5に従う内部電圧発生回路の要部の構成を概略的に示す図である。図9において、内部電圧発生回路は、外部電源電圧EXVDDの投入を検出する電源投入検出回路40と、電源投入検出回路40の出力信号PORとレベル変換回路960の出力信号PCUTefとを受けるAND回路42を含む。このAND回路42から、パワーカットイネーブル信号PCUTeが生成される。AND回路42は、外部電源電圧EXVDDを動作電源電圧として受ける。図10は、図9に示す回路の動作を示す信号波形図である。以下、図10を参照して図9に示す回路の動作について簡単に説明する。
【0144】
外部電源電圧EXVDDが投入され、レベル変換回路960において、その内部状態が不安定となり、その出力信号PCUTefが中間電圧レベルに上昇した場合を考える。この状態においても、電源投入検出回路40の出力信号PORはLレベルを維持しており、AND回路42から出力されるパワーカットイネーブル信号PCUTeはLレベルを維持する。これにより、定電流源950からの定電流に従って各内部電圧が生成される。周辺電源電圧Vddpが発生されると、制御回路904からのパワーカット信号PCUTがLレベルに設定され、またその反転信号の電圧レベルも上昇する。
【0145】
パワーカット信号PCUTの反転信号の電圧レベルが上昇し、レベル変換回路960において内部ノード(図1のノードND0)を駆動するMOSトランジスタ(図1のMOSトランジスタNQ1)がオン状態となると、このレベル変換回路960の出力信号PCUTefがLレベルとなる。この時点で電源投入検出回路40の出力信号PORがHレベルとなっても、レベル変換回路960の出力信号PCUTefはLレベルであり、AND回路40からのパワーカットイネーブル信号PCUTeはLレベルを維持する。これにより、レベル変換回路960が電源投入時不安定状態となってその出力信号PCUTeの電圧レベルが上昇しても、確実に、内部電圧を発生することができ、内部電圧発生のデッドロックを防止することができる。
【0146】
なお、電源投入検出回路40の出力信号PORがHレベルとなる期間は、このレベル変換回路960が確実に初期設定される時間に合わせて適当な値に設定されればよい。
【0147】
なお、この図9に示す構成において、レベル変換回路960は、入力するパワーカット信号PCUTと出力するパワーカットイネーブル信号PCUTeの論理レベルが維持されてその信号振幅の変換が行われる構成であれば、その構成は任意である。
【0148】
以上のように、この発明の実施の形態5に従えば、パワーカットイネーブル信号を生成するレベル変換回路の出力信号と電源電圧の投入を検出する電源投入検出信号とに従ってパワーカットイネーブル信号を生成しており、確実に、電源投入時において、レベル変換回路の出力信号の電圧レベルが上昇しても、パワーカットイネーブル信号PCUTeをLレベルに固定して内部電圧を生成することができ、内部電圧発生のデッドロックを防止することができる。
【0149】
[実施の形態6]
図11は、この発明の実施の形態6に従う内部電圧発生回路の構成を概略的に示す図である。この図11に示す内部電圧発生回路においては、外部電源電圧EXVDDが、2.5Vであるか、3.3Vであるかを設定するためのモード設定回路50と、モード設定回路50の出力するモード設定信号MOD2.5とレベル変換回路960からのパワーカットイネーブル信号PCUTeとを受けるAND回路52が設けられる。このAND回路52の出力信号が定電流源950と基準電圧発生回路952と周辺電源回路956に含まれるスタンバイ電源回路956bへ与えられる。この図11に示す内部電圧発生回路の他の構成は、図5に示す内部電圧発生回路の構成と同じであり、対応する部分には同一参照番号を付し、その詳細説明は省略する。
【0150】
この半導体記憶装置のインターフェイスとして、1.8V系インターフェイスが用いられる場合、外部電源電圧EXVDDとしては、2.5Vが用いられる場合と、3.3Vが用いられる場合がある。外部電源電圧EXVDDが、3.3Vの場合には、周辺電源回路956は、降圧動作を行なって、所定電圧レベルの周辺電源電圧Vddpを生成する。一方、この外部電源電圧EXVDDが、2.5Vの場合には、外部電源電圧EXVDDが、周辺電源電圧Vddpとして用いられる。外部電源電圧EXVDDが周辺電源電圧Vddpとして用いられる場合には、外部電源電圧投入時においては、周辺電源電圧Vddpもパワーカットイネーブル信号PCUTeと無関係に生成される。
【0151】
したがって、外部電源電圧EXVDDが周辺電源電圧Vddpとしても用いられる場合には、モード設定回路50により、モード設定信号MOD2.5をHレベルに設定する。AND回路52により、パワーカットイネーブル信号PCUTeに従って、定電流源950も、このディープパワーダウンモード時にその定電流発生動作を停止させる。同様、周辺電源電圧用の基準電圧Vrefpを生成する基準電圧発生回路952に対しても、パワーカットイネーブル信号PCUTeを受けるAND回路52の出力信号に従って、ディープパワーダウンモード時、その基準電圧発生動作を停止させる。
【0152】
一方、外部電源電圧EXVDDが3.3Vの場合には、モード設定回路50により、モード設定信号MOD2.5をLレベルに設定する。この状態においては、AND回路52の出力信号はLレベルに固定されるため、定電流源950および基準電圧発生回路952は、ディープパワーダウンモード時においても動作する。これにより、外部からのコマンドCMDに従ってパワーカット信号PCUTを生成する制御回路904をディープパワーダウンモード時においても動作させる。
【0153】
周辺電源回路956においては、モード設定信号MOD2.5をスタンバイ電源回路956bへ与える。すなわち、モード設定信号MOD2.5がHレベルであり、外部電源電圧EXVDDが、周辺電源電圧Vddpとして用いられる場合には、スタンバイ電源回路956bにおいては、外部電源ノードと周辺電源線とを直接接続する。この場合、アクティブ電源回路956aにおいては、この基準電圧Vrefpが、外部電源電圧EXVDDの電圧レベルに対応する電圧レベルに設定され、アクティブサイクル時大きな電流駆動力で、外部電源ノードから周辺電源線へ、大きな電流駆動力で電流を供給する。
【0154】
この基準電圧発生回路952に対してもモード設定信号MOD2.5が与えられ、外部電源電圧EXVDDが周辺電源電圧として用いられる場合には、外部電源電圧EXVDDが基準電圧Vfefpとして用いられても良い。
【0155】
また、周辺電源回路956のアクティブ電源回路956aにおいても、モード設定信号MOD2.5に従って、選択的に、周辺電源線と外部電源ノードを接続するスイッチングトランジスタが配置されていても良い。
【0156】
図12は、図11に示すモード設定回路50の構成の一例を示す図である。図12において、モード設定回路50は、パッド50aに結合されるノードND10と接地ノードの間に接続される高抵抗の電流駆動素子50bと、ノードND10の電圧の論理レベルを反転して出力するインバータ50dと、インバータ50dの出力信号を反転してモード設定信号MOD2.5を生成するインバータ50eと、インバータ50dの出力信号がHレベルのとき導通し、導通時、ノードND10を接地電圧レベルに保持するNチャネルMOSトランジスタ50cを含む。
【0157】
外部電源電圧EXVDDが、たとえば2.5Vであり、この外部電源電圧EXVDDが周辺電源電圧Vddpとして用いられる場合には、パッド50aは、外部電源電圧を受ける電源端子にボンディングワイヤを介して接続される。この場合、電流駆動素子50bは高抵抗の素子であり、プルダウン素子として機能するため、ノードND10は、電源投入後、外部電源電圧EXVDDレベルに設定される。したがって、インバータ50dの出力信号がLレベルとなり、応じてインバータ50eからのモード設定信号MOD2.5が外部電源電圧EXVDDレベルに設定される。この状態においては、MOSトランジスタ50cは、ゲートに、インバータ50dからのLレベルの信号を受けて、オフ状態にある。
【0158】
一方、外部電源電圧EXVDDが、たとえば3.3Vであり、外部電源電圧を降圧して周辺電源電圧Vddpを生成する場合には、このパッド50aに対しては、ボンディングは行なわれない。この場合、電流駆動素子50bにより、ノードND10の電圧レベルの浮き上がりが防止され、続いて、インバータ50dが、このノードND10の電圧レベルに従って、Hレベルの信号を出力し、MOSトランジスタ50cをオン状態へ駆動する。したがって、このインバータ50dとMOSトランジスタ50cにより、ノードND10は、接地電圧レベルに保持される。インバータ50eが、このインバータ50dの出力信号を反転して、Hレベルのモード設定信号MOD2.5を生成する。
【0159】
すなわち、外部電源電圧EXVDDが、3.3Vであり、この外部電源電圧EXVDDを降圧して周辺電源電圧Vddpを生成する場合には、モード設定信号MOD2.5は、Lレベルに設定される。一方、外部電源電圧EXVDDが2.5Vであり、この外部電源電圧EXVDDが周辺電源電圧Vddpとして用いられる場合には、モード設定信号MOD2.5は、Hレベルに設定される。
【0160】
なお、図12において、パッド50aに対するボンディングワイヤの選択的な形成によりモード設定信号MOD2.5を生成している。しかしながら、このモード設定信号MOD2.5は、メタルマスク配線により、外部電源電圧EXVDDレベルまたは接地電圧レベルに設定されてもよい。
【0161】
また、電流駆動素子50bに代えて、レーザなどのエネルギ線で溶断可能なリンク素子が用いられても良い。このリンク素子を用いる場合には、電源ノードとノードND10の間にリンク素子を接続する。また、MOSトランジスタ50cと並列に、ゲートにリセット信号を受けるNチャネルMOSトランジスタを配置する。このリセット信号は、電源投入時またはシステムリセット時に活性化される。リンク素子が溶断されていれば、ノードND10が、Lレベルに保持され、モード設定信号MOD2.5がLレベルとなる。リンク素子が非溶断状態のときには、ノードND10は、リンク素子によりHレベルに保持され、モード設定信号MOD2.5がHレベルに設定される。
【0162】
図13は、図11に示すスタンバイ電源回路956bの構成の一例を示す図である。図13において、スタンバイ電源回路956bは、比較回路965の内部電源ノードと接地ノードの間に接続されかつそのゲートにモード設定信号MOD2.5をインバータ68を介して受けるNチャネルMOSトランジスタ67と、外部電源ノードと比較回路965の出力ノードの間に接続されかつそのゲートにインバータ68の出力信号を受けるPチャネルMOSトランジスタ69と、外部電源ノードと周辺電源線969の間に接続されかつそのゲートに比較回路965の出力信号を受けるPチャネルMOSトランジスタ966とを含む。インバータ68は、外部電源電圧EXVDDを動作電源電圧として受ける。
【0163】
モード設定信号MOD2.5がHレベルであり、外部電源電圧EXVDDが2.5Vであることを示す場合には、MOSトランジスタ67がオフ状態、MOSトランジスタ69がオン状態となり、比較回路965の出力ノード、すなわち、電流ドライブ用MOSトランジスタ966のゲートは、外部電源電圧EXVDDレベルに設定される。したがって、MOSトランジスタ966は、常時オフ状態に設定される。また、比較回路965は、MOSトランジスタ67がオフ状態であり、非活性状態に維持される。外部電源電圧EXVDDが2.5Vのときには、周辺電源線969は、メタル配線70を介して外部電源ノードに接続される。
【0164】
一方、モード設定信号MOD2.5がLレベルに設定され、外部電源電圧EXVDDが、3.3Vであることを示す場合には、MOSトランジスタ67がオン状態、MOSトランジスタ69がオフ状態となる。したがって、この電源電圧モードにおいては、メタル配線70は形成されず、比較回路965が周辺電源電圧Vddpと基準電圧Vrefpとに従ってMOSトランジスタ966のゲート電圧を調整する。
【0165】
なお、外部電源ノードと周辺電源線との接続をメタル配線70により行っている。このメタル配線70は、スライス工程において使用外部電源電圧の電圧レベルに応じてマスク配線により形成される。しかしながら、外部電源ノードと周辺電源線960との間に、モード設定信号MOD2.5の反転信号をゲートに受けるPチャネルMOSトランジスタが配置されていてもよい。
【0166】
周辺電源回路956において、アクティブ電源回路956aは、モード設定信号MOD2.5と独立に、周辺電源電圧Vddpと基準電圧Vrefpとに従って外部電源ノードから周辺電源線960へ電流を供給する。これは、メタル配線70が形成された場合においても、その配線抵抗によりアクティブサイクル時周辺電源線960の電源電圧が低下するのを防止するためである。しかしながら、このメタル配線70が、その線幅が十分広くされ、配線抵抗が十分小さくされており、アクティブサイクル時においても十分な電流を供給することができる場合には、この周辺電源回路956において、アクティブ電源回路もモード設定信号MOD2.5がHレベルに設定され、外部電源電圧EXVDDが2.5Vであることを示す場合には、動作不能状態に設定されてもよい。
【0167】
なお、周辺電源回路956においてアクティブ電源回路956aが、電源電圧レベルに係らず周辺電源線の電圧と基準電圧Vrefpとの関係に従って、周辺電源線に電流を供給する場合には、外部電源電圧EXVDDのの電圧レベルに応じて周辺電源電圧の電圧レベルが変更される場合には、基準電圧Vrefpは、モード設定信号MOD2.5に従ってその電圧レベルが変更される。
【0168】
以上のように、この発明の実施の形態6に従えば、外部電源電圧が周辺電源電圧として用いられるか否かに従って選択的に、ディープパワーダウンモード時において周辺電源電圧に関連する回路部分を活性状態に維持しており、外部電源電圧が周辺電源電圧として用いられる場合および外部電源電圧を降圧して周辺電源電圧を生成する場合いずれにおいても、外部電源電圧投入時において、外部電源電圧に従って周辺電源電圧を生成される。従って、たとえパワーカットイネーブル信号PCUTeがレベル変換回路960の不安定状態によりその電圧レベルが上昇しても、パワーカット信号は、この周辺電源電圧Vddpを受ける制御回路により確実にLレベルに設定され、パワーカットイネーブル信号PCUTeがLレベルに設定されるため、内部電圧の発生のデッドロックを確実に防止して、確実に内部電圧を生成することができる。
【0169】
[実施の形態7]
図14は、この発明の実施の形態7に従う内部電圧発生回路の構成を概略的に示す図である。図14において、内部電圧発生回路は、パワーカットイネーブル信号PCUTeに応答して基準電圧発生回路953が出力する基準電圧Vrefsを接地電圧レベルに設定するNチャネルMOSトランジスタ75と、この基準電圧発生回路953が生成する参照電圧Vref0と基準電圧Vrefsとに従って基準電圧Vrefが安定化したかを検出する安定化検出回路80を含む。
【0170】
この安定化検出回路80は、パワーカットイネーブル信号PCUTeがHレベルのディープパワーダウンモードの間その出力信号SLIVEをHレベルに固定する。パワーカットイネーブル信号PCUTeがLレベルのときには、この安定化検出回路80は、基準電圧Vrefsと参照電圧Vref0の電圧関係に従ってワンショットのパルス信号を生成する。
【0171】
この安定化検出回路80の出力信号が、基準電圧発生回路951−953へ与えられ、これらの基準電圧発生回路951−953に含まれるアナログバッファの電流駆動能力を、この信号SLIVEの活性化期間、大きくして、高速で基準電圧Vrefs、Vrefp、およびVrefdを立上げる。
【0172】
定電流源950は、ディープパワーダウンモード中も動作し、定電流を供給する。これは、周辺電源電圧Vddpを制御回路904が消費して、外部からのコマンドCMDに従ってパワーカット信号PCUTを非活性化する必要があるためである。
【0173】
外部電源電圧EXVDDの投入時、安定化検出回路80の出力信号SLIVEに従って、基準電圧発生のためのアナログバッファの電流駆動力を大きくしており、高速で基準電圧Vrefd、VrefpおよびVrefsを立上げることができる。
【0174】
また、ディープパワーダウンモード解除時においても、たとえ周辺電源電圧Vddpが生成されていても、この安定化検出回路80の出力信号SLIVEに従って、残りの基準電圧VrefdおよびVrefsの電圧レベルを高速で立上げることができる。この場合、周辺電源電圧Vddpはパワーダウンモード時に発生されており、このディープパワーダウンモード解除時において基準電圧発生回路952におけるアナログバッファの動作電流が増大する。しかしながら、この周辺電源電圧用の基準電圧Vrefpを発生する基準電圧発生回路952において、単なる外部電源電圧投入時およびディープパワーダウンモード解除時において同一の制御回路を用いてアナログバッファの動作電流を大きくすることができ、その制御回路の規模が低減される。
【0175】
この図14に示す内部電圧発生回路の他の構成は、図11に示す先の実施の形態と同じであり、対応する部分には、同一参照番号を付して、その詳細説明は省略する。
【0176】
図15は、図14に示す基準電圧発生回路951および953の構成を示す図である。これらの基準電圧発生回路951および953は同一構成を有するため、図15においては、基準電圧発生回路100としてこれらの基準電圧発生回路951および953を代表的に示す。
【0177】
図15において、基準電圧発生回路100は、定電流源950からの定電流(バイアス電圧VBIAS)に従って参照電圧Vref0を生成する参照電圧生成回路102と、参照電圧生成回路102の出力信号をバッファ処理して基準電圧Vrefを生成するアナログバッファ104を含む。
【0178】
参照電圧発生回路102は、外部電源ノードとノードND20の間に接続される定電流源102aと、ノードND20と接地ノードの間に直列に接続されるMOSトランジスタ102bおよび抵抗素子102cを含む。MOSトランジスタ102bの非導通時、抵抗素子102cがノードND20から分離される。
【0179】
定電流源102aは、定電流源からの定電流に従って一定の大きさの定電流を供給するPチャネルMOSトランジスタを含む。図15においては、この定電流源トランジスタは、定電流源950からのバイアス電圧VBIASに従って駆動電流が調整されるように示す。この定電流源102aの構成は任意であり、定電流源950の供給する定電流に対応する電流を供給する構成であればよい。
【0180】
MOSトランジスタ102bは、そのゲートにパワーカットイネーブル信号PCUTeを受ける。参照電圧Vref0は、定電流回路102aの供給する定電流と抵抗素子102cの抵抗値とにより決定される。消費電流を低減するために、この定電流回路102aの駆動電流は小さく、また、抵抗素子102cの抵抗値は十分大きくされる。したがって、ノードND20は、高抵抗状態であり、この参照電圧発生回路102の電流駆動力は小さい。
【0181】
アナログバッファ104は、外部電源ノードとノードND21の間に接続されかつそのゲートにパワーカットイネーブル信号PCUTeを受けるPチャネルMOSトランジスタ104aと、ノードND21とノードND22の間に接続されかつそのゲートがノードND22に接続されるPチャネルMOSトランジスタ104bと、ノードND21とノードND23の間に接続されかつそのゲートがノードND22に接続されるPチャネルMOSトランジスタ104cと、ノードND22とノードND24の間に接続されかつそのゲートに参照電圧Vref0を受けるNチャネルMOSトランジスタ104dと、ノードND23とノードND24の間に接続されかつそのゲートがノードND23に接続されるNチャネルMOSトランジスタ104eと、ノードND24と接地ノードの間に接続される定電流源104fと、ノードND24と接地ノードの間に接続されかつそのゲートに信号SLIVEをインバータ103を介して受けるNチャネルMOSトランジスタ104gを含む。MOSトランジスタ104gのゲートおよびドレインノード(ノードND23)から基準電圧Vrefが生成される。
【0182】
この図15に示すアナログバッファ104は、パワーカットイネーブル信号PCUTeがHレベルのときには、その電流経路が遮断され、その出力する基準電圧Vrefは、接地電圧レベルとなる。一方、パワーカットイネーブル信号PCUTeがLレベルのときには、MOSトランジスタ104aがオン状態となり、参照電圧Vref0に応じた基準電圧Vrefを生成する。
【0183】
信号SLIVEは、活性化時、Lレベルであり、インバータ103により、この信号SLIVEが活性状態のときにMOSトランジスタ104gがオン状態となり、このアナログバッファ104の駆動電流が大きくなり、基準電圧Vrefは、高速で所定電圧レベルに立上がる。
【0184】
また、パワーカットイネーブル信号PCUTeがHレベルのときには、参照電圧発生回路102においては、MOSトランジスタ102bがオフ状態となり、ノードND20は、外部電源電圧EXVDDレベルに駆動される。これは、定電流源950が常時動作している場合において、定電流源102aからの電流の放電経路が遮断されるためである。また、たとえ、定電流源950の定電流発生動作が停止される場合においても、その場合には、バイアス電圧VBIASが接地電圧レベルとなり、MOSトランジスタ102aがオン状態となり、同様、ノードND20が外部電源電圧EXVDDレベルに設定される。
【0185】
図16は、図14に示す安定化検出回路80の構成を示す図である。図16において、安定化検出回路80は、参照電圧Vref0を動作電源電圧としかつ基準電圧Vrefsを入力信号とするインバータ80aと、インバータ80aの入出力信号に従ってそのラッチ信号の電圧レベルが設定されるラッチ回路80bと、ラッチ回路80bのラッチノードND31の信号を反転して信号SLIVE0を生成するインバータ80cと、インバータ80cの出力信号SLIVE0とパワーカットイネーブル信号PCUTeを受けて検出信号SLIVEを生成するゲート回路80dを含む。
【0186】
インバータ回路80aは、基準電圧Vrefsに従って参照電圧Vrefs0をノードND30に伝達するPチャネルMOSトランジスタPQ10と、基準電圧Vrefsに従ってノードND30を接地電圧レベルに放電するNチャネルMOSトランジスタNQ10を含む。このインバータ80aは、参照電圧Vrefs0に従って、基準電圧Vrefsの電圧レベルが上昇すると、ノードND30を、接地電圧レベルに放電する。
【0187】
ディープパワーダウンモード時において、基準電圧Vrefs0は、図14に示すMOSトランジスタ75により、接地電圧レベルに保持される。一方、この参照電圧Vrefs0は、図15に示すように参照電圧発生回路102において、MOSトランジスタ102bにより、外部電源電圧EXVDDレベルに設定される。したがって、このディープパワーダウンモード時においては、ノードND30は、外部電源電圧EXVDDレベルに保持される。一方、ディープパワーダウンモードが解除されると、基準電圧Vrefsの電圧レベルが上昇し、参照電圧Vrefs0の電圧レベルは所定電圧レベルに低下し、ノードND30は、MOSトランジスタNQ10により放電される。したがって、このインバータ80aにより、ディープパワーダウンモード解除時において、基準電圧Vrefsが、所定電圧レベルに到達したときに、ノードND30の電圧レベルが変化する。
【0188】
外部電源電圧投入時においても、まず参照電圧Vrefs0が安定化し、次いでアナログバッファ104により、基準電圧Vrefsが安定化する。したがって、ノードND30の電圧レベルは、電源投入直後にまず、参照電圧Vrefs0に従ってHレベルとなり、基準電圧Vrefsが安定化すると、Lレベルとなる。
【0189】
ラッチ回路80bは、ノードND31と接地ノードの間に接続されかつそのゲートがノードND30に接続されるNチャネルMOSトランジスタNQ11と、ノードND32と接地ノードの間に接続されかつそのゲートに基準電圧Vrefsを受けるNチャネルMOSトランジスタNQ14と、外部電源ノードとノードND31の間に接続されかつそのゲートがノードND32に接続されるPチャネルMOSトランジスタPQ11と、外部電源ノードとノードND32の間に接続されかつそのゲートがノードND31に接続されるPチャネルMOSトランジスタPQ12と、ノードND31と接地ノードの間に結合され、かつそのゲートがノードND32に接続されるNチャネルMOSトランジスタNQ12と、ノードND32と接地ノードの間に接続されかつそのゲートがノードND31に接続されるNチャネルMOSトランジスタNQ13を含む。
【0190】
MOSトランジスタPQ11およびPQ12は、ノードND31およびND32のうちの高電位のノードを外部電源電圧EXVDDレベルにプルアップする。一方、MOSトランジスタNQ12およびNQ13は、ノードND31およびND32の低電位のノードを接地電圧レベルにプルダウンする。ノードND31およびND32は、インバータ80aの出力信号および入力信号を受けるMOSトランジスタNQ11およびNQ14によりその電圧レベルが設定される。
【0191】
ディープパワーダウンモード解除時において、ノードND30が、Hレベルのときには、ノードND31が接地電圧レベル、ノードND32が外部電源電圧EXVDDレベルである。ディープパワーダウンモード解除時または電源投入後、基準電圧Vrefsが、参照電圧Vrefs0に従って安定化すると、インバータ80aの出力信号がLレベルとなり、ノードND32が接地電圧レベル、ノードND31が外部電源電圧EXVDDレベルとなる。したがって、このラッチ回路80bにより、インバータ80aの出力信号に従ってそのラッチ状態を変化させることにより、インバータ80cの出力信号SLIVE0を、基準電圧Vrefsが安定化したか否かに応じて変化させることができる。
【0192】
基準電圧Vrefsが安定化すると、インバータ80cの出力信号SLIVE0がHレベルとなる。ここで、インバータ80cは外部電源電圧を動作電源電圧として受けており、信号SLIVE0は、外部電源電圧レベルのHレベルとなる。
【0193】
ゲート回路80dは、パワーカットイネーブル信号PCUTeがHレベルのときには、その出力信号SLIVEをHレベルに固定する。したがって、図15に示すように、アナログバッファ104においては、電流源のMOSトランジスタ104gは、オフ状態を維持する。一方、パワーカットイネーブル信号PCUTeがLレベルとなると、このゲート回路80dは、バッファ回路として動作する。基準電圧Vrefsが安定化するまでは、インバータ80cの出力信号SLIVE0はLレベルであり、このゲート回路80dの出力信号SLIVEは、Lレベルを維持する。基準電圧Vrefsが安定化するとインバータ80cの出力信号SLIVE0がHレベルとなり、再びゲート回路80dの出力信号SLIVEがHレベルとなる。
【0194】
ここで、ゲート回路80dは、外部電源電圧EXVDDを動作電源電圧として受け、ディープパワーダウンモード中においても、その出力信号SLIVEをパワーカットイネーブル信号PCUTeに従ってHレベルに保持する。
【0195】
図17は、図16に示す安定化検出回路80の動作を示す信号波形図である。以下、図17を参照して、図16に示す安定化検出回路の動作について説明する。
【0196】
通常動作モード時においてはパワーカットイネーブル信号PCUTeはLレベルである。この状態においては、参照電圧Vrefs0はたとえば2.0Vの所定の電圧レベルに保持され、また基準電圧Vrefsも参照電圧Vrefs0と同じ電圧レベルにある。この状態においては、インバータ80aの出力ノードND30は、接地電圧レベルであり、MOSトランジスタNQ14がオン状態、MOSトランジスタNQ11がオフ状態であり、ノードND32は、接地電圧レベルに維持される。したがって、この状態においては、インバータ80cの出力信号SLIVE0はHレベルであり、応じてゲート回路80dの出力信号SLIVEもHレベルである。
【0197】
ディープパワーダウンモード(DPD)が設定され、パワーカットイネーブル信号PCUTeがHレベルに立上がると、図17に示すように、参照電圧Vrefs0の電圧レベルが、外部電源電圧EXVDDレベルに上昇する。一方、基準電圧Vrefsは、図15に示すMOSトランジスタ75により、接地電圧レベルに固定される。アナログバッファ104は、MOSトランジスタ104aがオフ状態であり、電流経路が遮断されて、非活性状態となる。
【0198】
基準電圧VrefsがLレベルとなると、図16において、インバータ80aのノードND30の電圧レベルは、外部電源電圧EXVDDレベルとなる。このノードND30の電圧レベルの立上りに従って、MOSトランジスタNQ11がオン状態となり、ノードND31が接地電圧レベルへ放電される。このノードND31が接地電圧レベルへ駆動されると、ラッチ回路80bにおいてMOSトランジスタPQ12がオン状態となり、ノードND32の電圧レベルが外部電源電圧EXVDDレベルにプルアップされる。
【0199】
また、このノードND32のプルアップ動作により、ノードND31は、MOSトランジスタNQ12により、接地電圧レベルにプルダウンされる。ノードND32が、MOSトランジスタPQ11およびPQ12により外部電源電圧EXVDDレベルに駆動されると、インバータ80cの出力信号SLIVE0はLレベルとなる。一方、パワーカットイネーブル信号PCUTeはHレベルにあり、ゲート回路80dの出力信号はHレベルを維持する。ディープパワーダウンモードの間、この状態が維持される。
【0200】
ディープパワーダウンモードを解除するパワーダウンモードイグジットコマンドが与えられると、パワーカットイネーブル信号PCUTeがLレベルとなる。このとき、インバータ80cの出力信号SLIVE0はLレベルであり、ゲート回路80dの出力信号SLIVEがLレベルに立下がる。この検出信号SLIVEがLレベルに立下がると、アナログバッファ104(図15参照)において、MOSトランジスタ104gがオン状態となり、このアナログバッファ104の動作電流が増大され、参照電圧Vref0に従って基準電圧Vref(Vrefs,Vrefd)が生成される。
【0201】
また、参照電圧発生回路102においては、パワーカットイネーブル信号PCUTeがLレベルであり、MOSトランジスタ102bがオン状態となり、ノードND20からの参照電圧Vref0(Vrefs0)が通常の電圧レベルに高速で到達する(定電流源が動作しているため)。この参照電圧Vrefs0が所定電圧レベルに到達すると、この参照電圧Vref0に従って基準電圧Vrefが生成される。このときには、既に、図14に示すMOSトランジスタ75はオフ状態であり、アナログバッファ104により、基準電圧Vrefs(Vref)の電圧レベルが上昇する。この基準電圧Vrefsの電圧レベルの上昇に従って、MOSトランジスタNQ10のコンダクタンスが増大し、MOSトランジスタPQ10のコンダクタンスが低下する。この基準電圧Vrefsが、図16に示すMOSトランジスタNQ10のしきい値電圧を超えると、MOSトランジスタNQ10が導通状態となり、ノードND30の電圧レベルを低下させる。
【0202】
ラッチ回路80bにおいてMOSトランジスタNQ14のコンダクタンスは増加し、ノードND32の電圧レベルを低下させる。基準電圧Vrefsが所定電圧レベル以上となると、MOSトランジスタNQ11のコンダクタンスよりもMOSトランジスタNQ14のコンダクタンスが大きくなり、ノードND32が、接地電圧レベルに駆動されて、ラッチ回路80bのラッチ状態が反転する。このラッチ回路80bのラッチ状態が反転すると、ノードND32が接地電圧レベル、ノードND31が外部電源電圧EXVDDレベルとなる。応じて、インバータ80cの出力信号SLIVE0がHレベルとなり、応じてゲート回路80dの出力信号SLIVEがHレベルに立上がる。これにより、アナログバッファ104において、MOSトランジスタ104gがオフ状態となり、アナログバッファ104の駆動電流量が低減される。このときには、基準電圧Vrefsの電圧レベルは十分に上昇しており、高速で、アナログバッファの出力信号を所定電圧レベルに駆動することができる。
【0203】
外部電源電圧EXVDDの投入時においては、参照電圧Vrefs0が、接地電位レベルから所定の電圧レベル(たとえば2.0V)に上昇する点を除いて、図17に示すディープパワーダウンモードイグジット(DPDイグジットモード)時の動作と同様の動作が、安定化検出回路80において行なわれる。これにより、外部電源電圧投入時においても、基準電圧Vrefs,VrefdおよびVrefpを高速で安定状態へ駆動することができる。
【0204】
上述の安定化検出回路の構成においては、アレイ電源電圧のための基準電圧Vrefsと参照電圧Vrefs0を用いて、基準電圧の安定化を検出している。しかしながら、この安定化検出のために用いられる基準電圧としては、他の電圧が用いられてもよい。たとえば、基準電圧Vrefpが用いられてもよい。周辺電源電圧用の基準電圧Vrefpは、ディープパワーダウンモード時においても、コマンド受付のために制御回路を動作させる必要があり、このディープパワーダウンモード時においても所定電圧レベルに維持されるため、この安定化検出には用いられない。
【0205】
以上のように、この発明の実施の形態7に従えば、所定の基準電圧と対応の参照電圧との電圧関係に従って基準電圧が安定化されたかを判定し、その判定結果に従って基準電圧を生成するアナログバッファの動作電流を調整しており、外部電源電圧投入時およびディープパワーダウンモードイジェクト時において高速で基準電圧を所定電圧レベルに駆動でき、応じて内部電圧を高速で所定の安定状態へ駆動することができる。
【0206】
[実施の形態8]
図18は、この発明の実施の形態8に従う安定化検出回路80の構成を示す図である。この図18に示す安定化検出回路80の構成においては、インバータ80aの出力信号をゲートに受けるMOSトランジスタNQ11と直列に、パワーカットイネーブル信号PCUTeをインバータ80eを介して受けるNチャネルMOSトランジスタNQ15が設けられる。この図18に示す安定化検出回路80の他の構成は、図16に示す回路の構成と同じであり、対応する部分には同一参照番号を付し、その詳細説明は省略する。
【0207】
この図18に示す安定化検出回路80の構成において、通常動作モード時において、パワーカットイネーブル信号PCUTeはLレベルであり、インバータ80eの出力信号はHレベルとなり、MOSトランジスタNQ15がオン状態となる。参照電圧Vrefs0および基準電圧Vrefsはともに、所定の電圧レベルにあり、ノードND30は接地電圧レベルに保持される。したがって、MOSトランジスタNQ11がオフ状態、MOSトランジスタNQ14がオン状態であり、このラッチ回路80bは、ノードND32をLレベル、ノードND31をHレベルにラッチする。
【0208】
ディープパワーダウンモードが設定されたとき、パワーカットイネーブル信号PCUTeがHレベルとなり、応じてインバータ80eの出力信号がLレベルとなる。このディープパワーダウンモード時において、基準電圧Vrefsが接地電圧レベルのLレベルとなり、ノードND30は、参照電圧Vrefs0の電圧レベルとなる。この状態において、MOSトランジスタNQ11がオン状態となっても、MOSトランジスタNQ15がオフ状態であり、ラッチ回路30bは、図19の信号波形図に示すように、このパワーカットイネーブル信号PCUTeがHレベルに立上がる直前の状態を維持している。
【0209】
ディープパワーダウンモード時において、MOSトランジスタNQ14およびNQ15がともにオフ状態となり、このMOSトランジスタPQ11およびPQ12およびNQ12およびNQ13は、それぞれ、ラッチ状態にあり、貫通電流は生じない。したがって、このディープパワーダウンモード時においてラッチ回路80bにおける貫通電流を低減でき、ディープパワーダウンモード時の消費電流をより低減することができる。
【0210】
ディープパワーダウンモードが解除されると、パワーカットイネーブル信号PCUTeがLレベルとなり、MOSトランジスタNQ15がオン状態となる。この状態において、基準電圧Vrefsが、接地電圧レベルであり、また参照電圧Vrefs0が、所定の電圧レベル(たとえば2.0V)であり、ラッチ回路80bのラッチ状態が反転し、ノードND32の電圧レベルが外部電源電圧EXVDDレベルとなり、応じてインバータ80cの出力信号SLIVE0がLレベルとなる。応じて、ゲート回路80dからの検出信号SLIVEがLレベルとなる。
【0211】
したがって、この図18に示すように、ディープパワーダウンモード時オン状態となるMOSトランジスタと直列にパワーカットイネーブル信号に従ってオフ状態となるMOSトランジスタをラッチ回路内に設けることにより、ディープパワーダウンモード時のラッチ回路の貫通電流を低減することができ、消費電流を低減することができる。
【0212】
[実施の形態9]
図20は、この発明の実施の形態9に従う安定化検出回路80の構成を示す図である。図20においては、ノードND32と接地ノードの間に、互いに、NチャネルMOSトランジスタNQ16およびNQ17が設けられる。これらのMOSトランジスタNQ16およびNQ17は、導通時、MOSトランジスタNQ14と並列の放電経路を形成する。図20に示す安定化検出回路の他の構成は、図18に示す安定化検出回路の構成と同じであり、対応する部分には同一参照番号を付し、その詳細説明は省略する。
【0213】
MOSトランジスタNQ16のゲートへは、基準電圧Vrefsが与えられ、MOSトランジスタNQ17のゲートへは、外部電源電圧EXVDDの電圧レベルを指定するモード設定信号/MOD2.5が与えられる。このモード設定信号/MOD2.5は、図12に示す回路から生成されるモード設定信号MOD2.5と相補な信号である。すなわち、外部電源電圧EXVDDが、2.5Vに設定される場合には、このモード設定信号/MOD2.5はLレベルに設定され、外部電源電圧EXVDDが3.3Vに設定される場合には、モード設定信号/MOD2.5がHレベルに設定される。
【0214】
基準電圧Vrefsが接地電圧レベルからその電圧レベルが上昇すると、ノードND32のディープパワーダウンモード時のHレベルが接地電圧レベルへ放電される。このノードND32の電圧レベルが、インバータ80cの入力論理しきい値を超えて低下すると、インバータ80cの出力信号SLIVE0はHレベルとなる。したがって、このインバータ80cの出力信号SLIVE0がHレベルに立上がるタイミング(時間)は、外部電源電圧EXVDDに依存する。したがって、外部電源電圧EXVDDが2.5Vのときには、モード設定信号/MOD2.5をLレベルに設定して、MOSトランジスタNQ17をオフ状態とする。ノードND32は、MOSトランジスタNQ14のみで放電される。
【0215】
一方、外部電源電圧EXVDDが、たとえば3.3Vの場合には、モード設定信号/MOD2.5をHレベルに設定し、このノードND32を、MOSトランジスタNQ14およびNQ16により放電する。これにより、外部電源電圧EXVDDがたとえば3.3Vと高い電圧レベルであっても、高速でノードND32を放電することができ、電源電圧EXVDDの電圧レベルにかかわらず、ほぼ同じパルス幅の、検出信号SLIVEを生成することができる。この結果、外部電源電圧EXVDDの電圧レベルにかかわらず、基準電圧Vrefsの電圧レベルに応じて、検出信号SLIVEを所定期間活性化することができる。
【0216】
以上のように、この発明の実施の形態9に従えば、基準電圧が所定電圧レベルに到達したかを検出する検出回路において、ラッチノードの放電トランジスタのサイズ(チャネル長とチャネル幅の比)を外部電源電圧の電圧レベルに応じて変更しており、外部電源電圧の電圧レベルにかかわらず、ほぼ同じ活性化期間を有する検出信号SLIVEを生成することができる。
【0217】
なお、図20に示す構成においては、外部電源電圧EXVDDが2.5Vのときと外部電源電圧EXVDDが3.3Vのときに、ノードND32の駆動トランジスタのサイズが、1対2に設定されている。しかしながら、この駆動力の比は、1対2の整数比ではなく、たとえば1対1.5のように設定されてもよい。例えば、単位トランジスタを2個、MOSトランジスタNQ14を構成するために用い、MOSトランジスタNQ14を3個の単位トランジスタで構成する。これにより、駆動力の比2対3を実現することができる。
【0218】
以上のように、この発明の実施の形態9に従えば、外部電源電圧の電圧レベルに応じて安定化検出信号を生成するラッチ回路のラッチノードの駆動力を変更しており、外部電源電圧の電圧レベルにかかわらず、所定の時間幅の検出信号を生成して、所定の期間、基準電圧を発生するアナログバッファの動作電流を増大させることができる。
【0219】
なお、上述の実施の形態1から9においては、半導体記憶装置の内部電源電圧を安定に発生するための構成について説明している。半導体記憶装置としては、外部電源電圧から複数種類の内部電圧を生成し、かつ特定動作モード時所定の内部電圧の生成を停止する動作モードを有する半導体記憶装置であれば本発明は適用可能である。
【0220】
【発明の効果】
以上のように、この発明に従えば、ディープパワーダウンモードを有する半導体装置において、内部電圧立上げ時において確実にかつ高速で内部電圧を発生することができる。
【0221】
すなわち、第2の電源制御信号に従って第1の電源電圧を発生する電源回路に対し、この第2の電源制御信号を発生するレベル変換回路の出力信号を、初期化回路により第2の電源電圧投入時、所定電圧レベルに設定しており、第2の電源電圧投入時においても確実に、第2の電源制御信号を所定電圧レベルに初期化することができ、第1の電源電圧を安定に発生することができる。
【0222】
この初期化回路として、レベル変換回路の出力ノードに接続される容量素子を用いることにより、容易に、電源投入時の不安定な状態時においても確実に容量結合により、所定の電圧レベルにこのレベル変換回路の出力ノードを設定することができる。
【0223】
また、この初期化回路を、第2の電源電圧を動作電源電圧として受けて、レベル変換回路の出力ノードの電圧をラッチしかつ転送する回路で構成することにより、確実に、レベル変換回路の出力ノードを容易に所定電圧レベルに初期設定することができる。
【0224】
また、この初期化回路として、第2の電源電圧の投入を検出する電源投入検出回路と、この電源投入検出回路の出力信号とレベル変換回路の出力信号とに従って第2の電源制御信号を生成する論理回路とで構成することにより、仮にレベル変換回路の出力ノードの電圧レベルが不定状態となっても、確実に、電源投入検出信号により、第2の電流制御信号を初期状態に設定することができ、確実に、電源回路において第1の電源電圧を生成することができる。
【0225】
また、電源制御信号のレベル変換を行なうレベル変換回路の出力信号をバッファ処理するバッファ回路により、第1の電源電圧を供給する電源ノードを第2の電源電圧を伝達する電源線に電気的に結合することにより、レベル変換回路の内部ノードの電圧の不定状態により、動作制御信号が不安定な場合には、その不安定な状態に従って、バッファ制御信号を生成して、第2の電源電圧として第1の電源電圧を供給することができる。これにより、この第1の電源電圧に従って内部回路が動作制御信号を生成することができ、応じて、このレベル変換回路の不定状態を、容易に解除して、安定に内部電源電圧を生成することができる。
【0226】
このスイッチ回路としてPチャネルの絶縁ゲート型電界効果トランジスタを用いることにより、レベル変換回路の内部ノードの電圧レベルが浮上がった場合でも、論理回路により、その浮上がった電圧を反転して、スイッチトランジスタを導通状態として、第1の電源電圧を第2の電源電圧伝達線に伝達することができる。
【0227】
また、内部電圧発生回路において、レベル変換回路からの特定の動作制御信号に従って基準電圧を生成する基準電圧発生回路を選択的に活性化することにより、容易に、この特定の動作制御信号に従って内部電圧の発生を停止させることができる。また、この内部電圧発生動作停止時においては、スイッチ回路により、第1の電源電圧を第2の電源電圧伝達線に伝達することにより、内部回路を動作させることができ、応じて。特定動作制御信号を初期化して、内部電圧発生を行うことができる。
【0228】
また、内部電圧発生回路の活性/非活性を制御する動作制御信号をレベル変換するレベル変換回路の出力信号と独立に、第1の内部電源回路を動作させて内部電源電圧を生成して第1の内部回路を動作させて、特定動作制御信号を初期化することにより、レベル変換回路の出力ノードの電圧レベルが不定状態となり、特定の動作制御信号が活性状態となる状態に設定されても、第1の内部電源回路をこのレベル変換された特定動作制御信号とは独立に動作させることにより、第1の内部回路に対する電源電圧を生成して第1の内部回路を動作させて特定動作制御信号を初期設定して、レベル変換回路の出力信号の不定状態を解放することができる。これにより、他の内部電源電圧発生回路を確実に動作させて、内部電圧を生成することができる。
【0229】
この特定の動作制御信号と独立に動作する第1の内部電源回路を、スタンバイ状態時において少なくとも動作して第1の電源電圧から第2の電源電圧を生成する回路で構成することにより、不必要に、電源投入時に、電流が消費されるのを防止することができる。
【0230】
また、この第1の内部電源回路を、活性化時、定電流源からの定電流に従って基準電圧を生成する基準電圧生成回路の出力ノードを、レベル変換回路の出力する特定動作制御信号に従って定電流源の活性化と相補的に、第1の電源電圧供給ノードに結合するとともに、この基準電圧出力ノードの電圧と内部電源線との電圧に従って内部電源線上に電流を供給して第2の電源電圧を生成する様に構成することにより、容易に、この特定動作制御信号が活性化されたときに、第1の電源電圧に従って第2の電源電圧を生成し、応じて高速で、第1の内部回路へ動作電源電圧を供給して、第1の内部回路を初期設定して、動作制御信号を非活性化することができる。
【0231】
この基準電圧出力ノードを第1の電源電圧を伝達する電源線に結合するスイッチ回路として、レベル変換回路の出力する特定動作制御信号に従って選択的に導通するNチャネルMOSトランジスタで構成することにより、この基準電圧を、第1の電源電圧からこのMOSトランジスタのしきい値電圧だけ低い電圧に設定することができ、必要以上に高い電圧が、内部回路に伝達されるのを防止することができる。
【0232】
また、これに代えて、このスイッチ回路として、レベル変換回路の出力信号に応答するPチャネルMOSトランジスタを利用することにより、そのしきい値電圧損失を伴うことなく、基準電圧レベルを、第1の電源電圧レベルに設定することができ、高速で、第2の電源電圧を上昇させて、内部回路に対する動作制御信号を生成して第1の内部回路を初期設定することができる。
【0233】
また、第1および第2のモードを指定するモード指示信号とレベル変換回路の出力信号とに従って有効動作制御信号を生成し、この有効動作制御信号に従って選択的に内部電源回路の生成する電源電圧レベルを変更することにより、このレベル変換回路の出力信号が不定状態となった場合においても、このモード指示信号に従って有効動作制御信号を非活性状態に保持することにより、レベル変換回路の出力信号と独立に、内部電源回路を動作させることができ、レベル変換回路が電源投入時不定状態となっても、その影響を受けることなく正確に、内部電源電圧を生成することができる。
【0234】
また、第1のモードのときには、レベル変換回路の出力信号に従って有効動作制御信号を選択的に活性化し、このモード指示信号が第2のモードを指定するときには、レベル変換回路の出力信号の論理レベルにかかわらず内部電源回路を常時活性状態とすることにより、第2のモード時においては、たとえレベル変換回路が不定状態となっても安定に内部電源回路を生成することができる。また、第1のモード時においては、第1の電源電圧から第2の電源電圧を生成しており、たとえレベル変換回路が不定状態となっても、内部電源回路は、正確に、所望の電圧レベルの内部電源電圧を生成でき、応じて、内部回路を動作させてレベル変換回路を初期設定することができる。
【0235】
また、動作モード指示信号の活性化時、第1の基準電圧発生回路の出力ノードの電圧を所定電圧レベルに固定し、この動作モード指示信号の非活性化時、この第1の基準電圧とこれに対応する第1の参照電圧とに従ってこの第1の基準電圧レベルを検出し、このレベル検出信号に従って電源制御信号を生成し、この電源制御信号に従って各基準電圧発生回路の電流駆動力を増大させることにより、内部電源発生時、正確に、第1の基準電圧が所定電圧レベルに到達するまで、これらの基準電圧発生回路の電流駆動力を増大させることができ、高速で内部電圧を安定状態へ駆動することができる。
【0236】
また、基準電圧レベル検出回路を、第1の参照電圧を動作電源電圧として受け、第1の基準電圧入力信号として受けるインバータと、このインバータの入出力信号に従ってそのラッチノードの状態が変化するラッチ回路と、このラッチ回路の出力信号をバッファ処理するバッファ回路とで構成することにより、確実に、この基準電圧が所定電圧レベルに到達したかを検出することができる。
【0237】
また、この基準電圧レベル検出回路の出力信号を、ラッチするラッチ回路を設けることにより、基準電圧レベル検出結果に従って高速でラッチ回路の出力信号を変化させることができ、また、このラッチ回路のラッチ状態において、貫通電流が生じるのを防止することができ、消費電流を低減することができる。
【0238】
また、この基準電圧レベル検出回路を、第1の参照電圧を動作電源電圧として受け第1の基準電圧は入力信号として受けるインバータと、このインバータの入出力信号に従ってラッチ回路のラッチノードの電圧を相補的に設定する第1および第2の電圧設定素子と、このラッチ回路の第2のラッチ回路の出力信号をバッファ処理するバッファ回路とで構成することにより、正確にかつ高速で、基準電圧と参照電圧との関係に従って基準電圧レベルが所定電圧レベルに到達したかを検出することができ、正確な基準電圧レベルの検出を行なうことができる。また、インバータの相補な入出力信号で、ラッチ回路の相補ラッチノードを駆動することにより、高速で、このインバータの入出力信号に従ってラッチ回路のラッチ状態を設定でき、インバータの入出力信号に従って高速で基準電圧の電圧レベルの検出を行なうことができる。
【0239】
また、この基準電圧レベル検出回路において、ラッチ回路のラッチノードの電圧レベルをインバータの出力信号に従って設定する第1の電圧発生素子の電圧設定動作を、動作モード指示信号に従って禁止することにより、ラッチ回路を動作モード指示信号の活性状態の間ラッチ状態に維持することができ、このラッチ回路から第1の電圧設定素子を介して流れる貫通電流を防止することができ、この動作モード指示信号が設定する動作モード時における消費電流を低減することができる。
【0240】
また、ラッチ回路の出力ノードの電圧をインバータの入力信号に従って設定する第2の電圧設定素子を、その電流駆動力が、第1の電源電圧のレベルに従って変更されるトランジスタで構成することにより、第1の電源電圧のレベルが変更される場合においても、正確に、バッファ回路の出力信号の活性期間を実質的に一定値に設定することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に従うパワーカットイネーブル信号発生部の構成を示す図である。
【図2】 図1に示す回路の動作を示す信号波形図である。
【図3】 この発明の実施の形態2に従う内部電圧発生回路の要部の構成を概略的に示す図である。
【図4】 図3に示す回路の動作を示す信号波形図である。
【図5】 この発明の実施の形態3に従う内部電圧発生回路の構成を概略的に示す図である。
【図6】 この発明の実施の形態3の変更例の構成を概略的に示す図である。
【図7】 この発明の実施の形態4に従う内部電圧発生回路の構成を概略的に示す図である。
【図8】 この発明の実施の形態4の変更例を概略的に示す図である。
【図9】 この発明の実施の形態5に従うパワーカットイネーブル信号発生部の構成を概略的に示す図である。
【図10】 図9に示す回路の動作を示す信号波形図である。
【図11】 この発明の実施の形態6に従う内部電圧発生回路の構成を概略的に示す図である。
【図12】 図11に示すモード設定回路の構成の一例を示す図である。
【図13】 図11に示す周辺電源回路内のスタンバイ電源回路の構成の一例を示す図である。
【図14】 この発明の実施の形態7に従う内部電圧発生回路の構成を概略的に示す図である。
【図15】 図14に示す基準電圧発生回路の構成の一例を示す図である。
【図16】 図14に示す安定化検出回路の構成の一例を示す図である。
【図17】 図16に示す安定化検出回路の動作を示す信号波形図である。
【図18】 この発明の実施の形態8に従う安定化検出回路の構成を示す図である。
【図19】 図18に示す安定化検出回路の動作を示す信号波形図である。
【図20】 この発明の実施の形態9に従う安定化検出回路の構成を示す図である。
【図21】 従来の半導体記憶装置のアレイ部の構成を概略的に示す図である。
【図22】 従来の半導体記憶装置の全体の構成を概略的に示す図である。
【図23】 図22に示す内部電圧発生回路の構成を概略的に示す図である。
【図24】 図23に示す周辺電源回路の構成の一例を示す図である。
【図25】 従来の電源制御部の構成を概略的に示す図である。
【図26】 図25に示すレベル変換回路の構成の一例を示す図である。
【図27】 図26に示すレベル変換回路の動作を示す信号波形図である。
【図28】 図26に示すレベル変換回路の動作を示す信号波形図である。
【図29】 図23に示す周辺電源電圧用の基準電圧発生回路の構成を示す図である。
【図30】 図23に示す他の基準電圧発生回路の構成を示す図である。
【図31】 図29および30に示す電源投入検出信号を生成する部分の構成を概略的に示す図である。
【符号の説明】
1,2 容量素子、3 インバータ、4 MOSトランジスタ、5 NORゲート、15 インバータ、17 MOSトランジスタ、20 DPD電源回路、24 DPD制御回路、22 周辺電源回路、22a スタンバイ電源回路、22b アクティブ電源回路、32 インバータ、34 MOSトランジスタ、40 電源投入検出回路、42 AND回路、50 モード設定回路、52 AND回路、67,69 MOSトランジスタ、68 インバータ、70 メタル配線、75 MOSトランジスタ、80 安定化検出回路、102 参照電圧発生回路、104 アナログバッファ、80a インバータ、80b ラッチ回路、80c インバータ、80d ゲート回路、80e インバータ、NQ10−NQ17 MOSトランジスタ、PQ10−PQ12 PチャネルMOSトランジスタ、900 内部電圧発生回路、904 制御回路、950 定電流源、951,952,953 基準電圧発生回路、954 負電圧発生回路、955 高電圧発生回路、956 周辺電源回路、956a アクティブ電源回路、956b スタンバイ電源回路、957 アレイ電源回路、957a アクティブ電源回路、957b スタンバイ電流回路、958 セルプレート電圧発生回路、959 プリチャージ電圧発生回路、960 レベル変換回路。

Claims (20)

  1. 第1の電源電圧を動作電源電圧として受け、動作モード指示に従って第1の電源制御信号を生成する制御回路、
    前記第1の電源制御信号を第2の電源電圧レベルの振幅の第2の電源制御信号に変換して出力するためのレベル変換回路、
    前記レベル変換回路の出力信号を前記第2の電源電圧投入時に所定の電圧レベルに設定するための初期化回路、および
    前記第2の電源制御信号に従って選択的に活性化され、活性化時、前記第2の電源電圧から前記第1の電源電圧を生成する電源回路を備える、半導体装置。
  2. 前記レベル変換回路は相補信号を生成する第1および第2の出力ノードを有し、
    前記初期化回路は、
    前記レベル変換回路の前記第1の出力ノードと前記第2の電源電圧を供給する電源ノードとの間に接続される第1の容量素子と前期第2の出力ノードと前記第2の電源電圧と極性の異なる電圧を供給する参照ノードとの間に接続される第2の容量素子の少なくとも一方を備える、請求項1記載の半導体装置。
  3. 前記初期化回路は、
    前記第2の電源電圧を動作電源電圧として受け、前記レベル変換回路の出力ノードの電圧をラッチしかつ転送するラッチ回路を備える、請求項1記載の半導体装置。
  4. 前記初期化回路は、
    前記第2の電源電圧の投入を検出する電源投入検出回路と、
    前記電源投入検出回路の出力信号と前記レベル変換回路の出力信号とを受けて前記第2の電源制御信号を生成する論理回路を備える、請求項1記載の半導体装置。
  5. 第1の電源電圧を受け、前記第1の電源電圧から第2の電源電圧を生成する内部電圧発生回路、
    前記第2の電源電圧を動作電源電圧として受け、外部からの動作モード指示に従って内部動作制御信号を生成する内部回路、
    前記内部回路からの所定の内部動作制御信号の振幅を前記第1の電源電圧レベルの振幅に変換して特定動作制御信号を生成するレベル変換回路、
    前記第1の電源電圧を動作電源電圧として受け、前記特定動作制御信号に論理処理を施してバッファ制御信号を生成する論理回路、および
    前記論理回路の出力するバッファ制御信号に従って、前記第2の電源電圧を伝達する電源線を前記第1の電源電圧を供給する電源ノードに結合するスイッチ回路を備える、半導体装置。
  6. 前記スイッチ回路は、Pチャネルの絶縁ゲート型電界効果トランジスタである、請求項5記載の半導体装置。
  7. 前記内部電圧発生回路は、
    前記特定動作制御信号に応答して選択的に活性化され、活性化時、前記第1の電源電圧から所定の電圧レベルの基準電圧を生成する基準電圧発生回路と、
    前記基準電圧と前記第2の電源電圧とを比較し、該比較結果に従って前記第1の電源電圧を供給する電源ノードから前記第2の電源電圧を伝達する電源線との間に電流を流す内部電源回路とを備える、請求項5記載の半導体装置。
  8. 第1の電源電圧から第2の電源電圧を生成する第1の内部電源回路、
    前記第2の電源電圧を動作電源電圧として受け、与えられた動作モード指示信号に従って動作制御信号を生成する第1の内部回路、
    前記第1の電源電圧を動作電源電圧として受け、前記第1の内部回路からの特定の動作制御信号を前記第1の電源電圧レベルの振幅の信号に変換するレベル変換回路、および
    前記レベル変換回路の出力信号に従って選択的に活性化され、活性化時、前記第1の電源電圧から前記第2の電源電圧と異なる内部電圧を生成する内部電圧発生回路を備え、前記第1の内部電源回路は、前記レベル変換回路の出力信号と独立に動作をする、半導体装置。
  9. 前記第1の内部電源回路は、少なくとも前記半導体装置のスタンバイ状態において動作して前記第1の電源電圧から前記第2の電源電圧を生成する、請求項8記載の半導体装置。
  10. 前記第1の内部電源回路は、
    前記レベル変換回路の出力信号に従って選択的に活性化され、活性化時、一定の電流を生成する定電流源と、
    前記定電流源の生成する定電流を電圧に変換して基準電圧を生成する電流/電圧変換回路と、
    前記レベル変換回路の出力信号に従って前記定電流源と相補的に活性化され、活性化時、前記電流/電圧変換回路の出力ノードを前記第1の電源電圧を供給する電源ノードに結合するスイッチ回路と、
    前記電流/電圧変換回路の出力ノードの電圧と前記第2の電源電圧を伝達する電源線の電圧とを比較し、該比較結果に従って前記電源線と前記第1の電源電圧を供給する電源ノードとの間で電流を流す内部電源回路とを備える、請求項9記載の半導体装置。
  11. 前記スイッチ回路は、前記電源ノードと前記電流/電圧変換回路の出力ノードとの間に接続され、そのゲートに前記レベル変換回路の出力信号を受けるNチャネル絶縁ゲート型電界効果トランジスタを備える、請求項10記載の半導体装置。
  12. 前記スイッチ回路は、前記レベル変換回路の出力信号に応答して選択的に導通し、導通時、前記電源ノードと前記電流/電圧変換回路の出力ノードとを電気的に接続するPチャネル絶縁ゲート型電界効果トランジスタを備える、請求項10記載の半導体装置。
  13. 内部電源線上の電圧を動作電源電圧として受け、動作モード指示信号に従って内部動作制御信号を生成する内部制御回路、
    前記内部制御回路からの特定の動作指示信号を第1の電源電圧レベルの振幅の信号に変換するレベル変換回路、
    前記レベル変換回路の出力信号と第1および第2のモードの一方を指定するモード指示信号とに従って有効動作制御信号を生成するモード制御回路、および
    前記モード制御回路からの有効動作制御信号に応答して選択的に活性化され、活性化時、前記第1のモードにおいては、前記第1の電源電圧から第2の電源電圧を前記内部電源線上に生成し、かつ前記第2のモードにおいては、前記第1の電源電圧に対応する電圧を前記内部電源線に生成する内部電源回路を備える、半導体装置。
  14. 前記モード制御回路は、
    前記モード指示信号が第1のモードを指定するときには、前記レベル変換回路の出力信号に従って前記有効動作制御信号を選択的に活性化し、前記モード指示信号が前記第2のモードを指定するときには、前記レベル変換回路の出力信号に関わらず、前記内部電源回路を常時活性状態とする論理レベルに前記有効動作制御信号を設定する、請求項13記載の半導体装置。
  15. 動作モード指示信号に応答して選択的に活性化され、活性化時、第1の電源電圧から第1の参照電圧を生成するための第1の参照電圧発生回路、
    前記第1の電源電圧を動作電源電圧として受け、前記第1の参照電圧に従って前記第1の参照電圧に対応する電圧レベルの第1の基準電圧を生成する第1の基準電圧発生回路、
    前記動作モード指示信号に応答して選択的に活性化され、活性化時、前記第1の電源電圧から第2の参照電圧を生成する第2の参照電圧発生回路、
    前記第1の電源電圧を動作電源電圧として受け、前記第2の参照電圧に従って前記第2の参照電圧に対応する電圧レベルの第2の基準電圧を生成する第2の基準電圧発生回路、
    前記第1の参照電圧と前記第1の基準電圧と電圧関係に基づいて前記第1の基準電圧が所定電圧レベルに到達したことを検出する基準電圧レベル検出回路、
    前記基準電圧レベル検出回路の出力信号と前記動作モード指示信号とに従って電源制御信号を生成する電源制御回路、
    前記第1の基準電圧発生回路に配置され、前記電源制御信号に応答して、前記第1の基準電圧発生回路の電流駆動力を増大させるための第1の補助回路、
    前記第2の基準電圧発生回路に配置され、前記電源制御信号に応答して、前記第2の基準電圧発生回路の電流駆動力を増大させるための第2の補助回路、および
    前記動作モード指示信号に応答して、前記第1の基準電圧発生回路の出力ノードを所定電圧レベルに固定するための電圧固定回路を備える、半導体装置。
  16. 前記基準電圧レベル検出回路は、
    前記第1の参照電圧を動作電源電圧として受け、かつ前記第1の基準電圧を入力信号として受けるインバータ回路と、
    ラッチノードを有し、前記インバータ回路の入出力信号に従って前記ラッチノードの信号の論理レベルが変化するラッチ回路と、
    前記ラッチ回路の出力信号をバッファ処理して出力するバッファ回路を備える、請求項15記載の半導体装置。
  17. 前記基準電圧レベル検出回路は、前記動作モード指示信号に応答して、前記基準電圧レベル検出回路の出力信号を保持するためのラッチ回路を備える、請求項15記載の半導体装置。
  18. 前記基準電圧レベル検出回路は、
    前記第1の参照電圧を動作電源電圧として受け、前記第1の基準電圧を入力信号として受けるインバータ回路と、
    前記第1の電源電圧を動作電源電圧として受け、相補信号を第1および第2のラッチノードに生成するラッチ回路と、
    前記インバータ回路の出力信号に従って、前記第1のラッチノードを第1の電圧レベルに駆動するための第1の電圧設定素子と、
    前記第1の基準電圧に従って前記ラッチ回路の前記第2のラッチノードの電圧を前記第1の電圧レベルに駆動するための第2の電圧設定素子と、
    前記ラッチ回路の出力信号をバッファ処理して出力するバッファ回路とを備える、請求項15記載の半導体装置。
  19. 前記基準電圧レベル検出回路は、さらに、前記動作モード指示信号の活性化時、前記第1の電圧設定素子の電圧設定動作を禁止する禁止回路を備える、請求項18記載の半導体装置。
  20. 前記第2の電圧設定素子は、前記第1の電源電圧のレベルに従って、その電流駆動力が変更されるトランジスタ素子を備える、請求項18または19記載の半導体装置。
JP2001331396A 2001-10-29 2001-10-29 半導体装置 Expired - Lifetime JP3850264B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001331396A JP3850264B2 (ja) 2001-10-29 2001-10-29 半導体装置
TW091117297A TW557564B (en) 2001-10-29 2002-08-01 Semiconductor device
US10/211,289 US6717460B2 (en) 2001-10-29 2002-08-05 Semiconductor device
KR10-2002-0046226A KR100467252B1 (ko) 2001-10-29 2002-08-06 반도체 장치
DE10236192A DE10236192A1 (de) 2001-10-29 2002-08-07 Halbleitereinrichtung
CNB021282617A CN1248234C (zh) 2001-10-29 2002-08-07 半导体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331396A JP3850264B2 (ja) 2001-10-29 2001-10-29 半導体装置

Publications (2)

Publication Number Publication Date
JP2003133935A JP2003133935A (ja) 2003-05-09
JP3850264B2 true JP3850264B2 (ja) 2006-11-29

Family

ID=19146982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331396A Expired - Lifetime JP3850264B2 (ja) 2001-10-29 2001-10-29 半導体装置

Country Status (6)

Country Link
US (1) US6717460B2 (ja)
JP (1) JP3850264B2 (ja)
KR (1) KR100467252B1 (ja)
CN (1) CN1248234C (ja)
DE (1) DE10236192A1 (ja)
TW (1) TW557564B (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100543659B1 (ko) * 2003-06-20 2006-01-20 주식회사 하이닉스반도체 내부전압 생성용 액티브 드라이버
KR100557996B1 (ko) * 2003-08-12 2006-03-06 삼성전자주식회사 반도체 메모리 장치
JP2005135484A (ja) * 2003-10-29 2005-05-26 Renesas Technology Corp 半導体装置
KR100591759B1 (ko) * 2003-12-03 2006-06-22 삼성전자주식회사 반도체 메모리의 전원 공급장치
KR100650816B1 (ko) * 2004-02-19 2006-11-27 주식회사 하이닉스반도체 내부 회로 보호 장치
JP4522125B2 (ja) * 2004-03-31 2010-08-11 三洋電機株式会社 基準電圧発生回路
KR100529386B1 (ko) * 2004-04-27 2005-11-17 주식회사 하이닉스반도체 래치-업 방지용 클램프를 구비한 반도체 메모리 소자
JP4502767B2 (ja) * 2004-09-29 2010-07-14 株式会社リコー レベルシフト回路
JP4182065B2 (ja) 2005-02-02 2008-11-19 エルピーダメモリ株式会社 半導体装置
KR100753048B1 (ko) 2005-09-05 2007-08-30 주식회사 하이닉스반도체 반도체 메모리 장치의 주변영역 전압 발생 장치
US7787527B2 (en) * 2005-09-19 2010-08-31 Broadcom Corporation Precise dynamic hysteresis
KR100715147B1 (ko) * 2005-10-06 2007-05-10 삼성전자주식회사 전류소모를 감소시키는 내부전원전압 발생회로를 가지는멀티칩 반도체 메모리 장치
US7332956B2 (en) * 2005-10-27 2008-02-19 International Business Machines Corporation Method to avoid device stressing
KR100886628B1 (ko) * 2006-05-10 2009-03-04 주식회사 하이닉스반도체 반도체 장치의 내부전압 생성회로
US7369446B2 (en) * 2006-07-13 2008-05-06 Atmel Corporation Method and apparatus to prevent high voltage supply degradation for high-voltage latches of a non-volatile memory
JP4781962B2 (ja) * 2006-10-06 2011-09-28 株式会社 日立ディスプレイズ 表示装置
KR100850272B1 (ko) * 2007-01-25 2008-08-04 삼성전자주식회사 반도체 메모리 장치의 전압 발생회로 및 사용 전압공급방법
US7508726B2 (en) * 2007-05-10 2009-03-24 Etron Technology Inc. Signal sensing circuit and semiconductor memory device using the same
US7694243B2 (en) * 2007-12-27 2010-04-06 International Business Machines Corporation Avoiding device stressing
US8139436B2 (en) 2009-03-17 2012-03-20 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits, systems, and methods for reducing leakage currents in a retention mode
TWI408901B (zh) * 2009-07-31 2013-09-11 Wintek Corp 位準移位電路
JP5512226B2 (ja) * 2009-10-27 2014-06-04 ルネサスエレクトロニクス株式会社 半導体記憶装置
JP5800126B2 (ja) * 2011-03-22 2015-10-28 セイコーエプソン株式会社 パルス発生回路、集積回路装置、検出装置
US9310240B2 (en) 2011-03-22 2016-04-12 Seiko Epson Corporation Circuit device, integrated circuit and detection device
JP2012209004A (ja) * 2011-03-30 2012-10-25 Toshiba Corp 半導体記憶装置
US9070444B2 (en) * 2013-02-28 2015-06-30 Kabushiki Kaisha Toshiba Semiconductor memory device
US9036445B1 (en) 2014-02-06 2015-05-19 SK Hynix Inc. Semiconductor devices
US9812440B2 (en) * 2014-08-29 2017-11-07 Fairchild Semiconductor Corporation Biased ESD circuit
JP6676354B2 (ja) * 2014-12-16 2020-04-08 株式会社半導体エネルギー研究所 半導体装置
US9911471B1 (en) 2017-02-14 2018-03-06 Micron Technology, Inc. Input buffer circuit
CN110797061B (zh) * 2018-08-03 2021-03-23 华邦电子股份有限公司 存储器装置及其控制方法
TWI695177B (zh) * 2018-12-14 2020-06-01 財團法人船舶暨海洋產業研發中心 電力轉換器滿載測試系統及其測試方法
US10978111B1 (en) * 2019-12-05 2021-04-13 Winbond Electronics Corp. Sense amplifier circuit with reference voltage holding circuit for maintaining sense amplifier reference voltage when the sense amplifier operates under standby mode
JP2021140840A (ja) * 2020-03-03 2021-09-16 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置
JP6998981B2 (ja) * 2020-03-03 2022-01-18 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置
KR20210147202A (ko) * 2020-05-28 2021-12-07 에스케이하이닉스 주식회사 반도체 장치와 반도체 메모리 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295112A (en) * 1991-10-30 1994-03-15 Nec Corporation Semiconductor memory
JPH0722939A (ja) * 1993-07-05 1995-01-24 Mitsubishi Electric Corp 論理回路
KR100238231B1 (ko) * 1997-03-14 2000-01-15 윤종용 반도체장치 및 방법
JPH10336007A (ja) * 1997-05-29 1998-12-18 Fujitsu Ltd レベルコンバータ、出力回路及び入出力回路
KR100266641B1 (ko) * 1997-12-09 2000-09-15 김영환 반도체 메모리의 바이어스 전압 복구회로
US6104220A (en) * 1998-01-20 2000-08-15 Vlsi Technology, Inc. Low power undervoltage detector with power down mode
JPH11288588A (ja) * 1998-04-02 1999-10-19 Mitsubishi Electric Corp 半導体回路装置
JP3880195B2 (ja) * 1998-04-08 2007-02-14 エルピーダメモリ株式会社 半導体装置及びデータ処理システム
JP2000011649A (ja) * 1998-06-26 2000-01-14 Mitsubishi Electric Corp 半導体装置
JP2002230975A (ja) * 2001-02-05 2002-08-16 Mitsubishi Electric Corp 半導体記憶装置
KR100403347B1 (ko) * 2001-09-14 2003-11-01 주식회사 하이닉스반도체 반도체 메모리 장치의 파워-업 발생회로

Also Published As

Publication number Publication date
US20030081461A1 (en) 2003-05-01
TW557564B (en) 2003-10-11
KR100467252B1 (ko) 2005-01-24
DE10236192A1 (de) 2003-05-15
CN1416132A (zh) 2003-05-07
KR20030035833A (ko) 2003-05-09
US6717460B2 (en) 2004-04-06
JP2003133935A (ja) 2003-05-09
CN1248234C (zh) 2006-03-29

Similar Documents

Publication Publication Date Title
JP3850264B2 (ja) 半導体装置
KR100468513B1 (ko) 저소비 전력으로 동작하는 반도체 기억 장치
JP4386619B2 (ja) 半導体装置
US6768354B2 (en) Multi-power semiconductor integrated circuit device
US5659517A (en) Semiconductor memory device with an improved hierarchical power supply line configuration
JP2002015574A (ja) 半導体装置
US8299846B2 (en) Internal voltage generating circuit of semiconductor device
US6996023B2 (en) Semiconductor memory device capable of reducing current consumption in active mode
JP2012515411A (ja) メモリアレイのための動的な漏洩制御
KR20040004813A (ko) 워드라인 구동 회로
JP2005102086A (ja) 半導体装置およびレベル変換回路
JP2007095286A (ja) 電圧発生装置
US9136844B2 (en) Semiconductor device having level shifter
US7986577B2 (en) Precharge voltage supplying circuit
US9001610B2 (en) Semiconductor device generating internal voltage
KR20030000844A (ko) 반도체 메모리 장치의 비트라인 센스앰프 제어회로
KR100816729B1 (ko) 코어전압 생성 장치 및 그를 포함하는 반도체 메모리 장치
KR100870424B1 (ko) 내부 전압 생성 회로
KR20160115484A (ko) 전원 구동 회로 및 이를 포함하는 반도체 장치
KR20220017661A (ko) 내부 전압 생성 회로와 이를 포함하는 반도체 메모리 장치
JP2008310951A (ja) 半導体装置
JP2005135484A (ja) 半導体装置
JP2000030455A (ja) 半導体記憶装置
KR100935729B1 (ko) 센스앰프 오버드라이빙 전압 공급 장치
KR100762240B1 (ko) 전원 제어회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3850264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term