JP2019110063A - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
JP2019110063A
JP2019110063A JP2017243280A JP2017243280A JP2019110063A JP 2019110063 A JP2019110063 A JP 2019110063A JP 2017243280 A JP2017243280 A JP 2017243280A JP 2017243280 A JP2017243280 A JP 2017243280A JP 2019110063 A JP2019110063 A JP 2019110063A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
electrode plate
aqueous electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017243280A
Other languages
English (en)
Other versions
JP6430618B1 (ja
Inventor
栄子 柏崎
Eiko Kashiwazaki
栄子 柏崎
俊彦 緒方
Toshihiko Ogata
俊彦 緒方
孝輔 倉金
Kosuke Kurakane
孝輔 倉金
一郎 有瀬
Ichiro Arise
一郎 有瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2017243280A priority Critical patent/JP6430618B1/ja
Application granted granted Critical
Publication of JP6430618B1 publication Critical patent/JP6430618B1/ja
Priority to US16/224,014 priority patent/US11038208B2/en
Priority to KR1020180165041A priority patent/KR20190074265A/ko
Priority to CN201811560242.0A priority patent/CN110010827B/zh
Publication of JP2019110063A publication Critical patent/JP2019110063A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】ハイレート放電後の充電容量特性を向上させる。【解決手段】ポリオレフィン多孔質フィルムを含むセパレータと、ポリフッ化ビニリデン系樹脂を含有する多孔質層と、静電容量が特定の範囲である正極板および負極板と、を備え、前記ポリオレフィン多孔質フィルムは、所定の突き刺し強度が26.0gf/g/m2以上であり、下記式(1)で表される値が0.00以上、0.54以下であり、|1−T/M| …(1)前記ポリフッ化ビニリデン系樹脂は、α型結晶の含有量が35.0モル%以上である、非水電解液二次電池。【選択図】なし

Description

本発明は、非水電解液二次電池に関する。
非水電解液二次電池、特にリチウム二次電池は、エネルギー密度が高いのでパーソナルコンピュータ、携帯電話、携帯情報端末などに用いる電池として広く使用され、また最近では車載用の電池として開発が進められている。
例えば特許文献1には、スクラッチ試験により測定された、TDにおける臨界荷重までの距離と、MDにおける臨界荷重までの距離との割合が一定の範囲であるポリオレフィン多孔質フィルムを備える非水電解液二次電池が記載されている。
特開2017−107848号公報(2017年6月15日公開)
しかしながら、上述の従来の非水電解液二次電池は、ハイレート放電後の充電容量の観点からは改善の余地があるものであった。すなわち、前記非水電解液二次電池に対しては、ハイレート放電後の充電容量特性を向上させることが求められていた。
本発明の一態様は、ハイレート放電後の充電容量特性に優れた非水電解液二次電池を実現することを目的とする。
本発明の態様1に係る非水電解液二次電池は、ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、ポリフッ化ビニリデン系樹脂を含有する多孔質層と、測定面積900mm当たりの静電容量が、1nF以上、1000nF以下である正極板と、測定面積900mm当たりの静電容量が、4nF以上、8500nF以下である負極板と、を備え、前記ポリオレフィン多孔質フィルムの単位面積当たりの目付に対する突き刺し強度が、26.0gf/g/m以上であり、前記ポリオレフィン多孔質フィルムは、下記式(1)で表される値が、0.00以上、0.54以下の範囲にあり、
|1−T/M| …(1)
(式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
前記多孔質層は、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかと、の間に配置されており、前記多孔質層に含有される前記ポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が35.0モル%以上である。
(ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、−76ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。)
また、本発明の態様2に係る非水電解液二次電池は、前記態様1において、前記正極板が、遷移金属酸化物を含む。
また、本発明の態様3に係る非水電解液二次電池は、前記態様1または2において、前記負極板が、黒鉛を含む。
本発明の一態様によれば、ハイレート放電後の充電容量特性に優れた非水電解液二次電池を実現できる。
本願の実施例において、静電容量の測定対象である測定対象電極を示す模式図である。 本願の実施例において、静電容量の測定に使用するプローブ電極を示す模式図である。 本発明の一実施形態におけるスクラッチ試験に用いる装置およびその操作を示す模式図である。 本発明の一実施形態におけるスクラッチ試験の結果から作成したグラフにおける、臨界荷重および臨界荷重までの距離の一例を示した図である。
〔実施形態1〕
本発明の一実施形態に関して以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態に関しても本発明の技術的範囲に含まれる。なお、本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上、B以下」を意味する。
本発明の一実施形態に係る非水電解液二次電池は、ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、ポリフッ化ビニリデン系樹脂(以下、「PVDF系樹脂」とも称する)を含有する多孔質層と、測定面積900mm当たりの静電容量が、1nF以上、1000nF以下である正極板と、測定面積900mm当たりの静電容量が、4nF以上、8500nF以下である負極板と、を備え、前記ポリオレフィン多孔質フィルムの単位面積当たりの目付に対する突き刺し強度が、26.0gf/g/m以上であり、前記ポリオレフィン多孔質フィルムは、下記式(1)で表される値が、0.00以上、0.54以下の範囲にあり、
|1−T/M| …(1)
(式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
前記多孔質層は、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかと、の間に配置されており、前記多孔質層に含有される前記ポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が35.0モル%以上である。
(ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、−76ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。)
本明細書において「測定面積」とは、後述する静電容量の測定方法において、LCRメーターの測定用電極(上部(主)電極またはプローブ電極)における、測定対象(正極板または負極板)と接している箇所の面積を意味する。従って、測定面積Xmm当たりの静電容量の値とは、LCRメーターにおいて、測定対象と測定用電極とを、両者が重なっている箇所の当該測定用電極の面積がXmmとなるように、接触させて静電容量を測定した場合の測定値を意味する。
<静電容量>
本発明の一実施形態において、正極板の静電容量は、後述する電極板の静電容量の測定方法において、正極板の正極活物質層側の面に測定用電極(プローブ電極)を接触させて測定する値である。これは主に正極板の正極活物質層の分極状態を表す。
また、本発明の一実施形態において、負極板の静電容量は、後述する電極板の静電容量の測定方法において、負極板の負極活物質層側の面に測定用電極を接触させて測定する値である。これは主に負極板の負極活物質層の分極状態を表す。
非水電解液二次電池においては、放電時、負極板から電荷担体としてのイオンが放出される。当該イオンは、非水電解液二次電池用セパレータを通過し、その後、正極板に取り込まれる。このとき、前記イオンは、負極板中および負極板の表面で電解液溶媒によって溶媒和され、正極板中および正極板の表面で脱溶媒和される。なお、前記イオンは、例えば非水電解液二次電池がリチウムイオン二次電池である場合は、Liである。
そのため、上述のイオンの溶媒和の程度は、負極板の負極活物質層の分極状態に影響され、また、上述のイオンの脱溶媒和の程度は、正極板の正極活物質層の分極状態に影響される。
従って、負極板および正極板の静電容量を好適な範囲に制御すること、すなわち、負極活物質層および正極活物質層の分極状態を好適な状態に調整することによって、上述の溶媒和を適度に促進させることができる。これにより、電荷担体としてのイオンの透過性を向上させることができるとともに、とりわけ時間率が20C以上の大電流の放電電流を印加した場合において、非水電解液二次電池の放電出力特性を向上させることができる。上述の観点から、本発明の一実施形態に係る非水電解液二次電池における負極板においては、測定面積900mm当たりの静電容量が、4nF以上、8500nF以下であり、4nF以上、3000nF以下であることが好ましく、4nF以上、2600nF以下であることがより好ましい。また、前記静電容量の下限値は、100nF以上でもよく、200nF以上でもよく、1000nF以上でもよい。
具体的には、前記負極板における、測定面積900mm当たりの静電容量が4nF未満の場合、当該負極板の分極能が低いため、上述の溶媒和の促進にほとんど寄与しない。それゆえに、当該負極板を組み込んだ非水電解液二次電池において出力特性の向上は起こらない。一方、前記負極板における、測定面積900mm当たりの静電容量が8500nFより大きい場合、当該負極板の分極能が高くなり過ぎるため、当該負極板の空隙の内壁とイオンとの親和性が高くなり過ぎる。そのため当該負極板からのイオンの移動(放出)が阻害される。それゆえに、当該負極板を組み込んだ非水電解液二次電池において、その出力特性はかえって低下する。
また、上述の観点から、本発明の一実施形態に係る非水電解液二次電池における正極板においては、測定面積900mm当たりの静電容量が、1nF以上、1000nF以下であり、2nF以上、600nF以下であることが好ましく、2nF以上、400nF以下であることがより好ましい。また、前記静電容量の下限値は、3nF以上でもよい。
具体的には、前記正極板において、測定面積900mm当たりの静電容量が1nF未満である場合、当該正極板の分極能が低いため、前記脱溶媒和にほとんど寄与しない。それゆえに、当該正極板を組み込んだ非水電解液二次電池において出力特性の向上は起こらない。一方、前記正極板において、測定面積900mm当たりの静電容量が1000nFより大きい場合、当該正極板の分極能が高くなり過ぎるため、前記脱溶媒和が過剰に進行する。そのため、正極板内部を移動するための溶媒が脱溶媒和されると共に、正極板内部の空隙内壁と脱溶媒和したイオンとの親和性が高くなり過ぎる。従って、正極板内部におけるイオンの移動が阻害される。それゆえに、当該正極板を組み込んだ非水電解液二次電池において、その出力特性はかえって低下する。
<静電容量の調整方法>
正極板および負極板の前記静電容量は、それぞれ、正極活物質層および負極活物質層の表面積を調整することによって制御することができる。具体的には、例えば、正極活物質層および負極活物質層の表面を紙やすり等にて削ることによって、前記表面積を増大させ、静電容量を増大させることができる。あるいは、正極板および負極板の前記静電容量は、正極板および負極板の各々を構成する材料の比誘電率を調整することによって調整することもできる。前記比誘電率は、正極板および負極板の各々において、空隙の形状、空隙率、および空隙の分布を変えることにより、調整することができる。また、比誘電率は、正極板および負極板の各々を構成する材料を調整することによっても制御し得る。
<電極板の静電容量の測定方法>
本発明の一実施形態における、測定面積900mm当たりの電極板(正極または負極)の静電容量は、LCRメーターを用いて、CV:0.010V、SPEED:SLOW2、AVG:8、CABLE:1m、OPEN:All,SHORT:All DCBIAS 0.00Vに設定し、周波数:300KHzの条件下で、測定される。
なお、この静電容量の測定においては、非水電解液二次電池に組み込む前の電極板の静電容量を測定している。静電容量は固体絶縁材料(電極板)の形状(表面積)、構成材料、空隙の形状、空隙率および空隙の分布等によって決定される、固有の値である。そのため、非水電解液二次電池に組み込んだ後の電極の静電容量もまた、非水電解液二次電池に組み込む前に測定した静電容量の値と同等の値となる。
また、非水電解液二次電池に組み込んだ後に充放電の履歴を経た電池から正極板および負極板を取り出し、当該正極板および当該負極板の静電容量を測定することもできる。具体的には、例えば、非水電解液二次電池について外装部材から電極積層体(非水電解液二次電池用部材)を取り出した後、これを展開することにより、1枚の電極板(正極板または負極板)を取り出す。この電極板を、前述の静電容量の測定方法において測定対象とする電極板と同様のサイズに切りだすことにより、試料片を得る。その後、当該試験片をジエチルカーボネート(DEC)中にて数回(例えば、3回)洗浄する。上述の洗浄は、DEC中に試験片を加えて洗浄した後、DECを新たなDECに入れ替えて試験片を洗浄する工程を数回(例えば、3回)繰り返すことで、電極板の表面に付着する電解液および電解液分解生成物、リチウム塩などを除去する工程である。得られた洗浄済みの電極板を十分乾燥させた後に、測定対象電極として用いる。取り出し対象となる電池の外装部材、積層構造の種類を問わない。
<非水電解液二次電池用セパレータ>
本発明の一実施形態における非水電解液二次電池用セパレータは、ポリオレフィン多孔質フィルムを含む。なお、以下では、ポリオレフィン多孔質フィルムを多孔質フィルムということがある。
前記多孔質フィルムは、単独で非水電解液二次電池用セパレータとなり得る。また、後述する多孔質層が積層された非水電解液二次電池用積層セパレータの基材ともなり得る。前記多孔質フィルムは、ポリオレフィン系樹脂を主成分とし、その内部に連結した細孔を多数有しており、一方の面から他方の面に気体や液体を通過させることが可能となっている。
本発明の一実施形態における非水電解液二次電池用セパレータは、少なくとも一方の面上に、後述するポリフッ化ビニリデン系樹脂を含有する多孔質層が積層され得る。この場合、前記非水電解液二次電池用セパレータの少なくとも一方の面上に、前記多孔質層が積層されてなる積層体を、本明細書において、「非水電解液二次電池用積層セパレータ」と称する。以下、非水電解液二次電池用積層セパレータを「積層セパレータ」ということがある。また、本発明の一実施形態における非水電解液二次電池用セパレータは、ポリオレフィン多孔質フィルムの他に、接着層、耐熱層、保護層等のその他の層をさらに備えていてもよい。
(ポリオレフィン多孔質フィルム)
多孔質フィルムに占めるポリオレフィンの割合は、多孔質フィルム全体の50体積%以上であり、90体積%以上であることがより好ましく、95体積%以上であることがさらに好ましい。また、前記ポリオレフィンには、重量平均分子量が5×10〜15×10の高分子量成分が含まれていることがより好ましい。特に、ポリオレフィンに重量平均分子量が100万以上の高分子量成分が含まれていると、非水電解液二次電池用セパレータの強度が向上するのでより好ましい。
熱可塑性樹脂である前記ポリオレフィンとしては、具体的には、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン等の単量体を(共)重合してなる、単独重合体または共重合体が挙げられる。前記単独重合体としては、例えばポリエチレン、ポリプロピレン、ポリブテンを挙げることができる。また、前記共重合体としては、例えばエチレン−プロピレン共重合体を挙げることができる。
このうち、過大電流が流れることをより低温で阻止(シャットダウン)することができるため、ポリエチレンがより好ましい。当該ポリエチレンとしては、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン(エチレン−α−オレフィン共重合体)、重量平均分子量が100万以上の超高分子量ポリエチレン等が挙げられ、このうち、重量平均分子量が100万以上の超高分子量ポリエチレンがさらに好ましい。
多孔質フィルムの膜厚は、4〜40μmであることが好ましく、5〜30μmであることがより好ましく、6〜15μmであることがさらに好ましい。
多孔質フィルムの単位面積当たりの目付は、強度、膜厚、重量、およびハンドリング性を考慮して適宜決定すればよいものの、多孔質フィルムを含む非水電解液二次電池用積層セパレータを非水電解液二次電池に用いた場合の当該電池の重量エネルギー密度や体積エネルギー密度を高くすることができるように、4〜20g/mであることが好ましく、4〜12g/mであることがより好ましく、5〜10g/mであることがさらに好ましい。
多孔質フィルムの単位面積当たりの目付に対する突き刺し強度は、26.0gf/g/m以上であり、30.0gf/g/m以上であることがより好ましい。前記突き刺し強度が小さすぎる場合、すなわち26.0gf/g/m未満である場合には、当該多孔質フィルムを含む非水電解液二次電池用セパレータを使用する際に、電池組立プロセスにおける正負極とセパレータとの積層捲回操作、当該積層捲回操作を経た捲回群の圧締操作、または電池に外部から圧力がかけられた場合等において、正負極活物質粒子によってセパレータが突き破られ、正負極が短絡するおそれがあるため好ましくない。
多孔質フィルムの透気度は、ガーレ値で30〜500 sec/100mLであることが好ましく、50〜300 sec/100mLであることがより好ましい。多孔質フィルムが前記透気度を有することにより、充分なイオン透過性を得ることができる。
多孔質フィルムの空隙率は、電解液の保持量を高めると共に、過大電流が流れることをより低温で確実に阻止(シャットダウン)する機能を得ることができるように、20〜80体積%であることが好ましく、30〜75体積%であることがより好ましい。また、多孔質フィルムが有する細孔の孔径は、充分なイオン透過性を得ることができ、かつ、正極や負極への粒子の入り込みを防止することができるように、0.3μm以下であることが好ましく、0.14μm以下であることがより好ましい。
多孔質フィルムは、例えば、(1)ポリオレフィン等の樹脂にフィラー(孔形成剤)を加えてシートを成形した後、フィラーを適当な溶媒で除去し、フィラーを除去したシートを延伸して多孔質フィルムを得る方法;(2)ポリオレフィン等の樹脂にフィラーを加えてシートを成形した後、当該シートを延伸し、延伸したシートからフィラーを除去して多孔質フィルムを得る方法、等により製造することができる。すなわち、得られた多孔質フィルムは、通常、フィラーを含まない。
前記多孔質フィルムは、下記式(1)で表される値が、0.00以上、0.54以下の範囲にある。下記式(1)で表される値は、0.00以上、0.50以下の範囲にあることが好ましく、0.00以上、0.45以下であることがより好ましい。
|1−T/M| …(1)
(式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
また、前記多孔質フィルムは、以下の式(2)で表される値が、0.00以上、0.54以下の範囲にあることが好ましく、0.00以上、0.50以下であることがより好ましく、0.00以上、0.45以下であることがさらに好ましい。
1−T/M …(2)
(式(2)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
前記式(1)、式(2)にて表される値は、スクラッチ試験における臨界荷重までの距離の異方性を示す値であり、その値がゼロに近いほど、前記臨界荷重までの距離が等方性であることを示す。
図3は、本発明の一実施形態におけるスクラッチ試験に用いる装置およびその操作を示す模式図である。図3において、1はダイヤモンド圧子、2は基板、3は多孔質フィルムを表す。
本発明の一実施形態における「スクラッチ試験」とは、図3に示すように、ダイヤモンド圧子1に一定の荷重をかけ、測定対象である多孔質フィルム3の表層を厚み方向に圧縮変形(=ダイヤモンド圧子1を押し込んだ状態)させた状態で水平方向に多孔質フィルム3を移動させたときの、ある圧子移動距離における発生応力を測定する試験であり、具体的には、以下に示す方法にて実施される:
(1)測定対象である多孔質フィルム3を20mm×60mmに裁断した後、当該裁断した多孔質フィルム3を、30mm×70mmの基板(ガラス製プレパラート)2上に水性糊にて貼合し、25℃の温度下にて一昼夜乾燥させることにより、試験用サンプルを作製する。なお、前記貼合のときは、多孔質フィルム3と基板(ガラス製プレパラート)2との間に気泡が入らない様に注意する。
(2)工程(1)にて作製された試験用サンプルを、マイクロスクラッチ試験装置(CSEM Instruments社製)に設置し、当該試験装置におけるダイヤモンド圧子1を、当該試験用サンプル上に、0.1Nの大きさの垂直荷重をかけたままの状態にて、当該試験装置におけるテーブルを、多孔質フィルム3のTDに向けて、5mm/minの速さにて、10mmの距離を移動させ、その間の、前記ダイヤモンド圧子1と当該試験用サンプルとの間に発生する応力(摩擦力)を測定する。
(3)工程(2)にて測定された応力の変位と、前記テーブルの移動距離との関係を示す曲線グラフを作成し、当該曲線グラフから、図4に示すように、TDにおける、臨界荷重値および、臨界荷重に至るまでの距離を算出する。図4は、本発明の一実施形態におけるスクラッチ試験の結果から作成したグラフにおける、臨界荷重および臨界荷重までの距離の一例を示した図である。
(4)前記テーブルの移動方向をMDに変更して、上述の工程(1)〜(3)を繰り返して行い、MDにおける、臨界荷重値および、臨界荷重に至るまでの距離を算出する。前記TDとはTransverse Directionを意味し、前記MDとはMachine Directionを意味する。
なお、前記スクラッチ試験における、上述した条件以外の測定条件等に関しては、JIS R 3255に記載の方法と同様の条件にて実施される。
前記スクラッチ試験は、測定対象である多孔質フィルムを含む非水電解液二次電池用セパレータを組み込んだ非水電解液二次電池において、電池充放電時の電極活物質層の膨張(充電時:負極が膨張、放電時:正極が膨張)が、膨張する電極に対向する面側の多孔質フィルムの表層へ与える影響、および、膨張する電極に対向する面側とは反対側の面の多孔質フィルムの表層へ与える影響を示す機構を、モデル化して測定・算出する試験である。
ここで、非水電解液二次電池において、充放電時の電極活物質層の膨張および収縮に起因して、膨張する電極に対向する面側の多孔質フィルムの表層は、膨張した電極活物質層により厚み方向に変形(圧縮変形)する。それと共に、当該電極活物質層の水平方向への膨張により、当該多孔質フィルムの面方向にせん断応力が生じる。さらに、このせん断応力は、当該多孔質フィルムを介して、膨張した電極に対向する面とは反対側の面と電極との界面に伝達される。
従って、前記スクラッチ試験にて算出される臨界荷重値までの距離は、(a)電極に対向する面側の多孔質フィルムの表層が容易に塑性変形するか否かの指標となり、(b)測定面(電極に対向する面)とは反対側の面へのせん断応力の伝達性の指標となる。前記臨界荷重値までの距離が長いことは、測定対象である多孔質フィルムにおいて、(a’)表層部が塑性変形し難く、(b’)測定面とは反対側の面へのせん断応力の伝達性が低い(応力が伝わり難い)ことを示す。
以上のことから、多孔質フィルムにおける式(1)の値が、0.54を超えることは、前記臨界荷重値までの距離において、TDとMDとの間に大きな異方性が存在することを示す。これら大きな異方性を有する多孔質フィルムを含む非水電解液二次電池用セパレータもしくは非水電解液二次電池用積層セパレータを備えた非水電解液二次電池においては、充放電に伴う多孔質フィルム表層の塑性変形のTDとMDとにおける大きさの差、並びに、膨張する電極に対向する多孔質フィルムの面と反対側の面への表面応力の伝達性のTDとMDとにおける大きさの差に起因した、非水電解液二次電池用セパレータもしくは非水電解液二次電池用積層セパレータと電極との界面におけるシワおよび隙間が、特定の方向に優先的に発生する。
本発明の一実施形態に係る非水電解液二次電池は、前記式(1)にて表される値が0.00以上、0.54以下の範囲にあるため、前記臨界荷重までの距離が等方性である。それゆえ、多孔質フィルムの細孔構造が充放電に起因して変形することを抑制することができる。その結果、電池性能の低下を抑制することができる。
多孔質フィルムに多孔質層またはその他の層が積層されている場合、当該多孔質フィルムの物性値は、多孔質フィルムと、多孔質層またはその他の層とを含む積層体から、当該多孔質層およびその他の層を取り除いて測定することができる。積層体から多孔質層およびその他の層を取り除く方法としては、N−メチルピロリドンまたはアセトン等の溶剤によって多孔質層およびその他の層を構成する樹脂を溶解除去する方法などが挙げられる。
続いて、電極板と非水電解液二次電池用セパレータとを含む積層型二次電池の一態様である、捲回した態様の非水電解液二次電池を考える。なお、本明細書において、積層型二次電池とは、電極と、非水電解液二次電池用セパレータとが積層された構造を備える非水電解液二次電池を意味する。
当該捲回した態様の非水電解液二次電池内においては、非水電解液二次電池用セパレータは、MD方向に張力がかかった状態で捲回されているため、多孔質フィルムのMDの平滑性が向上する一方で、TDに対しては内向きに内部応力が発生している。従って、捲回した態様の非水電解液二次電池においては、実際の作動時のMDの臨界荷重までの距離は、前記スクラッチ試験にて算出したMDの臨界荷重までの距離よりも大きくなっており、TD方向の臨界荷重までの距離は、前記スクラッチ試験にて算出したTDの臨界荷重までの距離よりも小さくなっている。
従って、TDとMDの臨界荷重までの距離が近い場合、すなわち等方性の高い場合(具体的には、式(2)の値が−0.54以上0.00未満である多孔質フィルムを、捲回した態様の非水電解液二次電池において、セパレータまたはセパレータの部材として用いる場合)も、MD方向の臨界荷重までの距離が増加し、TD方向の臨界荷重までの距離が低下する。
そのため、実際には、多孔質フィルム表層の塑性変形のTDとMDとにおける大きさの差、並びに、膨張した電極に対向する多孔質フィルムの面と反対側の面への表面応力の伝達性のTDとMDとにおける大きさの差に起因した、多孔質フィルムのシワ、または多孔質フィルムと電極との界面における隙間の発生が、TDに優先的に発生し、電極間の距離の面方向における均一性が低下する。
一方、捲回した態様の非水電解液二次電池においても、異方性が大きい場合、具体的には、式(1)の値が0.54を超える場合には、上述の理由と同様の理由から、臨界荷重までの距離が大きな方向への、多孔質フィルム表層の塑性変形のTDとMDとにおける差、並びに、膨張した電極に対向する多孔質フィルムの面と反対側の面への表面応力の伝達性のTDとMDとにおける差に起因した、多孔質フィルムのシワ、または多孔質フィルムと電極との界面における隙間の発生が、臨界荷重までの距離が大きな方向に増加する。その結果、当該非水電解液二次電池の放電サイクル後における放電レート特性維持率が低下する。それゆえに、捲回した態様の非水電解液二次電池という形態の非水電解液二次電池にも好適に使用できるという観点において、式(2)の値は、0.00以上、0.54以下であることが好ましい。
なお、TD方向、MD方向における臨界荷重までの距離は、以下に示す多孔質フィルムの構造因子に強く影響を受けると考えられる。
(i)多孔質フィルムにおけるMDへの樹脂の配向状態
(ii)多孔質フィルムにおけるTDへの樹脂の配向状態
(iii)多孔質フィルムの厚み方向におけるMD方向、TD方向に配向した樹脂の接触状態
従って、式(1)および式(2)の値を制御する方法としては、後述する多孔質フィルムの製造方法における、以下の製造条件を調節することにより、前記(i)〜(iii)の構造因子を制御する方法が挙げられる。
(1)圧延ロールの周速[m/min]
(2)延伸温度/延伸倍率の比[℃/%]
具体的には、圧延ロールの周速、延伸の延伸温度、ならびに延伸倍率が、多孔質フィルムの製造上支障のない範囲において、以下の式(3)の関係を満たすように、圧延ロールの周速と延伸の延伸温度/延伸倍率の比とを調節することで、結果として、式(1)および式(2)の値を0.00以上、0.54以下の範囲に制御することができる。
Y≧−2.3×X+22.2 …(3)
(式(3)中、Xは、圧延ロールの周速を表し、Yは、TDの延伸の延伸温度/延伸倍率の比を表す。)
一方、圧延ロールの周速と延伸の延伸温度/延伸倍率の比とを、上述の式(3)の関係から逸脱する範囲に設定した場合、前記多孔質フィルムのMDもしくはTDどちらか一方への樹脂の配向、および/または、MDもしくはTDの、どちらか一方へ配向した樹脂の、多孔質フィルムの厚み方向における連結性が促進される。その結果、式(1)で表される多孔質フィルムの異方性が大きくなり、式(1)の値を0.00以上、0.54以下の範囲に制御することができない。例えば、圧延ロールの周速を2.5m/min、延伸温度/延伸倍率の比を16.5℃/%未満に調節した場合、多孔質フィルムのTDへの樹脂配向および、その厚み方向の連結性が増加することで、TDにおける臨界荷重までの距離が小さくなり、結果として式(1)で表される異方性が0.54以上となる。
加えて、延伸温度が、90℃以上、120℃以下であることが好ましく、100℃以上、110℃以下であることがより好ましい。さらに加えて、延伸倍率が、600%以上、800%以下であることが好ましく、620%以上、700%以下であることがより好ましい。
なお、構造因子(i)は、主に製造条件(1)にて、構造因子(ii)は、主に製造条件(2)にて、そして、構造因子(iii)は、主に製造条件(1)と(2)の双方の組み合わせにて制御され得る。
本発明の一実施形態に係る非水電解液二次電池用積層セパレータを作製する場合、すなわち前記多孔質フィルム上に後述するポリフッ化ビニリデン系樹脂を含有する多孔質層を積層させる場合には、前記多孔質層を形成する前に、つまり、後述する塗工液を塗工する前に、親水化処理を施しておくことがより好ましい。
多孔質フィルムに親水化処理を施しておくことにより、塗工液の塗工性がより向上する。それゆえ、より均一な多孔質層を形成することができる。この親水化処理は、塗工液に含まれる溶媒(分散媒)に占める水の割合が高い場合に有効である。前記親水化処理としては、具体的には、例えば、酸やアルカリ等による薬剤処理、コロナ処理、プラズマ処理等の公知の処理が挙げられる。前記親水化処理のうち、比較的短時間で多孔質フィルムを親水化することができる上に、親水化が多孔質フィルムの表面近傍のみに限られ、多孔質フィルムの内部を変質させないことから、コロナ処理がより好ましい。
(多孔質層)
多孔質層は、非水電解液二次電池を構成する部材として、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかとの間に配置されている。前記多孔質層は、非水電解液二次電池用セパレータの片面又は両面に形成され得る。或いは、前記多孔質層は、前記正極板及び前記負極板の少なくともいずれかの活物質層上に形成され得る。或いは、前記多孔質層は、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかとの間に、これらと接するように配置されてもよい。非水電解液二次電池用セパレータと、正極板および負極板の少なくともいずれかと、の間に配置される多孔質層は、1層でもよく2層以上であってもよい。
多孔質層は、樹脂を含む絶縁性の多孔質層であることが好ましい。
前記多孔質層に含まれ得る樹脂は、電池の電解液に不溶であり、また、その電池の使用範囲において電気化学的に安定であることが好ましい。多孔質フィルムの片面に多孔質層が積層される場合には、当該多孔質層は、好ましくは、多孔質フィルムにおける非水電解液二次電池の正極板と対向する面に積層され、より好ましくは、前記正極板と接する面に積層される。
本発明の一実施形態における多孔質層は、PVDF系樹脂を含有する多孔質層であって、前記PVDF系樹脂中の、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が、35.0モル%以上である。
ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、−76ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。
多孔質層は、内部に多数の細孔を有し、これら細孔が連結された構造となっており、一方の面から他方の面へと気体或いは液体が通過可能となった層である。また、本発明の一実施形態における多孔質層が非水電解液二次電池用積層セパレータを構成する部材として使用される場合、前記多孔質層は、当該セパレータの最外層として、電極と接着する層となり得る。
PVDF系樹脂としては、例えば、フッ化ビニリデンのホモポリマー;フッ化ビニリデンと他の共重合可能なモノマーとの共重合体;これらの混合物;が挙げられる。フッ化ビニリデンと共重合可能なモノマーとしては、例えば、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、フッ化ビニル等が挙げられ、1種類または2種類以上を用いることができる。PVDF系樹脂は、乳化重合または懸濁重合で合成し得る。
PVDF系樹脂は、その構成単位としてフッ化ビニリデンが通常、85モル%以上、好ましくは90モル%以上、より好ましくは95モル%以上、更に好ましくは98モル%以上含まれている。フッ化ビニリデンが85モル%以上含まれていると、電池製造時の加圧や加熱に耐え得る機械的強度と耐熱性とを確保し易い。
また、多孔質層は、例えば、ヘキサフルオロプロピレンの含有量が互いに異なる2種類のPVDF系樹脂(下記第一の樹脂と第二の樹脂)を含有する態様も好ましい。
・第一の樹脂:ヘキサフルオロプロピレンの含有量が0モル%を超え、1.5モル%以下であるフッ化ビニリデン/ヘキサフルオロプロピレン共重合体、またはフッ化ビニリデン単独重合体。
・第二の樹脂:ヘキサフルオロプロピレンの含有量が1.5モル%を超えるフッ化ビニリデン/ヘキサフルオロプロピレン共重合体。
前記2種類のPVDF系樹脂を含有する多孔質層は、何れか一方を含有しない多孔質層に比べて、電極との接着性が向上する。また、前記2種類のPVDF系樹脂を含有する多孔質層は、何れか一方を含有しない多孔質層に比べて、非水電解液二次電池用セパレータを構成する他の層(例えば、多孔質フィルム層)との接着性が向上し、これら層間の剥離力が向上する。第一の樹脂と第二の樹脂との質量比は、15:85〜85:15の範囲が好ましい。
PVDF系樹脂は、重量平均分子量が20万〜300万の範囲であることが好ましく、より好ましくは20万〜200万の範囲であり、さらに好ましくは50万〜150万の範囲である。重量平均分子量が20万以上であると、多孔質層と電極との十分な接着性が得られる傾向がある。一方、重量平均分子量が300万以下であると、成形性に優れる傾向がある。
本発明の一実施形態における多孔質層は、PVDF系樹脂以外の他の樹脂として、スチレン−ブタジエン共重合体;アクリロニトリルやメタクリロニトリル等のビニルニトリル類の単独重合体または共重合体;ポリエチレンオキサイドやポリプロピレンオキサイド等のポリエーテル類;等を含み得る。
本発明の一実施形態における多孔質層は、フィラーを含み得る。前記フィラーは、金属酸化物微粒子等の無機フィラーおよび有機フィラーなどのフィラーであり得る。前記フィラーの含有量は、前記PVDF系樹脂および前記フィラーの総量に占める前記フィラーの割合が、1質量%以上、99質量%以下であることが好ましく、10質量%以上、98質量%以下であることがより好ましい。前記フィラーの割合の下限値は、50質量%以上でもよく、70質量%以上でもよく、90質量%以上でもよい。有機フィラー及び無機フィラーは、従来公知のものを使用することができる。
本発明の一実施形態における多孔質層の平均膜厚は、電極との接着性および高エネルギー密度を確保する観点から、一層あたり0.5μm〜10μmの範囲であることが好ましく、1μm〜5μmの範囲であることがより好ましい。
多孔質層の膜厚が一層あたり0.5μm以上であると、非水電解液二次電池の破損等による内部短絡を充分に抑制することができ、また、多孔質層における電解液の保持量が充分となる。
一方、多孔質層の膜厚が一層あたり10μmを超えると、非水電解液二次電池において、リチウムイオンの透過抵抗が増加するので、サイクルを繰り返すと非水電解液二次電池の正極が劣化し、レート特性やサイクル特性が低下する。また、正極および負極間の距離が増加するので非水電解液二次電池の内部容積効率が低下する。
本実施形態における多孔質層は、非水電解液二次電池用セパレータと正極板が備える正極活物質層との間に配置されるのが好ましい。多孔質層の物性に関する下記説明においては、非水電解液二次電池としたときに、非水電解液二次電池用セパレータと正極板が備える正極活物質層との間に配置された多孔質層の物性を少なくとも指す。
多孔質層の単位面積当たりの目付(一層あたり)は、多孔質層の強度、膜厚、重量、およびハンドリング性を考慮して適宜決定すればよい。多孔質層の塗工量(目付)は、一層あたり0.5〜20g/mであることが好ましく、0.5〜10g/mであることがより好ましい。
多孔質層の単位面積当たりの目付をこれらの数値範囲とすることにより、当該多孔質層を備えた非水電解液二次電池の重量エネルギー密度や体積エネルギー密度を高くすることができる。多孔質層の目付が前記範囲を超える場合には、非水電解液二次電池が重くなる。
多孔質層の空隙率は、充分なイオン透過性を得ることができるように、20〜90体積%であることが好ましく、30〜80体積%であることがより好ましい。また、多孔質層が有する細孔の孔径は、1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。細孔の孔径をこれらのサイズとすることにより、当該多孔質層を含む非水電解液二次電池用積層セパレータを備える非水電解液二次電池は、充分なイオン透過性を得ることができる。
前記非水電解液二次電池用積層セパレータの透気度は、ガーレ値で30〜1000 sec/100mLであることが好ましく、50〜800 sec/100mLであることがより好ましい。非水電解液二次電池用積層セパレータは、前記透気度を有することにより、非水電解液二次電池において、充分なイオン透過性を得ることができる。
透気度が前記範囲を超える場合には、非水電解液二次電池用積層セパレータの空隙率が高いために非水電解液二次電池用積層セパレータの積層構造が粗になっていることを意味し、結果として非水電解液二次電池用積層セパレータの強度が低下して、特に高温での形状安定性が不充分になるおそれがある。一方、透気度が前記範囲未満の場合には、非水電解液二次電池用積層セパレータは、充分なイオン透過性を得ることができず、非水電解液二次電池の電池特性を低下させることがある。
(PVDF系樹脂の結晶形)
本発明の一実施形態に使用される多孔質層に含まれるPVDF系樹脂において、α型結晶およびβ型結晶の含有量の合計を100モル%とした場合のα型結晶の含有量は、35.0モル%以上であり、好ましくは37.0モル%以上であり、より好ましくは40.0モル%以上であり、さらに好ましくは44.0モル%以上である。また、好ましくは90.0モル%以下である。前記α型結晶の含有量が上述の範囲である前記多孔質層は、ハイレート放電後の充電容量の維持に優れた非水電解液二次電池、特に非水電解液二次電池用積層セパレータまたは非水電解液二次電池用電極を構成する部材として好適に利用される。
非水電解液二次電池は、充放電時に電池の内部抵抗により発熱し、発熱量は電流が大きい程、換言すると高レート条件ほど大きくなる。PVDF系樹脂の融点は、α型結晶の方が、β型結晶よりも高く、熱による塑性変形を起し難い。また、β型結晶はF原子が一方に並ぶ構造をとるため、α型結晶に比べ分極性が高いことが知られている、
本発明の一実施形態における多孔質層では、多孔質層を構成するPVDF系樹脂のα型結晶の割合を一定以上の割合にする事により、充放電時、とくに高レート条件での作動時の発熱によるPVDF系樹脂の変形に起因した多孔質層内部構造の変形や空隙の閉塞等を低減させるとともに、LiイオンとPVDF系樹脂との相互作用によるLiイオンの偏在化を回避することができ、結果として電池の性能低下を抑制することができる。
α型結晶のPVDF系樹脂は、PVDF系樹脂を構成する重合体に含まれるPVDF骨格において、前記骨格中の分子鎖にある1つの主鎖炭素原子に結合するフッ素原子(または水素原子)に対し、一方の隣接する炭素原子に結合した水素原子(またはフッ素原子)がトランスの位置に存在し、かつ、もう一方(逆側)に隣接する炭素原子に結合する水素原子(またはフッ素原子)がゴーシュの位置(60°の位置)に存在し、その立体構造の連鎖が2つ以上連続する
Figure 2019110063
であることを特徴とするものであって、分子鎖が、
Figure 2019110063
型でC−F、C−H結合の双極子能率が分子鎖に垂直な方向と平行な方向とにそれぞれ成分を有している。
α型結晶のPVDF系樹脂は、19F−NMRスペクトルにおいて、−95ppm付近、−78ppm付近に特徴的なピークを有する。
β型結晶のPVDF系樹脂は、PVDF系樹脂を構成する重合体に含まれるPVDF骨格において、前記骨格中の分子鎖の1つの主鎖炭素に隣り合う炭素原子に結合したフッ素原子と水素原子がそれぞれトランスの立体配置(TT型構造)、すなわち隣り合う炭素原子に結合するフッ素原子と水素原子とが、炭素−炭素結合の方向から見て180°の位置に存在することを特徴とする。
β型結晶のPVDF系樹脂は、PVDF系樹脂を構成する重合体に含まれるPVDF骨格において、前記骨格全体が、TT型構造を有していてもよい。また、前記骨格の一部がTT型構造を有し、かつ、少なくとも4つの連続するPVDF単量体単位のユニットにおいて前記TT型構造の分子鎖を有するものであってもよい。何れの場合もTT型構造の部分がTT型の主鎖を構成する炭素−炭素結合は、平面ジグザグ構造を有し、C−F、C−H結合の双極子能率が分子鎖に垂直な方向の成分を有している。
β型結晶のPVDF系樹脂は、19F−NMRスペクトルにおいて、−95ppm付近に特徴的なピークを有する。
(PVDF系樹脂におけるα型結晶、β型結晶の含有率の算出方法)
本発明の一実施形態における多孔質層における、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、α型結晶の含有率およびβ型結晶の含有率は、前記多孔質層から得られる19F−NMRスペクトルから算出され得る。具体的な算出方法は、例えば、以下の通りである。
(1)PVDF系樹脂を含有する多孔質層に対して、以下の条件にて19F−NMRスペクトルを測定する。
測定条件
測定装置:Bruker Biospin社製 AVANCE400
測定方法:シングルパルス法
観測核:19F
スペクトル幅:100kHz
パルス幅:3.0s(90°パルス)
パルス繰り返し時間:5.0s
基準物質:C(外部基準:−163.0ppm)
温度:22℃
試料回転数:25kHz
(2)(1)にて得られた19F−NMRスペクトルにおける−78ppm付近のスペクトルの積分値を算出し、α/2量とする。
(3)(2)と同様に、(1)にて得られた19F−NMRスペクトルにおける−95ppm付近のスペクトルの積分値を算出し、{(α/2)+β}量とする。
(4)(2)および(3)にて得られた積分値から、以下の式(1)にて、α型結晶とβ型結晶の含有量の合計を100モル%とした場合のα型結晶の含有率(α比とも称する)を算出する。
α比(モル%)=〔(−78ppm付近の積分値)×2/{(−95ppm付近の積分値)+(−78ppm付近の積分値)}〕×100 (1)
(5)(4)にて得られたα比の値から、以下の式(2)にて、α型結晶とβ型結晶の含有量の合計を100モル%とした場合のβ型結晶の含有率(β比とも称する)を算出する。
β比(モル%)=100(モル%)−α比(モル%) (2)。
(多孔質層、非水電解液二次電池用積層セパレータの製造方法)
本発明の一実施形態における多孔質層および非水電解液二次電池用積層セパレータの製造方法としては、特に限定されず、種々の方法が挙げられる。
例えば、基材となる多孔質フィルムの表面上に、以下に示す工程(1)〜(3)の何れかの1つの工程を用いて、PVDF系樹脂および任意でフィラーを含む多孔質層を形成する。工程(2)および(3)の場合は、多孔質層を析出させた後にさらに乾燥させ、溶媒を除去することによって、製造され得る。なお、工程(1)〜(3)における塗工液は、フィラーを含む多孔質層の製造に使用する場合には、フィラーが分散しており、かつ、PVDF系樹脂が溶解している状態であることが好ましい。
本発明の一実施形態における多孔質層の製造方法に使用される塗工液は、通常、前記多孔質層に含まれる樹脂を溶媒に溶解させると共に、前記多孔質層に含まれるフィラーを分散させることにより調製され得る。
(1)前記多孔質層を形成するPVDF系樹脂および任意でフィラーを含む塗工液を、多孔質フィルム上に塗工し、前記塗工液中の溶媒(分散媒)を乾燥除去することによって多孔質層を形成させる工程。
(2)(1)に記載の塗工液を、前記多孔質フィルムの表面に塗工した後、その多孔質フィルムを前記PVDF系樹脂に対して貧溶媒である、析出溶媒に浸漬することによって、多孔質層を析出させる工程。
(3)(1)に記載の塗工液を、前記多孔質フィルムの表面に塗工した後、低沸点有機酸を用いて、前記塗工液の液性を酸性にすることによって、多孔質層を析出させる工程。
前記塗工液における溶媒(分散媒)としては、例えば、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、アセトン、および水が挙げられる。
前記析出溶媒としては、例えば、イソプロピルアルコールまたはt−ブチルアルコールを用いることが好ましい。
前記工程(3)において、低沸点有機酸としては、例えば、パラトルエンスルホン酸、酢酸等を使用することができる。
なお、前記基材には、多孔質フィルムの他に、その他のフィルム、正極板および負極板などを用いることができる。
前記塗工液は、前記樹脂およびフィラー以外の成分として、分散剤や可塑剤、界面活性剤、pH調整剤等の添加剤を適宜含んでいてもよい。
塗工液の多孔質フィルムへの塗布方法としては、従来公知の方法を採用することができ、具体的には、例えば、グラビアコーター法、ディップコーター法、バーコーター法、およびダイコーター法等が挙げられる。
(PVDF系樹脂の結晶形の制御方法)
本発明の一実施形態における多孔質層に含まれるPVDF系樹脂の結晶形は、上述の方法における乾燥温度、乾燥時の風速および風向などの乾燥条件、並びにPVDF系樹脂を含む多孔質層を析出溶媒または低沸点有機酸を用いて析出させる場合の析出温度で制御することができる。
前記PVDF系樹脂において、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、α型結晶の含有量を35.0モル%以上とするための前記乾燥条件および前記析出温度は、前記多孔質層の製造方法、使用する溶媒(分散媒)、析出溶媒および低沸点有機酸の種類等によって適宜変更され得る。
前記工程(1)のように単に塗工液を乾燥させる場合には、前記乾燥条件は、塗工液における、溶媒、PVDF系樹脂の濃度、および、フィラーが含まれる場合には、含まれるフィラーの量、並びに、塗工液の塗工量などによって適宜変更され得る。
前記工程(1)にて多孔質層を形成する場合は、乾燥温度は30℃〜100℃であることが好ましく、乾燥時における熱風の風向は塗工液を塗工した多孔質基材または電極シートに対して垂直方向であることが好ましく、風速は0.1m/s〜40m/sであることが好ましい。
具体的には、PVDF系樹脂を溶解させる溶媒としてN−メチル−2−ピロリドン、PVDF系樹脂を1.0質量%、無機フィラーとしてアルミナを9.0質量%含む塗工液を塗布する場合には、前記乾燥条件を、乾燥温度:40℃〜100℃とし、乾燥時における熱風の風向:塗工液を塗工した多孔質基材または電極シートに対して垂直方向とし、風速:0.4m/s〜40m/sとすることが好ましい。
また、前記工程(2)にて多孔質層を形成する場合は、析出温度は−25℃〜60℃であることが好ましく、乾燥温度は20℃〜100℃であることが好ましい。具体的には、PVDF系樹脂を溶解させる溶媒としてN−メチルピロリドンを使用し、析出溶媒としてイソプロピルアルコールを使用して、工程(2)にて多孔質層を形成する場合は、析出温度は−10℃〜40℃とし、乾燥温度は30℃〜80℃とすることが好ましい。
<正極板>
本発明の一実施形態に係る非水電解液二次電池における正極板は、測定面積900mm当たりの静電容量が1nF以上、1000nF以下であれば特に限定されないが、例えば、正極活物質層として、正極活物質、導電剤および結着剤を含む正極合剤を正極集電体上に担持したシート状の正極板が用いられる。なお、正極板は、正極集電体の両面上に正極合剤を担持してもよく、正極集電体の片面上に正極合剤を担持してもよい。
前記正極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料が挙げられる。当該材料としては、具体的には、例えば、V、Mn、Fe、CoおよびNi等の遷移金属を少なくとも1種類含んでいるリチウム複合酸化物が挙げられる。
前記導電剤としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料等が挙げられる。前記導電剤は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
前記結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンの共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルの共重合体、エチレン−テトラフルオロエチレンの共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレンの共重合体、熱可塑性ポリイミド、ポリエチレン、およびポリプロピレン等の熱可塑性樹脂、アクリル樹脂、並びに、スチレンブタジエンゴムが挙げられる。尚、結着剤は、増粘剤としての機能も有している。
前記正極集電体としては、例えば、Al、Ni、ステンレス等の導電体が挙げられ、薄膜に加工し易く、安価であることから、Alがより好ましい。
シート状の正極の製造方法としては、例えば、正極活物質、導電剤および結着剤を正極集電体上で加圧成型する方法;適当な有機溶剤を用いて正極活物質、導電剤および結着剤をペースト状にした後、当該ペーストを正極集電体に塗工し、乾燥した後に加圧して正極集電体に固着する方法;等が挙げられる。
<負極板>
本発明の一実施形態に係る非水電解液二次電池における負極板は、測定面積900mm当たりの静電容量が4nF以上、8500nF以下であれば特に限定されないが、例えば、負極活物質層として、負極活物質を含む負極合剤を負極集電体上に担持したシート状の負極が用いられる。シート状の負極板には、好ましくは前記導電剤、及び、前記結着剤が含まれる。なお、負極板は、負極集電体の両面上に負極合剤を担持してもよく、負極集電体の片面上に負極合剤を担持してもよい。
前記負極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料、リチウム金属またはリチウム合金等が挙げられる。当該材料としては、例えば、炭素質材料等が挙げられる。炭素質材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、および熱分解炭素類等が挙げられる。導電剤、結着剤としては、前記正極活物質層に含まれ得る導電剤、結着剤として記載したものを使用することができる。
前記負極集電体としては、例えば、Cu、Ni、ステンレス等が挙げられ、特にリチウムイオン二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工し易いことから、Cuがより好ましい。
シート状の負極の製造方法としては、例えば、負極活物質を負極集電体上で加圧成型する方法;適当な有機溶剤を用いて負極活物質をペースト状にした後、当該ペーストを負極集電体に塗工し、乾燥した後に加圧して負極集電体に固着する方法;等が挙げられる。前記ペーストには、好ましくは前記導電剤、および、前記結着剤が含まれる。
<非水電解液>
本発明の一実施形態に係る非水電解液二次電池に含まれ得る非水電解液は、一般に非水電解液二次電池に使用される非水電解液であれば特に限定されない。前記非水電解液としては、例えば、リチウム塩を有機溶媒に溶解してなる非水電解液を用いることができる。リチウム塩としては、例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、低級脂肪族カルボン酸リチウム塩およびLiAlCl等が挙げられる。前記リチウム塩は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
非水電解液を構成する有機溶媒としては、例えば、カーボネート類、エーテル類、エステル類、ニトリル類、アミド類、カーバメート類および含硫黄化合物、並びにこれらの有機溶媒にフッ素基が導入されてなる含フッ素有機溶媒等が挙げられる。前記有機溶媒は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
<非水電解液二次電池の製造方法>
本発明の一実施形態に係る非水電解液二次電池を製造する方法として、例えば、前記正極、前記多孔質層、非水電解液二次電池用セパレータ、および負極をこの順で配置して非水電解液二次電池用部材を形成した後、非水電解液二次電池の筐体となる容器に当該非水電解液二次電池用部材を入れ、次いで、当該容器内を非水電解液で満たした後、減圧しつつ密閉する方法を挙げることができる。
本発明の一実施形態に係る非水電解液二次電池は、上述したように、ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、多孔質層と、正極板と、負極板と、を備えている。特に、本発明の一実施形態に係る非水電解液二次電池は、以下の(i)〜(iv)の要件を充足する。
(i)ポリオレフィン多孔質フィルムの単位面積当たりの目付に対する突き刺し強度が、26.0gf/g/m以上であり、ポリオレフィン多孔質フィルムは、上述した下記式(1)で表される値が、0.00以上、0.54以下の範囲にある。
|1−T/M| …(1)
(ii)多孔質層に含まれるポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が、35.0モル%以上である。
(iii)正極板の、測定面積900mm当たりの静電容量が1nF以上、1000nF以下である。
(iv)負極板の、測定面積900mm当たりの静電容量が4nF以上、8500nF以下である。
(i)の要件によって、本発明の一実施形態に係る非水電解液二次電池では、正負極の短絡が十分に防止されると共に、非水電解液二次電池用セパレータ内部の細孔構造が充放電に起因して変形すること、および、非水電解液二次電池用セパレータもしくは非水電解液二次電池用積層セパレータと電極との界面の構造が充放電に起因して変形することを抑制することができる。
また、(ii)の要件によって、本発明の一実施形態に係る非水電解液二次電池では、高レート条件での充放電後の多孔質層の構造安定性が良好となる。
さらに、(iii)及び(iv)の要件によって、正極板の正極活物質層の分極状態及び負極板の負極活物質層の分極状態が共に適度な状態となり、カチオンは、負極板中および負極板と非水電解液二次電池用セパレータとが接触する場所において電解質溶媒への溶媒和が促進するとともに、正極板中および正極板と非水電解液二次電池用セパレータとが接触する場所において電解液溶媒からの脱溶媒和が促進する。このため、カチオンの透過性が向上する。
したがって、前記(i)〜(iv)の要件を充足する非水電解液二次電池では、(a)非水電解液二次電池用セパレータもしくは非水電解液二次電池用積層セパレータと電極との界面の構造の、充放電による変形を抑制することができ、電池性能の低下を抑制することができる。また、(b)多孔質層の高レート条件での充放電後の多孔質層の構造安定性が良好であり、さらに、(c)正極板の正極活物質層の分極状態及び負極板の負極活物質層の分極状態が共に適度な状態となる。その結果、本発明の一実施形態に係る非水電解液二次電池では、電池のハイレート放電(20C放電)後の1C充電時の充電容量が向上する。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[測定方法]
実施例および比較例における各測定を以下の方法で行った。
(1)活物質層の厚さ(単位:μm):
正極活物質層および負極活物質層の厚さは、株式会社ミツトヨ製の高精度デジタル測長機(VL−50)を用いて測定した。ただし、正極活物質層の厚さは、正極板の厚さから集電体であるアルミニウム箔の厚さを差し引くことで算出した。また、負極活物質層の厚さは、負極板の厚さから集電体である銅箔の厚さを差し引くことで算出した。
(2)多孔質フィルムの単位面積当たりの目付に対する突き刺し強度(単位:gf/(g/m2))
ハンディー圧縮試験機(カトーテック株式会社製、型番;KES−G5)を用いて、多孔質フィルム材を12mmΦのワッシャで固定し、ピンを200mm/minで突き刺したときの最大応力(gf)を該多孔質基材の突き刺し強度とした。ピンは、ピン径1mmΦ、先端0.5Rのものを使用した。
(3)スクラッチ試験
臨界荷重値、および臨界荷重までの距離のTD/MD比を以下に示すスクラッチ試験にて測定した。以下に記載する以外の測定条件等は、JIS R 3255と同様の条件等にして、測定を行った。また、測定装置は、マイクロスクラッチ試験装置(CSEM Instruments社製)を使用した。
(3−1)実施例および比較例にて製造した多孔質フィルムを20mm×60mmに裁断した後、当該裁断した多孔質フィルムを、30mm×70mmのガラス製プレパラート上に水性糊にて貼合し、25℃の温度下にて一昼夜乾燥させることにより、試験用サンプルを作製した。なお、前記貼合のときは、多孔質フィルムに浸透しない少量の水性糊を、多孔質フィルムに薄く塗布し、多孔質フィルムとガラス製プレパラートとの間に気泡が入らない様に貼合した。
(3−2)工程(3−1)にて作製された試験用サンプルを、マイクロスクラッチ試験装置(CSEM Instruments社製)に設置した。当該試験装置におけるダイヤモンド圧子を、当該試験用サンプル上に、0.1Nの大きさの垂直荷重をかけたままの状態にて、当該試験装置におけるテーブルを、多孔質フィルムのTDに向けて、5mm/minの速さにて、10mmの距離を移動させ、その間の、前記ダイヤモンド圧子と当該試験用サンプルとの間に発生する応力(摩擦力)を測定した。
(3−3)工程(3−2)にて測定された応力の変位と、前記テーブルの移動距離との関係を示す曲線グラフを作成し、当該曲線グラフから、TDにおける、臨界荷重値および、臨界荷重に至るまでの距離を算出した。
(3−4)前記テーブルの移動方向をMDに変更して、上述の工程(3−1)〜(3−3)を繰り返して行い、MDにおける、臨界荷重値および、臨界荷重に至るまでの距離を算出した。
(4)α比算出法
以下の実施例および比較例において得られた積層体を約2cm×5cmの大きさに切り出し、前記(PVDF系樹脂におけるα型結晶、β型結晶の含有率の算出方法)の項の(1)〜(4)の手順に沿って、PVDF系樹脂におけるα型結晶の含有率(α比)を測定した。
(5)電極板の静電容量の測定
実施例および比較例にて得られた正極板および負極板の、測定面積900mm当たりの静電容量を、日置電機製LCRメーター(型番:IM3536)を用いて測定した。このとき、測定条件は、CV:0.010V、SPEED:SLOW2、AVG:8、CABLE:1m、OPEN:All,SHORT:All DCBIAS 0.00Vに設定し、周波数:300KHzとした。測定された静電容量の絶対値を本実施形態における静電容量とした。
測定対象とする、電極板から、3cm×3cmの正方形の電極合剤が積層された部位と、1cm×1cmの正方形の電極合剤が積層されていない部位とを、一体として切り出した。切り出された電極板の、電極合剤が積層されていない部位に、長さ6cm、幅0.5cmのタブリードを超音波溶接して、静電容量の測定用の電極板を得た(図1)。正極板のタブリードには、アルミ製のタブリードを用い、負極板のタブリードにはニッケル製のタブリードを用いた。
集電体から、5cm×4cmの正方形と、タブリード溶接用部位としての1cm×1cmの正方形とを、一体として切り出した。切り出された集電体のタブリード溶接用部位に、長さ6cm、幅0.5cmのタブリードを超音波溶接して、プローブ電極(測定用電極)を得た(図2)。正極板の静電容量の測定用のプローブ電極には、厚さ20μmのアルミ製のプローブ電極を用い、負極板の静電容量の測定用のプローブ電極には厚さ20μmの銅製のプローブ電極を用いた。
前記プローブ電極と、前記測定用の電極板の電極合剤が積層された部位(3cm×3cmの正方形の部分)とを重ね合わせて積層体を作製した。得られた積層体を2枚のシリコンゴムで挟み込み、さらにそれぞれのシリコンゴムの上から2枚のSUS板で0.7MPaの圧力で挟み込んで測定に供する積層体を得た。タブリードは測定に供する積層体から外に出し、当該タブリードの電極板に近い方から、LCRメーターの電圧端子と、電流端子とを接続した。
(6)正極活物質層の空隙率の測定
下記実施例1における正極板が備える正極活物質層の空隙率を下記の方法を用いて測定した。下記実施例におけるその他の正極板が備える正極活物質層の空隙率も同様の方法によって測定した。
正極合剤(LiNi0.5Mn0.3Co0.2/導電剤/PVDF(重量比92/5/3))が、正極集電体(アルミニウム箔)の片面に積層された正極板を14.5cm(4.5cm×3cm+1cm×1cm)の大きさに切り出した。切り出された正極板の質量は0.215g、厚さ58μmであった。前記正極集電体を同サイズに切り出したところ、その質量は0.078g、厚さ20μmであった。
正極活物質層の密度ρは、(0.215−0.078)/{(58−20)/10000×14.5}=2.5g/cmと算出された。
正極合剤を構成する材料の真密度はそれぞれ、LiNi0.5Mn0.3Co0.2は4.68g/cmであり、導電材は1.8g/cmであり、PVDFは1.8g/cmであった。
これらの値を用いて下記式に基づいて算出した正極活物質層の空隙率 εは、40%であった。
ε=[1−{2.5×(92/100)/4.68+2.5×(5/100)/1.8+2.5×(3/100)/1.8}]*100=40%
(7)負極活物質層の空隙率の測定
下記実施例1における負極板が備える負極活物質層の空隙率を下記の方法を用いて測定した。下記実施例におけるその他の負極板が備える負極活物質層の空隙率も同様の方法によって測定した。
負極合剤(黒鉛/スチレン−1,3−ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1))が、負極集電体(銅箔)の片面に積層された負極板を18.5cm(5cm×3.5cm+1cm×1cm)の大きさに切り出した。切り出された負極板の質量は0.266g、厚さ48μmであった。前記負極集電体を同サイズに切り出したところ、その質量は0.162g、厚さ10μmであった。
負極活物質層の密度ρは、(0.266−0.162)/{(48−10)/10000×18.5}=1.49g/cmと算出された。
負極合剤を構成する材料の真密度はそれぞれ、黒鉛は2.2g/cmであり、スチレン−1,3−ブタジエン共重合体は1g/cmであり、カルボキシメチルセルロースナトリウムは1.6g/cmであった。
これらの値を用いて下記式に基づいて算出した負極活物質層の空隙率εは、31%であった。
ε=[1−{1.49×(98/100)/2.2+1.49×(1/100)/1+1.49×(1/100)/1.6}]*100=31%
(8)非水電解液二次電池の電池特性
以下の工程(A)〜工程(B)に示す方法によって、実施例、比較例にて製造された非水電解液二次電池(設計容量:20.5mAh)のハイレート放電後の充電容量特性を測定した。
(A)初期充放電試験
実施例、比較例にて製造された充放電サイクルを経ていない新たな非水電解液二次電池に対して、電圧範囲;2.7〜4.1V、充電電流値0.2CのCC−CV充電(終止電流条件0.02C)、放電電流値0.2CのCC放電(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下も同様)を1サイクルとして、4サイクルの初期充放電を25℃にて実施した。ここでCC−CV充電とは、設定した一定の電流で充電し、所定の電圧に到達後、電流を絞りながら、その電圧を維持する充電方法である。またCC放電とは設定した一定の電流で所定の電圧まで放電する方法であり、以下も同様である。
(B)ハイレート放電後の充電容量特性(mAh)
前記初期充放電を行った非水電解液二次電池に対して、充電電流値1CのCC−CV充電(終止電流条件0.02C)、放電電流値0.2C、1C、5C、10C、20Cの順によりCC放電を実施した。各レートにつき充放電を3サイクル、55℃にて実施した。このとき、電圧範囲は2.7V〜4.2Vとした。
上記20C放電の3サイクル目の1C充電のときの充電容量をハイレート放電後の充電容量(mAh)とし、表1に示した。
[実施例1]
[非水電解液二次電池用積層セパレータの製造]
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製、重量平均分子量497万)を70重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)30重量%の割合となるように両者を混合した後、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量部、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量部、ステアリン酸ナトリウム1.3重量部を加え、更に全体積に占める割合が36体積%となるように平均粒径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合し、混合物1を得た。
その後、混合物1を、二軸混練機で溶融混練してポリオレフィン樹脂組成物1を得た。ポリオレフィン樹脂組成物1を、周速3.0m/minのロールにて圧延し、圧延シート1を作製した。続いて、圧延シート1を塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることにより、圧延シート1から炭酸カルシウムを除去し、続いて105℃にて6.2倍に延伸し(延伸温度/倍率比=16.9)、さらに120℃で熱固定を行い、多孔質フィルム1を得た。得られた多孔質フィルム1の単位面積当たりの目付は6.9g/mであった。
PVDF系樹脂(ポリフッ化ビニリデン−ヘキサフルオロプロピレンコポリマー)のN−メチル−2−ピロリドン(以下「NMP」と称する場合もある)溶液(株式会社クレハ製;商品名「L#9305」、重量平均分子量;1000000)である塗工液1を、多孔質フィルム1上に、ドクターブレード法により、塗工液1中のPVDF系樹脂が1平方メートル当たり6.0gとなるように塗布した。
得られた塗布物を、塗膜が溶媒湿潤状態のままで2−プロパノール中に浸漬し、−10℃で5分間静置させ、積層多孔質フィルム1を得た。得られた積層多孔質フィルム1を、浸漬溶媒湿潤状態で、さらに別の2−プロパノール中に浸漬し、25℃で5分間静置させ、積層多孔質フィルム1aを得た。得られた積層多孔質フィルム1aを30℃で5分間乾燥させて、積層セパレータ1を得た。得られた積層セパレータ1の評価結果を表1に示す。
[非水電解液二次電池の作製]
(正極板の作製)
LiNi0.5Mn0.3Co0.2/導電材/PVDF(重量比92/5/3)をアルミニウム箔に塗布することにより製造された正極板を用いた。前記正極板を、正極活物質層が形成された部分の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が形成されていない部分が残るように、アルミニウム箔を切り取って正極板1とした。正極活物質層の厚さは38μm、密度は2.50g/cmであった。
(負極板の作製)
黒鉛/スチレン−1,3−ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1)を銅箔に塗布することにより製造された負極板を用いた。
前記負極板を、負極活物質層が形成された部分の大きさが50mm×35mmであり、かつその外周に幅13mmで負極活物質層が形成されていない部分が残るように、銅箔を切り取って負極板1とした。負極活物質層の厚さは38μm、密度は1.49g/cmであった。
(非水電解液二次電池の組み立て)
前記正極板1、前記負極板1および積層セパレータ1を使用して、以下に示す方法にて非水電解液二次電池を製造した。
ラミネートパウチ内で、前記正極板1、多孔質層側を正極側に対向させた積層セパレータ1、および負極板1をこの順で積層(配置)することにより、非水電解液二次電池用部材1を得た。このとき、正極板1の正極活物質層における主面の全部が、負極板1の負極活物質層における主面の範囲に含まれる(主面に重なる)ように、正極板1および負極板1を配置した。
続いて、非水電解液二次電池用部材1を、予め作製していた、アルミニウム層とヒートシール層とが積層されてなる袋に入れ、さらにこの袋に非水電解液を0.25mL入れた。前記非水電解液は、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネートを3:5:2(体積比)で混合してなる混合溶媒に、LiPFを1mol/Lとなるように溶解して調製した。そして、袋内を減圧しつつ、当該袋をヒートシールすることにより、非水電解液二次電池1を作製した。
その後、前記(8)に記載の方法にて、非水電解液二次電池1のハイレート放電後の充電容量の測定を行った。その結果を表1に示す。
[実施例2]
[非水電解液二次電池用積層セパレータの製造]
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製、重量平均分子量497万)の使用量を72重量%とし、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)の使用量を29重量%とし、平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム社製)の使用量を、全体積に占める割合が37体積%となるようにした以外は、実施例1と同様にして、ポリオレフィン樹脂組成物2を調製した。
続いて、ポリオレフィン樹脂組成物2を、周速4.0m/minのロールにて圧延し、圧延シート2を作製した。その後、延伸温度を100℃とし、延伸倍率を7.0倍とし(延伸温度/倍率比=16.9)、123℃にて熱固定を行ったこと以外は、実施例1と同様にして、圧延シート2に対して、炭酸カルシウムの除去、延伸および熱固定を行い、多孔質フィルム2を得た。得られた多孔質フィルム2の単位面積当たりの目付は5.4g/mであった。
多孔質フィルム2上に、実施例1と同様に塗工液1を塗布した。得られた塗布物を、塗膜が溶媒湿潤状態のままで2−プロパノール中に浸漬し、−5℃で5分間静置させ、積層多孔質フィルム2を得た。得られた積層多孔質フィルム2を浸漬溶媒湿潤状態で、さらに別の2−プロパノール中に浸漬し、25℃で5分間静置させ、積層多孔質フィルム2aを得た。得られた積層多孔質フィルム2aを30℃で5分間乾燥させて、積層セパレータ2を得た。得られた積層セパレータ2の評価結果を表1に示す。
[非水電解液二次電池の作製]
積層セパレータ1の代わりに、積層セパレータ2を使用したこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池2とした。
その後、前記(8)に記載の方法にて、非水電解液二次電池2のハイレート放電後の充電容量の測定を行った。その結果を表1に示す。
[実施例3]
(正極板の作製)
正極板1と同一の正極板の正極活物質層側の表面を、永塚工業株式会社製 研摩布シート(型番TYPE AA GRIT No100)を用いて3回研磨し、正極板2を得た。正極板2の正極活物質層の厚さは38μm、空隙率は40%であった。
[非水電解液二次電池の作製]
負極板として、前記負極板1を用いた。また、積層セパレータ1の代わりに、前記積層セパレータ2を使用し、正極板として前記正極板2を用いたこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池3とした。
その後、前記(8)に記載の方法にて、非水電解液二次電池3のハイレート放電後の充電容量特性の測定を行った。その結果を表1に示す。
[実施例4]
(正極板の作製)
正極板1と同一の正極板の正極活物質層側の表面を、永塚工業株式会社製 研摩布シート(型番TYPE AA GRIT No100)を用いて5回研磨し、正極板3を得た。正極板3の正極合剤層の厚さは38μm、空隙率は40%であった。
[非水電解液二次電池の作製]
負極板として、前記負極板1を用いた。また、積層セパレータ1の代わりに、前記積層セパレータ2を使用し、正極板として正極板3を用いたこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池4とした。
その後、前記(8)に記載の方法にて、非水電解液二次電池4のハイレート放電後の充電容量の測定を行った。その結果を表1に示す。
[実施例5]
(負極板の作製)
負極板1と同一の負極板の負極活物質層側の表面を、永塚工業株式会社製 研摩布シート(型番TYPE AA GRIT No100)を用いて3回研磨し、負極板2を得た。負極板2の負極活物質層の厚さは38μm、空隙率は31%であった。
[非水電解液二次電池の作製]
正極板として、前記正極板1を用いた。また、積層セパレータ1の代わりに、積層セパレータ2を使用し、負極板として負極板2を用いたこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池5とした。
その後、前記(8)に記載の方法にて、非水電解液二次電池5のハイレート放電後の充電容量の測定を行った。その結果を表1に示す。
[実施例6]
(負極板の作製)
負極板1と同一の負極板の負極活物質層側の表面を、永塚工業株式会社製 研摩布シート(型番TYPE AA GRIT No100)を用いて7回研磨し、負極板3を得た。負極板3の負極活物質層の厚さは38μm、空隙率は31%であった。
[非水電解液二次電池の作製]
正極板として、前記正極板1を用いた。また、積層セパレータ1の代わりに、積層セパレータ2を使用し、負極板として負極板3を用いたこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池6とした。
その後、前記(8)に記載の方法にて、非水電解液二次電池6のハイレート放電後の充電容量の測定を行った。その結果を表1に示す。
[実施例7]
[多孔質層の作製、積層セパレータの作製]
PVDF系樹脂(株式会社アルケマ製;商品名「Kynar(登録商標) LBG」、重量平均分子量:590,000)を、固形分が10質量%となるように、N−メチル−2−ピロリドンに、65℃で30分間かけて撹拌し、溶解させた。得られた溶液をバインダー溶液として用いた。フィラーとして、アルミナ微粒子(住友化学株式会社製;商品名「AKP3000」、ケイ素の含有量:5ppm)を用いた。前記アルミナ微粒子、バインダー溶液、および溶媒(N−メチル−2−ピロリドン)を、下記割合となるように混合した。即ち、前記アルミナ微粒子90重量部に対してPVDF系樹脂が10重量部となるように、バインダー溶液を混合すると共に、得られる混合液における固形分濃度(アルミナ微粒子+PVDF系樹脂)が10重量%となるように溶媒を混合することで分散液(塗工液2)を得た。
実施例2にて作製した多孔質フィルム2上に、ドクターブレード法により、塗工液2中のPVDF系樹脂が1平方メートル当たり6.0gとなるように塗布することにより、積層多孔質フィルム3を得た。積層多孔質フィルム3を65℃で5分間乾燥させることにより、積層セパレータ3を得た。乾燥は、熱風風向を基材に対して垂直方向とし、風速を0.5m/sとして実施した。得られた積層セパレータ3の評価結果を表1に示す。
[非水電解液二次電池の作製]
積層セパレータ1の代わりに、積層セパレータ3を使用したこと以外は、実施例1と同様にして、非水電解液二次電池を作製した。作製した非水電解液二次電池を非水電解液二次電池7とした。
その後、前記(8)に記載の方法にて、非水電解液二次電池7のハイレート放電後の充電容量の測定を行った。その結果を表1に示す。
[比較例1]
(正極板の作製)
正極板1と同一の正極板の正極活物質層側の表面を、永塚工業株式会社製 研摩布シート(型番TYPE AA GRIT No100)を用いて10回研磨し、正極板4を得た。正極板4の正極活物質層の厚さは38μm、空隙率は40%であった。
[非水電解液二次電池の作製]
負極板として、前記負極板1を用いた。また、非水電解液二次電池用セパレータとしてセパレータ2を使用し、正極板として正極板4を使用したこと以外は、実施例1と同様の方法にて、非水電解液二次電池を作製した。得られた非水電解液二次電池を非水電解液二次電池8とした。
その後、前記(8)に記載の方法にて、非水電解液二次電池8のハイレート放電後の充電容量の測定を行った。その結果を表1に示す。
[比較例2]
(負極板の作製)
負極板1と同一の負極板の負極活物質層側の表面を、永塚工業株式会社製 研摩布シート(型番TYPE AA GRIT No100)を用いて10回研磨し、負極板4を得た。負極板4の負極活物質層の厚さは38μm、空隙率は31%であった。
[非水電解液二次電池の作製]
正極板として、前記正極板1を用いた。また、積層セパレータとして前記積層セパレータ2を使用し、負極板として負極板4を使用したこと以外は、実施例1と同様の方法にて、非水電解液二次電池を作製した。得られた非水電解液二次電池を非水電解液二次電池9とした。
その後、前記(8)に記載の方法にて、非水電解液二次電池9のハイレート放電後の充電容量の測定を行った。その結果を表1に示す。
[比較例3]
[非水電解液二次電池用セパレータの作製]
実施例2と同様の方法で得られた塗布物を、塗膜が溶媒湿潤状態のままで2−プロパノール中に浸漬し、−78℃で5分間静置させ、積層多孔質フィルム4を得た。得られた積層多孔質フィルム4を浸漬溶媒湿潤状態で、さらに別の2−プロパノール中に浸漬し、25℃で5分間静置させ、積層多孔質フィルム4aを得た。得られた積層多孔質フィルム4aを30℃で5分間乾燥させて、積層セパレータ4を得た。得られた積層セパレータ4の評価結果を表1に示す。
[非水電解液二次電池の作製]
非水電解液二次電池用セパレータとして積層セパレータ4を使用したこと以外は、実施例1と同様の方法にて、非水電解液二次電池を作製した。得られた非水電解液二次電池を非水電解液二次電池10とした。
その後、前記(8)に記載の方法にて、非水電解液二次電池10のハイレート放電後の充電容量の測定を行った。その結果を表1に示す。
Figure 2019110063
表1に記載の通り、実施例1〜7にて製造された非水電解液二次電池は、比較例1〜3にて製造された非水電解液二次電池よりも、ハイレート放電後の充電容量特性に優れている。
従って、非水電解液二次電池において、<非水電解液二次電池の製造方法>の項で述べた4つの要件を充足することにより、当該非水電解液二次電池のハイレート放電後の充電容量特性を向上させることができることが分かった。
本発明の一実施形態に係る非水電解液二次電池は、ハイレート放電後の充電容量特性に優れるため、パーソナルコンピュータ、携帯電話および携帯情報端末などに用いる電池、並びに、車載用電池として好適に利用することができる。
1 ダイヤモンド圧子
2 基板
3 多孔質フィルム
本発明の態様1に係る非水電解液二次電池は、ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、ポリフッ化ビニリデン系樹脂を含有する多孔質層と、測定面積900mm当たりの静電容量が、1nF以上、1000nF以下である正極板と、測定面積900mm当たりの静電容量が、4nF以上、8500nF以下である負極板と、を備え、前記ポリオレフィン多孔質フィルムの単位面積当たりの目付に対する突き刺し強度が、26.0gf/g/m以上であり、前記ポリオレフィン多孔質フィルムは、下記式(1)で表される値が、0.00以上、0.54以下の範囲にあり、
|1−T/M| …(1)
(式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
前記多孔質層は、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかと、の間に配置されており、前記多孔質層に含有される前記ポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が35.0モル%以上である。
(ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、−78ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。)
また、本発明の態様2に係る非水電解液二次電池は、前記態様1において、前記正極板が、遷移金属酸化物を含む。
本発明の一実施形態に係る非水電解液二次電池は、ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、ポリフッ化ビニリデン系樹脂(以下、「PVDF系樹脂」とも称する)を含有する多孔質層と、測定面積900mm当たりの静電容量が、1nF以上、1000nF以下である正極板と、測定面積900mm当たりの静電容量が、4nF以上、8500nF以下である負極板と、を備え、前記ポリオレフィン多孔質フィルムの単位面積当たりの目付に対する突き刺し強度が、26.0gf/g/m以上であり、前記ポリオレフィン多孔質フィルムは、下記式(1)で表される値が、0.00以上、0.54以下の範囲にあり、
|1−T/M| …(1)
(式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
前記多孔質層は、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかと、の間に配置されており、前記多孔質層に含有される前記ポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が35.0モル%以上である。
(ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、−78ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。)
本明細書において「測定面積」とは、後述する静電容量の測定方法において、LCRメーターの測定用電極(上部(主)電極またはプローブ電極)における、測定対象(正極板または負極板)と接している箇所の面積を意味する。従って、測定面積Xmm当たりの静電容量の値とは、LCRメーターにおいて、測定対象と測定用電極とを、両者が重なっている箇所の当該測定用電極の面積がXmmとなるように、接触させて静電容量を測定した場合の測定値を意味する。
ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、−78ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。
透気度が前記範囲未満の場合には、非水電解液二次電池用積層セパレータの空隙率が高いために非水電解液二次電池用積層セパレータの積層構造が粗になっていることを意味し、結果として非水電解液二次電池用積層セパレータの強度が低下して、特に高温での形状安定性が不充分になるおそれがある。一方、透気度が前記範囲を超える場合には、非水電解液二次電池用積層セパレータは、充分なイオン透過性を得ることができず、非水電解液二次電池の電池特性を低下させることがある。

Claims (3)

  1. ポリオレフィン多孔質フィルムを含む非水電解液二次電池用セパレータと、
    ポリフッ化ビニリデン系樹脂を含有する多孔質層と、
    測定面積900mm当たりの静電容量が、1nF以上、1000nF以下である正極板と、
    測定面積900mm当たりの静電容量が、4nF以上、8500nF以下である負極板と、を備え、
    前記ポリオレフィン多孔質フィルムの単位面積当たりの目付に対する突き刺し強度が、26.0gf/g/m以上であり、
    前記ポリオレフィン多孔質フィルムは、下記式(1)で表される値が、0.00以上、0.54以下の範囲にあり、
    |1−T/M| …(1)
    (式(1)中、Tは、TDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表し、Mは、MDにおける0.1Nの一定荷重下でのスクラッチ試験における、臨界荷重までの距離を表す。)
    前記多孔質層は、前記非水電解液二次電池用セパレータと、前記正極板及び前記負極板の少なくともいずれかと、の間に配置されており、
    前記多孔質層に含有される前記ポリフッ化ビニリデン系樹脂は、α型結晶とβ型結晶の含有量の合計を100モル%とした場合の、前記α型結晶の含有量が35.0モル%以上である、非水電解液二次電池。
    (ここで、α型結晶の含有量は、前記多孔質層の19F−NMRスペクトルにおける、−76ppm付近にて観測される(α/2)の波形分離、および、−95ppm付近にて観測される{(α/2)+β}の波形分離から算出される。)
  2. 前記正極板が、遷移金属酸化物を含む、請求項1に記載の非水電解液二次電池。
  3. 前記負極板が、黒鉛を含む、請求項1または2に記載の非水電解液二次電池。
JP2017243280A 2017-12-19 2017-12-19 非水電解液二次電池 Active JP6430618B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017243280A JP6430618B1 (ja) 2017-12-19 2017-12-19 非水電解液二次電池
US16/224,014 US11038208B2 (en) 2017-12-19 2018-12-18 Nonaqueous electrolyte secondary battery
KR1020180165041A KR20190074265A (ko) 2017-12-19 2018-12-19 비수 전해액 이차 전지
CN201811560242.0A CN110010827B (zh) 2017-12-19 2018-12-19 非水电解液二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017243280A JP6430618B1 (ja) 2017-12-19 2017-12-19 非水電解液二次電池

Publications (2)

Publication Number Publication Date
JP6430618B1 JP6430618B1 (ja) 2018-11-28
JP2019110063A true JP2019110063A (ja) 2019-07-04

Family

ID=64480572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017243280A Active JP6430618B1 (ja) 2017-12-19 2017-12-19 非水電解液二次電池

Country Status (4)

Country Link
US (1) US11038208B2 (ja)
JP (1) JP6430618B1 (ja)
KR (1) KR20190074265A (ja)
CN (1) CN110010827B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102319967B1 (ko) 2019-01-10 2021-10-29 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN113241752B (zh) * 2021-05-21 2022-12-13 深圳市市政设计研究院有限公司 一种供电方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071969A (ja) * 2014-09-26 2016-05-09 旭化成株式会社 酸化物複合体及び非水系リチウムイオン二次電池
JP2017107848A (ja) * 2015-11-30 2017-06-15 住友化学株式会社 非水電解液二次電池用セパレータ
JP2017168419A (ja) * 2016-03-11 2017-09-21 住友化学株式会社 多孔質層

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3931446A (en) 1970-09-26 1976-01-06 Kureha Kagaku Kogyo Kabushiki Kaisha Process for producing polymeric piezoelectric elements and the article formed thereby
JPS5117274A (ja) 1974-08-01 1976-02-12 Matsushita Electric Ind Co Ltd Takoshitsufuirumu
US4923650A (en) 1988-07-27 1990-05-08 Hercules Incorporated Breathable microporous film and methods for making it
US5008296A (en) 1988-07-27 1991-04-16 Hercules Incorporated Breathable microporous film
JPH06104736B2 (ja) 1989-08-03 1994-12-21 東燃株式会社 ポリオレフィン微多孔膜
US5571634A (en) 1993-03-05 1996-11-05 Bell Communications Research, Inc. Hybrid lithium-ion battery polymer matrix compositions
JPH09161778A (ja) 1995-12-06 1997-06-20 Hitachi Maxell Ltd 有機電解液二次電池
TW393797B (en) 1996-09-26 2000-06-11 Toray Industries An electrode for a battery and a battery using it
JPH1186844A (ja) 1996-09-26 1999-03-30 Toray Ind Inc 電池用電極およびそれを用いた電池
FR2759087B1 (fr) 1997-02-06 1999-07-30 Electricite De France Produit composite poreux de haute surface specifique, procede de preparation et electrode pour ensemble electrochimique formee d'un film composite poreux
JP4005660B2 (ja) 1997-03-28 2007-11-07 Tdk株式会社 高分子固体電解質の製造方法、高分子固体電解質およびこれを用いた電気化学デバイス
JPH1116561A (ja) 1997-06-23 1999-01-22 Elf Atochem Japan Kk バッテリーセパレータ、その製造方法、および非水系二次電池
JPH1140129A (ja) 1997-07-15 1999-02-12 Tounen Tapirusu Kk 極細複合繊維不織布からなる電池用セパレータ及びその製造方法
JPH11120994A (ja) 1997-08-01 1999-04-30 Mitsubishi Chemical Corp インターリーフ膜を有する電極およびその製造方法
JPH11130900A (ja) 1997-10-27 1999-05-18 Asahi Chem Ind Co Ltd ポリエチレン微多孔膜
JPH11300180A (ja) 1998-02-20 1999-11-02 Mitsubishi Chemical Corp 多孔質樹脂膜
JP2001118558A (ja) 1999-10-19 2001-04-27 Asahi Kasei Corp 部分被覆されたセパレータ
EP1165207A1 (en) 2000-01-10 2002-01-02 LG Chemical Co. Ltd High crystalline polypropylene microporous membrane, multi-component microporous membrane and methods for preparing the same
EP2418713A1 (en) 2000-03-31 2012-02-15 Sony Corporation Separator, gelated electrolyte, non-aqueous electrolyte, electrode and non-aqueous electrolyte cell empolying the same
JP2001351616A (ja) 2000-06-05 2001-12-21 Toyota Motor Corp 電極の製造方法
JP4126862B2 (ja) 2000-10-05 2008-07-30 ソニー株式会社 非水電解液電池及び固体電解質電池
JP5079188B2 (ja) 2001-03-09 2012-11-21 旭化成イーマテリアルズ株式会社 高透過性微多孔膜
JP2004087209A (ja) 2002-08-26 2004-03-18 Sanyo Electric Co Ltd リチウム二次電池
EP1568719B1 (en) 2002-09-25 2010-04-14 Kureha Corporation Process for preparing polyvinylidene fluoride copolymer
JP3867709B2 (ja) 2003-03-26 2007-01-10 ダイキン工業株式会社 薄膜の形成方法
JP4247027B2 (ja) 2003-03-28 2009-04-02 株式会社巴川製紙所 高分子電解質多孔質膜
JP2005135659A (ja) 2003-10-29 2005-05-26 Jfe Chemical Corp リチウムイオン二次電池の負極の製造方法
WO2005049318A1 (ja) 2003-11-19 2005-06-02 Tonen Chemical Corporation 複合微多孔膜及びその製造方法並びに用途
JP4438400B2 (ja) 2003-12-22 2010-03-24 三菱化学株式会社 多孔性フィルム及びその製造方法、並びにそれを用いた電池用セパレータ
JP4746272B2 (ja) 2004-02-04 2011-08-10 株式会社東芝 非水電解質二次電池
EP1743710A1 (en) 2004-03-22 2007-01-17 Daikin Industries, Ltd. Process for forming vinylidene fluoride homopolymer thin films
JP4773064B2 (ja) 2004-05-31 2011-09-14 三菱樹脂株式会社 非水電解質電池用セパレーターおよび非水電解質電池
JP4808935B2 (ja) 2004-06-01 2011-11-02 東レ東燃機能膜合同会社 ポリエチレン微多孔膜の製造方法並びにその微多孔膜及び用途
JP2006066243A (ja) 2004-08-27 2006-03-09 Furukawa Battery Co Ltd:The 非水電解液二次電池用電極板の製造方法および前記電極板が用いられた非水電解液二次電池
KR100775310B1 (ko) 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
US20070092705A1 (en) 2005-06-18 2007-04-26 Young-Keun Lee Microporous polyethylene film through liquid-liquid phase separation mechanism and preparing method thereof
KR100943234B1 (ko) 2005-05-16 2010-02-18 에스케이에너지 주식회사 액-액 상분리에 의하여 제조된 폴리에틸렌 미세다공막 및그 제조방법
JP5145602B2 (ja) 2005-08-10 2013-02-20 日産自動車株式会社 導電体、及びこれを用いたエネルギーデバイス、燃料電池セル
KR100950189B1 (ko) 2005-09-22 2010-03-29 미쓰비시 쥬시 가부시끼가이샤 다공 적층체의 제조 방법 및 다공 적층체
CN100403581C (zh) 2005-12-23 2008-07-16 范亢俊 锂电池、锂离子电池安全隔膜及其制造方法
US8931647B2 (en) 2006-04-19 2015-01-13 Asahi Kasei Chemicals Corporation Highly durable porous PVDF film, method of producing the same and washing method and filtration method using the same
JP2008062229A (ja) 2006-08-10 2008-03-21 Kuraray Co Ltd ポリフッ化ビニリデン多孔膜およびその製造方法
WO2008018181A1 (ja) 2006-08-10 2008-02-14 Kuraray Co., Ltd. フッ化ビニリデン系樹脂よりなる多孔膜及びその製造方法
ATE533197T1 (de) 2006-09-20 2011-11-15 Asahi Kasei Chemicals Corp Mikroporöse polyolefinmembran und separator für batterie mit nichtwässrigem elektrolyt
JP5158678B2 (ja) 2006-10-16 2013-03-06 日立マクセル株式会社 非水電解質電池用セパレータおよび非水電解質電池
JP5422562B2 (ja) 2007-10-05 2014-02-19 東レバッテリーセパレータフィルム株式会社 ポリマー微多孔膜
KR101147604B1 (ko) 2007-10-12 2012-05-23 주식회사 엘지화학 젤리-롤형 전극조립체의 변형을 억제하기 위한 제조방법
JP2009103900A (ja) 2007-10-23 2009-05-14 Nitto Denko Corp 積層光学フィルム、液晶パネルおよび液晶表示装置
JP2009104967A (ja) 2007-10-25 2009-05-14 Nitto Denko Corp 高分子電解質膜の製造方法と高分子電解質膜ならびに膜−電極接合体および高分子電解質型燃料電池
KR101432146B1 (ko) 2007-11-28 2014-08-28 에스케이이노베이션 주식회사 물성과 고온 열안정성이 우수한 폴리올레핀 미세다공막
JP2009185093A (ja) 2008-02-01 2009-08-20 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜
JP5470751B2 (ja) 2008-02-13 2014-04-16 Tdk株式会社 活物質及び電極の製造方法、活物質及び電極
EP2261276B1 (en) 2008-03-31 2015-01-28 Asahi Kasei E-materials Corporation Polyolefin microporous membrane and products of winding
JP5349830B2 (ja) 2008-04-11 2013-11-20 リケンテクノス株式会社 多孔性フィルム
JP2009259605A (ja) 2008-04-17 2009-11-05 Toyota Motor Corp 正極活物質及びその製造方法ならびに該正極活物質を備えた電池
JP5463652B2 (ja) 2008-11-14 2014-04-09 Tdk株式会社 活物質及び電極の製造方法
JP4794619B2 (ja) 2008-12-26 2011-10-19 Tdk株式会社 リチウムイオン二次電池用正極の製造方法及びリチウムイオン二次電池の製造方法、並びに、リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2010089939A1 (ja) 2009-02-06 2010-08-12 コニカミノルタホールディングス株式会社 電池用電極の製造方法および二次電池の製造方法
JP2010180341A (ja) 2009-02-06 2010-08-19 Sumitomo Chemical Co Ltd 樹脂組成物、シート、および多孔質フィルム
JP2010232088A (ja) 2009-03-27 2010-10-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP5722305B2 (ja) 2009-03-30 2015-05-20 東レバッテリーセパレータフィルム株式会社 微多孔膜、バッテリーセパレーターフィルム、電池及び微多孔膜の製造方法
JP2011077014A (ja) 2009-09-04 2011-04-14 Asahi Sunac Corp 電池用電極の製造方法
EP2530114A4 (en) 2010-01-25 2018-03-28 Toray Industries, Inc. Aromatic polyamide porous film and separator for capacitor or battery using the same
US8592071B2 (en) 2010-02-26 2013-11-26 Mitsubishi Plastics, Inc. Laminated porous film and separator for battery
KR101698485B1 (ko) 2010-04-13 2017-01-20 삼성전자 주식회사 네트워크를 통해 작동 상태 변경 알림이 가능한 디바이스 및 그 통신 방법
JP5630827B2 (ja) 2010-08-05 2014-11-26 日東電工株式会社 ポリオレフィン多孔質膜およびその製造方法ならびにその製造装置
JP5685039B2 (ja) 2010-09-30 2015-03-18 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5658758B2 (ja) 2010-10-01 2015-01-28 三菱樹脂株式会社 積層多孔性フィルム、電池用セパレータ及び電池
JP5553165B2 (ja) 2010-11-11 2014-07-16 トヨタ自動車株式会社 非水二次電池とその製造方法
KR20120056674A (ko) * 2010-11-25 2012-06-04 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP5618165B2 (ja) 2010-11-26 2014-11-05 トヨタ自動車株式会社 非水電解質二次電池
EP3159139B1 (en) 2010-12-28 2019-02-13 Asahi Kasei Kabushiki Kaisha Method for producing polyolefin-based porous film
JP2012150972A (ja) 2011-01-19 2012-08-09 Hitachi Ltd リチウムイオン電池
KR101254693B1 (ko) 2011-02-15 2013-04-15 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
US9065119B2 (en) 2011-04-08 2015-06-23 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
KR101297771B1 (ko) 2011-04-08 2013-08-20 데이진 가부시키가이샤 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지
US9281508B2 (en) 2011-04-08 2016-03-08 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5853400B2 (ja) 2011-04-21 2016-02-09 ソニー株式会社 セパレータおよび非水電解質電池、ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2012256528A (ja) 2011-06-09 2012-12-27 Panasonic Corp 電池の製造方法及び電池製造装置
KR102022822B1 (ko) 2011-07-28 2019-09-18 스미또모 가가꾸 가부시끼가이샤 적층 다공질 필름 및 비수 전해액 이차 전지
CN103947009B (zh) 2011-11-15 2016-03-09 帝人株式会社 非水系二次电池用隔膜及其制造方法以及非水系二次电池
JP6013368B2 (ja) 2011-12-26 2016-10-25 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔フィルム、ポリオレフィン微多孔フィルムロールおよびそれらの製造方法ならびにそれらを用いた電池用セパレーター
WO2013098962A1 (ja) 2011-12-27 2013-07-04 株式会社日立製作所 非水二次電池
JP2013171629A (ja) 2012-02-17 2013-09-02 Bridgestone Corp 非水電解質二次電池用負極材及びリチウムイオン二次電池
JP5497245B2 (ja) 2012-03-09 2014-05-21 帝人株式会社 非水系二次電池用セパレータ、その製造方法および非水系二次電池
JP2013218875A (ja) 2012-04-09 2013-10-24 Sony Corp 正極活物質、正極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5942145B2 (ja) 2012-05-09 2016-06-29 旭化成株式会社 ポリオレフィン製微多孔膜及びその製造方法
CN102651466B (zh) 2012-05-27 2014-12-10 江西金路新能源有限公司 高安全陶瓷复合锂离子隔离膜及其锂电池
US9346066B2 (en) 2012-06-05 2016-05-24 GM Global Technology Operations LLC Non-woven polymer fiber mat for use in a lithium ion battery electrochemical cell
JP6324655B2 (ja) 2012-06-20 2018-05-16 住友化学株式会社 セパレータの製造方法及び非水電解液二次電池
KR101979063B1 (ko) 2012-07-26 2019-05-15 아사히 가세이 이-매터리얼즈 가부시키가이샤 축전 디바이스용 세퍼레이터, 적층체 및 다공막
KR20150032295A (ko) 2012-07-30 2015-03-25 데이진 가부시키가이샤 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
JP6347210B2 (ja) 2012-10-03 2018-06-27 東レ株式会社 二軸延伸微多孔フィルム
US10074840B2 (en) 2012-11-30 2018-09-11 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
EP2958170A4 (en) 2013-02-13 2016-08-17 Toray Battery Separator Film SEPARATOR FOR BATTERIES AND METHOD FOR MANUFACTURING SEPARATOR FOR BATTERIES
KR101479749B1 (ko) 2013-03-14 2015-01-07 (주)에프티이앤이 폴리올레핀에 폴리비닐리덴플루오라이드(pvdf)를 전기방사하고 무기물을 코팅한 이차전지용 다공성 분리막 및 이의 제조방법
KR20140113186A (ko) 2013-03-15 2014-09-24 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차전지의 제조방법
JP6093636B2 (ja) 2013-04-24 2017-03-08 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
EP3006210B1 (en) 2013-05-31 2017-11-15 Toray Industries, Inc. Multilayer, microporous polyolefin membrane, and production method thereof
KR102266028B1 (ko) 2013-05-31 2021-06-16 도레이 카부시키가이샤 폴리올레핀 미다공막 및 이의 제조 방법
US9799867B2 (en) 2013-06-21 2017-10-24 Sumitomo Chemical Company, Limited Laminated porous film, separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101430975B1 (ko) 2013-08-21 2014-08-18 에스케이씨 주식회사 내열성이 우수한 이차전지용 분리막
KR20150022090A (ko) 2013-08-22 2015-03-04 주식회사 엘지화학 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
CN103474601A (zh) 2013-08-23 2013-12-25 江苏华东锂电技术研究院有限公司 复合隔膜及其制备方法,以及锂离子电池
DE112014004411T5 (de) 2013-09-25 2016-07-28 Toyota Jidosha Kabushiki Kaisha Festkörperbatterie
JP6357981B2 (ja) * 2013-09-30 2018-07-18 株式会社Gsユアサ リチウムイオン二次電池
JP6223466B2 (ja) * 2013-11-29 2017-11-01 旭化成株式会社 リチウムイオンキャパシタ
JP2015122234A (ja) 2013-12-24 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
JP6296333B2 (ja) 2013-12-24 2018-03-20 東レ株式会社 ポリオレフィン微多孔膜、二次電池用セパレータおよび二次電池
JP5844950B2 (ja) 2013-12-26 2016-01-20 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN105830252A (zh) 2014-03-18 2016-08-03 积水化学工业株式会社 耐热性合成树脂微多孔薄膜及其制造方法、非水电解液二次电池用隔离物以及非水电解液二次电池
JP5876616B1 (ja) 2014-04-11 2016-03-02 東レバッテリーセパレータフィルム株式会社 電池用セパレータ
KR20160002173A (ko) 2014-06-30 2016-01-07 주식회사 엘지화학 리튬염을 포함하는 다공성 코팅층을 구비하는 이차 전지용 분리막 및 이의 제조 방법
JP6432203B2 (ja) 2014-08-12 2018-12-05 三菱ケミカル株式会社 積層多孔フィルムの製造方法
CN106163806B (zh) 2014-08-29 2018-01-16 住友化学株式会社 层叠体、间隔件和非水二次电池
JP5976947B2 (ja) 2014-08-29 2016-08-24 住友化学株式会社 多孔質層、多孔質層を積層してなるセパレータ、および多孔質層またはセパレータを含む非水電解液二次電池
JP6483386B2 (ja) 2014-09-25 2019-03-13 学校法人 関西大学 電極、および電気化学キャパシタ
KR20160038918A (ko) 2014-09-30 2016-04-08 삼성에스디아이 주식회사 분리막, 이의 제조방법 및 이를 이용한 전지
WO2016098708A1 (ja) * 2014-12-16 2016-06-23 日本電気株式会社 リチウムイオン二次電池
JP6729391B2 (ja) 2014-12-26 2020-07-22 東レ株式会社 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ
JP6096395B2 (ja) 2015-03-24 2017-03-15 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR101814921B1 (ko) * 2015-10-02 2018-01-04 스미또모 가가꾸 가부시키가이샤 다공질층, 적층체, 다공질층을 포함하는 비수 전해액 이차 전지용 부재, 및 다공질층을 포함하는 비수 전해액 이차 전지
CN105322120A (zh) 2015-10-08 2016-02-10 毛赢超 一种锂离子电池用凝胶隔膜水性pvdf涂层浆料的制备方法
JP6025957B1 (ja) 2015-11-30 2016-11-16 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材、非水電解液二次電池および非水電解液二次電池用セパレータの製造方法
JP6012838B1 (ja) 2015-11-30 2016-10-25 住友化学株式会社 非水電解液二次電池用セパレータの製造方法
JP5938512B1 (ja) 2015-11-30 2016-06-22 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
JP6153992B2 (ja) 2015-11-30 2017-06-28 住友化学株式会社 非水電解液二次電池用セパレータ
US20170155114A1 (en) 2015-11-30 2017-06-01 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
JP6645516B2 (ja) * 2015-12-24 2020-02-14 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法
JP6647624B2 (ja) 2016-02-08 2020-02-14 住友精化株式会社 非水電解質二次電池電極用合剤、当該合剤を含む非水電解質二次電池用電極、並びに当該電極を備えた非水電解質二次電池及び電気機器
CN106848160B (zh) 2016-03-11 2019-05-17 住友化学株式会社 多孔层
KR20230156816A (ko) * 2016-03-14 2023-11-14 암테크 리서치 인터내셔널 엘엘씨 적층 가능한, 치수-안정성 미세다공성 웹
US10873105B2 (en) * 2016-06-14 2020-12-22 Lg Chem, Ltd. Electrode for secondary battery and lithium secondary battery including same
JP6647973B2 (ja) 2016-06-21 2020-02-14 住友化学株式会社 積層体
JP6657029B2 (ja) 2016-06-21 2020-03-04 住友化学株式会社 積層体
JP7074419B2 (ja) 2016-06-21 2022-05-24 住友化学株式会社 積層体
JP6755726B2 (ja) 2016-06-21 2020-09-16 住友化学株式会社 積層体
JP6754628B2 (ja) 2016-06-21 2020-09-16 住友化学株式会社 積層体
JP6736375B2 (ja) 2016-06-21 2020-08-05 住友化学株式会社 積層体
JP6758943B2 (ja) 2016-06-21 2020-09-23 住友化学株式会社 積層体
JP2017103204A (ja) 2016-08-18 2017-06-08 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
JP2017103209A (ja) 2016-09-02 2017-06-08 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材、非水電解液二次電池および非水電解液二次電池用セパレータの製造方法
US10661528B2 (en) 2016-10-24 2020-05-26 Sumitomo Chemical Company, Limited Separator and secondary battery including the separator
US11411281B2 (en) * 2016-11-14 2022-08-09 Shanghai DINHO New Material Technology Co., Ltd. Multi-layered composite functional separator for lithium-ion battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN109461964B (zh) * 2017-09-06 2021-06-08 宁德时代新能源科技股份有限公司 一种锂离子二次电池
EP3605655B1 (en) * 2017-09-29 2021-08-04 Toray Industries, Inc. Porous composite film, separator for battery, battery, and porous composite film production method
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430620B1 (ja) * 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
CN108878748A (zh) * 2018-06-25 2018-11-23 宁德新能源科技有限公司 电化学装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071969A (ja) * 2014-09-26 2016-05-09 旭化成株式会社 酸化物複合体及び非水系リチウムイオン二次電池
JP2017107848A (ja) * 2015-11-30 2017-06-15 住友化学株式会社 非水電解液二次電池用セパレータ
JP2017168419A (ja) * 2016-03-11 2017-09-21 住友化学株式会社 多孔質層

Also Published As

Publication number Publication date
CN110010827B (zh) 2022-06-03
US11038208B2 (en) 2021-06-15
JP6430618B1 (ja) 2018-11-28
CN110010827A (zh) 2019-07-12
KR20190074265A (ko) 2019-06-27
US20190190072A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP6012838B1 (ja) 非水電解液二次電池用セパレータの製造方法
JP6143992B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP6430620B1 (ja) 非水電解液二次電池
JP2017107848A (ja) 非水電解液二次電池用セパレータ
JP6430618B1 (ja) 非水電解液二次電池
JP6507219B1 (ja) 非水電解液二次電池
JP6041970B1 (ja) 非水電解液二次電池用セパレータ
JP6430624B1 (ja) 非水電解液二次電池
JP2019110070A (ja) 非水電解液二次電池
JP6430622B1 (ja) 非水電解液二次電池
JP6430623B1 (ja) 非水電解液二次電池
WO2020091027A1 (ja) 非水電解液二次電池
JP6430621B1 (ja) 非水電解液二次電池
JP6430617B1 (ja) 非水電解液二次電池
CN109935880B (zh) 非水电解液二次电池
JP2019110064A (ja) 非水電解液二次電池
JP6430616B1 (ja) 非水電解液二次電池
JP6545849B2 (ja) 非水電解液二次電池用セパレータ
JP2017117779A (ja) 非水電解液二次電池用セパレータ
JP6463396B2 (ja) 非水電解液二次電池用セパレータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180130

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181031

R150 Certificate of patent or registration of utility model

Ref document number: 6430618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350