JP2018125518A - トランジスタ、製造方法 - Google Patents

トランジスタ、製造方法 Download PDF

Info

Publication number
JP2018125518A
JP2018125518A JP2017210012A JP2017210012A JP2018125518A JP 2018125518 A JP2018125518 A JP 2018125518A JP 2017210012 A JP2017210012 A JP 2017210012A JP 2017210012 A JP2017210012 A JP 2017210012A JP 2018125518 A JP2018125518 A JP 2018125518A
Authority
JP
Japan
Prior art keywords
drain region
transistor
drain
region
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017210012A
Other languages
English (en)
Inventor
亮子 本庄
ryoko Honjo
亮子 本庄
澤田 憲
Ken Sawada
憲 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to US16/480,741 priority Critical patent/US11018171B2/en
Priority to PCT/JP2018/001587 priority patent/WO2018142970A1/ja
Priority to CN201880007885.4A priority patent/CN110226218A/zh
Publication of JP2018125518A publication Critical patent/JP2018125518A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0882Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L29/78624Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile the source and the drain regions being asymmetrical

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】ノイズを低減させる。【解決手段】半導体基板上に形成されたゲート電極と、ゲート電極から延在するように半導体基板表面に形成されたソース領域と、ソース領域と対向する位置に、ゲート電極に接触する部分がないように半導体基板表面に形成されたドレイン領域とを備える。ソース領域とドレイン領域は、非対称である。ドレイン領域は、ソース領域よりも深い位置に形成されている。ゲート電極のゲート端において、ドレイン領域は、半導体基板の表面から離れた位置に形成されている。本技術は、例えば、増幅トランジスタに適用できる。【選択図】図3

Description

本技術はトランジスタ、製造方法に関し、例えば、ゲート制御性能を犠牲にすることなく、ノイズレベルを低減できるようにしたトランジスタ、製造方法に関する。
撮像装置を構成するトランジスタのうち、画素信号の増幅トランジスタにおけるノイズ対策として、埋め込み型チャネル構造が提案されている(特許文献1参照)。
埋め込み型チャネル構造は、ノイズがチャネル/ゲート酸化膜界面やSi(シリコン)表面の欠陥(トラップ)とのキャリアのやり取りにより発生することから、チャネルパスを制御し、界面・表面の影響を少なくすることを期待したものである。
チャネルパスを制御する構造として、ソース/ドレインのインプラを非対称にする構造(特許文献2)、ソース側に高抵抗領域を挿入する構造(特許文献3乃至5)、ソース側に高抵抗領域を挿入し、かつソース・ドレイン領域の深さを変える構造(特許文献6)、ドレイン側に高抵抗領域を形成する構造(特許文献7)、ドレイン領域の深さをソース領域よりも深くする構造(特許文献8)などが提案されている。
特開2010−192917号公報 特開2012−164699号公報 特開平7−321320号公報 特開2013−247347号公報 特開2016−111251号公報 特開2008−166607号公報 特開2011−181617号公報 特開2014−036082号公報
しかしながら、特許文献1において開示されているように、増幅トランジスタとして、埋め込み型チャネル構造を採用すると、ゲート制御性が低下することに伴って、駆動性能が低減してしまう可能性があった。
また例えば、増幅トランジスタのように、アナログ回路におけるソースフォロワーバイアス条件下のトランジスタに代表されるような、一定以上の電流値を流して動作させる(飽和領域で動作させる)トランジスタにおいては、特許文献1乃至8で提案されているような埋め込みチャネル構造では、動作電流値により基板バイアス条件が定まるため、結局のところチャネルの電子密度分布が界面近傍に形成され、埋め込み効果が小さくなってしまう可能性があった。
さらに近年、素子の微細化や低電流動作化に伴いRTN(Random Telegraph Noise)による影響が大きくなってきており、RTNを低減させることも望まれている。
本技術は、このような状況に鑑みてなされたものであり、トランジスタとしての性能を低減させることなく、RTNなどのノイズを低減できるようにするものである。
本技術の一側面のトランジスタは、半導体基板上に形成されたゲート電極と、前記ゲート電極から延在するように前記半導体基板表面に形成されたソース領域と、前記ソース領域と対向する位置に、前記ゲート電極に接触する部分がないように前記半導体基板表面に形成されたドレイン領域とを備える。
本技術の一側面の製造方法は、半導体基板上に形成されたゲート電極と、前記ゲート電極から延在するように前記半導体基板表面に形成されたソース領域と、前記ソース領域と対向する位置に、前記ゲート電極に接触する部分がないように前記半導体基板表面に形成されたドレイン領域とを含むトランジスタを製造する方法である。
本技術の一側面のトランジスタにおいては、半導体基板上に形成されたゲート電極と、ゲート電極から延在するように半導体基板表面に形成されたソース領域と、ソース領域と対向する位置に、ゲート電極に接触する部分がないように半導体基板表面に形成されたドレイン領域とが備えられる。
本技術の一側面の製造方法においては、前記トランジスタが製造される。
本技術の一側面によれば、トランジスタとしての性能を低減させることなく、RTNなどのノイズを低減できる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
埋込みチャネル型のトランジスタの構造を示す断面図である。 一般的な表面チャネル型トランジスタと埋込みチャネル型トランジスタのゲートチャネル部における深さ方向のポテンシャルプロファイルを示す図である。 本技術を適用したトランジスタの一実施の形態の構成を示す断面図である。 本技術を適用したトランジスタの一実施の形態の構成を示す平面図である。 本技術を適用したトランジスタの他の実施の形態の構成を示す平面図である。 ドレインの形状、位置について説明するための図である。 チャネルの形成について説明するための図である。 本技術を適用したトランジスタにより得られる効果について説明するための図である。 電流の流れについて説明するための図である。 埋め込みドレイン領域の大きさについて説明するための図である。 ドレインの他の形状について説明するための図である。 ドレインの形状について説明するための図である。 トランジスタの製造について説明するための図である。 トランジスタの製造について説明するための図である。 本技術を適用したトランジスタの他の実施の形態の構成を示す図である。 ドレインの形状、位置について説明するための図である。 チャネルの形成について説明するための図である。 トランジスタの製造について説明するための図である。 トランジスタの製造について説明するための図である。 本技術を適用したトランジスタの適用例について説明するための図である。 画素の構成について説明するための図である。 画素の構成について説明するための図である。 画素の構成について説明するための平面図である。 画素の構成について説明するための断面図である。
以下に、本技術を実施するための形態(以下、実施の形態という)について説明する。
<従来の埋込みチャネル型のNMOSトランジスタの断面構造>
図1は、従来の埋込みチャネル型のNMOSトランジスタ10の構造を示す断面図である。本技術を適用したトランジスタの説明の前に、比較のため、従来のトランジスタについて説明を加える。
図1において、P型の半導体基板21の基板表面側には、ドレイン領域およびソース領域となるN型の拡散層22,23が所定の距離を隔てて形成され、さらに拡散層22,23間の基板表面近傍、即ちチャネル領域にN型、例えばP(リン)の導入によってN−型層24が形成されている。また、拡散層22,23間の基板表面上には、Si02等のゲート絶縁膜25を介してP+型のポリシリコンによってゲート電極26が形成されている。
<従来の埋込みチャネル型のNMOSトランジスタのポテンシャルプロファイル>
図2に、一般的な表面チャネル型NMOSトランジスタと、従来の埋込みチャネル型NMOSトランジスタのゲートチャネル部における深さ方向のポテンシャルプロファイルを示す。
図2のポテンシャルプロファイルから明らかなように、半導体基板(シリコン基板)中のポテンシャルが最小となる領域、つまり電流が流れる領域は、表面チャネルの場合、ゲート絶縁膜/基板界面に形成され、埋込みチャネルの場合、ゲート絶縁膜から離れた基板内部の箇所に形成される。そして、基板/ゲート絶縁膜界面で電子/正孔のトラップ準位が形成されると、表面チャネル型NMOSトランジスタの方が埋込みチャネル型NMOSトランジスタよりもトラップ準位の影響を受ける。
図1に示した埋込みチャネル型のNMOSトランジスタ10を、例えば増幅トランジスタとして用いた場合、増幅トランジスタでは、基板21中のポテンシャルが最小になる領域(電流が流れる領域)が、ゲート絶縁膜/基板界面ではなく、ゲート絶縁膜25から離れた基板21内部の箇所に形成されるため、ゲート絶縁膜/基板界面で電子/正孔のトラップ準位が形成されても、トラップ準位によるチャネルを流れる電流への影響を抑えることができる。
すなわち、増幅トランジスタとして埋込みチャネル型NMOSトランジスタ10(以下、単に、トランジスタ10と記述する)を用いることで、1/fノイズの発生原因となるトラップ準位による電流の揺らぎを抑制することができるため、トランジスタ10のゲート長(ゲート寸法)Lおよびゲート幅(活性領域の寸法)Wを増大させたり、ゲート絶縁膜容量Coxを増加させたりしなくても、1/fノイズを原理的に低減できることになる。
このように、トランジスタ10を、埋め込みチャネル構造とすることで、ノイズがチャネル/ゲート酸化膜界面やSi表面の欠陥(トラップ)とのキャリアのやり取りにより発生することから、チャネルパスを制御し、界面・表面の影響を少なくすることが期待できる。
しかしながら、トランジスタ10を、増幅トランジスタのように、アナログ回路におけるソースフォロワーバイアス条件下のトランジスタに代表されるような、一定以上の電流値を流して動作させる(飽和領域で動作させる)トランジスタとして用いた場合、埋め込みチャネル構造のトランジスタでは、動作電流値により基板バイアス条件が定まるため、チャネルの電子密度分布が界面近傍に形成され、埋め込み効果が小さくなってしまう可能性があった。
さらに素子の微細化や低電流動作化に伴いRTN(Random Telegraph Noise)による影響が大きくなってきている。
トランジスタの動作中のチャネルにおいて、電界が強いドレイン側のピンチオフ点近傍はキャリアの数が少ないため、この領域でRTNが発生すると素子特性に与える影響が大きくなる。換言すると、RTN感度には、ドレイン端界面の電子密度が効くといえる。よって、電子密度分布が界面近傍に形成されると、RTN抑制には効果が薄いと考えられる。
そこで、以下に説明するように、一定以上の電流値を流して動作させる(飽和領域で動作させる)トランジスタにおいて、Vthを決めるソース側とRTN感度が高いドレイン側で、チャネルの深さを変えた構成とする。
<第1の実施の形態におけるトランジスタの構成>
図3は、本技術を適用した第1の実施の形態におけるトランジスタの構成例を示す断面図である。また図4は、本技術を適用した第1の実施の形態におけるトランジスタの構成例を示す平面図である。さらに図5は、本技術を適用した第1の実施の形態におけるトランジスタの他の構成例を示す平面図である。
図3に示したトランジスタ100は、図1に示したトランジスタ10と基本的な構成は同一とすることができる。例えば、トランジスタ100をN型のMOSトランジスタで構成することができる。P型の半導体基板121内の図中左側に、N+型の拡散層からなるソース122が形成されている。また、半導体基板121内の図中右側に、ソース122と距離を隔ててN+型の拡散層からなるドレイン123が形成されている。
なお、ここでは、NMOSトランジスタを例に挙げて説明を続けるが、PMOSトランジスタであっても、本技術を適用できる。
半導体基板121上であり、ソース122とドレイン123の間に位置する部分には、ゲート124が形成されている。なお、図3では図示は省略してあるが、半導体基板121とゲート124との間に、ゲート絶縁膜を形成しても良い。
ゲート124のソース122側には、サイドウォール125が形成され、ドレイン側126には、サイドウォール126が形成されている。
ソース122側に設けられているサイドウォール125は、ソース122と接しているが、ドレイン123側に設けられているサイドウォール126は、ドレイン123とは接しないように形成されている。
ここで、図4と図5にそれぞれ示したトランジスタ100の平面図を参照する。図4に示したトランジスタ100は、ソース122、ゲート124、およびドレイン123が、直線上に配置されている例を示している。図5に示したトランジスタ100は、ソース122、ゲート124、およびドレイン123が、L字型に配置されている例を示している。なお、図4、図5ではサイドウォール126は図示していない。
図4のAは、図3に示したa−a’面における平面図であり、図4のBは、図3に示したb−b’面における平面図である。図4のAに示したように、トランジスタ100は、ソース122、ゲート124、およびドレイン123が、直線上に配置されている。直線上に配置されているとは、1方向、例えば、図4では左右方向(横方向)に配置されていることを表す。以下、ソース122、ゲート124、およびドレイン123が、直線上に配置されているトランジスタ100を、適宜、直線トランジスタ100と記述する。
直線トランジスタ100において、ゲート124とドレイン123は、接する部分がないように、離れた位置に形成されている。すなわち、半導体板121の表面付近では、ゲート124とドレイン123は接しない構成とされている。
一方で、図4のBに示すように、直線トランジスタ100の内部では、ゲート124とドレイン123は、位置的に重なりがあるように形成されている。図4のBに点線で示した部分が、半導体基板121の表面上に形成されているゲート124を示し、そのゲート124とドレイン123は、重なりがあるように形成されている。
図3に示したような断面を有する本技術を適用したトランジスタ100は、図4に示したような直線上にソース122、ゲート124、ドレイン123が配置されている場合に適用範囲が限定されるのではなく、図5に示したような配置のトランジスタ100に対しても適用できる。
図5のAは、図3に示したa−a’面における平面図であり、図5のBは、図3に示したb−b’面における平面図である。図5のAに示したように、トランジスタ100は、ソース122、ゲート124、およびドレイン123が、L字型に配置されている。L字型に配置されているとは、2方向、例えば、図5では、左右方向と上下方向(横方向と縦方向)に配置されていることを表す。以下、ソース122、ゲート124、およびドレイン123が、L字型に配置されているトランジスタ100を、適宜、L字トランジスタ100と記述する。
以下の説明において、単に、トランジスタ100と記述した場合、直線トランジスタ100、またはL字トランジスタ100のことを示すとする。
図5のBに示すように、L字トランジスタ100の内部では、ゲート124とドレイン123は、位置的に重なりがあるように形成されている。図5のBに点線で示した部分が、半導体基板121の表面上に形成されているゲート124を示し、そのゲート124とドレイン123は、重なりがあるように形成されている。
図3乃至図5に示したように、ドレイン123は、一部が半導体基板の内部に埋め込まれた埋め込みドレインとして形成されている。
埋め込みドレインとして形成されているドレイン123は、以下の3つの条件を満たすように形成されている。
条件1:ソース122とドレイン123の不純物領域が非対称(同一の形状ではない)
条件2:ドレイン123の不純物領域は、ソース122の不純物領域よりも深い位置に形成されている
条件3:ゲート端(ゲート124の端部)において、ドレイン123の不純物領域は、表面から離れている
ここで、3つのパラメータを設定し、さらにドレイン123の不純物領域(以下、適宜、ドレイン領域123と記述する)の形状や形成されている位置などについて説明を加える。
図6に示すようにパラメータA乃至Cを定義する。またドレイン領域123を、上下で2つに分け、半導体基板121の表面(ゲート124側)よりも深い位置に位置しているドレイン領域123を、ドレイン領域123−1とし、半導体基板121の表面付近のドレイン領域123を、ドレイン領域123−2とする。なお、ドレイン領域123−1とドレイン領域123−2を区別する必要がない場合(ドレイン領域123−1とドレイン領域123−2を合わせた領域を示す場合)、単にドレイン領域123と記載する。
パラメータAは、ドレイン領域123(ドレイン領域123−1)のゲート124側の、サイドウォール126からのはみ出し量を表す。図6において、ゲート124とサイドウォール126との境目の位置(すなわちゲート端)を位置P0とし、ドレイン領域123のゲート124側の端の位置を位置P1とした場合、位置P0から位置P1までの長さがパラメータAとなる。
図6では、位置P1は、ゲート124の下側に位置する場合を示したが、サイドウォール126の下側に位置しても良い。点P0を0とし、ゲート124側をプラス、サイドウォール126側をマイナスとした場合、パラメータAは、例えば、±0.1umに設定される。パラメータAは、ソース122とのショート、ゲート長、短チャネル化抑止、インプラ合わせ等を考慮して設定される。
パラメータBは、ドレイン領域123の高抵抗領域の幅を表す。パラメータBは、ゲート124とサイドウォール126の境界位置P0から、ドレイン領域123−2のゲート124側の辺(位置P2)までの長さである。
パラメータCは、ドレイン領域123の深さを表す。半導体基板121の表面の位置を位置P0とし、ドレイン領域123−1の半導体基板121の表面側の辺の位置(換言すると、図6では、ドレイン領域123−1とドレイン領域123−2の境界位置)を位置P3とした場合、位置P0から位置P3までの深さとなる。
パラメータBとパラメータCは、例えば、0乃至0.3um程度に設定される。パラメータBとパラメータCは、チャネルが表面から離れるようにする、ドレインの電界によりチャネルが途切れることなく形成されるようにすることなどを考慮して設定される。
パラメータA乃至Cが、適切に設定され、上記した条件1乃至3が満たされるように、ドレイン領域123が形成されると、図7に示すようなチャネルが形成される。
図7を参照するに、チャネル131は、ソース122とドレイン123の間に形成され、ソース122側からドレイン123側に行くにつれて半導体基板121の表面から離れる(深く)なるように形成されている。すなわち、チャネル131は、表面から離れた深い位置に形成される。
このように、本技術によれば、ソース側不純物プロファイルを所望とされる動作電流値に基づいて設計でき、ドレイン側のチャネル電流パスを深い位置にでき、RTNの影響を減らすことができる。このことをTCADシミュレーションにより確認した結果を、図8に示す。
図8に示したグラフにおいて、横軸は、ゲート酸化膜界面からの深さ(半導体基板121の表面からの深さ)を表し、縦軸は、電子密度を表す。また図8に示したグラフにおいて、ラインL1は、ソースとドレインが共に表面に形成され、対称な構造のトランジスタ(例えば、図1のトランジスタ10)における結果を表し、ラインL2は、図3のように埋め込みドレイン構造を持ったトランジスタ100での結果を表す。
図8に示したように、ピンチオフ点近傍(Pinchoff-0.06um)における界面からの深さ方向の電子密度分布を求めると、ラインL2の方が、ラインL1よりも電子密度のピークが界面からより深い位置にあり、かつピーク濃度も低くなっていることが確認できる。このことから、上記したように、チャネル131を深い位置に形成でき、RTNなどのノイズの影響を低減できることが確認できた。
このように、チャネル131を深い位置に形成できることで、ソース122、ゲート124、およびドレイン123が直線上に配置されている直線トランジスタ100のような場合、上記したように、ノイズの影響を低減できる。また、チャネル131を深い位置に形成できることで、図5に示したソース122、ゲート124、およびドレイン123がL字型に配置されているようなL字トランジスタ100のような場合においても、ノイズの影響を低減できる。
近年、トランジスタを搭載する領域の縮小(トランジスタの微細化)が進んでいる。直線トランジスタ100よりも、L字トランジスタ100の方が微細化しやすい傾向にある。しかしながら、L字トランジスタ100の場合、電流が集中する箇所があり、ノイズによる影響が大きくなる可能性がある。
図9のAは、例えば、図1に示したトランジスタ10のように、ゲート26とドレイン23が半導体基板21の表面付近で接する部分があり、L字型にソース22、ゲート26、およびゲート23が配置されているときの、電流の流れについて説明するための図である。図9のAに矢印で示したように、電流は、ソース22とドレイン23の間の距離が最小になるパスを流れるため、L字の内側部分151の付近に、電流が集中してしまう傾向にある。
このように電流が集中してしまう部分があると、トランジスタのゲート幅Wが小さくなり、トランジスタのgm(相互コンダクタンス)が小さくなり、ノイズが大きくなる可能性があり、信頼性特性が悪化してしまう可能性がある。
本技術を適用したトランジスタ100によると、図9のBに示すように電流が流れる。図9のBは、図3に示したトランジスタ100のように、ゲート126とドレイン123が半導体基板121の表面付近で接する部分がない埋め込み型ドレイン構造を有し、L字型にソース122、ゲート126、およびゲート123が配置されているときの、電流の流れについて説明するための図である。
図9のBに矢印で示したように、電流は、ソース122とドレイン123の間の距離が最小になるパスを流れるため、ソース122の対向側にあるドレイン123(埋め込まれているドレイン123)に流れる。よって、L字の内側部分151の付近に、電流が集中してしまうようなことを防ぐことができるため、トランジスタのゲート幅Wが小さくなることや、トランジスタのgm(相互コンダクタンス)が小さくなることを防ぐことができる。
また、L字トランジスタ100のゲート幅Wだけでなく、ゲート長(ゲート寸法)Lを増大させることもできる。よって、本技術を適用することで、L字トランジスタ100においても、ノイズを低減できる。また、寄生容量を改善することもできるため、ノイズによる影響を低減させることも可能となる。
ところで、L字型トランジスタ100のドレイン123において、埋め込まれているドレイン123(以下、埋め込みドレイン領域と記載する)の幅d(図10)は、L字型トランジスタ100の大きさにもよるが、例えば、5乃至20nm程度で構成することができる。また、埋め込みドレイン領域は、上記条件1乃至3(パラメータA乃至C)を満たす位置に形成されている。
また、直線トランジスタ100、およびL字トランジスタ100の埋め込みドレイン領域のN型の濃度は、例えば、1e19cm-3以上とすることができる。
埋め込みドレイン領域を形成した場合、埋め込みドレイン領域で、ドレイン123の機能を持たせることができるため、半導体基板121の表面に設けられているドレイン123は、コンタクトとして用い、従来よりも小さい領域で形成することができる。
例えば、図11に示すように、ドレイン123を形成しても良い。図11のAは、図4のAと同じく、直線トランジスタ100の半導体基板121の表面における平面図を示す。図11のAに示したように、半導体基板121の表面に形成されるドレイン123は、小さい領域で形成し、この領域をコンタクトとして用いる構成とすることも可能である。
同様に、図11のBは、図5のAと同じく、L字トランジスタ100の半導体基板121の表面における平面図を示し、半導体基板121の表面に形成されるドレイン123を、小さい領域で形成し、この領域をコンタクトとして用いる構成とすることも可能である。
図6を参照して説明したパラメータA乃至Cについて再度説明を加える。上記した効果を得るには、ドレイン領域123を、ゲート124から離した位置に形成することが必要である。
ドレイン領域123を、ゲート124から離した位置に形成するためには、パラメータCは、0より大きい値にする必要がある。パラメータCは、0より大きい値であれば、パラメータBが、0に設定されても、ドレイン領域123を、ゲート124から離した位置に形成することが可能である。
例えば、図12に示すように、位置P1から位置P2まで勾配がある形状でドレイン領域123が形成されても良い。図12に示した形状では、パラメータBは、ドレイン領域123−1の上辺付近では、位置P3から位置P2までの距離程度となるが、ドレイン領域123−2の端部側(半導体基板121の表面と接している部分の端部)では、位置P2となり0となる。
図12に示した形状では、パラメータCは、ドレイン領域123−1の端部側(ゲート124側)では、位置P0から位置P3までの距離程度となり、ドレイン領域123−2に近づくに伴い0となる。この場合も、ドレイン領域123−1の端部側では、ゲート124(ゲート端)から離れた位置にドレイン領域123は形成されているため、上記した条件は満たされている。
パラメータAは、ソース122に近すぎると、ドレイン123とショートしてしまう可能性があり、ソース122から遠すぎると、チャネルが途切れてしまう可能性がある。よって、上記したように、パラメータAは、ソース122とのショート、ゲート長、短チャネル化抑止、インプラ合わせ等を考慮して設定される。
このようなことから、パラメータA乃至Cのうち、ドレイン領域123の形状、形成する位置などを設定するとき、設定値として重要な順としては、パラメータC、パラメータA、パラメータBの順になる。
<ドレイン領域の第1−1の形成方法>
設定されたパラメータA乃至Cで、ドレイン領域123が形成される。ドレイン領域123の形成について、図13を参照して説明する。図13では、ドレイン領域の第1−1の形成方法として、図3に示したようなドレイン領域123を形成する場合を例に挙げ、また、ドレイン領域123以外の部分は、従来の方法を適用して形成されるとして、その説明は適宜省略し、主にドレイン領域123の形成に係わる工程について説明を加える。
また以下に説明するドレイン領域の第1−1の形成方法は、直線トランジスタ100を形成する場合と、L字トランジスタ100を形成する場合にそれぞれ適用できる。
工程S1において、半導体基板121が用意される。工程S2において、レジスト201が半導体基板121上に塗布される。このレジスト201は、深い位置にあるドレイン領域123−1を形成するために、ドレイン領域123−1を形成する部分に位置するレジスト201は、開口部分(レジストが不要な部分)とされ、除去される。このようなレジストパターニングには、例えば、リソグラフィを適用すること行われる。
図13の工程S2のところに図示したように、ドレイン領域123−1を形成する位置が開口されたレジストとされた後、イオン注入が行われることで、ドレイン領域123−1が形成される。PMOSトランジスタを製造する場合、例えば、ホウ素(B)イオンが打ち込まれ、NMOSトランジスタを製造する場合、砒素(As)イオンが打ち込まれる。イオン注入後、塗布されていたレジスト201は除去される。
図13の工程S3のところに示したように、1回目のイオン注入にて、半導体基板121の深い位置(表面から離れた位置)に位置するドレイン領域123−1が形成される。工程S2、工程S3においてドレイン領域123−1が形成されるとき、設定されているパラメータAやパラメータCが満たされるようにパターニングやイオン注入が行われる。すなわち、パラメータCで設定される半導体基板121の表面からの深さに、ドレイン領域123−1が形成され、パラメータAで設定される位置からドレイン領域123−1が所定の大きさで形成される。
さらに浅い位置に位置するドレイン領域123−2を形成するために、再度、イオン注入が行われる。すなわち、工程S4において、レジストパターニングが行われ、イオン注入が行われる。
工程S4におけるレジストパターニングにおいては、浅い位置に位置するドレイン領域123−2を形成するための開口部がレジスト202に形成されている。
レジストパターニング後、イオン注入が行われることで、ドレイン領域123−2が形成される。図13の工程S5のところに示したように、2回目のイオン注入にて、浅い位置に位置するドレイン領域123−2が形成される。
工程S4、工程S5においてドレイン領域123−2が形成されるとき、設定されているパラメータBが満たされるようにパターニングやイオン注入が行われる。すなわち、パラメータBで設定されるゲート124の端部からの距離だけ離れた位置から、所定の大きさでドレイン領域123−2が形成される。
なお、工程S2乃至S4において、ソース122も、ドレイン領域123と同じようにして形成されるようにしても良い。ソース122も形成する場合、ソース122を形成するための開口部もレジスト202に形成される。
このように、設定されているパラメータA乃至Cが満たされるように、2回のレジストパターニングとイオン注入が行われることで、半導体基板121の表面から深い位置にあるドレイン領域123−1と半導体基板121の表面付近にあるドレイン領域123−2を形成することができる。
なお、イオン注入(インプラ)は、パラメータA乃至Cの設計値に応じて、垂直入射、斜め入射など、適宜適用することができる。また、斜め入射の角度や注入時間などを調整することで、図12に示したような形状を有するドレイン領域123を形成することもできる。
<ドレイン領域の第1−2の形成方法>
図3に示したようなドレイン領域123を他の形成方法(ドレイン領域の第1−2の形成方法とする)について、図14を参照して説明する。図14には、ドレイン領域123の形成に係わる工程についてのみ図示してあり、他の部分については、従来の方法を適用して形成することが可能であるため、その説明は適宜省略する。
また以下に説明するドレイン領域の第1−2の形成方法は、直線トランジスタ100を形成する場合と、L字トランジスタ100を形成する場合にそれぞれ適用できる。
工程S21において、半導体基板121が用意される。工程S22において、レジスト301が半導体基板121上に塗布される。この工程S22における処理は、工程S2(図13)と同じである。すなわち、半導体基板121上に塗布されるレジスト301は、レジスト201(図13)と同じく深い位置にあるドレイン領域123−1を形成するために、ドレイン領域123−1を形成する部分に位置するレジスト301は、開口部分(レジストが不要な部分)とされ、除去される。
このようなレジストパターニングには、例えば、リソグラフィを適用することができる。また、パラメータAを満たすように、レジストパターニングが行われ、その後、イオン注入が行われる。
図14の工程S22のところに図示したように、ドレイン領域123−1を形成する位置が開口されたレジストとされた後、P(リン)イオンやAsイオンによるイオン注入が行われることで、ドレイン領域123−11が形成される。工程S22において形成されるのは、ドレイン領域123−1、ドレイン領域123−2、およびドレイン領域123−3を含むドレイン領域123−11である。
すなわち、図14の工程S23のところに図示したように、ドレイン領域123−11は、ドレイン領域123−1の深さ(底辺)から半導体基板121の表面付近までの領域であり、ドレイン領域123−1の幅を有する領域である。よって、上記したように、ドレイン領域123−11は、ドレイン領域123−1、ドレイン領域123−2、およびドレイン領域123−3を含む領域となる。
このように、ドレイン領域123−11を形成した場合、ドレイン領域123−11を、図3に示したドレイン領域123にするためには、ドレイン領域123−11からドレイン領域123−3を除去する必要がある。そこで、工程S24において、ドレイン領域123−3の導電性を打ち消すための処理が行われる。
すなわち、ドレイン領域123−3に該当する部分が開口されたレジストパターニングが行われ、ドレイン領域123−3に対する例えばB(ホウ素)イオンによるイオン注入が行われる。このように、2回目のイオン注入が行われことで、高抵抗領域が形成され、図14の工程S25のところに示したように、ドレイン領域123が形成される。
2回目のレジストパターニングやイオン注入は、設定されているパラメータBとパラメータCに基づいて行われる。すなわち、高抵抗領域は、パラメータBとパラメータCによりその大きさ、形、位置などが規定される領域であるため、2回目のレジストパターニングやイオン注入は、設定されているパラメータBとパラメータCに基づいて行われる。
このように、設定されているパラメータA乃至Cが満たされるように、2回のレジストパターニングとイオン注入が行われることで、半導体基板121の表面から深い位置にあるドレイン領域123−1と半導体基板121の表面付近にあるドレイン領域123−2を形成することができる。
換言すれば、パラメータA乃至Cを満たすように、2回のレジストパターニングとイオン注入を行うことで、高抵抗領域を形成することができ、ソース122と異なる形状を有するドレイン123を形成することができる。
なお、イオン注入(インプラ)は、パラメータA乃至Cの設計値に応じて、垂直入射、斜め入射など、適宜適用することができる。また、斜め入射の角度や注入時間などを調整することで、図12に示したような形状を有するドレイン領域123を形成することもできる。
<第2の実施の形態におけるトランジスタの構成>
図15は、本技術を適用した第2の実施の形態におけるトランジスタの構成例を示す図である。
図2に示したトランジスタ500は、図3に示したトランジスタ100と基本的な構成は同一とすることができるため、同一の部分には、同一の符号を付し、その説明は省略する。また、第2の実施の形態におけるトランジスタの構成は、直線トランジスタ(直線トランジスタ500と記述する)、L字トランジスタ(L字トランジスタ500と記述する)の両方に適用できる。
例えば、トランジスタ500をN型のMOSトランジスタで構成することができる。また半導体基板121内の図中左側に、N+型の拡散層からなるソース122が形成され、半導体基板121内の図中右側に、ソース122と距離を隔ててN+型の拡散層からなるドレイン501が形成されている構成とすることができる。
なお、ここでは、NMOSトランジスタを例に挙げて説明を続けるが、PMOSトランジスタであっても、本技術を適用できる。
半導体基板121上であり、ソース122とドレイン501の間に位置する部分には、ゲート124が形成され、ゲート124のソース122側には、サイドウォール125が形成され、ドレイン501側には、サイドウォール126が形成されている。なお、図15では図示は省略してあるが、半導体基板121とゲート124との間に、ゲート絶縁膜を形成しても良い。
ソース122側に設けられているサイドウォール125は、ソース122と接しているが、ドレイン501側に設けられているサイドウォール126は、ドレイン501とは接しないように形成されている。
図15に示したトランジスタ500は、図3に示したトランジスタ100と比較し、ドレイン501の形状や位置が、ドレイン123と異なる。ドレイン501は、トランジスタ100のドレイン123を構成するドレイン領域123−1に該当する。換言すれば、ドレイン501は、図3に示したドレイン123から、そのドレイン123に含まれていたドレイン領域123−1が削除された形状、位置に形成されている。なお、大きさは、ドレイン領域123−1とは異なる大きさでも良い。
また、図15に示したトランジスタ500は、ドレイン501が形成される部分は、切り欠かれたような構成(リセス部を形成された構成)とされている点も、図3に示したトランジスタ100と異なる。
ドレイン501は、上記したように、ドレイン領域123−1に該当する領域であるため、ドレイン領域123と同じく、以下の3つの条件を満たすように形成されている。
条件1:ソース122とドレイン501の不純物領域が非対称(同一の形状ではない)
条件2:ドレイン501の不純物領域は、ソース122の不純物領域よりも深い位置に形成されている
条件3:ゲート124の端部(ゲート端)において、ドレイン501の不純物領域は、表面から離れている
さらに、ドレイン501は、以下の条件4も満たす。
条件4:ドレイン501の不純物領域がリセス部に形成されている。
ドレイン501は、上記したパラメータA乃至Cのうち、図16に示すように、パラメータAとパラメータCが設定される。図16に示すように、パラメータAとパラメータCにより、ドレイン501の不純物領域(以下、適宜、ドレイン領域501と記述する)の形状や形成されている位置などが規定される。
図6に示したパラメータAと同じく、図16に示したパラメータAは、ドレイン領域501のゲート124側の、ゲート端からのはみ出し量を表す。図16において、ゲート124とサイドウォール126との境目の位置(すなわちゲート端)を位置P0とし、ドレイン領域501のゲート124側の端の位置を位置P1とした場合、位置P0から位置P1までの長さがパラメータAとなる。
図16では、位置P1は、ゲート124の下側に位置する場合を示したが、サイドウォール126の下側に位置しても良い。点P0を0とし、ゲート124側をプラス、サイドウォール126側をマイナスとした場合、パラメータAは、例えば、±0.1umに設定される。パラメータAは、ソース122とのショート、ゲート長、短チャネル化抑止、インプラ合わせ等を考慮して設定される。
パラメータCは、ドレイン領域501の深さを表し、ドレイン501側のリセス領域の深さを表す。半導体基板121の表面の位置(半導体基板121とサイドウォール126の境界位置)を位置P0とし、ドレイン領域501の上辺の位置を位置P3とした場合、位置P0から位置P3までの深さとなる。
パラメータCは、例えば、0乃至0.3um程度(0は含まれない)に設定される。パラメータCは、チャネルが表面から離れるようにする、ドレインの電界によりチャネルが途切れることなく形成されるようにすることなどを考慮して設定される。
パラメータA,Cが、適切に設定され、上記した条件1乃至4が満たされるように、ドレイン領域501が形成されると、図17に示すようなチャネルが形成される。
図17を参照するに、チャネル511は、ソース122とドレイン501の間に形成され、ソース122側からドレイン501側に行くにつれて半導体基板121の表面から離れる(深く)なるように形成されている。すなわち、チャネル511は、表面から離れた深い位置に形成される。
このように、本技術によれば、ソース側不純物プロファイルを所望とされる動作電流値に基づいて設計でき、ドレイン側のチャネル電流パスを深い位置にでき、RTNの影響を減らすことができる。このことをTCADシミュレーションにより確認した結果は、図8に示したようになる。図8に示した結果については既に説明したので、ここではその説明を省略する。
<ドレイン領域の第2−1の形成方法>
設定されたパラメータA,Cで、ドレイン領域501が形成される。ドレイン領域501の形成について、図18を参照して説明する。図18では、ドレイン領域の第2−1の形成方法として、図15に示したようなドレイン領域501を形成する場合を例に挙げ、また、ドレイン領域501以外の部分は、従来の方法を適用して形成されるとして、その説明は適宜省略し、主にドレイン領域501の形成に係わる工程について説明を加える。
また以下に説明するドレイン領域の第2−1の形成方法は、直線トランジスタ500を形成する場合と、L字トランジスタ500を形成する場合にそれぞれ適用できる。
工程S51において、半導体基板121が用意される。工程S52において、ドレイン領域501を形成する部分に対してリセス処理が行われる。半導体基板121のうち、ドレイン領域501を形成する部分が掘り込まれる。
工程S53において、レジスト601が半導体基板121上に塗布される。このレジスト601は、ドレイン領域501を形成するために、ドレイン領域501を形成する部分に位置するレジスト601は、開口部分(レジストが不要な部分)とされ、除去されている。このようなレジストパターニングには、例えば、リソグラフィを適用することができる。
図18の工程S53のところに図示したように、ドレイン領域501を形成する位置が開口されたレジストとされた後、イオン注入が行われることで、ドレイン領域501が形成される。PMOSトランジスタが製造される場合、例えば、ホウ素(B)イオンが打ち込まれ、NMOSトランジスタが製造される場合、砒素(As)イオンが打ち込まれる。イオン注入後、塗布されていたレジスト601は除去される。
図18の工程S54のところに示したように、リセス後のイオン注入にて、ドレイン領域501が形成される。工程S52、工程S53においてドレイン領域501が形成されるとき、設定されているパラメータAやパラメータCが満たされるようにパターニングやイオン注入が行われる。すなわち、パラメータCで設定される半導体基板121の表面からの深さ分だけ、またパラメータAで設定される位置からドレイン領域501が所定の大きさで形成されるように、半導体基板121が掘り込まれ、イオン注入が行われる。
イオン注入(インプラ)は、パラメータA,Cの設計値に応じて、斜め入射した場合、図18の工程S54のところに示したように、リセス部下とサイドウォール126(図18では不図示)の下までドレイン領域501が形成され、垂直入射した場合、リセス部下にドレイン領域501が形成される(例えば、図19の工程S74に示したようなドレイン領域501が形成される)。
このように、パラメータA,Cを満たすように、リセス部の形成、レジストパターニング、イオン注入が行われることで、半導体基板121の表面から深い位置、換言すれば、ソース122よりも深い位置にあるドレイン領域501を形成することができる。
<ドレイン領域の第2−2の形成方法>
図15に示したようなドレイン領域501の他の形成方法(ドレイン領域の第2−2の形成方法とする)について、図19を参照して説明する。図18を参照して説明したドレイン領域の第2−1の形成方法は、リセス部を形成した後に、イオン注入を行うことで、ドレイン領域501を形成したが、図19に示したドレイン領域の第2−2の形成方法は、イオン注入後に、リセス部を形成する。
また以下に説明するドレイン領域の第2−2の形成方法は、直線トランジスタ500を形成する場合と、L字トランジスタ500を形成する場合にそれぞれ適用できる。
工程S71において、半導体基板121が用意される。工程S72において、レジスト701が半導体基板121上に塗布される。このレジスト701は、ドレイン領域501を形成するために、ドレイン領域501を形成する部分に位置するレジスト701は、開口部分(レジストが不要な部分)とされ、除去されている。このようなレジストパターニングには、例えば、リソグラフィを適用することができる。
図19の工程S72のところに図示したように、ドレイン領域501を形成する位置が開口されたレジストとされた後、イオン注入が行われることで、ドレイン領域501が形成される。PMOSトランジスタが製造される場合、例えば、ホウ素(B)イオンが打ち込まれ、NMOSトランジスタが製造される場合、砒素(As)イオンが打ち込まれる。イオン注入後、塗布されていたレジスト701は除去される。
ドレイン領域の第2−2の形成方法においては、ドレイン領域501となる拡散層を形成した後、その拡散層の一部を除去するため、工程S72、工程S73において形成されるドレイン領域501’は、最終的に残されるドレイン領域501よりも大きな領域とされる。最終的に形成したいドレイン領域501を含む領域であることを示すために、工程S72、工程S73において形成されるドレイン領域501’は、ダッシュを付して記載する。
なお、このドレイン領域501’は、半導体基板121の表面からドレイン領域501の底辺となる部分まで形成される。ソース122も、半導体基板121の表面から形成されるため、ドレイン領域501’を形成する構成において、ソース122も形成するようにしても良い。
工程S73において、ドレイン領域501’が形成されると、工程S74において、ドレイン領域501’の上側部分を掘り込むためのリセス処理が行われ、リセス部が形成される。
図19の工程S74のところに示したように、イオン注入後のリセス処理にて、ドレイン領域501が形成される。工程S72、工程S73においてドレイン領域501’が形成されるとき、設定されているパラメータAが満たされるようにパターニングやイオン注入が行われる。すなわち、パラメータAで設定される位置からドレイン領域501’が所定の大きさで形成されるように、イオン注入が行われる。
そして、工程S74において、ドレイン領域501が形成されるとき、パラメータCで設定される半導体基板121の表面からの深さ分だけ、半導体基板121が掘り込まれる。
このように、パラメータA,Cを満たすように、レジストパターニング、イオン注入、リセス部の形成が行われることで、半導体基板121の表面から深い位置、換言すれば、ソース122よりも深い位置にあるドレイン領域501を形成することができる。
なお、イオン注入(インプラ)は、パラメータA,Cの設計値に応じて、垂直入射、斜め入射など、適宜適用することができる。イオン注入を垂直入射した場合、図19の工程S74に示したようなドレイン領域501が形成され、斜め入射(例えば、図19の右上から左下に向かう方向での入射)した場合、平行四辺形のドレイン領域501’が形成され、その上部(例えば、上半分)が除去されることで、図18の工程S54のところに示したような、リセス部下とサイドウォール126(図18では不図示)の下まで形成されたドレイン領域501に近い形状のドレイン領域501を形成することができる。
このように、本技術によれば、ソース側不純物プロファイルを所望とされる動作電流値に基づいて設計でき、ドレイン側のチャネル電流パスを深い位置にでき、RTNの影響を減らすことができるトランジスタとすることができる。また、そのようなトランジスタを製造することができる。
<適用例>
上記したトランジスタ100やトランジスタ500(以下、トランジスタ100を例に挙げて説明を続ける)は、増幅トランジスタとして用いることができる。また、増幅トランジスタとして、本技術を適用したトランジスタ100を用いた場合、その増幅トランジスタは、例えばイメージセンサを構成する増幅トランジスタとして用いることができる。
<本技術を適用した固体撮像装置の構成例>
図20は、本技術が適用される増幅型固体撮像装置、例えばMOS(Metal Oxide Semiconductor)型イメージセンサの構成の一例を示すブロック図である。図20に示すように、本適用例に係るMOS型イメージセンサ1000は、光電変換素子である例えばフォトダイオードを含む単位画素1011、当該画素1011が行列状に2次元配列されてなる画素アレイ部1012、垂直選択回路1013、信号処理回路であるカラム回路1014、水平選択回路1015、水平信号線1016、出力回路1017およびタイミングジェネレータ(TG)1018等を有するエリアセンサ構成となっている。
画素アレイ部1012には、行列状の画素配列に対して列ごとに垂直信号線1121が配線されている。単位画素1011の具体的な回路構成については後述する。垂直選択回路1013は、シフトレジスタなどによって構成され、画素1011の転送トランジスタ1112(図21,図22)を駆動する転送信号や、リセットトランジスタ1113(図21,図22)を駆動するリセット信号などの制御信号を行単位で順次出力することによって画素アレイ部1012の各画素1011を行単位で選択駆動する。
カラム回路1014は、画素アレイ部1012の水平方向の画素ごと、即ち垂直信号線1121ごとに配される信号処理回路であり、例えばS/H(サンプルホールド)回路およびCDS(Correlated Double Sampling;相関二重サンプリング)回路などによって構成される。水平選択回路1015は、シフトレジスタなどによって構成され、カラム回路1014を通して出力される各画素1011の信号を順次選択して水平信号線1016に出力させる。なお、図20では、図面の簡略化のため、水平選択スイッチについては図示を省略している。この水平選択スイッチは、水平選択回路1015によって列単位で順次オン/オフ駆動される。
水平選択回路1015による選択駆動により、カラム回路1014から列ごとに順次出力される単位画素1011の信号は、水平信号線1016を通して出力回路1017に供給され、出力回路1017で増幅などの信号処理が施された後、デバイス外部へ出力される。タイミングジェネレータ1018は、各種のタイミング信号を生成し、これら各種のタイミング信号を基に垂直選択回路1013、カラム回路1014および水平選択回路1015などの駆動制御を行う。
<3個のトランジスタからなる画素回路の構成例>
図21は、単位画素1011の回路構成のうち、3個のトランジスタからなる回路構成の一例を示す回路図である。図21に示すように、本回路例に係る単位画素1011Aは、光電変換素子、例えばフォトダイオード1111に加えて、例えば転送トランジスタ1112、リセットトランジスタ1113および増幅トランジスタ1114の3つのトランジスタを有する画素回路となっている。ここでは、これらトランジスタ1112乃至1114として、例えばNチャネルのMOSトランジスタを用いている。
転送トランジスタ1112は、フォトダイオード1111のカソードとFD(フローティングディフュージョン)部1116との間に接続され、フォトダイオード1111で光電変換され、ここに蓄積された信号電荷(ここでは、電子)を、ゲートに転送パルスφTRGが与えられることによってFD部1116に転送する。
リセットトランジスタ1113は、選択電源SELVDDにドレインが、FD部1116にソースがそれぞれ接続され、フォトダイオード1111からFD部1116への信号電荷の転送に先立って、ゲートにリセットパルスφRSTが与えられることによってFD部1116の電位をリセットする。選択電源SELVDDは、電源電圧としてVDDレベルとGNDレベルとを選択的にとる電源である。
増幅トランジスタ1114は、FD部1116にゲートが、選択電源SELVDDにドレインが、垂直信号線1121にソースがそれぞれ接続されたソースフォロア構成となっており、選択電源SELVDDがVDDレベルになることによって動作状態となって画素1011Aの選択をなし、リセットトランジスタ1113によってリセットした後のFD部1116の電位をリセットレベルとして垂直信号線1121に出力し、さらに転送トランジスタ1112によって信号電荷を転送した後のFD部1116の電位を信号レベルとして垂直信号線1121に出力する。
<4個のトランジスタからなる画素回路の構成例>
図22は、単位画素1011の回路構成のうち、4個のトランジスタからなる回路構成の一例を示す回路図である。また、図23は、単位画素1011が、4個のトランジスタを備える場合の平面図である。さらに、図24は、単位画素1011Bの断面図であり、図23中の線分X−X’の位置に対応するものである。
図22、図23、図24に示すように、本回路例に係る単位画素1011Bは、光電変換素子、例えば、フォトダイオード1111に加えて、例えば、転送トランジスタ1112、リセットトランジスタ1113、増幅トランジスタ1114および選択トランジスタ1115の4つのトランジスタを有する画素回路となっている。ここでは、これらトランジスタ1112乃至1115として、例えばNチャネルのMOSトランジスタを用いている。
転送トランジスタ1112は、フォトダイオード1111のカソードとFD(フローティングディフュージョン)部1116との間に接続され、フォトダイオード1111で光電変換され、ここに蓄積された信号電荷(ここでは、電子)を、ゲートに転送パルスφTRGが与えられることによってFD部1116に転送する。
リセットトランジスタ1113は、電源VDDにドレインが、FD部1116にソースがそれぞれ接続され、フォトダイオード1111からFD部1116への信号電荷の転送に先立って、ゲートにリセットパルスφRSTが与えられることによってFD部1116の電位をリセットする。
選択トランジスタ1115は、例えば、電源VDDにドレインが、増幅トランジスタ1114のドレインにソースがそれぞれ接続され、ゲートに選択パルスφSELが与えられることによってオン状態となり、増幅トランジスタ1114に対して電源VDDを供給することによって画素1011Bの選択をなす。なお、この選択トランジスタ1115については、増幅トランジスタ1114のソースと垂直信号線1121との間に接続した構成をとることも可能である。
増幅トランジスタ1114は、FD部1116にゲートが、選択トランジスタ1115のソースにドレインが、垂直信号線1121にソースがそれぞれ接続されたソースフォロア構成となっており、リセットトランジスタ1113によってリセットした後のFD部1116の電位をリセットレベルとして垂直信号線1121に出力し、さらに転送トランジスタ1112によって信号電荷を転送した後のFD部1116の電位を信号レベルとして垂直信号線1121に出力する。
図24に示した単位画素1011Bの断面図を参照する。
画素1011Bを構成するフォトダイオード1111が、半導体基板1518の裏面(図では上面)側から入射する入射光1501を受光する。フォトダイオード1111の上方には、平坦化膜1513、CF(カラーフィルタ)1512、及び、マイクロレンズ1511が設けられており、フォトダイオード1111では、各部を順次介して入射した入射光1501を、受光面1517で受光して光電変換が行われる。
例えば、フォトダイオード1111は、n型半導体領域1520が、電荷(電子)を蓄積する電荷蓄積領域として形成されている。フォトダイオード1111においては、n型半導体領域1520は、半導体基板1518のp型半導体領域1516,1541の内部に設けられている。n型半導体領域1520の、半導体基板1518の表面(下面)側には、裏面(上面)側よりも不純物濃度が高いp型半導体領域1541が設けられている。つまり、フォトダイオード1111は、HAD(Hole−Accumulation Diode)構造になっており、n型半導体領域1520の上面側と下面側との各界面において、暗電流が発生することを抑制するように、p型半導体領域1516,1541が形成されている。
半導体基板1518の内部には、複数の画素1011Bの間を電気的に分離するトレンチ1530が設けられており、このトレンチ1530で区画された領域に、フォトダイオード1111が設けられている。図中、上面側から、画素1011Bを見た場合、トレンチ1530は、例えば、複数の画素1011Bの間に介在するように格子状に形成されており、フォトダイオード1111は、このトレンチ1530で区画された領域内に形成されている。またトレンチ1530の内部は、絶縁物質が充填されている。
各フォトダイオード1111では、アノードが接地されており、画素1011Bにおいて、フォトダイオード1111が蓄積した信号電荷(例えば、電子)は、転送トランジスタ112等を介して読み出され、電気信号として、垂直信号線1121(図22)へ出力される。
配線層1550は、半導体基板1518のうち、遮光膜1514,CF1512、マイクロレンズ1511等の各部が設けられた裏面(上面)とは反対側の表面(下面)に設けられている。
配線層1550は、配線1551と絶縁層1552とを含み、絶縁層1552内において、配線1551が各素子に電気的に接続するように形成されている。配線層1550は、いわゆる多層配線の層になっており、絶縁層1552を構成する層間絶縁膜と配線1551とが交互に複数回積層されて形成されている。ここでは、配線1551としては、転送トランジスタ等のフォトダイオード1111から電荷を読み出すためのトランジスタへの配線や、垂直信号線1121等の各配線が、絶縁層1552を介して積層されている。
配線層1550の、フォトダイオード1111が設けられている側に対して反対側の面には、支持基板1561が設けられている。例えば、厚みが数百μmのシリコン半導体からなる基板が、支持基板1561として設けられている。
遮光膜1514は、半導体基板1518の裏面(図では上面)の側であり、トレンチ1530の上側に設けられている。STI(Shallow Trench Isolation)1531は、トレンチ1530の下方に設けられている。
遮光膜1514は、半導体基板1518の上方から半導体基板1518の下方裏面へ向かう入射光1501の一部を、遮光するように構成されている。
遮光膜1514は、半導体基板1518の内部に設けられたトレンチ1530の上方に設けられている。ここでは、遮光膜1514は、半導体基板1518の裏面(上面)上において、シリコン酸化膜等の絶縁膜1515を介して、凸形状に突き出るように設けられている。これに対して、半導体基板1518の内部に設けられたフォトダイオード1111の上方においては、フォトダイオード1111に入射光1501が入射するように、遮光膜1514は、設けられておらず、開口している。
つまり、図中、上面側から、画素1011Bを見た場合、遮光膜1514の平面形状は、格子状になっており、入射光1501が受光面1517へ通過する開口が形成されている。
遮光膜1514は、光を遮光する遮光材料で形成されている。例えば、チタン(Ti)膜とタングステン(W)膜とを、順次、積層することで、遮光膜1514が形成されている。この他に、遮光膜1514は、例えば、窒化チタン(TiN)膜とタングステン(W)膜とを、順次、積層することで形成することができる。また、遮光膜1514は、ナイトライド(N)などで被覆されていても良い。
遮光膜1514は、平坦化膜1513によって被覆されている。平坦化膜1513は、光を透過する絶縁材料を用いて形成されている。
配線層1550内には、選択トランジスタ115と増幅トランジスタ1114が形成されている。増幅トランジスタ1114は、上記したトランジスタ100が適用された構成とされており、埋め込みドレイン領域を有するトランジスタとされている。
増幅トランジスタ1114のソース1114−2とドレイン1114−3(埋め込みドレイン領域)は、p型半導体領域1541内に形成され、ゲート1114−1は、配線層1550内に形成されている。このように、本技術を適用したトランジスタは、画素を構成するトランジスタ、ここでは増幅トランジスタに適用できる。
本技術を適用することで、増幅トランジスタ1114のノイズ特性改善やリセットトランジスタ1113及び選択トランジスタ1115のオン抵抗を改善することができる。
上述した3個のトランジスタ構成の単位画素1011Aや、4個のトランジスタ構成の単位画素1011Bでは、フォトダイオード1111で光電変換して得られる信号電荷を転送トランジスタ1112によってFD部1116に転送し、このFD部1116の信号電荷に応じた電位を増幅トランジスタ1114によって増幅して垂直信号線1121に出力するアナログ的な動作が行われる。このようなアナログ的な動作を行う画素回路においては、増幅トランジスタ1114を含む各トランジスタのチャネル長が短いと、ショートチャネル効果によって閾値電圧Vthがばらつくため、増幅トランジスタ1114を含む各トランジスタにはチャネル長の長いMOSトランジスタが用いられることになる。
係る構成の単位画素1011(1011A/1011B)において、本技術では、増幅トランジスタ1114として埋込みチャネル型のMOSトランジスタ、本例ではNチャネルのMOSトランジスタ(以下、NMOSトランジスタと記す)を用いることを特徴としている。ここでは、増幅トランジスタ1114としてNMOSトランジスタを用いることで、N型が第1導電型、P型が第2導電型となる。
本技術は、上記したトランジスタに適用できる。
本明細書において、システムとは、複数の装置により構成される装置全体を表すものである。
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また他の効果があってもよい。
なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
なお、本技術は以下のような構成もとることができる。
(1)
半導体基板上に形成されたゲート電極と、
前記ゲート電極から延在するように前記半導体基板表面に形成されたソース領域と、
前記ソース領域と対向する位置に、前記ゲート電極に接触する部分がないように前記半導体基板表面に形成されたドレイン領域と
を備えるトランジスタ。
(2)
前記ソース領域と前記ドレイン領域は、非対称である
前記(1)に記載のトランジスタ。
(3)
前記ドレイン領域は、前記ソース領域よりも深い位置に形成されている
前記(1)または(2)に記載のトランジスタ。
(4)
前記ソース領域、前記ゲート電極、および前記ドレイン領域は、直線上に配置されている
前記(1)乃至(3)のいずれかに記載のトランジスタ。
(5)
前記ソース領域、前記ゲート電極、および前記ドレイン領域の前記ソース領域よりも深い位置に形成されているドレイン領域は、直線上に配置されている
前記(1)乃至(3)のいずれかに記載のトランジスタ。
(6)
前記ソース領域よりも深い位置に形成されているドレイン領域の幅は、5乃至20nmである
前記(5)に記載のトランジスタ。
(7)
前記ソース領域よりも深い位置に形成されている前記ドレイン領域の濃度は、1e19cm-3以上である
前記(2)乃至(6)のいずれかに記載のトランジスタ。
(8)
前記ゲート電極のゲート端において、前記ドレイン領域は、前記半導体基板の表面から離れた位置に形成されている
前記(1)乃至(7)のいずれかに記載のトランジスタ。
(9)
前記ドレイン領域は、リセス部に形成されている
前記(1)乃至(8)のいずれかに記載のトランジスタ。
(10)
前記ドレイン領域と前記ゲート電極のゲート端からの距離は、チャネルが前記半導体基板の表面から離れた位置に形成され、ドレインの電界によりチャネルが途切れることなく形成される距離に設定されている
前記(1)乃至(9)のいずれかに記載のトランジスタ。
(11)
前記ドレイン領域の前記ゲート電極のゲート端からのはみ出し量は、前記ソース領域とショートしない、ゲート長短チャネル化防止、インプラの合わせを考慮して設定されている
前記(1)乃至(10)のいずれかに記載のトランジスタ。
(12)
前記ドレイン領域の高抵抗領域の幅は、チャネルが前記半導体基板の表面から離れた位置に形成され、ドレインの電界によりチャネルが途切れることなく形成される位置に形成される幅に設定されている
前記(1)乃至(11)のいずれかに記載のトランジスタ。
(13)
前記ドレイン領域と前記ゲート電極のゲート端からの距離は、0乃至0.3umである
前記(1)乃至(12)のいずれかに記載のトランジスタ。
(14)
前記ドレイン領域の前記ゲート電極のゲート端からのはみ出し量は、±0.1umである
前記(1)乃至(13)のいずれかに記載のトランジスタ。
(15)
前記ドレイン領域の高抵抗領域の幅は、0乃至0.3umである
前記(1)乃至(14)のいずれかに記載のトランジスタ。
(16)
半導体基板上に形成されたゲート電極と、
前記ゲート電極から延在するように前記半導体基板表面に形成されたソース領域と、
前記ソース領域と対向する位置に、前記ゲート電極に接触する部分がないように前記半導体基板表面に形成されたドレイン領域と
を含むトランジスタを製造する製造方法。
(17)
前記ドレイン領域を、2回のレジストパターニングとイオン注入を行うことで形成する
前記(16)に記載の製造方法。
(18)
前記ドレイン領域を、レジストパターニングとイオン注入を行い、前記ゲート電極に接触する部分を、導電性を打ち消すためのレジストパターニングとイオン注入を行うことで形成する
前記(16)に記載の製造方法。
(19)
前記ドレイン領域を、リセス部を形成した後、レジストパターニングとイオン注入を行うことで形成する
前記(16)に記載の製造方法。
(20)
前記ドレイン領域を、レジストパターニングとイオン注入を行った後、リセス部を形成することで形成する
前記(16)に記載の製造方法。
100 トランジスタ, 121 半導体基板, 122 ソース, 123 ドレイン, 124 ゲート, 125,126 ゲート端, 500 トランジスタ, 501 ドレイン

Claims (20)

  1. 半導体基板上に形成されたゲート電極と、
    前記ゲート電極から延在するように前記半導体基板表面に形成されたソース領域と、
    前記ソース領域と対向する位置に、前記ゲート電極に接触する部分がないように前記半導体基板表面に形成されたドレイン領域と
    を備えるトランジスタ。
  2. 前記ソース領域と前記ドレイン領域は、非対称である
    請求項1に記載のトランジスタ。
  3. 前記ドレイン領域は、前記ソース領域よりも深い位置に形成されている
    請求項1に記載のトランジスタ。
  4. 前記ソース領域、前記ゲート電極、および前記ドレイン領域は、直線上に配置されている
    請求項1に記載のトランジスタ。
  5. 前記ソース領域、前記ゲート電極、および前記ドレイン領域の前記ソース領域よりも深い位置に形成されているドレイン領域は、直線上に配置されている
    請求項1に記載のトランジスタ。
  6. 前記ソース領域よりも深い位置に形成されているドレイン領域の幅は、5乃至20nmである
    請求項5に記載のトランジスタ。
  7. 前記ソース領域よりも深い位置に形成されている前記ドレイン領域の濃度は、1e19cm-3以上である
    請求項2に記載のトランジスタ。
  8. 前記ゲート電極のゲート端において、前記ドレイン領域は、前記半導体基板の表面から離れた位置に形成されている
    請求項1に記載のトランジスタ。
  9. 前記ドレイン領域は、リセス部に形成されている
    請求項1に記載のトランジスタ。
  10. 前記ドレイン領域と前記ゲート電極のゲート端からの距離は、チャネルが前記半導体基板の表面から離れた位置に形成され、ドレインの電界によりチャネルが途切れることなく形成される距離に設定されている
    請求項1に記載のトランジスタ。
  11. 前記ドレイン領域の前記ゲート電極のゲート端からのはみ出し量は、前記ソース領域とショートしない、ゲート長短チャネル化防止、インプラの合わせを考慮して設定されている
    請求項1に記載のトランジスタ。
  12. 前記ドレイン領域の高抵抗領域の幅は、チャネルが前記半導体基板の表面から離れた位置に形成され、ドレインの電界によりチャネルが途切れることなく形成される位置に形成される幅に設定されている
    請求項1に記載のトランジスタ。
  13. 前記ドレイン領域と前記ゲート電極のゲート端からの距離は、0乃至0.3umである
    請求項1に記載のトランジスタ。
  14. 前記ドレイン領域の前記ゲート電極のゲート端からのはみ出し量は、±0.1umである
    請求項1に記載のトランジスタ。
  15. 前記ドレイン領域の高抵抗領域の幅は、0乃至0.3umである
    請求項1に記載のトランジスタ。
  16. 半導体基板上に形成されたゲート電極と、
    前記ゲート電極から延在するように前記半導体基板表面に形成されたソース領域と、
    前記ソース領域と対向する位置に、前記ゲート電極に接触する部分がないように前記半導体基板表面に形成されたドレイン領域と
    を備えるトランジスタを製造する製造方法。
  17. 前記ドレイン領域を、2回のレジストパターニングとイオン注入を行うことで形成する
    請求項16に記載の製造方法。
  18. 前記ドレイン領域を、レジストパターニングとイオン注入を行い、前記ゲート電極に接触する部分を、導電性を打ち消すためのレジストパターニングとイオン注入を行うことで形成する
    請求項16に記載の製造方法。
  19. 前記ドレイン領域を、リセス部を形成した後、レジストパターニングとイオン注入を行うことで形成する
    請求項16に記載の製造方法。
  20. 前記ドレイン領域を、レジストパターニングとイオン注入を行った後、リセス部を形成することで形成する
    請求項16に記載の製造方法。
JP2017210012A 2017-02-03 2017-10-31 トランジスタ、製造方法 Pending JP2018125518A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/480,741 US11018171B2 (en) 2017-02-03 2018-01-19 Transistor and manufacturing method
PCT/JP2018/001587 WO2018142970A1 (ja) 2017-02-03 2018-01-19 トランジスタ、製造方法
CN201880007885.4A CN110226218A (zh) 2017-02-03 2018-01-19 晶体管和制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017018161 2017-02-03
JP2017018161 2017-02-03

Publications (1)

Publication Number Publication Date
JP2018125518A true JP2018125518A (ja) 2018-08-09

Family

ID=63109697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017210012A Pending JP2018125518A (ja) 2017-02-03 2017-10-31 トランジスタ、製造方法

Country Status (3)

Country Link
US (1) US11018171B2 (ja)
JP (1) JP2018125518A (ja)
CN (1) CN110226218A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551595B (zh) * 2020-11-20 2023-10-31 苏州华太电子技术股份有限公司 应用于射频放大的沟道掺杂调制rfldmos器件及制法

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2834724A1 (de) * 1978-08-08 1980-02-14 Siemens Ag Mos-feldeffekttransistoren fuer hoehere spannungen
USRE35036E (en) * 1986-06-13 1995-09-12 Matsushita Electric Industrial Co., Ltd. Method of making symmetrically controlled implanted regions using rotational angle of the substrate
US4771012A (en) * 1986-06-13 1988-09-13 Matsushita Electric Industrial Co., Ltd. Method of making symmetrically controlled implanted regions using rotational angle of the substrate
JPH0748503B2 (ja) * 1988-11-29 1995-05-24 三菱電機株式会社 電界効果トランジスタの製造方法
JPH02253632A (ja) * 1989-03-27 1990-10-12 Matsushita Electric Ind Co Ltd 電界効果型トランジスタの製造方法
JP2612969B2 (ja) * 1991-02-08 1997-05-21 シャープ株式会社 半導体装置の製造方法
US5786620A (en) * 1992-01-28 1998-07-28 Thunderbird Technologies, Inc. Fermi-threshold field effect transistors including source/drain pocket implants and methods of fabricating same
KR960014718B1 (en) * 1993-05-14 1996-10-19 Lg Semicon Co Ltd Method of manufacturing transistor
US5629220A (en) 1993-07-27 1997-05-13 United Microelectronics Corporation Method of manufacture of pull down transistor with drain off-set for low leakage SRAM's
EP0676816B1 (en) * 1994-03-28 2001-10-04 STMicroelectronics S.r.l. Flash - EEPROM memory array and biasing method thereof
JP2894966B2 (ja) 1994-04-01 1999-05-24 松下電器産業株式会社 非対称mos型半導体装置及びその製造方法、ならびに該半導体装置を含む静電破壊保護回路
US5675168A (en) 1994-04-01 1997-10-07 Matsushita Electric Industrial Co., Ltd. Unsymmetrical MOS device having a gate insulator area offset from the source and drain areas, and ESD protection circuit including such a MOS device
US5650340A (en) * 1994-08-18 1997-07-22 Sun Microsystems, Inc. Method of making asymmetric low power MOS devices
JPH08186253A (ja) 1994-12-27 1996-07-16 Toyota Central Res & Dev Lab Inc 低雑音半導体装置およびその製造方法
US5518942A (en) * 1995-02-22 1996-05-21 Alliance Semiconductor Corporation Method of making flash EPROM cell having improved erase characteristics by using a tilt angle implant
KR960042942A (ko) * 1995-05-04 1996-12-21 빈센트 비.인그라시아 반도체 디바이스 형성 방법
JPH10116986A (ja) 1996-08-22 1998-05-06 Mitsubishi Electric Corp 半導体装置およびその製造方法
US5648286A (en) * 1996-09-03 1997-07-15 Advanced Micro Devices, Inc. Method of making asymmetrical transistor with lightly doped drain region, heavily doped source and drain regions, and ultra-heavily doped source region
US5677224A (en) * 1996-09-03 1997-10-14 Advanced Micro Devices, Inc. Method of making asymmetrical N-channel and P-channel devices
US5834810A (en) * 1996-10-17 1998-11-10 Mitsubishi Semiconductor America, Inc. Asymmetrical vertical lightly doped drain transistor and method of forming the same
US5926714A (en) 1996-12-03 1999-07-20 Advanced Micro Devices, Inc. Detached drain MOSFET
US5780341A (en) * 1996-12-06 1998-07-14 Halo Lsi Design & Device Technology, Inc. Low voltage EEPROM/NVRAM transistors and making method
US6027964A (en) * 1997-08-04 2000-02-22 Advanced Micro Devices, Inc. Method of making an IGFET with a selectively doped gate in combination with a protected resistor
JPH11126893A (ja) * 1997-10-23 1999-05-11 Nikon Corp 固体撮像素子とその製造方法
US6445016B1 (en) * 2001-02-28 2002-09-03 Advanced Micro Devices, Inc. Silicon-on-insulator (SOI) transistor having partial hetero source/drain junctions fabricated with high energy germanium implantation
JP2002270825A (ja) * 2001-03-08 2002-09-20 Hitachi Ltd 電界効果トランジスタ及び半導体装置の製造方法
US7476925B2 (en) * 2001-08-30 2009-01-13 Micron Technology, Inc. Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators
US7135734B2 (en) * 2001-08-30 2006-11-14 Micron Technology, Inc. Graded composition metal oxide tunnel barrier interpoly insulators
KR100425462B1 (ko) * 2001-09-10 2004-03-30 삼성전자주식회사 Soi 상의 반도체 장치 및 그의 제조방법
US6657223B1 (en) * 2002-10-29 2003-12-02 Advanced Micro Devices, Inc. Strained silicon MOSFET having silicon source/drain regions and method for its fabrication
US7235451B2 (en) * 2003-03-03 2007-06-26 Texas Instruments Incorporated Drain extended MOS devices with self-aligned floating region and fabrication methods therefor
US7067381B1 (en) * 2003-08-06 2006-06-27 Advanced Micro Devices, Inc. Structure and method to reduce drain induced barrier lowering
US6949423B1 (en) * 2003-11-26 2005-09-27 Oakvale Technology MOSFET-fused nonvolatile read-only memory cell (MOFROM)
US20050275037A1 (en) * 2004-06-12 2005-12-15 Chung Shine C Semiconductor devices with high voltage tolerance
US7166897B2 (en) * 2004-08-24 2007-01-23 Freescale Semiconductor, Inc. Method and apparatus for performance enhancement in an asymmetrical semiconductor device
KR100593739B1 (ko) * 2004-09-09 2006-06-28 삼성전자주식회사 바디-소스 접속을 갖는 모스 전계효과 트랜지스터 및 그제조방법
US7259413B2 (en) * 2004-09-28 2007-08-21 Micron Technology, Inc. High dynamic range image sensor
JP5172083B2 (ja) * 2004-10-18 2013-03-27 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法、並びにメモリ回路
US7491595B2 (en) * 2005-07-06 2009-02-17 Hewlett-Packard Development Company, L.P. Creating high voltage FETs with low voltage process
US7393752B2 (en) * 2005-07-25 2008-07-01 Freescale Semiconductor, Inc. Semiconductor devices and method of fabrication
JP2007103837A (ja) * 2005-10-07 2007-04-19 Elpida Memory Inc 非対称構造を有する電界効果型トランジスタを含む半導体装置およびその製造方法
US7485524B2 (en) * 2006-06-21 2009-02-03 International Business Machines Corporation MOSFETs comprising source/drain regions with slanted upper surfaces, and method for fabricating the same
KR100752192B1 (ko) * 2006-09-06 2007-08-27 동부일렉트로닉스 주식회사 단일 폴리 구조의 플래시 메모리 소자 및 그 제조 방법
US7776700B2 (en) * 2007-01-04 2010-08-17 Freescale Semiconductor, Inc. LDMOS device and method
US7915670B2 (en) * 2007-07-16 2011-03-29 International Business Machines Corporation Asymmetric field effect transistor structure and method
US8043919B2 (en) * 2007-11-12 2011-10-25 United Microelectronics Corp. Method of fabricating semiconductor device
JP2009152312A (ja) * 2007-12-19 2009-07-09 Toshiba Corp 半導体装置及びその製造方法
US7964465B2 (en) * 2008-04-17 2011-06-21 International Business Machines Corporation Transistors having asymmetric strained source/drain portions
JP2010021221A (ja) 2008-07-09 2010-01-28 Renesas Technology Corp 半導体装置およびその製造方法
US7939852B2 (en) * 2008-07-21 2011-05-10 Globalfoundries Inc. Transistor device having asymmetric embedded strain elements and related manufacturing method
US7777282B2 (en) * 2008-08-13 2010-08-17 Intel Corporation Self-aligned tunneling pocket in field-effect transistors and processes to form same
JP5394680B2 (ja) 2008-08-28 2014-01-22 セイコーインスツル株式会社 半導体集積回路装置
KR20100036033A (ko) * 2008-09-29 2010-04-07 크로스텍 캐피탈, 엘엘씨 트랜지스터, 이를 구비한 이미지 센서 및 그의 제조방법
DE102008049718B3 (de) * 2008-09-30 2010-02-25 Advanced Micro Devices, Inc., Sunnyvale Transistorbauelement mit einer asymmetrischen eingebetteten Halbleiterlegierung und Herstellungsverfahren dafür
US8587075B2 (en) * 2008-11-18 2013-11-19 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistor with metal source
US8163619B2 (en) * 2009-03-27 2012-04-24 National Semiconductor Corporation Fabrication of semiconductor structure having asymmetric field-effect transistor with tailored pocket portion along source/drain zone
US8304835B2 (en) * 2009-03-27 2012-11-06 National Semiconductor Corporation Configuration and fabrication of semiconductor structure using empty and filled wells
US8110470B2 (en) * 2009-08-31 2012-02-07 Globalfoundries Singapore Pte. Ltd. Asymmetrical transistor device and method of fabrication
US7989297B2 (en) * 2009-11-09 2011-08-02 International Business Machines Corporation Asymmetric epitaxy and application thereof
US8362557B2 (en) * 2009-12-02 2013-01-29 Fairchild Semiconductor Corporation Stepped-source LDMOS architecture
JP5448082B2 (ja) * 2010-03-05 2014-03-19 ルネサスエレクトロニクス株式会社 半導体装置
JP2011211117A (ja) 2010-03-30 2011-10-20 Toshiba Corp 半導体装置
CN101834141B (zh) * 2010-04-28 2015-03-04 复旦大学 一种不对称型源漏场效应晶体管的制备方法
CN101887917A (zh) * 2010-06-10 2010-11-17 复旦大学 一种场效应晶体管及其制备方法
US8216906B2 (en) * 2010-06-30 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing integrated circuit device with well controlled surface proximity
KR101699230B1 (ko) * 2010-08-30 2017-01-25 삼성전자주식회사 안티퓨즈 메모리 셀, 이의 제조 방법, 이를 포함하는 비휘발성 메모리 장치 및 리페어 기능을 갖는 메모리 장치
JP5582030B2 (ja) * 2010-12-28 2014-09-03 富士通セミコンダクター株式会社 Mosトランジスタおよびその製造方法
US8524548B2 (en) * 2011-04-26 2013-09-03 National Semiconductor Corporation DMOS Transistor with a cavity that lies below the drift region
US8587074B2 (en) * 2011-05-05 2013-11-19 Taiwan Semiconductor Manufacturing Company, Ltd. Device having a gate stack
US8497180B2 (en) * 2011-08-05 2013-07-30 Globalfoundries Inc. Transistor with boot shaped source/drain regions
US9231097B2 (en) * 2012-02-07 2016-01-05 Mediatek Inc. HVMOS transistor structure having offset distance and method for fabricating the same
US8735255B2 (en) * 2012-05-01 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing semiconductor device
US8928078B2 (en) * 2012-12-25 2015-01-06 Richtek Technology Corporation, R.O.C. Double diffused metal oxide semiconductor device and manufacturing method thereof
US9653561B2 (en) * 2013-03-12 2017-05-16 Macronix International Co., Ltd. Low on resistance semiconductor device
US9257554B2 (en) * 2013-08-13 2016-02-09 Globalfoundries Singapore Pte. Ltd. Split gate embedded memory technology and method of manufacturing thereof
US9472511B2 (en) * 2014-01-16 2016-10-18 Cypress Semiconductor Corporation ESD clamp with a layout-alterable trigger voltage and a holding voltage above the supply voltage
US9490360B2 (en) * 2014-02-19 2016-11-08 United Microelectronics Corp. Semiconductor device and operating method thereof
JP2016058559A (ja) * 2014-09-10 2016-04-21 ソニー株式会社 固体撮像装置およびその駆動方法、並びに電子機器
CN105845680B (zh) * 2015-01-14 2019-10-25 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
US10290352B2 (en) * 2015-02-27 2019-05-14 Qualcomm Incorporated System, apparatus, and method of programming a one-time programmable memory circuit having dual programming regions
KR102310076B1 (ko) * 2015-04-23 2021-10-08 삼성전자주식회사 비대칭 소스/드레인 포함하는 반도체 소자
US9899514B2 (en) * 2015-05-21 2018-02-20 Globalfoundries Singapore Pte. Ltd. Extended drain metal-oxide-semiconductor transistor
US9780189B2 (en) * 2015-06-03 2017-10-03 Silanna Asia Pte Ltd Transistor with contacted deep well region
KR102448597B1 (ko) * 2015-06-24 2022-09-27 삼성전자주식회사 반도체 장치
KR20170027048A (ko) * 2015-09-01 2017-03-09 삼성전자주식회사 반도체 장치
CN106571388B (zh) * 2015-10-08 2018-10-12 无锡华润上华科技有限公司 具有resurf结构的横向扩散金属氧化物半导体场效应管
JP2017092297A (ja) * 2015-11-12 2017-05-25 ソニー株式会社 電界効果トランジスタ、および半導体装置
US10121867B2 (en) * 2015-12-31 2018-11-06 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and associated fabricating method
JP2017130577A (ja) * 2016-01-21 2017-07-27 ソニー株式会社 半導体装置およびその製造方法、固体撮像素子、並びに電子機器
US9966141B2 (en) * 2016-02-19 2018-05-08 Nscore, Inc. Nonvolatile memory cell employing hot carrier effect for data storage
JP6652445B2 (ja) * 2016-05-11 2020-02-26 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2017220603A (ja) * 2016-06-09 2017-12-14 キヤノン株式会社 固体撮像素子および固体撮像素子の製造方法
KR102513081B1 (ko) * 2016-07-08 2023-03-24 삼성전자주식회사 반도체 장치
CN106206735B (zh) * 2016-07-19 2019-12-10 上海华虹宏力半导体制造有限公司 Mosfet及其制造方法
US9773728B1 (en) * 2016-12-27 2017-09-26 Micron Technology, Inc. Memory arrays
TWI624071B (zh) * 2017-03-16 2018-05-11 立錡科技股份有限公司 高壓元件
TWI635617B (zh) * 2017-05-11 2018-09-11 立錡科技股份有限公司 高壓金屬氧化物半導體元件及其製造方法
US10600908B2 (en) * 2017-05-17 2020-03-24 Richtek Technology Corporation High voltage device and manufacturing method thereof
CN108987399A (zh) * 2017-06-05 2018-12-11 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
US20190035930A1 (en) * 2017-07-31 2019-01-31 Macronix International Co., Ltd. Semiconductor structure
KR102256226B1 (ko) * 2017-08-02 2021-05-25 매그나칩 반도체 유한회사 낮은 소스-드레인 저항을 갖는 반도체 소자 및 그 제조 방법
US10424647B2 (en) * 2017-10-19 2019-09-24 Texas Instruments Incorporated Transistors having gates with a lift-up region
TWI634658B (zh) * 2017-12-29 2018-09-01 新唐科技股份有限公司 半導體裝置
US10680099B2 (en) * 2018-02-19 2020-06-09 Globalfoundries Singapore Pte. Ltd. Isolated laterally diffused metal oxide semiconductor (LDMOS) transistor having low drain to body capacitance
KR20190109685A (ko) * 2018-03-16 2019-09-26 매그나칩 반도체 유한회사 반도체 소자 및 이의 제조방법
JP7040976B2 (ja) * 2018-03-29 2022-03-23 ラピスセミコンダクタ株式会社 半導体装置

Also Published As

Publication number Publication date
US11018171B2 (en) 2021-05-25
US20190386047A1 (en) 2019-12-19
CN110226218A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
US7939859B2 (en) Solid state imaging device and method for manufacturing the same
JP5114829B2 (ja) 半導体装置およびその製造方法
US8907375B2 (en) Method of manufacturing semiconductor device, solid-state imaging device, and solid-state imaging apparatus
WO2013027524A1 (ja) 固体撮像素子
JP6406585B2 (ja) 撮像装置
JP2009158932A (ja) イメージセンサ及びその製造方法
US8476102B2 (en) Solid state image pickup device and method for manufacturing solid state image pickup device
JP5539373B2 (ja) 固体撮像装置及びその製造方法
JP2007027705A (ja) イメージセンサ及びその製造方法
JP2013045879A (ja) 半導体装置、半導体装置の製造方法、固体撮像装置、固体撮像装置の製造方法、電子機器
JP4859542B2 (ja) Mos型固体撮像装置及びmos型固体撮像装置の製造方法
JP2005072236A (ja) 半導体装置および半導体装置の製造方法
JP4680552B2 (ja) 固体撮像素子の製造方法
JP5717329B2 (ja) 固体撮像装置及びその製造方法
JP4923596B2 (ja) 固体撮像装置
US20070004076A1 (en) CMOS image sensor including two types of device isolation regions and method of fabricating the same
JP3901114B2 (ja) 固体撮像装置およびその製造方法
JP2018125518A (ja) トランジスタ、製造方法
JP5050512B2 (ja) 固体撮像装置の製造方法および半導体装置の製造方法
JP5274118B2 (ja) 固体撮像装置
JP2017028106A (ja) 固体撮像素子及びその製造方法
JP2008016723A (ja) 固体撮像装置の製造方法および固体撮像装置
WO2018142970A1 (ja) トランジスタ、製造方法
JP4810831B2 (ja) 半導体装置及びその製造方法
JP2005302836A (ja) 固体撮像装置の製造方法