JP2013519187A - 高エネルギーLiイオンバッテリ用の段階的な電極技術 - Google Patents

高エネルギーLiイオンバッテリ用の段階的な電極技術 Download PDF

Info

Publication number
JP2013519187A
JP2013519187A JP2012548935A JP2012548935A JP2013519187A JP 2013519187 A JP2013519187 A JP 2013519187A JP 2012548935 A JP2012548935 A JP 2012548935A JP 2012548935 A JP2012548935 A JP 2012548935A JP 2013519187 A JP2013519187 A JP 2013519187A
Authority
JP
Japan
Prior art keywords
porosity
cathode active
active material
cathode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2012548935A
Other languages
English (en)
Other versions
JP2013519187A5 (ja
Inventor
コニー ピー. ワン,
セルゲイ ディー. ロパーチン,
ロバート ズィー. バカラック,
ゴドフリー シーハ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2013519187A publication Critical patent/JP2013519187A/ja
Publication of JP2013519187A5 publication Critical patent/JP2013519187A5/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本明細書に記載した実施形態は、より小型軽量であり、高生産率でよりコスト効率良く製造できるより速い充電のより大きい容量のエネルギーストレージデバイスを製造する方法およびシステムを提供する。一実施形態では、段階的なカソード構造が提供される。段階的なカソード構造は、導電性基板と、導電性基板上に形成される第1の気孔率を有する第1のカソード活性材料を含む第1の多孔質層と、第1の多孔質層上に形成される第2の気孔率を有する第2のカソード活性材料を含む第2の多孔質層とを備える。いくつかの実施形態では、第1の気孔率は、第2の気孔率より大きい。いくつかの実施形態では、第1の気孔率は、第2の気孔率未満である。

Description

本発明の実施形態は、一般に、リチウムイオンバッテリセル部品に関し、より具体的には、そのような部品を製造する方法およびシステムに関する。
リチウムイオン(Liイオン)バッテリなどの大容量エネルギーストレージデバイスは、携帯用電子機器、メディカル、輸送、グリッドに接続した大エネルギーストレージ、再生可能エネルギーストレージ、および無停電電源(UPS)などの増えつつある用途に使用される。最近の二次的な充電可能なエネルギーストレージデバイスでは、電極の電流コレクタ部品は、一般に金属フォイルで作製される。正の電流コレクタ(カソード)用の材料の例としては、アルミニウムがあるが、ステンレス鋼およびニッケルが使用されてもよい。負の電流コレクタ(アノード)用の材料の例としては、銅(Cu)があるが、ステンレス鋼およびニッケル(Ni)が使用されてもよい。
リチウムイオンバッテリの活性の正のカソード電極材料は、典型的には、幅広いリチウム遷移金属酸化物から選択される。例には、スピネル型構造(LiMn(LMO)、LiNi0.5Mn1.5(LMNO)など)、層状構造(LiCoO、ニッケルマンガンコバルト(NMC)、ニッケルコバルトアルミニウム(NCA)など)、カンラン石構造(LiFePOなど)、およびそれらの組み合わせを有する酸化物が含まれる。粒子は、ナノカーボン(カーボンブラック等)やグラファイトなどの電導性粒子、および結合剤と混合される。そのような正の電極材料は、導電性材料の量が0.1重量%〜30重量%の範囲のリチウムインターカレーション化合物が考えられる。次世代のカソード材料は、容量の増加、すなわち酸化還元中心あたり1>Li+、またはより高い電圧(>4.3V)を目指して積極的に研究中である。
現在、アノード材料は、一般的に、粒径が約5〜15μmの炭素ベースのグラファイトまたは硬化炭素である。シリコン(Si)およびスズ(Sn)ベースの活性材料が、現在、次世代のアノード材料として開発されている。両者は、炭素ベースの電極よりもかなり大きい容量を有する。Li15Siは、約3,580mA時/gの容量であるのに対して、グラファイトは、372mA時/g未満の容量である。Snベースのアノードは、900mA時/gを超える容量を達成することができ、このことは、次世代のカソード材料が達成できるものよりもずっと高い。したがって、カソードが、アノードより厚くなり続けること予想される。
現在、活性材料は、バッテリセルの部品全体の<50重量%を占めるに過ぎない。より多くの活性材料を含むより厚い電極を製造できることは、不活性な要素からの寄与の割合を減少させることによってバッテリセルの生産コストをかなり削減する。しかし、現在、電極の厚さは、現在使用されている材料の利用と機械的特性の両方によって制限される。
したがって、より小型で軽量であり、高生産率でよりコスト効率良く製造できるより速い充電のより大きい容量のエネルギーストレージデバイスが当技術分野において必要とされている。
本明細書に記載した実施形態は、より小型軽量であり、高生産率でよりコスト効率良く製造できるより速い充放電のより大きい容量のエネルギーストレージデバイスを製造する方法およびシステムを提供する。一実施形態では、段階的なカソード構造が提供される。段階的なカソード構造は、導電性基板と、導電性基板上に形成される第1の気孔率を有する第1のカソード活性材料を含む第1の多孔質層と、第1の多孔質層上に形成される第2の気孔率を有する第2のカソード活性材料を含む第2の多孔質層とを備える。いくつかの実施形態では、第1の気孔率は、第2の気孔率より大きい。いくつかの実施形態では、第1の気孔率は、第2の気孔率未満である。
一実施形態では、段階的なカソード構造を形成する方法が提供される。この方法は、導電性基板を用意するステップと、導電性基板上に第1の気孔率を有する第1のカソード活性材料を含む第1の多孔質層を堆積させるステップと、導電性基板上に第2の気孔率を有する第2のカソード活性材料を含む第2の多孔質層を堆積させるステップとを含む。いくつかの実施形態では、第1の気孔率は、第2の気孔率より大きい。いくつかの実施形態では、第1の気孔率は、第2の気孔率未満である。
さらに別の実施形態では、段階的なカソード構造が提供される。段階的なカソード構造は、導電性基板と、導電性基板上に形成される第1の直径を有するカソード活性粒子を含む第1の層と、第1の層上に形成される第2の直径を有するカソード活性粒子を含む第2の層とを備える。いくつかの実施形態では、第2の直径は、第1の直径より大きい。いくつかの実施形態では、第2の直径は、第1の直径未満である。いくつかの実施形態では、粒子は微粒子である。いくつかの実施形態では、粒子は、ナノ粒子である。
さらに別の実施形態では、段階的なカソード構造を形成する方法が提供される。この方法は、導電性基板を用意するステップと、導電性基板上に形成される第1の直径を有するカソード活性微粒子を含む第1の層を堆積させるステップと、第1の層上に形成される第2の直径を有するカソード活性微粒子を含む第2の層を堆積させるステップとを含む。いくつかの実施形態では、第2の直径は、第1の直径より大きい。いくつかの実施形態では、第2の直径は第1の直径未満である。
さらに別の実施形態では、第1の層は、第2の層とは異なるバインダ−導電性添加物−活性材料を有する。さらに別の実施形態では、電流コレクタは、AlまたはNiメッシュ、ワイヤ、または3次元Alを含む。さらに別の実施形態では、3次元Alは、パンチスループロセス、電気化学エッチング、またはインプリントリソグラフィプロセスを用いて形成される。
さらに別の実施形態では、垂直向きフレキシブル導電性基板を処理する基板処理システムが提供される。基板処理システムは、垂直向きフレキシブル導電性基板を覆ってカソード活性粒子を堆積させるように構成される第1のスプレーコーティングチャンバと、垂直向きフレキシブル導電性基板に乾燥プロセスを受けさせるように構成される第1のスプレーコーティングチャンバに隣接して配設される乾燥チャンバと、垂直向きフレキシブル導電性基板を覆ってカソード活性粒子を堆積させるように構成される乾燥チャンバに隣接して配設された第2のスプレーコーティングチャンバと、垂直向きフレキシブル導電性基板に、堆積させられる粒子を所望の正味の密度に圧縮するためのカレンダリング法を受けさせるように構成される第2のスプレーコーティングチャンバに隣接して配設された圧縮チャンバと、チャンバ間で垂直向きフレキシブル導電性基板を移送するように構成された基板移送機構とを備え、各チャンバが、処理容積と、処理容積の外側に配設されると共に垂直向きフレキシブル導電性基板の一部を保持するように構成されるフィードロールと、処理容積の外側に配設されると共に垂直向きフレキシブル導電性基板の一部を保持するように構成されるテイクアップロールとを備え、基板移送機構が、各チャンバの内外に垂直向きフレキシブル導電性基板を動かすと共に各チャンバの処理容積内で1つまたは複数のフレキシブル導電性基板を保持するために、フィードロールおよびテイクアップロールを作動させるように構成される。いくつかの実施形態では、基板処理システムは、垂直向きフレキシブル導電性基板を、第1のスプレーコーティングチャンバの前に配置される3次元垂直向き導電性基板に成形する3次元Al形成モジュールをさらに備える。
一実施形態では、セパレータの材料コストを削減し製造を簡素化するために、一体化したセパレータが電極上へ形成される。
本発明の上記の特徴が、詳細に理解できるように、上記に簡潔に概要が示された本発明のより具体的な説明は、実施形態を参照して行われ得る。具体的な説明の一部は、添付図面に例示される。しかし、添付図面は、本発明の典型的な実施形態を例示するに過ぎず、したがって本発明の範囲の限定とみなされるべきではなく、本発明については、他の等しく有効な実施形態を認めることができることに留意されたい。
本明細書に記載した実施形態による、負荷に電気的に結合したLiイオンバッテリの一実施形態の概略図である。 本明細書に記載した実施形態による、負荷に電気的に結合したLiイオンバッテリセル2層の別の実施形態の概略図である。 本明細書に記載した実施形態により形成された段階的なカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成された段階的なカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成された段階的なカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態による段階的なカソード電極構造を形成する方法の一実施形態の概要を示すプロセスの流れ図である。 本明細書に記載した実施形態による多孔質導電性基板上にカソード活性材料を堆積させる前の多孔質導電性基板の一実施形態の斜視図である。 本明細書に記載した実施形態により形成された段階的なカソード電極の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成された段階的なカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成された段階的なカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成された段階的なカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態による段階的なカソード電極構造を形成する方法の一実施形態の概要を示すプロセスの流れ図である。 本明細書に記載した実施形態により形成された段階的なカソード電極の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 明細書に記載した実施形態によるカソード電極構造を形成する方法の一実施形態の概要を示すプロセスの流れ図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。 本明細書に記載した実施形態による垂直処理システムの一実施形態の概略説明図である。 電極利用に対する電極の厚さの影響を説明するシミュレーションを示すグラフである。 比エネルギーに対する段階的な気孔率の影響を説明するシミュレーションを示すグラフである。 本明細書に記載した本実施形態により使用できるさまざまなカソード活性材料の理論上のエネルギー密度を示すグラフである。
理解を容易にするために、可能な限り、同一の参照符号を使用して各図に共通している同一要素を示している。一実施形態の要素および/またはプロセスのステップは、さらに詳しく説明することなく他の実施形態に有益に組み込まれ得ると考えられる。
本明細書に記載した実施形態は、薄膜堆積プロセスおよびそれを形成する他の方法を用いた、バッテリまたは超コンデンサなどの電気化学デバイスを形成する方法および関連機器、ならびのそれらの部品を意図する。本明細書に記載したある実施形態は、カソード電極のさまざまな特性を改良することによって活性材料の容量を増大させた厚いカソード電極を製造することを含む。いくつかの実施形態では、カソード電極は、カソード電極構造全体にわたって変化する気孔率、導電性、粒径、およびそれらの組み合わせなどの段階的な特性を有する。いくつかの実施形態では、導電性添加物および/または結合剤などの添加物を中に含めることによってカソード電極の特性を改良することが望ましい。いくつかの実施形態では、カソード電極の段階的な特性は、カレンダリング、アニール、およびさまざまな乾燥プロセスといった技法を使用することによって、製造プロセス中にさらに改良されてもよい。
いくつかの実施形態では、カソード電極は、気孔率がカソード電極の構造全体を通じて変化するように段階的な気孔率を有する。いくつかの実施形態では、段階的な気孔率は、電流コレクタに隣接してより高い気孔率、および電流コレクタからの距離が増加するにつれてより低くなる気孔率を与える。電流コレクタに隣接したより高い気孔率は、より高い電力性能を与えるが低電圧電極をもたらす電極の活性表面積を増大させ、一方、より低い気孔率は、高電圧電極と共により遅い電力性能を与える。いくつかの実施形態では、段階的な気孔率は、電流コレクタに隣接してより低い気孔率、および電流コレクタからの距離が増加するにつれてより高くなる気孔率を与える。
いくつかの実施形態では、カソード電極は、カソード電極構造全体にわたって段階的な粒径を有する。一実施形態では、電流コレクタに隣接して配置されるより小さい粒子は、より高い電力性能を与えるが、低電圧電極をもたらし、電流コレクタからより大きく離れたところに配置されるより大きい粒子は、高電圧電極を与えるが、電力性能の低下をもたらす。
いくつかの実施形態では、カソード電極は、層が異なる特性を有する複数のカソード活性材料を含有する多層構造を備える。一実施形態では、電流コレクタを覆って堆積させられる活性材料は、より高い電力性能を与えるが低電圧電極をもたらし、電流コレクタから離れて堆積させられる活性材料は、高電圧電極をもたらすと共により遅い電力性能を与える。
本明細書に記載した本実施形態を実施できる特定の機器は限定されないが、Applied Materials,Inc.,Santa Clara,Californiaによって販売されているウエブベースのロールツーロールシステムの実施形態を実施することが特に有益である。本明細書に記載した本実施形態が実施できる例示的なロールツーロールおよびディスクリート基板システムは、本明細書に記載されており、およびさらに詳細にはLopatinらの一般的に譲渡された米国特許出願第12/620,788号(代理人整理番号APPM/012922/EES/AEP/ESONG)であって、APPARATUS AND METHOD FOR FORMING 3D NANOSTRUCTURE ELECTRODE FOR ELECTROCHEMICAL BATTERY AND CAPACITORと題されて現在US2010/0126849として公開されているもの、およびCOMPRRESSED POWDER 3D BATTERY ELECTRODE MANUFACTURINGと題されて2010年7月19日に出願され、Bachrachらの一般的に譲渡された米国特許出願第12/839,051号(代理人整理番号APPM/014080/AEP/LES/ESONG)に記載されている。これらは共に、本明細書に参照により全体として組み込まれる。
本明細書に記載した材料が形成されるさまざまなタイプの基板を使用することがやはり予期される。ある本明細書に記載した実施形態が実施できる特定の基板は限定されないが、例えば、ウエブベースの基板、パネル、およびディスクリートシートを含むフレキシブル導電性基板上で実施形態を実施することが特に有益である。基板は、フォイル、膜または、薄いプレートの形態であってもよい。この基板が垂直向き基板であるいくつかの実施形態では、垂直向き基板は、垂直面に対して角度を付けられてもよい。例えば、いくつかの実施形態では、この基板は、垂直面から約1度〜約20度から傾斜されてもよい。基板が水平向き基板であるいくつかの実施形態では、水平向き基板は、水平面に対して角度を付けられてもよい。例えば、いくつかの実施形態では、この基板は、水平面から約1度〜約20度から傾斜されてもよい。本明細書で用いられる場合、用語「垂直な(vertical)」は、フレキシブル導電性基板の主要面または堆積面が、に対して直交していると定義される。本明細書で用いられる場合、用語「水平な(horizontal)」は、フレキシブル導電性基板の主要面または堆積面が、水平に対して平行であると定義される。
図1Aは、本明細書に記載した一実施形態による、負荷101に電気的に接続されたLiイオンバッテリ100の概略図である。Liイオンバッテリ100の主要機能部品は、対向する電流コレクタ111および113の間の領域内に配設されたアノード構造102、カソード構造103、セパレータ層104、および電解質(図示せず)を含む。さまざまな材料が、有機溶媒中のリチウム塩などの電解質として使用できる。リチウム塩には、例えば、LiPF、LiBF、またはLiClOが含まれ得るものであり、有機溶媒には、例えば、エーテルおよびエチレンの酸化物が含まれ得る。バッテリが外部回路を通じて電流を通すときに、電解質はリチウムイオンを伝導し、アノード構造102とカソード構造103の間のキャリアとして働く。電解質は、電流コレクタ111および113の間に形成される領域内のアノード構造102、カソード構造103、および流体透過性のセパレータ層104に含まれる。
アノード構造102およびカソード構造103はそれぞれ、Liイオンバッテリ100の半セルとして働き、Liイオンバッテリ100の完全なワーキングセルを共に形成する。アノード構造102とカソード構造103の両方は、リチウムイオンが内外に移動できる材料を含む。アノード構造102は、電流コレクタ111と、リチウムイオンを保持するためのインターカレーションホスト材料として働く導電性微細構造110とを備える。同様に、カソード構造103は、電流コレクタ113と、リチウムイオンを保持するための金属酸化物などのインターカレーションホスト材料112とを備える。セパレータ層104は、アノード構造102およびカソード構造103内の部品同士の間の直接の電気接触を防ぐ誘電体の多孔質の流体透過性の層であり得る。Liイオンバッテリ100、およびカソード構造103を構成する材料を形成する方法が、本明細書に記載されている。
Liイオンバッテリ100のカソード側、すなわち正の電極の電解質含有多孔質材料は、リチウム含有金属酸化物、例えば、二酸化リチウムコバルト(LiCoO)または二酸化リチウムマンガン(LiMnO)などを含有してもよい。電解質含有多孔質材料は、酸化リチウムコバルトなどの層状酸化物、リン酸鉄リチウムなどのカンラン石、またはリチウムマンガン酸化物などのスピネルから作製されてもよい。非リチウムの実施形態では、例示的なカソードは、TiS(二硫化チタン)から作製されてもよい。例示的なリチウム含有酸化物は、層状、例えば酸化リチウムコバルト(LiCoO)など、または混合金属酸化物、例えばLiNiCo1−2xMnO、LiNi0.5Mn1.5、Li(Ni0.8Co0.15Al0.05)O、LiMn、およびLiNiOなどであってもよい。例示的なリン酸塩は、鉄カンラン石(LiFePO)であってもよく、それは、変形例(LiFe1−xMgPOなど)、LiMoPO、LiCoPO、LiNiPO、Li(PO、LiVOPO、LiMP、またはLiFe1.5である。例示的なフルオロリン酸塩は、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、またはLiNiPOFであり得る。例示的なケイ酸塩は、LiFeSiO、LiMnSiO、またはLiVOSiOであり得る。例示的な非リチウム化合物は、Na(POである。他の例示的な電解質含有多孔質材料は、LiFeF、LiMnO・NMC、および図13に示す多孔質材料を含む。
Liイオンバッテリ100のアノード側、すなわち負の電極の電解質含有多孔質材料は、上記の材料、例えばポリマーマトリクスおよび/またはさまざまな微粉、例えばマイクロスケールまたはナノスケールのサイズの粉末に拡散した黒鉛粒子から作製されてもよい。加えて、シリコン、スズ、またはチタン酸リチウム(LiTi12)のマイクロビーズは、導電性コアアノード材料を提供するために、黒鉛のマイクロビーズと共に使用、または黒鉛のマイクロビーズの代わりに使用されてもよい。Liイオンバッテリ100のカソード側、または正の電極の電解質含有多孔質材料は、本明細書に記載した本実施形態により作製することができる。
図1Bは、本明細書に記載した一実施形態による、アノード構造122a、122bを負荷121に負荷に電気的に接続した片側Liイオンバッテリセル2層120の概略図である。片側Liイオンバッテリセル2層120は、図1Aに示すLiイオンバッテリ100に類似して機能する。Liイオンバッテリセル2層120の主要機能部品は、電流コレクタ131a、131b、133aおよび133bの間の領域内に配設されるアノード構造122a、122b、カソード構造123a、123b、セパレータ層124a、124b、および電解質(図示せず)を含む。Liイオンバッテリセル120は、電流コレクタ131a、131b、133aおよび133bのリード線付きの適当なパッケージ内の電解質で密封することができる。アノード構造122a、122b、カソード構造123a、123b、および流体透過性のセパレータ層124a、124bは、電流コレクタ131aおよび133aの間に形成される領域内、ならびに電流コレクタ131bおよび133bの間に形成される領域内で電解質中に浸される。絶縁体層135は、電流コレクタ133aと電流コレクタ133bの間に配設することができる。
アノード構造122a、122bおよびカソード構造123a、123bはそれぞれ、Liイオンバッテリセル120の半セルとして働き、Liイオンバッテリ120の完全なワーキング2層セルを共に形成することができる。アノード構造122a、122bそれぞれは、金属の電流コレクタ131a、131b、および第1の電解質含有材料134a、134bを含む。同様に、カソード構造123a、123bは、電流コレクタ133aおよび133b、ならびにリチウムイオンを保持するための金属酸化物などの第2の電解質含有材料132a、132bをそれぞれ含む。電流コレクタ131a、131b、133aおよび133bは、金属および金属合金などの電気伝導性材料で作製されてもよい。場合によっては、絶縁の多孔質の流体透過性の層、例えば誘電体層であるセパレータ層124a、124bが、アノード構造122a、122bおよびカソード構造123a、123bにおいて部品同士の間の直接の電気接触を防ぐために使用されてもよい。ことをやはり理解された本明細書に記載した本実施形態は、図1Aおよび図1Bに示すLiイオンセル構造に限定されない。アノード構造およびカソード構造は、直列または並列で接続されてもよいことをやはり理解されたい。
図2A〜図2Cは、本明細書に記載した実施形態により形成されたカソード電極構造103の一実施形態の概略断面図である。図2Aでは、電流コレクタ113に段階的な多孔質構造202を堆積する前の電流コレクタ113を概略的に示す。一実施形態では、電流コレクタ113は、導電性基板(例えば、金属製のフォイル、シート、またはプレート)である。一実施形態では、電流コレクタ113は、絶縁コーティングを上に設けた導電性基板である。一実施形態では、電流コレクタ113は、1種または複数種の導電性材料、例えば、金属、プラスチック、グラファイト、ポリマー、炭素含有ポリマー、複合物、または他の適当な材料などを含むホスト基板上に配設された比較的薄い導電層を含んでもよい。電流コレクタ113が構成され得る金属の例には、アルミニウム(Al)、銅(Cu)、亜鉛(Zn)、ニッケル(Ni)、コバルト(Co)、スズ(Sn)、シリコン(Si)、マンガン(Mn)、マグネシウム(Mg)、それらの合金、およびそれらの組み合わせが含まれる。一実施形態では、電流コレクタ113は、穴が開いている。
代替として、電流コレクタ113は、物理的気相堆積(PVD)、電気化学メッキ、無電解メッキなどを含む当業界で知られている手段によって上部に形成された電気伝導層を有する、ガラス、シリコン、およびプラスチックまたはポリマーの基板などの非導電性であるホスト基板を含むことができる。一実施形態では、電流コレクタ113は、フレキシブルホスト基板から形成される。フレキシブルホスト基板は、ポリエチレン、ポリプロピレン、または他の適当なプラスチックもしくはポリマーの材料などの軽量で安価なプラスチック材料であり得、導電層が上部に形成されている。一実施形態では、導電層は、抵抗損失を最小限にするために、厚さ約10〜15ミクロンである。そのようなフレキシブル基板として使用するのに適当な材料には、ポリイミド(例えば、DuPont CorporationによるKAPTON(商標))、テレフタル酸ポリエチレン(PET)、ポリアクリレート、ポリカーボネート、シリコーン、エポキシ樹脂、シリコーン機能化エポキシ樹脂、ポリエステル(例えば、E.I.du Pont de Nemours&CoによるMYLAR(商標))、Kanegaftigi Chemical Industry Companyによって製造されたAPICAL AV、UBE Industries, Ltd.によって製造されたUPILEX、Sumitomoによって製造されたポリエーテルスルホン(PES)、ポリエーテルイミド(例えば、General Electric CompanyによるULTEM)、およびポリエチレンナフタレン(PEN)が含まれる。代替として、フレキシブル基板は、ポリマーのコーティングで強化された比較的薄いガラスから構成されてもよい。
一実施形態では、電極の電流コレクタ113への接触抵抗および接着を改善するために、電流コレクタ113は、段階的な多孔質構造202の形成前に処理される。
図2Bに示すように、第1の気孔率を有する第1のカソード活性材料212を含む第1の多孔質層210が、電流コレクタ113の表面201を覆って形成される。一実施形態では、第1の多孔質層210は、約10μm〜約150μmの厚さを有する。一実施形態では、第1の多孔質層210は、約50μm〜約100μmの厚さを有する。電流コレクタ113が多孔質構造である実施形態では、第1の多孔質層210は、電流コレクタ113の細孔内に堆積させられてもよい。
一実施形態では、第1のカソード活性材料212は、粒子の形態である。一実施形態では、粒子は、ナノスケールの粒子である。一実施形態では、ナノスケールの粒子は、約1nm〜約100nmの直径を有する。一実施形態では、粒子は、マイクロスケールの粒子である。一実施形態では、粉末の粒子は、集合したマイクロスケールの粒子を含む。一実施形態では、マイクロスケールの粒子は、約2μm〜約15μmの直径を有する。いくつかの実施形態では、より高い電圧で起こり得る不要な副反応を避けるために減少した表面積を維持しつつ、粒子の充填密度を維持する粒径を選択することが望ましい。いくつかの実施形態では、粒径は、使用されるカソード活性材料のタイプに依存し得る。一実施形態では、カソード活性材料212は、二酸化リチウムコバルト(LiCoO)、二酸化リチウムマンガン(LiMnO)、二硫化チタン(TiS)、LiNixCo1−2xMnO、LiMn、LiFePO、LiFe1−xMgPO、LiMoPO、LiCoPO、Li(PO、LiVOPO、LiMP、LiFe1.5、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、LiNiPOF、Na(PO、LiFeSiO、LiMnSiO、LiVOSiO、LiNiO、およびそれらの組み合わせを含む群から選択される。
いくつかの実施形態では、第1の多孔質層210は、第1のカソード活性材料212の高抵抗の粒子と粒子の間に導電性経路をもたらすための導電性添加物214をさらに含む。一実施形態では、導電性添加物214は、グラファイト、グラフェン硬質炭素、カーボンブラック、炭素被覆シリコン、スズ粒子、スズ酸化物、炭化ケイ素、シリコン(アモルファスまたは結晶)、シリコン合金、ドープされたシリコン、チタン酸リチウム、それらの複合物、およびそれらの組み合わせを含む群から選択することができる。
いくつかの実施形態では、第1の多孔質層210は、結合剤216をさらに含む。いくつかの実施形態では、結合剤216は、第1のカソード活性材料212の粒子の表面をコーティングする。一実施形態では、結合剤216は、1粒子あたり約100個のポリマー分子より少ない割合で与えられる低い分子量を有する炭素含有ポリマーである。低い分子量のポリマーは、粒子が基板へ接着するのを促進するために、約10,000未満の数平均分子量を有し得る。一実施形態では、結合剤216は、フッ化ポリビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、水溶性バインダ、およびそれらの組み合わせを含む群から選択される。一実施形態では、N−メチル−2−ピロリドン(NMP)が、結合剤のキャリアとして使用される。
図2Cに示すように、第2の気孔率を有する第2のカソード活性材料222を含む第2の多孔質層220は、第1の多孔質層210を覆って形成される。一実施形態では、第2の多孔質層220は、約10μm〜約150μmの厚さを有する。一実施形態では、第2の多孔質層220は、約50μm〜約100μmの厚さを有する。
一実施形態では、第2のカソード活性材料222は、粒子の形態である。一実施形態では、粒子は、ナノスケールの粒子である。一実施形態では、ナノスケールの粒子は、約1nm〜約100nmの直径を有する。一実施形態では、粒子は、マイクロスケールの粒子である。一実施形態では、粉末の粒子は、集合したマイクロスケールの粒子を含む。一実施形態では、マイクロスケールの粒子は、約2μm〜約15μmの直径を有する。一実施形態では、第2のカソード活性材料222は、二酸化リチウムコバルト(LiCoO)、二酸化リチウムマンガン(LiMnO)、二硫化チタン(TiS)、LiNixCo1−2xMnO、LiMnLiFePO、LiFe1−xMgPO、LiMoPO、LiCoPO、Li(PO、LiVOPO、LiMP、LiFe1.5、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、LiNiPOF、Na(PO、LiFeSiO、LiMnSiO、LiVOSiO、LiNiO、およびそれらの組み合わせを含む群から選択される。一実施形態では、第1のカソード活性材料212および第2のカソード活性材料222は、同一の材料である。一実施形態では、第1のカソード活性材料212および第2のカソード活性材料222は、各層の特性を変えるように選択される異なる材料である。
いくつかの実施形態では、第1の多孔質層210の第1の気孔率は、第2の多孔質層220の第2の気孔率より大きい。いくつかの実施形態では、第1の層は、同じ材料から形成された固体膜に比べて少なくとも40%、45%、50%、55%、60%、または65%の気孔率または「第1の気孔率」を有する。いくつかの実施形態では、第1の層は、同じ材料から形成された固体膜に比べて45%、50%、55%、60%、65%、または70%まで第1の気孔率を有する。いくつかの実施形態では、第2の層は、同じ材料から形成された固体膜に比べて少なくとも20%、25%、30%、または35%の気孔率または「第2の気孔率」を有する。いくつかの実施形態では、第2の層は、同じ材料から形成された固体膜に比べて25%、30%、35%、または40%まで気孔率を有する。一実施形態では、同じ材料から形成された固体膜に比べて、第1の気孔率は、同じ材料から形成された固体膜に比べて約40%〜約70%であり、第2の気孔率は、同じ材料から形成された固体膜に比べて約20%〜約40%である。
いくつかの実施形態では、第1の多孔質層210の第1の気孔率は、第2の多孔質層220の第2の気孔率未満である。いくつかの実施形態では、第1の層は、同じ材料から形成された固体膜に比べて少なくとも20%、25%、30%、または35%の気孔率または「第1の気孔率」を有する。いくつかの実施形態では、第1の層は、同じ材料から形成された固体膜に比べて25%、30%、35%、または40%まで気孔率を有する。いくつかの実施形態では、第2の層は、同じ材料から形成された固体膜に比べて少なくとも40%、45%、50%、55%、60%、または65%の気孔率または「第2の気孔率」を有する。いくつかの実施形態では、第2の層は、同じ材料から形成された固体膜に比べて45%、50%、55%、60%、65%、または70%まで第2の気孔率を有する。一実施形態では、第2の気孔率は、同じ材料から形成された固体膜に比べて約40%〜約70%であり、第1の気孔率は、同じ材料から形成された固体膜に比べて約20%〜約40%である。一実施形態では、第2の気孔率は、同じ材料から形成された固体膜に比べて約40%〜約70%であり、第1の気孔率は、同じ材料から形成された固体膜に比べて約20%〜約35%である。
いくつかの実施形態では、第1の多孔質層210および第2の多孔質層220の少なくとも1つは、カレンダリング法などの圧縮プロセスを受けて、第1の多孔質層210および/または第2の多孔質層220の密度を増加させ、第1の多孔質層210および/または第2の多孔質層220の気孔率を減少させる。2層構造として述べたが、異なる材料、粒径および/または密度を含む任意の数の層が、本明細書に記載した多孔質カソード構造を形成するために使用されてもよいことを理解されたい。例えば、いくつかの実施形態では、段階的なカソード構造は、段階的なカソード構造が電流コレクタからセパレータに向かって延びるにつれて、各層の気孔率が、前もって堆積させられた層に対して増加する、より多くの層のうちの3つを含む。いくつかの実施形態では、段階的なカソード構造は、段階的なカソード構造が電流コレクタからセパレータに向かって延びるにつれて、各層の気孔率が、前もって堆積させられた層に対して減少する、より多くの層のうちの3つを含む。両面電極が形成されるいくつかの実施形態では、各多孔質層は、両面堆積プロセスを用いて基板の対向する両側に同時に堆積することができる。
図3は、本明細書に記載した実施形態による図1、図1Bおよび図2A〜図2Cに示すようなカソード構造103に類似する段階的なカソード構造を形成する方法300の一実施形態の概要を示すプロセスの流れ図である。ブロック310では、図1中の電流コレクタ113に実質的に類似する基板が用意される。上述のように、基板は、金属製のフォイルなどの導電性基板、または金属製のコーティングを有するフレキシブルポリマーまたはプラスチックなどの上部に形成された電気伝導層を有する非導電性基板であり得る。
ブロック320では、第1の気孔率を有する第1の多孔質層210に類似する第1の多孔質層は、導電性基板を覆って堆積させられる。第1の多孔質層は、本明細書に開示したように第1のカソード活性材料の粒子を堆積させることによって形成することができる。いくつかの実施形態では、第1のカソード活性材料と共に導電性添加物および/または結合剤を堆積させることが望ましいものであり得る。いくつかの実施形態では、第1のカソード活性材料は、導電性基板上に堆積する前に導電性添加物および/または結合剤の粒子であってもよい。いくつかの実施形態では、結合剤は、第1のカソード活性材料の粒子をコーティングする。いくつかの実施形態では、第1のカソード活性材料は、別個の源からの導電性添加物および/または結合剤の粒子と共に、導電性基板を覆って同時に堆積させられてもよい。
一実施形態では、粒子は、ふるい分け技法、静電スプレーイング技法、熱もしくはフレームスプレーイング技法、流動床コーティング技法、ロールコーティング技法、スリットコーティング、およびそれらの組み合わせを含む粒子塗布技法によって塗布されてもよいが、それらに限定されず、それらの全ては、当業者に知られている。例示的なプロセスの1つは、ツーパス堆積プロセスであり、第1のパスが、スプレーコーティング法を用いて導電性基板を覆って粒子を堆積させ、その後に第2のパスが、基板を覆って、スリットコーティングプロセスによって追加の粒子を堆積させる。別の例示的なツーパス堆積プロセスは、スリットコーティングプロセスを用いて導電性基板を覆って粒子を堆積させ、その後に、構造の密度をさらに上げる静電スプレーイングプロセスが続く。
いくつかの実施形態では、静電スプレーイング方法を使用して、導電性基板を覆って粒子または粉末を堆積させる。静電スプレーイングは、粉末粒子を帯電し、次いで反対の引き寄せる電荷を伴う導電性基板などのコーティングされる範囲に向けて粉末粒子をスプレーする。スプレー流中の帯電した粉末が、コーティングされる範囲に向かって引き寄せられるので、静電プロセスは、スプレーの掛け過ぎおよび浪費を最小限にするのを助ける。
いくつかの実施形態では、流動床コーティング法を使用して導電性基板を覆っておよび/または導電性基板の中にカソード活性粒子を挿入することができる。流動床システムでは、空気は、多孔質層またはスクリーンを通じて吹き上げられて、粉末を浮遊させ、それによって流動床を形成する。コーティングされる物品は、流動床に挿入され、粒子が露出面上に付着することを可能にする。流動床中のコーティング粒子は、より厚いコーティングを塗布するためにやはり帯電されてもよい。
いくつかの実施形態では、サーマルスプレーイング、プラズマスプレーイング、またはフレームスプレーイングの技法を使用して、導電性基板を覆ってカソード活性粒子を堆積させることができる。サーマルスプレーイング技法は、溶融(または加熱)材料が表面上へスプレーされるコーティングプロセスである。「供給原料」(コーティング前駆体)は、電気手段(例えばプラズマまたはアーク)または化学手段(例えば燃焼炎)によって加熱される。サーマルスプレーイングに利用できるコーティング材料には、金属、合金、セラミック、プラスチック、および複合物が含まれる。コーティング材料は、粉末形態で供給され、溶けたまたは半分溶けた状態に加熱され、マイクロメートルサイズの粒子の形態の基板に向けて促進される。燃焼または電気アークの放出は、サーマルスプレーイング用のエネルギー源として通常使用される。例示的なサーマルスプレーイング技法および機器は、IN−SITU DEPOSITION OF BATTERY ACTIVE LITHIUM MATERIALS BY THERMAL SPRAYINGと題され、2010年8月24日に出願され、Shangらの一般的に譲渡された米国特許出願第12/862,265号、代理人整理番号APPM/014344.02/AEP/LES/ESONG)に記載されおり、これは本明細書に参照により全体として組み込まれる。例示的なプラズマスプレーイング技法および装置は、IN−SITU DEPOSITION OF BATTERY ACTIVE LITHIUM MATERIALS BY PLASMA SPRAYINGと題され、2010年8月24日に出願され、Shangらの一般的に譲渡された米国特許出願第12/862,244、代理人整理番号APPM/014344/AEP/LES/ESONG)に記載されており、これは本明細書に参照により全体として組み込まれる。
いくつかの実施形態では、ロールコーティング技法を使用して、導電性基板を覆ってカソード活性粒子を堆積させることができる。一実施形態では、コーティングは、N−メチルピロリドン(NMP)などの溶媒にカソード活性材料のスラリーを形成することによってなされる。一実施形態では、コーティングは、結合剤および導電性添加物をさらに含む。コーティングの塗布後、溶媒は、本明細書に開示した乾燥技法を用いて取り除くことができる。いくつかの実施形態では、乾燥プロセスを使用して粒子の密集した安定化(settling)を促進することができる。
両面電極が形成されるいくつかの実施形態では、第1の多孔質層は、両面堆積プロセスを用いて基板の対向する両側に同時に堆積することができる。例えば、両面静電スプレーイングプロセスは、対向するスプレー塗布を使用して基板の対向する両側にカソード活性材料を堆積させる。両面電極が形成されるいくつかの実施形態では、第1の層は、この第1の層が、第1のパスの間に電流コレクタの第1の側面にわたって堆積させられ、第1の層が、第2のパスの間に基板の反対側にわたって堆積させられるツーパスプロセスを用いて形成することができる。
ブロック330では、第1の多孔質層は、適宜の圧縮プロセスを受けてもよい。粒子が導電性基板を覆って堆積させられた後、粒子は、層の表面を平坦化しつつ、ぎっしり詰まった粒子の所望の正味の密度を実現するために圧縮技法、例えばカレンダリング法を用いて圧縮されてもよい。いくつかの実施形態では、第1の多孔質層の正味の密度を増大させるために、第1の多孔質層の堆積後にカレンダリング法を実行することが望ましい。
第1の多孔質層は、堆積プロセスから任意の残留溶媒を取り除くために、適宜の乾燥プロセスを受けてもよい。適宜の乾燥プロセスは、空気乾燥プロセス、例えば、多孔質層を加熱窒素にさらしたり、多孔質層に赤外乾燥プロセス、マランゴニ乾燥プロセス、およびアニールプロセス、例えば速熱アニールプロセスを受けさせたりすることなどの乾燥プロセスを含み得るが、それらに限定されない。
ブロック340では、第2の気孔率を有する第2の多孔質層220に類似する第2の多孔質層は、第1の多孔質層210を覆って堆積させられる。第2の多孔質層は、本明細書に開示したように、第2のカソード活性材料の粒子を堆積させることによって形成することができる。いくつかの実施形態では、第2のカソード活性材料と共に導電性添加物および/または結合剤を堆積させることが望ましいものであり得る。いくつかの実施形態では、第2のカソード活性材料は、第1の多孔質層上に堆積される前に、導電性添加物および/または結合剤の粒子と予め混合することができる。いくつかの実施形態では、第2のカソード活性材料は、別個の源からの導電性添加物および/または結合剤の粒子と共に、導電性基板を覆って同時に堆積させられてもよい。いくつかの実施形態では、粒子は、ブロック320を参照して述べた堆積技法を用いて堆積させられてもよい。
両面電極が形成されるいくつかの実施形態では、ブロック320を参照して述べたように、第2の多孔質層は、両面堆積プロセスを用いて基板の対向する両側に同時に堆積させられてもよい。
一実施形態では、第1のカソード活性材料は、第2のカソード活性材と同一である。一実施形態では、第1のカソード活性材料は、第2のカソード活性材料とは異なる材料である。
一実施形態では、第1のカソード活性材料の粒子は、第2のカソード活性材料の粒子とは異なるサイズである。一実施形態では、第1のカソード活性材料の粒子および第2のカソード活性材料が、ほぼ同じサイズである。
ブロック350では、第2の多孔質層は、適宜の圧縮プロセスを受けてもよい。粒子が導電性基板を覆って堆積させられた後、粒子は、層の表面を平坦化しつつ、ぎっしり詰まった粒子の所望の正味の密度を実現するために圧縮技法、例えばカレンダリング法を用いて圧縮されてもよい。いくつかの実施形態では、第1の多孔質層に対して第2の多孔質層の正味の密度を増大させるために、第2の多孔質層の堆積後にカレンダリング法を実行することが望ましい。いくつかの実施形態では、ブロック330のプロセスに類似する乾燥プロセスが実行される。
図4Aは、本明細書に記載した実施形態による多孔質導電性基板の中におよび多孔質導電性基板を覆ってカソード活性材料を堆積させる前の多孔質導電性基板413の一実施形態の斜視図である。図4Bは、本明細書に記載した実施形態により形成された段階的なカソード電極400の一実施形態の概略断面図である。段階的なカソード電極400は、段階的なカソード電極400が、多孔質導電性電流コレクタ413を用いて形成され、第1のカソード活性材料412が、多孔質導電性電流コレクタの細孔内に堆積させられ、段階的なカソード電極400が、共有の3次元多孔質の電流コレクタ413を有する両側カソード電極であることを除いてカソード電極103に類似する。段階的なカソード電極400は、両側電極として示されるが、段階的なカソード電極400は、片側電極とすることもできることを理解されたい。
段階的なカソード電極400は、多孔質層210に類似する第1の多孔質層410が、両面堆積プロセスを用いて多孔質導電性基板413の細孔内に堆積させられ、第2の多孔質層420a、420bが、両面堆積プロセス、例えば両側スプレーコーティングプロセスを用いて多孔質導電性電流コレクタ413の対向する両側に形成されることを除いて図3に示すプロセスに類似するプロセスを用いて形成することができる。
基板または電流コレクタ413は、電流コレクタ113に類似する。一実施形態では、基板または電流コレクタ413は、アルミニウム基板またはアルミニウム合金基板である。一実施形態では、電流コレクタ413は、複数の細孔415を有する穴が空いているすなわち多孔質の3次元構造である。一実施形態では、3次元構造は、例えば、インプリントリソグラフィプロセスまたはパターンドパンチスループロセスを用いて形成することができる。一実施形態では、3次元構造は、アルミニウムおよびその合金から選択される材料で構成されるワイヤメッシュ構造を備える。一実施形態では、ワイヤメッシュ構造は、約0.050マイクロメートル〜約10マイクロメートルのワイヤ径を有する。一実施形態では、ワイヤメッシュ構造は、約10マイクロメートル〜約100マイクロメートル、例えば約90マイクロメートルの開孔を有する。いくつかの実施形態では、構造の形成がインプリンティングまたはエッチングを必要としないのでワイヤメッシュ構造を3次元カソード構造として用いることが望ましいものであり得る。
一実施形態では、多孔質の電流コレクタ413は、約50%〜約90%の気孔率を有する3次元構造である。一実施形態では、電流コレクタ413は、約70%〜約85%、例えば約81%の気孔率を有する3次元構造である。
図4Bに示すように、第1の気孔率を有する第1のカソード活性材料412を含む第1の多孔質層410は、多孔質の電流コレクタ413の細孔415内に形成される。一実施形態では、第1のカソード活性材料412は、シングルステップまたはマルチステップの堆積プロセスを用いて多孔質の電流コレクタ413の細孔内に垂直にスプレーされる。一実施形態では、第1の多孔質層410は、約50μm〜約200μm、例えば約100μmの厚さを有する。いくつかの実施形態では、第1の多孔質層410は、第2の多孔質層420a、420bの気孔率より大きい気孔率を有する。いくつかの実施形態では、第1の多孔質層410は、第2の多孔質層420a、420bの気孔率より小さい気孔率を有する。
図4Bに示すように、第2の気孔率を有する第2のカソード活性材料422を含む第2の多孔質層420a、420bは、第1の多孔質層410を覆って形成される。一実施形態では、第2の多孔質層420a、420bは、約50μm〜約100μmの厚さを有する。一実施形態では、第2の多孔質層420a、420bは、第1の多孔質層410の気孔率より小さい気孔率を有する。一実施形態では、第2の多孔質層420a、420bは、第1の多孔質層410の気孔率より大きい気孔率を有する。一実施形態では、最初に堆積させられるとき、第1の多孔質層410および第2の多孔質層420aおよび420bの気孔率は、実質的に同であるが、第2の多孔質層にブロック350に記載した適宜の圧縮プロセスを受けさせた後、第2の多孔質層420a、420bの気孔率は、第1の多孔質層410の気孔率に対して減少している。適宜の圧縮プロセスがカレンダリング法である実施形態では、オーバーバーデン部(例えば、第2の多孔質層420a、420b)は、より効果的に密度が上げられ、一方、3次元構造内の第1の多孔質層410は、複合物構造の典型的な機械的挙動によりあまり密度は上げなかった。第1の多孔質層410が、第2の多孔質層420a、420bより大きい密度を有するいくつかの実施形態では、第1の多孔質層は、ブロック330に記載した圧縮プロセスに類似する適宜の圧縮プロセスを受けることができる。いくつかの実施形態では、第2の多孔質層420a、420bは、同じ材料から形成された固体膜に比べて約40%〜約50%の気孔率を有し、第1の多孔質層410は、同じ材料から形成された固体膜に比べて約30%〜約35%の気孔率を有する。
図5A〜図5Cは、本明細書に記載した実施形態により形成された粒径の勾配を有する段階的なカソード電極構造103の一実施形態の概略断面図である。図5Aでは、電流コレクタ113に段階的な粒子構造502を堆積する前の電流コレクタ113を概略的に示す。
図5Bに示すように、第1の直径を有する第1のカソード活性粒子512を有する第1の層510は、電流コレクタ113の表面201を覆って形成される。一実施形態では、第1の層510は、約10μm〜約150μmの厚さを有する。一実施形態では、第1の層510は、約50μm〜約100μmの厚さを有する。一実施形態では、粒子は、ナノスケールの粒子である。一実施形態では、ナノスケールの粒子は、約1nm〜約100nmの直径を有する。一実施形態では、粒子は、マイクロスケールの粒子である。一実施形態では、粉末の粒子は、集合したマイクロスケールの粒子を含む。一実施形態では、マイクロスケールの粒子は、約2μm〜約15μmの直径を有する。一実施形態では、第1の直径は、10μm未満である。一実施形態では、第1の直径は約5μmである。
本明細書で述べるように、いくつかの実施形態では、第1のカソード活性粒子と共に導電性添加物および/または結合剤を堆積させることが望ましいものであり得る。
図5Cに示すように、第2の直径を有する第2のカソード活性粒子522を有する第2の層520は、第1の層510を覆って形成される。一実施形態では、第2の層520は、約10μm〜約150μmの厚さを有する。一実施形態では、第2の層520は、約50μm〜約100μmの厚さを有する。一実施形態では、第2のカソード活性粒子522は、第1の層の粒子の粒径の5倍より大きい第2の直径を有する。一実施形態では、粒子は、ナノスケールの粒子である。一実施形態では、ナノスケールの粒子は、約1nm〜約100nmの直径を有する。一実施形態では、粒子は、マイクロスケールの粒子である。一実施形態では、粉末の粒子は、集合したマイクロスケールの粒子を含む。一実施形態では、マイクロスケールの粒子は、約2μm〜約75μmの直径を有する。一実施形態では、第2の直径は、約5μm〜約50μmである。一実施形態では、第2の直径は、約15μmである。いくつかの実施形態では、カソード活性粒子522の第2の直径は、カソード活性粒子512の第1の直径より大きい。いくつかの実施形態では、カソード活性粒子522の第2の直径は、カソード活性粒子512の第1の直径未満である。
粒子がマイクロメートルのサイズの粒子、例えば、層状酸化物およびスピネルであるいくつかの実施形態では、第2のカソード活性粒子は、第1の層の粒子の粒径の5倍より大きい粒径を有し、それによって固体の拡散時間は、顕著に異なる。他の実施形態では、カソード材料がナノサイズである、例えばLiFePO、LiMnSiOなどの実施形態では、第2の層のカソード活性粒子は、第1の層の粒子の粒径の5倍より大きいものであり得る。追加の拡散強化は、表面処理から来得る。
一実施形態では、第1の層510は、第2の層520の第2の気孔率より大きい気孔率を有する。一実施形態では、第1の気孔率は、同じ材料から形成された固体膜に比べて約40%〜約50%であり、第2の気孔率が、同じ材料から形成された固体膜に比べて約30%〜約40%である。いくつかの実施形態では、第1の層510は、第2の層520の気孔率未満の気孔率を有する。いくつかの実施形態では、第1の気孔率は、同じ材料から形成された固体膜に比べて約30%〜約35%であり、第2の気孔率は、同じ材料から形成された固体膜に比べて約40%〜約50%である。
いくつかの実施形態では、第2の層520は、第2の層内の粒子の形状を変更し、粒子の充填密度を変更するためにカレンダリング法などの圧縮プロセスを受ける。第1の層510が第2の層520より大きい密度を有するいくつかの実施形態では、第1の層は、本明細書に記載した圧縮プロセスに類似する適宜の圧縮プロセスを受けることができる。
図6は、図1および図5A〜図5Cに示すような、本明細書に記載した実施形態による、カソード構造103に類似する粒径の勾配を有する段階的なカソード構造を形成する方法600の一実施形態の概要を示すプロセスの流れ図である。ブロック610では、図1中の電流コレクタ113に実質的に類似する基板が用意される。上述のように、基板は、金属製のフォイルなどの導電性基板、または金属製のコーティングを有するフレキシブルポリマーまたはプラスチックなどの上部に形成された電気伝導層を有する非導電性基板であり得る。
ブロック620では、第1の直径を有する第1のカソード活性粒子を含む第1の層510に類似する第1の層は、導電性基板を覆って堆積させられる。第1の層は、本明細書に開示したようにカソード活性材料の粒子を堆積させることによって形成することができる。いくつかの実施形態では、本明細書に開示したようにカソード活性材料と共に導電性添加物および/または結合剤を堆積させることが望ましいものであり得る。
ブロック630では、第1の層は、適宜の圧縮プロセスを受けることができる。粒子が導電性基板を覆って堆積させられた後、粒子は、第1の層の表面を平坦化しつつ、ぎっしり詰まった粒子の所望の正味の密度を実現するために、圧縮技法、例えばカレンダリング法を用いて圧縮されてもよい。
第1の層は、堆積プロセスから任意の残留溶媒を取り除くために、適宜の乾燥プロセスを受けてもよい。この乾燥プロセスは、第1の層の厚さを調整するように合わされてもよい。適宜の乾燥プロセスは、空気乾燥プロセス、例えば、多孔質層を加熱窒素にさらしたり、多孔質層に赤外乾燥プロセス、マランゴニ乾燥プロセス、およびアニールプロセス、例えば速熱アニールプロセスを受けさせたりすることなどの乾燥プロセスを含み得るが、それらに限定されない。
ブロック640では、第2の直径を有する第2のカソード活性粒子を含む第2の層520に類似する第2の層は、第1の層を覆って堆積させられる。第2の層は、本明細書に開示したようにカソード活性材料の粒子を堆積させることによって形成することができる。いくつかの実施形態では、本明細書に開示したようにカソード活性材料と共に導電性添加物および/または結合剤を堆積させることが望ましいものであり得る。
ブロック650では、第2の層は、適宜の圧縮プロセスを受けることができる。粒子が導電性基板を覆って堆積させられた後、粒子は、第2の層の表面を平坦化しつつ、ぎっしり詰まった粒子の所望の正味の密度を実現するために、圧縮技法、例えばカレンダリング法を用いて圧縮されてもよい。いくつかの実施形態では、第1の層の粒子に対する第2の層の粒子の充填密度を増大させるために、第2の多孔質層の堆積後にカレンダリング法を実行することが望ましい。
一実施形態では、第1のカソード活性材料は、第2のカソード活性材料と同一である。一実施形態では、第1のカソード活性材料は、第2のカソード活性材料とは異なる材料である。
一実施形態では、第2の層は、第1の層について説明した適宜の乾燥プロセスに類似する乾燥プロセスを受ける。
いくつかの実施形態では、活性材料スプレーは、以下のものの少なくとも1つ、すなわち、スプレー中の同時乾燥、高粘性スラリーの超音波スプレー、および水ベースの低溶媒または無溶媒スラリーの少なくとも1つを含んでもよい。
図7は、本明細書に記載した実施形態により形成された段階的なカソード電極700の一実施形態の概略断面図である。段階的なカソード電極700は、段階的なカソード電極700が、複数の細孔715を有する多孔質導電性電流コレクタ713を用いて形成され、第1の直径を有するカソード活性粒子712が、多孔質導電性電流コレクタ713の複数の細孔715内に堆積させられ、段階的なカソード電極700が、共有の3次元多孔質の電流コレクタ713を有する両側カソード電極であることを除いて図5Cに示すカソード電極103に類似する。段階的なカソード電極700が両側電極として示されるが、段階的なカソード電極700は、片側電極とすることもできることを理解されたい。
段階的なカソード電極700は、第1の直径を有する第1のカソード活性粒子712を有する第1の層710が、両面堆積プロセスを用いて多孔質導電性基板713の細孔内に堆積させられ、第2の直径を有する第2のカソード活性粒子722を有する第2の層720a、720bが、両面堆積プロセス、例えば両側スプレーコーティングプロセスを用いて多孔質導電性電流コレクタ713の対向する両側に第1の層710を覆って形成されることを除いて図6に示す方法600に類似するプロセスを用いて形成することができる。
基板または電流コレクタ713は、電流コレクタ413および113に類似し得る。一実施形態では、基板または電流コレクタ713は、アルミニウム基板またはアルミニウム合金基板である。一実施形態では、電流コレクタ713は、複数の細孔715を有する穴が空いているすなわち多孔質の構造である。
一実施形態では、多孔質の電流コレクタ713は、約50%〜約90%の気孔率を有する3次元構造である。一実施形態では、電流コレクタ713は、約70%〜約85%、例えば約81%の気孔率を有する3次元構造である。
図7に示すように、第1の直径を有する第1のカソード活性粒子712を有する第1の層710は、多孔質の電流コレクタ713の細孔715内に形成される。一実施形態では、第1の層710は、約50μm〜約200μm、例えば約100μmの厚さを有する。一実施形態では、粒子は、ナノスケールの粒子である。一実施形態では、ナノスケールの粒子は、約1nm〜約100nmの直径を有する。一実施形態では、粒子は、マイクロスケールの粒子である。一実施形態では、粉末の粒子は、集合したマイクロスケールの粒子を含む。一実施形態では、マイクロスケールの粒子は、約2μm〜約15μmの直径を有する。一実施形態では、第1の直径は約5μmである。
図7に示すように、第2の直径を有する第2のカソード活性粒子722を有する第2の層720a、720bは、第1の層710を覆って形成される。一実施形態では、第2の層720a、720bは、約50μm〜約100μmの厚さを有する。一実施形態では、粒子は、ナノスケールの粒子である。一実施形態では、ナノスケールの粒子は、約1nm〜約100nmの直径を有する。一実施形態では、粒子は、マイクロスケールの粒子である。一実施形態では、粉末の粒子は、集合したマイクロスケールの粒子を含む。一実施形態では、マイクロスケールの粒子は、約2μm〜約20μmの直径を有する。一実施形態では、第2の直径は、約15μmである。いくつかの実施形態では、カソード活性粒子722の第2の直径は、カソード活性粒子712の第1の直径より大きい。一実施形態では、第2の直径は約15μmであり、第1の直径は約5μmである。一実施形態では、第2の直径は約5μmであり、第1の直径は約15μmである。
図8A〜図8Cは、本明細書に記載した実施形態により形成されたカソード電極構造103の一実施形態の概略断面図である。図9は、本明細書に記載した実施形態によるカソード電極構造103を形成する方法900の一実施形態の概要を示すプロセスの流れ図である。
ブロック910では、電流コレクタ113などの導電性基板が用意される。図8Aに示すように、電流コレクタ113の表面201に2層カソード構造802を堆積する前の電流コレクタ113を概略的に示す。
ブロック920では、第1のカソード活性材料を含む第1の層810が、電流コレクタ113を覆って堆積させられる。一実施形態では、第1の層810は、約10μm〜約150μm、例えば約50μm〜約100μmの厚さを有する。
一実施形態では、第1のカソード活性材料は、二酸化リチウムコバルト(LiCoO)、二酸化リチウムマンガン(LiMnO)、二硫化チタン(TiS)、LiNixCo1−2xMnO、LiMn、LiFePO、LiFe1−xMgPO、LiMoPO、LiCoPO、Li(PO、LiVOPO、LiMP、LiFe1.5、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、LiNiPOF、Na(PO、LiFeSiO、LiMnSiO、LiVOSiO、LiNiO、およびそれらの組み合わせを含む群から選択される。一実施形態では、第1のカソード活性材料は、LiFePOを含む。本明細書で述べるように、いくつかの実施形態では、カソード活性材料と共に導電性添加物および/または結合剤を堆積させることが望ましいものであり得る。
ブロック925では、第1の層は、層の表面を平坦化しつつ、ぎっしり詰まった粒子の所望の正味の密度を実現するために、本明細書に記載したような適宜の圧縮プロセスを受けてもよい。
ブロック930では、第1のカソード活性材料とは異なる第2のカソード活性材料を含む第2の層820は、第1の層810を覆って堆積させられる。一実施形態では、第2のカソード活性材料は、二酸化リチウムコバルト(LiCoO)、二酸化リチウムマンガン(LiMnO)、二硫化チタン(TiS)、LiNixCo1−2xMnO、LiMn、LiFePO、LiFe1−xMgPO、LiMoPO、LiCoPO、Li(PO、LiVOPO、LiMP、LiFe1.5、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、LiNiPOF、Na(PO、LiFeSiO、LiMnSiO、LiVOSiO、LiNiO、およびそれらの組み合わせを含む群から選択される。一実施形態では、第2のカソード活性材料は、LiNixCo1−2xMnOを含む。本明細書で述べるように、いくつかの実施形態では、カソード活性材料と共に導電性添加物および/または結合剤を堆積させることが望ましいものであり得る。
一実施形態では、第1の層810は、電圧電極がより低くなるにつれてより高い電力性能をもたらす材料を含み、第2の層820は、電力性能がより遅くなるにつれて高電圧電極をもたらす材料を含む。一実施形態では、第1の層810はLiFePOを含み、第2の層820はLiNixCo1−2xMnOを含む。
ブロック940では、第2の層820が、適宜の圧縮プロセスを受けてもよい。第2のカソード活性材料が導電性基板を覆って堆積させられた後、この材料は、第2の層820の表面を平坦化しつつ、ぎっしり詰まった粒子の所望の正味の密度を実現するために圧縮技法、例えばカレンダリング法を用いて圧縮されてもよい。
第1の層810および第2の層820は、本明細書に記載した適宜の乾燥プロセスをやはり受けてもよい。
いくつかの実施形態では、カソード電極構造103は、ラミネートプロセスを用いて形成されてもよい。例えば、第1の層は、本明細書に記載した実施形態を用いて導電性基板上に形成され、カソード活性材料、結合剤、および導電性添加物を含む第2の層は、別個の基板、例えばガラス基板上に形成される。ガラス基板は、圧縮プロセスおよび/または加熱を用いてカソード電極構造を形成するように第1の層の頂面にラミネートされる。
図10A〜図10Hは、本明細書に記載した実施形態により形成されたカソード電極構造の一実施形態の概略断面図である。図10Aは、インプリントリソグラフィプロセスを用いた上部にフォトレジスト1020を堆積した導電性基板1013の概略図である。図10Bは、複数の細孔1024を形成するための湿式エッチングプロセス後の導電性基板1013の概略図である。図10Cは、フォトレジスト1020の除去後の導電性基板1013の概略図である。図10A〜図10C中に片側インプリントおよびエッチングプロセスとして示されているが、両側インプリントおよびエッチングプロセスは、図10D〜図10Hに示す多孔質導電性基板または電流コレクタ1050を形成するために実行できることをやはり理解されたい。導電性基板1050は、図4Bおよび図7に示す導電性基板に類似するが、図4Aおよび図4Bに示す複数の細孔415は、電流コレクタ413の幅を横切る貫通細孔であるのに対して、複数の細孔1054は、導電性基板1050の幅を横切らず、導電性基板1050の部分を間に配設した図10Gに示すような2つの別個の第1の層1060a、1060bの形成を可能にする。一実施形態では、図10Eおよび図10Fに示すように、第1の層1060a、1060bを形成する第1のカソード活性材料1012、および第2の層1070a、1070bを形成する第2のカソード活性材料1022は、別個の堆積プロセス、例えば、別個の静電スプレープロセスを用いて堆積させられてもよい。一実施形態では、第1の層1060a、1060bを形成する第1のカソード活性材料1012、および第2の層1070a、1070bを形成する第2のカソード活性材料1022は、同じカソード活性材料であるが、第1の層1060a、1060bおよび第2の層1070a、1070bの密度は、圧縮プロセスを用いて互いに対して変更されている。
図10Gは、カソード電極構造の一実施形態の概略断面図である。段階的なカソード電極構造は、多孔質層210および410に類似する第1の多孔質層1060a、1060bが、両面堆積プロセスを用いて多孔質導電性基板1050の細孔内に堆積させられ、図4Bの層420a、420bに類似する第2の多孔質層1070a、1070bが、両面堆積プロセス、例えば両側スプレーコーティングプロセスを用いて多孔質導電性電流コレクタ1050の対向する両側に形成されることを除いて図3に示すプロセスに類似するプロセスを用いて形成することができる。次いで、導電性電流コレクタ1050は、次いで、本明細書に記載したように第1の多孔質層1060a、1060bの気孔率に対して第2の多孔質層1070a、1070bの気孔率を変更するように両面圧縮プロセスを受けることができる。
図7に示す段階的なカソード構造700に類似する図10Hに示す段階的なカソード電極は、第1の直径を有する第1のカソード活性粒子1082を有する別個の第1の層1060a、1060bが、両面堆積プロセスを用いて多孔質導電性基板1050の細孔内に堆積させられ、第2の直径を有する第2のカソード活性粒子1084を有する第2の層1070a、1070bが、両面堆積プロセス、例えば両側スプレーコーティングプロセスを用いて多孔質導電性電流コレクタ1050の対向する両側に第1の層1060a、1060bを覆って形成されることを除いて、図6を参照して説明したものに類似するプロセスを用いて形成することができる。
図11は、本明細書に記載した実施形態による垂直処理システム1100の一実施形態を概略的に説明する。処理システム1100は、一般に、ラインに配置された複数の処理チャンバ1112〜1134を備え、それぞれは、垂直に位置するフレキシブル導電性基板1110に1つの処理ステップを実行するように構成される。一実施形態では、処理チャンバ1112〜1134は、スタンドアローンのモジュラー処理チャンバであり、各モジュラー処理チャンバが、他のモジュラー処理チャンバから構造的に分離されている。したがって、スタンドアローンのモジュラー処理チャンバのそれぞれは、互いに悪影響を与えることなく独立して配列、再配列、置換または維持することができる一実施形態では、処理チャンバ1112〜1134は、垂直に配置したフレキシブル導電性基板1110のそれぞれの側を同時に処理するために同時の両側プロセスを実行するように構成される。
一実施形態では、処理システム1100は、多孔質フレキシブル導電性基板を形成するために、フレキシブル導電性基板1110の少なくとも一部でインプリンティングプロセスまたはパンチスループロセスなどの3次元構造基板の形成プロセスを実行するように構成されるインプリントチャンバ1112を含む。
一実施形態では、処理システム1100は、リンス液、例えば純水を用いて垂直向き導電性フレキシブル基板1110の一部から任意の残留粒子および処理溶液をリンスおよび除去するように構成される第1のリンスチャンバ1114をさらに備える。
一実施形態では、処理システム1100は、第1のリンスチャンバ1114の隣に配設される湿式エッチングチャンバ1116をさらに含む。一実施形態では、湿式エッチングチャンバ1116は、多孔質フレキシブル導電性基板の気孔率を増大させるために、フレキシブル導電性基板1110の少なくとも一部でエッチングプロセスを実行するように構成される。一実施形態では、チャンバ1112およびチャンバ116は、インプリントチャンバ、湿式エッチングチャンバ、電気化学エッチングチャンバ、パターンパンチスルーチャンバ、およびそれらの組み合わせから選択されるチャンバを含み得る。
一実施形態では、処理システム1100は、湿式エッチングプロセスが実行された後に、リンス液、例えば純水を用いて垂直向き導電性フレキシブル基板1110の一部から任意の残留エッチング溶液をリンスおよび除去するように構成される第2のリンスチャンバ1118をさらに備える。一実施形態では、エアナイフを備えるチャンバ1120は、第2のリンスチャンバ1118に隣接して配置される。
一実施形態では、処理システム1100は、垂直向き導電性基板1110に乾燥プロセスを受けさせるように構成されたエアナイフ1120に隣接して配設された第1の乾燥チャンバ1122をさらに備える。一実施形態では、第1の乾燥チャンバ1122は、空気乾燥プロセス、例えば、導電性基板1110を加熱窒素にさらしたり、導電性基板1110に赤外乾燥プロセス、マランゴニ乾燥プロセス、またはアニールプロセス、例えば速熱アニールプロセスを受けさせたりすることなどの乾燥プロセスを垂直向き導電性基板1110に受けさせるように構成される。
一実施形態では、処理システム1100は、垂直向き多孔質導電性基板1110を覆っておよび/または垂直向き多孔質導電性基板1110の中にカソード活性粒子を堆積させるように構成される第1のスプレーコーティングチャンバ1124をさらに備える。スプレーコーティングチャンバとして述べたが、第1のスプレーコーティングチャンバ124は、前述の堆積プロセスのいずれかを実行するように構成されてもよい。
一実施形態では、処理システム1100は、垂直向き導電性基板1110に乾燥プロセス、例えばアニールプロセスを受けさせるように構成される第1のスプレーコーティングチャンバ1124に隣接して配設された乾燥チャンバ1126をさらに備える。一実施形態では、乾燥チャンバ1126は、速熱アニールプロセスなどの乾燥プロセスを実施するように構成される。
一実施形態では、処理システム1100は、乾燥チャンバ1126に隣接して配置される第2のスプレーコーティングチャンバ1128をさらに備える。スプレーコーティングチャンバとして述べたが、第2のスプレーコーティングチャンバ1128は、前述の堆積プロセスのいずれかを実行するように構成されてもよい。一実施形態では、第2のスプレーコーティングチャンバ1128は、垂直向き多孔質導電性基板1110を覆って第2のカソード活性粒子を堆積させるように構成される。一実施形態では、第2のスプレーコーティングチャンバ1128は、垂直向き導電性基板1110を覆ってバインダなどの添加物材料を堆積させるように構成される。ツーパススプレーコーティングプロセスが使用される実施形態では、第1のスプレーコーティングチャンバ1124は、例えば、静電スプレーイングプロセスを用いて第1のパスの間に垂直向き導電性基板1110を覆ってカソード活性粒子を堆積させるように構成することができ、第2のスプレーコーティングチャンバ1128は、例えば、スリットコーティングプロセスを用いて第2のパスにおいて垂直向き導電性基板1110を覆ってカソード活性粒子を堆積させるように構成することができる。
一実施形態では、処理システム1100は、堆積直後のカソード活性粒子を導電性微細構造に圧縮するために、垂直向き導電性基板1110にカレンダリング法を受けさせるように構成される第1の乾燥チャンバ1122に隣接して配設された圧縮チャンバ1130をさらに備える。一実施形態では、圧縮プロセスを使用して堆積直後のカソード活性粒子の気孔率を所望の正味の密度に変更することができる。
一実施形態では、処理システム1100は、垂直向き導電性基板1110に乾燥プロセスを受けさせるように構成される圧縮チャンバ1130に隣接して配設された第3の乾燥チャンバ1132をさらに備える。一実施形態では、第3の乾燥チャンバ1132は、空気乾燥プロセス、例えば、導電性基板1110を加熱窒素にさらしたり、導電性基板1110に赤外乾燥プロセス、マランゴニ乾燥プロセス、またはアニールプロセス、例えば速熱アニールプロセスを受けさせたりすることなどの乾燥プロセスを垂直向き導電性基板1110に受けさせるように構成される。
一実施形態では、処理システム1100は、乾燥チャンバ1132に隣接して配置される第3のスプレーコーティングチャンバ1134をさらに備える。スプレーコーティングチャンバとして述べたが、第3のスプレーコーティングチャンバ1134は、前述の堆積プロセスのいずれかを実行するように構成されてもよい。一実施形態では、第3のスプレーコーティングチャンバ1134は、垂直向き導電性基板を覆ってセパレータ層を堆積させるように構成される。
いくつかの実施形態では、処理システム1100は、追加の処理チャンバをさらに備える。追加のモジュラー処理チャンバは、電気化学メッキチャンバ、無電解堆積チャンバ、化学気相堆積チャンバ、プラズマ化学気相堆積チャンバ、原子層堆積チャンバ、リンスチャンバ、アニールチャンバ、乾燥チャンバ、スプレーコーティングチャンバ、およびそれらの組み合わせを含む処理チャンバの群から選択される1つまたは複数の処理チャンバを備えることができる。追加のチャンバまたはより少数のチャンバが、インライン処理システムに含まれてもよいことをやはり理解されたい。
処理チャンバ1112〜1134は、一般に、垂直向き導電性基板1110の部分がチャンバのスルーフィードール1140およびテイクアップロール1142によって簡素化できるようにラインに沿って配置される。一実施形態では、垂直向き基板1110が、テイクアップロール1142を後にするときに、基板1110は、角柱状組立体1150を形成するようにさらに処理される。
図12Aは、NMC/Liセルのための電極利用に対する電極の厚さの影響を説明するシミュレーションを示すグラフ1200である。y軸はセル電圧(ボルト)を示し、x軸は電極の利用を示す。電極の厚さ75ミクロン、100ミクロン、125ミクロン、150ミクロン、175ミクロン、および200ミクロンが表されている。グラフ1200に示すように、75ミクロンの厚さを有する電極は、電極から放電されるリチウムの90%を意味する0.9の利用がある。グラフ1200は、電極の厚さが、例えば75ミクロンから200ミクロンまで増加するにつれて、200ミクロンの厚さを有する電極が、より多くのリチウムを保持できるにも関わらず、電極の利用は、75ミクロンの電極の0.9から200ミクロンの電極の0.4まで減少することをさらに示す。
図12Bは、利用の観点で図12Aから最悪のシナリオである200ミクロンの厚さを有する電極についてのNMC/Liセルの比エネルギーに対する段階的な気孔率の影響を説明するシミュレーションを示すグラフ1210である。y軸はセル電圧(ボルト)を示し、x軸は比エネルギー(ワット時/kg)を示す。シミュレーションは、Cレートディスチャージ(C rate discharge)で厚さ200ミクロンのNMC電極を用いて、4つの異なるシナリオの比エネルギーを説明する。第1の電極は、平均気孔率(ε=ε平均)に等しい気孔率を有する。第2の電極は、ε平均より10%小さい気孔率を有する第1の層と、ε平均より10%大きい気孔率とを有する第2の層を有する本明細書に記載したような二重層電極(ε=ε平均±0.1ε平均)である。第3の電極は、ε平均より20%小さい気孔率を有する第1の層と、ε平均より20%大きい気孔率を有する第2の層とを有する本明細書に記載したような二重層電極(ε=ε平均±0.2ε平均)である。第4の電極は、ε平均より30%小さい気孔率を有する第1の層と、ε平均より30%大きい気孔率を有する第2の層とを有する本明細書に記載したような二重層電極(ε=ε平均±0.3ε平均)である。このグラフは、均一の気孔率(ε=ε平均)を有する電極200ミクロンの電極と比較して、段階的な気孔率(ε=ε平均±0.3ε平均)を有する厚さ200ミクロンの電極についての比エネルギーの12%の改善を示す。
図13は、本明細書に記載した本実施形態により使用できるさまざまなカソード活性材料の理論上のエネルギー密度を示すグラフ1300である。
前述の事項は、本発明の実施形態に向けられるものであるが、本発明の他のさらなる実施形態が、本発明の根本的な範囲から逸脱することなく考案されてもよく、その範囲は、添付の特許請求の範囲によって示されている。

Claims (15)

  1. 段階的なカソード構造であって、
    導電性基板と、
    導電性基板上に形成される第1の気孔率を有する第1のカソード活性材料を含む第1の多孔質層と、
    第1の多孔質層上に形成される第2の気孔率を有する第2のカソード活性材料を含む第2の多孔質層と
    を備え、第1の気孔率が、第2の気孔率未満である段階的なカソード構造。
  2. 導電性基板が、アルミニウムを含む、請求項1に記載の段階的なカソード構造。
  3. 第1のカソード活性材料および第2のカソード活性材料が、二酸化リチウムコバルト(LiCoO)、二酸化リチウムマンガン(LiMnO)、二硫化チタン(TiS)、LiNixCo1−2xMnO、LiMn、LiFePO、LiFe1−xMgPO、LiMoPO、LiCoPO、Li(PO、LiVOPO、LiMP、LiFe1.5、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、LiNiPOF、Na(PO、LiFeSiO、LiMnSiO、LiVOSiO、LiNiO、およびそれらの組み合わせを含む群から個々に選択される、請求項1に記載の段階的なカソード構造。
  4. 第1のカソード活性材料が、第2のカソード活性材料の粒径未満である粒径を有する、請求項3に記載の段階的なカソード構造。
  5. 第1のカソード活性材料の粒径が、約2μm〜約15μmの直径を有し、第2のカソード活性材料の粒径が、約2μm〜約15μmの直径を有する、請求項4に記載の段階的なカソード構造。
  6. 第1のカソード活性材料の粒径が、約1nm〜約100nmの直径を有し、第2のカソード活性材料の粒径が、約1nm〜約100nmの直径を有する、請求項4に記載の段階的なカソード構造。
  7. 第1の気孔率が、同じ材料から形成された固体膜に比べて約20%〜約35%であり、第2の気孔率が、同じ材料から形成された固体膜に比べて約40%〜約70%である、請求項1に記載の段階的なカソード構造。
  8. 段階的なカソード構造を形成する方法であって、
    導電性基板を用意するステップと、
    導電性基板上に第1の気孔率を有する第1のカソード活性材料を含む第1の多孔質層を堆積させるステップと、
    導電性基板上に第2の気孔率を有する第2のカソード活性材料を含む第2の多孔質層を堆積させるステップと
    を含み、第2の気孔率が第1の気孔率より大きい方法。
  9. 第1の多孔質層をカレンダリングして、第1の気孔率を第3の気孔率まで減少させるステップをさらに含む、請求項8に記載の方法。
  10. 導電性基板がアルミニウムを含む、請求項8に記載の方法。
  11. 第1のカソード活性材料および第2のカソード活性材料が、二酸化リチウムコバルト(LiCoO)、二酸化リチウムマンガン(LiMnO)、二硫化チタン(TiS)、LiNixCo1−2xMnO、LiMn、LiFePO、LiFe1−xMgPO、LiMoPO、LiCoPO、Li(PO、LiVOPO、LiMP、LiFe1.5、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、LiNiPOF、Na(PO、LiFeSi0、LiMnSiO、LiVOSiO、LiNiO、およびそれらの組み合わせを含む群から独立して選択される、請求項8に記載の方法。
  12. 第1の気孔率が、同じ材料から形成された固体膜に比べて約20%〜約35%であり、第2の気孔率が、同じ材料から形成された固体膜に比べて約40%〜約70%である、請求項8に記載の方法。
  13. 第1の気孔率が、同じ材料から形成された固体膜に比べて約40%〜約50%であり、第2の気孔率が、同じ材料から形成された固体膜に比べて約40%〜約50%であり、第3の気孔率が、同じ材料から形成された固体膜に比べて約30%〜約35%である、請求項9に記載の方法。
  14. 第1の多孔質層を堆積させるステップが、静電スプレープロセスを実行することを含み、第2の多孔質層を堆積させるステップが、スリットコーティングプロセスを実行することを含む、請求項8に記載の方法。
  15. 第1のカソード活性材料が、約2μm〜約15μmの第1の直径を有する粒子を含み、第2のカソード活性材料が、約2μm〜約15μmの第1の直径を有する第2の直径を有する粒子を含み、第2の直径が、第1の直径より大きい、請求項8に記載の方法。
JP2012548935A 2010-01-13 2010-11-29 高エネルギーLiイオンバッテリ用の段階的な電極技術 Ceased JP2013519187A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US29462810P 2010-01-13 2010-01-13
US61/294,628 2010-01-13
US12/953,143 2010-11-23
US12/953,143 US20110168550A1 (en) 2010-01-13 2010-11-23 Graded electrode technologies for high energy lithium-ion batteries
PCT/US2010/058215 WO2011087588A2 (en) 2010-01-13 2010-11-29 Graded electrode technologies for high energy lithium-ion batteries

Publications (2)

Publication Number Publication Date
JP2013519187A true JP2013519187A (ja) 2013-05-23
JP2013519187A5 JP2013519187A5 (ja) 2014-01-23

Family

ID=44257685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012548935A Ceased JP2013519187A (ja) 2010-01-13 2010-11-29 高エネルギーLiイオンバッテリ用の段階的な電極技術

Country Status (6)

Country Link
US (1) US20110168550A1 (ja)
JP (1) JP2013519187A (ja)
KR (1) KR20120114354A (ja)
CN (1) CN102754247A (ja)
TW (1) TWI518972B (ja)
WO (1) WO2011087588A2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025466A1 (ja) * 2013-08-22 2015-02-26 株式会社豊田自動織機 正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池
JP2015170464A (ja) * 2014-03-06 2015-09-28 旭化成株式会社 非水電解質二次電池
KR20180001519A (ko) * 2016-06-27 2018-01-04 주식회사 네패스 리튬이차전지용 음극의 제조 방법
US10141566B2 (en) 2014-08-15 2018-11-27 Samsung Electronics Co., Ltd. Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same
JP2019510337A (ja) * 2016-01-20 2019-04-11 コーネル ユニバーシティ マルチドメイン硫黄電極及びその製造方法
WO2020179149A1 (ja) * 2019-03-01 2020-09-10 ビークルエナジージャパン株式会社 リチウム二次電池用電極及びリチウム二次電池
JP2022521328A (ja) * 2019-11-29 2022-04-06 エルジー エナジー ソリューション リミテッド 鱗片状黒鉛を含む二次電池用正極およびこれを含む二次電池

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476100B2 (en) * 2010-10-04 2019-11-12 Ford Global Technologies, Llc Lithium-containing electrode material for electrochemical cell systems
CN103650214B (zh) 2011-07-12 2016-04-20 应用材料公司 制造锂离子电池电极膜的孔隙度变化的方法
JP5734790B2 (ja) * 2011-08-23 2015-06-17 株式会社Screenホールディングス 電池用電極の製造方法
US9478993B2 (en) 2011-10-21 2016-10-25 Korea Institute Of Industrial Technology Cathode composite material synthesis having high energy density for lithium secondary battery for electric vehicle and electrode manufacturing technology thereof
KR101401770B1 (ko) 2011-10-21 2014-07-01 한국생산기술연구원 리튬이차전지용 고용량 망간계 산화물 합성공정 및 이를 이용한 전지 제조방법
US9147910B2 (en) * 2011-12-28 2015-09-29 General Electric Company Method and system for controlling energy storage device
FR2992778A1 (fr) * 2012-06-29 2014-01-03 Commissariat Energie Atomique Batterie de type lithium-ion avec une cathode a porosite variable et procede correspondant
FR2994026B1 (fr) * 2012-07-30 2014-12-26 Renault Sa Cellule composite de stockage de l'energie electrique et batterie contenant une telle cellule
US8962191B2 (en) 2012-07-31 2015-02-24 General Electric Company Electrochemical cells having a electrode current collector extending into a positive electrode composition, and related methods
CN104641494B (zh) * 2012-09-21 2017-03-08 丰田自动车株式会社 非水电解质二次电池用正极电极和非水电解质二次电池
DE102012023554A1 (de) * 2012-12-01 2014-06-05 Eisenmann Ag Abscheideeinheit zur Verwendung in einer Abscheidevorrichtung für Overspray
JP6028916B2 (ja) * 2012-12-18 2016-11-24 三菱自動車工業株式会社 二次電池
JP6084841B2 (ja) * 2012-12-21 2017-02-22 東京エレクトロン株式会社 リチウムイオンキャパシタ用電極の製造装置及び製造方法
PL2797142T3 (pl) 2013-01-25 2019-07-31 Lg Chem, Ltd. Anoda do litowej baterii akumulatorowej i litowa bateria akumulatorowa ją obejmująca
CN105074967B (zh) * 2013-03-15 2018-07-10 应用材料公司 用于制造较厚电极的多层电池电极设计
WO2014149258A1 (en) 2013-03-15 2014-09-25 Applied Materials, Inc. Apparatus and method for tuning a plasma profile using a tuning electrode in a processing chamber
DE102013204671A1 (de) * 2013-03-18 2014-09-18 Robert Bosch Gmbh Elektrode für einen elektrochemischen Energiespeicher
US10906017B2 (en) * 2013-06-11 2021-02-02 University Of Florida Research Foundation, Inc. Solar thermochemical reactor and methods of manufacture and use thereof
DE102013212388A1 (de) * 2013-06-27 2014-12-31 Robert Bosch Gmbh Elektrode für einen elektrochemischen Energiespeicher
US9905854B2 (en) * 2013-09-03 2018-02-27 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery including the same
WO2015156062A1 (ja) * 2014-04-11 2015-10-15 Necエナジーデバイス株式会社 二次電池とその製造方法
DE102014221279A1 (de) * 2014-10-21 2016-04-21 Bayerische Motoren Werke Aktiengesellschaft Kompositelektrode und diese umfassende Lithiumionenbatterie sowie Verwendung der Lithiumionenbatterie in einem Kraftfahrzeug
CN107210387B (zh) * 2014-12-03 2020-05-15 K2能源处理公司 用于高功率应用的长周期寿命棱柱型电池电芯
KR101765381B1 (ko) * 2015-01-28 2017-08-07 주식회사 엘지화학 전극의 이중 코팅 방법
KR101810185B1 (ko) * 2015-04-29 2017-12-19 주식회사 엘지화학 전기화학소자용 전극 및 상기 전극을 제조하는 방법
KR102557725B1 (ko) * 2015-09-25 2023-07-24 삼성에스디아이 주식회사 복합 음극 활물질, 상기 복합 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
US10476080B2 (en) 2016-01-19 2019-11-12 Samsung Electronics Co., Ltd. Electrode containing both anion-absorbing and cation-absorbing active materials
US10629896B2 (en) * 2016-02-25 2020-04-21 Tdk Corporation Positive electrode and lithium ion secondary battery
JP6443421B2 (ja) * 2016-10-12 2018-12-26 トヨタ自動車株式会社 電極の製造方法
US10343552B2 (en) 2017-02-08 2019-07-09 Samsung Electronics Co., Ltd. Heterogeneous electrical energy storage system
US10038193B1 (en) 2017-07-28 2018-07-31 EnPower, Inc. Electrode having an interphase structure
CN110010900A (zh) * 2018-01-04 2019-07-12 中国科学院苏州纳米技术与纳米仿生研究所 一种高倍率厚电极及其制备方法与应用
DE102018105115A1 (de) * 2018-03-06 2019-09-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Elektrode, Zelleneinheit und Elektrolyseur
KR20200134252A (ko) * 2018-03-20 2020-12-01 인디언 스페이스 리서치 오거너제이션 밀폐된 리튬 이온 셀 및 그 제조 방법
US20190296332A1 (en) * 2018-03-23 2019-09-26 EnPower, Inc. Electrochemical cells having one or more multilayer electrodes
US20190296335A1 (en) * 2018-03-23 2019-09-26 EnPower, Inc. Electrochemical cells having improved ionic conductivity
KR20210011432A (ko) * 2018-05-24 2021-02-01 24엠 테크놀로지즈, 인크. 고 에너지 밀도 조성-경사 전극들 및 그 제작 방법들
CN109301160B (zh) * 2018-09-05 2022-03-04 上海奥威科技开发有限公司 一种电极及其制备方法和锂离子电容电池
KR102664556B1 (ko) * 2018-09-13 2024-05-10 에스케이온 주식회사 다층 전극 및 이를 포함하는 리튬 이차전지
JP7010795B2 (ja) * 2018-09-25 2022-01-26 本田技研工業株式会社 リチウムイオン二次電池用負極、および当該リチウムイオン二次電池用負極を用いたリチウムイオン二次電池
CN116632369A (zh) * 2018-11-13 2023-08-22 日本汽车能源株式会社 锂离子二次电池的制造方法
CN113169297A (zh) * 2018-11-29 2021-07-23 株式会社村田制作所 固体电池
CN109560249A (zh) * 2018-11-30 2019-04-02 中国科学院过程工程研究所 一种双层结构正极极片、及其制备方法和用途
CN109830690A (zh) * 2019-01-30 2019-05-31 深圳鸿鹏新能源科技有限公司 集流体以及具有该集流体的极片和锂电池
US11569550B2 (en) 2019-04-05 2023-01-31 EnPower, Inc. Electrode with integrated ceramic separator
US10998553B1 (en) 2019-10-31 2021-05-04 EnPower, Inc. Electrochemical cell with integrated ceramic separator
TWI724715B (zh) 2019-12-27 2021-04-11 財團法人工業技術研究院 導離子材料、包含其之核殼結構以及所形成的電極與金屬離子電池
CN113258031B (zh) * 2020-02-11 2022-11-18 宁德新能源科技有限公司 电池
CN111211325B (zh) * 2020-03-09 2021-09-17 广东工业大学 一种锂离子电池负极材料及其制备方法与应用
US20220069312A1 (en) * 2020-08-26 2022-03-03 GM Global Technology Operations LLC Method and system to create variable densities within battery electrodes
US11955624B2 (en) 2020-10-29 2024-04-09 Saft America Blended cathode materials for secondary batteries
KR20220126129A (ko) * 2021-03-08 2022-09-15 삼성에스디아이 주식회사 전극, 이를 포함하는 리튬전지 및 이의 제조방법
US11594784B2 (en) 2021-07-28 2023-02-28 EnPower, Inc. Integrated fibrous separator
KR20240052159A (ko) * 2022-10-13 2024-04-23 주식회사 엘지에너지솔루션 음극 및 이차전지
FR3141561A1 (fr) 2022-10-27 2024-05-03 Saft Electrode multicouches
US11888155B1 (en) * 2022-12-15 2024-01-30 Sk On Co., Ltd. Cathode for lithium secondary battery and lithium secondary battery including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151055A (ja) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd リチウムイオン二次電池
JP2007214038A (ja) * 2006-02-10 2007-08-23 Toyota Motor Corp 非水系二次電池、電極、非水系二次電池の製造方法、及び、電極の製造方法
JP2008300239A (ja) * 2007-05-31 2008-12-11 Panasonic Corp 非水電解質二次電池用電極、リチウムイオン二次電池、および非水電解質二次電池用電極の製造方法
JP2009252683A (ja) * 2008-04-10 2009-10-29 Sumitomo Chemical Co Ltd 非水電解質二次電池用正極体の製造方法
JP2009259601A (ja) * 2008-04-16 2009-11-05 Sumitomo Chemical Co Ltd ナトリウムイオン二次電池用電極活物質およびその製造方法
JP2010245024A (ja) * 2009-03-16 2010-10-28 Toyota Motor Corp 全固体二次電池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215563A (ja) * 1988-07-04 1990-01-19 Sanyo Electric Co Ltd 非水電解液電池
CA2096386A1 (en) * 1992-05-18 1993-11-19 Masahiro Kamauchi Lithium secondary battery
JPH1125955A (ja) * 1997-07-07 1999-01-29 Fuji Photo Film Co Ltd 電極シートとこれを用いた非水電解質二次電池
JP3933342B2 (ja) * 1999-04-05 2007-06-20 東洋アルミニウム株式会社 二次電池の集電体用金属箔および二次電池用集電体
EP1184918B1 (en) * 2000-08-28 2009-10-14 Nissan Motor Co., Ltd. Rechargeable lithium ion battery
AU2002241629A1 (en) * 2000-10-20 2002-06-03 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US7662265B2 (en) * 2000-10-20 2010-02-16 Massachusetts Institute Of Technology Electrophoretic assembly of electrochemical devices
US6780543B2 (en) * 2001-02-14 2004-08-24 Sanyo Electric Co., Ltd. Aluminum or aluminum alloy-based lithium secondary battery
EP1251573B1 (en) * 2001-04-20 2017-05-31 Sony Corporation Non-aqueous electrolyte secondary cell
WO2003012908A2 (en) * 2001-07-27 2003-02-13 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US7303594B2 (en) * 2001-12-27 2007-12-04 The Gillette Company Battery electrode and method of making the same
DE102004034885A1 (de) * 2004-07-19 2006-02-16 Uhde Gmbh Silber-Gasdiffusionselektrode für den Einsatz in CO2-haltiger Luft
JP5222555B2 (ja) * 2005-06-23 2013-06-26 三洋電機株式会社 非水電解液二次電池及び非水電解液
JP4813152B2 (ja) * 2005-11-14 2011-11-09 富士重工業株式会社 リチウムイオンキャパシタ
US8323815B2 (en) * 2006-06-16 2012-12-04 Porous Power Technology, LLC Optimized microporous structure of electrochemical cells
EP2062858A4 (en) * 2006-09-12 2013-05-29 Sumitomo Chemical Co LITHIUM COMPOSITE METAL OXIDES AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
KR101041932B1 (ko) * 2008-10-15 2011-06-16 한국과학기술연구원 이차전지용 전극 및 그 제조 방법과, 이를 이용한 이차전지
CN103650214B (zh) * 2011-07-12 2016-04-20 应用材料公司 制造锂离子电池电极膜的孔隙度变化的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151055A (ja) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd リチウムイオン二次電池
JP2007214038A (ja) * 2006-02-10 2007-08-23 Toyota Motor Corp 非水系二次電池、電極、非水系二次電池の製造方法、及び、電極の製造方法
JP2008300239A (ja) * 2007-05-31 2008-12-11 Panasonic Corp 非水電解質二次電池用電極、リチウムイオン二次電池、および非水電解質二次電池用電極の製造方法
JP2009252683A (ja) * 2008-04-10 2009-10-29 Sumitomo Chemical Co Ltd 非水電解質二次電池用正極体の製造方法
JP2009259601A (ja) * 2008-04-16 2009-11-05 Sumitomo Chemical Co Ltd ナトリウムイオン二次電池用電極活物質およびその製造方法
JP2010245024A (ja) * 2009-03-16 2010-10-28 Toyota Motor Corp 全固体二次電池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025466A1 (ja) * 2013-08-22 2015-02-26 株式会社豊田自動織機 正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池
US9812702B2 (en) 2013-08-22 2017-11-07 Kabushiki Kaisha Toyota Jidoshokki Lithium ion secondary battery having positive electrode that comprises thermal run-away suppressing layer on positive electrode active material layer
JP2015170464A (ja) * 2014-03-06 2015-09-28 旭化成株式会社 非水電解質二次電池
US10141566B2 (en) 2014-08-15 2018-11-27 Samsung Electronics Co., Ltd. Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same
JP2019510337A (ja) * 2016-01-20 2019-04-11 コーネル ユニバーシティ マルチドメイン硫黄電極及びその製造方法
JP7043077B2 (ja) 2016-01-20 2022-03-29 コーネル ユニバーシティ マルチドメイン硫黄電極及びその製造方法
US11811034B2 (en) 2016-01-20 2023-11-07 Cornell University Multi-domained sulfur electrodes, and manufacturing therefor
KR20180001519A (ko) * 2016-06-27 2018-01-04 주식회사 네패스 리튬이차전지용 음극의 제조 방법
WO2020179149A1 (ja) * 2019-03-01 2020-09-10 ビークルエナジージャパン株式会社 リチウム二次電池用電極及びリチウム二次電池
JPWO2020179149A1 (ja) * 2019-03-01 2021-10-14 ビークルエナジージャパン株式会社 リチウム二次電池用電極及びリチウム二次電池
JP7187661B2 (ja) 2019-03-01 2022-12-12 ビークルエナジージャパン株式会社 リチウム二次電池用電極及びリチウム二次電池
JP2022521328A (ja) * 2019-11-29 2022-04-06 エルジー エナジー ソリューション リミテッド 鱗片状黒鉛を含む二次電池用正極およびこれを含む二次電池

Also Published As

Publication number Publication date
CN102754247A (zh) 2012-10-24
WO2011087588A2 (en) 2011-07-21
TW201125192A (en) 2011-07-16
KR20120114354A (ko) 2012-10-16
WO2011087588A3 (en) 2011-10-06
US20110168550A1 (en) 2011-07-14
TWI518972B (zh) 2016-01-21

Similar Documents

Publication Publication Date Title
TWI518972B (zh) 用於高能量鋰離子電池的分段電極技術
JP6367390B2 (ja) 大容量プリズムリチウムイオン合金アノードの製造
US20160013480A1 (en) Multi-layer battery electrode design for enabling thicker electrode fabrication
US8927068B2 (en) Methods to fabricate variations in porosity of lithium ion battery electrode films
KR101728875B1 (ko) 압축된 파우더 3차원 배터리 전극 제조
US20130189577A1 (en) Apparatus and method for hot coating electrodes of lithium-ion batteries
EP3721493A1 (en) Binding agents for electrochemically active materials and methods of forming the same
US20110217585A1 (en) Integrated composite separator for lithium-ion batteries
US20160006018A1 (en) Electrode surface roughness control for spray coating process for lithium ion battery
JP2013505546A (ja) 高性能電極
US20130252068A1 (en) Manufacturing method of high-performance silicon based electrode using polymer pattern on current collector and manufacturing method of negative electrode of rechargeable lithium battery including same
KR102664448B1 (ko) Si계 음극을 포함하는 리튬 이차전지
CN113809389A (zh) 包括具有凹形图案的电解质层的全固态电池
EP3186847A1 (en) Carbon nanotube-based lithium ion battery
KR102408988B1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
CN114008814A (zh) 用于提高的能量密度和降低的充电时间的复合材料锂金属阳极
JP2023031157A (ja) リチウムイオン電池
KR20230095579A (ko) 리튬 이차 전지용 음극의 전리튬화 방법, 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140912

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20161025