WO2015025466A1 - 正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池 - Google Patents

正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池 Download PDF

Info

Publication number
WO2015025466A1
WO2015025466A1 PCT/JP2014/003787 JP2014003787W WO2015025466A1 WO 2015025466 A1 WO2015025466 A1 WO 2015025466A1 JP 2014003787 W JP2014003787 W JP 2014003787W WO 2015025466 A1 WO2015025466 A1 WO 2015025466A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
active material
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2014/003787
Other languages
English (en)
French (fr)
Inventor
勇太 池内
敏勝 小島
境 哲男
達哉 江口
仁 愛清
晶 小島
Original Assignee
株式会社豊田自動織機
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 独立行政法人産業技術総合研究所 filed Critical 株式会社豊田自動織機
Priority to US14/912,971 priority Critical patent/US9812702B2/en
Priority to DE112014003824.5T priority patent/DE112014003824T5/de
Publication of WO2015025466A1 publication Critical patent/WO2015025466A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery having a positive electrode provided with a thermal runaway suppression layer on the positive electrode active material layer.
  • secondary batteries are recognized as essential for mobile devices such as mobile phones and laptop computers.
  • lithium ion secondary batteries are widely used because of their small size and large capacity, and are also used in aircraft and automobiles.
  • research on lithium ion secondary batteries has been actively conducted for the purpose of providing better lithium ion secondary batteries.
  • Patent Document 1 describes a lithium ion secondary battery that did not ignite as a result of a nail penetration test.
  • the lithium ion secondary battery disclosed in Patent Document 1 is obtained by dividing an electrode into sheets having a specific shape.
  • Patent Document 2 includes a positive electrode including a first positive electrode active material layer containing LiNiO 2 and a second positive electrode active material layer containing Li 2 FeSiO 4 or LiFePO 4, and Cu 6 Sn 6 as a negative electrode active material.
  • a lithium ion secondary battery having a negative electrode and having a lithium amount in the second positive electrode active material layer equal to or greater than the irreversible capacity of the negative electrode active material is described, but there is no mention of a nail penetration test.
  • Patent Document 1 defines the area and shape of a sheet obtained by dividing an electrode and the distance between a positive electrode current collector and a negative electrode current collector with a certain relational expression.
  • the present invention has been made in view of such circumstances, and provides a lithium ion secondary battery that can suppress temporal and spatial concentration of heat generation due to a chemical reaction between a positive electrode and a nonaqueous electrolyte during an internal short circuit.
  • the purpose is to do.
  • the present inventor has intensively studied the components of the lithium ion secondary battery while repeating trial and error.
  • the inventor has found that a lithium ion secondary battery in which a thermal runaway suppression layer containing a specific compound is provided on a positive electrode active material layer in a specific range is excellent in stability even during an internal short circuit. It came to complete.
  • the lithium ion secondary battery of the present invention is excellent in stability even when an internal short circuit occurs.
  • the numerical range “a to b” described in this specification includes the lower limit “a” and the upper limit “b”.
  • the numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.
  • numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
  • a current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery.
  • a material of the current collector at least one selected from silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, or Examples thereof include metal materials such as stainless steel and carbon materials such as graphite.
  • aluminum is preferable as the material of the positive electrode current collector
  • copper is preferable as the material of the negative electrode current collector.
  • the current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • the thickness is preferably in the range of 10 ⁇ m to 100 ⁇ m.
  • Li a Ni b Co c Mn d De O f (0.2 ⁇ a ⁇ 1, b + c + d + e 1, 0 ⁇ e ⁇ 1, D is Li, Fe, Cr At least one element selected from Cu, Zn, Ca, Mg, S, Si, Na, K, and Al, and a lithium-containing composite oxide represented by 1.7 ⁇ f ⁇ 2.1) has a high capacity.
  • the positive electrode active material layer is a layer having a positive electrode active material formed on the current collector.
  • the positive electrode active material layer includes a binder and / or a conductive aid as necessary.
  • the binder plays a role of binding the active material to the surface of the current collector.
  • binders fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, carboxymethylcellulose, methylcellulose and styrene-butadiene rubber
  • imide resins such as polyimide and polyamideimide
  • carboxymethylcellulose methylcellulose and styrene-butadiene rubber
  • binders can be added to the active material layer alone or in combination of two or more.
  • the amount of the binder used is not particularly limited, but a range of 1 to 50 parts by mass of the binder is preferable with respect to 100 parts by mass of the active material. This is because when the amount of the binder is too small, the moldability of the electrode and the active material layer is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.
  • Conductive aid is added to increase conductivity.
  • Examples of the conductive aid include carbon black, graphite, acetylene black, ketjen black (registered trademark), and vapor grown carbon fiber (Vapor Grown Carbon Fiber). These conductive assistants can be added to the active material layer alone or in combination of two or more.
  • the amount of the conductive aid used is not particularly limited, but for example, the conductive aid can be 1 to 30 parts by weight with respect to 100 parts by weight of the active material.
  • the lithium-containing transition metal oxide in the positive electrode active material layer is preferably in the range of 50 to 99 parts by mass, more preferably in the range of 70 to 97 parts by mass, 85 A range of ⁇ 95 parts by mass is particularly preferable.
  • the surface of the current collector can be formed using a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method. What is necessary is just to apply
  • a composition for forming an active material layer containing an active material and, if necessary, a binder and / or a conductive aid is prepared, and an appropriate solvent is added to the composition to obtain a paste-like liquid.
  • the pasty liquid may be prepared using a solution in which a binder is dissolved in a solvent in advance or a dispersed suspension.
  • the solvent examples include N-methyl-2-pyrrolidone, methanol, ethanol, methyl isobutyl ketone, and water.
  • the paste-like liquid is applied to the surface of the current collector and then dried. Drying may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. What is necessary is just to set drying temperature suitably, and the temperature beyond the boiling point of the said solvent is preferable. What is necessary is just to set drying time suitably according to an application quantity and drying temperature.
  • a compression step may be added to the dried current collector on which the active material layer is formed.
  • the lithium ion secondary battery of the present invention includes a thermal runaway suppression layer formed on the positive electrode active material layer and including a lithium silicate transition metal lithium salt.
  • the lithium silicate transition metal lithium salt does not substantially function as an active material capable of occluding lithium ions and exists as a high resistance compound.
  • the lithium silicate transition metal lithium salt functions as a high resistance compound, it is possible to suppress a significant current from being generated between the positive electrode and the negative electrode.
  • the lithium ion secondary battery of the present invention can suppress contact between the organic solvent constituting the electrolytic solution and the lithium-containing composite oxide. As a result, since the above chain reaction can be suppressed, the lithium ion secondary battery of the present invention can prevent thermal runaway.
  • the transition metal lithium salt contained in the thermal runaway suppression layer also has oxygen in the molecule, since the binding energy of the oxygen-silicon bond is high, such oxygen is not normally released.
  • the layer formed on the positive electrode active material layer and containing a lithium silicate transition metal lithium salt has a thermal runaway suppression effect.
  • the lithium silicate transition metal lithium salt simply becomes a high resistance compound, and therefore it is not preferable to exist in an excessive amount in the positive electrode.
  • the ratio is 1.5 or more, there is no hindrance to the normal operation of the lithium ion secondary battery, but from the viewpoint of the discharge capacity of the lithium ion secondary battery, the ratio is in the range of 2 to 10. Is preferable, and the range of 2.1 to 9 is more preferable, and the range of 2.2 to 5 is particularly preferable.
  • Patent Document 2 discloses a positive electrode including a first positive electrode active material layer containing LiNiO 2 and a second positive electrode active material layer containing Li 2 FeSiO 4 or LiFePO 4, and Cu as a negative electrode active material.
  • a lithium ion secondary battery having a negative electrode containing 6 Sn 6 and having a lithium amount in the second positive electrode active material layer equal to or greater than an irreversible capacity of the negative electrode active material is described.
  • excess Li 2 FeSiO 4 or LiFePO 4 simply becomes a high resistance compound. Therefore, in the lithium ion secondary battery disclosed in Patent Document 2, the second positive electrode active material layer It is not preferable that the amount of lithium exceeds the amount corresponding to the irreversible capacity of the negative electrode active material.
  • the total amount of lithium in the thermal runaway suppression layer is preferably less than the amount corresponding to the irreversible capacity of the negative electrode active material.
  • the irreversible capacity of the negative electrode active material is a capacity calculated by subtracting the initial discharge capacity from the initial charge capacity of the lithium ion secondary battery, and therefore can be easily calculated by a person skilled in the art by a simple experiment. .
  • silicate transition metal lithium salt examples include compounds represented by Li 2 MSiO 4 (M is one or more elements selected from transition elements).
  • Specific examples of the lithium silicate transition metal lithium salt include, for example, Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 NiSiO 4 , Li 2 CoSiO 4 , Li 2 Fe 0.9 Co 0.1 SiO 4 , Li 2 Fe 0. .75 Co 0.25 SiO 4 , Li 2 Fe 0.5 Co 0.5 SiO 4 , and Li 2 Fe 0.25 Co 0.75 SiO 4 .
  • the thermal runaway suppression layer contains a binder and / or a conductive aid as necessary.
  • the binder described in the description of the active material layer can be added to the thermal runaway suppressing layer alone or in combination of two or more.
  • the amount of the binder used is not particularly limited, but a range of 1 to 50 parts by mass of the binder is preferable with respect to 100 parts by mass of the lithium silicate transition metal. This is because if the amount of the binder is too small, the moldability of the thermal runaway suppressing layer is lowered, and if the amount of the binder is too large, the thermal runaway suppressing effect of the thermal runaway suppressing layer is lowered.
  • the conductive auxiliary agent those described in the description of the active material layer can be added to the thermal runaway suppressing layer alone or in combination of two or more.
  • the amount of the conductive aid used is not particularly limited, but for example, it can be 1 to 30 parts by weight of the conductive aid with respect to 100 parts by weight of the lithium silicate transition metal salt.
  • a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method may be used.
  • a suitable solvent is added to a mixture in which a lithium silicate transition metal lithium salt and, if necessary, a binder and / or a conductive additive are mixed to form a paste-like thermal runaway suppression layer forming composition.
  • the composition for forming a thermal runaway suppression layer is applied to the surface of the positive electrode active material layer and then dried. Drying may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. What is necessary is just to set drying temperature suitably, and the temperature beyond the boiling point of the said solvent is preferable. What is necessary is just to set drying time suitably according to an application quantity and drying temperature. In order to increase the density of the thermal runaway suppression layer, a compression step may be added to the dried positive electrode on which the thermal runaway suppression layer is formed.
  • the thickness of the thermal runaway suppression layer is not particularly limited, but is preferably in the range of 1 to 20 ⁇ m, more preferably in the range of 3 to 15 ⁇ m, and particularly preferably in the range of 4 to 10 ⁇ m.
  • the lithium ion secondary battery of the present invention has a negative electrode including a negative electrode active material.
  • a lithium ion secondary battery such as a carbon-based material capable of inserting and extracting lithium, an element capable of being alloyed with lithium, a compound having an element capable of being alloyed with lithium, or a polymer material
  • a known material employed as a material for the negative electrode active material may be used alone or in combination.
  • the carbon-based material include non-graphitizable carbon, artificial graphite, natural graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and carbon blacks.
  • the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
  • elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si. , Ge, Sn, Pb, Sb, Bi can be exemplified, and Si or Sn is particularly preferable.
  • compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO or LiSnO can be exemplified, and among these, a compound containing Si is preferable, and SiO x (0.5 ⁇ x ⁇ 1.5) is particularly preferable. . Further, examples of the compound having an element capable of alloying with lithium include tin alloys (Cu—Sn alloy, Co—Sn alloy, etc.). Specific
  • the negative electrode only needs to include a current collector and a negative electrode active material layer containing a negative electrode active material formed on the current collector.
  • the current collector the above-described current collector may be adopted as appropriate.
  • the negative electrode active material layer includes a binder and / or a conductive aid as necessary. And what is necessary is just to employ
  • the above-described method may be used to form the negative electrode active material layer on the current collector.
  • the amount of the positive electrode active material in the positive electrode and the amount of the negative electrode active material in the negative electrode may be appropriately determined so as to obtain a desired battery capacity in view of the lithium occlusion performance and release performance of both active materials.
  • the lithium ion secondary battery of the present invention preferably has a separator for separating the positive electrode and the negative electrode and allowing ions to pass while preventing a short circuit of the battery due to contact between the two electrodes.
  • a separator a known one used in a lithium ion secondary battery may be used.
  • a porous film using one or more synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyester, and polyamide is used. It can be illustrated.
  • the separator may have a single-layer structure using a single synthetic resin or a laminated structure in which a plurality of synthetic resin layers are stacked.
  • the thickness of the separator is not particularly limited, but is preferably in the range of 5 ⁇ m to 100 ⁇ m, more preferably in the range of 10 ⁇ m to 50 ⁇ m, and particularly preferably in the range of 15 ⁇ m to 30 ⁇ m.
  • the lithium ion secondary battery of the present invention preferably has an electrolytic solution or a solid electrolyte serving as a medium for ions to move between the positive electrode and the negative electrode.
  • the electrolytic solution is a solution containing a solvent and an electrolyte dissolved in the solvent.
  • As the electrolytic solution or the solid electrolyte a known one used in a lithium ion secondary battery may be used.
  • Examples of the solvent used in the electrolytic solution include non-aqueous solvents such as cyclic esters, chain esters, ethers, and fluorine-containing cyclic esters.
  • examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone.
  • chain esters examples include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester.
  • ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
  • Fluorine-containing cyclic esters are those in which a part of the hydrogen constituting the cyclic ester is substituted with fluorine, and include fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, and trifluoropropylene carbonate. Can be illustrated.
  • a plurality of the above-described solvents may be used in combination as the solvent for the electrolytic solution.
  • Examples of the electrolyte of the lithium ion secondary battery include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
  • the concentration of the electrolyte in the electrolytic solution is preferably in the range of 0.5 to 1.7 mol / L.
  • a positive electrode having a current collector, a positive electrode active material layer and a thermal runaway suppression layer, and a negative electrode having a current collector and a negative electrode active material layer are prepared by the method described above.
  • a separator is sandwiched between both electrodes to form an electrode body.
  • an electrolytic solution is added to the electrode body to obtain a lithium ion secondary battery.
  • the shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, a coin shape, and a laminated shape can be employed.
  • Example 1 The lithium ion secondary battery of the present invention was manufactured as follows.
  • a lithium-containing metal oxide having a layered rock salt structure represented by LiNi 5/10 Co 2/10 Mn 3/10 O 2 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive auxiliary agent, and a binder 3 parts by mass of polyvinylidene fluoride as an agent was mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry. An aluminum foil having a thickness of 20 ⁇ m was prepared as a positive electrode current collector. The slurry was applied to the surface of the aluminum foil using a doctor blade so as to form a film. The aluminum foil coated with the slurry was dried at 80 ° C. for 20 minutes to remove N-methyl-2-pyrrolidone by volatilization to obtain an aluminum foil on which a positive electrode active material layer was formed.
  • Li 2 FeSiO 4 which is a lithium silicate transition metal
  • acetylene black which is a conductive additive
  • polyvinylidene fluoride which is a binder
  • the said composition for thermal runaway suppression layer formation was apply
  • the mass ratio of LiNi 5/10 Co 2/10 Mn 3/10 O 2 to the mass of Li 2 FeSiO 4 contained in the positive electrode was 9.
  • a rectangular sheet (27 ⁇ 32 mm, thickness 25 ⁇ m) made of a polypropylene resin film was prepared as a separator.
  • a separator was sandwiched between the thermal runaway suppression layer on the positive electrode and the negative electrode active material layer on the negative electrode to form an electrode plate group.
  • the electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film.
  • an electrolytic solution a solution in which LiPF 6 was dissolved to 1 mol / L in a solvent obtained by mixing 4 parts by volume of fluoroethylene carbonate, 26 parts by volume of ethylene carbonate, 30 parts by volume of methyl ethyl carbonate, and 40 parts by volume of dimethyl carbonate was used. .
  • the remaining one side of the laminate film was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed.
  • the amount of lithium in the thermal runaway suppression layer is less than the amount corresponding to the irreversible capacity of the negative electrode active material.
  • the positive electrode and negative electrode of the lithium ion secondary battery of Example 1 are provided with tabs that can be electrically connected to the outside, and a part of this tab extends to the outside of the lithium ion secondary battery.
  • Example 2 The lithium of Example 2 was the same as Example 1 except that the mass ratio of LiNi 5/10 Co 2/10 Mn 3/10 O 2 to the mass of Li 2 FeSiO 4 contained in the positive electrode was set to 4. An ion secondary battery was obtained. Note that the total mass of LiNi 5/10 Co 2/10 Mn 3/10 O 2 and Li 2 FeSiO 4 contained in the positive electrode of Example 2 is the same as that of Example 1. In the lithium ion secondary battery of Example 2, the amount of lithium in the thermal runaway suppression layer is less than the amount corresponding to the irreversible capacity of the negative electrode active material.
  • Example 3 was the same as Example 1 except that the mass ratio of LiNi 5/10 Co 2/10 Mn 3/10 O 2 to the mass of Li 2 FeSiO 4 contained in the positive electrode was 7/3. A lithium ion secondary battery was obtained. Note that the total mass of LiNi 5/10 Co 2/10 Mn 3/10 O 2 and Li 2 FeSiO 4 contained in the positive electrode of Example 3 is the same as that of Example 1. In the lithium ion secondary battery of Example 3, the amount of lithium in the thermal runaway suppression layer is less than the amount corresponding to the irreversible capacity of the negative electrode active material.
  • Example 4 is the same as Example 1 except that the mass ratio of LiNi 5/10 Co 2/10 Mn 3/10 O 2 to the mass of Li 2 FeSiO 4 contained in the positive electrode is 1.5. A lithium ion secondary battery was obtained. Note that the total mass of LiNi 5/10 Co 2/10 Mn 3/10 O 2 and Li 2 FeSiO 4 contained in the positive electrode of Example 4 is the same as that of Example 1. In the lithium ion secondary battery of Example 4, the amount of lithium in the thermal runaway suppression layer is equal to or greater than the amount corresponding to the irreversible capacity of the negative electrode active material.
  • Comparative Example 1 The lithium of Comparative Example 1 was the same as Example 1 except that the mass ratio of LiNi 5/10 Co 2/10 Mn 3/10 O 2 to the mass of Li 2 FeSiO 4 contained in the positive electrode was set to 1. An ion secondary battery was obtained. Note that the total mass of LiNi 5/10 Co 2/10 Mn 3/10 O 2 and Li 2 FeSiO 4 contained in the positive electrode of Comparative Example 1 is the same as that of Example 1.
  • Comparative Example 2 A lithium ion secondary battery of Comparative Example 2 was obtained in the same manner as in Example 1 except that the thermal runaway suppression layer was not formed on the positive electrode.
  • the mass of LiNi 5/10 Co 2/10 Mn 3/10 O 2 contained in the positive electrode of Comparative Example 2 is the same as that of Example 1 LiNi 5/10 Co 2/10 Mn 3/10 O 2 and Li 2 FeSiO. It is the same as the total amount of four masses.
  • the lithium ion secondary battery to be measured is CCCV charged (constant current constant voltage charge) to 25 ° C, 1C rate, voltage 4.5V, and then CC discharged (constant current discharge) to 2.5V at 0.33C rate.
  • the initial adjustment was made. With respect to the lithium ion secondary battery subjected to the initial adjustment, CCCV charge was performed up to 25 ° C., 1 C rate, voltage 4.5 V, and then CC discharge was performed up to 2.5 V at a 0.33 C rate.
  • a value obtained by dividing the discharge amount by the total mass of the positive electrode active materials LiNi 5/10 Co 2/10 Mn 3/10 O 2 and Li 2 FeSiO 4 in the positive electrode was defined as the discharge capacity.
  • the lithium ion secondary battery in which the mass ratio of the lithium-containing composite oxide in the active material layer to the mass of the lithium silicate transition metal in the thermal runaway suppression layer is 1.5 or more It can be seen that the discharge capacity is superior to the discharge capacity of the lithium ion secondary battery having no thermal runaway suppression layer.
  • the discharge capacity of the lithium ion secondary battery of Example 1-3 in which the amount of lithium in the thermal runaway suppression layer is less than the amount corresponding to the irreversible capacity of the negative electrode active material is remarkably excellent.
  • Example 3 For the lithium ion secondary batteries of Example 3 and Comparative Example 2, the following nail penetration test was performed, and the state of the lithium ion secondary battery during an internal short circuit was observed. The results are shown in Table 2.
  • a laminated lithium ion secondary battery was stacked so that the battery capacity was equivalent to 4 Ah.
  • the laminated laminate type lithium ion secondary battery was charged at a constant voltage until it became stable at a potential of 4.1 V, 4.2 V, or 4.3 V.
  • the laminated laminate type lithium ion secondary battery after charging was placed on a constraining plate having a hole with a diameter of 20 mm.
  • a restraint plate was placed on a press machine with a nail attached to the top. Until the nail penetrates the laminated laminated lithium ion secondary battery on the restraining plate and the tip of the nail is located inside the hole of the restraining plate, the nail is moved from the top to the bottom at 20 mm / sec. Moved at a speed of.
  • the state of the battery after nail penetration was observed at room temperature and atmospheric conditions.
  • the nail used had a diameter of 8 mm and a tip angle of 60 °, and the nail material was S45C defined by JIS G 4051.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 内部短絡時による熱暴走を抑制できるリチウムイオン二次電池を提供すること。 集電体と、該集電体上に形成され、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)で表されるリチウム含有複合酸化物を含む正極活物質層と、該正極活物質層上に形成され、ケイ酸遷移金属リチウム塩を含む熱暴走抑制層とを具備する正極と、負極活物質を具備する負極とを有し、前記正極において、前記ケイ酸遷移金属リチウム塩の質量に対する前記リチウム含有複合酸化物の質量比が1.5以上であることを特徴とするリチウムイオン二次電池。

Description

正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池
 本発明は正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池に関する。
 二次電池を用いた製品は増加の一途を辿っており、一般に、携帯電話やノート型パソコンなどの携帯機器には二次電池が必須のものとして認識されている。二次電池のうちリチウムイオン二次電池は小型で大容量であるため汎用されており、航空機や自動車にも採用されている。近年、より優れたリチウムイオン二次電池を提供する目的で、リチウムイオン二次電池に対する研究が盛んに行われている。
 さて、リチウムイオン二次電池を安全面からみると、リチウムイオン二次電池の内部短絡時の安全性を確保するのが重要である。電池の内部短絡時の安全性を確認する方法として、釘を電池に貫通させたときに電池がどのような挙動を示すかを観察するための釘刺し試験が知られている。実際に、特許文献1には、釘刺し試験を行った結果、発火しなかったリチウムイオン二次電池が記載されている。ここで、特許文献1に開示のリチウムイオン二次電池は、電極を特定の形状のシートに分割したものである。
 また、特許文献2には、LiNiOを含む第1正極活物質層及びLiFeSiO又はLiFePOを含む第2正極活物質層を具備する正極、並びに負極活物質としてCuSnを含む負極を有し、第2正極活物質層のリチウム量が負極活物質の不可逆容量に相当する量以上であるリチウムイオン二次電池が記載されているが、釘刺し試験への言及はない。
特開2003-157854号公報 特開2011-238490号公報
 特許文献1に開示の技術は電極を分割したシートの面積及び形状、並びに正極集電体と負極集電体の間の距離を一定の関係式で規定するものであって、リチウムイオン二次電池の構成要素に複数の制限が課せられていた。また、リチウムイオン二次電池は航空機や自動車に用いられるため、リチウムイオン二次電池に要求される安全性の水準はより高くなっている。
 本発明は、このような事情に鑑みて為されたものであり、内部短絡時に正極と非水電解質との化学反応による発熱の時間的及び空間的な集中を抑制できるリチウムイオン二次電池を提供することを目的とする。
 本発明者は試行錯誤を重ねながらリチウムイオン二次電池の構成要素について鋭意検討を行った。そして、本発明者は、特定の化合物を含む熱暴走抑制層を特定の範囲で正極活物質層上に設けたリチウムイオン二次電池が、内部短絡時でも安定性に優れることを見出し、本発明を完成させるに至った。
 本発明のリチウムイオン二次電池は、集電体と、集電体上に形成され、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表されるリチウム含有複合酸化物を含む正極活物質層と、正極活物質層上に形成され、ケイ酸遷移金属リチウム塩を含む熱暴走抑制層とを具備する正極と、負極活物質を具備する負極とを有し、正極において、ケイ酸遷移金属リチウム塩の質量に対するリチウム含有複合酸化物の質量比が1.5以上であることを特徴とする。
 本発明のリチウムイオン二次電池は、内部短絡時でも安定性に優れる。
本発明のリチウムイオン二次電池の一態様を示す模式図である。
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。
 本発明のリチウムイオン二次電池は、集電体と、集電体上に形成され、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表されるリチウム含有複合酸化物を含む正極活物質層と、正極活物質層上に形成され、ケイ酸遷移金属リチウム塩を含む熱暴走抑制層とを具備する正極と、負極活物質を具備する負極とを有し、正極において、ケイ酸遷移金属リチウム塩の質量に対するリチウム含有複合酸化物の質量比が1.5以上であることを特徴とする。
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体の材料としては、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、又はステンレス鋼などの金属材料や、黒鉛等の炭素材料を挙げることができる。特に、電気伝導性、加工性、安定性、価格などの面から、正極集電体の材料としてはアルミニウムが好ましく、負極集電体の材料としては銅が好ましい。集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが10μm~100μmの範囲内であることが好ましい。
 正極活物質である層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表されるリチウム含有複合酸化物は、高容量である点から、0<b<1、0<c<1、0<d<1の範囲内のものが好ましく、0<b<70/100、0<c<50/100、10/100<d<1の範囲内のものがより好ましく、1/3≦b≦50/100、20/100≦c≦1/3、1/3≦d<1の範囲内のものがさらに好ましく、b=1/3、c=1/3、d=1/3、または、b=50/100、c=20/100、d=30/100のものが特に好ましい。a、e、fについては、上述の範囲内の数値であれば特に制限は無い。例えば、a=1、e=0、f=2を例示できる。
 正極活物質層は集電体上に形成された正極活物質を有する層である。正極活物質層は必要に応じて結着剤及び/又は導電助剤を含む。
 結着剤は活物質を集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、カルボキシメチルセルロース、メチルセルロース、スチレンブタジエンゴム、アルコキシシリル基含有樹脂などの公知のものを用いることができる。これらの結着剤を単独または二種以上組み合わせて活物質層に添加することができる。結着剤の使用量については特に制限はないが、活物質100質量部に対して結着剤1~50質量部の範囲が好ましい。結着剤が少なすぎると電極及び活物質層の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
 導電助剤は導電性を高めるために添加される。導電助剤としては、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber)が例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。導電助剤の使用量については特に制限はないが、例えば、活物質100質量部に対して導電助剤1~30質量部とすることができる。
 正極活物質層全体を100質量部とした場合、正極活物質層中のリチウム含有遷移金属酸化物は50~99質量部の範囲内が好ましく、70~97質量部の範囲内がより好ましく、85~95質量部の範囲内が特に好ましい。
 集電体の表面に活物質層を形成するには、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を直接塗布すればよい。具体的には、活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶媒を加えてペースト状の液とする。あらかじめ結着剤を溶媒に溶解させた溶液又は分散させた懸濁液を用いて、上記ペースト状の液を調製しても良い。上記溶媒としては、N-メチル-2-ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水を例示できる。上記ペースト状の液を集電体の表面に塗布後、乾燥する。乾燥は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は適宜設定すればよく、上記溶媒の沸点以上の温度が好ましい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。活物質層の密度を高めるべく、活物質層を形成させた乾燥後の集電体に対し、圧縮工程を加えても良い。
 本発明のリチウムイオン二次電池は、正極活物質層上に形成され、ケイ酸遷移金属リチウム塩を含む熱暴走抑制層を具備する。
 ケイ酸遷移金属リチウム塩はリチウムを有するものの、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)で表されるリチウム含有複合酸化物と比較すると、リチウムイオンの充放電電位が低い。そのため、リチウムイオン二次電池の正極に両者が共存すると、ケイ酸遷移金属リチウム塩は実質的にリチウムイオンを吸蔵できる活物質として機能せず、高抵抗化合物として存在することになる。ここで、リチウムイオン二次電池に内部短絡が生じた場合、ケイ酸遷移金属リチウム塩が高抵抗化合物として機能するために、正極及び負極間に著しい電流が生じることを抑制することができる。
 また、正極活物質の分解に至るような高温下では、正極活物質層に含まれる層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)で表されるリチウム含有複合酸化物から酸素が離脱し、その活性な酸素と電解液等との連鎖的な反応により発熱が生じると考えられる。しかし、本発明のリチウムイオン二次電池は、正極活物質層上に熱暴走抑制層が形成されているので、電解液を構成する有機溶媒と上記リチウム含有複合酸化物との接触を抑制できる。その結果として、上記の連鎖的な反応を抑制することができるから、本発明のリチウムイオン二次電池は熱暴走を防止できる。なお、熱暴走抑制層に含まれるケイ酸遷移金属リチウム塩も分子内に酸素を有するが、酸素-ケイ素結合の結合エネルギーが高いため、通常、これらの酸素が離脱することは無い。
 以上の理由により、正極活物質層上に形成され、ケイ酸遷移金属リチウム塩を含む層が、熱暴走抑制効果を奏する。
 ただし、リチウムイオン二次電池の通常の動作時には、ケイ酸遷移金属リチウム塩は単に高抵抗化合物となるから、正極中に過剰な量で存在するのは好ましくない。
 そこで、本発明者は、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)で表されるリチウム含有複合酸化物と、ケイ酸遷移金属リチウム塩との適正な質量比を実験にて見出した。すなわち、本発明のリチウムイオン二次電池は、正極において、ケイ酸遷移金属リチウム塩の質量に対するリチウム含有複合酸化物の質量比が1.5以上であることを特徴とする。上記比が1.5以上であれば、リチウムイオン二次電池の通常の動作には支障が無いが、リチウムイオン二次電池の放電容量の観点からみると、上記比は2~10の範囲内が好ましく、2.1~9の範囲内がより好ましく、2.2~5の範囲内が特に好ましい。
 なお、上述のように、特許文献2には、LiNiOを含む第1正極活物質層及びLiFeSiO又はLiFePOを含む第2正極活物質層を具備する正極、並びに負極活物質としてCuSnを含む負極を有し、第2正極活物質層のリチウム量が負極活物質の不可逆容量に相当する量以上であるリチウムイオン二次電池が記載されている。しかし、リチウムイオン二次電池の通常の動作時には、過剰のLiFeSiO又はLiFePOは単に高抵抗化合物となるから、特許文献2に開示のリチウムイオン二次電池において、第2正極活物質層のリチウム量が負極活物質の不可逆容量に相当する量を超えて存在するのは好ましいとはいえない。
 よって、本発明のリチウムイオン二次電池においては、熱暴走抑制層におけるリチウム合計量が負極活物質の不可逆容量に相当する量未満であるのが好ましい。負極活物質の不可逆容量とは、リチウムイオン二次電池の初回充電容量から初回放電容量を減じることで算出される容量であるから、当業者であれば単純な実験によって簡単に算出することができる。
 ケイ酸遷移金属リチウム塩としては、LiMSiO(Mは遷移元素から選択される単独又は複数の元素である。)で表される化合物を挙げることができる。ケイ酸遷移金属リチウム塩の具体例としては、例えばLiFeSiO、LiMnSiO、LiNiSiO、LiCoSiO、LiFe0.9Co0.1SiO、LiFe0.75Co0.25SiO、LiFe0.5Co0.5SiO、LiFe0.25Co0.75SiOを挙げることができる。
 熱暴走抑制層は必要に応じて結着剤及び/又は導電助剤を含む。結着剤は活物質層の説明で述べたものを単独または二種以上組み合わせて熱暴走抑制層に添加することができる。結着剤の使用量については特に制限はないが、ケイ酸遷移金属リチウム塩100質量部に対して結着剤1~50質量部の範囲が好ましい。結着剤が少なすぎると熱暴走抑制層の成形性が低下し、また、結着剤が多すぎると熱暴走抑制層の熱暴走抑制効果が低くなるためである。導電助剤は活物質層の説明で述べたものを単独または二種以上組み合わせて熱暴走抑制層に添加することができる。導電助剤の使用量については特に制限はないが、例えば、ケイ酸遷移金属リチウム塩100質量部に対して導電助剤1~30質量部とすることができる。
 正極活物質層上に熱暴走抑制層を形成するには、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。具体的には、ケイ酸遷移金属リチウム塩並びに必要に応じて結着剤及び/又は導電助剤を混合した混合物に適当な溶媒を加えてペースト状の熱暴走抑制層形成用組成物とする。なお、あらかじめ結着剤を溶媒に溶解させた溶液又は分散させた懸濁液を、ケイ酸遷移金属リチウム塩などに加えて熱暴走抑制層形成用組成物としても良い。上記溶媒としては、N-メチル-2-ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水を例示できる。上記熱暴走抑制層形成用組成物を正極活物質層の表面に塗布後、乾燥する。乾燥は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は適宜設定すればよく、上記溶媒の沸点以上の温度が好ましい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。熱暴走抑制層の密度を高めるべく、熱暴走抑制層を形成させた乾燥後の正極に対し、圧縮工程を加えても良い。熱暴走抑制層の厚みには特に制限は無いが、1~20μmの範囲内が好ましく、3~15μmの範囲内がより好ましく、4~10μmの範囲内が特に好ましい。
 本発明のリチウムイオン二次電池は、負極活物質を具備する負極を有する。
 負極活物質の材料としては、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料などの、リチウムイオン二次電池の負極活物質の材料として採用される公知のものを単独で又は複数で用いれば良い。炭素系材料としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類を例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、SiまたはSnが好ましい。リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、 CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiOあるいはLiSnOを例示でき、このうち、Siを含む化合物が好ましく、SiO(0.5≦x≦1.5)が特に好ましい。また、リチウムと合金化反応可能な元素を有する化合物として、スズ合金(Cu-Sn合金、Co-Sn合金等)を例示できる。高分子材料としては、具体的にポリアセチレン、ポリピロールを例示できる。
 負極は、集電体と、該集電体上に形成される負極活物質を含む負極活物質層とを含んでいれば良い。集電体としては、上述した集電体を適宜採用すれば良い。負極活物質層は必要に応じて結着剤及び/又は導電助剤を含む。そして、負極活物質層の結着剤及び/又は導電助剤としては、上述したものを上述した量で採用すれば良い。負極活物質層を集電体上に形成するには、上述の方法を用いれば良い。
 正極における正極活物質の量と負極における負極活物質の量は、両活物質のリチウム吸蔵性能及び放出性能を鑑みて、所望の電池容量となるように適宜適切に決定すればよい。両活物質量の決定の際には、熱暴走抑制層に含まれるケイ酸遷移金属リチウム塩のリチウムが電池の初回充電時に使用されることを考慮するのがよい。
 本発明のリチウムイオン二次電池は、正極と負極とを隔離し、両極の接触による電池の短絡を防止しつつ、イオンを通過させるためのセパレータを有しているのが良い。セパレータとしては、リチウムイオン二次電池で採用される公知のものを用いれば良く、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミドなどの合成樹脂を1種又は複数用いた多孔質膜を例示できる。セパレータは、単一の合成樹脂を用いた単層構造でも良いし、複数の合成樹脂の層を重ねた積層構造でも良い。セパレータの厚みは特に制限されないが、5μm~100μmの範囲が好ましく、10μm~50μmの範囲がより好ましく、15μm~30μmの範囲が特に好ましい。
 本発明のリチウムイオン二次電池は、正極及び負極間をイオンが移動するための媒体となる電解液又は固体電解質を有するのが良い。電解液は溶媒と該溶媒に溶解された電解質とを含む液である。電解液又は固体電解質としては、リチウムイオン二次電池で採用される公知のものを用いれば良い。
 電解液に用いられる溶媒としては、環状エステル類、鎖状エステル類、エーテル類、含フッ素環状エステル類等の非水系溶媒を挙げることができる。環状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルを例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。含フッ素環状エステル類は上記環状エステルを構成する水素の一部がフッ素で置換されたものであり、フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネートを例示できる。電解液の溶媒として、上述のものを複数併用してもよい。特に、フルオロエチレンカーボネート、エチレンカーボネート、メチルエチルカーボネート、ジメチルカーボネートの4種を併用するのが好ましい。
 リチウムイオン二次電池の電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を挙げることができる。電解液中の電解質の濃度は、0.5~1.7mol/Lの範囲内が好ましい。
 本発明のリチウムイオン二次電池の製造方法の一例を示す。まず、集電体、正極活物質層及び熱暴走抑制層を有する正極、集電体及び負極活物質層を有する負極を上述した方法で準備する。次に、両電極間にセパレータを挟装させて電極体とする。そして、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リードでそれぞれ接続する。次いで、電極体に電解液を加えてリチウムイオン二次電池とする。リチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、積層型、コイン型、ラミネート型等、種々の形状を採用することができる。
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に実施例を示し、本発明をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
 本発明のリチウムイオン二次電池を以下のとおり製造した。
 正極活物質であるLiNi5/10Co2/10Mn3/10で表される層状岩塩構造のリチウム含有金属酸化物90質量部、導電助剤であるアセチレンブラック5質量部、および結着剤であるポリフッ化ビニリデン3質量部を混合した。この混合物を適量のN-メチル-2-ピロリドンに分散させて、スラリーを作製した。正極集電体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することでN-メチル-2-ピロリドンを揮発により除去し、正極活物質層が形成されたアルミニウム箔を得た。
 ケイ酸遷移金属リチウム塩であるLiFeSiO94質量部、導電助剤であるアセチレンブラック3質量部、および結着剤であるポリフッ化ビニリデン3質量部を混合した。この混合物を適量のN-メチル-2-ピロリドンに分散させて、熱暴走抑制層形成用組成物とした。
 正極活物質層が形成されたアルミニウム箔の正極活物質層上に、ドクターブレードを用いて上記熱暴走抑制層形成用組成物を膜状に塗布した。これを80℃で20分間乾燥することでN-メチル-2-ピロリドンを揮発により除去し、正極活物質層上に熱暴走抑制層が形成された正極を得た。ここで、正極に含まれるLiFeSiOの質量に対するLiNi5/10Co2/10Mn3/10の質量比は9であった。
 負極活物質であるSiO(0.5≦x≦1.5)32質量部及び天然黒鉛50質量部、導電助剤であるアセチレンブラック8質量部、結着剤であるポリアミドイミド10質量部を混合した。この混合物を適量のN-メチル-2-ピロリドンに分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥してN-メチル-2-ピロリドンを除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。これを負極とした。
 セパレータとしてポリプロピレン製樹脂膜からなる矩形状シート(27×32mm、厚さ25μm)を準備した。
 正極上の熱暴走抑制層と負極上の負極活物質層とでセパレータを挟持して、これを極板群とした。極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としては、フルオロエチレンカーボネート4容量部、エチレンカーボネート26容量部、メチルエチルカーボネート30容量部及びジメチルカーボネート40容量部を混合した溶媒にLiPF6を1mol/Lとなるよう溶解した溶液を用いた。その後、ラミネートフィルムの残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。これを実施例1のリチウムイオン二次電池とした。実施例1のリチウムイオン二次電池において、熱暴走抑制層のリチウム量は負極活物質の不可逆容量に相当する量未満である。
 なお、実施例1のリチウムイオン二次電池の正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はリチウムイオン二次電池の外側に延出している。
(実施例2)
 正極に含まれるLiFeSiOの質量に対するLiNi5/10Co2/10Mn3/10の質量比を4としたこと以外は、実施例1と同様の方法で、実施例2のリチウムイオン二次電池を得た。なお、実施例2の正極に含まれるLiNi5/10Co2/10Mn3/10及びLiFeSiOの質量の合計量は、実施例1のそれと同じである。実施例2のリチウムイオン二次電池において、熱暴走抑制層のリチウム量は負極活物質の不可逆容量に相当する量未満である。
(実施例3)
 正極に含まれるLiFeSiOの質量に対するLiNi5/10Co2/10Mn3/10の質量比を7/3としたこと以外は、実施例1と同様の方法で、実施例3のリチウムイオン二次電池を得た。なお、実施例3の正極に含まれるLiNi5/10Co2/10Mn3/10及びLiFeSiOの質量の合計量は、実施例1のそれと同じである。実施例3のリチウムイオン二次電池において、熱暴走抑制層のリチウム量は負極活物質の不可逆容量に相当する量未満である。
(実施例4)
 正極に含まれるLiFeSiOの質量に対するLiNi5/10Co2/10Mn3/10の質量比を1.5としたこと以外は、実施例1と同様の方法で、実施例4のリチウムイオン二次電池を得た。なお、実施例4の正極に含まれるLiNi5/10Co2/10Mn3/10及びLiFeSiOの質量の合計量は、実施例1のそれと同じである。実施例4のリチウムイオン二次電池において、熱暴走抑制層のリチウム量は負極活物質の不可逆容量に相当する量以上である。
(比較例1)
 正極に含まれるLiFeSiOの質量に対するLiNi5/10Co2/10Mn3/10の質量比を1としたこと以外は、実施例1と同様の方法で、比較例1のリチウムイオン二次電池を得た。なお、比較例1の正極に含まれるLiNi5/10Co2/10Mn3/10及びLiFeSiOの質量の合計量は、実施例1のそれと同じである。
(比較例2)
 正極に熱暴走抑制層を形成しなかったこと以外は、実施例1と同様の方法で、比較例2のリチウムイオン二次電池を得た。なお、比較例2の正極に含まれるLiNi5/10Co2/10Mn3/10の質量は、実施例1のLiNi5/10Co2/10Mn3/10及びLiFeSiOの質量の合計量と同じである。
<電池の評価>
 実施例1-4、比較例1-2のリチウムイオン二次電池につき、以下の試験を行い、リチウムイオン二次電池の放電容量を測定した。結果を表1に示す。
 測定するリチウムイオン二次電池に対し、25℃、1Cレート、電圧4.5VまでCCCV充電(定電流定電圧充電)し、次いで、0.33Cレートで2.5VまでCC放電(定電流放電)して、初期調整を行った。初期調整を行ったリチウムイオン二次電池に対し、25℃、1Cレート、電圧4.5VまでCCCV充電し、次いで、0.33Cレートで2.5VまでCC放電したときの放電量を測定した。当該放電量を、正極における正極活物質LiNi5/10Co2/10Mn3/10およびLiFeSiOの合計質量で除した値を放電容量とした。
Figure JPOXMLDOC01-appb-T000001
 実施例1-4、比較例2の結果から、熱暴走抑制層のケイ酸遷移金属リチウム塩の質量に対する活物質層のリチウム含有複合酸化物の質量比が1.5以上のリチウムイオン二次電池の放電容量が、熱暴走抑制層を有さないリチウムイオン二次電池の放電容量と比較して、優れていることがわかる。特に、熱暴走抑制層のリチウム量が負極活物質の不可逆容量に相当する量未満である実施例1-3のリチウムイオン二次電池の放電容量は、顕著に優れている。
 他方、比較例1及び比較例2の結果から、熱暴走抑制層を有するリチウムイオン二次電池であっても、ケイ酸遷移金属リチウム塩の質量に対するリチウム含有複合酸化物の質量比によっては、リチウムイオン二次電池の放電容量が、熱暴走抑制層を有さないリチウムイオン二次電池の放電容量と比較して、劣る場合があることがわかる。
 実施例3、比較例2のリチウムイオン二次電池につき、以下の釘刺し試験を行い、内部短絡時のリチウムイオン二次電池の様子を観察した。結果を表2に示す。
 電池容量が4Ah相当となるようラミネート型リチウムイオン二次電池を積層した。当該積層ラミネート型リチウムイオン二次電池に対し、4.1V、4.2V又は4.3Vの電位で安定するまで定電圧充電を行った。充電後の積層ラミネート型リチウムイオン二次電池を、径20mmの孔を有する拘束板上に配置した。上部に釘が取り付けられたプレス機に拘束板を配置した。釘が拘束板上の積層ラミネート型リチウムイオン二次電池を貫通して、釘の先端部が拘束板の孔内部に位置するまで、釘を上部から下部に20mm/sec.の速度で移動させた。釘貫通後の電池の様子を、室温、大気条件で観察した。なお、使用した釘の形状は径8mm、先端角度60°であり、釘の材質はJIS G 4051で規定するS45Cであった。
Figure JPOXMLDOC01-appb-T000002
 表2中、電池から発煙が生じなかった場合は○を記し、電池から発煙が生じた場合は×を記した。
 表2の結果から、熱暴走抑制層の存在により、内部短絡したリチウムイオン二次電池の熱暴走及びそれに伴う発煙が抑制されたことがわかる。
 1:正極集電体、2:正極活物質層、3:熱暴走抑制層、4:セパレータ、5:負極活物質層、6:負極集電体、7:リチウムイオン二次電池

Claims (5)

  1.  集電体と、該集電体上に形成され、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)で表されるリチウム含有複合酸化物を含む正極活物質層と、該正極活物質層上に形成され、ケイ酸遷移金属リチウム塩を含む熱暴走抑制層とを具備する正極と、
     負極活物質を具備する負極とを有し、
     前記正極において、前記ケイ酸遷移金属リチウム塩の質量に対する前記リチウム含有複合酸化物の質量比が1.5以上であることを特徴とするリチウムイオン二次電池。
  2.  前記熱暴走抑制層におけるリチウム合計量が前記負極活物質の不可逆容量に相当する量未満である請求項1に記載のリチウムイオン二次電池。
  3.  前記一般式において、0<b<1、0<c<1及び0<d<1である請求項1又は2に記載のリチウムイオン二次電池。
  4.  前記ケイ酸遷移金属リチウム塩がLiMSiO(Mは遷移元素から選択される単独又は複数の元素である。)である請求項1~3のいずれかに記載のリチウムイオン二次電池。
  5.  前記負極活物質がSiを含む請求項1~4のいずれかに記載のリチウムイオン二次電池。
PCT/JP2014/003787 2013-08-22 2014-07-17 正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池 WO2015025466A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/912,971 US9812702B2 (en) 2013-08-22 2014-07-17 Lithium ion secondary battery having positive electrode that comprises thermal run-away suppressing layer on positive electrode active material layer
DE112014003824.5T DE112014003824T5 (de) 2013-08-22 2014-07-17 Lithiumionensekundärbatterie mit positiver Elektrode, die eine Schicht zur Unterdrückung eines thermischen Durchgehens auf der Aktivmaterialschicht der positiven Elektrode umfasst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013172195A JP5643996B1 (ja) 2013-08-22 2013-08-22 正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池
JP2013-172195 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025466A1 true WO2015025466A1 (ja) 2015-02-26

Family

ID=52139196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003787 WO2015025466A1 (ja) 2013-08-22 2014-07-17 正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US9812702B2 (ja)
JP (1) JP5643996B1 (ja)
DE (1) DE112014003824T5 (ja)
WO (1) WO2015025466A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105990563B (zh) * 2015-02-12 2019-06-28 宁德时代新能源科技股份有限公司 二次锂电池及其正极材料、以及正极材料的制备方法
US20180145317A1 (en) * 2016-11-18 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP2020177739A (ja) * 2019-04-15 2020-10-29 株式会社Gsユアサ 非水電解質蓄電素子
US20220037720A1 (en) * 2020-07-29 2022-02-03 Prologium Technology Co., Ltd. Thermal runaway suppressant of lithium batteries and the related applications
US11682805B2 (en) * 2020-07-29 2023-06-20 Prologium Technology Co., Ltd. Thermal runaway suppression element and the related applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300239A (ja) * 2007-05-31 2008-12-11 Panasonic Corp 非水電解質二次電池用電極、リチウムイオン二次電池、および非水電解質二次電池用電極の製造方法
JP2011082151A (ja) * 2009-09-11 2011-04-21 Semiconductor Energy Lab Co Ltd 蓄電デバイス及びその作製方法
JP2011238490A (ja) * 2010-05-11 2011-11-24 Denso Corp 非水電解液二次電池及びその製造方法
JP2011243349A (ja) * 2010-05-17 2011-12-01 Sanyo Electric Co Ltd 正極活物質及びこの正極活物質を用いた非水電解質二次電池
JP2012018832A (ja) * 2010-07-08 2012-01-26 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質とその製造方法、および該正極活物質の前駆体とその製造方法、ならびに該正極活物質を用いたリチウム二次電池
JP2013519187A (ja) * 2010-01-13 2013-05-23 アプライド マテリアルズ インコーポレイテッド 高エネルギーLiイオンバッテリ用の段階的な電極技術

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084973B2 (ja) 2001-09-05 2008-04-30 株式会社東芝 非水電解液二次電池
US7153609B2 (en) 2001-09-05 2006-12-26 Kabushiki Kaisha Toshiba Rechargeable battery with nonaqueous electrolyte
KR101085355B1 (ko) * 2007-11-13 2011-11-21 스미토모덴키고교가부시키가이샤 리튬 전지 및 그의 제조 방법
WO2012067675A1 (en) * 2010-11-17 2012-05-24 Uchicago Argonne, Llc, Operator Of Argonne National Laboratory Electrode structures and surfaces for li batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300239A (ja) * 2007-05-31 2008-12-11 Panasonic Corp 非水電解質二次電池用電極、リチウムイオン二次電池、および非水電解質二次電池用電極の製造方法
JP2011082151A (ja) * 2009-09-11 2011-04-21 Semiconductor Energy Lab Co Ltd 蓄電デバイス及びその作製方法
JP2013519187A (ja) * 2010-01-13 2013-05-23 アプライド マテリアルズ インコーポレイテッド 高エネルギーLiイオンバッテリ用の段階的な電極技術
JP2011238490A (ja) * 2010-05-11 2011-11-24 Denso Corp 非水電解液二次電池及びその製造方法
JP2011243349A (ja) * 2010-05-17 2011-12-01 Sanyo Electric Co Ltd 正極活物質及びこの正極活物質を用いた非水電解質二次電池
JP2012018832A (ja) * 2010-07-08 2012-01-26 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質とその製造方法、および該正極活物質の前駆体とその製造方法、ならびに該正極活物質を用いたリチウム二次電池

Also Published As

Publication number Publication date
JP5643996B1 (ja) 2014-12-24
US9812702B2 (en) 2017-11-07
DE112014003824T5 (de) 2016-05-04
JP2015041520A (ja) 2015-03-02
US20160204421A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
JP7038947B2 (ja) リチウム金属と無機物複合層を用いた前リチウム化
CN109792086B (zh) 用于锂二次电池的非水电解液和包含该非水电解液的锂二次电池
WO2005076391A1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP6044427B2 (ja) リチウムイオン二次電池正極用集電体、リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2015025466A1 (ja) 正極活物質層上に熱暴走抑制層を具備する正極を有するリチウムイオン二次電池
JP2017068958A (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6136809B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6061143B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2015056208A (ja) 活物質層上に形成された保護層を具備する電極
JP5656093B2 (ja) 電解液保液層を具備する電池
JP6597267B2 (ja) リチウムイオン二次電池
JP2014082084A (ja) リチウムイオン二次電池
JP6011634B2 (ja) 非水電解質二次電池
JP2015005353A (ja) 蓄電装置
JP5279362B2 (ja) 非水電解質二次電池
JP6056685B2 (ja) リチウムイオン二次電池用正極活物質の処理方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
WO2015162838A1 (ja) 非水系二次電池用正極及び非水系二次電池
JP6016029B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2014112329A1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2015053288A (ja) 電解液保液層を具備する電池
JP6202191B2 (ja) 第1正極活物質及び第2正極活物質を有する正極活物質層、並びに該正極活物質層を具備する正極の製造方法
JP5610031B1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6187824B2 (ja) 第1正極活物質、第2正極活物質、導電助剤、結着剤及び溶剤を含む組成物の製造方法
JP2020155378A (ja) リチウムイオン二次電池用電解液、及びリチウムイオン二次電池
JP6124076B2 (ja) アルミニウム箔への保護層形成方法、リチウムイオン二次電池用集電体及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14912971

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140038245

Country of ref document: DE

Ref document number: 112014003824

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838344

Country of ref document: EP

Kind code of ref document: A1