WO2015156062A1 - 二次電池とその製造方法 - Google Patents

二次電池とその製造方法 Download PDF

Info

Publication number
WO2015156062A1
WO2015156062A1 PCT/JP2015/056591 JP2015056591W WO2015156062A1 WO 2015156062 A1 WO2015156062 A1 WO 2015156062A1 JP 2015056591 W JP2015056591 W JP 2015056591W WO 2015156062 A1 WO2015156062 A1 WO 2015156062A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
protective layer
current collector
secondary battery
collector foil
Prior art date
Application number
PCT/JP2015/056591
Other languages
English (en)
French (fr)
Inventor
愛 藤澤
伸 田中
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to CN201580019231.XA priority Critical patent/CN106463698B/zh
Priority to JP2016512634A priority patent/JP6609548B2/ja
Priority to US15/302,634 priority patent/US20170033399A1/en
Publication of WO2015156062A1 publication Critical patent/WO2015156062A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/136Flexibility or foldability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery and a manufacturing method thereof.
  • Secondary batteries are widely used as power sources for vehicles and homes as well as portable devices such as mobile phones, digital cameras, and laptop computers.
  • high-energy density and lightweight lithium-ion secondary batteries have become energy storage devices indispensable for daily life.
  • the secondary battery has a configuration in which a battery element (electrode laminate) in which a sheet-like positive electrode and a negative electrode are separated while being separated by a separator is enclosed in an outer container together with an electrolytic solution.
  • the positive electrode is one in which a positive electrode mixture layer containing a positive electrode active material is formed on one side or both sides of a positive electrode current collector foil, and the negative electrode is a negative electrode composite containing a negative electrode active material on one side or both sides of a negative electrode current collector foil.
  • An agent layer is formed.
  • a problem of corrosion of the positive electrode occurs.
  • an aqueous solution (slurry) containing the positive electrode active material is applied to the positive electrode current collector foil, LiOH is generated by reacting the lithium nickel oxide of the positive electrode active material and water in this aqueous solution, and the aqueous solution is a strong base.
  • aqueous solution slurry
  • An aluminum oxide layer is easily formed on the surface of the positive electrode current collector foil containing aluminum, and the aluminum oxide layer has low corrosion resistance.
  • Patent Document 1 discloses a configuration in which a corrosion-resistant layer made of tungsten carbide is formed between a positive electrode current collector foil made of aluminum and a positive electrode active material.
  • Patent Document 2 discloses a configuration in which a conductive base film including exfoliated graphite is formed between a current collector foil and an active material.
  • Patent Document 1 has a corrosion-resistant layer made of tungsten carbide, and has an effect of protecting the positive electrode current collector foil.
  • physical vapor deposition such as sputtering, vacuum vapor deposition, ion plating, or chemical vapor deposition such as CVD (vapor deposition method). The manufacturing process becomes complicated.
  • an object of the present invention is to provide a secondary battery that can be easily formed with an inexpensive material and that can suppress corrosion of a current collector foil caused by a chemical reaction between an active material and water, and a method for manufacturing the same. .
  • a secondary battery comprising an electrode laminate in which a positive electrode including a positive electrode current collector foil and a positive electrode mixture layer and a negative electrode including a negative electrode current collector foil and a negative electrode mixture layer are disposed via a separator.
  • the positive electrode current collector foil is made of aluminum or an aluminum alloy
  • the positive electrode material mixture layer contains a positive electrode active material containing at least nickel and lithium
  • a protective layer is formed between the positive electrode current collector foil and the positive electrode material mixture layer.
  • the protective layer includes a plurality of carbon particles.
  • the carbon particles have a main plane and a thickness orthogonal to the main plane, a length L1 in one direction of the main plane, a length L2 in a direction orthogonal to the one direction in the main plane, and a thickness direction
  • the length L3 is a flaky shape satisfying the relationships of 5 ⁇ (L1 / L2) ⁇ 1, (L1 / L3) ⁇ 5, L2> L3, and L1 ⁇ 4 ⁇ m.
  • the carbon particles are arranged in the protective layer so that the main plane intersects at least the thickness direction of the protective layer.
  • the average thickness of the protective layer is 10 ⁇ m or more and 100 ⁇ m or less.
  • a secondary battery comprising an electrode laminate in which a positive electrode including a positive electrode current collector foil and a positive electrode mixture layer and a negative electrode including a negative electrode current collector foil and a negative electrode mixture layer are disposed via a separator.
  • the method for producing a positive electrode by forming a protective layer containing carbon particles on a positive electrode current collector foil made of aluminum or an aluminum alloy, and forming a positive electrode mixture layer containing a positive electrode active material on the protective layer. Forming a step.
  • the main plane has a thickness perpendicular to the main plane, a length L1 in one direction of the main plane, a length L2 in the orthogonal direction perpendicular to the one direction in the main plane, and a thickness A plurality of flaky carbon particles satisfying the relations of the length L3 of 5 ⁇ (L1 / L2) ⁇ 1, (L1 / L3) ⁇ 5, L2> L3, and L1 ⁇ 4 ⁇ m in the protective layer
  • the main plane is arranged so as to intersect at least the thickness direction of the protective layer.
  • an aqueous solution containing a positive electrode active material and having a viscosity of 5000 mPas to 10,000 mPas is applied on the protective layer and then dried.
  • the flaky carbon particles in the protective layer physically prevent the base in the aqueous solution from moving in the thickness direction in the protective layer, the base hardly reaches the positive electrode current collector foil. Corrosion due to the base of the positive electrode current collector foil is suppressed. Thereby, the surface state of the positive electrode is smooth and good. Moreover, high electroconductivity and high energy density are obtained by the carbon particles. Furthermore, since the average thickness of the protective layer is 10 ⁇ m or more and 100 ⁇ m or less, there is an effect of suppressing corrosion of the positive electrode current collector foil and suppressing peeling of each layer. Therefore, a secondary battery having a positive electrode capable of exhibiting a good function can be obtained.
  • FIG. 1B is a sectional view taken along line AA in FIG. 1A. It is sectional drawing which expands and shows the principal part of the positive electrode of the secondary battery shown to FIG. 1A, 1B. It is a schematic perspective view which expands further and shows the carbon particle contained in the protective layer of the positive electrode shown to FIG. 2A. It is a top view which shows the surface state of the positive electrode which does not have a protective layer. It is a top view which shows the surface state of the positive electrode shown to FIG. 2A. It is a top view which shows the positive electrode formation process of the manufacturing method of the secondary battery of this invention.
  • FIG. 5A It is a top view which shows the positive electrode cut
  • the lithium ion secondary battery 100 of the present invention includes an electrode laminate (battery element) in which a plurality of positive electrodes (positive electrode sheets) 1 and negative electrodes (negative electrode sheets) 6 are laminated with separators 20 interposed therebetween. .
  • This electrode laminate is housed in an exterior container made of the flexible film 30 together with the electrolyte solution 12.
  • One end of the positive electrode terminal 11 is connected to the positive electrode 1 of the electrode laminate, and one end of the negative electrode terminal 16 is connected to the negative electrode 6.
  • the other end side of the positive electrode terminal 11 and the other end side of the negative electrode terminal 16 are respectively acceptable.
  • the flexible film 30 is drawn outside.
  • FIG. 1B a part of each layer constituting the electrode stack (a layer located in the middle part in the thickness direction) is not shown, and the electrolytic solution 12 is shown.
  • the positive electrode 1 includes a positive electrode current collector foil 3, a positive electrode mixture layer 2 formed on the positive electrode current collector foil 3, and a protective layer 4 positioned between the positive electrode current collector foil 3 and the positive electrode mixture layer 2.
  • the negative electrode 6 includes a negative electrode current collector foil 8 and a negative electrode mixture layer 7 formed on the negative electrode current collector foil 8.
  • the protective layer 4 provided on the positive electrode 1 will be described later.
  • An uncoated portion where the positive electrode mixture layer 2 is not provided on the positive electrode current collector foil 3 and an uncoated portion where the negative electrode material mixture layer 7 is not provided on the negative electrode current collector foil 8 are an electrode terminal (positive electrode terminal 11). Or it is used as a tab for connecting with the negative electrode terminal 16).
  • the positive electrode tabs connected to the positive electrode 1 are gathered on the positive electrode terminal 11 and connected together with the positive electrode terminal 11 by ultrasonic welding or the like.
  • the negative electrode tabs connected to the negative electrode 6 are gathered on the negative electrode terminal 16 and are connected together with the negative electrode terminal 16 by ultrasonic welding or the like.
  • the other end portion of the positive electrode terminal 11 and the other end portion of the negative electrode terminal 16 are respectively drawn out of the exterior container.
  • the external dimension of the application part (negative electrode mixture layer 7) of the negative electrode 6 is larger than the external dimension of the application part (positive electrode mixture layer 2) of the positive electrode 1 and smaller than the external dimension of the separator 20.
  • examples of the positive electrode active material included in the positive electrode mixture layer 2 include LiNiO 2 , LiNi (1-x) CoO 2 , LiNi x (CoAl) (1-x) O 2 , and Li 2 MnO 3.
  • -Layered oxide materials such as LiNiO 2 and LiNi x Co y Mn (1-xy) O 2 , LiMn 1.5 Ni 0.5 O 4 , LiMn (2-x) Ni x O 4, etc.
  • Examples include spinel materials, olivine materials such as LiNiPO 4, and fluorinated olivine materials such as Li 2 NiO 4 F and Li 2 NiO 4 F. Use one or a mixture of these. can do.
  • Examples of the negative electrode active material contained in the negative electrode mixture layer 7 include carbon materials such as graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn, lithium metal materials, and alloy materials such as silicon and tin. Nb 2 O 5 , TiO 2, or other oxide-based materials, or a composite thereof can be used.
  • the material constituting the positive electrode mixture layer 2 and the negative electrode mixture layer 7 is a mixture in which a binder, a conductive auxiliary agent, and the like are appropriately added.
  • As a conductive support agent 1 type in carbon black, carbon fiber, or graphite can be used, or a combination of 2 or more types can be used.
  • the binder polyvinylidene fluoride (PVDF), polytetrafluoroethylene, carboxymethyl cellulose, modified acrylonitrile rubber particles, and the like can be used.
  • the positive electrode current collector foil 3 is preferably made of aluminum or an aluminum alloy.
  • Examples of the electrolytic solution 12 include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, and butylene carbonate, ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), and the like.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, and butylene carbonate, ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), and the like.
  • One or more organic solvents such as chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones such as ⁇ -butyrolactone, chain ethers, cyclic ethers, etc. Mixtures can be used.
  • lithium salts can be dissolved in these organic solvents.
  • the separator 20 is mainly made of a resin porous film, woven fabric, non-woven fabric, and the like, and as its resin component, for example, a polyolefin resin such as polypropylene or polyethylene, a polyester resin, an acrylic resin, a styrene resin, or a nylon resin is used. it can.
  • a polyolefin-based microporous membrane is preferable because of its excellent ion permeability and performance of physically separating the positive electrode and the negative electrode.
  • the separator 20 may be formed with a layer containing inorganic particles, and examples of the inorganic particles include insulating oxides, nitrides, sulfides, carbides, etc.
  • a case or a can case made of the flexible film 30 can be used as the outer container, and the flexible film 30 is preferably used from the viewpoint of reducing the weight of the battery.
  • the flexible film 30 a film in which a resin layer is provided on the front surface and the back surface of a metal layer serving as a base material can be used.
  • a metal layer having barrier properties such as preventing leakage of the electrolyte solution 12 and moisture from the outside can be selected, and aluminum, stainless steel, or the like can be used.
  • a heat-fusible resin layer such as a modified polyolefin is provided.
  • An exterior container is formed by making the heat-fusible resin layers of the flexible film 30 face each other and heat-sealing the periphery of the portion that houses the electrode laminate.
  • a resin layer such as a nylon film or a polyester film can be provided on the surface of the outer container that is the surface opposite to the surface on which the heat-fusible resin layer is formed.
  • the positive electrode terminal 11 can be made of aluminum or an aluminum alloy, and the negative electrode terminal 16 can be made of copper, a copper alloy, or those plated with nickel. The other end side of each terminal 11 and 16 is pulled out of the exterior container.
  • a heat-sealable resin can be provided in advance at a location corresponding to a portion of each terminal 11, 16 that is thermally welded to the outer peripheral portion of the outer container.
  • FIG. 2A is an enlarged schematic cross-sectional view showing a part of the positive electrode 1 which is a main feature of the present invention.
  • the protective layer 4 is provided between the positive electrode current collector foil 3 containing aluminum or an aluminum alloy and the positive electrode mixture layer 2 containing a positive electrode active material that is a compound containing lithium and nickel.
  • the protective layer 4 includes a large number of carbon particles 5 and a binder 9.
  • the average thickness of the protective layer 4 is 10 ⁇ m or more and 100 ⁇ m or less, preferably 40 ⁇ m or more and 100 ⁇ m or less.
  • Each carbon particle 5 is in the form of a flake having a main plane 5a and a thickness 5b orthogonal thereto.
  • the length in one direction (mainly longitudinal direction) of the main plane 5a is L1
  • the length in the direction (orthogonal direction) orthogonal to one direction (longitudinal direction) in the main plane 5a is L2
  • the length in the thickness direction is Assuming L3, the carbon particles of the present embodiment are in the form of flakes that satisfy the relationships of 5 ⁇ (L1 / L2) ⁇ 1, (L1 / L3) ⁇ 5, L2> L3, and L1 ⁇ 4 ⁇ m.
  • Each carbon particle 5 has its main plane 5 a intersecting (non-parallel) with the thickness direction of the protective layer 4, and each thickness 5 b intersecting the protective layer forming surface 3 a of the positive electrode current collector foil 3.
  • each carbon particle 5 is substantially orthogonal to the protective layer forming surface 3a, and the main plane 5a of each carbon particle 5 is substantially parallel to the protective layer forming surface 3a.
  • the arrangement of the carbon particles 5 in the protective layer 4 is not particularly limited and is rather random. That is, one direction (longitudinal direction) of the main plane 5a may be any direction in the plane. Then, when viewed in a plane (in a direction perpendicular to the protective layer forming surface 3a), the large number of carbon particles 5 partially overlap each other (displace in a scale shape).
  • FIG. 3 shows a state in which the positive electrode current collector foil 3 in the positive electrode 1 not having the protective layer 4 is damaged by a base and unevenness is generated on the surface of the positive electrode mixture layer 2.
  • the state of the surface of the positive electrode mixture layer 2 of the present embodiment is shown in FIG.
  • FIG. 3 and FIG. 4 are compared, it is clear that the surface state of the positive electrode mixture layer 2 is smooth and good according to this embodiment. Thereby, battery characteristics are improved.
  • the protective layer 4 made of a metal oxide or the like is formed, there is a possibility that the function as the positive electrode 1 becomes insufficient because of low conductivity and low energy density.
  • the protective layer 4 including the carbon particles 5 of the present embodiment has high conductivity and high energy density, and can exhibit a sufficiently good function as the positive electrode 1.
  • the flaky carbon particles 5 satisfying the relationships of 5 ⁇ (L1 / L2) ⁇ 1, (L1 / L3) ⁇ 5, L2> L3, and L1 ⁇ 4 ⁇ m are at least mainly.
  • the flat surface 5a is arranged so as to intersect the thickness direction of the protective layer 4 (preferably the main flat surface 5a is substantially parallel to the protective layer forming surface 3a). Therefore, the carbon particles 4 physically block water and a base (for example, LiOH) mixed in the water from moving in the thickness direction in the protective layer 4. As a result, the base hardly reaches the positive electrode current collector foil 3, and the corrosion of the positive electrode current collector foil 3 by the base is suppressed.
  • a base for example, LiOH
  • the protective layer 4 has an average thickness of 10 ⁇ m to 100 ⁇ m, preferably 40 ⁇ m to 100 ⁇ m, and functions well as the positive electrode 1 of the secondary battery. Table 1 below shows the results of a specific experiment on this point. That is, when the thickness of the protective layer 4 is less than 10 ⁇ m, an aqueous slurry (aqueous solution) containing a positive electrode active material containing nickel and lithium is applied onto the positive electrode current collector foil 3 made of aluminum or an aluminum alloy.
  • the positive electrode current collector foil 3 was severely corroded and not suitable for use as the positive electrode 1 of a secondary battery.
  • the protective layer 4 is 10 ⁇ m or more and 20 ⁇ m or less, the initial capacity is small and an insufficient secondary battery may be formed, so the yield is not so good, but a certain initial capacity was obtained.
  • the secondary battery could be used without problems.
  • As a result of analyzing the cause of the decrease in the initial capacity it was inferred that very minute cracks were generated between the positive electrode mixture layer 2 and the protective layer 4. About this problem, it is possible to easily select and remove defective products by confirming the initial capacity of the manufactured secondary battery.
  • the protective layer 4 is 20 ⁇ m or more and 40 ⁇ m or less, the corrosion of the positive electrode current collector foil 3 was not confirmed and the cycle characteristics were good, but the secondary battery having a small initial capacity was completely configured. It wasn't be lost. And when the protective layer 4 was 40 micrometers or more, the corrosion of the positive electrode current collector foil 3 and the peeling from the positive electrode current collector foil 3 of the protective layer 4 did not occur at all. Furthermore, neither a decrease in the initial capacity of the secondary battery nor a decrease in the cycle characteristics was confirmed, and it was confirmed that an extremely excellent positive electrode 1 was obtained.
  • the protective layer 4 is larger than 100 ⁇ m, the protective layer 4 may be peeled off from the positive electrode current collector foil 3, and formation of the positive electrode mixture layer 2 (coating process) may be difficult. Therefore, when the energy density per volume is required to be high, the average thickness of the protective layer 4 is preferably 10 ⁇ m or more and 100 ⁇ m or less. However, when the average thickness of the protective layer 4 is 10 ⁇ m or more and less than 40 ⁇ m, the productivity is somewhat low. Therefore, the average thickness of the protective layer 4 is more preferably 40 ⁇ m or more and 100 ⁇ m or less.
  • FIGS. 1A to 2 A method for manufacturing the secondary battery shown in FIGS. 1A to 2 will be described. First, as shown in FIG. 5A, a protective layer 4 and a positive electrode mixture layer 2 are intermittently provided on both surfaces of a long strip-shaped positive electrode current collector foil 3 for producing a plurality of positive electrodes (positive electrode sheets) 1. Form. The manufacturing method of the positive electrode 1 will be described in detail. A slurry containing carbon particles 5 and a binder 9 is applied to the surface of the positive electrode current collector foil 3 containing aluminum or an aluminum alloy. The slurry is dried and solidified to form the protective layer 4.
  • an aqueous solution (slurry) containing a positive electrode active material, a binder, and water and no solvent and having a viscosity of 5000 mPas or more and 10,000 mPas or less is applied onto the protective layer 4. Then, it is dried and solidified to form the positive electrode mixture layer 3. Then, the positive electrode 1 is pressed in the thickness direction and compressed so that the average thickness of the protective layer 4 is 10 ⁇ m to 100 ⁇ m (preferably 40 ⁇ m to 100 ⁇ m). Then, in order to obtain the positive electrode 1 used for each stacked battery, the positive electrode current collector foil 3 is cut and divided along a cutting line 90 shown by a broken line in FIG. 5A to obtain a desired size shown in FIGS.
  • the positive electrode 1 is obtained.
  • the cutting line 90 is a virtual line and is not actually formed.
  • the negative mix layer 7 is intermittently formed on both surfaces of the elongate strip
  • the negative electrode current collector foil 8 is cut and divided along a cutting line 91 shown by a broken line in FIG. 6A, and the desired size shown in FIG. 6B is obtained.
  • a negative electrode 6 is obtained.
  • the cutting line 91 is a virtual line and is not actually formed.
  • the electrode laminate is housed in an outer container made of the flexible film 30 together with the electrolytic solution 12 and sealed, whereby the secondary battery 100 shown in FIGS. 1A and 1B is formed.
  • the positive electrode mixture layer 2 and the negative electrode mixture layer 7 are not intermittently applied (intermittent application), but as shown in FIG. 7A, a mixture layer without gaps is formed across a plurality of electrode forming portions. You may form by continuous application
  • coating continuous application
  • the mixture layer is formed by continuous coating, it can be stored as an electrode roll as shown in FIG. 8 before cutting along the cutting line 90 in FIG. 7A.
  • FIGS. 7A to 8 show the positive electrode 1, an electrode roll can be similarly formed for the negative electrode 6.
  • FIG. 7A to 8 show the positive electrode 1, an electrode roll can be similarly formed for the negative electrode 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 二次電池が、正極1と負極とがセパレータを介して配置された電極積層体を含む。正極集電箔3はアルミニウムまたはアルミニウム合金からなる。正極合剤層2はニッケルとリチウムを含有する正極活物質を含む。正極集電箔3と正極合剤層2との間に形成された保護層4が、複数の炭素粒子5を含む。炭素粒子5は、主平面5aと主平面5aに直交する厚さ5bとを有し、主平面5aの一方向の長さL1と、主平面5a内で前記一方向に直交する方向の長さL2と、厚さ5b方向の長さL3が、5≧(L1/L2)≧1、(L1/L3)≧5、L2>L3、L1≧4μmの関係を満たす薄片状である。保護層4内で、主平面5aが保護層4の厚さ方向に対して交差する。保護層4の平均厚さが10μm以上100μm以下である。

Description

二次電池とその製造方法
 本発明は二次電池とその製造方法に関する。
 二次電池は、携帯電話、デジタルカメラ、ラップトップコンピュータなどのポータブル機器の電源としてはもちろん、車両や家庭用の電源として広く普及している。なかでも、高エネルギー密度で軽量なリチウムイオン二次電池は、生活に欠かせないエネルギー蓄積デバイスになっている。
 二次電池は、シート状の正極と負極とがセパレータによって隔離されつつ重ね合わされた電池素子(電極積層体)が、電解液とともに外装容器内に封入された構成である。正極は、正極集電箔の片面または両面に、正極活物質を含む正極合剤層が形成されたものであり、負極は、負極集電箔の片面または両面に、負極活物質を含む負極合剤層が形成されたものである。
 リチウムイオン電池において、ニッケル酸リチウム系の正極活物質と、アルミニウムまたはアルミニウム合金からなる正極集電箔とを有する正極が用いられる場合に、正極の腐食の問題が生じる。具体的には、正極活物質を含む水溶液(スラリー)を正極集電箔に塗布すると、この水溶液中で正極活物質のニッケル酸リチウムと水とが反応してLiOHが発生し、水溶液が強い塩基性になる。そして、アルミニウムを含む正極集電箔の表面には酸化アルミニウムの層が生成され易く、この酸化アルミニウムの層は耐食性が低い。その結果、強い塩基性の水溶液を、表面に酸化アルミニウムの層を有する正極集電箔上に塗布すると、正極集電箔が腐食して、正極合剤層が剥離し易くなったり、正極合剤層の表面に多様な気泡跡が生じたりする。LiOHの発生を防ぐためには、正極活物質を溶剤に溶かして塗布液を作成することが考えられる。しかし、溶剤は環境負荷物質(NMP)を含むものが多く使用を控えることが好ましい。
 特許文献1には、アルミニウムからなる正極集電箔と正極活物質との間に、タングステン炭化物からなる耐食層が形成された構成が開示されている。また、特許文献2には、集電箔と活物質との間に、薄片化黒鉛を含む導電下地被膜が形成された構成が開示されている。
特開2010-21075号公報 特開2012-156109号公報
 前記したように、環境負荷物質を含む溶剤を用いることなく、水に正極活物質を溶かした水溶液を正極集電箔上に塗布して正極合剤層を形成することが望ましい。
 特許文献1に記載された構成はタングステン炭化物からなる耐食層を有しており、正極集電箔を保護する効果がある。しかし、その耐食層の形成のために、スパッタリング、真空蒸着、イオンプレーティングなどの物理蒸着法、または、CVDなどの化学蒸着法(気相成長法)を行う必要があり、それにより二次電池の製造工程が煩雑になる。
 特許文献2に記載された構成では、導電下地塗料によって集電箔と活物質の間の接触抵抗が低減され、集電箔と合剤層との密着性が向上している。しかし、活物質と水との化学反応に起因する集電箔の腐食に関しては全く考慮されておらず、腐食防止の対策は取られていない。
 そこで本発明の目的は、安価な材料で容易に形成でき、活物質と水との化学反応に起因する集電箔の腐食を抑えることができる二次電池とその製造方法を提供することにある。
 本発明の、正極集電箔と正極合剤層とを含む正極と、負極集電箔と負極合剤層とを含む負極とが、セパレータを介して配置された電極積層体を含む二次電池においては、正極集電箔はアルミニウムまたはアルミニウム合金からなり、正極合剤層は少なくともニッケルとリチウムを含有する正極活物質を含み、正極集電箔と正極合剤層との間に保護層が形成されている。保護層は複数の炭素粒子を含む。炭素粒子は、主平面と主平面に直交する厚さとを有し、主平面の一方向の長さL1と、主平面内で前記一方向に直交する方向の長さL2と、厚さ方向の長さL3が、5≧(L1/L2)≧1、(L1/L3)≧5、L2>L3、およびL1≧4μmの関係を満たす薄片状である。炭素粒子は、保護層内で、主平面が少なくとも保護層の厚さ方向に対して交差するように配置されている。保護層の平均厚さが10μm以上100μm以下である。
 本発明の、正極集電箔と正極合剤層とを含む正極と、負極集電箔と負極合剤層とを含む負極とが、セパレータを介して配置された電極積層体を含む二次電池の製造方法は、アルミニウムまたはアルミニウム合金からなる正極集電箔上に、炭素粒子を含む保護層を形成し、保護層の上に、正極活物質を含む正極合剤層を形成することによって、正極を形成する工程を含む。保護層の形成時に、主平面と主平面に直交する厚さとを有し、主平面の一方向の長さL1と、主平面内で前記一方向に直交する直交方向の長さL2と、厚さ方向の長さL3が、5≧(L1/L2)≧1、(L1/L3)≧5、L2>L3、およびL1≧4μmの関係を満たす薄片状の複数の炭素粒子を、保護層内で、主平面が少なくとも保護層の厚さ方向に対して交差するように配置する。正極合剤層の形成時に、正極活物質を含み粘度が5000mPas以上10000mPas以下の水溶液を保護層上に塗布してから乾燥する。
 本発明によると、保護層内の薄片状の炭素粒子が、水溶液中の塩基が保護層内を厚さ方向に移動することを物理的に阻止するため、塩基が正極集電箔に到達し難く、正極集電箔の塩基による腐食が抑えられる。それにより、正極の表面状態が平滑で良好である。また、炭素粒子によって、高い導電性と高エネルギー密度が得られる。さらに、保護層の平均厚さが10μm以上100μm以下であるため、正極集電箔の腐食抑制と、各層の剥離抑制の効果がある。従って、良好な機能が発揮できる正極を有する二次電池が得られる。
本発明の積層型二次電池の一実施形態の基本構造を表す平面図である。 図1AのA-A線断面図である。 図1A,1Bに示す二次電池の正極の要部を拡大して示す断面図である。 図2Aに示す正極の保護層に含まれる炭素粒子をさらに拡大して示す概略斜視図である。 保護層を持たない正極の表面状態を示す平面図である。 図2Aに示す正極の表面状態を示す平面図である。 本発明の二次電池の製造方法の正極形成工程を示す平面図である。 図5Aに示す工程の後に切断されて形成された正極を示す平面図である。 本発明の二次電池の製造方法の負極形成工程を示す平面図である。 図6Aに示す工程の後に切断されて形成された負極を示す平面図である。 本発明の二次電池の製造方法の正極形成工程の他の例を示す平面図である。 図7Aに示す工程で切断されて形成された正極を示す平面図である。 本発明の二次電池の製造方法の図7Aに続く工程を示す平面図である。
 以下、本発明の実施の形態について、図面を参照して説明する。
 [二次電池の基本構造]
 図1A,1Bは、本発明を採用した積層型のリチウムイオン二次電池の構成の一例を模式的に示している。本発明のリチウムイオン二次電池100は、正極(正極シート)1と負極(負極シート)6とが、セパレータ20を介して交互に複数層積層された電極積層体(電池素子)を備えている。この電極積層体は電解液12と共に、可撓性フィルム30からなる外装容器に収納されている。電極積層体の正極1には正極端子11の一端が、負極6には負極端子16の一端がそれぞれ接続されており、正極端子11の他端側および負極端子16の他端側は、それぞれ可撓性フィルム30の外部に引き出されている。図1Bでは、電極積層体を構成する各層の一部(厚さ方向の中間部に位置する層)を図示省略して、電解液12を示している。
 正極1は、正極集電箔3と、その正極集電箔3に形成された正極合剤層2と、正極集電箔3と正極合剤層2との間に位置する保護層4とを含む。負極6は、負極集電箔8と、その負極集電箔8に形成された負極合剤層7とを含む。正極1に設けられた保護層4については後述する。
 正極集電箔3上に正極合剤層2が設けられていない未塗布部と、負極集電箔8上に負極合剤層7が設けられていない未塗布部は、電極端子(正極端子11または負極端子16)と接続するためのタブとしてそれぞれ用いられる。正極1に接続される正極タブ同士は正極端子11上にまとめられ、正極端子11とともに超音波溶接等で互いに接続される。負極6に接続される負極タブ同士は負極端子16上にまとめられ、負極端子16とともに超音波溶接等で互いに接続される。そのうえで、正極端子11の他端部および負極端子16の他端部は外装容器の外部にそれぞれ引き出されている。負極6の塗布部(負極合剤層7)の外形寸法は正極1の塗布部(正極合剤層2)の外形寸法よりも大きく、セパレータ20の外形寸法よりも小さい。
 この二次電池において、正極合剤層2に含まれる正極活物質としては、例えばLiNiO、LiNi(1-x)CoO、LiNi(CoAl)(1-x)、LiMnO-LiNiO、LiNiCoMn(1-x-y)などの層状酸化物系材料や、LiMn1.5Ni0.5、LiMn(2-x)Niなどのスピネル系材料、LiNiPOなどのオリビン系材料、LiNiOF、LiNiOFなどのフッ化オリビン系材料などが挙げられ、これらのうちの1種、または2種以上の混合物を使用することができる。
 負極合剤層7に含まれる負極活物質としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーンなどの炭素材料や、リチウム金属材料、シリコンやスズなどの合金系材料、NbやTiOなどの酸化物系材料、あるいはこれらの複合物を用いることができる。
 正極合剤層2および負極合剤層7を構成する材料は、結着剤や導電助剤等を適宜加えた合剤である。導電助剤としては、カーボンブラック、炭素繊維、または黒鉛などのうちの1種、または2種以上の組み合せを用いることができる。また、結着剤としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、カルボキシメチルセルロース、変性アクリロニトリルゴム粒子などを用いることができる。
 正極集電箔3はアルミニウムまたはアルミニウム合金からなることが好ましい。負極集電箔8としては、銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金を用いることができる。
 電解液12としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状カーボネート類や、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類や、脂肪族カルボン酸エステル類や、γ-ブチロラクトン等のγ-ラクトン類や、鎖状エーテル類、環状エーテル類、などの有機溶媒のうちの1種、または2種以上の混合物を使用することができる。さらに、これらの有機溶媒にリチウム塩を溶解させることができる。
 セパレータ20は主に樹脂製の多孔膜、織布、不織布等からなり、その樹脂成分として、例えばポリプロピレンやポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、またはナイロン樹脂等を用いることができる。特にポリオレフィン系の微多孔膜は、イオン透過性と、正極と負極とを物理的に隔離する性能に優れているため好ましい。また、必要に応じて、セパレータ20には無機物粒子を含む層を形成してもよく、無機物粒子としては、絶縁性の酸化物、窒化物、硫化物、炭化物などを挙げることができ、なかでもTiOやAlを含むことが好ましい。
 外装容器には可撓性フィルム30からなるケースや缶ケース等を用いることができ、電池の軽量化の観点からは可撓性フィルム30を用いることが好ましい。可撓性フィルム30には、基材となる金属層の表面と裏面に樹脂層が設けられたものを用いることができる。金属層には、電解液12の漏出や外部からの水分の浸入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼などを用いることができる。金属層の少なくとも一方の面には、変性ポリオレフィンなどの熱融着性樹脂層が設けられる。可撓性フィルム30の熱融着性樹脂層同士を対向させ、電極積層体を収納する部分の周囲を熱融着することで外装容器が形成される。熱融着性の樹脂層が形成された面と反対側の面となる外装容器表面にはナイロンフィルム、ポリエステルフィルムなどの樹脂層を設けることができる。
 正極端子11には、アルミニウムやアルミニウム合金で構成されたもの、負極端子16には銅や銅合金あるいはそれらにニッケルメッキを施したものなどを用いることができる。それぞれの端子11,16の他端部側は外装容器の外部に引き出される。それぞれの端子11,16の、外装容器の外周部分の熱溶着される部分に対応する箇所には、熱融着性の樹脂をあらかじめ設けることができる。
 [正極の詳細な構造]
 図2Aは、本発明の主な特徴である正極1の一部を拡大して示す概略断面図である。本実施形態では、アルミニウムまたはアルミニウム合金を含む正極集電箔3と、リチウムとニッケルを含む化合物である正極活物質を含む正極合剤層2との間に、保護層4が設けられている。この保護層4は、多数の炭素粒子5と、結着剤9を含んでいる。保護層4の平均厚さは10μm以上100μm以下であり、好ましくは40μm以上100μm以下である。各炭素粒子5は、主平面5aとそれに直交する厚さ5bとを有する薄片状である。主平面5aの一方向(主に長手方向)の長さをL1、主平面5a内において一方向(長手方向)に直交する方向(直交方向)の長さをL2、厚さ方向の長さをL3とすると、本実施形態の炭素粒子は、5≧(L1/L2)≧1、(L1/L3)≧5、L2>L3、およびL1≧4μmの関係を満たす薄片状である。各炭素粒子5は、それぞれの主平面5aが保護層4の厚さ方向に交差し(非平行であり)、それぞれの厚さ5bが正極集電箔3の保護層形成面3aに対して交差する(非平行である)。好ましくは、各炭素粒子5の厚さ5bが保護層形成面3aに対して実質的に直交し、各炭素粒子5の主平面5aが保護層形成面3aに対して実質的に平行である。ただし、それ以外には、保護層4内での炭素粒子5の配置には特に制限はなく、むしろランダムである。すなわち、主平面5aのうちの一方向(長手方向)がその面内のいかなる方向であってもよい。そして、平面的に(保護層形成面3aに直交する方向に)見て、多数の炭素粒子5は部分的に互いに重なり合っている(鱗状にずれ重なっている)。
 この構成によると、正極合剤層2の正極活物質(例えばニッケル酸リチウム)が水と反応して生成された塩基(例えばLiOH)の移動が、保護層4の炭素粒子5に物理的に妨げられるため、正極集電箔3に到達する量が減少する。それにより、塩基(例えばLiOH)による正極集電箔3(主にアルミニウムまたはアルミニウム合金)の損傷が抑えられ、その上に位置する正極合剤層2が凹凸の少ない平坦面になる。
 保護層4を持たない正極1において正極集電箔3が塩基によって損傷して正極合剤層2の表面に凹凸が生じた状態を図3に示している。それに対し、本実施形態の正極合剤層2の表面の状態を図4に示している。この図3と図4を比較すると、本実施形態によって正極合剤層2の表面状態が平滑で良好になることが明らかである。それによって電池特性が良好になる。
 また、仮に金属酸化物等からなる保護層4を形成した場合には、導電性が低く、かつエネルギー密度が低く、正極1としての機能が不十分になる可能性がある。しかし、本実施形態の炭素粒子5を含む保護層4は、導電性もエネルギー密度も高く、正極1として十分に良好な機能を発揮することができる。
 以上説明した通り、本発明によると、5≧(L1/L2)≧1、(L1/L3)≧5、L2>L3、およびL1≧4μmの関係を満たす薄片状の炭素粒子5が、少なくとも主平面5aが保護層4の厚さ方向に交差するように(好ましくは主平面5aが保護層形成面3aに対して実質的に平行になるように)配置されている。従って、水および水に混じった塩基(例えばLiOH)が保護層4内を厚さ方向に移動することが、炭素粒子4によって物理的に阻止される。その結果、塩基が正極集電箔3に到達し難く、塩基による正極集電箔3の腐食が抑えられる。それにより、正極合剤層2の表面状態が平滑で良好である。また、炭素粒子5により、金属酸化物等に比べて高い導電性と高エネルギー密度が得られる。従って、正極1として良好な機能が発揮できる。
 さらに、本実施形態では、保護層4の平均厚さが、10μm以上100μm以下、好ましくは40μm以上100μm以下であり、二次電池の正極1として良好に機能する。この点について具体的な実験を行った結果を、以下の表1に示している。すなわち、保護層4の厚さが10μm未満である場合には、ニッケルとリチウムを含有する正極活物質を含む水系のスラリー(水溶液)を、アルミニウムまたはアルミニウム合金からなる正極集電箔3上に塗工すると、正極集電箔3の腐食がひどく、二次電池の正極1としての使用に適さないことが確認された。そして、保護層4が10μm以上20μm以下である場合には、初期容量が小さくて不十分な二次電池が構成されることがあるため歩留まりがあまり良くないが、ある程度の初期容量が得られた二次電池については、問題なく使用することが可能であった。この初期容量の低下の原因を分析した結果、正極合剤層2と保護層4との間に非常に微小なクラックが生じたことであると推察された。この問題については、製造された二次電池の初期容量を確認することによって容易に選別して不良品を取り除くことが可能である。保護層4が20μm以上40μm以下である場合には、正極集電箔3の腐食は確認されず、サイクル特性も良好であったが、初期容量が小さい二次電池が構成されるのを完全に無くすことはできなかった。そして、保護層4が40μm以上である場合には、正極集電箔3の腐食や、保護層4の正極集電箔3からの剥離は、一切生じなかった。さらに、二次電池の初期容量の低下やサイクル特性の低下も確認されず、きわめて優れた正極1が得られたことが確認された。ただし、保護層4が100μmよりも大きいと、保護層4が正極集電箔3から剥がれる可能性があり、正極合剤層2の形成(塗工工程)が困難になる場合がある。従って、体積あたりのエネルギー密度が高いことが必要な場合には、保護層4の平均厚さを10μm以上100μm以下にするとよい。ただし、保護層4の平均厚さが10μm以上40μm未満の場合には生産性が多少低いので、保護層4の平均厚さを40μm以上100μm以下とすることがより好ましい。
Figure JPOXMLDOC01-appb-T000001
 [二次電池の製造方法]
 図1A~2に示す二次電池の製造方法について説明する。
 まず、図5Aに示すように、複数の正極(正極シート)1を製造するための長尺の帯状の正極集電箔3の両面にそれぞれ、間欠的に保護層4および正極合剤層2を形成する。この正極1の製造方法について詳細に説明すると、アルミニウムまたはアルミニウム合金を含む正極集電箔3の表面に、炭素粒子5と結着剤9を含むスラリーを塗布する。このスラリーを乾燥させて固化させ、保護層4を形成する。その後に、正極活物質と結着剤と水とを含み溶剤を含まない、粘度が5000mPas以上10000mPas以下の水溶液(スラリー)を、保護層4上に塗布する。それから乾燥して固化させ、正極合剤層3を形成する。そして、この正極1を厚さ方向に押圧して、保護層4の平均厚さが10μm以上100μm以下(好ましくは40μm以上100μm)になるように圧縮する。その後、個々の積層型電池に使用する正極1を得るために、図5Aに破線で示す切断線90に沿って正極集電箔3を裁断して分割し、図2A,5Bに示す所望の大きさの正極1を得る。切断線90は仮想的な線であって実際には形成されない。
 また、図6Aに示すように、複数の負極(負極シート)6を製造するための長尺の帯状の負極集電箔8の両面にそれぞれ、間欠的に負極合剤層7を形成する。その後、個々の積層型電池に使用する負極6を得るために、図6Aに破線で示す切断線91に沿って負極集電箔8を裁断して分割し、図6Bに示す所望の大きさの負極6を得る。切断線91は仮想的な線であって実際には形成されない。
 このようにして形成された、図5Bに示す正極1と図6Bに示す負極6とを、セパレータ20を介して交互に積層し、正極端子11および負極端子16を接続することにより、電極積層体が形成される。この電極積層体を電解液12とともに、可撓性フィルム30からなる外装容器に収容し、封止することによって、図1A,1Bに示す二次電池100が形成される。
 正極合剤層2および負極合剤層7を、間欠的な塗布(間欠塗布)ではなく、図7Aに示すように、複数の電極形成部分に亘って隙間のない合剤層を形成するような連続的な塗布(連続塗布)によって形成してもよい。合剤層を連続塗布で形成する場合には、図7Aの切断線90に沿って裁断する前に図8に示すように電極ロールとして保管できる。図7A~8は正極1について示しているが、負極6に関しても同様に電極ロールを形成することができる。
 以上、いくつかの実施形態を参照して本発明を説明したが、本発明は上記した実施形態の構成に限られるものではなく、本発明の構成や細部に、本発明の技術的思想の範囲内で、当業者が理解し得る様々な変更を施すことができる。
 本出願は、2014年4月11日に出願された日本特許出願2014-81732号を基礎とする優先権を主張し、日本特許出願2014-81732号の開示の全てをここに取り込む。

Claims (10)

  1.  正極集電箔と正極合剤層とを含む正極と、負極集電箔と負極合剤層とを含む負極とが、セパレータを介して配置された電極積層体を含む二次電池であって、
     前記正極集電箔はアルミニウムまたはアルミニウム合金からなり、前記正極合剤層は少なくともニッケルとリチウムを含有する正極活物質を含み、前記正極集電箔と前記正極合剤層との間に保護層が形成されており、
     前記保護層は複数の炭素粒子を含み、
     前記炭素粒子は、主平面と該主平面に直交する厚さとを有し、前記主平面の一方向の長さL1と、前記主平面内で前記一方向に直交する方向の長さL2と、前記厚さ方向の長さL3が、5≧(L1/L2)≧1、(L1/L3)≧5、L2>L3、およびL1≧4μmの関係を満たす薄片状であり、
     前記炭素粒子は、前記保護層内で、前記主平面が少なくとも前記保護層の厚さ方向に対して交差するように配置され、
     前記保護層の平均厚さが10μm以上100μm以下である
     二次電池。
  2.  前記保護層の平均厚さは40μm以上100μm以下である、請求項1に記載の二次電池。
  3.  前記炭素粒子は黒鉛粒子である、請求項1または2に記載の二次電池。
  4.  前記電極積層体が電解液とともに外装容器内に収容されている、請求項1から3のいずれか1項に記載の二次電池。
  5.  正極集電箔と正極合剤層とを含む正極と、負極集電箔と負極合剤層とを含む負極とが、セパレータを介して配置された電極積層体を含む二次電池の製造方法であって、
     アルミニウムまたはアルミニウム合金からなる前記正極集電箔上に、炭素粒子を含む保護層を形成し、該保護層の上に、正極活物質を含む正極合剤層を形成することによって、前記正極を形成する工程を含み、
     前記保護層の形成時に、主平面と該主平面に直交する厚さとを有し、前記主平面の一方向の長さL1と、前記主平面内で前記一方向に直交する直交方向の長さL2と、前記厚さ方向の長さL3が、5≧(L1/L2)≧1、(L1/L3)≧5、L2>L3、およびL1≧4μmの関係を満たす薄片状の複数の炭素粒子を、前記保護層内で、前記主平面が少なくとも前記保護層の厚さ方向に対して交差するように配置し、
     前記正極合剤層の形成時に、前記正極活物質を含み粘度が5000mPas以上10000mPas以下の水溶液を前記保護層上に塗布してから乾燥する
     二次電池の製造方法。
  6.  前記正極活物質はニッケルとリチウムを含む、請求項5に記載の二次電池の製造方法。
  7.  前記保護層の平均厚さを10μm以上100μm以下にする、請求項5または6に記載の二次電池の製造方法。
  8.  前記保護層の平均厚さを40μm以上100μm以下にする、請求項7に記載の二次電池の製造方法。
  9.  前記炭素粒子は黒鉛粒子である、請求項5から8のいずれか1項に記載の二次電池の製造方法。
  10.  前記電極積層体を電解液とともに外装容器内に収容する工程をさらに含む、請求項5から9のいずれか1項に記載の二次電池の製造方法。
PCT/JP2015/056591 2014-04-11 2015-03-06 二次電池とその製造方法 WO2015156062A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580019231.XA CN106463698B (zh) 2014-04-11 2015-03-06 二次电池和用于制造其的方法
JP2016512634A JP6609548B2 (ja) 2014-04-11 2015-03-06 二次電池
US15/302,634 US20170033399A1 (en) 2014-04-11 2015-03-06 Secondary battery and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-081732 2014-04-11
JP2014081732 2014-04-11

Publications (1)

Publication Number Publication Date
WO2015156062A1 true WO2015156062A1 (ja) 2015-10-15

Family

ID=54287643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056591 WO2015156062A1 (ja) 2014-04-11 2015-03-06 二次電池とその製造方法

Country Status (4)

Country Link
US (1) US20170033399A1 (ja)
JP (1) JP6609548B2 (ja)
CN (1) CN106463698B (ja)
WO (1) WO2015156062A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061478A1 (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
US11387448B2 (en) 2018-01-09 2022-07-12 Toyota Jidosha Kabushiki Kaisha Positive electrode plate of lithium ion secondary battery, lithium ion secondary battery, and method of producing positive electrode plate of lithium ion secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110661001B (zh) 2018-12-29 2020-12-01 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110943223B (zh) * 2019-04-15 2021-12-24 宁德时代新能源科技股份有限公司 一种正极极片和电化学装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175810A (ja) * 2000-09-26 2002-06-21 Mitsubishi Chemicals Corp リチウム二次電池及び負極
JP2003157852A (ja) * 2001-11-19 2003-05-30 Denso Corp リチウム電池用正極の製造方法およびリチウム電池用正極
JP2013080627A (ja) * 2011-10-04 2013-05-02 Toyota Motor Corp 非水電解液二次電池
JP2013152926A (ja) * 2011-12-26 2013-08-08 Semiconductor Energy Lab Co Ltd 二次電池用正極および二次電池用正極の作製方法
JP2013229263A (ja) * 2012-04-27 2013-11-07 Toyo Ink Sc Holdings Co Ltd 電気化学素子用組成物および電気化学素子用電極
JP2014007141A (ja) * 2012-04-10 2014-01-16 Semiconductor Energy Lab Co Ltd 酸化グラフェン、それを用いた非水系二次電池用正極、及びその製造方法、非水系二次電池、電子機器
JP2014041835A (ja) * 2008-11-10 2014-03-06 Equos Research Co Ltd 二次電池及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120237824A1 (en) * 2009-09-25 2012-09-20 Daikin Industries, Ltd. Positive electrode current collector laminate for lithium secondary battery
US20110168550A1 (en) * 2010-01-13 2011-07-14 Applied Materials, Inc. Graded electrode technologies for high energy lithium-ion batteries
US20110200881A1 (en) * 2010-02-12 2011-08-18 Wang Connie P ELECTRODE FOR HIGH PEFORMANCE Li-ION BATTERIES
US8691441B2 (en) * 2010-09-07 2014-04-08 Nanotek Instruments, Inc. Graphene-enhanced cathode materials for lithium batteries
JP5598356B2 (ja) * 2011-01-28 2014-10-01 日立化成株式会社 リチウムイオン電池用の導電下地塗料
CN102569816B (zh) * 2012-02-14 2014-03-12 中南大学 一种锂硫电池正极及其制备方法
CN103165863A (zh) * 2012-12-07 2013-06-19 深圳市海太阳实业有限公司 一种正极极片及其制备方法、电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175810A (ja) * 2000-09-26 2002-06-21 Mitsubishi Chemicals Corp リチウム二次電池及び負極
JP2003157852A (ja) * 2001-11-19 2003-05-30 Denso Corp リチウム電池用正極の製造方法およびリチウム電池用正極
JP2014041835A (ja) * 2008-11-10 2014-03-06 Equos Research Co Ltd 二次電池及びその製造方法
JP2013080627A (ja) * 2011-10-04 2013-05-02 Toyota Motor Corp 非水電解液二次電池
JP2013152926A (ja) * 2011-12-26 2013-08-08 Semiconductor Energy Lab Co Ltd 二次電池用正極および二次電池用正極の作製方法
JP2014007141A (ja) * 2012-04-10 2014-01-16 Semiconductor Energy Lab Co Ltd 酸化グラフェン、それを用いた非水系二次電池用正極、及びその製造方法、非水系二次電池、電子機器
JP2013229263A (ja) * 2012-04-27 2013-11-07 Toyo Ink Sc Holdings Co Ltd 電気化学素子用組成物および電気化学素子用電極

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061478A1 (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
JP2018060604A (ja) * 2016-09-30 2018-04-12 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
US11387448B2 (en) 2018-01-09 2022-07-12 Toyota Jidosha Kabushiki Kaisha Positive electrode plate of lithium ion secondary battery, lithium ion secondary battery, and method of producing positive electrode plate of lithium ion secondary battery

Also Published As

Publication number Publication date
CN106463698A (zh) 2017-02-22
CN106463698B (zh) 2020-11-20
JPWO2015156062A1 (ja) 2017-04-13
US20170033399A1 (en) 2017-02-02
JP6609548B2 (ja) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6572204B2 (ja) 二次電池とその製造方法
JP6292678B2 (ja) 二次電池と電極の製造方法
JP6381045B2 (ja) 二次電池
JP6418650B2 (ja) 積層型二次電池および電極の製造方法
JP6621765B2 (ja) 二次電池
JP6521323B2 (ja) 二次電池とその製造方法
WO2016067706A1 (ja) 二次電池用電極の製造方法、二次電池用電極、および二次電池
JP7069612B2 (ja) 積層電極体、蓄電素子及び積層電極体の製造方法
JP6038813B2 (ja) 電極の製造方法及び非水電解質電池の製造方法
JP2022002216A (ja) 電気化学装置及び電子装置
JP2013201077A (ja) 非水電解質二次電池
JP6609548B2 (ja) 二次電池
JP2013025999A (ja) 非水二次電池
KR101858876B1 (ko) 비수 전해질 2차 전지와 그 제조 방법
JP5674357B2 (ja) リチウムイオン二次電池
JP2020092038A (ja) 二次電池およびその製造方法
JP6908073B2 (ja) 非水電解液二次電池
JP7113226B2 (ja) リチウム二次電池
TWI429128B (zh) 具新穎結構之電極組件及其製備方法
JP2006147185A (ja) 捲回電極およびその製造方法、並びにそれを用いた電池
JP2018147602A (ja) 二次電池
JP2014203909A (ja) 蓄電デバイス
JPWO2013098969A1 (ja) 電極の製造方法及び非水電解質電池の製造方法
JP2015191779A (ja) 二次電池用電極と二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512634

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15302634

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776715

Country of ref document: EP

Kind code of ref document: A1