JP2009283912A - 窒化物系半導体素子およびその製造方法 - Google Patents

窒化物系半導体素子およびその製造方法 Download PDF

Info

Publication number
JP2009283912A
JP2009283912A JP2009076259A JP2009076259A JP2009283912A JP 2009283912 A JP2009283912 A JP 2009283912A JP 2009076259 A JP2009076259 A JP 2009076259A JP 2009076259 A JP2009076259 A JP 2009076259A JP 2009283912 A JP2009283912 A JP 2009283912A
Authority
JP
Japan
Prior art keywords
nitride
layer
plane
substrate
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009076259A
Other languages
English (en)
Inventor
Yasuhito Miyake
泰人 三宅
Ryoji Hiroyama
良治 廣山
Masayuki Hata
雅幸 畑
Yasumitsu Kuno
康光 久納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009076259A priority Critical patent/JP2009283912A/ja
Priority to US12/429,854 priority patent/US8022427B2/en
Priority to CN200910137372.8A priority patent/CN101567417B/zh
Publication of JP2009283912A publication Critical patent/JP2009283912A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/12Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/32025Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth non-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Biophysics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】寿命が低下するのを抑制することが可能な窒化物系半導体素子を提供する。
【解決手段】この窒化物系半導体素子30は、基板11と、基板11の側端面30aの主表面側に形成された段差部21cと、側端面30aの反対側で、かつ、側端面30aと略平行な側端面30bの主表面側に形成された段差部21dと、主表面上に、段差部21cの側壁21aを起点とする(000−1)面からなる結晶成長面12aと、段差部21dの側壁21bを起点とする結晶成長面12bとを含む窒化物系半導体層12とを備える。
【選択図】図4

Description

本発明は、寿命の低下を抑制した窒化物系半導体素子およびその製造方法に関する。
従来、窒化ガリウム(GaN)などの窒化物系材料からなる発光素子では、DVDシステムなどに用いられる記録/再生用の光源として405nm青紫色半導体レーザ(LD)として実用化が進んでいる。また、窒化物系材料を用いて青色光や緑色光で発振する半導体レーザ素子の開発が行われている(たとえば、特許文献1および2参照)。
上記特許文献1に記載の窒化物系半導体チップの製造プロセスは、サファイア基板上に半導体材料が積層されたウェハに対して、半導体層の上面およびサファイア基板の下面に互いに対向する一対の割り溝を形成する工程と、この一対の割り溝の部分で半導体層およびサファイア基板を割ることによってウェハのチップ化を行う工程とを備えている。なお、一対の割り溝は、エッチングや、ダイヤモンドスクライブなどの機械的スクライブにより形成される。
また、上記特許文献2に記載のレーザチップの製造プロセスは、サファイア基板上に機能膜(半導体層)が積層されたウェハに対して、サファイア基板の上面側からCOレーザを1回または複数回に分けて照射することにより、機能膜およびサファイア基板に割り溝を形成しながらサファイア基板を割る工程を備えている。なお、サファイア基板は、COレーザによる割り溝の形成に加えて、レーザ照射時の熱応力を利用して割り溝が形成されていない部分が割断されることによりチップ化される。
特許第2780618号公報 特開平11−224866号公報
しかしながら、上記特許文献1および2に開示された半導体チップの製造プロセスでは、基板上に結晶成長により形成した半導体層に対して、エッチングや、機械的スクライブや、レーザスクライブなどによりチップ化のための割り溝を形成するために、割り溝の形成時に半導体層に欠陥が生じやすい。そして、窒化物系半導体素子が発光素子の場合、欠陥が半導体層を構成する発光層に達した場合、発光素子の発光効率が低下するという問題点があり、発光効率の低下に伴い素子に過度な発熱が生じる。また、窒化物系半導体素子が電界効果トランジスタ(FET)等の電子デバイスの場合、半導体層の欠陥に起因して異常発熱が発生するという問題が生じる。このため、発光素子や電子デバイス等の窒化物系半導体素子が劣化して寿命が低下するという問題点がある。
この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、窒化物系半導体素子の寿命が低下するのを抑制することが可能な窒化物系半導体素子およびその製造方法を提供することである。
この発明の第1の局面による窒化物系半導体素子は、基板と、基板の第1側端面の主表面側に形成された第1段差部と、第1側端面の反対側で、かつ、第1側端面と略平行な第2側端面の主表面側に形成された第2段差部と、主表面上に、第1段差部の第1側壁を起点とする(000−1)面からなる第1側面と、第2段差部の第2側壁を起点とする第2側面とを有する窒化物系半導体層とを備える。
この発明の第1の局面による窒化物系半導体素子では、上記のように、基板の第1段差部の第1側壁を起点とする第1側面と、基板の第2段差部の第2側壁を起点とする第2側面とを有する窒化物系半導体層を備える。これにより、窒化物系半導体層にエッチングや機械的スクライブやレーザスクライブなどにより割り溝を形成してチップ化された窒化物系半導体素子と異なり、第1側面および第2側面は、前述の方法で形成された割り溝からなる側面とはならない。したがって、第1側面および第2側面には、前述の方法により割り溝を形成した場合に半導体層に生じる欠陥などが存在しない。これにより、窒化物系半導体素子に異常発熱などが生じにくくなるので、窒化物系半導体素子の寿命が低下するのを抑制することができる。
上記第1の局面による窒化物系半導体素子において、好ましくは、窒化物系半導体層は、発光層を有し、窒化物系半導体素子は、発光素子である。このように構成すれば、第1側面および第2側面を有する半導体層には欠陥などが存在しないので、素子の発光効率の低下が抑制された半導体発光素子を容易に形成することができる。
上記第1の局面による窒化物系半導体素子において、好ましくは、窒化物系半導体素子は、電子デバイスである。このように構成すれば、第1側面および第2側面を有する半導体層には欠陥などが存在せず窒化物系半導体素子の異常発熱などが抑制されるので、窒化物系半導体素子の寿命の低下が抑制されるとともに、高周波特性の低下と雑音の発生等のデバイス性能の低下が抑制された電子デバイスを容易に形成することができる。
上記第1の局面による窒化物系半導体素子において、好ましくは、第1側壁は、(000−1)面からなる。このように構成すれば、基板の主表面上に(000−1)面からなる第1側面を有する窒化物系半導体層を形成する際に、(000−1)面からなる第1側壁を引き継ぐように窒化物系半導体層の(000−1)面が形成されるので、(000−1)面からなる第1側面を基板上に容易に形成することができる。
上記第1の局面による窒化物系半導体素子において、好ましくは、第2側面は、{A+B、A、−2A−B、2A+B}面(AおよびBは、A≧0、B≧0を満たし、かつ、AおよびBのいずれか一方が0ではない整数)からなる。このように構成すれば、第1段差部および第2段差部を有する基板の主表面上に窒化物系半導体層を成長させることにより、(000−1)面からなる第1側面に加えて、{A+B、A、−2A−B、2A+B}面からなる第2側面を容易に形成することができる。
上記第2側面が(A+B、A、−2A−B、2A+B)面からなる構成において、好ましくは、第2側面は、(1−101)面または(11−22)面からなる。このように構成すれば、これらの側面の表面が窒素面(N面)となり、平坦性が良好となる。なお、この理由は以下の通りと考えられる。(000−1)面や(A+B、A、−2A−B、2A+B)面のような成長速度の遅い面は表面エネルギーが低く、(1−100)面のような成長速度の速い面は表面エネルギーが高いと考えられる。結晶成長中の表面は、そのエネルギーが小さい方が安定であるため、(1−100)面以外の面が現れやすくなり、この結果、表面の平坦性が損なわれやすい。その一方、本発明では、主表面として成長させる(1−100)面よりも表面エネルギーの小さい(000−1)面や(A+B、A、−2A−B、2A+B)面を形成しながら(1−100)面を成長させた場合には、(1−100)面のみを成長面とした結晶成長を行う場合に比べて表面エネルギーを小さくすることができるので、成長面の平坦性が改善されると考えられる。
上記第1の局面による窒化物系半導体素子において、好ましくは、第1側面および第2側面は、窒化物系半導体層の結晶成長面(ファセット)からなる。このように構成すれば、上記第1側面および第2側面の2種類の成長面を、それぞれ、窒化物系半導体層の結晶成長と同時に形成することができる。また、結晶成長面からなる第1側面および第2側面には、エッチングや機械的スクライブやレーザスクライブなどによって生じる微細な凹凸形状が形成されない。これにより、微細な凹凸形状に起因して半導体層(発光層)に欠陥などが生じないので、前述の効果と同様に、窒化物系半導体素子の発光効率および寿命が低下するのをより一層抑制することができる。
上記第1の局面による窒化物系半導体素子において、好ましくは、基板は、窒化物系半導体からなる。このように構成すれば、窒化物系半導体からなる基板上に窒化物系半導体層を成長させる際に、第1側面および第2側面を容易に形成することができる。
上記第1の局面による窒化物系半導体素子において、好ましくは、基板は、下地基板と、下地基板上に形成され、AlGaNからなる下地層とを含み、下地基板および下地層の格子定数を、それぞれ、cおよびcとした場合、c>cの関係を有し、第1側面および第2側面は、それぞれ、下地層の(0001)面と下地基板の主表面とに実質的に平行に延びるように形成されたクラックの内側面を起点として形成される。このように構成すれば、下地層の格子定数が下地基板の格子定数よりも小さいので、下地基板上にAlGaNからなる下地層を形成する際に、下地層の内部に引張応力を生じさせることができる。この引張応力により、下地層の表面に凹部としてのクラックを容易に形成することができるので、このクラックを起点として第1側面および第2側面を形成することができる。
上記第1の局面による窒化物系半導体素子において、好ましくは、第1側面および第2側面は第1方向に沿って延びるとともに、窒化物系半導体素子は、第1方向に沿って延びる光導波路を有する。このように構成すれば、光導波路の延びる第1方向に沿って延びる第1側面および第2側面を、素子分割後の個々の窒化物系半導体素子の側面として利用することができる。
上記窒化物系半導体素子が光導波路を有する構成において、好ましくは、窒化物系半導体層は、発光層を備える。このように構成すれば、光導波路の延びる第1の方向に沿って延びる第1側面および第2側面を、素子分割後の個々の半導体レーザ素子あるいはスーパールミネッセントダイオードの側面として利用することができる。
上記窒化物系半導体素子が光導波路を有する構成において、好ましくは、窒化物系半導体層は、基板側から第1半導体層、発光層および第2半導体層が形成されるとともに、第2半導体層は、第1方向に沿って延びるリッジが形成されている。このように構成すれば、第2半導体層に形成されたリッジにより、第2半導体層の下部の発光層が発するレーザ光を外部に出射するための光導波路を、容易に形成することができる。
上記窒化物系半導体素子が光導波路を有する構成において、好ましくは、第1段差部および第2段差部は、第1方向に沿って延びる。このように構成すれば、光導波路と第1段差部および第2段差部が交差しないようにすることができる。
この発明の第2の局面による窒化物系半導体素子の製造方法は、基板の主表面に複数の凹部を形成する工程と、基板の主表面上に、凹部の第1側壁を起点として成長しながら形成される(000−1)面からなる第1側面と、第1側面と対向して、凹部の第2側壁を起点として成長しながら形成される第2側面とを備える複数の窒化物系半導体層を成長させる工程と、第1側面と第2側面とが対向する領域において、窒化物系半導体層が形成された基板を分割してチップ化する工程とを備える。
この第2の局面による窒化物系半導体素子の製造方法では、上記のように、基板の主表面に形成された凹部の第1側壁を起点として成長しながら形成される第1側面と、凹部の第2側壁を起点として成長しながら形成される第2側面とを含む窒化物系半導体層を成長させる工程と、第1側面と第2側面とが対向する領域において、窒化物系半導体層が形成された基板を分割してチップ化する工程とを備える。これにより、窒化物系半導体層にエッチングや機械的スクライブやレーザスクライブなどにより割り溝を形成してチップ化する場合と異なり、第1側面および第2側面は、前述の方法で形成された割り溝からなる側面とはならない。すなわち、前述の方法により割り溝を形成した場合に半導体層に生じる欠陥などが存在しないので、窒化物系半導体素子の発光効率(窒化物系半導体素子が発光層子の場合)や寿命などが低下するのが抑制された窒化物系半導体素子を形成することができる。
上記第2の局面による窒化物系半導体素子の製造方法において、好ましくは、チップ化する工程は、第1側面と第2側面とが対向する領域の凹部の底部において窒化物系半導体層が形成された基板が分割されるようにチップ化する工程とを備える。このように構成すれば、凹部の底部における基板の厚みは、凹部の底部以外の基板の厚みよりも小さいので、基板の厚みの小さな部分においてウェハを容易に素子分割することができる。
上記第2の局面による窒化物系半導体素子の製造方法において、好ましくは、窒化物系半導体層は、発光層を有し、窒化物系半導体素子は、発光素子である。このように構成すれば、第1側面および第2側面を有する半導体層には欠陥などが存在しないので、素子の発光効率の低下が抑制された半導体発光素子を容易に形成することができる。
上記第2の局面による窒化物系半導体素子の製造方法において、好ましくは、第1側壁は、(000−1)面をからなる。このように構成すれば、基板の主表面上に(000−1)面からなる第1側面を有する窒化物系半導体層を形成する際に、(000−1)面からなる第1側壁を引き継ぐように窒化物系半導体層の(000−1)面が形成されるので、(000−1)面からなる第1側面を基板上に容易に形成することができる。
上記第2の局面による窒化物系半導体素子の製造方法において、好ましくは、第2側面は、{A+B、A、−2A−B、2A+B}面(ここでA≧0およびB≧0であり、かつ、AおよびBの少なくともいずれか一方が0ではない整数)からなる。このように構成すれば、凹部を有する基板の主表面上に窒化物系半導体層を成長させることにより、(000−1)面からなる第1側面に加えて、{A+B、A、−2A−B、2A+B}面からなる第2側面を容易に形成することができる。
上記第2の局面による窒化物系半導体素子の製造方法において、好ましくは、凹部を形成する工程は、平面的に見て、基板の主表面にストライプ状に延びる(000−1)面を形成する工程を含む。このように構成すれば、基板上に形成された窒化物系半導体層の(000−1)面からなる第1側面を、基板のストライプ状に延びる(000−1)面に沿ってストライプ状に延びるように形成することができる。
また、上記第2の局面による窒化物系半導体素子の製造方法では、以下のように構成してもよい。
すなわち、上記第2の局面による窒化物系半導体素子の製造方法において、好ましくは、窒化物系半導体層を成長させる工程は、第1側面および第2側面によって、基板から窒化物系半導体層の厚み方向に沿って遠ざかる方向に窒化物系半導体層の平面積が小さくなるように窒化物系半導体層を成長させる工程を含む。このように構成すれば、基板とは反対側の半導体層の表面に、第1側面と第2側面とによって基板の凹部の平面積よりも大きな空間(ウェハ状態での第1側面と第2側面とが対向する領域(凹部の上部領域))が形成されるので、窒化物系半導体素子にチップ化する際、第1側面と第2側面との間でウェハを容易に分割することができる。
また、上記第2の局面による窒化物系半導体素子の製造方法において、好ましくは、窒化物系半導体素子は、光導波路を有する発光層を備え、窒化物系半導体層を成長させる工程は、第1側面および第2側面が、光導波路の延びる方向に沿って延びるように窒化物系半導体層を成長させる工程を含む。このように構成すれば、光導波路の延びる第1方向に沿って延びる第1側面および第2側面を、素子分割後の個々の半導体レーザ素子の側面として容易に利用することができる。
また、上記第2の局面による窒化物系半導体素子の製造方法において、好ましくは、基板は、下地基板と、下地基板上に形成された下地層とを含み、凹部を形成する工程は、下地層に凹部を形成する工程を含む。このように構成すれば、下地基板の主表面上に窒化物系半導体層を形成する際に、下地層に形成された凹部を利用して、この凹部の内側面(第1側壁)を引き継ぐように(000−1)面からなる第1側面を有する窒化物系半導体層を容易に形成することができる。
この場合、好ましくは、下地層はAlGaN層を含み、下地基板および下地層の格子定数を、それぞれ、cおよびcとした場合、c>cの関係を有し、凹部を形成する工程は、下地層に、(0001)面と実質的に平行に形成されるクラックの一方の面からなる凹部を形成する工程を含む。このように構成すれば、下地基板上にAlGaNからなる下地層を形成する際に、下地層の格子定数cが下地基板の格子定数cよりも小さい(c>c)ので、下地基板側の格子定数cに合わせようとして下地層の内部に引張応力が生じる。この結果、下地層の厚みが所定の厚み以上の場合にはこの引張応力に耐え切れずに下地層には(000−1)面に沿ってクラックが形成される。これにより、下地層の上に窒化物系半導体層の(000−1)面を形成するための基準となる(000−1)面からなる端面を、容易に下地層に形成することができる。この結果、基板上に窒化物系半導体層を形成する際に、下地層に形成されたクラックの一方の面からなる(000−1)面を引き継ぐように、(000−1)面からなる第1側面を有する窒化物系半導体層を容易に形成することができる。
本発明の窒化物系半導体素子の概略的な構成を説明するための斜視図である。 窒化物系半導体の結晶方位と、本発明の窒化物系半導体発光素子の基板の主表面の法線方向の範囲を示した図である。 本発明の窒化物系半導体素子の概略的な製造プロセスを説明するための断面図である。 本発明の第1実施形態の窒化物系半導体レーザ素子の構造を示した断面図である。 本発明の第1実施形態の窒化物系半導体レーザ素子を備えた半導体レーザの構造を示した斜視図である。 本発明の第1実施形態の窒化物系半導体レーザ素子の製造プロセスを説明するための平面図である。 本発明の第1実施形態の窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第1実施形態の窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第1実施形態の窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第1実施形態の窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第2実施形態の窒化物系半導体レーザ素子の構造を示した断面図である。 本発明の第2実施形態の窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第2実施形態の窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第3実施形態の窒化物系半導体レーザ素子の構造を示した断面図である。 本発明の第3実施形態の窒化物系半導体レーザ素子の製造プロセスを説明するための平面図である。 本発明の第3実施形態の窒化物系半導体レーザ素子の製造プロセスを説明するための平面図である。 本発明の第4実施形態の窒化物系半導体レーザ素子の構造を示した断面図である。 本発明の第4実施形態の窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第4実施形態の製造プロセスにおけるn型GaN基板上の窒化物系半導体層の結晶成長の様子を走査型電子顕微鏡(SEM)を用いて観察した断面SEM写真である。 本発明の第4実施形態の製造プロセスにおけるn型GaN基板上の窒化物系半導体層の結晶成長の様子を走査型電子顕微鏡(SEM)を用いて観察した断面SEM写真である。 本発明の第5実施形態の窒化物系半導体レーザ素子の構造を示した断面図である。 本発明の第6実施形態の発光ダイオードチップ(LEDチップ)の構造を示した断面図である。 本発明の第6実施形態のLEDチップの製造プロセスを説明するための断面図である。 本発明の第7実施形態の電界効果トランジスタ(FET)の構造を示した斜視図である。 本発明の第7実施形態のFETの製造プロセスを説明するための断面図である。 本発明の第7実施形態のFETの製造プロセスを説明するための断面図である。 本発明の第7実施形態のFETの製造プロセスを説明するための断面図である。
以下、本発明の実施形態を図面に基づいて説明する。
まず、図1を参照して、本発明の具体的な実施形態を説明する前に、本発明の窒化物系半導体素子の概略的な構成について、窒化物系半導体レーザ素子10を例に説明する。
窒化物系半導体レーザ素子10は、図1に示すように、成長用基板1上に、第1半導体層2、発光層3および第2半導体層4がこの順に積層された窒化物系半導体層5が形成されている。窒化物系半導体層5には、共振器方向(A方向)に延びる側面10aおよび側面10bが形成されている。ここで、側面10aが(000−1)面からなる場合、側面10bは、{A+B、A、−2A−B、2A+B}面(ここでA≧0およびB≧0を満たし、かつ、AおよびBの少なくともいずれか一方が0ではない整数)からなることが好ましい。
また、窒化物系半導体レーザ素子10のB方向の側面10aおよび側面10bは、成長用基板1の主表面の側端面10cに形成された段差部1bの側壁1d、および、成長用基板1の主表面の側端面10dに形成された段差部1cの側壁1eをそれぞれ起点として成長しながら形成される。したがって、側面10aおよび側面10bは、結晶成長面からなり高い平坦性を有している。なお、成長用基板1は、本発明の「基板」の一例であり、第1半導体層2、発光層3および第2半導体層4は、それぞれ、本発明の「窒化物系半導体層」の一例である。また、側面10aおよび10bは、それぞれ、本発明の「第1側面」および「第2側面」の一例であり、側端面10cおよび10dは、それぞれ、本発明の「第1側端面」および「第2側端面」の一例である。また、段差部1bおよび1cは、それぞれ、本発明の「第1段差部」および「第2段差部」の一例であり、側壁1dおよび1eは、それぞれ、本発明の「第1側壁」および「第2側壁」の一例である。
また、窒化物系半導体層5の第2半導体層4には、メサ形状の凸部と凸部の両側の平坦部とが形成されている。この凸部は、共振器面10e側から見て共振器方向(A方向)と略平行にストライプ状に延びるように形成されることにより、窒化物系半導体レーザ素子10のリッジ4aが構成されている。また、リッジ4aの下部に位置する発光層3の部分に光導波路が形成されている。なお、導波路構造の形成方法は、リッジを形成する方法に限らず、埋め込みヘテロ構造などにより導波路構造を形成してもよい。また、共振器面10eは、(−A、A+B、−B、0)面からなり、光導波路とリッジ4aとは[0001]方向と垂直で、かつ、基板(成長用基板1)の主表面の面内方向である[−A、A+B、−B、0]方向に延びている。また、第2半導体層4の平坦部の上面と凸部の両側面とを覆うようにSiOなどからなる電流ブロック層6が形成されている。また、成長用基板1の下面上には、第1電極7が形成されるとともに、第2半導体層4の凸部(リッジ4a)上と電流ブロック層6上を覆うように、第2電極8が形成されている。
また、本発明において、成長用基板1は、基板または半導体層により構成されていてもよいし、基板と半導体層との両方により構成されていてもよい。また、成長用基板1が基板と半導体層との両方により構成される場合、半導体層は、基板と第1半導体層2との間に形成される。また、成長用基板1は、半導体層を成長させた後に半導体層の成長面(主表面)に半導体層を支持するための支持基板として用いてもよい。
また、基板は、GaN基板やα−SiC基板を用いることができる。GaN基板およびα−SiC基板上には、基板と同じ主表面を有する窒化物系半導体層が形成される。たとえば、α−SiC基板のa面およびm面上には、それぞれ、a面およびm面を主表面とする窒化物系半導体層が形成される。また、a面を主表面とする窒化物系半導体が形成されたr面サファイア基板を基板として用いてもよい。また、a面およびm面を主表面とする窒化物系半導体層が形成されたLiAlO基板またはLiGaO基板を基板として用いることができる。
また、pn接合型の窒化物系半導体レーザ素子10では、第1半導体層2と第2半導体層4とは互いに異なる導電性を有する。第1半導体層2がp型であり第2半導体層4がn型であってもよいし、第1半導体層2がn型であり第2半導体層4がp型であってもよい。
また、第1半導体層2および第2半導体層4は、発光層3よりもバンドギャップの大きいクラッド層(図示せず)などを含んでいてもよい。また、第1半導体層2および第2半導体層4は、それぞれ、発光層3から近い順に、クラッド層とコンタクト層(図示せず)とを含んでいてもよい。この場合、コンタクト層は、クラッド層よりもバンドギャップが小さいことが好ましい。
また、量子井戸の発光層3としては、井戸層としてGaInN、障壁層として井戸層よりもバンドギャップの大きいAlGaN、GaNおよびGaInNを用いることができる。また、クラッド層およびコンタクト層としては、GaNおよびAlGaNを用いることができる。
また、窒化物系半導体層5を、InGaN、AlN、InN、BN、TlNおよびこれらの混晶からなるウルツ鉱構造の窒化物系半導体層により形成してもよい。
また、第2電極8は、第2半導体層4上の一部の領域に形成してもよい。なお、窒化物系半導体素子が、発光ダイオード(LED)である場合、光の取出面(上面)の第2電極8は、透光性を有するのが好ましい。
上記では、窒化物系半導体素子として、発光素子(レーザ素子)を例にとって説明したが、本発明は、トランジスタなどの電子デバイスや、フォトダイオードや太陽電池などの受光素子にも適用可能である。
次に、図2を参照して、本発明の窒化物系半導体素子の基板の面方位について説明する。
図2に示すように、符号9aで示される半導体層の主表面または成長用基板9の表面の法線方向は、それぞれ、線300と、線400と、線500と、線600とによって囲まれる範囲(斜線でハッチングされた領域)を通る方向である。ここで、線300は、[11−20]方向と略[10−10]方向とを結ぶ線であり、線300を通る方向は、[C+D、C、−2C−D、0]方向(C≧0およびD≧0を満たし、かつ、CおよびDの少なくともいずれか一方が0ではない整数)である。また、線400は、[11−20]方向と略[11−2−5]方向とを結ぶ線であり、線400を通る方向は、[1、1、−2、−E]方向(0≦E≦5))である。また、線500は、[10−10]方向と略[10−1−4]方向とを結ぶ線であり、線500を通る方向は、[1、−1、0、−F]方向(0≦F≦4))である。また、線600は、略[11−2−5]方向と略[10−1−4]方向とを結ぶ線であり、線600を通る方向は、[G+H、G、−2G−H、−5G−4H]方向(G≧0およびH≧0を満たし、かつ、GおよびHの少なくともいずれか一方が0ではない整数))である。
次に、図1および図3を参照して、本発明の窒化物系半導体素子の概略的な製造方法について、窒化物系半導体レーザ素子10の製造を例にとって説明する。
まず、図3に示すように、所定の方向(図1のA方向)に延びる複数の凹部1aが形成された成長用基板1の上面上に、側面10aと側面10bとを有するように、窒化物系半導体層5を形成する。この際、成長用基板1と第1半導体層2との間にバッファ層を形成してもよい。
ここで、より具体的には、半導体層の主表面または成長用基板1の表面をa面((11−20)面)とすることにより、凹部1aの側壁1dを起点とする(000−1)面からなる側面10aと、凹部1aの側壁1eを起点とする(11−22)面からなる側面10bとを形成することができる。また、半導体層の主表面または成長用基板1の表面をm面((1−100)面)とすることにより、凹部1aの側壁1dを起点とする(000−1)面からなる側面10aと、凹部1aの側壁1eを起点とする(1−101)面からなる側面10bとを形成することができる。また、半導体層の主表面または成長用基板1の表面を(11−2−2)面とすることにより、凹部1aの側壁1dを起点とする(000−1)面からなる側面10aと、凹部1aの側壁1eを起点とする(11−22)面からなる側面10bとを容易に形成することができる。また、半導体層の主表面または成長用基板1の表面を(1−10−2)面とすることにより、凹部1aの側壁1dを起点とする(000−1)面からなる側面10aと、凹部1aの側壁1eを起点とする(1−101)面からなる側面10bとを容易に形成することができる。
より具体的には、たとえば、m面((1−100)面)やa面((11−20)面)などのn型GaN基板の(000±1)面に垂直な主表面上に溝部(凹部)を形成した後に、窒化物系半導体層5を形成してもよい。あるいは、a面((11−20)面)などのn型GaN基板の(000±1)面に垂直な主表面上に下地層を介して窒化物系半導体層5を形成してもよい。
また、成長用基板1の側壁1dを(000−1)面により構成することによって、成長用基板1の主表面上に(000−1)面からなる側面10aを有する窒化物系半導体層5を形成する際に、(000−1)面からなる側壁1dを引き継いで半導体層の(000−1)面が形成されるので、(000−1)面からなる側面10aを成長用基板1の表面上に容易に形成することが可能となる。
また、半導体層をウルツ鉱構造の窒化物系半導体により構成する場合、成長用基板1は、窒化物系半導体基板または異種基板を用いることが可能である。窒化物系半導体ではない異種基板としては、たとえば、六方晶構造および菱面体構造のα−SiC基板、GaAs基板、GaP基板、InP基板、Si基板、サファイア基板、スピネル基板およびLiAlO基板などを用いることが可能である。また、a面((11−20)面)を主表面とする窒化物系半導体を予め成長させたr面((1−102)面)サファイア基板や、a面またはm面((1−100)面)を主表面とする窒化物系半導体を予め成長させたa面SiC基板またはm面SiC基板などを使用することも可能である。また、m面を主表面とする窒化物系半導体を予め成長させたLiAlOやLiGaO基板などの(100)面基板を使用することも可能である。なお、窒化物系半導体基板を用いることにより、最も結晶性のよい窒化物系半導体層を得ることができる。
その後、図3に示すように、第2半導体層4の上面の所定領域をドライエッチングする。これにより、各第2半導体層4の凸部によって構成される複数のリッジ4aが形成される。そして、第2半導体層4の凸部以外の平坦部の上面上およびリッジ4aの両側面を覆うように電流ブロック層6を形成する。その後、第1半導体層2の下面上に第1電極7を形成するとともに、電流ブロック層6上に第2電極8を形成する。
最後に、図3に示したウェハ状態の窒化物系半導体レーザ素子10に対してバー状劈開を行うとともに、成長用基板1の凹部1aの部分の分割線200(破線で示す)に沿って共振器方向(リッジ4aの延びる方向)に沿って素子分割を行うことにより、図1に示すチップ化された個々の窒化物系半導体レーザ素子10が形成される。
本発明による窒化物系半導体レーザ素子10では、上記のように、成長用基板1の段差部1bの側壁1dを起点とする側面10aと、成長用基板1の段差部1cの側壁1eを起点とする側面10bとを窒化物系半導体層5を備える。これにより、窒化物系半導体層5にエッチングや機械的スクライブやレーザスクライブなどにより割り溝を形成してチップ化された窒化物系半導体レーザ素子と異なり、側面10aおよび10bは、前述の方法で形成された割り溝からなる側面とはならない。したがって、側面10aおよび10bには、前述の方法により割り溝を形成した場合に発光層3に生じる欠陥などが存在しないので、窒化物系半導体レーザ素子10の発光効率の低下を抑制することができる。これにより、窒化物系半導体レーザ素子10に異常発熱などが生じにくくなるので、窒化物系半導体レーザ素子10の寿命が低下するのを抑制することができる。
また、本発明による窒化物系半導体レーザ素子10の製造プロセスでは、成長用基板1の凹部1aの側壁1dを起点として成長しながら形成される側面10aと、成長用基板1の凹部1aの側壁1eを起点として成長しながら形成される側面10bとを含む窒化物系半導体層5を成長させる工程を備える。これにより、窒化物系半導体層5が成長用基板1上に結晶成長する際に、成長層の上面(窒化物系半導体層5の主表面)が成長する成長速度よりも、側面10aおよび側面10bがそれぞれ形成される成長速度が遅いので、成長層の上面(主表面)が平坦性を保ちながら成長する。これにより、上記の側面10aおよび10bからなる側面を形成しない場合の窒化物系半導体層5の成長層表面と比較して、発光層3を有する半導体層の表面の平坦性をより向上させることができる。なお、この理由は、以下の通りと考えられる。
(000−1)面や{A+B、A、−2A−B、2A+B}面のような成長速度の遅い面は表面エネルギーが小さい一方、成長速度の速い面の一例として、たとえば(1−100)面などは表面エネルギーが大きいと考えられる。結晶成長中の表面は、表面エネルギーが小さい方がより安定であるため、上記(1−100)面のみを成長面とした結晶成長を行う場合、(1−100)面よりも表面エネルギーが小さい(1−100)面以外の面が現れやすくなる。この結果、成長面(主表面)の平坦性が損なわれやすい。一方、本発明では、たとえば主表面として成長させる(1−100)面などよりも表面エネルギーの小さい(000−1)面や{A+B、A、−2A−B、2A+B}面を形成しながら成長面((1−100)面)を成長させるので、上記(1−100)面のみを成長面とした結晶成長を行う場合に比べて、成長面(主表面)の表面エネルギーを小さくすることができる。これにより、成長面の平坦性が改善されると考えられる。
また、本発明による窒化物系半導体レーザ素子10の製造プロセスでは、窒化物系半導体層5を、側面10aおよび10bによって、成長用基板1から窒化物系半導体層5の積層方向に沿って遠ざかる方向(C2方向)に窒化物系半導体層5の平面積が小さくなる(先細り形状になる)ように形成することによって、成長用基板1と反対側(C2側)の窒化物系半導体層5の表面に、側面10aおよび10bによって段差部1bおよび1c(凹部1a)における平面積よりも大きな空間(凹部1aの上部領域(図3参照))が形成されるので、窒化物系半導体素子をチップ化する際、側面10aと側面10bとの間でウェハを容易に分割することができる。
以下、上記した本発明の概念を具体化した実施形態を図面に基づいて説明する。
(第1実施形態)
図4および図5を参照して、第1実施形態の窒化物系半導体レーザ素子30の構造について説明する。
この第1実施形態による窒化物系半導体レーザ素子30は、(11−2−2)面を主表面としたウルツ鉱構造の窒化物半導体からなる。
また、窒化物系半導体レーザ素子30は、図4に示すように、約100μmの厚みを有するn型GaN基板11上に、発光素子層12が形成されている。また、発光素子層12には、約2.0μmの厚みを有するn型Al0.05Ga0.95Nからなるn型クラッド層13と、約3nmの厚みを有するGa0.7In0.3Nからなる井戸層(図示せず)と、約20nmの厚みを有するGaNからなる障壁層(図示せず)とを積層したMQW構造からなる発光層14とが形成されている。また、発光層14上には、約0.5μmの厚みを有するp型Al0.05Ga0.95Nからなり、約0.4μmの高さ(厚み)を有する凸部と凸部の両側(B方向)に約0.1μmの厚みを有する平坦部とからなるp型クラッド層15が形成されている。このp型クラッド層15の凸部によって、電流通路となるリッジ15aが構成されている。また、リッジ15aの下部に位置する発光層14の部分に光導波路が形成されている。なお、n型GaN基板11は、本発明の「基板」の一例であり、発光素子層12、n型クラッド層13、発光層14およびp型クラッド層15は、それぞれ、本発明の「窒化物系半導体層」の一例である。また、n型クラッド層13およびp型クラッド層15は、それぞれ、本発明の「第1半導体層」および「第2半導体層」の一例である。なお、n型GaN基板11とn型クラッド層13との間にn型Al0.01Ga0.99Nからなるバッファ層(図示せず)が形成されていてもよいし、発光層14とn型クラッド層13およびp型クラッド層15との間のそれぞれに光ガイド層(図示せず)が形成されていてもよい。また、発光層14とp型クラッド層15との間にキャップ層(図示せず)が形成されていてもよい。また、p型クラッド層15の凸部上には、p側オーミック電極16が形成されている。なお、p型クラッド層15とp側オーミック電極16との間には、p型コンタクト層が形成されていてもよい。
ここで、第1実施形態では、n型クラッド層13からp型クラッド層15にかけて、発光素子層12の(000−1)面からなる結晶成長面12aと、製造プロセスにおいて結晶成長面12aと対向する領域に形成される(11−22)面からなる結晶成長面12bとによって、窒化物系半導体レーザ素子30の共振器方向([1−100]方向(A方向))に延びる側面が形成されている。なお、結晶成長面12aおよび12bは、それぞれ、本発明の「第1側面」および「第2側面」の一例である。
また、結晶成長面12aおよび12bは、後述する製造プロセス時に、それぞれ、n型GaN基板11の主表面に予め形成され、[1−100]方向(A方向)に延びる溝部21(段差部21cおよび21d)の内側面21aおよび21bを起点として、n型GaN基板11の主表面に対して所定の角度傾斜して延びる傾斜面として形成されている。具体的には、結晶成長面12aは、発光素子層12の上面(主表面)が成長する[11−2−2]方向に対して約32°傾斜して延びる。また、結晶成長面12bは、[11−2−2]方向に対して約26°傾斜して延びる。これにより、半導体レーザ素子30は、図4に示すように、共振器面に沿った方向(B方向)の断面が、発光素子層12の部分でn型GaN基板11の主表面から遠ざかる方向(C2方向)に沿って先細りするような形状を有する。なお、溝部21、内側面21aおよび21bは、それぞれ、本発明の「凹部」、「第1側壁」および「第2側壁」の一例である。
また、結晶成長面12aおよび12bは、発光素子層12の上面(主表面)に対して鈍角をなすように形成されている。具体的には、結晶成長面12aは、発光素子層12の上面に対して約122°傾斜するとともに、結晶成長面12bは、発光素子層12の上面に対して約116°傾斜する。なお、図4では、図示の関係上、1つの半導体レーザ素子30にのみ構成要素を示す符号を付しているが、左隣に並ぶ半導体レーザ素子30(外形を破線で示す)についても、同様の構成を有する。
また、図4に示すように、p側オーミック電極16およびp型クラッド層15の凸部の両側面、p型クラッド層15の平坦部、結晶成長面12aおよび12b、および、溝部21の内側面21a(21b)を覆いながら所定の形状を有するように、SiOからなる絶縁膜17aが形成されている。また、p側オーミック電極16および絶縁膜17aの上面を覆うように、p側パッド電極18が形成されている。また、n型GaN基板11上の下面上には、n型GaN基板11に近い順に、n側オーミック電極19およびn側電極20が形成されている。なお、n側オーミック電極19の両側(B方向)には、SiOからなる絶縁膜17bがそれぞれ形成されている。
また、第1実施形態の窒化物系半導体レーザ素子30を備えた半導体レーザでは、図5に示すように、窒化物系半導体レーザ素子30が、AuSnなどの導電性接着層31を介して、サブマウント32に固定されている。また、サブマウント32は、導電性接着層31を介して、金属製のステム33に設けられた台座部34に固定されている。このステム33には、2つのリード端子35および36が設けられている。
また、窒化物系半導体レーザ素子30の上面は、図5に示すように、Auワイヤ37を用いて、ステム33のリード端子35にワイヤボンディングされている。また、サブマウント32の上面32aは、下地金属38を介してAuワイヤ39を用いて台座部34にワイヤボンディングされている。また、ステム33本体には、レーザ光が透過する窓付きの図示しないキャップが取り付けられている。
次に、図4および図6〜図10を参照して、第1実施形態の窒化物系半導体レーザ素子30の製造プロセスについて説明する。
まず、図6および図7に示すように、エッチング技術を用いて、n型GaN基板11の(11−2−2)面からなる主表面に、B方向に約5μmの幅W1を有するとともに、約2μmの深さを有し、[1−100]方向(A方向)に延びる複数の溝部21を形成する。なお、図6では、太い斜線部分が溝部21としてエッチングされた領域である。また、溝部21は、B方向に、約300μm(=W1+L1(L1=約295μm))周期でストライプ状に形成される。なお、溝部21をB方向に形成する間隔を約2μm〜約1mmの範囲として溝部21を形成してもよい。これにより、図7に示すように、n型GaN基板11の溝部21には、内側面21aと21bとが形成される。
次に、図8に示すように、有機金属気相成長(MOCVD)法を用いて、溝部21を有するn型GaN基板11上に、n型クラッド層13、発光層14およびp型クラッド層15などを順次積層することにより、発光素子層12を形成する。
この際、第1実施形態では、図8に示すように、n型GaN基板11上に発光素子層12を成長させた場合、[1−100]方向にストライプ状に延びる溝部21の内側面21aにおいて、発光素子層12は、n型GaN基板11の[11−2−2]方向(C2方向)に対して所定の角度(約32°)傾斜した方向に延びる(000−1)面からなる結晶成長面12aを形成しながら結晶成長する。また、溝部21の内側面21aに対向する内側面21b側では、発光素子層12は、n型GaN基板11の[11−2−2]方向(C2方向)に対して所定の角度(約26°)傾斜した方向に延びる(11−22)面からなる結晶成長面12bを形成しながら結晶成長する。これにより、結晶成長面12aおよび12bは、それぞれ、発光素子層12の上面(主表面)に対して鈍角をなすように形成される。
その後、図9に示すように、p型クラッド層15の上面上に、フォトリソグラフィによるレジストパターン(図示せず)を形成した後、そのレジストパターンをマスクとしてp型クラッド層15の上面からC1方向に向かって所定の領域をエッチングする。これにより、p型クラッド層15の凸部によって構成されるリッジ15aが形成される。そして、p型クラッド層15の凸部および平坦部を含む上面上(リッジ15aを含む)、結晶成長面12aおよび12b、および、溝部21の内側面21a(21b)を覆うようにSiOからなる絶縁膜17aを形成する。この際、結晶成長面12aおよび12bと溝部21とに囲まれた凹部25(図8参照)は、絶縁膜17aによって完全に埋め込まれる。
その後、リッジ15a上に対応する領域の絶縁膜17aの部分をエッチング加工により除去してp型クラッド層15の上面を露出させるとともに、露出されたリッジ15a上に、真空蒸着法によりp側オーミック電極16(図9参照)を形成する。そして、p側オーミック電極16の上面および絶縁膜17aの上面に沿って、p側パッド電極18(図9参照)を形成する。
また、図9に示すように、n型GaN基板11の下面上に、SiOからなる絶縁膜17bを形成する。その後、絶縁膜17bの所定領域をエッチング加工により除去するとともに、除去された部分(n型GaN基板11の下面上)に、真空蒸着法によりp側オーミック電極19を形成する。さらに、p側オーミック電極19上およびp側オーミック電極19の両側(B方向)の絶縁膜17b上に、真空蒸着法によりn側電極20を形成する。
次に、図10に示すように、n型GaN基板11の溝部21に対向する下面の絶縁膜17bの部分に、レーザスクライブまたはダイヤモンドスクライブなどの機械式スクライブにより、n型GaN基板11の溝部21と平行に延びる直線状のスクライブ溝22を形成する。なお、スクライブ溝22は、絶縁膜17bの下部のn型GaN基板11まで達する深さを有するように形成される。
その後、図10に示したウェハ状態の窒化物系半導体レーザ素子30に対してバー状劈開を行い、共振器面を形成する。さらに、図10に示すように、先端が鋭利な、たとえば、楔23などを上方から垂直方向(C2方向)にバー状態の窒化物系半導体レーザ素子30に向かって押圧することにより、ウェハをスクライブ溝22の位置(破線で示す)でB方向に分離する。これにより、図4に示したチップ化された個々の窒化物系半導体レーザ素子30が形成される。なお、ウェハをB方向に素子分離することによって、溝部21が、窒化物系半導体レーザ素子30のB方向の側端面30aおよび30bの一部である段差部21cおよび21d(図4参照)として形成される。なお、側端面30aおよび30bは、それぞれ、本発明の「第1側端面」および「第2側端面」の一例であり、段差部21cおよび21dは、それぞれ、本発明の「第1段差部」および「第2段差部」の一例である。
第1実施形態では、上記のように、n型GaN基板11の主表面に形成された溝部21の内側面21aおよび21bをそれぞれ起点とする結晶成長面12aおよび12bを含む発光素子層12を備える。これにより、発光素子層12にエッチングや機械的スクライブやレーザスクライブなどにより割り溝を形成してチップ化された窒化物系半導体レーザ素子と異なり、結晶成長面12aおよび12bは、前述の方法で形成された割り溝からなる側面とはならない。したがって、結晶成長面12aおよび12bには、前述の方法により割り溝を形成した場合に発光層14に生じる欠陥などが存在しないので、窒化物系半導体レーザ素子30の発光効率の低下を抑制することができる。これにより、窒化物系半導体レーザ素子30に異常発熱などが生じにくくなるので、窒化物系半導体レーザ素子30の寿命が低下するのを抑制することができる。
また、第1実施形態の製造プロセスでは、n型GaN基板11の主表面に形成された溝部21の内側面21aおよび21bをそれぞれ起点として成長しながら形成される結晶成長面12aおよび12bを含む発光素子層12を成長させる工程を備える。これにより、発光素子層12がn型GaN基板11上に結晶成長する際に、成長層の上面(発光素子層12の主表面)が成長する成長速度よりも、内側面21aおよび21bをそれぞれ起点とした結晶成長面12aおよび12bが形成される成長速度が遅いので、成長層の上面(主表面)が平坦性を保ちながら成長する。これにより、上記結晶成長面12aおよび12bからなる側面を形成しない場合の発光素子層の成長層表面と比較して、発光層14を有する発光素子層12の表面の平坦性をより向上させることができる。
また、第1実施形態では、結晶成長面12bが(11−22)面からなるように構成することによって、溝部21が形成されたn型GaN基板11の表面上に発光素子層12を成長させることにより、(000−1)面からなる結晶成長面12aに加えて、(11−22)面からなる結晶成長面12bを容易に形成することができる。
また、第1実施形態では、結晶成長面12aおよび12bを、発光素子層12の主表面(上面)に対して鈍角をなすように形成することによって、結晶成長面12aおよび12bが対向する領域(n型GaN基板11の溝部21の上部領域(図8の凹部25))が、n型GaN基板11から発光素子層12の上面に向かって広がるように形成される。これにより、結晶成長面12aおよび12bとが互いに近接するのを抑制することができるので、窒化物系半導体レーザ素子30をチップ化する際に、容易に結晶成長面12aおよび12bの間の絶縁膜17aが形成された部分で分割することができる。
また、第1実施形態では、結晶成長面12aおよび12bを、発光素子層12の結晶成長面からなるように構成することによって、上記結晶成長面12aおよび12bの2種類の成長面を、それぞれ、発光素子層12の結晶成長と同時に形成することができる。また、結晶成長面12aおよび12bには、エッチングや機械的スクライブやレーザスクライブなどによって生じる微細な凹凸形状が形成されない。これにより、微細な凹凸形状に起因して発光素子層12(発光層14)に欠陥などが生じないので、前述の効果と同様に、窒化物系半導体レーザ素子30の発光効率および寿命が低下するのをより一層抑制することができる。
また、第1実施形態では、GaNなどの窒化物系半導体からなるn型GaN基板11を用いることによって、窒化物系半導体からなるn型GaN基板11上に発光素子層12の結晶成長を利用して、(000−1)面からなる結晶成長面12aおよび(11−22)面からなる結晶成長面12bを有する発光素子層12を、容易に形成することができる。
また、第1実施形態では、結晶成長面12aおよび12bを、リッジ15aと光導波路の延びる方向(A方向)に沿って延びるように形成することによって、リッジ15aと光導波路の延びる方向(A方向)に沿って延びる結晶成長面12aおよび12bを、素子分割後の個々の窒化物系半導体レーザ素子30のA方向の側面として利用することができる。
また、第1実施形態では、発光素子層12を、n型GaN基板11側からn型クラッド層13、発光層14およびp型クラッド層15により形成するとともに、p型クラッド層15に、A方向に沿って延びるリッジ15aを形成することによって、p型クラッド層15に形成されたリッジ15aにより、p型クラッド層15の下部の発光層14が発するレーザ光を外部に出射するための光導波路を、容易に形成することができる。
また、第1実施形態では、段差部21cおよび21dを光導波路の延びる方向(A方向)に沿って延びるように構成することによって、光導波路と段差部21cとが交差しないようにすることができる。
(第2実施形態)
この第2実施形態では上記第1実施形態と異なり、n型GaN基板11上にAlGaNからなる下地層50を形成した後、発光素子層42を形成するものであり、以下、図11を参照して説明する。
この第2実施形態の窒化物系半導体レーザ素子40は、(11−2−2)面を主表面としたウルツ鉱構造の窒化物半導体からなる。
また、窒化物系半導体レーザ素子40は、図11に示すように、約100μmの厚みを有するn型GaN基板11上に、約3〜約4μmの厚みを有するAl0.05Ga0.95Nからなる下地層50を介して発光素子層42が形成されている。また、下地層50には、共振器方向(紙面に垂直な方向)に延びるように溝状のクラック51が複数形成されている。なお、クラック51は、本発明の「凹部」の一例である。また、第2実施形態におけるn型GaN基板11は、本発明の「下地基板」の一例である。また、発光素子層42は、上記第1実施形態と同様に、n型クラッド層13、発光層14およびp型クラッド層15から構成されている。
ここで、第2実施形態では、n型クラッド層13からp型クラッド層15にかけて、発光素子層42の(000−1)面からなる結晶成長面42aと、結晶成長面42aと対向する領域に形成される(11−22)面からなる結晶成長面42bとによって、窒化物系半導体レーザ素子40の共振器方向に延びる側面が形成されている。なお、結晶成長面42aおよび42bは、それぞれ、本発明の「第1側面」および「第2側面」の一例である。なお、図11では、図示の関係上、1つの半導体レーザ素子40にのみ構成要素を示す符号を付しているが、左隣に並ぶ半導体レーザ素子40(外形を破線で示す)についても、同様の構成を有する。また、第2実施形態における窒化物系半導体レーザ素子40のその他の構造は、上記第1実施形態と同様である。
次に、図11〜図13を参照して、第2実施形態による窒化物系半導体レーザ素子40の製造プロセスについて説明する。
ここで、第2実施形態の製造プロセスでは、図12に示すように、n型GaN基板11上に、約3〜約4μmの厚みを有するAl0.05Ga0.95Nからなる下地層50を成長させる。なお、下地層50が結晶成長する際、n型GaN基板11の格子定数cよりも下地層50の格子定数cが小さい(c>c)ので、所定の厚みに達した下地層50は、n型GaN基板11の格子定数cに合わせようとして下地層50の内部に引張応力R(図12参照)が発生する。この結果、下地層50が局所的にB方向に縮むのに伴って、下地層50には、図12に示すようなクラック51が形成される。ここで、GaNとAlGaNとのc軸の格子定数の差の方が、GaNとAlGaNとのa軸の格子定数の差よりも大きいので、クラック51は、下地層50の(0001)面とn型GaN基板11の主表面の(11−2−2)面とに平行な[1−100]方向(A方向)に形成されやすい。なお、図12では、下地層50に自発的にクラック51が形成される様子を模式的に示している。
また、クラック51が形成されたn型GaN基板11を平面的に見た場合、図6に示した溝部21の形成状態と同様に、クラック51は、n型GaN基板11のB方向と略直交する[1−100]方向(A方向)に沿ってストライプ状に延びるように形成される。
その後、図13に示すように、上記第1実施形態と同様の製造プロセスにより、発光素子層42を形成する。なお、発光素子層42は、本発明の「窒化物系半導体層」の一例である。
この際、第2実施形態では、[1−100]方向にストライプ状に延びるクラック51の内側面51aにおいて、発光素子層42は、n型GaN基板11の[11−2−2]方向(C2方向)に対して所定の角度(約32°)傾斜した方向に延びる(000−1)面からなる結晶成長面42aを形成しながら結晶成長する。また、クラック51の内側面51aに対向する内側面51b側では、発光素子層42は、n型GaN基板41の[11−2−2]方向(C2方向)に対して所定の角度(約26°)傾斜した方向に延びる(11−22)面からなる結晶成長面42bを形成しながら結晶成長する。なお、内側面51aおよび51bは、それぞれ、本発明の「第1側壁」および「第2側壁」の一例である。これにより、結晶成長面42aおよび42bは、上記第1実施形態と同様に、発光素子層42の上面(主表面)に対してそれぞれ鈍角をなすように形成される。
その後、上記第1実施形態と同様の製造プロセスにより、ウェハ状態の窒化物系半導体レーザ素子40に対してバー状劈開および素子分割を行う。これにより、図11に示したチップ化された個々の窒化物系半導体レーザ素子40が形成される。なお、ウェハをB方向に素子分離することによって、クラック51が、窒化物系半導体レーザ素子40のB方向の側端面40aおよび40bの一部である段差部51cおよび51d(図11参照)として形成される。なお、側端面40aおよび40bは、それぞれ、本発明の「第1側端面」および「第2側端面」の一例であり、段差部51cおよび51dは、それぞれ、本発明の「第1段差部」および「第2段差部」の一例である。
第2実施形態では、上記のように、下地層50にクラック51が形成されたn型GaN基板11と、n型GaN基板11の主表面上にクラック51の内側面51aおよび51bをそれぞれ起点とする結晶成長面42aおよび42bを含む発光素子層42とを備える。これにより、発光素子層42にエッチングや機械的スクライブやレーザスクライブなどにより割り溝を形成してチップ化された窒化物系半導体レーザ素子と異なり、結晶成長面42aおよび42bは、前述の方法で形成された割り溝からなる側面とはならない。したがって、結晶成長面42aおよび42bには、前述の方法により割り溝を形成した場合に発光層14に生じる欠陥などが存在しないので、窒化物系半導体レーザ素子40の発光効率の低下を抑制することができる。これにより、窒化物系半導体レーザ素子40に異常発熱などが生じにくくなるので、窒化物系半導体レーザ素子40の寿命が低下するのを抑制することができる。
また、第2実施形態では、n型GaN基板11上にAlGaNからなる下地層50が形成されるとともに、n型GaN基板11の格子定数cと、下地層50の格子定数cとが、c>cの関係を有するように構成されており、発光素子層42の結晶成長面42aおよび42bを、それぞれ、クラック51の内側面51aおよび51bをそれぞれ起点として形成する。これにより、n型GaN基板11上にAlGaNからなる下地層50を形成する際に、下地層50の格子定数cがn型GaN基板11の格子定数cよりも小さい(c>c)ので、n型GaN基板11の格子定数cに合わせようとして下地層50の内部に引張応力Rが生じる。この結果、下地層50の厚みが所定の厚み以上の場合にはこの引張応力Rに耐え切れずに下地層50にはクラック51が形成される。これにより、下地層50上に発光素子層42の結晶成長面42a((000−1)面)および結晶成長面42b((11−22)面)をそれぞれ結晶成長させるための起点となる内側面51aおよび51bを、容易に下地層50に形成することができる。
また、第2実施形態では、結晶成長面42aおよび42bを、発光素子層42の主表面(上面)に対して鈍角をなすように形成することによって、結晶成長面42aおよび42bが対向する領域(下地層50のクラック51の上部領域(図12の凹部25))が、n型GaN基板11から発光素子層42の上面に向かって広がるように形成される。これにより、結晶成長面42aおよび42bとが互いに近接するのを抑制することができるので、窒化物系半導体レーザ素子40をチップ化する際に、容易に結晶成長面42aおよび42bの間の絶縁膜17aが形成された部分で分割することができる。なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
(第3実施形態)
この第3実施形態の窒化物系半導体レーザ素子60の製造プロセスでは、上記第2実施形態と異なり、n型GaN基板61上の下地層50に破線状のスクライブ傷70を形成することによってクラックの発生位置が制御されたクラック71を形成するものであり、以下、図12および図14〜図16を参照して説明する。なお、n型GaN基板61は、本発明の「下地基板」の一例であり、クラック71は、本発明の「凹部」の一例である。
この第3実施形態の窒化物系半導体レーザ素子60は、(1−10−2)面を主表面とするウルツ鉱構造の窒化物半導体からなる。また、第3実施形態における窒化物系半導体レーザ素子60のその他の構造は、上記第2実施形態と同様である。
ここで、第3実施形態の窒化物系半導体レーザ素子60の製造プロセスでは、図8に示した場合と同様に、n型GaN基板61(図14参照)上に、上記した第2実施形態の厚み(約3〜約4μm)よりも薄い臨界膜厚程度の厚みを有するAlGaNからなる下地層50を成長させる。この際、下地層50には、第2実施形態と同様の作用によって内部に引張応力R(図12参照)が発生する。ここで、臨界膜厚とは、互いに異なる格子定数を有する半導体層を積層した際に、格子定数差に起因したクラックが半導体層に発生しない場合の半導体層の最小の厚みを意味する。
この後、図15に示すように、レーザ光またはダイヤモンドポイントなどにより、下地層50にB方向と略直交する[11−20]方向(A方向)に、約50μmの間隔で破線状のスクライブ傷70を形成する。また、スクライブ傷70は、B方向に、間隔L2のピッチで複数形成される。これにより、図16に示すように、下地層50には、破線状のスクライブ傷70を起点として、スクライブ傷70が形成されていない下地層50の領域にクラックが進行する。この結果、下地層50をA方向に分断する略直線状のクラック71(図16参照)が形成される。なお、クラック71は、本発明の「凹部」の一例である。
また、その際、スクライブ傷70も、深さ方向(図16の紙面に垂直な方向)に分割が進む。これにより、クラック71には、下地層50とn型GaN基板61の界面近傍まで達する内側面71aおよび71b(破線で示す)が形成される。なお、内側面71aおよび71bは、それぞれ、本発明の「第1側壁」および「第2側壁」の一例である。
その後、上記第2実施形態と同様の製造プロセスにより、下地層50上に発光素子層42を形成する。
この際、図14に示すように、n型GaN基板61上の発光素子層42には、n型GaN基板61の[1−10−2]方向(C2方向)に対して所定の角度(約47°)傾斜した方向に延びる(000−1)面からなる結晶成長面42cと、n型GaN基板61の[1−10−2]方向(C2方向)に対して所定の角度(約15°)傾斜した方向に延びる(1−101)面からなる結晶成長面42dとが形成される。なお、結晶成長面42cおよび42dは、それぞれ、本発明の「第1側面」および「第2側面」の一例である。
なお、第3実施形態によるその他の製造プロセスは、上記第2実施形態と同様である。このようにして、図14に示した第3実施形態による窒化物系半導体レーザ素子60が形成される。
第3実施形態では、上記のように、結晶成長面42dが(1−101)面からなるように構成することによって、クラック71が形成されたn型GaN基板61の表面上に発光素子層42を成長させることにより、(000−1)面からなる結晶成長面42cに加えて、(1−101)面からなる結晶成長面42dを容易に形成することができる。
また、第3実施形態の製造プロセスでは、クラック71の形成の際に、n型GaN基板61上に下地層50を臨界膜厚程度の厚みに形成した後、下地層50に対して、[11−20]方向(A方向)に延びる複数の破線状(約50μm間隔)のスクライブ傷70をB方向に間隔L2のピッチで形成する工程を備える。これにより、下地層50には、破線状のスクライブ傷70を起点としてA方向に平行に、かつ、B方向に沿って等間隔のクラック71が形成される。すなわち、上記第2実施形態のように、自発的に形成されたクラックを利用して半導体層を積層させる場合と比較して、より容易に、半導体レーザ素子の幅(共振器面に沿った方向の素子の幅)が揃った窒化物系半導体レーザ素子60(図14参照)を複数形成することができる。なお、第3実施形態のその他の効果は、上記第2実施形態と同様である。
(第4実施形態)
この第4実施形態では上記第1実施形態と異なり、m面((1−100)面)からなる主表面を有するn型GaN基板81上にAlGaNからなる下地層50を形成した後、発光素子層82を形成するものであり、以下、図17を参照して説明する。なお、n型GaN基板81および発光素子層82は、それぞれ、本発明の「下地基板」および「窒化物系半導体層」の一例である。
この第4実施形態の窒化物系半導体レーザ素子80は、m面((1−100)面)を主表面とするウルツ鉱構造の窒化物半導体からなる。
また、窒化物系半導体レーザ素子80は、図17に示すように、約100μmの厚みを有するn型GaN基板81上に、約3〜約4μmの厚みを有するAl0.05Ga0.95Nからなる下地層50を介して発光素子層82が形成されている。また、下地層50には、共振器方向(紙面に垂直な方向)に延びるように溝状のクラック51が複数形成されている。また、発光素子層82は、上記第1実施形態と同様に、n型クラッド層13、発光層14およびp型クラッド層15から構成されている。
ここで、第4実施形態では、n型クラッド層13からp型クラッド層15にかけて、発光素子層82の(000−1)面からなる結晶成長面82aと、結晶成長面82aと対向する領域に形成される(1−101)面からなる結晶成長面82bとによって、窒化物系半導体レーザ素子80の共振器方向に延びる側面が形成されている。なお、結晶成長面82aおよび82bは、それぞれ、本発明の「第1側面」および「第2側面」の一例である。
また、結晶成長面82aは、後述する製造プロセス時に、下地層50に形成されたクラック51の(000−1)面からなる内側面52aを引き継ぐように、n型GaN基板81の主表面に対して略垂直な方向([1−100]方向)に延びるように形成されている。また、結晶成長面82bは、クラック51の内側面52bを起点とした傾斜面からなり、[1−100]方向に対して約62°傾斜して延びるように形成されている。したがって、結晶成長面82bは、発光素子層82の主表面(上面)に対して約118°傾斜する。なお、内側面52aおよび52bは、それぞれ、本発明の「第1側壁」および「第2側壁」の一例である。なお、第4実施形態における窒化物系半導体レーザ素子80のその他の構造は、上記第1実施形態と同様である。
次に、図17および図18を参照して、第4実施形態による窒化物系半導体レーザ素子80の製造プロセスについて説明する。
ここで、第4実施形態の製造プロセスでは、図18に示すように、約100μmの厚みを有するn型GaN基板81上に、約3〜約4μmの厚みを有するAl0.05Ga0.95Nからなる下地層50を成長させる。その際、上記第2実施形態と同様に、n型GaN基板81と下地層50との格子定数差に起因してクラック51が下地層50に形成される。
その後、上記第2実施形態と同様の製造プロセスにより、下地層50上に、発光素子層82を形成する。
この際、第4実施形態では、図18に示すように、[11−20]方向(A方向)に延びるクラック51の内側面52aにおいて、発光素子層82は、クラック51の(000−1)面を引き継ぐように[1−100]方向(C2方向)に延びる(000−1)面からなる結晶成長面82aを形成しながら結晶成長する。また、クラック51の(000−1)面に対向する(0001)面(内側面52b)側では、発光素子層82は、[1−100]方向(C2方向)に対して所定の角度(約62°)傾斜した方向に延びる(1−101)面からなる結晶成長面(結晶成長面82b)を形成しながら結晶成長する。これにより、結晶成長面82bは発光素子層82の上面(主表面)に対して鈍角をなすように形成される。
その後、上記第2実施形態と同様の製造プロセスにより、ウェハ状態の窒化物系半導体レーザ素子80に対してバー状劈開および素子分割を行う。これにより、図17に示したチップ化された個々の窒化物系半導体レーザ素子80が形成される。なお、ウェハをB方向に素子分離することによって、クラック51が、窒化物系半導体レーザ素子80のB方向の側端面80aおよび80bの一部である段差部52cおよび52d(図17参照)として形成される。なお、側端面80aおよび80bは、それぞれ、本発明の「第1側端面」および「第2側端面」の一例であり、段差部52cおよび52dは、それぞれ、本発明の「第1段差部」および「第2段差部」の一例である。
第4実施形態では、上記のように、非極性面(m面((1−100)面))からなる主表面を有するn型GaN基板81上に下地層50を介して発光素子層82を形成することによって、半導体素子層(発光層14)に発生するピエゾ電場や自発分極などの内部電場を低減することができる。これにより、共振器面近傍を含む発光素子層82(発光層14)の発熱がより抑制されるので、発光効率をより向上させた窒化物系半導体レーザ素子80を形成することができる。
また、第4実施形態では、クラック51の内側面52aが(000−1)面からなるように構成することによって、n型GaN基板81の主表面上に(000−1)面からなる結晶成長面82aを有する発光素子層82を形成する際に、(000−1)面からなるクラック51の内側面52aを引き継ぐようにして発光素子層82の(000−1)面が形成されるので、(000−1)面からなる結晶成長面82aをn型GaN基板81上に下地層50を介して容易に形成することができる。
また、第4実施形態では、結晶成長面82bを、発光素子層82の主表面(上面)に対して鈍角をなすように形成することによって、結晶成長面82aおよび82bが対向する領域(下地層50のクラック51の上部領域(図18の凹部25))が、n型GaN基板81から発光素子層82の上面に向かって広がるように形成される。これにより、結晶成長面82aおよび82bとが互いに近接するのを抑制することができるので、窒化物系半導体レーザ素子80をチップ化する際に、容易に結晶成長面82aおよび82bの間の絶縁膜17aが形成された部分で分割することができる。なお、第4実施形態による効果は、上記第2実施形態と同様である。
[実施例]
図18〜図20を参照して、上記第4実施形態の効果を確認するために行った実験について説明する。
この確認実験では、まず、上記した第4実施形態の製造プロセスと同様の製造プロセスを用いて、m面((1−100)面)からなる主表面を有するn型GaN基板上に、MOCVD法を用いて3〜4μmの厚みを有するAlGaNからなる下地層を形成した。この際、n型GaN基板と下地層との格子定数差に起因して、下地層に図19および図20に示すようなクラックが形成された。この際、クラックは、図20に示すように、n型GaN基板の主表面に対して垂直な方向に延びる(000−1)面を形成しているのが確認された。また、クラックは、図18に示したように、n型GaN基板の[0001]方向(B方向)と直交する[11−20]方向(A方向)に沿ってストライプ状に形成されたのが確認された。
次に、MOCVD法を用いて、GaNからなる半導体層を下地層上にエピタキシャル成長させた。この結果、図20に示すように、クラックの(000−1)面からなる内側面において、半導体層がこの面方位を引き継ぐように垂直方向に延びるGaNの(000−1)面を形成しながら[1−100]方向(C2方向)に結晶成長するのが確認された。また、図20に示すように、クラックの(000−1)面と反対側の内側面上には、GaNの(1−101)面からなる傾斜面(結晶成長面)が形成されるのが確認された。また、この傾斜面は半導体層の上面(主表面)に対して鈍角をなすように形成されているのが確認された。これにより、下地層に設けられたクラックの2つの内側面がそれぞれ結晶成長の起点となって、下地層上に半導体層を形成することが可能であることが確認された。また、下地層の形成時にn型GaN基板まで達していたクラックは、半導体層の積層に伴って、空隙の一部を埋められているのが確認された。
図21を参照して、この第5実施形態による窒化物系半導体レーザ素子90では、上記第1実施形態と異なり、m面((1−100)面)からなる主表面を有するn型4H−SiC基板91上に、発光素子層92を形成する場合について説明する。なお、n型4H−SiC基板91および発光素子層92は、それぞれ、本発明の「基板」および「窒化物系半導体層」の一例である。
この第5実施形態による窒化物系半導体レーザ素子90は、m面((1−100)面)を主表面とするウルツ鉱構造の窒化物半導体からなる。
また、窒化物系半導体レーザ素子90は、図21に示すように、約100μmの厚みを有するn型4H−SiC基板91上に、発光素子層92が形成されている。また、発光素子層92は、上記第1実施形態と同様に、n型クラッド層13、発光層14およびp型クラッド層15により構成されている。
ここで、第5実施形態では、n型クラッド層13からp型クラッド層15にかけて、発光素子層92の(000−1)面からなる結晶成長面92aと、結晶成長面92aと対向する領域に形成される(1−101)面からなる結晶成長面92bとによって、窒化物系半導体レーザ素子90の共振器方向(A方向)に延びる側面が形成されている。なお、結晶成長面92aおよび92bは、それぞれ、本発明の「第1側面」および「第2側面」の一例である。
また、結晶成長面92aは、n型4H−SiC基板91の主表面に形成された溝部93の内側面93aを引き継ぐように、n型4H−SiC基板91の主表面に対して略垂直な方向([1−100]方向)に延びるように形成されている。また、結晶成長面92bは、溝部93の内側面93bを起点とした傾斜面からなり、[1−100]方向に対して約62°傾斜して延びるように形成されている。なお、溝部93、内側面93aおよび93bは、それぞれ、本発明の「凹部」、「第1側壁」および「第2側壁」の一例である。
なお、第5実施形態における窒化物系半導体レーザ素子90のその他の構造および製造プロセスは、上記第1実施形態と同様である。また、第5実施形態の効果についても、上記第1および第4実施形態と同様である。
(第6実施形態)
図22を参照して、第6実施形態によるLEDチップ100の構造について説明する。なお、LEDチップ100は、本発明の「窒化物系半導体素子」の一例である。
この第6実施形態のLEDチップ100は、(11−2−2)面を主表面とするウルツ鉱構造の窒化物半導体からなる。また、LEDチップ100の形状は、LEDチップ100の上面側から見て、正方形状、長方形状、菱形または平行四辺形などの平面的な形状を有する。
また、LEDチップ100は、図22に示すように、約100μmの厚みを有するn型GaN基板11上に、発光素子層112が形成されている。また、発光素子層112は、上記第1実施形態と同様に、n型クラッド層13、発光層14およびp型クラッド層15により構成されている。なお、発光素子層112は、本発明の「窒化物系半導体層」の一例である。
ここで、第6実施形態では、n型クラッド層13からp型クラッド層15にかけて、発光素子層112の(000−1)面からなる結晶成長面112aと、(11−22)面からなる結晶成長面112bとによって、LEDチップ100の一方向(図22の紙面に垂直な方向)に延びる側面が形成されている。なお、結晶成長面112aおよび112bは、それぞれ、本発明の「第1側面」および「第2側面」の一例である。
また、結晶成長面112aおよび112bは、製造プロセスの際にn型GaN基板11の主表面に予め形成された溝部21の内側面21aおよび21bを起点として、n型GaN基板11の主表面に対して所定の角度傾斜して延びるように形成されている。具体的には、結晶成長面112aは、発光素子層112の上面(主表面)が成長する[11−2−2]方向に対して約32°傾斜して延びる。また、結晶成長面112bは、[11−2−2]方向に対して約26°傾斜して延びる。これにより、LEDチップ100は、図22に示すように、一方向(紙面に垂直な方向)の断面が、発光素子層112の部分でn型GaN基板11の主表面から遠ざかる方向(C2方向)に沿って先細りするような形状を有する。また、結晶成長面112aおよび112bは、発光素子層112の上面(主表面)に対して鈍角をなすように形成されている。具体的には、結晶成長面112aは、発光素子層112の上面に対して約122°傾斜するとともに、結晶成長面112bは、発光素子層112の上面に対して約116°傾斜する。なお、図22では、図示の関係上、1つのLEDチップ100にのみ構成要素を示す符号を付しているが、左隣に並ぶLEDチップ100(外形を破線で示す)についても、同様の構成を有する。
また、図22に示すように、p型クラッド層15上には、p側オーミック電極16が形成されている。また、所定の形状を有するとともに、p側オーミック電極16の両側面、結晶成長面112aおよび112b、および、溝部21の内側面21a(21b)を覆うように、発光波長に対して透明なSiOなどの絶縁膜120aが形成されている。また、p側オーミック電極16および絶縁膜120の上面を覆うように、ITOからなる透光性を有するp側電極121が形成されている。また、n型GaN基板11上の下面上には、n型GaN基板11から近い順に、n側オーミック電極19およびn側電極20が形成されている。なお、n側オーミック電極19の両側(B方向)には、SiOからなる絶縁膜120bがそれぞれ形成されている。
次に、図22および図23を参照して、第6実施形態によるLEDチップ100の製造プロセスについて説明する。
第6実施形態のLEDチップ100の製造プロセスでは、上記第1実施形態における窒化物系半導体レーザ素子30の製造プロセスと同様の製造プロセスにより、n型GaN基板11上に発光素子層112を形成する。これにより、n型GaN基板11の[11−2−2]方向(C2方向)に対して所定の角度(約32°)傾斜した方向に延びる(000−1)面からなる結晶成長面112aと、n型GaN基板11の[11−2−2]方向(C2方向)に対して所定の角度(約26°)傾斜した方向に延びる(11−22)面からなる結晶成長面112bがそれぞれ形成される。
その後、上記第1実施形態と同様の製造プロセスにより、p側オーミック電極16、絶縁膜120aおよび120b、p側電極121、n側オーミック電極19およびn側電極20を順次形成する。
最後に、ウェハ状態のLEDチップ100を素子分割することにより、図22に示したチップ化された個々のLEDチップ100が形成される。なお、ウェハをB方向に素子分離することによって、溝部21が、LEDチップ100のB方向の側端面100aおよび100bの一部である段差部21cおよび21d(図22参照)として形成される。なお、側端面100aおよび100bは、それぞれ、本発明の「第1側端面」および「第2側端面」の一例である。
第6実施形態では、上記のように、n型GaN基板11の主表面に形成された溝部21の内側面21aおよび21bをそれぞれ起点とする結晶成長面112aおよび112bを含む発光素子層112を備える。これにより、発光素子層112にエッチングや機械的スクライブやレーザスクライブなどにより割り溝を形成してチップ化されたLEDチップと異なり、結晶成長面112aおよび112bは、前述の方法で形成された割り溝からなる側面とはならない。したがって、結晶成長面112aおよび112bには、前述の方法により割り溝を形成した場合に発光層14に生じる欠陥などが存在しないので、LEDチップ100の発光効率の低下を抑制することができる。これにより、LEDチップ100に異常発熱などが生じにくくなるので、LEDチップ100の寿命が低下するのを抑制することができる。
また、第6実施形態では、結晶成長面112aおよび112bを、発光素子層112の主表面(上面)に対して鈍角をなすように形成することによって、結晶成長面112aおよび112bが対向する領域(n型GaN基板11の溝部21の上部領域(図23の凹部25))が、n型GaN基板11から発光素子層112の上面に向かって広がるように形成される。これにより、結晶成長面112aおよび112bとが互いに近接するのを抑制することができるので、LEDチップ100をチップ化する際に、容易に結晶成長面112aおよび112bの間の絶縁膜120aが形成された部分で分割することができる。
また、第6実施形態では、結晶成長面112aおよび112bが、発光素子層112の主表面に対して鈍角をなすことによって、発光層14からのLED光を発光素子層112の上面のみならず、n型GaN基板11の主表面に対して傾斜した結晶成長面112aおよび112bを通して容易に取り出すことができる。これにより、LEDチップ100の発光効率をより向上させることができる。
また、上記のように、結晶成長面112aおよび112bが、発光素子層112の主表面(上面)に対してそれぞれ約122°および約116°の角度で傾斜することによって、結晶成長面112aおよび112bは、発光素子層112の上面に対して略同程度の傾斜角度を有している。これにより、発光層14からのLED光が、結晶成長面112aおよび112bを同程度に透過する。この結果、LEDチップ100の光むらを抑制することができる。なお、第6実施形態のその他の効果は、上記第1実施形態と同様である。
(第7実施形態)
図24を参照して、電子デバイスの一例である第7実施形態の電界効果トランジスタ(FET)200の構造について説明する。
FET200は、いわゆるリセス構造を有する高電子移動度トランジスタ(HEMT)である。このFET200では、図24に示すように、バナジウムドープの高抵抗4H−SiC基板201のm面((1−100)面)上に形成されている。また、FET200は、半導体層202と、半導体層202の主表面上に形成されたソース電極203、ドレイン電極204およびゲート電極205とから構成されている。
また、半導体層202には、約3μmの厚みを有するアンドープGaNからなる第1窒化物半導体層211と、約25nmの厚みを有するAlGaNからなる第2窒化物半導体層212と、約25nmの厚みを有するSiドープのn型GaNからなるキャップ層213とが形成されている。また、キャップ層213は、第2窒化物半導体層212のゲート電極205近傍を除く領域上に形成され、第2窒化物半導体層212のゲート電極205が形成される領域が表面に露出している。なお、半導体層202、第1窒化物半導体層211、第2窒化物半導体層212およびキャップ層213は、それぞれ、本発明の「窒化物系半導体層」の一例である。
ここで、第1窒化物半導体層211の一部の第2窒化物半導体層212との界面側には、Siなどのn型不純物がドーピングされている。これにより、ドレイン電流を増加させることが可能であり、FET200の性能をより一層改善することが可能である。
また、ゲート電極205は、ソース電極203およびドレイン電極204の配置方向と直交する長手方向が、半導体層202の[11−20]方向(図24のB方向)と平行に形成されている。
また、第2窒化物半導体層212は、第1窒化物半導体層211のバンドギャップよりも大きなバンドギャップを有し、第2窒化物半導体層212および第1窒化物半導体層211の間には、ヘテロ接合が形成される。このとき、第2窒化物半導体層212の一部には、Siなどのn型不純物がドーピングされており、n型不純物の濃度とドーピング層の厚みとの積が、1×1013cm−2以上となるように、1×1013cm−2以上のドーズ量で不純物がドーピングされている。
また、ゲート電極205は、たとえばPd層とAu層とからなり、第2窒化物半導体層212上に形成されるショットキー電極である。また、ソース電極203およびドレイン電極204は、たとえば、Ti層とAl層とからなり、キャップ層213上に形成されるオーミック電極である。
さらに、半導体層202には、(1−100)面のヘテロ接合が形成されることによってヘテロ接合において分極により発生するキャリアが少なくなるので、ヘテロ接合のシートキャリア濃度を低くすることが可能である。すなわち、元来、窒化物系材料は、[0001]方向に大きな自発分極を有しており、また、[0001]方向の歪がある場合、ピエゾ効果による大きな分極が発生するために、c面((0001)面)のヘテロ接合には、多くのキャリアが蓄積される。第7実施形態では、半導体層202の(1−100)面のヘテロ接合を形成することによって、上記現象が発生するのが回避される。
次に、図24〜図27を参照して、第7実施形態のFET200の製造プロセスについて説明する。
まず、図25に示すように、エッチング技術を用いて、4H−SiC基板201の主表面に、上記第1実施形態の製造プロセスと同様の形状を有する溝部21を形成する。
次に、MOCVD法を用いて、溝部21を有する4H−SiC基板201上に、第1窒化物半導体層211、第2窒化物半導体層212およびキャップ層213を順次積層することにより、半導体層202を形成する。
この際、第7実施形態では、図25に示すように、溝部21の(000−1)面からなる内側面21aにおいて、半導体層202は、溝部21の(000−1)面を引き継いで[1−100]方向(C2方向)に延びる(000−1)面を形成しながら結晶成長する。これにより、半導体層202の(000−1)面が、結晶成長面202aとして形成される。また、溝部21の(000−1)面に対向する(0001)面(内側面21b)側では、半導体層202は、内側面21bを起点として結晶成長面202aに対して所定の角度(=約62°)傾斜した方向に延びる(1−101)面からなる結晶成長面202bを形成しながら結晶成長する。なお、結晶成長面202aおよび202bは、それぞれ、本発明の「第1側面」および「第2側面」の一例である。
その後、図26に示すように、半導体層202のキャップ層213に、エッチング技術を用いて[11−20]方向(B方向)に延びる溝部215を形成する。その後、図27に示すように、キャップ層213の表面上に、キャップ層213側から近い順にTi層およびAl層を蒸着するとともにリフトオフ法を用いて、ソース電極203およびドレイン電極204をそれぞれ形成する。さらに、キャップ層213に挟まれた溝部215の所定の位置に、キャップ層213側から近い順にPd層およびAu層を蒸着するとともにリフトオフ法を用いて、ゲート電極205を形成する。
最後に、素子(ウェハ)を分割してチップ化することにより、図24に示した第7実施形態によるFET200が形成される。
第7実施形態のようにFET200を形成することによって、従来の(0001)面のヘテロ接合を用いたFETのように高濃度のシートキャリアがヘテロ界面に蓄積されないので、ヘテロ界面の二次元電子ガス濃度を低減させることができる。すなわち、ピンチオフ電圧の精密な制御が可能となり、従来の(0001)面のヘテロ接合を用いたFETとは異なる、ノーマリオフ型のFETを形成することができる。
また、第7実施形態では、結晶成長面202aおよび202bが形成された半導体層202によりFET200を形成することによって、半導体層202には欠陥などが存在せず、窒化物系半導体素子の異常発熱などが抑制されるので、FET200における寿命の低下を抑制することができる。なお、第7実施形態のその他の効果は、上記概略的な構成における効果と同様である。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記第2実施形態では、n型GaN基板11と下地層50との格子定数の差を利用して下地層に自発的にクラック51を生じさせた例を示したが、本発明はこれに限らず、上記第3実施形態と同様に、下地層に破線状のスクライブ傷を形成することによりクラックの形成位置を制御してもよい。
また、上記第2〜第4実施形態では、下地基板としてn型GaN基板を用いるとともに、n型GaN基板上にAlGaNからなる下地層を形成した例について示したが、本発明はこれに限らず、下地基板としてInGaN基板を用いるとともに、InGaN基板上にGaNまたはAlGaNからなる下地層を形成してもよい。
また、上記第2実施形態では、n型GaN基板11と下地層50との格子定数差を利用して下地層50に自発的にクラック51が形成されるのを利用した例について示したが、本発明はこれに限らず、下地層50(図12参照)のA方向([1−100]方向)の両端部(n型GaN基板11のA方向の端部に対応する領域)にのみスクライブ傷を形成してもよい。このように構成しても、両端部のスクライブ傷を起点としてA方向に延びるクラックを導入することができる。
また、上記第3実施形態では、下地層50にクラック導入用のスクライブ傷70を破線状に形成した例について示したが、本発明はこれに限らず、下地層50のA方向(図15参照)の両端部(n型GaN基板11の端部に対応する領域)にスクライブ傷を形成してもよい。このように構成しても、両端部のスクライブ傷を起点としてA方向に延びるクラックを導入することができる。
また、上記第1〜第5実施形態では、リッジをSiO電流ブロック層で埋め込んだ屈折率導波型のリッジ導波構造を有する窒化物系半導体レーザ素子を形成する例について示したが、本発明はこれに限らず、リッジをAlGaNなどからなる半導体電流ブロック層で埋め込んだ窒化物系半導体レーザ素子を形成してもよい。あるいは、平坦な基板上に下部クラッド層、発光層(活性層)および上部クラッド層などを順次形成し、その上の電流路を電流ブロック層により狭く制限する構造利得導波型のオキサイドストライプ構造を有する窒化物系半導体レーザ素子を形成してもよい。
1、201 成長用基板(基板)
1a 凹部
1b、21c、51c、52c 段差部(第1段差部)
1c、21d、51d、52d 段差部(第2段差部)
1d 側壁(第1側壁)
1e 側壁(第2側壁)
2 第1半導体層(窒化物系半導体層)
3 発光層(窒化物系半導体層)
4 第2半導体層(窒化物系半導体層)
4a、15a リッジ
5 窒化物系半導体層
10、30、40、60、80、90 窒化物系半導体レーザ素子(半導体レーザ素子)
10a 側面(第1側面)
10b 側面(第2側面)
10c、30a、40a、80a、100a 側端面(第1側端面)
10d、30b、40b、80b、100b 側端面(第2側端面)
11 n型GaN基板(基板、下地基板)
11a 凹部
12、42、82、92、112 発光素子層(窒化物系半導体層)
12a、42a、42c、82a、92a、112a、202a 結晶成長面(第1側面)
12b、42b、42d、82b、92b、112b、202b 結晶成長面(第2側面)
13 n型クラッド層(第1半導体層、窒化物系半導体層)
14 発光層(窒化物系半導体層)
15 p型クラッド層(第2半導体層、窒化物系半導体層)
21、93 溝部(凹部)
21a、51a、52a、71a、93a 内側面(第1側壁)
21b、51b、52b、71b、93b 内側面(第2側壁)
50 下地層
51、71 クラック(凹部)
61、81 n型GaN基板(下地基板)
91 4H−SiC基板(基板)
100 LEDチップ(半導体発光素子)
200 電界効果トランジスタ
202 半導体層
203 ソース電極
204 ドレイン電極
205 ゲート電極

Claims (6)

  1. 基板と、
    前記基板の第1側端面の主表面側に形成された第1段差部と、
    前記第1側端面の反対側で、かつ、前記第1側端面と略平行な第2側端面の前記主表面側に形成された第2段差部と、
    前記主表面上に、前記第1段差部の第1側壁を起点とする(000−1)面からなる第1側面と、前記第2段差部の第2側壁を起点とする第2側面とを有する窒化物系半導体層とを備える、窒化物系半導体素子。
  2. 前記第1側壁は、(000−1)面からなる、請求項1に記載の窒化物系半導体素子。
  3. 前記第2側面は、{A+B、A、−2A−B、2A+B}面(ここでA≧0およびB≧0であり、かつ、AおよびBの少なくともいずれか一方が0ではない整数)からなる、請求項1または2に記載の窒化物系半導体素子。
  4. 前記第1側面および前記第2側面は、前記窒化物系半導体層の結晶成長面からなる、請求項1〜3のいずれか1項に記載の窒化物系半導体素子。
  5. 前記第1側面および前記第2側面は第1方向に沿って延びるとともに、前記窒化物系半導体素子は、前記第1方向に沿って延びる光導波路を有する、請求項1〜4のいずれか1項に記載の窒化物系半導体素子。
  6. 基板の主表面に複数の凹部を形成する工程と、
    前記基板の主表面上に、前記凹部の第1側壁を起点として成長しながら形成される(000−1)面からなる第1側面と、前記第1側面と対向して、前記凹部の第2側壁を起点として成長しながら形成される第2側面とを備える複数の窒化物系半導体層を成長させる工程と、
    前記第1側面と前記第2側面とが対向する領域において、前記窒化物系半導体層が形成された前記基板を分割してチップ化する工程とを備える、窒化物系半導体素子の製造方法。
JP2009076259A 2008-04-25 2009-03-26 窒化物系半導体素子およびその製造方法 Pending JP2009283912A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009076259A JP2009283912A (ja) 2008-04-25 2009-03-26 窒化物系半導体素子およびその製造方法
US12/429,854 US8022427B2 (en) 2008-04-25 2009-04-24 Nitride-based semiconductor device and method of manufacturing the same
CN200910137372.8A CN101567417B (zh) 2008-04-25 2009-04-24 氮化物类半导体元件和其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008115373 2008-04-25
JP2009076259A JP2009283912A (ja) 2008-04-25 2009-03-26 窒化物系半導体素子およびその製造方法

Publications (1)

Publication Number Publication Date
JP2009283912A true JP2009283912A (ja) 2009-12-03

Family

ID=41214121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076259A Pending JP2009283912A (ja) 2008-04-25 2009-03-26 窒化物系半導体素子およびその製造方法

Country Status (3)

Country Link
US (1) US8022427B2 (ja)
JP (1) JP2009283912A (ja)
CN (1) CN101567417B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020502785A (ja) * 2016-11-18 2020-01-23 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Zno基板上にウルツ鉱型構造を有する半導体ヘテロ構造
JP2021534594A (ja) * 2018-08-10 2021-12-09 ホン−チェン、リンLIN, Hong−Cheng ダイオード装置、ディスプレイパネル及び可撓性ディスプレイ

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067849B2 (en) 2001-07-17 2006-06-27 Lg Electronics Inc. Diode having high brightness and method thereof
US6949395B2 (en) * 2001-10-22 2005-09-27 Oriol, Inc. Method of making diode having reflective layer
US7148520B2 (en) 2001-10-26 2006-12-12 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
JP2007080896A (ja) * 2005-09-12 2007-03-29 Sanyo Electric Co Ltd 半導体素子
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US20100006873A1 (en) * 2008-06-25 2010-01-14 Soraa, Inc. HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN
US8259769B1 (en) 2008-07-14 2012-09-04 Soraa, Inc. Integrated total internal reflectors for high-gain laser diodes with high quality cleaved facets on nonpolar/semipolar GaN substrates
US8143148B1 (en) 2008-07-14 2012-03-27 Soraa, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
EP2319086A4 (en) 2008-08-04 2014-08-27 Soraa Inc WHITE LIGHTING DEVICES WITH NON POLAR OR SEMI-POLAR GALLIUM-HARDENED MATERIALS AND INFLUENCES
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8252662B1 (en) 2009-03-28 2012-08-28 Soraa, Inc. Method and structure for manufacture of light emitting diode devices using bulk GaN
US8422525B1 (en) * 2009-03-28 2013-04-16 Soraa, Inc. Optical device structure using miscut GaN substrates for laser applications
WO2010120819A1 (en) 2009-04-13 2010-10-21 Kaai, Inc. Optical device structure using gan substrates for laser applications
US8254425B1 (en) 2009-04-17 2012-08-28 Soraa, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8294179B1 (en) 2009-04-17 2012-10-23 Soraa, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US8242522B1 (en) 2009-05-12 2012-08-14 Soraa, Inc. Optical device structure using non-polar GaN substrates and growth structures for laser applications in 481 nm
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8416825B1 (en) 2009-04-17 2013-04-09 Soraa, Inc. Optical device structure using GaN substrates and growth structure for laser applications
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US8247887B1 (en) 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US8314429B1 (en) 2009-09-14 2012-11-20 Soraa, Inc. Multi color active regions for white light emitting diode
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US8212287B2 (en) * 2009-09-18 2012-07-03 Palo Alto Research Center Incorporated Nitride semiconductor structure and method of making same
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US8502465B2 (en) 2009-09-18 2013-08-06 Soraa, Inc. Power light emitting diode and method with current density operation
TWI403003B (zh) * 2009-10-02 2013-07-21 Chi Mei Lighting Tech Corp 發光二極體及其製造方法
US8093090B1 (en) * 2009-10-12 2012-01-10 Micron Technology, Inc. Integrated circuit edge and method to fabricate the same
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8445890B2 (en) 2010-03-09 2013-05-21 Micron Technology, Inc. Solid state lighting devices grown on semi-polar facets and associated methods of manufacturing
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US8247249B2 (en) * 2010-06-01 2012-08-21 Palo Alto Research Center Incorporated Semi-polar nitride-based light emitting structure and method of forming same
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US8975615B2 (en) 2010-11-09 2015-03-10 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
CN102569543B (zh) * 2010-12-30 2015-09-02 比亚迪股份有限公司 一种发光二极管芯片的制作方法
US8686461B2 (en) * 2011-01-03 2014-04-01 SemiLEDs Optoelectronics Co., Ltd. Light emitting diode (LED) die having stepped substrates and method of fabrication
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
TW201242084A (en) * 2011-04-15 2012-10-16 Lextar Electronics Corp Chip structure for enhancing light extraction efficiency and process using the same
US20120313111A1 (en) * 2011-06-07 2012-12-13 Raytheon Company DIE ALIGNMENT WITH CRYSTALLOGRAPHIC AXES IN GaN-ON-SiC AND OTHER NON-CUBIC MATERIAL SUBSTRATES
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
JP5803457B2 (ja) * 2011-09-08 2015-11-04 三菱電機株式会社 レーザダイオード素子の製造方法
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
JP6025410B2 (ja) 2012-06-12 2016-11-16 株式会社ディスコ 光デバイスの加工方法
JP2013258234A (ja) * 2012-06-12 2013-12-26 Disco Abrasive Syst Ltd 光デバイスの加工方法
JP2013258231A (ja) 2012-06-12 2013-12-26 Disco Abrasive Syst Ltd 光デバイスの加工方法
JP6029338B2 (ja) 2012-06-12 2016-11-24 株式会社ディスコ 光デバイスの加工方法
US9099843B1 (en) 2012-07-19 2015-08-04 Soraa Laser Diode, Inc. High operating temperature laser diodes
US8971368B1 (en) 2012-08-16 2015-03-03 Soraa Laser Diode, Inc. Laser devices having a gallium and nitrogen containing semipolar surface orientation
CN103681981B (zh) * 2012-09-25 2017-05-31 上海蓝光科技有限公司 一种功率型发光二极管的制作方法
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
DE102013108583A1 (de) * 2013-08-08 2015-03-05 Osram Opto Semiconductors Gmbh Verfahren zum Vereinzeln eines Verbundes in Halbleiterchips und Halbleiterchip
DE102013216527A1 (de) * 2013-08-21 2015-02-26 Osram Opto Semiconductors Gmbh Laserbauelement und Verfahren zum Herstellen eines Laserbauelements
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
JP6103241B2 (ja) * 2013-11-20 2017-03-29 ソニー株式会社 発光素子
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9356189B2 (en) * 2014-03-24 2016-05-31 Epistar Corporation Light-emitting device and method for manufacturing the same
US9564736B1 (en) * 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
DE102015117662B4 (de) * 2015-10-16 2021-07-22 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
KR102546307B1 (ko) 2015-12-02 2023-06-21 삼성전자주식회사 발광 소자 및 이를 포함하는 표시 장치
CN108305918B (zh) * 2017-01-12 2019-07-16 中国科学院苏州纳米技术与纳米仿生研究所 氮化物半导体发光器件及其制作方法
JP6939120B2 (ja) * 2017-06-19 2021-09-22 住友電気工業株式会社 量子カスケード半導体レーザ、発光装置、半導体レーザを作製する方法
WO2019026953A1 (ja) * 2017-08-04 2019-02-07 パナソニックIpマネジメント株式会社 半導体発光素子の製造方法及び半導体発光素子
WO2019058802A1 (ja) * 2017-09-20 2019-03-28 パナソニック株式会社 半導体レーザ素子
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US12074065B2 (en) * 2018-03-29 2024-08-27 Mitsubishi Electric Corporation Semiconductor device production method
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US10374386B1 (en) * 2018-06-07 2019-08-06 Finisar Corporation Chip on carrier
DE102018123019A1 (de) * 2018-09-19 2020-03-19 Osram Opto Semiconductors Gmbh Gewinngeführter halbleiterlaser und herstellungsverfahren hierfür
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
CN110416147A (zh) * 2019-07-05 2019-11-05 深超光电(深圳)有限公司 吸附装置、吸附装置制作方法及转移系统
JP7458332B2 (ja) * 2021-01-15 2024-03-29 株式会社東芝 半導体発光装置
CN116031298A (zh) * 2021-10-26 2023-04-28 联华电子股份有限公司 高电子迁移率晶体管元件及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185040A (ja) * 2000-12-15 2002-06-28 Sony Corp 半導体発光素子及び半導体発光素子の製造方法
JP2004311964A (ja) * 2003-03-25 2004-11-04 Matsushita Electric Ind Co Ltd 窒化物半導体素子およびその製造方法
JP2006128661A (ja) * 2004-09-29 2006-05-18 Matsushita Electric Ind Co Ltd 窒化物系半導体レーザ
WO2006130623A2 (en) * 2005-05-31 2006-12-07 The Regents Of The University Of California Defect reduction of non-polar and semi-polar iii-nitrides with sidewall lateral epitaxial overgrowth (sleo)
JP2007201020A (ja) * 2006-01-24 2007-08-09 Sharp Corp 窒化物系半導体発光素子とその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2780618B2 (ja) 1993-11-06 1998-07-30 日亜化学工業株式会社 窒化ガリウム系化合物半導体チップの製造方法
JP3557011B2 (ja) * 1995-03-30 2004-08-25 株式会社東芝 半導体発光素子、及びその製造方法
JP3180743B2 (ja) * 1997-11-17 2001-06-25 日本電気株式会社 窒化化合物半導体発光素子およびその製法
JP3532100B2 (ja) 1997-12-03 2004-05-31 日本碍子株式会社 レーザ割断方法
US7372077B2 (en) * 2003-02-07 2008-05-13 Sanyo Electric Co., Ltd. Semiconductor device
WO2004086579A1 (ja) * 2003-03-25 2004-10-07 Matsushita Electric Industrial Co., Ltd. 窒化物半導体素子およびその製造方法
JP4928811B2 (ja) 2005-03-24 2012-05-09 三洋電機株式会社 窒化物系半導体発光素子の製造方法および窒化物系半導体発光素子
JP2008544540A (ja) * 2005-06-22 2008-12-04 ソウル オプト デバイス カンパニー リミテッド 発光素子及びその製造方法
JP2007266574A (ja) * 2006-02-28 2007-10-11 Sanyo Electric Co Ltd 半導体レーザ素子及び半導体レーザ素子の製造方法
US20070221932A1 (en) * 2006-03-22 2007-09-27 Sanyo Electric Co., Ltd. Method of fabricating nitride-based semiconductor light-emitting device and nitride-based semiconductor light-emitting device
JP4462289B2 (ja) * 2007-05-18 2010-05-12 ソニー株式会社 半導体層の成長方法および半導体発光素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185040A (ja) * 2000-12-15 2002-06-28 Sony Corp 半導体発光素子及び半導体発光素子の製造方法
JP2004311964A (ja) * 2003-03-25 2004-11-04 Matsushita Electric Ind Co Ltd 窒化物半導体素子およびその製造方法
JP2006128661A (ja) * 2004-09-29 2006-05-18 Matsushita Electric Ind Co Ltd 窒化物系半導体レーザ
WO2006130623A2 (en) * 2005-05-31 2006-12-07 The Regents Of The University Of California Defect reduction of non-polar and semi-polar iii-nitrides with sidewall lateral epitaxial overgrowth (sleo)
JP2007201020A (ja) * 2006-01-24 2007-08-09 Sharp Corp 窒化物系半導体発光素子とその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020502785A (ja) * 2016-11-18 2020-01-23 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Zno基板上にウルツ鉱型構造を有する半導体ヘテロ構造
JP2021534594A (ja) * 2018-08-10 2021-12-09 ホン−チェン、リンLIN, Hong−Cheng ダイオード装置、ディスプレイパネル及び可撓性ディスプレイ
JP7398818B2 (ja) 2018-08-10 2023-12-15 ビジョンラボ コーポレーション 流体トランスファーシステムおよびマイクロled装置の製造方法

Also Published As

Publication number Publication date
US20090267100A1 (en) 2009-10-29
CN101567417A (zh) 2009-10-28
CN101567417B (zh) 2015-01-28
US8022427B2 (en) 2011-09-20

Similar Documents

Publication Publication Date Title
JP2009283912A (ja) 窒化物系半導体素子およびその製造方法
JP4169821B2 (ja) 発光ダイオード
US8750343B2 (en) Nitride-based semiconductor light-emitting device, nitride-based semiconductor laser device, nitride-based semiconductor light-emitting diode, method of manufacturing the same, and method of forming nitride-based semiconductor layer
KR100763829B1 (ko) 반도체 레이저 소자 및 그 제조방법
KR101543466B1 (ko) 반도체 소자의 제조 방법
KR100874077B1 (ko) 질화물 반도체 레이저 소자 및 그 제조 방법
US20100265981A1 (en) Nitride-based semiconductor light-emitting diode, nitride-based semiconductor laser device, method of manufacturing the same, and method of forming nitride-based semiconductor layer
KR20030064629A (ko) 반도체 발광 소자 및 그 제조 방법
US7885304B2 (en) Nitride-based semiconductor laser device and method of manufacturing the same
JPWO2009057254A1 (ja) 半導体レーザ装置
JP4665394B2 (ja) 窒化物半導体レーザ素子
JP3650000B2 (ja) 窒化物系半導体レーザ素子および窒化物半導体レーザ装置の製造方法
JP4802314B2 (ja) 窒化物半導体発光素子とその製造方法
JP4162560B2 (ja) 窒化物系半導体発光素子
JP3796060B2 (ja) 半導体レーザ素子およびその製造方法
JP5172322B2 (ja) 窒化物系半導体発光ダイオードおよびその製造方法
JP4847682B2 (ja) 窒化物半導体素子およびその製造方法
JPWO2004086580A1 (ja) 半導体レーザおよびその製造方法
JP2009164234A (ja) 窒化物半導体レーザ素子
JP4644955B2 (ja) 窒化物系半導体素子の作製方法
JP4890509B2 (ja) 半導体発光素子の製造方法
JP2009238834A (ja) 窒化物系半導体層を有する支持基板およびその形成方法
JP2009088270A (ja) 半導体素子の製造方法
JP5245031B2 (ja) 窒化物系半導体層の形成方法
JP4869179B2 (ja) 半導体基板およびその製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100302

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141014