JP2009283366A - 負極およびそれを備えた二次電池 - Google Patents

負極およびそれを備えた二次電池 Download PDF

Info

Publication number
JP2009283366A
JP2009283366A JP2008135804A JP2008135804A JP2009283366A JP 2009283366 A JP2009283366 A JP 2009283366A JP 2008135804 A JP2008135804 A JP 2008135804A JP 2008135804 A JP2008135804 A JP 2008135804A JP 2009283366 A JP2009283366 A JP 2009283366A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
atomic
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008135804A
Other languages
English (en)
Other versions
JP5333820B2 (ja
Inventor
Isamu Konishiike
勇 小西池
Kotaro Satori
浩太郎 佐鳥
Kenichi Kawase
賢一 川瀬
Shunsuke Kurasawa
俊佑 倉澤
Koichi Matsumoto
浩一 松元
Kiichi Hirose
貴一 廣瀬
Masayuki Iwama
正之 岩間
takuji Fujinaga
卓士 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008135804A priority Critical patent/JP5333820B2/ja
Priority to KR1020090033983A priority patent/KR20090122116A/ko
Priority to US12/468,975 priority patent/US8383267B2/en
Priority to CN2009101430400A priority patent/CN101587947B/zh
Publication of JP2009283366A publication Critical patent/JP2009283366A/ja
Application granted granted Critical
Publication of JP5333820B2 publication Critical patent/JP5333820B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】高いサイクル特性を有する二次電池を提供する。
【解決手段】正極121と負極122とセパレータ123との積層構造を有する巻回電極体120が電池缶111に収容されている。負極122は、負極集電体の上に負極活物質層が設けられたものである。負極活物質層は、負極活物質としてケイ素(Si),炭素(C)および酸素(O)を含む。負極活物質において、炭素の含有率が0.2原子%以上10原子%以下であると共に酸素の含有率が0.5原子%以上40原子%以下であり、負極活物質に含まれるケイ素の0.1%以上17.29%以下がSi−C結合として存在する。これにより、負極集電体に対する負極活物質層の密着力が向上すると共に、負極活物質層が物理的に強固なものとなる。
【選択図】図4

Description

本発明は、構成元素としてケイ素(Si)を含む負極活物質を含有する負極およびそれを備えた二次電池に関する。
近年、カメラ一体型VTR(Videotape Recorder;ビデオテープレコーダ),デジタルスチルカメラ,携帯電話,携帯情報端末あるいはノート型パソコンなどのポータブル電子機器が多く登場し、その小型軽量化が図られている。それに伴い、これらの電子機器の電源として、軽量で高エネルギー密度を得ることができる二次電池の開発が進められている。中でも、負極に炭素材料を用い、正極にリチウム(Li)と遷移金属との複合材料を用い、電解液に炭酸エステルを用いたリチウムイオン二次電池は、従来の鉛電池およびニッケルカドミウム電池と比べて、大きなエネルギー密度を得ることができるので広く実用化されている。
また、最近では、携帯用電子機器の高性能化に伴い、さらなる容量の向上が求められており、負極活物質として、炭素材料に代えてスズあるいはケイ素などを用いることが検討されている(例えば、特許文献1参照)。スズの理論容量は994mAh/g、ケイ素の理論容量は4199mAh/gと、黒鉛の理論容量の372mAh/gに比べて格段に大きく、容量の向上を期待できるからである。
しかし、リチウムを吸蔵したスズ合金あるいはケイ素合金は活性が高いので、電解液が分解されやすく、また、リチウムが不活性化されやすいという問題もあった。そのため、充放電を繰り返すと充放電効率が低下してしまい、十分なサイクル特性を得ることができなかった。
そこで、負極活物質の表面に不活性な層を形成することが検討されており、例えば、負極活物質の表面に酸化ケイ素の被膜を形成することが提案されている(特許文献2および特許文献3参照)。
米国特許第4950566号明細書 特開2004−171874号公報 特開2004−319469号公報
また、スズあるいはケイ素などを含む負極活物質は、充放電の繰り返しにより黒鉛などの炭素材料からなる場合よりも大きな膨張収縮を伴う。このため、負極活物質自体の崩壊や負極集電体からの剥離などにより、サイクル特性の劣化を招くこともあった。
そのような問題に対し、ケイ素と共に炭素、酸素、窒素、アルゴン、およびフッ素から選ばれる少なくとも1種の不純物を含む非結晶材料を活物質として用いた電極を採用することでサイクル特性の向上を図るようにした技術が提案されている(例えば特許文献4参照)。なお、これに類似したものとして、特許文献5には、一般式SiCxOy(x=0.05〜0.90,y=0〜0.9)で表される組成を有する活物質が開示されている。
特開2005−235397号公報 特開2007−184252号公報
しかしながら、特許文献2,3のように酸化ケイ素の被膜を設ける場合、その厚みを大きくすると反応抵抗が増大し、サイクル特性が不十分となる。よって、活性の高い負極活物質の表面に酸化ケイ素からなる被膜を形成する方法では、十分なサイクル特性を得ることが困難であり、さらなる改善が望まれていた。
また、特許文献4,5のように、ケイ素を主体とする活物質に炭素や酸素を含む場合であっても、実際には十分なサイクル特性を得ることができない場合があった。
本発明はかかる問題点に鑑みてなされたもので、その目的は、サイクル特性を向上させることができる負極およびこの負極を用いた二次電池を提供することにある。
本発明の負極は、負極集電体に、負極活物質としてケイ素,炭素および酸素を含む負極活物質層が設けられたものであり、負極活物質において、炭素の含有率が0.2原子%以上10原子%以下であると共に酸素の含有率が0.5原子%以上40原子%以下であり、負極活物質に含まれるケイ素の0.1%以上17.29%以下がSi−C結合として存在するようにしたものである。
本発明の二次電池は、正極および負極と共に電解質を備えたものであって、負極として上記本発明の負極を用いるようにしたものである。
本発明の負極によれば、負極集電体に設けられたケイ素を含む負極活物質層に所定量の炭素および酸素を加え、かつ、負極活物質中に含まれるケイ素の0.1%以上17.29%以下がSi−C結合として存在するようにしたので、負極集電体に対する負極活物質層の密着力を向上させることができる。また、負極活物質層が物理的に強固なものとなる。このため、この負極を本発明の二次電池などの電気化学デバイスに用いた場合に、優れたサイクル特性を得ることができる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係る負極の断面構成を表している。この負極は、例えば電池などの電気化学デバイスに用いられるものであり、対向する一対の面を有する負極集電体101と、その負極集電体101に設けられた負極活物質層102とを有している。
負極集電体101は、良好な電気化学的安定性、電気伝導性および機械的強度を有する材料により構成されているのが好ましい。この材料としては、例えば、銅(Cu),ニッケル(Ni)あるいはステンレス鋼などの金属材料が挙げられる。中でも、銅が好ましい。高い電気伝導性が得られるからである。
負極活物質層102は、負極活物質として電極反応物質を吸蔵および放出することが可能なケイ素(Si),炭素(C)および酸素(O)をすべて含む負極材料を含有しており、必要に応じて導電剤あるいは結着剤などを含んでいてもよい。ケイ素はリチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができる。負極活物質層102は、負極集電体101の両面に設けられていてもよいし、片面に設けられていてもよい。
ケイ素,炭素および酸素をすべて含む負極材料としては、炭素を含むケイ素の化合物(例えばSiC)と酸素を含むケイ素の化合物(例えばSi2 2 O,SiOv (0<v≦2)あるいはLiSiO)とが混在したもの、または炭素および酸素を含むケイ素の化合物の1種あるいは2種以上の相を少なくとも一部に有する材料が挙げられる。ここでケイ素,炭素および酸素に加えて、スズ(Sn),ニッケル(Ni),銅(Cu),鉄(Fe),コバルト(Co),マンガン(Mn),亜鉛(Zn),インジウム(In),銀(Ag),チタン(Ti),ゲルマニウム(Ge),ビスマス(Bi),アンチモン(Sb),ホウ素(B),マグネシウム(Mg),モリブデン(Mo),カルシウム(Ca),窒素(N),ニオブ(Nb),タンタル(Ta),バナジウム(V),タングステン(W),リチウム(Li)およびクロム(Cr)からなる群のうちの少なくとも1種を含むようにしてもよい。
負極活物質中において、炭素の含有率は0.2原子%以上10原子%以下であると共に酸素の含有率は0.5原子%以上40原子%以下である。特に、炭素の含有率が0.4原子%以上5原子%以下であると共に酸素の含有率が3原子%以上25原子%以下であることが望ましい。また、負極活物質に含まれるケイ素の0.1%以上17.29%以下がSi−C結合として存在する。
負極活物質中における炭素の結合状態を調べる測定方法としては、例えばX線光電子分光法(X-ray Photoelectron Spectroscopy;XPS)が挙げられる。X線光電子分光法によりSi−C結合およびSi−Si結合の同定を行い、Si−C結合によるピーク強度とSi−Si結合によるピーク強度との比率から、負極活物質に含まれるケイ素のうち、Si−C結合として存在する割合を求めることができる。具体的には、例えばケイ素と結合した炭素の1s軌道(C1s)ピークのSi−C結合成分と、ケイ素の2p軌道(Si2p)ピークとの強度比により、負極活物質に含まれるケイ素のうちSi−C結合として存在する割合を求めることができる。なお、炭化ケイ素化合物は、Si:C=1:1の組成比を有する化合物(SiC)のみ存在するので、Si−C結合を持つケイ素(Si)の量は、Si−C結合をもつ炭素(C)の量に等しいということができる。
負極活物質層102は、単層構造であってもよいし、多層構造であってもよい。多層構造とする場合、互いに酸素含有率の異なる第1および第2の層が交互に複数積層されたものとするとよい。二次電池などの電気化学デバイスに用いた場合に、より高いサイクル特性を得るのに好適であるからである。さらに、製造する際には、負極活物質層102を数度にわけて形成するため、各層間の酸化の程度を調整するなど、一度の成膜では制御しにくい酸素含有量の調整が容易になる。加えて、負極活物質層102中の酸素含有量が多い場合は負極集電体101に形成した負極活物質の応力が大きいものとなりがちであるが、このように数度にわけて形成することで負極活物質の応力緩和がなされるため、所望の組成において取り扱い性の良い負極の製造が可能となる。
負極活物質層102は、さらに、負極活物質として電極反応物質を吸蔵および放出することが可能な他の負極材料を1種または2種以上含んでいてもよい。ここでいう他の負極材料としては、例えば、電極反応物質を吸蔵および放出することが可能であると共に金属元素および半金属元素のうちの少なくとも1種を構成元素として含む材料が挙げられる。この他の負極材料は、金属元素あるいは半金属元素の単体でも合金でも化合物でもよく、またはそれらの1種または2種以上の相を少なくとも一部に有するようなものでもよい。なお、ここでいう合金には、2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、ここでの合金は、非金属元素を含んでいてもよい。この組織には、固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうちの2種以上が共存するものがある。
この他の負極材料を構成する金属元素あるいは半金属元素としては、例えば、電極反応物質と合金を形成することが可能な金属元素あるいは半金属元素が挙げられる。具体的には、マグネシウム(Mg),ホウ素(B),アルミニウム(Al),ガリウム(Ga),インジウム(In),ゲルマニウム(Ge),スズ(Sn),鉛(Pb),ビスマス(Bi),カドミウム(Cd),銀(Ag),亜鉛(Zn),ハフニウム(Hf),ジルコニウム(Zr),イットリウム(Y),パラジウム(Pd)あるいは白金(Pt)などである。
さらに、上記他の負極材料として、ケイ素の単体、またはケイ素の合金を含むようにしてもよい。ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ,ニッケル,銅,鉄,コバルト,マンガン,亜鉛,インジウム,銀,チタン,ゲルマニウム,ビスマス,アンチモンおよびクロムからなる群のうちの少なくとも1種を含むようにしてもよい。さらに、上記他の負極材料として、炭素および酸素を含有しないケイ素の化合物を含むようにしてもよい。ケイ素の合金あるいは化合物の一例としては、SiB4 ,SiB6 ,Mg2 Si,Ni2 Si,TiSi2 ,MoSi2 ,CoSi2 ,NiSi2 ,CaSi2 ,CrSi2 ,Cu5 Si,FeSi2 ,MnSi2 ,NbSi2 ,TaSi2 ,VSi2 ,WSi2 ,ZnSi2あるいはSi3 4 などが挙げられる。
負極材料としてケイ素,炭素および酸素を含む負極活物質層102は、真空蒸着法を用いて形成され、負極活物質層102と負極集電体101とが界面の少なくとも一部において合金化しているのが好ましい。具体的には、界面において負極集電体101の構成元素が負極活物質層102に拡散し、あるいは負極活物質層102の構成元素が負極集電体101に拡散し、またはそれらの構成元素が互いに拡散し合っているのが好ましい。充放電に伴う負極活物質層102の膨張および収縮による破壊が抑制されると共に、負極活物質層102と負極集電体101との間の電子伝導性が向上するからである。なお、真空蒸着法としては、電子ビーム蒸着法(電子線加熱蒸着法)や抵抗加熱法などが挙げられる。
続いて、この負極の製造方法について説明する。この負極は、負極集電体101を用意し、必要に応じてその表面に粗面化処理を施したのち、負極集電体101に、図2に示した電子ビーム蒸着装置(以下、単に蒸着装置という。)を用いた真空蒸着法により、ケイ素,炭素および酸素を含む負極活物質層102を形成することによって製造される。
図2は、本実施の形態の負極の製造に好適な蒸着装置の構成を表す概略図である。この蒸着装置は、坩堝31A,31Bに収容された蒸着物質32A,32Bを蒸発させ、それをキャンロール4A,4Bに保持された帯状の金属箔などからなる被蒸着物としての負極集電体101の表面に堆積させることで負極活物質層102を形成するものである。
この蒸着装置は、蒸着処理槽2の内部に、蒸発源3A,3B、キャンロール(成膜ロール)4A,4B、シャッタ6A,6B、巻き取りローラー7,8、ガイドローラー9〜13、およびフィードローラー14を備えるようにしたものである。蒸着処理槽2の外側には真空排気装置15が設けられている。
蒸着処理槽2は、仕切板16によって、蒸発源設置室2A,2Bと、被蒸着物走行室2Cとに仕切られている。蒸発源設置室2Aと蒸発源設置室2Bとは隔壁17によって隔離されている。蒸発源設置室2Aには蒸発源3Aのほかシャッタ6Aが設置され、一方の蒸発源設置室2Bには蒸発源3Bのほかシャッタ6Bが設置されている。これらの蒸発源3A,3Bおよびシャッタ6A,6Bの詳細については後に説明する。また、蒸着処理槽2には、図示しないガス導入口が設けられており、酸素ガスの供給が可能となっている。
被蒸着物走行室2Cには、蒸発源3A,3Bの上方に、それぞれキャンロール4A,4Bが設置されている。但し、仕切板16には、キャンロール4A,4Bに対応した2箇所に開口161,162が設けられ、キャンロール4A,4Bの一部が蒸発源設置室2A,2Bに突き出した状態となっている。さらに被蒸着物走行室2Cには、負極集電体101を保持し、かつ、その長尺方向に走行させる手段として、巻き取りローラー7,8、ガイドローラー9〜13、およびフィードローラー14がそれぞれ所定位置に配置されている。
ここで、負極集電体101は、その一端側が例えば巻き取りローラー7に巻き取られた状態となっており、巻き取りローラー7から順にガイドローラー9、キャンロール4A、ガイドローラー10、フィードローラー14、ガイドローラー11、ガイドローラー12、キャンロール4Bおよびガイドローラー13を経由して他端側が巻き取りローラー8に取り付けられた状態となっている。負極集電体101は、巻き取りローラー7,8、ガイドローラー9〜13、およびフィードローラー14の各外周面と接するように配設されている。なお、負極集電体101のうちの一方の面(表面)がキャンロール4Aと接し、他方の面(裏面)がキャンロール4Bと接するようになっている。巻き取りローラー7,8が駆動系となっているので、負極集電体101は、巻き取りローラー7から巻き取りローラー8へ順次搬送可能であると共に巻き取りローラー8から巻き取りローラー7へ順次搬送可能ともなっている。なお、図2は、巻き取りローラー7から巻き取りローラー8へ向けて負極集電体101が走行する様子に対応しており、図中の矢印は負極集電体101が移動する方向を表している。さらに、この蒸着装置ではフィードローラー14も駆動系となっている。
キャンロール4A,4Bは被蒸着物1を保持するための、例えば円筒状をなす回転体(ドラム)であり、回転(自転)することにより順次その外周面の一部が蒸発源設置室2A,2Bに進入し、蒸発源3A,3Bと対向するようになっている。ここで、キャンロール4A,4Bの外周面のうち、蒸発源設置室2A,2Bに進入した部分41A,41Bが蒸発源3A,3Bからの蒸着物質32A,32Bによって薄膜が形成される蒸着領域となる。
蒸発源3A,3Bは、例えば窒化ホウ素(BN)からなる坩堝31A,31Bに単結晶のケイ素と炭素とを含む蒸着物質32A,32Bが収容されたものであり、蒸着物質32A,32Bが加熱されることにより蒸発(気化)するようになっている。具体的には、蒸発源3A,3Bは例えば電子銃(図示せず)をさらに備えており、この電子銃の駆動によって放出される熱電子が、例えば偏向ヨーク(図示せず)によって電磁気的に飛程を制御されつつ坩堝31A,31Bに収容された蒸着物質32A,32Bへと照射されるように構成されている。蒸着物質32A,32Bは、電子銃からの熱電子の照射によって加熱され、溶融したのち徐々に蒸発することとなる。
坩堝31A,31Bは、窒化ホウ素のほか、例えば酸化チタン、酸化タンタル、酸化ジルコニウムまたは酸化硅素などの酸化物によって構成されており、蒸着物質32A,32Bに対する熱電子の照射に伴う坩堝31A,31Bの過度な温度上昇から守るため、その周囲の一部(例えば底面)が冷却系(図示せず)と接するように構成されていてもよい。冷却系としては、例えばウォータジャケットのような水冷方式の冷却装置などが好適である。
シャッタ6A,6Bは、蒸発源3A,3Bとキャンロール4A,4Bとの間に配置され、坩堝31A,31Bからキャンロール4A,4Bに保持される負極集電体101へ向かう気相状態の蒸着物質32A,32Bの通過を制御する開閉可能な機構である。すなわち、蒸着処理中には開状態となり、坩堝31A,31Bから蒸発した気相状態の蒸着物質32A,32Bの通過を許可する一方、蒸着処理の前後においては、その通過を遮断するものである。シャッタ6A,6Bは、制御回路系(図示せず)と接続されており、開状態または閉状態とする指令信号が入力されることにより、駆動するようになっている。
この蒸着装置を用いて本実施の形態の負極を製造するには、以下のようにして行う。具体的には、まず、負極集電体101の巻回物を巻き取りローラー7に取り付けると共に、その外周側の端部を引き出し、その端部をガイドローラー9、キャンロール4A、ガイドローラー10、フィードローラー14、ガイドローラー11、ガイドローラー12、キャンロール4Bおよびガイドローラー13を順に経由させて巻き取りローラー8の嵌合部(図示せず)に取り付ける。
次に、真空排気装置15によって排気を行い、蒸着処理槽2の内部の真空度が所定値(例えば10-3 Pa程度)となるようにする。なお、この時点では、シャッタ6A,6Bを閉状態としておく。シャッタ6A,6Bを閉じた状態のまま、坩堝31A,31Bに収容された蒸着物質32A,32Bを加熱し、その蒸発(気化)を開始させる。この状態で、水晶モニタなど(図示せず)によって坩堝31A,31Bに収容された蒸着物質32A,32Bの蒸発レートの観測を開始し、蒸発を開始させてから所定時間が経過した時点で蒸発レートが目標値に到達したか否か、および安定したか否かを判断する。そこで、蒸発レートが目標値に達し、かつ、安定していることが確認できた場合には、蒸着処理槽2へ所定量の酸素ガスを導入しつつ、巻き取りローラー8などを駆動させることで負極集電体101の走行を開始させると共にシャッタ6A,6Bを開状態とする。これにより、気化した蒸着物質32A,32Bが開状態となったシャッタ6A,6Bを通過してキャンロール4A,4Bに保持された負極集電体101へ到達し、負極集電体101の両面への蒸着が開始される。この結果、負極集電体101の走行速度と蒸着物質32A,32Bの蒸発レートとを調整することで、所定の厚みを有する負極活物質層102を形成することができる。
なお、ここでは、巻き取りローラー7から巻き取りローラー8への走行(便宜上、順方向の走行という。)を行いながら負極集電体101に負極活物質層102を形成する場合について説明したが、それとは逆方向の走行、すなわち、負極集電体101を巻き取りローラー8から巻き取りローラー7へ向かうように走行させながら負極活物質層102を形成するようにしてもよい。その場合には、巻き取りローラー7,8、ガイドローラー9〜13、フィードローラー14およびキャンロール4A,4Bを逆方向に回転させればよい。また、負極活物質層102の形成は、負極集電体101の一回の走行によって一度に行うようにしてもよいが、多層構造を有する負極活物質層102を形成するには、複数回の走行に亘って蒸着を行う必要がある。その際、蒸着処理槽2への酸素ガスの導入量を調整することで、互いに酸素含有率の異なる第1および第2の層が交互に複数積層された多層構造の負極活物質層102を形成することができる。
本実施の形態の負極によれば、負極集電体101に設けられたケイ素を含む負極活物質層102に所定量の炭素および酸素を加え、かつ、負極活物質に含まれるケイ素の0.1%以上17.29%以下がSi−C結合として存在するようにしたので、負極集電体101に対する負極活物質層102の密着力を向上させることができる。また、負極活物質層102自体が物理的に強固なものとなる。このため、この負極を二次電池などの電気化学デバイスに用いた場合に、負極集電体101と負極活物質層102との間の電気抵抗が低下し充放電時においてリチウムが効率よく吸蔵および放出されると共に、充放電に伴う負極活物質層102の崩壊が抑制されるので、優れたサイクル特性を得ることができる。特に、負極活物質層102がケイ素を含むので、高容量化にも有利である。
次に、上記した負極の使用例について説明する。ここで、電気化学デバイスの一例として二次電池を例に挙げると、負極は以下のように用いられる。
(第1の二次電池)
図3および図4は第1の二次電池の断面構成を表しており、図4では図3に示した巻回電極体20の一部を拡大して示している。ここで説明する二次電池は、例えば、負極122の容量がリチウムの吸蔵および放出に基づいて表されるリチウムイオン二次電池である。
この二次電池は、主に、ほぼ中空円柱状の電池缶111の内部に、セパレータ123を介して正極121と負極122とが巻回された巻回電極体120と、一対の絶縁板112,113とが収納されたものである。この電池缶111を含む電池構造は、円筒型と呼ばれている。
電池缶111は、例えば、鉄、アルミニウムあるいはそれらの合金などの金属材料によって構成されており、その一端部は閉鎖されていると共に他端部は開放されている。一対の絶縁板112,113は、巻回電極体120を挟み、その巻回周面に対して垂直に延在するように配置されている。
電池缶111の開放端部には、電池蓋114と、その内側に設けられた安全弁機構115および熱感抵抗素子(Positive Temperature Coefficient:PTC素子)116とがガスケット117を介してかしめられて取り付けられている。これにより、電池缶111の内部は密閉されている。電池蓋114は、例えば、電池缶111と同様の材料によって構成されている。安全弁機構115は、熱感抵抗素子116を介して電池蓋114と電気的に接続されている。この安全弁機構115では、内部短絡、あるいは外部からの加熱などに起因して内圧が一定以上となった場合に、ディスク板115Aが反転して電池蓋114と巻回電極体120との間の電気的接続が切断されるようになっている。熱感抵抗素子116は、温度の上昇に応じた抵抗の増大によって電流を制限し、大電流に起因する異常な発熱を防止するものである。ガスケット117は、例えば、絶縁材料によって構成されており、その表面にはアスファルトが塗布されている。
巻回電極体120の中心には、センターピン124が挿入されていてもよい。この巻回電極体120では、アルミニウムなどの金属材料によって構成された正極リード125が正極121に接続されていると共に、ニッケルなどの金属材料によって構成された負極リード126が負極122に接続されている。正極リード125は、安全弁機構115に溶接されて電池蓋114と電気的に接続されており、負極リード126は、電池缶111に溶接されて電気的に接続されている。
正極121は、例えば、一対の面を有する正極集電体121Aの両面に正極活物質層121Bが設けられたものである。この正極集電体21Aは、例えば、アルミニウム、ニッケル、あるいはステンレスなどの金属材料によって構成されている。なお、正極活物質層121Bは、正極活物質を含んでおり、必要に応じて結着剤や導電剤などの他の材料を含んでいてもよい。
正極活物質は、電極反応物質であるリチウムを吸蔵および放出することが可能な正極材料のいずれか1種あるいは2種以上を含んでいる。この正極材料としては、例えば、リチウム含有化合物が好ましい。高いエネルギー密度が得られるからである。このリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物、あるいはリチウムと遷移金属元素とを含むリン酸化合物が挙げられ、特に、遷移金属元素としてコバルト、ニッケル、マンガンおよび鉄からなる群のうちの少なくとも1種を含むものが好ましい。より高い電圧が得られるからである。その化学式は、例えば、Lix M1O2 あるいはLiy M2PO4 で表される。式中、M1およびM2は、1種類以上の遷移金属元素を表す。xおよびyの値は、二次電池の充放電状態によって異なり、通常、0.05≦x≦1.10、0.05≦y≦1.10である。
リチウムと遷移金属元素とを含む複合酸化物としては、例えば、リチウムコバルト複合酸化物(Lix CoO2 )、リチウムニッケル複合酸化物(Lix NiO2 )、リチウムニッケルコバルト複合酸化物(Lix Ni(1-z) Coz 2 (z<1))、リチウムニッケルコバルトマンガン複合酸化物(Lix Ni(1-v-w) Cov Mnw 2 (v+w<1))、あるいはスピネル型構造を有するリチウムマンガン複合酸化物(LiMn2 4 )などが挙げられる。中でも、コバルトを含む複合酸化物が好ましい。高い容量が得られると共に優れたサイクル特性も得られるからである。また、リチウムと遷移金属元素とを含むリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO4 )あるいはリチウム鉄マンガンリン酸化合物(LiFe(1-u) Mnu PO4 (u<1))などが挙げられる。
この他、正極材料としては、例えば、酸化チタン、酸化バナジウムあるいは二酸化マンガンなどの酸化物や、二硫化チタンあるいは硫化モリブデンなどの二硫化物や、セレン化ニオブなどのカルコゲン化物や、硫黄、ポリアニリンあるいはポリチオフェンなどの導電性高分子も挙げられる。
負極122は、上記した負極と同様の構成を有しており、例えば、一対の面を有する負極集電体122Aの両面に負極活物質層122Bが設けられたものである。負極集電体122Aおよび負極活物質層122Bの構成は、それぞれ上記した負極における負極集電体101および負極活物質層102の構成と同様である。この負極122では、リチウムを吸蔵および放出することが可能な負極材料の充電容量が正極121の充電容量よりも大きくなっているのが好ましい。満充電時においても、負極122にリチウムがデンドライトとなって析出する可能性が低くなるからである。
セパレータ123は、正極121と負極122とを隔離し、両極の接触に起因する電流の短絡(ショート)を防止しながらリチウムイオンを通過させるものである。このセパレータ123は、例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチレンなどの合成樹脂からなる多孔質膜や、セラミックからなる多孔質膜などによって構成されており、これらの2種以上の多孔質膜が積層されたものであってもよい。中でも、ポリオレフィン製の多孔質膜は、ショート防止効果に優れ、かつシャットダウン効果による二次電池の安全性向上を図ることができるので好ましい。特に、ポリエチレンは、100℃以上160℃以下でシャットダウン効果を得ることができると共に、電気化学的安定性が優れているので好ましい。また、ポリプロピレンも好ましく、他にも化学的安定性を備えた樹脂であれば、ポリエチレンあるいはポリプロピレンと共重合させたものや、ブレンド化したものであってもよい。
このセパレータ123には、液状の電解質である電解液が含浸されている。この電解液は、溶媒と、それに溶解された電解質塩とを含んでいる。
溶媒は、例えば、有機溶剤などの非水溶媒のいずれか1種あるいは2種以上を含有している。この非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,3−ジオキサン、1,4−ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、N,N−ジメチルホルムアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン、N,N’−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルあるいはジメチルスルホキシドなどが挙げられる。中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルからなる群のうちの少なくとも1種が好ましい。優れた容量特性、サイクル特性および保存特性が得られるからである。この場合には、特に、炭酸エチレンあるいは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)と炭酸ジメチル、炭酸エチルメチルあるいは炭酸ジエチルなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するため、より高い効果が得られるからである。
この溶媒は、化1〜化3で表される不飽和結合を有する環状炭酸エステルを含有しているのが好ましい。高いサイクル特性が得られるからである。これらは単独でも良いし、複数種が混合されてもよい。
Figure 2009283366
(R11およびR12は水素基あるいはアルキル基である。)
Figure 2009283366
(R13〜R16は水素基、アルキル基、ビニル基あるいはアリル基であり、それらのうちの少なくとも1つはビニル基あるいはアリル基である。)
Figure 2009283366
(R17はアルキレン基である。)
化1に示した不飽和結合を有する環状炭酸エステルは、炭酸ビニレン系化合物である。この炭酸ビニレン系化合物としては、例えば、炭酸ビニレン(1,3−ジオキソール−2−オン)、炭酸メチルビニレン(4−メチル−1,3−ジオキソール−2−オン)、炭酸エチルビニレン(4−エチル−1,3−ジオキソール−2−オン)、4,5−ジメチル−1,3−ジオキソール−2−オン、4,5−ジエチル−1,3−ジオキソール−2−オン、4−フルオロ−1,3−ジオキソール−2−オン、あるいは4−トリフルオロメチル−1,3−ジオキソール−2−オンなどが挙げられ、中でも炭酸ビニレンが好ましい。容易に入手可能であると共に、高い効果が得られるからである。
化2に示した不飽和結合を有する環状炭酸エステルは、炭酸ビニルエチレン系化合物である。炭酸ビニルエチレン系化合物としては、例えば、炭酸ビニルエチレン(4−ビニル−1,3−ジオキソラン−2−オン)、4−メチル−4−ビニル−1,3−ジオキソラン−2−オン、4−エチル−4−ビニル−1,3−ジオキソラン−2−オン、4−n−プロピル−4−ビニル−1,3−ジオキソラン−2−オン、5−メチル−4−ビニル−1,3−ジオキソラン−2−オン、4,4−ジビニル−1,3−ジオキソラン−2−オン、あるいは4,5−ジビニル−1,3−ジオキソラン−2−オンなどが挙げられ、中でも炭酸ビニルエチレンが好ましい。容易に入手可能であると共に、高い効果が得られるからである。もちろん、R13〜R16としては、全てがビニル基でもよいし、全てがアリル基でもよいし、ビニル基とアリル基とが混在していてもよい。
化3に示した不飽和結合を有する環状炭酸エステルは、炭酸メチレンエチレン系化合物である。炭酸メチレンエチレン系化合物としては、4−メチレン−1,3−ジオキソラン−2−オン、4,4−ジメチル−5−メチレン−1,3−ジオキソラン−2−オン、あるいは4,4−ジエチル−5−メチレン−1,3−ジオキソラン−2−オンなどが挙げられる。この炭酸メチレンエチレン系化合物としては、1つのメチレン基を有するもの(化3に示した化合物)の他、2つのメチレン基を有するものであってもよい。
なお、不飽和結合を有する環状炭酸エステルとしては、化1〜化3に示したものの他、ベンゼン環を有する炭酸カテコール(カテコールカーボネート)などであってもよい。 溶媒中における上記した不飽和結合を有する環状炭酸エステルの含有量は、0.01重量%以上10重量%以下であるのが好ましい。十分な効果が得られるからである。
また、溶媒は、化4で表されるハロゲンを構成元素として有する鎖状炭酸エステルおよび化5で表されるハロゲンを構成元素として有する環状炭酸エステルのうちの少なくとも1種を含有しているのが好ましい。負極22の表面に安定な保護膜が形成されて電解液の分解反応が抑制されるため、サイクル特性が向上するからである。
Figure 2009283366
(R21〜R26は水素基、ハロゲン基、アルキル基あるいはハロゲン化アルキル基であり、それらのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。)
Figure 2009283366
(R27〜R30は水素基、ハロゲン基、アルキル基あるいはハロゲン化アルキル基であり、それらのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。)
なお、化4中のR21〜R26は、同一でもよいし、異なってもよい。このことは、化5中のR27〜R30についても同様である。ハロゲンの種類は、特に限定されないが、例えば、フッ素、塩素および臭素からなる群のうちの少なくとも1種が挙げられ、中でも、フッ素が好ましい。高い効果が得られるからである。もちろん、他のハロゲンであってもよい。
ハロゲンの数は、1つよりも2つが好ましく、さらに3つ以上であってもよい。保護膜を形成する能力が高くなり、より強固で安定な保護膜が形成されるため、電解液の分解反応がより抑制されるからである。
化4に示したハロゲンを有する鎖状炭酸エステルとしては、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)あるいは炭酸ジフルオロメチルメチルなどが挙げられる。これらは単独でもよいし、複数種が混合されてもよい。
化5に示したハロゲンを有する環状炭酸エステルとしては、例えば、化6および化7で表される一連の化合物が挙げられる。すなわち、化6に示した(1)の4−フルオロ−1,3−ジオキソラン−2−オン、(2)の4−クロロ−1,3−ジオキソラン−2−オン、(3)の4,5−ジフルオロ−1,3−ジオキソラン−2−オン、(4)のテトラフルオロ−1,3−ジオキソラン−2−オン、(5)の4−フルオロ−5−クロロ−1,3−ジオキソラン−2−オン、(6)の4,5−ジクロロ−1,3−ジオキソラン−2−オン、(7)のテトラクロロ−1,3−ジオキソラン−2−オン、(8)の4,5−ビストリフルオロメチル−1,3−ジオキソラン−2−オン、(9)の4−トリフルオロメチル−1,3−ジオキソラン−2−オン、(10)の4,5−ジフルオロ−4,5−ジメチル−1,3−ジオキソラン−2−オン、(11)の4−メチル−5,5−ジフルオロ−1,3−ジオキソラン−2−オン、(12)の4−エチル−5,5−ジフルオロ−1,3−ジオキソラン−2−オンなどである。また、化7に示した(1)の4−トリフルオロメチル−5−フルオロ−1,3−ジオキソラン−2−オン、(2)の4−トリフルオロメチル−5−メチル−1,3−ジオキソラン−2−オン、(3)の4−フルオロ−4,5−ジメチル−1,3−ジオキソラン−2−オン、(4)の4,4−ジフルオロ−5−(1,1−ジフルオロエチル)−1,3−ジオキソラン−2−オン、(5)の4,5−ジクロロ−4,5−ジメチル−1,3−ジオキソラン−2−オン、(6)の4−エチル−5−フルオロ−1,3−ジオキソラン−2−オン、(7)の4−エチル−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、(8)の4−エチル−4,5,5−トリフルオロ−1,3−ジオキソラン−2−オン、(9)の4−フルオロ−4−メチル−1,3−ジオキソラン−2−オンなどである。これらは単独でもよいし、複数種が混合されてもよい。
Figure 2009283366
Figure 2009283366
中でも、4−フルオロ−1,3−ジオキソラン−2−オンあるいは4,5−ジフルオロ−1,3−ジオキソラン−2−オンが好ましく、4,5−ジフルオロ−1,3−ジオキソラン−2−オンがより好ましい。特に、4,5−ジフルオロ−1,3−ジオキソラン−2−オンとしては、シス異性体よりもトランス異性体が好ましい。容易に入手可能であると共に、高い効果が得られるからである。
電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種あるいは2種以上を含んでいる。このリチウム塩としては、例えば、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムあるいは六フッ化ヒ酸リチウムなどが挙げられる。優れた容量特性、サイクル特性および保存特性が得られるからである。中でも、六フッ化リン酸リチウムが好ましい。内部抵抗が低下するため、より高い効果が得られるからである。
この電解質塩は、化8〜化10で表される化合物からなる群のうちの少なくとも1種を含有しているのが好ましい。上記した六フッ化リン酸リチウム等と一緒に用いられた場合に、より高い効果が得られるからである。なお、化8中のR33は、同一でもよいし、異なってもよい。このことは、化9中のR41〜R43および化10中のR51およびR52についても同様である。
Figure 2009283366
(X31は長周期型周期表における1族元素あるいは2族元素、またはアルミニウムである。M31は遷移金属元素、または長周期型周期表における13族元素、14族元素あるいは15族元素である。R31はハロゲン基である。Y31は−OC−R32−CO−、−OC−C(R33)2 −あるいは−OC−CO−である。ただし、R32はアルキレン基、ハロゲン化アルキレン基、アリーレン基あるいはハロゲン化アリーレン基である。R33はアルキル基、ハロゲン化アルキル基、アリール基あるいはハロゲン化アリール基である。なお、a3は1〜4の整数であり、b3は0、2あるいは4であり、c3、d3、m3およびn3は1〜3の整数である。)
Figure 2009283366
(X41は長周期型周期表における1族元素あるいは2族元素である。M41は遷移金属元素、または長周期型周期表における13族元素、14族元素あるいは15族元素である。Y41は−OC−(C(R41)2 b4−CO−、−(R43)2 C−(C(R42)2 c4−CO−、−(R43)2 C−(C(R42)2 c4−C(R43)2 −、−(R43)2 C−(C(R42)2 c4−SO2 −、−O2 S−(C(R42)2 d4−SO2 −あるいは−OC−(C(R42)2 d4−SO2 −である。ただし、R41およびR43は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基であり、それぞれのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。R42は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基である。なお、a4、e4およびn4は1あるいは2であり、b4およびd4は1〜4の整数であり、c4は0〜4の整数であり、f4およびm4は1〜3の整数である。)
Figure 2009283366
(X51は長周期型周期表における1族元素あるいは2族元素である。M51は遷移金属元素、または長周期型周期表における13族元素、14族元素あるいは15族元素である。Rfはフッ素化アルキル基あるいはフッ素化アリール基であり、いずれの炭素数も1〜10である。Y51は−OC−(C(R51)2 d5−CO−、−(R52)2 C−(C(R51)2 d5−CO−、−(R52)2 C−(C(R51)2 d5−C(R52)2 −、−(R52)2 C−(C(R51)2 d5−SO2 −、−O2 S−(C(R51)2 e5−SO2 −あるいは−OC−(C(R51)2 e5−SO2 −である。ただし、R51は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基である。R52は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基であり、そのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。なお、a5、f5およびn5は1あるいは2であり、b5、c5およびe5は1〜4の整数であり、d5は0〜4の整数であり、g5およびm5は1〜3の整数である。)
なお、長周期型周期表における1族元素とは、水素、リチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびフランシウムである。2族元素とは、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムおよびラジウムである。13族元素とは、ホウ素、アルミニウム、ガリウム、インジウムおよびタリウムである。14族元素とは、炭素、ケイ素、ゲルマニウム、スズおよび鉛である。15族元素とは、窒素、リン、ヒ素、アンチモンおよびビスマスである。
化8に示した化合物としては、例えば、化11の(1)〜(6)で表される化合物などが挙げられる。化9に示した化合物としては、例えば、化12の(1)〜(8)で表される化合物などが挙げられる。化10に示した化合物としては、例えば、化13で表される化合物などが挙げられる。なお、化8〜化10に示した構造を有する化合物であれば、化11〜化13に示した化合物に限定されないことは言うまでもない。
Figure 2009283366
Figure 2009283366
Figure 2009283366
また、電解質塩は、化14〜化16で表される化合物からなる群のうちの少なくとも1種を含有しているのが好ましい。上記した六フッ化リン酸リチウム等と一緒に用いられた場合に、より高い効果が得られるからである。なお、化14中のmおよびnは、同一でもよいし、異なってもよい。このことは、化16中のp、qおよびrについても同様である。
Figure 2009283366
(mおよびnは1以上の整数である。)
Figure 2009283366
(R61は炭素数が2以上4以下の直鎖状あるいは分岐状のパーフルオロアルキレン基である。)
Figure 2009283366
(p、qおよびrは1以上の整数である。)
化14に示した鎖状の化合物としては、例えば、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO2 2 )、ビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(C2 5 SO2 2 )、(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(CF3 SO2 )(C2 5 SO2 ))、(トリフルオロメタンスルホニル)(ヘプタフルオロプロパンスルホニル)イミドリチウム(LiN(CF3 SO2 )(C3 7 SO2 ))、あるいは(トリフルオロメタンスルホニル)(ノナフルオロブタンスルホニル)イミドリチウム(LiN(CF3 SO2 )(C4 9 SO2 ))などが挙げられる。これらは単独でもよいし、複数種が混合されてもよい。
化15に示した環状の化合物としては、例えば、化17で表される一連の化合物が挙げられる。すなわち、化17に示した(1)の1,2−パーフルオロエタンジスルホニルイミドリチウム、(2)の1,3−パーフルオロプロパンジスルホニルイミドリチウム、(3)の1,3−パーフルオロブタンジスルホニルイミドリチウム、(4)の1,4−パーフルオロブタンジスルホニルイミドリチウムなどである。これらは単独でもよいし、複数種が混合されてもよい。中でも、1,3−パーフルオロプロパンジスルホニルイミドリチウムが好ましい。高い効果が得られるからである。
Figure 2009283366
化16に示した鎖状の化合物としては、例えば、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3 SO2 3 )などが挙げられる。
電解質塩の含有量は、溶媒に対して0.3mol/kg以上3.0mol/kg以下であるのが好ましい。この範囲外では、イオン伝導性が極端に低下する可能性があるからである。
なお、電解液は、溶媒および電解質塩と共に、各種の添加剤を含んでいてもよい。電解液の化学的安定性がより向上するからである。
この添加剤としては、例えば、スルトン(環状スルホン酸エステル)が挙げられる。このスルトンは、例えば、プロパンスルトンあるいはプロペンスルトンなどであり、中でも、プロペンスルトンが好ましい。これらは単独でもよいし、複数種が混合されてもよい。
また、添加剤としては、例えば、酸無水物が挙げられる。この酸無水物は、例えば、コハク酸無水物、グルタル酸無水物あるいはマレイン酸無水物などのカルボン酸無水物や、エタンジスルホン酸無水物あるいはプロパンジスルホン酸無水物などのジスルホン酸無水物や、スルホ安息香酸無水物、スルホプロピオン酸無水物あるいはスルホ酪酸無水物などのカルボン酸とスルホン酸との無水物などであり、中でも、スルホ安息香酸無水物あるいはスルホプロピオン酸無水物が好ましい。これらは単独でもよいし、複数種が混合されてもよい。
この二次電池は、例えば、以下の手順によって製造される。
まず、正極121を作製する。最初に、正極活物質と、結着剤と、導電剤とを混合して正極合剤としたのち、有機溶剤に分散させてペースト状の正極合剤スラリーとする。続いて、ドクタブレードあるいはバーコータなどによって正極集電体121Aの両面に正極合剤スラリーを均一に塗布して乾燥させる。最後に、必要に応じて加熱しながらロールプレス機などによって塗膜を圧縮成型して正極活物質層121Bを形成する。この場合には、圧縮成型を複数回に渡って繰り返してもよい。
また、上記した負極の作製手順と同様の手順により、負極集電体122Aの両面に負極活物質層122Bを形成して負極122を作製する。
次に、正極121および負極122を用いて巻回電極体120を作製する。最初に、正極集電体121Aに正極リード125を溶接などして取り付けると共に、負極集電体122Aに負極リード126を溶接などして取り付ける。こののち、セパレータ123を介して正極121と負極122とを積層させたのち、長手方向において巻回させることで巻回電極体120を作製し、センターピン14をその巻回中心部に挿入する。続いて、巻回電極体120を一対の絶縁板112,113で挟んで電池缶11の内部に収納すると共に、正極リード125の先端部を安全弁機構115に溶接し、負極リード126の先端部を電池缶111に溶接する。
最後に、電池缶111の内部に電解液を注入してセパレータ123に含浸させたのち、電池缶111の開口端部に電池蓋114、安全弁機構115および熱感抵抗素子116を、ガスケット117を介してかしめることにより固定する。これにより、図3および図4に示した二次電池が完成する。
この二次電池では、充電を行うと、例えば、正極121からリチウムイオンが放出され、セパレータ123に含浸された電解液を介して負極122に吸蔵される。一方、放電を行うと、例えば、負極122からリチウムイオンが放出され、セパレータ123に含浸された電解液を介して正極121に吸蔵される。
この円筒型の二次電池によれば、負極122が上記した図1の負極と同様の構成を有していると共に、それが上記した負極の製造方法と同様の方法により作製されているので、負極集電体122Aに対する負極活物質層122Bの密着力を向上させることができる。また、負極活物質層122B自体が物理的に強固なものとなる。このため、負極集電体122Aと負極活物質層122Bとの間の電気抵抗が低下し充放電時においてリチウムが効率よく吸蔵および放出されると共に、充放電に伴う負極活物質層122Bの崩壊が抑制される。さらに、負極活物質に含まれるケイ素の0.1%以上17.29%以下がSi−C結合として存在するようにしたことで、負極活物質と電解液との反応が抑制される。こうした理由から、優れたサイクル特性を得ることができる。また、負極122がケイ素を含むので、高容量化にも有利である。
(第2の二次電池)
図5は第2の二次電池の分解斜視構成を表しており、図6は図5に示した巻回電極体130のVI−VI線に沿った断面を拡大して示している。この二次電池は、例えば、上記した第1の二次電池と同様にリチウムイオン二次電池であり、主に、フィルム状の外装部材140の内部に、正極リード131および負極リード132が取り付けられた巻回電極体130が収納されたものである。この外装部材140を含む電池構造は、ラミネートフィルム型と呼ばれている。
正極リード131および負極リード132は、例えば、いずれも外装部材140の内部から外部に向かって同一方向に導出されている。正極リード131は、例えば、アルミニウムなどの金属材料によって構成されており、負極リード132は、例えば、銅、ニッケルあるいはステンレスなどの金属材料によって構成されている。これらの金属材料は、例えば、薄板状あるいは網目状になっている。
外装部材140は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムがこの順に貼り合わされたアルミラミネートフィルムによって構成されている。この外装部材140は、例えば、ポリエチレンフィルムが巻回電極体130と対向するように、2枚の矩形型のアルミラミネートフィルムの外縁部同士が融着あるいは接着剤によって互いに接着された構造を有している。
外装部材140と正極リード131および負極リード132との間には、外気の侵入を防止するために密着フィルム141が挿入されている。この密着フィルム141は、正極リード131および負極リード132に対して密着性を有する材料によって構成されている。この種の材料としては、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンあるいは変性ポリプロピレンなどのポリオレフィン樹脂が挙げられる。
なお、外装部材140は、上記したアルミラミネートフィルムに代えて、他の積層構造を有するラミネートフィルムによって構成されていてもよいし、ポリプロピレンなどの高分子フィルムあるいは金属フィルムによって構成されていてもよい。
巻回電極体130は、セパレータ135および電解質136を介して正極133と負極134とが積層されたのちに巻回されたものであり、その最外周部は保護テープ137によって保護されている。
図7は、図6に示した巻回電極体130の一部を拡大して表している。正極133は、例えば、一対の面を有する正極集電体133Aの両面に正極活物質層133Bが設けられたものである。負極134は、上記した負極と同様の構成を有しており、例えば、一対の面を有する負極集電体134Aの両面に負極活物質層134Bが設けられたものである。正極集電体133A、正極活物質層133B、負極集電体134A、負極活物質層134Bおよびセパレータ135の構成は、それぞれ上記した第1の二次電池における正極集電体121A、正極活物質層121B、負極集電体122A、負極活物質層122Bおよびセパレータ123の構成と同様である。
電解質136は、電解液と、それを保持する高分子化合物とを含んでおり、いわゆるゲル状の電解質である。ゲル状の電解質は、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に漏液が防止されるので好ましい。
高分子化合物としては、例えば、ポリエチレンオキサイド、ポリエチレンオキサイドを含む架橋体あるいはポリプロピレンオキサイドなどのエーテル系高分子化合物や、ポリメタクリル酸メチル、ポリアクリル酸あるいはポリメタクリル酸などのアクリレート系あるいはエステル系高分子化合物や、ポリフッ化ビニリデン、ポリフッ化ビニリデンとポリヘキサフルオロピレンとの共重合体、ポリテトラフルオロエチレンあるいはポリヘキサフルオロプロピレンなどのフッ素系高分子化合物などが挙げられ、その他に、ポリアクリロニトリル、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレン、あるいはポリカーボネートなどが挙げられる。これらは単独でもよいし、複数種が混合されてもよい。中でも、高分子化合物としては、ポリフッ化ビニリデンなどのフッ素系高分子化合物が好ましい。酸化還元安定性が高いため、電気化学的に安定だからである。電解質中における高分子化合物の含有量は、電解液との相溶性によっても異なるが、例えば、5重量%以上50重量%以下であるのが好ましい。
電解液の組成は、第1の二次電池における電解液の組成と同様である。ただし、この場合の溶媒とは、液状の溶媒だけでなく、電解質塩を解離させることが可能なイオン伝導性を有するものまで含む広い概念である。したがって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
なお、電解液を高分子化合物に保持させたゲル状の電解質136に代えて、電解液をそのまま用いてもよい。この場合には、電解液がセパレータ135に含浸される。
ゲル状の電解質136を備えた二次電池は、例えば、以下の3種類の方法によって製造される。
第1の製造方法では、最初に、例えば、上記した第1の二次電池における正極121および負極122の作製手順と同様の手順により、正極集電体133Aの両面に正極活物質層133Bを形成して正極133を作製すると共に、負極集電体134Aの両面に負極活物質層134Bを形成して負極134を作製する。続いて、電解液と、高分子化合物と、溶剤とを含む前駆溶液を調製して正極133および負極134に塗布したのち、溶剤を揮発させてゲル状の電解質136を形成する。続いて、正極133に正極リード131を取り付けると共に、負極134に負極リード132を取り付ける。続いて、電解質136が形成された正極133と負極134とをセパレータ135を介して積層させてから長手方向に巻回し、その最外周部に保護テープ137を接着させて巻回電極体130を作製する。最後に、例えば、2枚のフィルム状の外装部材140の間に巻回電極体130を挟み込んだのち、その外装部材140の外縁部同士を熱融着などで接着させて巻回電極体130を封入する。この際、正極リード131および負極リード132と外装部材140との間に、密着フィルム141を挿入する。これにより、図5〜図7に示した二次電池が完成する。
第2の製造方法では、最初に、正極133に正極リード131を取り付けると共に負極134に負極リード132を取り付けたのち、セパレータ135を介して正極133と負極134とを積層して巻回させると共に最外周部に保護テープ137を接着させて、巻回電極体130の前駆体である巻回体を作製する。続いて、2枚のフィルム状の外装部材140の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着などで接着させて、袋状の外装部材140の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を調製して袋状の外装部材140の内部に注入したのち、外装部材140の開口部を熱融着などで密封する。最後に、モノマーを熱重合させて高分子化合物とすることにより、ゲル状の電解質136を形成する。これにより、二次電池が完成する。
第3の製造方法では、最初に、高分子化合物が両面に塗布されたセパレータ135を用いることを除き、上記した第2の製造方法と同様に、巻回体を形成して袋状の外装部材140の内部に収納する。このセパレータ135に塗布する高分子化合物としては、例えば、フッ化ビニリデンを成分とする重合体、すなわち単独重合体、共重合体あるいは多元共重合体などが挙げられる。具体的には、ポリフッ化ビニリデンや、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体や、フッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体などである。なお、高分子化合物は、上記したフッ化ビニリデンを成分とする重合体と共に、他の1種あるいは2種以上の高分子化合物を含んでいてもよい。続いて、電解液を調製して外装部材140の内部に注入したのち、その外装部材140の開口部を熱融着などで密封する。最後に、外装部材140に加重をかけながら加熱し、高分子化合物を介してセパレータ135を正極133および負極134に密着させる。これにより、電解液が高分子化合物に含浸し、その高分子化合物がゲル化して電解質136が形成されるため、二次電池が完成する。
この第3の製造方法では、第1の製造方法と比較して、二次電池の膨れが抑制される。また、第3の製造方法では、第2の製造方法と比較して、高分子化合物の原料であるモノマーや溶媒などが電解質136中にほとんど残らず、しかも高分子化合物の形成工程が良好に制御されるため、正極133、負極134およびセパレータ135と電解質136との間において十分な密着性が得られる。
この二次電池では、第1の電池と同様に、正極133と負極134との間でリチウムイオンが吸蔵および放出される。すなわち、充電を行うと、例えば、正極133からリチウムイオンが放出され、電解質136を介して負極134に吸蔵される。一方、放電を行うと、例えば、負極134からリチウムイオンが放出され、電解質136を介して正極133に吸蔵される。
このラミネートフィルム型の二次電池によれば、負極134が上記した図1に示した負極と同様の構成を有していると共に、それが上記した負極の製造方法と同様の方法により作製されているので、サイクル特性を向上させることができる。
(第3の電池)
図8および図9は、第3の二次電池の断面構成を表している。図8に示された断面と図9に示された断面とは、互いに直交する位置関係にある。すなわち、図9は、図8に示したIX−IX線に沿った矢視方向における断面図である。この二次電池は、いわゆる角型といわれるものであり、ほぼ中空直方体形状をなす外装缶151の内部に、偏平形状の巻回電極体160を収容したリチウムイオン二次電池である。
外装缶151は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、負極端子としての機能も有している。この外装缶151は、一端部が閉鎖され他端部が開放されており、開放端部に絶縁板152および電池蓋153が取り付けられることにより外装缶151の内部が密閉されている。絶縁板152は、ポリプロピレンなどにより構成され、巻回電極体160の上に巻回周面に対して垂直に配置されている。電池蓋153は、例えば、外装缶151と同様の材料により構成され、外装缶151と共に負極端子としての機能も有している。電池蓋153の外側には、正極端子となる端子板154が配置されている。また、電池蓋153の中央付近には貫通孔が設けられ、この貫通孔に、端子板154に電気的に接続された正極ピン155が挿入されている。端子板154と電池蓋153との間は絶縁ケース156により電気的に絶縁され、正極ピン155と電池蓋153との間はガスケット157により電気的に絶縁されている。絶縁ケース156は、例えばポリブチレンテレフタレートにより構成されている。ガスケット157は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。
電池蓋153の周縁付近には開裂弁158および電解液注入孔159が設けられている。開裂弁158は、電池蓋153と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合に開裂して内圧の上昇を抑えるようになっている。電解液注入孔159は、例えばステンレス鋼球よりなる封止部材159Aにより塞がれている。
巻回電極体160は、正極161と負極162とが、セパレータ163を間にして積層されて渦巻き状に巻回されたものであり、外装缶151の形状に合わせて偏平な形状に成形されている。巻回電極体160の最外周にはセパレータ163が位置しており、そのすぐ内側には正極161が位置している。図10では、正極161および負極162の積層構造を簡略化して示している。また、巻回電極体160の巻回数は、図9および図10に示したものに限定されず、任意に設定可能である。巻回電極体160の正極161にはアルミニウム(Al)などよりなる正極リード164が接続されており、負極162にはニッケルなどよりなる負極リード165が接続されている。正極リード164は正極ピン155の下端に溶接されることにより端子板154と電気的に接続されており、負極リード165は外装缶151に溶接され電気的に接続されている。
図8に示したように、正極161は、正極集電体161Aの一方の面または両面に正極活物質層161Bが設けられたものであり、負極162は、負極集電体162Aの一方の面または両面に負極活物質層162Bが設けられたものである。正極集電体161A、正極活物質層161B、負極集電体162A、負極活物質層162Bおよびセパレータ163の構成は、それぞれ上記した第1の電池における正極集電体121A、正極活物質層121B、負極集電体122A、負極活物質層122Bおよびセパレータ123の構成と同様である。セパレータ163には、セパレータ123と同様の電解液が含浸されている。
この二次電池は、例えば、以下のようにして製造することができる。
上記した第1の電池と同様に、正極161および負極162を、セパレータ163を介して巻回させることにより巻回電極体160を形成したのち、その巻回体160を外装缶151の内部に収容する。次いで、巻回電極体160の上に絶縁板152を配置し、負極リード165を外装缶151に溶接すると共に、正極リード164を正極ピン155の下端に溶接して、外装缶151の開放端部に電池蓋153をレーザ溶接により固定する。最後に、電解液を電解液注入孔159から外装缶151の内部に注入し、セパレータ163に含浸させ、電解液注入孔159を封止部材159Aで塞ぐ。これにより、図9および図10に示した二次電池が完成する。
この二次電池によれば、負極162が上記した図1に示した負極と同様の構成を有していると共に、それが上記した負極の製造方法と同様の方法により作製されているので、サイクル特性を向上させることができる。
本発明の実施例について詳細に説明する。
(実施例1−1〜1−74)
以下の手順により、図8および図9に示した角型の二次電池を製造した。この際、負極142の容量がリチウムの吸蔵および放出に基づいて表されるリチウムイオン二次電池となるようにした。
まず、正極161を作製した。すなわち、炭酸リチウム(Li2 CO3 )と炭酸コバルト(CoCO3 )とを0.5:1のモル比で混合したのち、空気中において900℃で5時間焼成することにより、リチウム・コバルト複合酸化物(LiCoO2 )を得た。続いて、正極活物質としてリチウム・コバルト複合酸化物96質量部と、導電剤としてグラファイト1質量部と、結着剤としてポリフッ化ビニリデン3質量部とを混合して正極合剤としたのち、N−メチル−2−ピロリドンに分散させることにより、ペースト状の正極合剤スラリーとした。最後に、帯状のアルミニウム箔(厚さ=15μm)からなる正極集電体161Aの両面に正極合剤スラリーを均一に塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、正極活物質層161Bを形成した。こののち、正極集電体161Aの一端に、アルミニウム製の正極リード164を溶接して取り付けた。
次に、負極162を作製した。具体的には、電解銅箔からなる負極集電体162A(厚さ=20μm,十点平均粗さRz=3.5μm)を準備したのち、上記実施の形態で説明した図1の蒸着装置を用いた電子ビーム蒸着法によって負極集電体162Aの両面に負極活物質としてケイ素を堆積させることにより、負極活物質粒子を単層構造となるように形成し、負極活物質層162Bを得た。この際、蒸発源として純度99.999%以上の単結晶ケイ素に所定量の炭素を添加したものを用い、蒸着処理槽2の内部に連続的に酸素ガスを導入しながら300nm/秒の堆積速度で蒸着させ、厚さ7μmの負極活物質層162Bの形成を行った。ここで、負極活物質として含まれる炭素および酸素の含有率を、後出の表1〜表4に示したように実施例ごとに異なるようにした。詳細には、炭素の含有率を0.2原子%以上10原子%以下の範囲内とし、酸素の含有率を0.5原子%以上40原子%以下の範囲内とした。こののち、負極集電体162Aの一端に、ニッケル製の負極リード165を溶接して取り付けた。
続いて、23μm厚の微孔性ポリエチレンフィルムよりなるセパレータ163を用意し、正極161と,セパレータ163と、負極162と、セパレータ163とを順に積層して積層体を形成したのち、この積層体を渦巻状に複数回巻回することで巻回電極体160を作製した。得られた巻回電極体160は、偏平な形状に成形した。
次に、偏平形状に成型された巻回電極体160を外装缶151の内部に収容したのち、巻回電極体160の上に絶縁板152を配置し、負極リード165を外装缶151に溶接すると共に、正極リード144を正極ピン155の下端に溶接して、外装缶151の開放端部に電池蓋153をレーザ溶接により固定した。そののち、電解液注入孔159から外装缶151の内部に電解液を注入した。電解液には、炭酸エチレン(EC)30重量%と炭酸ジエチル(DEC)60重量%とビニレンカーボネート(VC)10重量%とを混合した溶媒に、電解質塩としてLiPF6 を1mol/dm3 の濃度で溶解させたものを用いた。最後に、電解液注入孔159を封止部材159Aで塞ぐことにより、角型の二次電池を得た。
(比較例1〜12)
負極活物質として含まれる炭素および酸素の含有率を、表1に示したように変化させたことを除き、他は実施例1と同様にして比較例1〜12の各二次電池を作製した。詳細には、炭素の含有率を0.2原子%以上10原子%以下の範囲外とし、酸素の含有率を0.5原子%以上40原子%以下の範囲外とした。
このようにして作製した各実施例および各比較例の二次電池についてサイクル特性を調べると共に、負極活物質に含まれるケイ素の結合状態(Si−C結合としての存在割合)についても調べた。これらの結果を表1〜表5に示す。
Figure 2009283366
Figure 2009283366
Figure 2009283366
Figure 2009283366
Figure 2009283366
サイクル特性を調べる際には、以下の手順でサイクル試験を行うことにより、放電容量維持率を求めた。まず、電池状態を安定化させるために25℃の雰囲気中において1サイクル充放電させたのち、再び充放電させることにより、2サイクル目の放電容量を測定した。続いて、同雰囲気中において98サイクル充放電させることにより、100サイクル目の放電容量を測定した。最後に、放電容量維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。この際、最初の1サイクルについては、まず、0.2mA/cm2 の定電流密度で電池電圧が4.2Vに到達するまで定電流充電したのち、引き続き4.2Vの定電圧で電流密度が0.05mA/cm2 に到達するまで定電圧充電し、さらに、0.2mA/cm2 の定電流密度で電池電圧が2.5Vに到達するまで定電流放電した。また、2サイクル目以降の1サイクルについては、まず、2mA/cm2 の定電流密度で電池電圧が4.2Vに到達するまで定電流充電したのち、引き続き4.2Vの定電圧で電流密度が0.1mA/cm2 に到達するまで定電圧充電し、さらに、2mA/cm2 の定電流密度で電池電圧が2.5Vに到達するまで定電流放電した。
負極活物質に含まれる炭素の結合状態の調査については、アルバックーファイ社製Quantum2000型光電子分光装置を用いたX線光電子分光法によりSi−C結合およびSi−Si結合の同定を行い、Si−C結合によるピーク強度とSi−Si結合によるピーク強度との比率から、負極活物質に含まれるケイ素のうち、Si−C結合として存在する割合を求めた。具体的には、以下の通りである。まず、スペクトルの測定にあたっては、X線源として出力25WのAlKα線を使用した。また、ケイ素を主体とする負極活物質のバルクのXPSスペクトルを得るためには、その表面を覆う酸化膜やC−C結合などの不純物を取り除く必要がある。そこで、ここではArイオンビームエッチングを行い、酸化膜および不純物を除去した。Arイオンビームの照射条件は、加速電圧を1kV、入射角を45°とした。酸化膜が十分に除去されたかどうかは、逐次XPSスペクトルを測定し、その変化が見られなくなることで判断した。また、不純物が除去されたかどうかについては、284.5eV付近に観測されるC−H結合およびC−C結合に由来すると考えられるピークが十分に低減されたことを基準として判断した。なお、負極活物質の表面に多少の不純物があったとしても、Si−C結合に由来するピークを分離することは可能である。負極活物質表面に不純物があった場合、炭素の1s軌道(C1s)のスペクトルにおいて、C−H結合およびC−C結合に由来すると考えられるピーク(a)が284.5eV付近に観測され、C−Si結合に由来すると考えられるピーク(b)が282.5eV付近に観測された。また、その他に、C−O結合等に由来すると考えられるピークが286.5eV付近に観測された。それらのピークを各々分離するため、シャーリー(Shirley)関数を用いたバックグラウンド減算を行い、さらにガウス/ローレンツ混合関数を用いたピークフィッティングを行った。このとき、ピーク(a)およびピーク(b)の頂点のエネルギー位置は、それぞれ284.5eV±0.5eVおよび282.5eV±0.5eVとなった。このフィッティング結果を用いて、ピーク(a),ピーク(b)のピーク面積a,bをそれぞれ求めた。なお、XPSスペクトル横軸のエネルギー補正は、炭素の1s軌道(C1s)のピーク位置が284.5eVになるようにした。これによりSi−C結合に起因するピーク面積bの分離が可能となる。なお、炭化ケイ素としてはSi:C=1:1の組成比を有する化合物(SiC)のみが存在するので、C−Si結合のピークにおけるSiとCとの割合は1:1であるとした。また、99.1eV付近に観察されるケイ素の2p軌道(Si2p)のピーク(c)をSi−Si結合に由来するものとし、そのピーク面積cを求めた。ピーク面積cに対するピーク面積bの比から、負極活物質に含まれるケイ素のうち、Si−C結合として存在する割合を求めた。
さらに、充放電サイクル試験後の各二次電池を解体し、各々の負極活物質層162Bに含まれる炭素量および酸素量を、それぞれ以下の要領で測定した。この際、試料としての負極活物質層162Bは、正極と対向していない、すなわちリチウムの挿入脱離が行われてない部位から切り取るようにした。なお、負極集電体162Aとしての銅箔には炭素および酸素の含有は観察されなかった。したがって、この部位における組成は成膜直後の膜組成と同じであると考えられる。
まず、炭素量については、株式会社堀場製作所製の炭素・硫黄分析装置EMIA−520を用いて測定した。具体的には、負極活物質層162Bの一部から取り出した試料(1.0g)を燃焼炉にて酸素気流中で燃焼させ、この際に生成されるCO、CO、SOを酸素気流によって搬送し非分散赤外線検出器に導入したのち、CO、CO、SOの各々のガス濃度を検出および積算することで炭素含有量(重量%)を測定した。この非分散赤外線検出器では、CO、CO、SOの各々のガス濃度に対応して交流信号が発信され、この交流信号がディジタル値に変換されてマイクロコンピュータにより直線化および積算処理される。積算後、所定の校正式によりブランク値補正および試料重量補正をして炭素・硫黄含有量(重量%)が表示される。
一方、酸素量については、株式会社堀場製作所製の酸素・窒素分析装置EMGA−520,620を用いて測定した。具体的には、まず、負極活物質層162Bの一部から取り出した試料(50mg以上)を、真空中に保持された抽出炉の内部において高温の黒鉛るつぼに投入し、さらに加熱することでその試料を熱分解させる。その結果、試料中のO,N,Hの各成分は各々CO,N2 ,H2 として外部に放出されるので、それらCO,N2 ,H2 の各ガスをキャリアガス(He)によって非分散赤外線検出器および熱伝導度検出器に搬送し、非分散赤外線検出器においてCOを、熱伝導度検出器においてNをそれぞれ検出することで酸素・窒素含有量(重量%)を測定した。この非分散赤外線検出器および熱伝導度検出器では、検出したガス(COおよびN)の濃度に対応して交流信号が発信され、この交流信号がディジタル値に変換され、マイクロコンピュータにより直線化および積算処理される。積算後、所定の校正式によりブランク値補正および試料重量補正をして酸素・窒素含有量(重量%)が表示される。
さらに、誘導結合プラズマ発光分光分析装置(ICP−AES)によって、負極集電体162Aに形成された負極活物質層162Bに含まれるケイ素の含有量を測定した。以上の測定結果から、負極活物質層162Bに含まれる炭素および酸素の含有率を算出した。その結果を表1〜表5に併せて示す。
表1〜表5に示したように、本実施例では、負極活物質において、炭素の含有率を0.2原子%以上10原子%以下とすると共に酸素の含有率を0.5原子%以上40原子%以下とし、負極活物質に含まれるケイ素の0.1%以上17.29%以下がSi−C結合として存在するようにしたので、比較例と比べて優れたサイクル特性を示すことが確認できた。特に、負極活物質において、炭素の含有率を0.4原子%以上5原子%以下とすると共に酸素の含有率を3原子%以上25原子%以下とすることによって、より優れたサイクル特性を示すことがわかった。また、全体的には、炭素含有率が高いとSi−C結合として存在するケイ素の割合が低下し、酸素含有率が高いとSi−C結合として存在するケイ素の割合が上昇する傾向にあると思われる。
(実施例2−1〜2−6)
負極活物質層162Bを、互いに酸素含有率の異なる第1および第2の層が交互に5層づつ積層された合計10層の多層構造としたことを除き、他は実施例1と同様にして二次電池を作製した。但し、負極活物質として含まれる炭素および酸素の含有率を、後出の表4に示したように実施例ごとに異なるようにした。
これらの実施例2−1〜2−6の二次電池についてもサイクル特性を調べると共に、負極活物質に含まれる炭素の結合状態(Si−C結合としての存在割合)についても調べた。さらに、充放電サイクル試験後の各二次電池を解体し、各々の負極活物質層162Bに含まれる炭素量および酸素量を測定した。これらの結果を表6に示す。
Figure 2009283366
表6に示したように、負極活物質層162Bを多層構造とすることで、単層構造の場合と比べてより高いサイクル特性が得られることがわかった。なお、多層構造の場合には、単層構造の場合と比べてSi−C結合として存在するケイ素の割合が増加する傾向にあると思われる。
(実施例3−1〜3−10)
電解液の組成を変更したことを除き、他は実施例1と同様にして二次電池を作製した。但し、負極活物質として含まれる炭素および酸素の含有率を、後出の表7に示したように実施例ごとに異なるようにした。また、実施例3−2,3−4,3−6,3−8,3−10では負極活物質層162Bを多層構造とした。さらに、電解液については、実施例3−1,3−2では、FECとDECとを質量比50:50で混合したものを使用した。実施例3−3,3−4では、電解液としてFECとDECとDFECとを質量比30:65:5で混合したものを使用した。実施例3−5,3−6では、電解液としてFECとDECとDFECとを質量比30:65:5で混合したもの(100質量%)に無水スルホ安息香酸(SBAH)を1質量%添加したものを使用した。実施例3−7,3−8では、電解液としてFECとDECとDFECとを質量比30:65:5で混合したもの(100質量%)に無水スルホプロピオン酸(SPAH)を1質量%添加したものを使用した。実施例3−9,3−10では、電解液としてFECとDECとDFECとを質量比30:65:5で混合したものを使用すると共に、電解質塩として0.9mol/dm3のLiPFと0.1mol/dm3のLiBFとを混合したものを用いた。
これらの実施例3−1〜3−10の二次電池についてもサイクル特性を調べると共に、負極活物質に含まれる炭素の結合状態(Si−C結合としての存在割合)についても調べた。さらに、充放電サイクル試験後の各二次電池を解体し、各々の負極活物質層162Bに含まれる炭素量および酸素量を測定した。これらの結果を表7に示す。
Figure 2009283366
表7に示したように、溶媒にFECまたはDFECを用いた実施例において、より高い容量維持率が得られた。さらに、無水スルホ安息香酸(SBAH)や、無水スルホプロピオン酸(SPAH)などの酸無水物を含有することで、よりいっそう高いサイクル特性が得られることがわかった。また、電解質塩としてLiPFに加えLiBFを用いることでサイクル特性が向上した。すなわち電解質にホウ素とフッ素を含むことで高い効果が得られることが明らかになった。各電解質共に、負極活物質層162Bを多層構造とすることで、さらに高いサイクル特性が得られた。
以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態および実施例では、巻回型の電池素子(電極体)をそれぞれ有する円筒型、ラミネートフィルム型および角型の二次電池を具体例に挙げて説明したが、本発明は、外装部材がボタン型やコイン型などの他の形状を有する二次電池、または積層構造などの他の構造の電池素子(電極体)を有する二次電池についても同様に適用可能である。また、本発明は、二次電池に限定されず、一次電池についても同様に適用可能である。
さらに、上記実施の形態および実施例では、電極反応物質としてリチウムを用いる場合について説明したが、ナトリウム(Na)あるいはカリウム(K)などの長周期型周期表における他の1族の元素、またはマグネシウムあるいはカルシウム(Ca)などの長周期型周期表における2族の元素、またはアルミニウムなどの他の軽金属、またはリチウムあるいはこれらの合金を用いる場合についても、本発明を適用することができ、同様の効果を得ることができる。その際、電極反応物質を吸蔵および放出することが可能な負極活物質、正極活物質あるいは溶媒などは、その電極反応物質に応じて選択される。
本発明における一実施の形態の負極の製造に用いる蒸着装置の構成を表す概略図である。 本発明の一実施の形態に係る負極の構成を表す断面図である。 本発明の一実施の形態に係る負極を用いた第1の電池の構成を表す断面図である。 図3に示した巻回電極体の一部を拡大して表す断面図である。 本発明の一実施の形態に係る負極を用いた第2の電池の構成を表す分解斜視図である。 図5に示した巻回電極体のVII−VII切断線に沿った構成を表す断面図である。 図6に示した巻回電極体の一部を拡大して表す断面図である。 本発明の一実施の形態に係る負極を用いた第3の電池の構成を表す断面図である。 図8に示した巻回電極体のX−X切断線に沿った構成を表す断面図である。
符号の説明
2…蒸着処理室、2A,2B…蒸発源設置領域、2C…被蒸着物走行領域、3A,3B…蒸発源、31A,31B…坩堝、32A,32B…蒸着物質、4A,4B…キャンロール、6A,6B…シャッタ、7,8…巻き取りローラー、9〜13…ガイドローラー、14…フィードローラー、15…真空排気装置、16…仕切板、17…隔壁、101,122A,134A,162A…負極集電体、102,122B,134B,162B…負極活物質層、111…電池缶、112,113…絶縁板、114…電池蓋、115…安全弁機構、115A…ディスク板、116…熱感抵抗素子、117…ガスケット、120,130,160…巻回電極体、121,133,161…正極、121A,133A,161A…正極集電体、121B,133B,161B…正極活物質層、122,134,162…負極、123,135,163…セパレータ、124…センターピン、125,131,164…正極リード、126,132,165…負極リード、136…電解質、137…保護テープ、140…外装部材、141…密着フィルム、151…外装缶、152…絶縁板、153…電池蓋、154…端子板、155…正極ピン、156…絶縁ケース、157…ガスケット、158…開裂弁、159…電解液注入孔、159A…封止部材。

Claims (9)

  1. 負極集電体に、負極活物質としてケイ素(Si),炭素(C)および酸素(O)を含む負極活物質層が設けられた負極であって、
    前記負極活物質において、炭素の含有率が0.2原子%以上10原子%以下であると共に酸素の含有率が0.5原子%以上40原子%以下であり、
    前記負極活物質に含まれるケイ素の0.1%以上17.29%以下がSi−C結合として存在する
    ことを特徴とする負極。
  2. 前記負極活物質において、炭素の含有率が0.4原子%以上5原子%以下であると共に酸素の含有率が3原子%以上25原子%以下である
    ことを特徴とする請求項1記載の負極。
  3. 前記負極活物質層は、互いに酸素含有率の異なる第1および第2の層が交互に複数積層された多層構造を有することを特徴とする請求項1記載の負極。
  4. 前記負極活物質層は、電子線加熱蒸着法により形成されたものであることを特徴とする請求項1記載の負極。
  5. 正極および負極と共に電解質を備えた電池であって、
    前記負極は、負極集電体に、負極活物質としてケイ素(Si),炭素(C)および酸素(O)を含む負極活物質層が設けられたものであり、
    前記負極活物質において、炭素の含有率が0.2原子%以上10原子%以下であると共に酸素の含有率が0.5原子%以上40原子%以下であり、
    前記負極活物質に含まれるケイ素の0.1%以上17.29%以下がSi−C結合として存在する
    ことを特徴とする二次電池。
  6. 前記電解質は、溶媒として、環状炭酸エステルまたは鎖状炭酸エステルにおける水素原子の少なくとも一部がフッ素原子によって置換されたフッ素含有化合物を含むことを特徴とする請求項5記載の二次電池。
  7. 前記環状炭酸エステルは、4,5−ジフルオロ−1,3−ジオキソラン−2−オンであることを特徴とする請求項6記載の二次電池。
  8. 前記電解質は、酸無水物を含有する溶媒を含むことを特徴とする請求項5記載の二次電池。
  9. 前記電解質は、ホウ素(B)およびフッ素(F)を含有するリチウム化合物を含むことを特徴とする請求項5記載の二次電池。




JP2008135804A 2008-05-23 2008-05-23 二次電池用負極およびそれを備えた二次電池 Expired - Fee Related JP5333820B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008135804A JP5333820B2 (ja) 2008-05-23 2008-05-23 二次電池用負極およびそれを備えた二次電池
KR1020090033983A KR20090122116A (ko) 2008-05-23 2009-04-20 부극 및 그것을 구비한 2차 전지
US12/468,975 US8383267B2 (en) 2008-05-23 2009-05-20 Anode and secondary battery including the same
CN2009101430400A CN101587947B (zh) 2008-05-23 2009-05-25 负极以及包括该负极的二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135804A JP5333820B2 (ja) 2008-05-23 2008-05-23 二次電池用負極およびそれを備えた二次電池

Publications (2)

Publication Number Publication Date
JP2009283366A true JP2009283366A (ja) 2009-12-03
JP5333820B2 JP5333820B2 (ja) 2013-11-06

Family

ID=41342370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135804A Expired - Fee Related JP5333820B2 (ja) 2008-05-23 2008-05-23 二次電池用負極およびそれを備えた二次電池

Country Status (4)

Country Link
US (1) US8383267B2 (ja)
JP (1) JP5333820B2 (ja)
KR (1) KR20090122116A (ja)
CN (1) CN101587947B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009572A1 (ja) 2020-07-07 2022-01-13 Dic株式会社 電池用活物質、電池用複合活物質、及び二次電池

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100285358A1 (en) * 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US20140370380A9 (en) * 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US11996550B2 (en) 2009-05-07 2024-05-28 Amprius Technologies, Inc. Template electrode structures for depositing active materials
US8450012B2 (en) * 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
KR101906606B1 (ko) 2010-03-03 2018-10-10 암프리우스, 인코포레이티드 활물질을 증착하기 위한 템플릿 전극 구조체
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US8845764B2 (en) * 2010-06-14 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Power storage device comprising solid electrolyte layer over active material and second electrolyte and method of manufacturing the same
CN102403525B (zh) * 2010-09-16 2016-02-03 流体公司 具有渐进析氧电极/燃料电极的电化学电池系统
KR101921659B1 (ko) * 2010-09-30 2018-11-26 제온 코포레이션 이차 전지 다공막 슬러리, 이차 전지 다공막, 이차 전지 전극, 이차 전지 세퍼레이터, 이차 전지, 및 이차 전지 다공막의 제조 방법
WO2012067943A1 (en) 2010-11-15 2012-05-24 Amprius, Inc. Electrolytes for rechargeable batteries
US8552369B2 (en) * 2011-05-03 2013-10-08 International Business Machines Corporation Obtaining elemental concentration profile of sample
JP6250538B2 (ja) 2011-07-01 2017-12-20 アンプリウス、インコーポレイテッド 電極および電極の製造方法
DE102014200088A1 (de) 2014-01-08 2015-07-09 Bayerische Motoren Werke Aktiengesellschaft Anodenmaterial für Lithiumionenbatterien
WO2015175509A1 (en) 2014-05-12 2015-11-19 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
CN107532281B (zh) * 2015-04-28 2020-01-24 三井金属矿业株式会社 表面处理铜箔及其制造方法、印刷电路板用覆铜层叠板、以及印刷电路板
CN108370065B (zh) * 2015-12-07 2022-04-22 株式会社村田制作所 二次电池、电池组、电动车辆、电力储存系统、电动工具和电子设备
KR101995373B1 (ko) 2016-07-04 2019-09-24 주식회사 엘지화학 이차 전지용 음극
KR102244952B1 (ko) 2017-11-06 2021-04-27 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극 활물질의 제조 방법
TWI693193B (zh) * 2018-09-06 2020-05-11 長興材料工業股份有限公司 矽碳複合材及其製備方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029464A (ja) * 2003-06-20 2005-02-03 Nippon Sheet Glass Co Ltd 薄膜付きガラス板とその製造方法、およびこのガラス板を用いた光電変換装置
JP2006019127A (ja) * 2004-07-01 2006-01-19 Shin Etsu Chem Co Ltd 珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2006062949A (ja) * 2004-07-30 2006-03-09 Shin Etsu Chem Co Ltd Si−C−O系コンポジット及びその製造方法並びに非水電解質二次電池用負極材
JP2006128067A (ja) * 2004-06-15 2006-05-18 Mitsubishi Chemicals Corp 非水電解質二次電池用負極及びその製造方法、並びに非水電解質二次電池
JP2007308774A (ja) * 2006-05-19 2007-11-29 Utec:Kk 薄膜形成装置、及び薄膜形成方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033401A1 (fr) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Cellule secondaire d'electrolyte du type non aqueux
JP3941235B2 (ja) 1998-05-13 2007-07-04 宇部興産株式会社 非水二次電池
US6235427B1 (en) * 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP2000173585A (ja) 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池
EP1313158A3 (en) * 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
JP3633557B2 (ja) * 2001-12-27 2005-03-30 株式会社東芝 非水電解質二次電池用負極活物質、その製造方法、および非水電解質二次電池
US20040241548A1 (en) * 2003-04-02 2004-12-02 Takayuki Nakamoto Negative electrode active material and non-aqueous electrolyte rechargeable battery using the same
JP2004319469A (ja) 2003-04-02 2004-11-11 Matsushita Electric Ind Co Ltd 負極活物質およびそれを用いた非水電解質二次電池
JP2004335335A (ja) 2003-05-09 2004-11-25 Mitsubishi Materials Corp 非水電解液二次電池用負極材料及びその製造方法並びにこれを用いた非水電解液二次電池
JP2004335334A (ja) 2003-05-09 2004-11-25 Mitsubishi Materials Corp 非水電解液二次電池用負極材料及びその製造方法並びにこれを用いた非水電解液二次電池
JP4529436B2 (ja) 2003-12-19 2010-08-25 パナソニック株式会社 リチウムイオン二次電池用極板およびリチウムイオン二次電池
WO2005124897A1 (ja) * 2004-06-15 2005-12-29 Mitsubishi Chemical Corporation 非水電解質二次電池とその負極
CN100511781C (zh) * 2004-12-22 2009-07-08 松下电器产业株式会社 复合负极活性材料及其制备方法以及非水电解质二次电池
JP5758560B2 (ja) * 2005-07-20 2015-08-05 ソニー株式会社 リチウムイオン二次電池の充電方法
CN1917273A (zh) * 2005-08-16 2007-02-21 比亚迪股份有限公司 非水电解液、含有该电解液的二次锂离子电池以及它们的制备方法
JP4666155B2 (ja) * 2005-11-18 2011-04-06 ソニー株式会社 リチウムイオン二次電池
JP4840663B2 (ja) 2006-05-23 2011-12-21 ソニー株式会社 負極および電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029464A (ja) * 2003-06-20 2005-02-03 Nippon Sheet Glass Co Ltd 薄膜付きガラス板とその製造方法、およびこのガラス板を用いた光電変換装置
JP2006128067A (ja) * 2004-06-15 2006-05-18 Mitsubishi Chemicals Corp 非水電解質二次電池用負極及びその製造方法、並びに非水電解質二次電池
JP2006019127A (ja) * 2004-07-01 2006-01-19 Shin Etsu Chem Co Ltd 珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2006062949A (ja) * 2004-07-30 2006-03-09 Shin Etsu Chem Co Ltd Si−C−O系コンポジット及びその製造方法並びに非水電解質二次電池用負極材
JP2007308774A (ja) * 2006-05-19 2007-11-29 Utec:Kk 薄膜形成装置、及び薄膜形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009572A1 (ja) 2020-07-07 2022-01-13 Dic株式会社 電池用活物質、電池用複合活物質、及び二次電池
KR20230030569A (ko) 2020-07-07 2023-03-06 디아이씨 가부시끼가이샤 전지용 활물질, 전지용 복합 활물질, 및 이차 전지

Also Published As

Publication number Publication date
JP5333820B2 (ja) 2013-11-06
US8383267B2 (en) 2013-02-26
CN101587947A (zh) 2009-11-25
KR20090122116A (ko) 2009-11-26
CN101587947B (zh) 2013-03-13
US20090291371A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5333820B2 (ja) 二次電池用負極およびそれを備えた二次電池
JP5407273B2 (ja) 負極集電体、負極および二次電池
US8613873B2 (en) Anode, battery, and methods of manufacturing them
JP4941754B2 (ja) 蒸着装置
JP4775346B2 (ja) リチウムイオン二次電池
JP5422923B2 (ja) 負極および二次電池、ならびに負極および二次電池の製造方法
JP2010177033A (ja) 負極および二次電池
JP2009252579A (ja) 負極、二次電池およびそれらの製造方法
JP5239473B2 (ja) 二次電池用電解液、二次電池および電子機器
JP2010123265A (ja) 二次電池
JP2010177026A (ja) 電池
JP2009193696A (ja) 負極、二次電池およびそれらの製造方法
JP2010192327A (ja) 非水電解液および非水電解液二次電池
JP4952693B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2010010147A (ja) 二次電池用電解液および二次電池
JP4506782B2 (ja) 二次電池用電解液および二次電池
JP2009032491A (ja) 電解液および電池
JP5581716B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム
US8221656B2 (en) Secondary battery
JP5256798B2 (ja) 二次電池用電解液、二次電池および電子機器
JP4538753B2 (ja) リチウムイオン二次電池用電解液およびリチウムイオン二次電池
JP2009218057A (ja) 電解液および二次電池
JP5217512B2 (ja) 二次電池用電解液、二次電池および電子機器
JP2010010080A (ja) 負極、二次電池およびそれらの製造方法
JP2009054286A (ja) 電解液および電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

LAPS Cancellation because of no payment of annual fees