WO2005124897A1 - 非水電解質二次電池とその負極 - Google Patents

非水電解質二次電池とその負極 Download PDF

Info

Publication number
WO2005124897A1
WO2005124897A1 PCT/JP2005/010344 JP2005010344W WO2005124897A1 WO 2005124897 A1 WO2005124897 A1 WO 2005124897A1 JP 2005010344 W JP2005010344 W JP 2005010344W WO 2005124897 A1 WO2005124897 A1 WO 2005124897A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
negative electrode
secondary battery
electrolyte secondary
active material
Prior art date
Application number
PCT/JP2005/010344
Other languages
English (en)
French (fr)
Inventor
Yukihiro Miyamoto
Masao Miyake
Tooru Fuse
Tomohiro Satou
Youji Arita
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP05751033.1A priority Critical patent/EP1772915B1/en
Priority to US11/629,654 priority patent/US20080118844A1/en
Publication of WO2005124897A1 publication Critical patent/WO2005124897A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the negative electrode for a non-aqueous electrolyte secondary battery.
  • a non-aqueous solvent-based lithium secondary battery having a higher energy density than nickel-cadmium and nickel-hydrogen batteries has attracted attention.
  • Graphite has been used as a negative electrode of lithium secondary batteries because of its excellent cycle characteristics, small electrode expansion and low cost.
  • the negative electrode material made of graphite has a theoretical capacity of 372 mAhZg.
  • alloy-based negative electrodes such as Si, Sn, and A1 that form an alloy with lithium having a large theoretical capacity.
  • Many attempts have been made to use Si as a negative electrode with a high capacity.
  • Si-based anode materials have the following disadvantages. i) Since the Si-based negative electrode has a large volume expansion during the reaction with lithium, Si is likely to be finely powdered or peeled off from the current collector. In addition, the Si-based anode has high cycle reactivity due to high reactivity with the electrolytic solution.
  • Electrode swelling due to lithium insertion accumulates during the cycle, leading to an increase in battery volume, ie, a decrease in battery capacity per volume.
  • Japanese Patent Application Laid-Open No. 11-135115 discloses that a film of Si or the like is formed on a copper foil substrate by vapor deposition / sputtering to provide high voltage and high capacity charge / discharge with low electric resistance and high current collection. It is described that a lithium secondary battery having excellent characteristics is obtained. [0005] However, in the case of a negative electrode formed by vapor deposition or sputtering of Si, it is difficult to suppress the accumulation of electrode expansion due to charge and discharge, and the battery capacity per volume is reduced, resulting in poor cycle characteristics. descend.
  • Japanese Patent Application Laid-Open No. 7-302588 discloses that a thin film negative electrode in which Si and C are mixed at the atomic level in Li or a negative electrode in which SiC is combined with Li sheet to suppress generation of dendrite. It is described that a lithium secondary battery having a high capacity and excellent cycle characteristics is obtained.
  • the negative electrode of this battery has a high Li content of 70 to 99.9 mol%. Therefore, even for a negative electrode in which Li, Si, and C are formed by plasma CVD, and a negative electrode in which a Li sheet and SiC particles are combined, since the content of Si and C is small, the negative electrode easily reacts with the electrolytic solution. Poor cycle characteristics.
  • Japanese Patent Application Laid-Open No. 2003-7295 discloses that at least the surface of a microcrystalline or amorphous silicon thin film has IIIa, IVa, Va, Via, Vila, VIII, Ib, It is described that the incorporation of at least one element from the lib group improves the cycle characteristics of the electrode. However, the cycling characteristics are not sufficiently improved because the electrode expansion and the reaction with the electrolyte are likely to occur during the charging and discharging of the Si.
  • WO01Z56099 has excellent cycle characteristics by adding at least one element selected from C, O, N, Ar, and F to a microcrystalline or amorphous silicon thin film by 2 to 3 atomic%. It is described that a lithium secondary battery is obtained. However, since the addition amount of this element is small, accumulation of electrode expansion and reaction with the electrolyte due to charge and discharge of Si are likely to occur, and thus the cycle characteristics are not sufficiently improved.
  • the present invention provides a non-aqueous electrolyte secondary battery having excellent cycle characteristics in which the discharge capacity is high and the charge / discharge efficiency during the cycle is high, and the electrode expansion after the cycle is suppressed.
  • Negative electrode for electrolyte secondary battery, method for producing the same, and negative electrode for non-aqueous electrolyte secondary battery It is intended to provide a non-aqueous electrolyte secondary battery used.
  • the negative electrode for a nonaqueous electrolyte secondary battery of the first aspect has an active material thin film mainly composed of a phase compound in which the element Z is non-equilibrium in Si.
  • the above compound has the general formula SiZ M
  • Element Z is at least one element selected from the group consisting of B, C and N.
  • the element M is at least one element selected from the group 2, 4, 8, 9, 10, 11, 13, 14, 15, and 16 of the periodic table other than Si and the element Z. is there.
  • X is the Z concentration of the compound Si Z (where a and p are integers) which is equilibrium and has the closest composition to Si
  • the degree (PZ (a + p)) is a value such that the Z concentration ratio Q (Z) calculated by the following equation is 0.10 to 0.95.
  • y is a number in the range 0 ⁇ y ⁇ 0.50.
  • a non-aqueous electrolyte secondary battery of the second aspect has the negative electrode of the first invention.
  • the method of the third aspect is represented by a current collector and a general formula SiZ M (where Z, M, x, and y are as described below) formed on the current collector.
  • SiZ M where Z, M, x, and y are as described below.
  • the deposition source, sputter source, or thermal spray source includes Si, element Z, and element M. Simultaneously, Si, element Z, and element M are formed on the current collector substrate to a thickness of 1 to 30 m by one or more of vapor deposition, sputtering, and thermal spraying. Filmed.
  • Element Z is at least one element selected from the group consisting of B, C and N.
  • the element M is at least one element selected from the group 2, 4, 8, 9, 10, 11, 13, 14, 15, and 16 of the periodic table other than Si and the element Z. is there.
  • X is the Z concentration of the compound Si Z (where a and p are integers) which is equilibrium and has the closest composition to Si
  • the degree (PZ (a + p)) is a value such that the Z concentration ratio Q (Z) calculated by the following equation is 0.10 to 0.95.
  • y is a number in the range 0 ⁇ y ⁇ 0.50.
  • a negative electrode for a non-aqueous electrolyte secondary battery is manufactured, which comprises an active material thin film containing a compound represented by the following formula:
  • the evaporation source, the sputtering source, or the thermal spraying source contains Si and the element Z. Simultaneously, Si and the element Z are formed into a film having a thickness of 1 to 30 m on the current collector substrate by at least one of a vapor deposition method, a sputtering method, and a thermal spraying method. You.
  • Element Z is at least one element selected from the group consisting of B, C and N.
  • the element M is at least one element selected from the group 2, 4, 8, 9, 10, 11, 13, 14, 15, and 16 of the periodic table other than Si and the element Z. is there.
  • X is the Z concentration of the compound Si Z (where a and p are integers) which is equilibrium and has the closest composition to Si
  • the degree (PZ (a + p)) is a value such that the Z concentration ratio Q (Z) calculated by the following equation is 0.10 to 0.95.
  • y 0 or y ⁇ O.
  • the method of the fifth aspect is that a current collector and a film formed on the current collector, represented by the general formula SiC O (where X and y are respectively 0.053 ⁇ x ⁇ 0.70, 0 ⁇ y ⁇ 0.50) is produced, and a negative electrode for a non-aqueous electrolyte secondary battery is produced, comprising an active material thin film containing a compound represented by the following formula:
  • the deposition source, sputter source, or thermal spray source includes Si and C.
  • Si and C are simultaneously formed by one or more of the vapor deposition method, the sputtering method, and the thermal spraying method. Then, the above compound is formed into a film having a thickness of 1 to 30 ⁇ m on the current collector substrate.
  • the method of the sixth aspect is represented by a current collector and a general formula SiZ M (where Z, M, x, and y are as described below) formed on the current collector.
  • SiZ M where Z, M, x, and y are as described below.
  • the deposition source, the sputtering source, or the thermal spraying source contains Si. Simultaneous current collection of Si and N by one or more of vapor deposition, sputtering, and thermal spraying in an atmosphere where the nitrogen concentration in the film forming gas is 1 to 22%. The above compound is formed into a film with a thickness of 1 to 30 m on the body substrate. Element Z is N.
  • the element M is at least one element selected from the group 2, 4, 8, 9, 9, 10, 11, 13, 14, 15, and 16 of the periodic table other than Si and N. is there.
  • X is the value at which the N concentration ratio Q (N) calculated by the following formula is 0.15 to 0.85 with respect to the N concentration of 50 atomic% of the compound SiN which is equilibrium and has the closest composition to Si It is.
  • y 0 or y ⁇ O.
  • the non-aqueous electrolyte secondary battery of the seventh aspect has a negative electrode manufactured by any of the third to sixth methods.
  • FIG. La is an SEM photograph of the thin film negative electrode obtained in Example 1
  • FIG. Lb is obtained from an EPMA measurement curve of the thin film negative electrode obtained in Example 1. This is a weight concentration distribution obtained by converting the sum of elements in the film thickness direction back to 100%.
  • Fig. 2a is an SEM photograph of the thin film negative electrode obtained in Example 1
  • Figs. 2b and 2c are EPMA measurement images of the thin film negative electrode obtained in Example 1. Of distribution of Si and C
  • FIG. 3 is a schematic diagram showing infrared transmission light measurement data of the active material thin film of the thin film negative electrode obtained in Example 1.
  • FIG. 4a is an SEM photograph of the thin film negative electrode obtained in Example 6, and FIG. 4b is a film thickness direction obtained by EPMA measurement of the thin film negative electrode obtained in Example 6. It is a weight concentration distribution obtained by converting the total sum of the elements to 100%.
  • FIG. 5a is an SEM photograph of the thin film negative electrode obtained in Example 10
  • FIG. 5b is a film thickness obtained by EPMA measurement of the thin film negative electrode obtained in Example 10. It is a weight concentration distribution obtained by converting the total sum of elements in the direction to 100%.
  • Activity is a type of thermodynamic concentration. N, n, ...
  • A is defined as the activity.
  • the activity coefficient is calculated based on the chemical potential of a certain component when the system is considered as an ideal solution, and the system as a real solution. It is an amount corresponding to the difference between the true chemical potential of a component in some cases.
  • a real solution in which a component i is a solute as the concentration of the solute decreases, the system approaches an ideal solution of the component i in the solute, and the activity coefficient approaches 1.
  • the system approaches the ideal solution of the component i in the solvent, and the activity coefficient approaches 1.
  • the chemical potential of component i is 1 when the real solution is more stable than the ideal solution.
  • the component i is Si.
  • the activity ai of the solvent Si is reduced, and ⁇ ⁇ ⁇ 1, and the Si conjugate containing the element ⁇ (solid solution: a real solution and It is considered that (recognized) is more stable than Si (determined as an ideal solution), and as a result, the reactivity with the electrolyte is suppressed.
  • the compound Si Z that is equilibrium with the composition closest to Si is a phase diagram of Si and a P element Z (for example, “Desk Handbooks Phase Diag” published by ASM International). rams for Binary Alloys ").
  • x is defined by setting the above-described Z concentration ratio Q (Z) for the Z concentration aP degree (pZ (a + p)) of SiZ.
  • the compound existing in equilibrium means a stoichiometric compound such as the compound SiZ (where a and p are integers) described as the top of a diagram in the phase diagram and the like. For example, if Z is B then a P
  • SiC is known as a stable compound! Therefore, when Z is C, SiC corresponds to SiZ.
  • Si N is a force known as the most stable compound.
  • the compound existing in non-equilibrium refers to a compound other than the compound existing in equilibrium.
  • a specific stoichiometric compound is not formed, and Si atoms and Z atoms are uniformly dispersed macroscopically.
  • the negative electrode may include a current collector and the active material thin film continuously formed from the current collector.
  • the element Z is C
  • X is a number in the range of 0.053 ⁇ x ⁇ 0.70
  • the active material thin film is such that the element C is uniformly contained in the Si thin film.
  • An active material thin film that is distributed may be used.
  • Raman RC value of the active material thin film by Raman spectrum analysis is 0.0 or more and 2.0 or less.
  • the Raman RC value, Raman RSC value, and Raman RS value of the active material thin film obtained by Raman spectrum analysis are obtained by Raman spectrum analysis power according to the following Raman measurement method, and are respectively defined as follows.
  • the non-aqueous electrolysis of the present invention is performed using a Raman spectrometer (for example, “Raman spectrometer” manufactured by JASCO Corporation).
  • the negative electrode for a rechargeable battery is set in a measurement cell, and the measurement is performed while irradiating the sample surface in the cell with an argon ion laser beam.
  • the Raman RC value, RSC value, and RS value are obtained.
  • Knock ground correction is performed by connecting the end point of the peak with a straight line, obtaining the knock ground, and subtracting the value from the peak intensity force.
  • the Raman measurement conditions are as follows, and the smoothing processing is a simple average of 15 points of convolution.
  • Argon ion laser wavelength 514.5 nm
  • the Raman RC value reflects the amount of carbon, and if the Raman RC value is 2.0 or less, this means that carbon is hardly detected.
  • the Raman RSC value reflects the amount of SiC, and if the Raman RSC value is 0.25 or less, this means that SiC is hardly detected.
  • the Raman RS value reflects the state of Si.
  • the element Z is C and the element M is oxygen, and x and y are in the range of 0.053 ⁇ x ⁇ 0.70 and 0 ⁇ y ⁇ 0.50, respectively. May be the number.
  • the negative electrode for a non-aqueous electrolyte secondary battery after charging and discharging, has an IRsc value of the active material thin film of 0.9 or more and 3.0 by infrared transmission light analysis using an infrared spectrophotometer. The following may be acceptable.
  • the battery after charging / discharging, the battery may be assembled after the first charging / discharging or after completing multiple charging / discharging cycles.V is good.In the case of deviation, the above IRsc value is obtained. It is characterized by
  • the IRsc value of the active material thin film by infrared transmission light analysis is obtained from the following infrared transmission light measurement using an infrared spectrophotometer, and is defined as follows.
  • the active material thin film of the negative electrode for a non-aqueous electrolyte secondary battery after charging / discharging was peeled off, and then set in a measurement cell.
  • the measurement is performed by a transmission method.
  • the measurement is performed under an inert atmosphere using a transmission measurement sample folder whose window material is made of diamond.
  • the IRsc value is obtained by performing background correction of the measured infrared absorption turtle.
  • Knock ground correction extending a line that runs the minimum value in the range 2000 ⁇ 4000Cm _1, seeking Roh Kkugurau command, performed by subtracting the intensity force that value.
  • IRsc is a film derived from Si and Iaco is a film derived from lithium alkyl carbonate. Therefore, IRsc reflects the state and quantitative ratio of the film (solid electrolyte interface: SEI) in the active material thin film.
  • SEI solid electrolyte interface
  • P The value may be 0.15 to 0.85.
  • the active material thin film may be an active material thin film in which the element N is uniformly distributed in the Si thin film.
  • the Raman RSN value of the active material thin film by Raman spectrum analysis may be 0.0 or more and 0.9 or less, and the Raman RS value may be 0.4 or more and 1.0 or less.
  • the Raman RSN value of the active material thin film by Raman spectrum analysis is obtained by Raman spectrum analysis power by the following Raman measurement method, and is defined as follows.
  • the Raman RSN value reflects the amount of silicon nitride, and a Raman RSN value of 0.9 or less means that silicon nitride is hardly detected.
  • the XIsz value of the active material thin film by X-ray diffraction may be 0.000 or more and 1.10 or less.
  • the XIsz value of the active material thin film by X-ray diffraction is obtained from X-ray diffraction by the following X-ray diffraction measurement method, and is defined as follows.
  • the XIsz value of the active material thin film in the X-ray diffraction measurement can be determined, for example, by setting the active material thin film side of the thin film negative electrode of the present invention on the irradiation surface and using an X-ray diffractometer (for example, “X-ray diffractometer” manufactured by Rigaku Corporation). It can be measured using: The measurement conditions are as shown in the examples described later.
  • the peak (Isz) and the peak (Is) at 2 ⁇ of 27.1 degrees are considered to be peaks derived from SiN and Si.
  • XIsz value is less than 1.20
  • the element Z is B
  • the compound Si Z which is closest to Si and exists in equilibrium with the fiber is SiB
  • X in the general formula SiB M is the Z concentration.
  • the ratio Q (Z) is p 3
  • the element B may be uniformly distributed in the Si thin film.
  • the XIsz value of the active material thin film by X-ray diffraction may be 0.000 or more and 0.90 or less.
  • the definition of the XIsz value is as described above.
  • the peak at 2 2 is, for example, 33.4 degrees (Isz) and the peak at 28.4 degrees (Is) are considered to be peaks derived from SiB and Si.
  • An XIsz value of 0.90 or less means that the equilibrium compound SiB is hardly detected.
  • a high-performance non-aqueous electrolyte secondary battery having excellent cycle characteristics, in which the discharge capacity is high, and the charge and discharge efficiency during the cycle is high, and the electrode expansion after the cycle is suppressed.
  • the negative electrode for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery can be suitably used in various fields such as electronic devices to which the non-aqueous electrolyte secondary battery is applied.
  • the negative electrode for a nonaqueous electrolyte secondary battery of the present invention having an active material thin film mainly containing a compound of a phase in which the element Z is non-equilibrium in Si may be referred to as a thin film negative electrode. is there.
  • the thin film negative electrode is extremely useful as a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a negative electrode in a nonaqueous electrolyte secondary battery such as a lithium secondary battery provided with an electrolyte.
  • a non-aqueous electrolyte secondary battery composed of a thin film negative electrode, a commonly used metal chalcogenide-based positive electrode for lithium secondary batteries and an organic electrolyte mainly composed of a carbonate-based solvent has a large capacity.
  • the irreversible capacity observed in the initial cycle is small, and the cycle characteristics are excellent, the electrode expansion after cycling is suppressed, and the storage stability and reliability of the battery when left at high temperatures are high. Extremely excellent discharge characteristics.
  • the film thickness, the elements Z and M, the composition, and the like of the thin film will be described in detail.
  • the thickness of the active material thin film is usually at least 1 ⁇ m, preferably at least 3 ⁇ m, usually at most 30 ⁇ m, preferably at most 20 / zm, more preferably at most 15 m.
  • the thickness of the active material thin film falls below this range, a large number of negative electrodes are required to obtain a large-capacity battery having a small capacity per sheet of the thin film negative electrode of the present invention, and therefore, a necessary positive electrode is also required.
  • the total volume of the current collector of the separator, the thin film negative electrode itself increases, and the amount of the negative electrode active material that can be filled per battery volume substantially decreases, making it difficult to increase the battery capacity.
  • the thickness exceeds this range, the active material thin film may peel off from the current collector substrate due to expansion and contraction due to charge and discharge, and the cycle characteristics may be degraded.
  • This active material thin film is preferably formed from a gas phase, as described in a manufacturing method described later.
  • the element Z in the compound SiZM is at least one element selected from the group consisting of B, C and N, and is preferably the C and N elements.
  • B, C, and N can also form a high melting point compound.
  • SU also has a small covalent radius.
  • B, C, and N are specifically equilibrium, in which SU such as SiB, SiC, and SiN also has a high melting point.
  • Refractory compounds are generally stable compounds with a large negative free energy of formation. For this reason, the high melting point compound can effectively reduce the activity of Si and suppress the reactivity with the electrolytic solution.
  • the elements B, C and N are smaller than the covalent atomic radius of Si, it is effective for distributing the element z more uniformly at a high concentration that makes it difficult to form a compound that exists equilibrium in the SiZM compound. It is conceivable that the activity of Si can be reduced more effectively, and the reactivity with the electrolytic solution is suppressed.
  • C and N for the element Z is even better than the use of the force B.
  • C and N are considered to have a smaller volume change than B and do not adversely affect the conduction path breakage of Si.
  • Element M is one of the elements whose periodicity other than Si and element Z is also selected from Group 2, 4, 8, 9, 10, 11, 13, 14, 14, 15, and 16 Species or two or more, preferably Cu, Ni and O elements, more preferably O element.
  • the X of SiZ M is the Z concentration (pZ (a + p)) of the compound Si Z (where a and p are integers) that is equilibrium with the composition closest to Si. , Calculated by the following formula a P
  • the Z concentration ratio Q (Z) is usually 0.10 or more, preferably 0.15 or more, more preferably 0.30 or more, particularly preferably 0.40 or more, and usually 0.95 or less, preferably 0.1.
  • the value is 85 or less, more preferably 0.75 or less, and particularly preferably 0.60 or less.
  • the Z concentration ratio Q (Z) When the Z concentration ratio Q (Z) is below this range, the effect of lowering the activity of Si is small, the reactivity with the electrolyte cannot be suppressed, the electrode expansion increases, and it is difficult to obtain favorable cycle characteristics. .
  • the Z concentration ratio Q (Z) exceeds this range, a stable compound Si Z, etc., which exists in equilibrium, is formed a P, and even if the element Z is increased, the activity of Si does not decrease, and the There is a power S that cannot suppress the reactivity. Since Si Z and the like have low conductivity, when such a compound is formed, the active material becomes thin.
  • the conductivity of the film may be poor, and doping and undoping of lithium may be difficult, and charging and discharging may not be possible. If the Z concentration ratio Q (Z) greatly exceeds this range, it is difficult to obtain favorable battery characteristics, in which the effect of increasing the capacity by including Si is hardly obtained.
  • the Z concentration ratio Q (Z) is 1, it means that Si is a stable compound SiZ, which is not preferable.
  • a Z concentration ratio Q (Z) is calculated for each of the plurality of elements with respect to the Si Z reference element Z concentration, and the total value is calculated as the Z concentration.
  • y is usually 0 or more, usually 0.50 or less, preferably 0.30 or less, more preferably 0.15 or less, and particularly preferably 0.10 or less. If y exceeds this range, the abundance of element M increases and the effect including Si and element Z cannot be obtained, which is not preferable.
  • y ⁇ O means a case where the element M is inevitably included in the active material thin film forming step or the like according to the present invention.
  • y is less than 0.08.
  • composition of the active material thin film is determined, for example, by using an X-ray photoelectron spectrometer (for example, ULVAC's “ESCA” made of fine earth) as described in Examples below, with the thin film negative electrode placed with the active material thin film side up.
  • the surface of the sample was placed flat so that the surface was flat, and the aluminum K ray was used as the X-ray source, and the depth profile was measured while performing Ar sputtering, and the atomic concentrations of Si, element Z, and element M were measured. It can be obtained by calculating.
  • the Z concentration ratio Q (Z) (sometimes referred to as C concentration ratio Q (C)) is usually 0.10, preferably 0.113 or more, and more preferably 0.13 or more. It is at least 0.282, usually at most 0.824, preferably at most 0.667.
  • SiC is the compound that equilibrium exists in the composition closest to Si.
  • x is usually 0.053 or more, preferably
  • the C concentration ratio Q (C) falls below this range, the effect of lowering the activity of Si is small, the reactivity with the electrolyte cannot be suppressed, the electrode expansion increases, and it is difficult to obtain favorable cycle characteristics. . If the C concentration ratio Q (C) exceeds this range, a stable compound SiC that exists in equilibrium will be formed, the conductivity of the active material thin film will deteriorate, and doping and undoping of lithium will be difficult. May not be possible.
  • y is usually 0 or more, usually 0.70 or less, and preferably It is preferably 0.50 or less, more preferably 0.30 or less. If y exceeds this range, the abundance of the element M increases and the effect including Si and C cannot be obtained, which is not preferable.
  • y is usually larger than 0, and is usually 0.50 or less, preferably 0.30 or less, more preferably 0.30 or less. It is 15 or less, particularly preferably 0.10 or less. If y exceeds this range, the amount of oxygen present increases, which may cause a decrease in discharge capacity and initial charge / discharge efficiency, which is not preferable.
  • the Z concentration ratio Q (Z) (sometimes referred to as the N concentration ratio Q (N)) is usually 0.15 or more, preferably 0.30 or more, and more preferably 0.10 or more. It is 40 or more, usually 0.85 or less, preferably 0.70 or less, and more preferably 0.60 or less. If the element Z is N, the closest equilibrium compound with the composition closest to Si is SiN.
  • the Z concentration ratio Q (Z) (sometimes referred to as the B concentration ratio Q (B)) is usually 0.30 or more, preferably 0.40 or more, and more preferably 0 or more. It is 50 or more, usually 0.85 or less, preferably 0.70 or less.
  • the element Z is B, the compound that equilibrium exists in the composition closest to Si is SiB.
  • the XI sz value is usually 2.5 or less, preferably 2.0 or less in the above-mentioned X-ray diffraction measurement. If the XIsz value is within this range, the element Z is composed mainly of the phase in which Si is non-equilibrium, and the equilibrium a P such as Si Z is present.
  • the lower limit of the XIsz value is usually 0.00 or more.
  • the difference (absolute value) between the maximum value or the minimum value and the average value of the Si weight concentration of the active material thin film in the film thickness direction is usually 40%. %, Preferably 30% or less, more preferably 25% or less. If the difference (absolute value) between the maximum value or the minimum value and the average value exceeds this range, expansion and contraction due to charge and discharge will occur locally, and conductivity will deteriorate in the film thickness direction as the cycle progresses. There is a danger of danger. If the difference (absolute value) between the maximum value or the minimum value and the average value is within this range, it means that the film is substantially continuously formed from the current collector, and it is preferable.
  • the weight concentration distribution of the active material thin film in the thickness direction of Si is obtained, for example, as follows.
  • the thin-film negative electrode is placed on the sample stage with the active material thin film side facing up and the cross-section of the active material thin film is flat. Using an electron probe microanalyzer (“JXA-8100” manufactured by JEOL), the current collector power is also measured. Analyze the elements up to the surface of the active material thin film, convert the sum of the measured elements back to 100%, and obtain the weight concentration distribution in the thickness direction of Si.
  • JXA-8100 manufactured by JEOL
  • the element Z in the compound SiZM exists at a level of 1 ⁇ m or less, such as an atom, a molecule, or a cluster.
  • the distribution state of the element Z is uniformly distributed in the film thickness direction in the active material thin film and in the in-plane direction (direction perpendicular to the film thickness direction). More preferably, it is uniformly distributed in the in-plane direction of the active material thin film, and is inclined so that the concentration gradient of the element z increases toward the surface in the thickness direction of the active material thin film. are doing.
  • the element Z be formed continuously as a current collector.
  • the fact that the element Z is continuously formed means that the difference between the maximum value or the minimum value and the average value with respect to the average value of the weight concentration of Z in EPMA measurement (absolute value) Is usually 40% or less, preferably 30% or less, more preferably 25% or less.
  • the distribution state of the element M in the active material thin film in the compound SiZ M may be either uniform or non-uniform.
  • the structure of the active material thin film formed in the thin film negative electrode of the present invention for example, a columnar structure
  • the Raman RC value of the active material thin film of the thin film negative electrode of the present invention measured by the Raman method is preferably 2.0 or less, more preferably 1.0 or less, and particularly preferably 0.1 or less.
  • the Raman RC value exceeds this range, it is difficult to obtain favorable battery characteristics, in which the effect of increasing the capacity by including Si is difficult to obtain.
  • the lower limit of the Raman RC value is usually 0.0 or more due to measurement problems.
  • the Raman RSC value measured by the Raman method is preferably 0.25 or less.
  • Raman RSC value exceeds this range, the conductivity will deteriorate, and doping and undoping of lithium will be difficult, and charging and discharging may not be possible.
  • the lower limit of the RSC value is usually 0.0 or more from the relationship in measurement.
  • the Raman RS value measured by the Raman method is preferably 0.40 or more, more preferably 0.50 or more, preferably 0.75 or less, more preferably 0.65 or less. It is.
  • the Raman RS value measured by the Raman method is preferably 0.40 or more, more preferably 0.50 or more, preferably 1.00 or less, more preferably 0.9 or less. . If the Raman RS value falls below this range, the cycle characteristics may be degraded. If the value exceeds the range of the Raman RS value, charging and discharging may not be possible.
  • the Raman RSN value measured by the Raman method is preferably 0.9 or less, more preferably 0.8 or less. If the Raman RSN value exceeds this range, the conductivity will be poor, and doping and undoping of lithium will be difficult, and charging and discharging may not be possible.
  • the lower limit of the Raman R SN value is usually 0.0 or more, due to measurement relationships.
  • the XIsz value of the active material thin film of the thin film negative electrode of the present invention measured by X-ray diffraction is as follows.
  • the element Z is C, it is not particularly limited, but is preferably 1.20 or less, more preferably 0.70 or less.
  • the element Z is N, it is preferably 1.10 or less, more preferably 1.00 or less.
  • the element Z is B, it is preferably 0.90 or less, more preferably 0.80 or less.
  • the XIsz value exceeds this range, that is, when the element Z is C, silicon carbide is generated, when N is silicon nitride, and when B is silicon boride, the amount of silicon boride is large, the unit weight of the active material is Is unfavorable because the discharge capacity may become small.
  • the lower limit of the XIsz value is usually 0.00 or more.
  • the peak at 20 degrees 5.7 degrees is considered to be a peak derived from SiC
  • the peak at 28.4 degrees is considered to be a peak derived from silicon.
  • the fact that the XIsz value is 1.20 or less means that most of SiC Means not detected.
  • the peak at 2 ⁇ .1 degree is a peak derived from SiN, and the peak at 28.4 degrees is silicon.
  • XIsz value of 1.10 or less means that most SiN was detected. Means not.
  • the peak at 23.4 ° C is a peak derived from SiB or SiB, and the peak at 28.4 ° is
  • the IRsc value measured by infrared transmission light analysis of the active material thin film of the thin film negative electrode of the present invention after charge and discharge is preferably 0.9 or more, more preferably 1.1. Above, particularly preferably 1.2 or more.
  • the active material thin film containing Si reacts with the electrolytic solution during the cycle, and the amount of the active material that can be charged and discharged substantially gradually decreases, making it difficult to obtain favorable cycle characteristics.
  • the upper limit of the IRsc value is about 3.0.
  • Examples of the material of the current collector include copper, nickel, and stainless steel. Of these, copper, which is easily formed into a thin film and is inexpensive, is preferable. Copper foil includes rolled copper foil by a rolling method and electrolytic copper foil by an electrolytic method, and both can be used as a current collector. When the thickness of the copper foil is thinner than 25 m, a copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu-Cr-Zr alloy, etc.) that is stronger than pure copper can be used.
  • a copper alloy phosphor bronze, titanium copper, Corson alloy, Cu-Cr-Zr alloy, etc.
  • a copper foil-made current collector made by a rolling method has a small cylindrical battery that is easily cracked even if the negative electrode is rounded tightly or sharply because copper crystals are aligned in the rolling direction. It can be used preferably.
  • an electrolytic copper foil is formed by immersing a metal drum in an electrolytic solution in which copper ions are dissolved, and applying an electric current while rotating the metal to precipitate copper on the surface of the drum and peel off the copper. It is obtained. Copper may be precipitated on the surface of the rolled copper foil by an electrolytic method. Roughening or surface treatment on one or both sides of copper foil
  • a chromate treatment with a thickness of about several ⁇ to about 1 ⁇ m, a base treatment of Ti or the like, etc. may be performed.
  • a current collector substrate made of copper foil or the like is preferable because a thinner negative electrode can produce a thinner negative electrode, and a thinner negative electrode having a larger surface area can be packed in a battery container having the same storage volume. If the thickness is excessively thin, the strength is insufficient, and the copper foil may be cut by winding or the like during battery production. Therefore, the current collector substrate made of copper foil or the like preferably has a thickness of about 10 to 70 / 70 ⁇ . When an active material thin film is formed on both sides of a copper foil, it is better that the copper foil is thinner. In some cases, a more preferred thickness of the copper foil is 8-35 m.
  • a force having a suitable thickness can be used according to each metal foil. It is within the range of about ⁇ .
  • the average surface roughness (Ra) of the active material thin film forming surface of the current collector substrate specified by the method described in JISB0601-1994 is not particularly limited, but is usually 0.05 m or more, preferably 0.1 / zm. As described above, it is preferably at least 0.15 m, usually at most 1.5 m, preferably at most 1.3 ⁇ m, particularly preferably at most 1.0 ⁇ m.
  • the average surface roughness (Ra) of the current collector substrate within the range between the lower limit and the upper limit, good charge / discharge cycle characteristics can be expected.
  • the upper limit of the average surface roughness (Ra) is not particularly limited, but those having an average surface roughness (Ra) of more than 1.5 m are generally obtained as foil having a practical thickness for batteries. Because it is difficult, the thing of 1.5 m or less is preferable.
  • the tensile strength of the current collector substrate is not particularly limited, it is generally 100 NZmm 2 or more, preferably 250 NZmm 2 or more, more preferably 400 NZmm 2 or more, and particularly preferably 500 NZmm 2 or more.
  • the tensile strength is a value obtained by dividing the maximum tensile force required for a test piece to break, by the cross-sectional area of the test piece.
  • the tensile strength in the present invention is measured by the same device and method as the elongation. If the current collector substrate has a high tensile strength, cracking of the current collector substrate due to expansion and contraction of the active material thin film due to charge and discharge can be suppressed, and good cycle characteristics can be obtained.
  • the 0.2% resistance of the current collector substrate is not particularly limited, but is usually 30 NZmm 2 or more, preferably 150 NZmm 2 or more, and particularly preferably 300 NZmm 2 or more.
  • the 0.2% proof stress is the magnitude of the load required to give a plastic (permanent) strain of 0.2%. It means that it is deformed by 2%.
  • the 0.2% resistance in the present invention is measured by the same device and method as the elongation. If the current collector substrate has a high 0.2% proof stress, it is possible to suppress plastic deformation of the current collector substrate by charging and 'expansion of the active material thin film due to discharge' and improve cycle characteristics. Obtainable
  • the sputtering source or the thermal spraying source (hereinafter sometimes referred to as "raw material” as appropriate), for example, crystalline Si, amorphous Si, or the like can be used.
  • the Z raw material B, C and N elements can be used.
  • the element Z two or more kinds of elements can be used at the same time as long as the element satisfies the above items.
  • Si, Z and M raw materials are used, for example, in the form of powder, granule, pellet, block, plate, and the like.
  • the element M is a group other than Si and the element Z in the second, fourth, eighth, ninth, and tenth group of the periodic table.
  • 11, 13, 14, 15, and 16 elements One or more elements selected from the group consisting of elements selected from the group consisting of Cu, Ni, and O, and more preferably O Can be used.
  • A. Sputtering In sputtering, a thin film is formed by colliding and depositing an active material emitted from a target made of the above-described raw material on a current collector substrate using plasma under reduced pressure. According to sputtering, the interface between the formed active material thin film and the current collector substrate is good, and the adhesion of the active material thin film to the current collector is also high.
  • any of a DC voltage and an AC voltage can be used. At this time, it is also possible to apply a substantially negative bias voltage to the current collector substrate to control the collision energy of ions with plasma force.
  • the ultimate vacuum in the chamber before starting the formation of the thin film is usually 0.1 Pa or less in order to prevent entry of impurities.
  • a sputtering gas an inert gas such as Ne, Ar, Kr, and Xe is used. Among them, argon gas is preferably used in terms of sputtering efficiency and the like. In the case of the element Z force in the compound SiZM, it is preferable for the production to coexist as a trace amount of nitrogen gas in the inert gas. Usually, the sputtering gas pressure is about 0.05 to 70 Pa.
  • the temperature of the current collector substrate when the active material thin film is formed by sputtering can be controlled by water cooling, a heater, or the like.
  • the temperature range of the current collector substrate is usually from room temperature to 90
  • the film formation rate in forming the active material thin film by sputtering is usually 0.01 to 0.5 ⁇ mZ.
  • the surface of the current collector substrate can be etched by pretreatment such as reverse sputtering or other plasma treatment. Such pretreatment is effective for removing contaminants and oxide films on the surface of the copper foil as a current collector substrate and improving the adhesion of the active material thin film.
  • vacuum vapor deposition the above-mentioned raw material as an active material is melted and evaporated, and is deposited on a current collector substrate.
  • Vacuum deposition can form a thin film at a higher deposition rate than sputtering.
  • vacuum evaporation can advantageously utilize the viewpoint of shortening the formation time of an active material thin film having a predetermined thickness in terms of manufacturing cost. Specific examples thereof include an induction heating method, a resistance heating method, and an electron beam heating evaporation method.
  • the deposition material is heated and melted by an induced current in a deposition crucible made of graphite or the like by the induction current, in the resistance heating method, by the heating current passed through a deposition boat, etc. I do.
  • a vacuum is generally used.
  • the element Z in the compound SiZM is N, it is possible to form SiZM simultaneously under vacuum by introducing a small amount of nitrogen gas together with an inert gas and reducing the pressure.
  • the ultimate vacuum in the chamber before starting the formation of the thin film is determined in order to prevent contamination of impurities.
  • the temperature of the current collector substrate when the active material thin film is formed by vacuum deposition can be controlled by a heater or the like.
  • the temperature range of the current collector substrate is usually from room temperature to 900 ° C.
  • the deposition rate in forming an active material thin film by vacuum deposition is usually 0.1 to 50 mZ.
  • the surface of the current collector substrate may be subjected to an etching treatment by irradiating ions with an ion gun or the like.
  • an etching treatment By such an etching treatment, the adhesion between the substrate and the active material thin film can be further increased.
  • bombarding the current collector substrate with ions during the formation of the thin film the adhesion of the active material thin film to the current collector substrate can be further improved.
  • CVD the above-mentioned raw material as an active material is deposited on a current collector substrate by a gas phase chemical reaction.
  • CVD has the feature that a variety of materials can be synthesized with high purity in order to control the compound gas in the reaction chamber by gas inflow. Specific methods include thermal CVD, plasma CVD, optical CVD, cat—Can include CVD.
  • thermal CVD a raw material gas of a halogenated compound having a high vapor pressure is introduced together with a carrier gas and a reaction gas into a reaction vessel heated to about 1000 ° C. to cause a thermochemical reaction to form a thin film.
  • Plasma CVD uses plasma instead of thermal energy.
  • Light CVD uses light energy instead of heat energy.
  • cat—CVD is a catalytic chemical vapor deposition method that forms a thin film by applying a catalytic decomposition reaction between a source gas and a heated catalyst.
  • Si sources used in CVD include SiH, SiCl, and the like, and Z sources include NH, N, and BC1.
  • the above-mentioned raw material as an active material is melted and evaporated, and the evaporated particles are ionized and excited under plasma to form a strong film on the current collector substrate.
  • the method of melting and evaporating the raw material includes an induction heating method, a resistance heating method, an electron beam heating evaporation method, and the like.
  • the method of evaporating the raw material and the method of ionizing and exciting can be performed in an appropriate combination.
  • the raw material as an active material is melted or softened by heating, turned into fine particles, accelerated, and solidified and deposited on the current collector substrate.
  • Specific examples thereof include flame spraying, arc spraying, DC plasma spraying, RF plasma spraying, and laser spraying.
  • the first thin film layer is formed by sputtering, and then the vapor deposition method is used.
  • the second thin film layer is formed at a high speed, it is possible to form an interface region having good adhesion to the current collector substrate, and to form an active material thin film at a high film forming rate.
  • the formation of the active material thin film by combining sputtering and the vapor deposition method be performed continuously while maintaining a reduced-pressure atmosphere. This is because impurities can be prevented from being mixed by forming the first thin film layer and the second thin film layer continuously without exposure to the air.
  • a thin film forming apparatus that sequentially performs a heater and a vapor deposition while moving the current collector substrate in the same vacuum environment.
  • the active material thin film When an active material thin film is formed on both sides of the current collector substrate, the active material thin film may be formed on one side of the current collector substrate. Formation of the active material thin film layer (which may be a combination of the first thin film layer and the second thin film layer) and the active material thin film layer (the first thin film layer) on the other surface of the current collector substrate. The formation of the layer and the second thin film layer may be performed continuously while maintaining a reduced pressure atmosphere.
  • a thickness of 1 to 30 / ⁇ preferably a thickness of the active material thin film on the current collector substrate described above. The film is formed to the thickness described in the section.
  • a composition or mixture of Si and C, and a single substance of element M (a gas containing M is also acceptable).
  • the S source material of the evaporation source the sputtering source, or the thermal spraying source (hereinafter, may be appropriately referred to as "raw material")
  • the C raw material for example, a carbon material such as natural graphite and artificial graphite can be used.
  • the M raw material is usually an element of the Periodic Tables 2, 4, 8, 9, 10, 11, 13, 14, 15, and 16, other than Si and the element Z, and is preferably Can use Cu, Ni, O elements, particularly preferably O elements!
  • the composition of Si, C, and element M includes Si, C, and element M.
  • a single compound combined may be used, or a plurality of compounds may be used.
  • Si, C, and M raw materials are used, for example, as powders, granules, pellets, blocks, plates, and the like.
  • the element M may be used as a nitride or oxide of Si or C.
  • the source gas O or the like during film formation of Si or C is used. It is preferable from the viewpoint of production to coexist.
  • A sputtering
  • B vacuum evaporation
  • C CVD
  • an inert gas such as Ne, Ar, Kr, and Xe is used.
  • argon gas power is preferably used in terms of sputtering efficiency and the like.
  • the M element so in the general formula SiC M it is preferable from the viewpoint of production that a small amount of oxygen gas coexists in the inert gas.
  • the sputtering gas pressure is about 0.05 to 70 Pa.
  • vacuum is used as the atmosphere for vacuum deposition.
  • element M in the general formula SiC M is O
  • SiZCZM simultaneously under vacuum by introducing a small amount of oxygen gas together with an inert gas and reducing the pressure.
  • the source gases used in CVD are SiH, SiCl, etc. as the elemental Si source, and the elemental C source.
  • the oxygen concentration in the film forming gas is 0. 0001-0.
  • the Si source for the vapor deposition source the sputtering source, or the thermal spraying source, for example, crystalline Si, amorphous Si, or the like can be used.
  • the C raw material for example, a carbon material such as natural graphite and artificial graphite can be used.
  • the oxygen in the film forming gas a gas containing an o element such as oxygen is used alone or in combination with an inert gas.
  • Si and C raw materials are used, for example, in the form of powder, granule, pellet, block, plate, or the like.
  • oxygen gas be coexisted as a source gas during the formation of Si and C films.
  • a film forming method As a film forming method, a film forming method similar to the first preferred method is used.
  • the oxygen concentration in the film forming gas during vapor deposition, sputtering, or thermal spraying is usually at least 0.0001%, usually at most 0.125%, preferably at most 0.125%. It is at most 0.10%, more preferably at most 0.020%. If the concentration of oxygen contained in the film-forming gas exceeds this range, the amount of the element o in the siZcZo thin film increases, the reactivity with the electrolytic solution increases, and the charge-discharge efficiency may decrease. If the oxygen concentration is too low, a SiZcZo thin film cannot be formed.
  • the oxygen concentration in the deposition gas can be determined by, for example, analyzing the mass vector of the deposition gas using a quadrupole mass filter.
  • the argon gas is measured by an oxygen analyzer.
  • the nitrogen concentration force Sl in the film forming gas (when forming the film in vacuum, in the residual gas)
  • Si and N are simultaneously treated by at least one of vapor deposition, sputtering, and thermal spraying.
  • the thickness is set to 1 to 30; ⁇ ⁇ on the current collector substrate, preferably the thickness described in the section of the thickness of the active material thin film.
  • crystalline Si, amorphous Si, or the like can be used as a raw material of Si alone, which is a vapor deposition source, a sputtering source, or a thermal spraying source.
  • a gas containing N element such as nitrogen is used alone or in combination with an inert gas.
  • Nitrogen gas is preferably coexistent as a source gas during Si film formation in terms of production.
  • a film formation method similar to the first preferred method can be used.
  • the nitrogen concentration in the film-forming gas during vapor deposition, sputtering, or thermal spraying is usually 1% or more, usually 22% or less, preferably 15% or less. More preferably, it is 10% or less. If the concentration of nitrogen contained in the film forming gas exceeds this range, the amount of element N in the SiN thin film increases and silicon nitride not involved in charge / discharge is generated, which may undesirably lower the discharge capacity. If the nitrogen concentration is too low, it is not preferable because a SiN thin film containing N cannot be formed and cycle characteristics deteriorate.
  • the nitrogen concentration in the film-forming gas can be determined, for example, by analyzing a mass vector of the film-forming gas using a quadrupole mass filter.
  • a non-aqueous electrolyte secondary battery having the above-mentioned thin film negative electrode will be described below.
  • This battery includes a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte.
  • materials and the like of members other than the negative electrode constituting the battery are exemplified, but usable materials are not limited to these specific examples.
  • the positive electrode is obtained by forming an active material layer containing a positive electrode active material and an organic substance (binder) having a binding and thickening effect on a current collector substrate.
  • the positive electrode is usually coated with a slurry in which an organic substance having a binding and thickening effect with the positive electrode active material is dispersed in water or an organic solvent, thinly coated on the current collector substrate, and then dried. Then to the specified thickness and density It is formed by a compacting press process.
  • the positive electrode active material is not particularly limited as long as it has a function of inserting and extracting lithium.
  • lithium transition metal composite oxide materials such as lithium konoleto, lithium nickel oxide, and lithium manganese oxide
  • transition metal oxide materials such as manganese dioxide
  • carbonaceous materials such as fluorinated graphite. Materials and the like can be used.
  • Nb S, Mo S, CoS, V O, P O, CrO, V O, TeO, GeO, etc. can be used.
  • a positive electrode conductive agent can be used.
  • the conductive agent for the positive electrode may be any electronic conductive material that does not cause a chemical change depending on the charge / discharge potential of the positive electrode active material used.
  • natural graphite flaky graphite, etc.
  • graphite such as artificial graphite
  • carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, carbon fiber, metal fiber, etc.
  • conductive fibers metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide and potassium titanate, and conductive metal oxides such as titanium oxide.
  • Organic compounds such as polyphenylene derivatives
  • a conductive material or the like can be included alone or as a mixture thereof. This
  • the amount of the conductive agent to be added is not particularly limited, but is preferably 1 to 50% by weight, particularly preferably 1 to 30% by weight, based on the positive electrode active material. In the case of carbon and graphite, the content is particularly preferably 2 to 15% by weight based on the positive electrode active material.
  • the organic substance having a binding and thickening effect used for forming the positive electrode active material layer may be any of thermoplastic resin and thermosetting resin, which are not particularly limited.
  • thermoplastic resin and thermosetting resin which are not particularly limited.
  • a filler In the positive electrode active material layer, a filler, a dispersant, an ion conductor, a pressure enhancer, and other various additives can be further blended in addition to the above-described conductive agent.
  • the filter can use any fibrous material that does not cause a chemical change in the configured battery. Usually, a olefin polymer such as polypropylene or polyethylene, or a fiber such as glass or carbon is used.
  • the amount of the filler is not particularly limited, but is preferably 0 to 30% by weight in the active material layer.
  • an aqueous solvent or an organic solvent is used as a dispersion medium.
  • Water is usually used as an aqueous solvent.
  • Additives such as alcohols such as ethanol and cyclic amides such as N-methylpyrrolidone can be added to water up to about 30% by weight. .
  • cyclic amides such as N-methylpyrrolidone, linear amides such as N, N dimethylformamide, N, N dimethylacetamide, asol, toluene, xylene, etc.
  • linear amides such as N, N dimethylformamide, N, N dimethylacetamide, asol, toluene, xylene, etc.
  • aromatic hydrocarbons alcohols such as butanol and cyclohexanol, among which cyclic amides such as N-methylpyrrolidone, and linear amides such as N, N dimethylformamide and N, N dimethylacetamide.
  • linear amides such as N, N dimethylformamide and N, N dimethylacetamide.
  • a positive electrode active material slurry is prepared by mixing a positive electrode active material, an organic substance having a binding and thickening effect as a binder, a conductive agent for a positive electrode to be blended as required, and other fillers with these solvents. Is prepared and applied to a positive electrode current collector substrate so as to have a predetermined thickness to form a positive electrode active material layer.
  • the upper limit of the concentration of the positive electrode active material in the positive electrode active material slurry is usually 70% by weight or less, preferably 55% by weight or less, and the lower limit is usually 30% by weight or more, preferably 40% by weight or more.
  • concentration of the positive electrode active material exceeds the upper limit, the positive electrode active material in the positive electrode active material slurry tends to aggregate, and when the concentration is lower than the lower limit, the positive electrode active material easily precipitates during storage of the positive electrode active material slurry.
  • the upper limit of the binder concentration in the positive electrode active material slurry is usually 30% by weight or less, preferably 10% by weight or less, and the lower limit is usually 0.1% by weight or more, preferably 0.5% by weight or more. It is. When the concentration of the binder exceeds the upper limit, the internal resistance of the obtained positive electrode increases, and when the concentration is lower than the lower limit, the binding property of the positive electrode active material layer becomes poor.
  • the current collector substrate for the positive electrode for example, it is preferable to use a valve metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution.
  • the valve metal include metals belonging to Groups 4 to 5 of the periodic table and alloys thereof. Specifically, Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified.Al, Ti, Ta, and alloys containing these metals can be preferably used. . In particular, A1 and its alloys are light in weight and therefore have a high energy density.
  • the thickness of the positive electrode current collector substrate is not particularly limited, but is usually about 1 to 50 m.
  • any electrolyte such as an electrolytic solution and a solid electrolyte can be used.
  • An electrolyte is all ionic conductors! An electrolyte and a solid electrolyte are both included in the electrolyte.
  • the electrolytic solution for example, a solution in which a solute is dissolved in a nonaqueous solvent can be used.
  • an alkali metal salt, a quaternary ammonium salt, or the like can be used as the solute.
  • LiN (CF SO) (CF SO), LiC (CF SO) and the like are preferably used. These solutes
  • the content of these solutes in the electrolytic solution is preferably 0.2 mol / L or more, particularly 0.5 mol / L or more, and 2 mol ZL or less, particularly 1.5 mol ZL or less.
  • non-aqueous solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and bi-lene carbonate; cyclic ester conjugates such as y-butyrolactone; and 1,2-dimethoxyethane and the like.
  • Chain ethers; cyclic ethers such as crown ether, 2-methyltetrahydrofuran, 1,2 dimethyltetrahydrofuran, 1,3 dioxolane and tetrahydrofuran; chain carbonates such as getyl carbonate, ethyl methyl carbonate, dimethyl carbonate and the like can be used. It can.
  • non-aqueous solvents containing cyclic carbonate and chain carbonate are preferred.
  • One of these solvents may be selected and used, or two or more thereof may be used as a mixture.
  • the non-aqueous electrolyte solution according to the present invention contains a cyclic carbonate having an unsaturated bond in the molecule, and various auxiliary agents such as a conventionally known overcharge inhibitor, deoxidizing agent, and dehydrating agent. Is also good.
  • Examples of the cyclic carbonate having an unsaturated bond in the molecule include a vinylene carbonate-based compound, a butyl ethylene carbonate-based compound, and a methylene ethylene carbonate-based compound.
  • bi-carbonate-based compound examples include bi-carbonate, methyl-co-carbonate, ethyl-co-carbonate, 4,5-dimethylbi-carbonate, 4,5-cotyl-co-carbonate, and fluoro Vinylene carbonate, trifluoromethylbi-lene carbonate and the like can be mentioned.
  • butyl ethylene carbonate-based compound examples include butyl ethylene carbonate, 4-methyl-4 butyl ethylene carbonate, 4-ethyl-4 butyl ethylene carbonate, 4-n-propyl-4 butyl ethylene carbonate, and 5-methyl-4-bi. -Ethylene carbonate, 4,4-dibutyl ethylene carbonate, 4,5-dibutyl ethylene carbonate and the like.
  • Examples of the methylene ethylene carbonate-based compound include, for example, methylene ethylene carbonate. And 4,4 dimethyl-5-methylene ethylene carbonate, 4,4 dimethyl-5-methylene ethylene carbonate and the like.
  • vinylene carbonate and vinyl ethylene carbonate are preferred, and vinylene carbonate is particularly preferred.
  • the proportion in the non-aqueous electrolyte is usually 0.01% by weight or more, preferably 0.1% by weight. %, Particularly preferably at least 0.3% by weight, most preferably at least 0.5% by weight, usually at most 8% by weight, preferably at most 4% by weight, particularly preferably at most 3% by weight.
  • the cycle characteristics of the battery can be improved.
  • a stable protective film can be formed on the surface of the negative electrode.
  • the content in the electrolytic solution is preferably in the above range.
  • overcharge preventing agent examples include biphenyl, alkyl biphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, and diphenyl.
  • Aromatic compounds such as -fluoroether, dibenzofuran, etc .; partially fluorinated products of the above aromatic compounds such as 2-fluorobiphenyl, o cyclohexenolephnoleo benzene, p cyclohexynolefnoleo benzene; 2, 4 difluoroanol, 2,4 Fluorinated azole compounds such as 5 difluoranol and 2, 6 difluoranol, and the like.
  • the proportion of the overcharge inhibitor in the non-aqueous electrolyte is usually 0.1 to 5% by weight.
  • the battery can be prevented from bursting or firing at the time of overcharge or the like.
  • auxiliaries for example, fluoroethylene carbonate, trifluoropropylene Carbonates such as carbonate, phenylene ethylene carbonate, erythritan carbonate, spirobis dimethylene carbonate, methoxyethyl methyl carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride Carboxylic anhydrides such as, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; ethylene sulfite, 1,3 propane sultone , 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone and tetramethylthi
  • the ratio of these auxiliaries in the non-aqueous electrolyte is usually 0.1 to 5% by weight.
  • capacity retention characteristics after high-temperature storage and cycle characteristics can be improved.
  • the non-aqueous electrolyte may contain an organic polymer compound in the electrolyte, and may be a gel, rubber, or solid sheet solid electrolyte.
  • organic polymer compound include polyether polymer compounds such as polyethylene oxide and polypropylene oxide; crosslinked polymers of polyether polymer compounds; and vinyl alcohol polymer compounds such as polyvinyl alcohol and polyvinyl butyral.
  • Insolubilized poly (vinyl alcohol) polymer compound polyepiclorhydrin; polyphosphazene; polysiloxane; poly ( ⁇ -) polymer such as polyvinyl pyrrolidone, polyvinylidene carbonate, polyacrylonitrile; methoxy oligo O carboxymethyl ethylene meth streams), poly (.omega. Metokishiorigo O carboxymethyl ethylene meth Tari rate one co - like methyl methacrylate streams rate) polymer copolymers such.
  • the negative electrode for a non-aqueous electrolyte secondary battery in addition to the electrolyte, the negative electrode, and the positive electrode, further necessity is required. Accordingly, an outer can, a separator, a gasket, a sealing plate, a cell case, and the like can be used.
  • the material and shape of the separator are not particularly limited.
  • the separator separates the positive electrode and the negative electrode so that they do not physically contact each other, and preferably has high ion permeability and low electric resistance.
  • the separator is preferably selected from materials that are stable with respect to the electrolytic solution and have excellent liquid retention. Specific examples include a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene.
  • the shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and examples thereof include a cylinder type in which a sheet electrode and a separator are spirally formed, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, and It can be a coin type in which a pellet electrode and a separator are laminated.
  • the method for producing the nonaqueous electrolyte secondary battery of the present invention having at least an electrolyte, a negative electrode, and a positive electrode is not particularly limited, and can be appropriately selected from commonly employed methods.
  • An example of the method for producing the nonaqueous electrolyte secondary battery of the present invention is as follows. A negative electrode is placed on an outer can, an electrolytic solution and a separator are provided thereon, and a positive electrode is placed so as to face the negative electrode. And a method of assembling the battery by pressing together with the sealing plate.
  • a target material As a target material, a mixture of Si and C (a disc having an area ratio of Si and C of approximately 100 to 9) was used. Electrodeposited copper foil with a mean surface roughness (Ra) of 0.2 / ⁇ , a tensile strength of 280NZmm 2 , a 0.2% proof stress of 220N / mm 2 and a thickness of 18m is used as a current collector substrate.
  • Ra mean surface roughness
  • An active material thin film was formed for 45 minutes using a DC sputtering device (“: HSM-52” manufactured by Shimadzu Corporation) to obtain a thin film negative electrode.
  • reverse sputtering was performed to etch the substrate surface in order to remove the oxide film on the surface of the electrolytic copper foil.
  • the thin film contained 24 atomic% of element C, and the C concentration ratio Q (C) to the element C concentration in SiC was 0.49.
  • X-ray photoelectron spectrometer (“ESC A” manufactured by ULVAC-FUI, Inc.) was used, and the thin-film negative electrode was placed on a sample stage so that the surface was flat, and the aluminum ⁇ ⁇ -ray was The depth profile was measured while Ar sputtering was performed as a radiation source.
  • the spectra of Si2p (90-: L10eV), Cls (280-300eV) and 01s (525-545eV) at a constant concentration depth (for example, 200nm) were obtained.
  • the obtained Cls peak top is corrected to charge of 284.5 eV, the peak areas of the spectra of Si2p, Cls and Ols are obtained, and the device sensitivity coefficient is multiplied to calculate the atomic concentrations of Si, C and O, respectively. did. Calculated Si and From the atomic concentrations of c and o, the original concentration ratio siZcZo (si atomic concentration Zc atomic concentration ⁇ atomic concentration) is calculated and defined as the thin film composition value SiZcZo.
  • the thin film negative electrode was set in the measurement cell, and the measurement was performed while irradiating the sample surface in the cell with argon ion laser light.
  • the Raman measurement conditions are as follows.
  • Argon ion laser wavelength 514.5 nm
  • a lithium secondary battery was manufactured according to the following method, and this battery was subjected to discharge capacity, charge / discharge efficiency, cycle characteristics (A), and 50 cycles by the following method.
  • the charging / discharging efficiency at the time and the electrode expansion rate after the cycle were evaluated, and the results are shown in Table 2.
  • the thin film negative electrode prepared by the above method was punched into a 10 mm ⁇ , dried at 110 ° C under vacuum, The sample was transferred to a glove box, and a coin battery (lithium secondary battery) was produced in an argon atmosphere using the electrolytic solution, the separator, and the counter electrode.
  • a coin battery lithium secondary battery
  • the electrolyte ethylene carbonate
  • a lithium metal counter electrode was used as the counter electrode.
  • Active material weight (g) negative electrode weight (g) —copper foil weight of the same area (g)
  • the charge / discharge cycle was repeated 50 times, and the cycle maintenance ratio (A) was calculated by the following equation.
  • this charge / discharge cycle was repeated 50 times, and the charge / discharge efficiency at 50 cycles was calculated by the following equation.
  • Charge / discharge efficiency at 50 cycles (%) Discharge capacity at 0 times (mAh) Z Charge capacity at 50 times (mAh) ⁇ X 100
  • the discharged coin battery is disassembled in an argon glove box so as not to be short-circuited, the electrode is taken out, washed with dehydrated dimethyl ether solvent, and dried. Then, the electrode thickness (excluding copper foil) at the time of post-cycle discharge was measured by SEM observation. Based on the electrode thickness before the battery fabrication (excluding the copper foil), the electrode expansion coefficient after the cycle was calculated based on the following equation.
  • Electrode expansion rate after cycle (times) (electrode thickness after cycle Z electrode thickness before charge and discharge
  • the active material thin film was disassembled so that the coin cell in the discharged state was not short-circuited in an argon glove box, the electrode was taken out, and dehydrated dimethyl ether was removed. After washing with a solvent and drying, the current collector copper foil was peeled off and used for measurement.
  • An active material thin film was formed in the same manner as in Example 1 except that the area ratio of Si and C in the target material was changed to 100: 2, to produce a thin film negative electrode. At this time, the deposition rate is about 2. 3nmZse C 4 The film was formed for 0 minutes.
  • the thickness of the formed thin film was 5 ⁇ m.
  • composition analysis of the thin film revealed that the thin film contained 6 atomic% of element C, and the C concentration ratio Q (C) to the element C concentration in SiC was 0.13.
  • Si was substantially continuously formed from the current collector as in Example 1, and The element C was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • An active material thin film was formed in the same manner as in Example 1 except that a mixture of Si particles and C particles was sintered as a target material, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 1.7 nmZsec for 45 minutes.
  • the thickness of the formed thin film was 5 ⁇ m.
  • composition analysis of the thin film revealed that the thin film contained 30 atomic% of element C, and the C concentration ratio Q (C) to the element concentration in SiC was 0.63.
  • the thickness of the formed thin film was 4 ⁇ m.
  • the thin film contained 18 atomic% of element C, and the C concentration ratio Q (C) to the element C concentration in SiC was 0.43.
  • Si was substantially continuously formed from the current collector as in Example 1, and The element C was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • the flow rate of the high-purity argon gas during film formation was 90 sccm, and the opening of the main knob was adjusted.
  • An active material thin film was formed in the same manner as in Example 2 except that the atmosphere was changed to 3 Pa, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 1.5 nmZsec for 50 minutes.
  • the thickness of the formed thin film was 5 ⁇ m.
  • Si was substantially continuously formed from the current collector as in Example 1, and The element C was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • the current collector substrate has an average surface roughness (Ra) of 0.2 ⁇ , a tensile strength of 280 NZmm 2 , a 0.2% proof stress of 220 NZmm 2 and a thickness of 18 m.
  • Ra average surface roughness
  • an active material thin film was formed for 28 minutes using a direct current sputtering device (“: HSM-52” manufactured by Shimadzu Corporation) to obtain a thin film negative electrode.
  • the current collector substrate is attached to the water-cooled holder, maintained at about 25 ° C, after evacuation of the chamber one to advance 4 X 10- 4 Pa, while adjusting the opening degree of Mein'no Reb, chamber one
  • a high-purity nitrogen gas is flowed into the inside to set the pressure to 0.16 Pa, then a high-purity argon gas is flown to a pressure of 1.6 Pa, and then a power density of 7 lW / cm 2 , a deposition rate (a deposition rate Degree)
  • the film was formed at about 4 nmZsec (for 0.24 ⁇ mZ).
  • the nitrogen concentration of the sputtering gas was 10%.
  • the thin film contained 33 atomic% of element N, and the N concentration ratio Q (N) to the concentration of element N in SiN was equivalent to 0.68. did.
  • element N was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less, similarly to element C in Example 1.
  • X-ray photoelectron spectrometer (“ESC A” manufactured by ULVAC-FUI, Inc.) was used, and the thin-film negative electrode was placed on a sample stage so that the surface was flat, and the aluminum ⁇ ⁇ -ray was The depth profile was measured while Ar sputtering was performed as a radiation source.
  • the spectra of Si2p (90-: L10eV), Nls (394-414eV) and Ols (525-545eV) at a constant concentration depth (for example, 200nm) were obtained.
  • An active material thin film was formed in the same manner as in Example 6 except that the pressure when a high-purity nitrogen gas was flown into the chamber was changed to 0.24 Pa, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 3 nm Zsec for 30 minutes. The sputter gas had a nitrogen concentration of 15%. From a scanning electron microscope (SEM) observation of the cross section of the thin film of the obtained thin film negative electrode, the thickness of the formed thin film was 6 ⁇ m.
  • composition analysis of the thin film revealed that the thin film contained 41 atomic% of element N, and the N concentration ratio Q (N) to the element N concentration in SiN was 0.82.
  • Si was substantially continuously formed from the current collector as in Example 6, and The element N was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • An active material thin film was formed in the same manner as in Example 6 except that the pressure when a high-purity nitrogen gas was supplied to the inside of the chamber was changed to 0.08 Pa, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 4 nm Zsec for 27 minutes. The nitrogen concentration of the sputtering gas was 5%.
  • the thickness of the formed thin film was 6 ⁇ m.
  • Si was substantially continuously formed from the current collector as in Example 1, and The element N was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • a mixture of Si and N on a Si disk, the area ratio of Si and SiN is approximately 100
  • An active material thin film was formed in the same manner as in Example 6, except that the pressure was changed to an atmosphere of 1.6 Pa by flowing only argon gas, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 4 nm Zse C for 25 minutes.
  • the thickness of the formed thin film was 6 ⁇ m.
  • the thin film contained 20 atomic% of element N, and the N concentration ratio Q (N) to the element N concentration in SiN was equivalent to 0.42.
  • Si was substantially continuously formed from the current collector as in Example 6, and The element N was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • element B was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less, similarly to element C in Example 1.
  • An active material thin film was formed in the same manner as in Example 10 except that an Si / B area ratio of approximately 100 to 10 was used on a Si disk as a target material.
  • a negative electrode was fabricated. At this time, the film was formed at a deposition rate of about 3 nm Zsec for 36 minutes. From a scanning electron microscope (SEM) observation of the cross section of the thin film of the obtained thin film negative electrode, the thickness of the formed thin film was 6 ⁇ m.
  • the element B was contained in the thin film at 42 atomic%.
  • the B concentration ratio Q (B) to the element B concentration in 3 corresponded to 0.57.
  • Si was substantially continuously formed from the current collector as in Example 10, and The element B was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • An active material thin film was formed in the same manner as in Example 10 except that a target material having an area ratio of Si to B of approximately 100 to 12 was used on a Si disk as a target material. A negative electrode was fabricated. At this time, the film was formed at a deposition rate of about 3 nm Zsec for 42 minutes.
  • the thickness of the formed thin film was 6 ⁇ m.
  • the composition analysis of the thin film was performed, it was found that the thin film contained 53 atomic% of element B.
  • the B concentration ratio Q (B) to the element B concentration in 3 corresponded to 0.71.
  • Si was substantially continuously formed from the current collector as in Example 10, and The element B was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • a thin film negative electrode was prepared by forming an active material thin film in the same manner as in Example 8. did. At this time, the film was formed at a deposition rate of about 3 nm Zsec for 35 minutes. Nitrogen concentration of sputtering gas is 5%.
  • the thickness of the formed thin film was 6 ⁇ m.
  • Si was substantially continuously formed from the current collector as in Example 1, In addition, elements C and N were uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • the average surface roughness (Ra) is 0.2 ⁇ ⁇
  • the tensile strength is 00 N / mm 2
  • the 0.2% proof stress is 380 N / mm 2
  • the thickness is 18
  • electron beam heating vapor deposition ion plating was performed using a ULVAC “DRP-40E device” to produce a thin film negative electrode.
  • the electron beam heating conditions for evaporating Si are as follows: voltage 10 kV, current 140 mA, nitrogen ionization RF method conditions: coil output 200 W, substrate bias voltage 0.5 kV, current 10 mA, deposition rate about 2 nm Zsec for 35 minutes A film was formed.
  • the thickness of the formed thin film was 4 ⁇ m.
  • the composition analysis of the thin film showed that the thin film contained 18 atomic% of element N, and the N concentration ratio Q (N) to the element N concentration in SiN was 0.37.
  • Si was substantially continuously formed from the current collector as in Example 6, and The element N was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • Crushed Si was used as the evaporation source, and the current collector substrate had an average surface roughness (Ra) of 0.2 ⁇ , a tensile strength of 00 N / mm 2 , a 0.2% proof stress of 380 N / mm 2 , and a thickness of 18 high-frequency induction heating using a roughened rolled copper foil with a surface area of MU-1700D high frequency induction heating device manufactured by Sekisui Medical Electronics Co., Ltd. and MP201 ion gun device manufactured by ARIOS. Vapor deposition ion plating was performed to produce a thin film negative electrode.
  • the opening adjustment Shinano valve al was an atmosphere of 0. LPA pressure by flowing high purity nitrogen gas into the chamber one.
  • a high-frequency induction heating condition for evaporating Si was performed at a current of 12 A, a nitrogen ionization condition of 150 W output, an ion acceleration voltage of 12 kV, a substrate bias voltage of 0.5 kV, and a deposition rate of about 20 nm Zsec for 5 minutes.
  • the membrane was made.
  • the thickness of the resulting thin film was 5 ⁇ m.
  • composition analysis of the thin film revealed that the thin film contained 23 atomic% of element N, and the N concentration ratio Q (N) to the element N concentration in SiN was 0.48.
  • Atomic concentration ratio is SiZNZ
  • Si was substantially continuously formed from the current collector as in Example 6, and The element N was uniformly distributed in the Si thin film with a size of 1 ⁇ m or less.
  • an active material thin film was formed in the same manner as in Example 1 to produce a thin film negative electrode.
  • the thickness of the formed thin film was 5 ⁇ m.
  • VPC-260F device manufactured by ULVAC, using SiO as the vapor deposition source and electrolytic copper foil with an average surface roughness (Ra) of 0.2 m and a thickness of 18 ⁇ m as the current collector substrate The resistance heating evaporation was performed at. At this time, after evacuation of the chamber one to advance 3 X 10- 3 Pa, electric current of 155A, by performing the deposition at a deposition rate of about LOnmZsec, to produce a thin film negative electrode. From a scanning electron microscope (SEM) observation of the cross section of the thin film of the obtained thin film negative electrode, the thickness of the formed thin film was 6 ⁇ m.
  • SEM scanning electron microscope
  • the target material was changed to a mixture of Si and Ni (a Ni disk with a Ni chip attached so that the area ratio of Si and Ni was approximately 100: 4 on a Si disk)
  • an active material thin film was formed to produce a thin film negative electrode.
  • the film was formed at a deposition rate of about 5 nm Zse C for 25 minutes.
  • the thickness of the formed thin film was 6 ⁇ m.
  • the element Ni was contained in the thin film at 25 atomic%.
  • Ni concentration Q (Ni) Ni concentration of element 2 in 0.7 was 0.79.
  • Example 10 was repeated except that the target material was changed to a mixture of Si and Cu (a Si disk with a Cu chip attached so that the area ratio between Si and Cu was approximately 100: 3). Similarly, a thin film negative electrode was prepared by forming an active material thin film. At this time, the film was formed at a deposition rate of about 5 nm Zse C for 25 minutes.
  • the thickness of the resulting thin film was 6 ⁇ m.
  • the composition of the thin film was analyzed, it was found that the thin film contained 26 atomic% of elemental Cu.
  • the Cu concentration ratio Q (Cu) to the Cu concentration of the element in S was equivalent to 0.35.
  • Example 10 was the same as Example 10 except that the target material was changed to a mixture of Si and Co (a Si disk and a Co chip attached so that the area ratio of Si and Co was approximately 100: 4). Similarly, a thin film negative electrode was prepared by forming an active material thin film. At this time, the film was formed at a deposition rate of about 5 nm Zse C for 25 minutes.
  • the thickness of the formed thin film was 6 ⁇ m.
  • An active material thin film was formed in the same manner as in Example 2 except that the oxygen concentration in the high-purity argon gas at the time of film formation was changed to 0.150%, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 0.6 nmZsec for 140 minutes.
  • the thickness of the formed thin film was 5 ⁇ m.
  • a composition analysis of the thin film revealed that the thin film contained 27 atomic% of element C, and the C concentration ratio Q (C) to the element C concentration in SiC was 0.81.
  • An active material thin film was formed in the same manner as in Example 1 except that a target material obtained by sintering a mixture of Si particles, SiO particles and C particles was used to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about InmZsec for 80 minutes.
  • the thickness of the formed thin film was 5 ⁇ m.
  • the thin film contained 69 atomic% of element C, and the C concentration ratio Q (C) to the element C concentration in SiC was 1.55.
  • An active material thin film was formed in the same manner as in Example 2 except that the area ratio of Si and C in the target material was changed to 100: 1, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 2 nm Zse C for 40 minutes.
  • the thickness of the formed thin film was 5 ⁇ m.
  • composition analysis of the thin film showed that the thin film contained 3 atomic% of element C, and the C concentration ratio Q (C) to the element C concentration in SiC was equal to 0.06.
  • An active material thin film was formed in the same manner as in Example 6, except that the pressure when a high-purity nitrogen gas was flown into the chamber was changed to 0.4 Pa, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 3 nm Zsec for 40 minutes.
  • the sputter gas had a nitrogen concentration of 25%.
  • the thickness of the formed thin film was 7 ⁇ m.
  • composition analysis of the thin film revealed that the thin film contained 53 atomic% of element N, and the N concentration ratio Q (N) to the element N concentration in SiN was 1.07.
  • An active material thin film was formed in the same manner as in Example 6 except that the pressure when a high-purity nitrogen gas was flown in the chamber was changed to 3.2 ⁇ 10 ⁇ 3 Pa, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 3 nm Zsec for 28 minutes. The nitrogen concentration of the sputtering gas was 0.2%. From a scanning electron microscope (SEM) observation of a cross section of the thin film of the obtained thin film negative electrode, the thickness of the formed thin film was 5 ⁇ m.
  • SEM scanning electron microscope
  • composition analysis of the thin film revealed that the thin film contained 1 atomic% of element N, and the N concentration ratio Q (N) to the element N concentration in SiN was equal to 0.02.
  • An active material thin film was formed in the same manner as in Example 10 except that a disk having an area ratio of Si to B of approximately 100 to 17 was used as a target material, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 2 nm Zsec for 50 minutes.
  • the thickness of the formed thin film was 6 ⁇ m.
  • the B concentration ratio Q (B) to the element B concentration in 3 corresponded to 0.98.
  • Atomic concentration ratio is SiZB
  • An active material thin film was formed in the same manner as in Example 10 except that a disk having an area ratio of Si and B of approximately 100 to 1 was used as a target material, to produce a thin film negative electrode. At this time, the film was formed at a deposition rate of about 4 nm Zsec for 25 minutes.
  • the thickness of the formed thin film was 5 ⁇ m.
  • the B concentration ratio Q (B) to the N concentration in element 3 in 3 corresponded to 0.06.
  • Atomic concentration ratio is SiZB
  • the active material thin film of the negative electrode of Comparative Example 1 had a current collector force of force S, which is a continuously formed Si thin film, and the element Z was not present in the thin film, which was out of the specified range of the present invention.
  • the cycle characteristics could not be obtained, and the electrode expansion rate after the cycle was large.
  • the negative electrode active material thin film of Comparative Example 2 was mainly composed of a phase in which the element O was non-equilibrium in Si.
  • the collector current is a SiO thin film formed continuously, but there is no substance equivalent to the element Z in the thin film, which is outside the specified range of the present invention. We could't get low and high capacity battery characteristics.
  • the active material thin film of the negative electrode in Comparative Example 3 was a SiZNi thin film in which the element Ni was present in a non-equilibrium state in Si as a main component and the current collector power was continuously formed.
  • the element Z in the thin film which was outside the specified range of the present invention, and as a result, good cycle characteristics could not be obtained.
  • the active material thin film of the negative electrode of Comparative Example 4 was a continuously collected SiZCu thin film mainly composed of a phase in which the element Cu was non-equilibrium in Si. There was no substance corresponding to element Z in the thin film, which was outside the range specified in the present invention, and as a result, good cycle characteristics could not be obtained.
  • the active material thin film of the negative electrode of Comparative Example 5 was a continuously collected SiZCo thin film mainly composed of a phase in which the element Co was non-equilibrium in Si. There was no substance corresponding to element Z in the thin film, which was outside the range specified in the present invention, and as a result, good cycle characteristics could not be obtained.
  • the active material thin film of the negative electrode of Comparative Example 6 was a continuously collected SiZCZO thin film mainly composed of a phase in which the element C was non-equilibrium in Si.
  • the element O content in the element exceeds the specified range of the present invention. As a result, the effect of containing Si does not appear, only C is charged and discharged, and the charging and discharging efficiency is low due to the large amount of O. It was not possible to obtain high-capacity battery characteristics.
  • the active material thin film of the negative electrode of Comparative Example 7 was a continuously collected SiZCZO thin film mainly composed of a phase in which the element C was non-equilibrium in Si.
  • the content of element C in the material greatly exceeds the specified range of the present invention. As a result, the effect of containing Si does not appear, and only C is charged and discharged, and high-capacity battery characteristics with low charge / discharge efficiency are obtained. I could't get it.
  • the active material thin film of the negative electrode of Comparative Example 8 was a continuously collected SiZCZO thin film mainly composed of a phase in which the element C was non-equilibrium in Si. Element C content is below the specified range of the present invention, as a result, the effect of containing C is reduced The electrode expansion was large, and good cycle characteristics could not be obtained.
  • the active material thin film of the negative electrode of Comparative Example 9 was a continuously collected SiZN thin film mainly composed of a phase in which the element N was non-equilibrium in Si. element N content in the film is above the specified range of the present invention, some Si N are formed, they were charged and discharged Shinano force.
  • the active material thin film of the negative electrode of Comparative Example 10 was a continuously collected SiZN thin film mainly composed of a phase in which the element N was non-equilibrium in Si.
  • the amount of element N in the thin film was below the specified range of the present invention, and as a result, the electrode expansion was increased, and good cycle characteristics could not be obtained.
  • the active material thin film of the negative electrode of Comparative Example 11 was a continuously collected SiZB thin film mainly composed of a phase in which element B was non-equilibrium in Si.
  • the amount of element B in the thin film exceeded the range specified in the present invention, and as a result, good cycle characteristics could not be obtained.
  • the active material thin film of the negative electrode of Comparative Example 12 was a continuously collected SiZB thin film mainly composed of a phase in which the element B was non-equilibrium in Si.
  • the amount of element B in the thin film was below the specified range of the present invention, and as a result, electrode expansion was increased, and good cycle characteristics could not be obtained.
  • the active material thin film of the negative electrode of Comparative Example 13 had a non-uniform distribution of C because a force C composed of elemental elements and Si having an atomic concentration ratio within the range of the present invention was present on the surface of the Si thin film. As a result, the electrode expansion increased, and good cycle characteristics could not be obtained.
  • the active material thin film of the thin film negative electrode according to the present invention of Examples 1 to 15 was prepared from a specific compound SiZM containing a phase in which the element Z was non-equilibrium in Si as a main component.
  • the element Z is at least one element selected from the group consisting of B, C and N, all of which satisfy the specified range of the present invention.
  • Example 1 Using the thin-film negative electrode formed in Example 1, a lithium secondary battery was produced with an electrolytic solution to which bene-carbonate (VC) was added according to the following method. About this battery, The cycle characteristics (B) were evaluated. As a result, the cycle maintenance ratio (B) after 120 cycles was 77%.
  • VC bene-carbonate
  • the fabricated thin film negative electrode was punched into a 10 mm diameter, dried in a vacuum at 85 ° C, transferred to a glove bottom, and a coin battery (lithium secondary battery) was fabricated using an electrolyte, separator and counter electrode in an argon atmosphere.
  • EC ethylene carbonate
  • DEC Z-ethyl carbonate
  • a lithium cobalt positive electrode was used as a counter electrode.
  • EC ethylene carbonate
  • DEC Z-getyl carbonate
  • Table 3 shows the results of Examples 16 and 17. Table 3 shows that the use of a non-aqueous electrolyte containing a cyclic carbonate compound having an unsaturated bond in the molecule for the thin film negative electrode according to the present invention can improve the cycle characteristics of the battery. .
  • Example 16 EC + DEC + VC 77
  • Example 17 EC + DEC 67

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 放電容量が高く、初期及びサイクル中の充放電効率が高く、サイクル特性に優れ、サイクル後の電極膨張が抑制された高性能の非水電解質二次電池用負極は、Si中に元素Zが非平衡的に存在した相の、一般式SiZxMy(式中Z、M、x、yは下記条件の通り)で表される化合物を主成分とする活物質薄膜を有する。元素Zは、B、C及びNよりなる群の中から選択される少なくとも1種の元素である。元素MはSiと元素Z以外の周期表2族、4族、8族、9族、10族、11族、13族、14族、15族、及び16族から選ばれる少なくとも1種の元素である。xは、Siに最も近い組成で平衡的に存在する化合物SiaZp(式中a、pは整数)のZ濃度(p/(a+p))に対して、式Q(Z)=[x/(1+x)]/[p/(a+p)]で算出されるZ濃度比Q(Z)が0.10~0.95となる値である。yは、0≦y≦0.50の範囲の数である。

Description

明 細 書
非水電解質二次電池とその負極
発明の分野
[0001] 本発明は、非水電解質二次電池用負極及びその製造方法と、この非水電解質二 次電池用負極を用いた非水電解質二次電池に関する。
発明の背景
[0002] ニッケル ·カドミウム、ニッケル '水素電池に比べ、よりエネルギー密度の高い非水溶 媒系リチウム二次電池が注目されて 、る。
[0003] 黒鉛はサイクル特性に優れ、電極膨張が小さぐ且つ、安価であるためにリチウム 二次電池の負極として使用されてきた。しカゝしながら、黒鉛からなる負極材料は理論 容量が 372mAhZgという限界がある。理論容量が大きなリチウムと合金を形成する Si、 Sn、 A1等の合金系負極の検討がなされている。 Siは容量が高ぐ負極としての 適用が数多く試みられている。し力しながら、 Si系負極材料には次の短所がある。 i) Si系負極はリチウムとの反応時の体積膨張が大きいために、 Siが微粉ィ匕したり、 集電体から剥離しやすい。且つ、 Si系負極は電解液との反応性が高ぐサイクル特 性が悪い。
ii) 電解液との反応に伴う不可逆容量が増加し、正極活物質中のリチウムを消費し 、結果として電池容量が低下する。
iii) リチウムの挿入'脱離による膨張 ·収縮に伴う Siの微粉ィ匕ゃ集電体力もの剥離 が生じ、サイクル特性が悪ィ匕する。
iv) サイクル中に電解液との反応により、充放電可能な活物質量が減少し、サイク ル特性が悪化する。
V) サイクル中にリチウムの挿入による電極膨張が蓄積し、電池体積の増加、つまり 体積当たりの電池容量の低下を招く。
[0004] 特開平 11— 135115号には、 Si等を蒸着ゃスパッタ法で銅箔基板状へ成膜するこ とにより、電気抵抗が低く集電性が高ぐ高電圧、高容量で充放電特性に優れたリチ ゥム二次電池を得ることが記載されて 、る。 [0005] しカゝしながら、 Siを蒸着法ゃスパッタ法で成膜した負極の場合、充放電に伴う電極 膨張の蓄積を抑えることが難しぐ体積当たりの電池容量が低下し、サイクル特性が 低下する。
[0006] 特開平 7— 302588号には、 Li中に Siと Cが原子レベルで混合された薄膜負極や、 Liシートに SiCを複合ィ匕した負極とすることにより、デンドライトの発生を抑制し、高容 量でサイクル特性に優れたリチウム二次電池を得ることが記載されている。
[0007] この電池の負極は、 Li含有量が 70〜99. 9モル%と高い。そのため、 Liと Si、 Cを プラズマ CVDで成膜した負極や、 Liシートと SiC粒子を複合ィ匕した負極であっても、 Siと Cの含有量が少ないために、電解液と反応し易ぐサイクル特性が悪い。
[0008] 特開 2003— 7295号には、微結晶又は非晶質シリコン薄膜の少なくとも表面に、周 期律表 4, 5, 6周期の IIIa、 IVa、 Va、 Via, Vila, VIII、 Ib、 lib族の元素の少なくとも 1 種を含有させることにより、電極のサイクル特性を向上させることが記載されている。し 力しながら、 Siの充放電に伴う電極膨張の蓄積や電解液との反応が生じ易 、ので、 サイクル特性は十分には改善されな 、。
[0009] WO01Z56099には、微結晶又は非晶質シリコン薄膜に、 C, O, N, Ar, Fから選 ばれる少なくとも 1種の元素を 2〜3原子%添加することにより、サイクル特性に優れ たリチウム二次電池を得ることが記載されている。し力しながら、この元素の添加量が 少ないために、 Siの充放電に伴う電極膨張の蓄積や電解液との反応が生じ易いの で、サイクル特性は十分には改善されない。
[0010] 特開平 8— 138744号には、硼素化物 SiB (n= 3. 2〜6. 6)粒子を負極とすること で、安全で、高容量、高電圧なリチウム二次電池を得ることが記載されている。しかし ながら、 Bの含有量が多いため更に高容量ィ匕はされない。活物質が粒子状であるた めに、サイクル中の Si部分の膨張収縮に伴う集電体との導電パス切れが起こりやすく 、サイクル劣化は十分には改善されない。
発明の概要
[0011] 本発明は、放電容量が高ぐ初期及びサイクル中の充放電効率が高ぐサイクル特 性に優れ、サイクル後の電極膨張が抑制された非水電解質二次電池を提供しうる非 水電解質二次電池用負極及びその製造方法と、この非水電解質二次電池用負極を 用いた非水電解質二次電池を提供することを目的とする。
[0012] 第 1アスペクトの非水電解質二次電池用負極は、 Si中に元素 Zが非平衡的に存在 した相の化合物を主成分とする活物質薄膜を有する。上記化合物が一般式 SiZ M
(式中 Z、 M、 x、 yは下記条件の通り)で表される。
元素 Zは、 B、 C及び Nよりなる群の中力 選択される少なくとも 1種の元素である。 元素 Mは Siと元素 Z以外の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14 族、 15族、及び 16族力 選ばれる少なくとも 1種の元素である。
Xは、 Siに最も近い組成で平衡的に存在する化合物 Si Z (式中 a、 pは整数)の Z濃 a P
度 (pZ (a+p) )に対して、下記式で算出される Z濃度比 Q (Z)が 0. 10〜0. 95とな る値である。
Q (Z) = [x/ (l +x) ]/[p/ (a+p) ]
yは、 0≤y≤0. 50の範囲の数である。
[0013] 第 2アスペクトの非水電解質二次電池は、第 1発明の負極を有する。
[0014] 第 3アスペクトの方法は、集電体と、該集電体上に成膜された、一般式 SiZ M (式 中 Z、 M、 x、 yは下記条件の通り)で表される化合物を主成分とする活物質薄膜とで 構成される非水電解質二次電池用負極を製造する。
蒸着源、スパッタ源、若しくは溶射源が、 Si、元素 Z、及び元素 Mを含む。 Siと元素 Zと元素 Mとを同時に、蒸着法、スパッタ法、及び溶射法のうちのいずれか 1以上の 手法にて、集電体基板上に上記化合物が 1〜30 mの厚さに成膜される。
元素 Zは、 B、 C及び Nよりなる群の中力 選択される少なくとも 1種の元素である。 元素 Mは Siと元素 Z以外の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14 族、 15族、及び 16族力 選ばれる少なくとも 1種の元素である。
Xは、 Siに最も近い組成で平衡的に存在する化合物 Si Z (式中 a、 pは整数)の Z濃 a P
度 (pZ (a+p) )に対して、下記式で算出される Z濃度比 Q (Z)が 0. 10〜0. 95とな る値である。
Q (Z) = [x/ (l +x) ]/[p/ (a+p) ]
yは、 0<y≤0. 50の範囲の数である。
[0015] 第 4アスペクトの方法は、集電体と、該集電体上に成膜された、一般式 SiZ M (式 中 Z、 M、 x、 yは下記条件の通り)で表される化合物を主成分とする活物質薄膜とで 構成される非水電解質二次電池用負極を製造する。
蒸着源、スパッタ源、若しくは溶射源が、 Si、及び元素 Zを含む。 Siと元素 Zとを同 時に、蒸着法、スパッタ法、及び溶射法のうちのいずれか 1以上の手法にて、集電体 基板上に上記化合物が 1〜30 mの厚さに成膜される。
元素 Zは、 B、 C及び Nよりなる群の中力 選択される少なくとも 1種の元素である。 元素 Mは Siと元素 Z以外の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14 族、 15族、及び 16族力 選ばれる少なくとも 1種の元素である。
Xは、 Siに最も近い組成で平衡的に存在する化合物 Si Z (式中 a、 pは整数)の Z濃 a P
度 (pZ (a+p) )に対して、下記式で算出される Z濃度比 Q (Z)が 0. 10〜0. 95とな る値である。
Q (Z) = [x/ ( l +x) ] / [p/ (a+p) ]
yは、 y= 0又は y^ Oである。
[0016] 第 5アスペクトの方法は、集電体と、該集電体上に成膜された、一般式 SiC O (式 中、 X, yは、それぞれ 0. 053≤x≤0. 70、 0< y≤0. 50の範囲の数である)で示さ れる化合物を主成分とする活物質薄膜とで構成される非水電解質二次電池用負極 を製造する。
蒸着源、スパッタ源、若しくは溶射源が、 Si及び Cを含む。成膜ガス中の酸素濃度 が 0. 0001-0. 125%である雰囲気下にて、 Siと Cとを同時に、蒸着法、スパッタ法 、及び溶射法のうちのいずれか 1以上の手法にて、集電体基板上に上記化合物が 1 〜30 μ mの厚さに成膜される。
[0017] 第 6アスペクトの方法は、集電体と、該集電体上に成膜された、一般式 SiZ M (式 中 Z、 M、 x、 yは下記条件の通り)で表される化合物を主成分とする活物質薄膜とで 構成される非水電解質二次電池用負極を製造する。
蒸着源、スパッタ源、若しくは溶射源が、 Siを含む。成膜ガス中の窒素濃度が 1〜2 2%である雰囲気下にて、 Siと Nとを同時に、蒸着法、スパッタ法、及び溶射法のうち のいずれか 1以上の手法にて、集電体基板上に上記化合物が 1〜30 mの厚さに 成膜される。 元素 Zは、 Nである。
元素 Mは Siと N以外の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14族、 1 5族、及び 16族力 選ばれる少なくとも 1種の元素である。
Xは、 Siに最も近い組成で平衡的に存在する化合物 SiNの N濃度 50原子%に対し て、下記式で算出される N濃度比 Q (N)が 0. 15〜0. 85となる値である。
Q (N) = [x/ (l +x) ]/0. 5
yは、 y=0又は y^Oである。
[0018] 第 7アスペクトの非水電解質二次電池は、第 3〜第 6のいずれかの方法により製造 された負極を有する。
図面の簡単な説明
[0019] [図 l]Fig. laは、実施例 1で得られた薄膜負極の SEM写真であり、 Fig. lbは、実施 例 1で得られた薄膜負極の EPMA測定カゝら得られた膜厚方向の元素の総和を 100 %に換算し直した重量濃度分布である。
[図 2]Fig. 2aは、実施例 1で得られた薄膜負極の SEM写真であり、 Fig. 2b、 Fig. 2 cは、実施例 1で得られた薄膜負極の EPMA測定カゝら得られた Siと Cの分布図である
[図 3]実施例 1で得られた薄膜負極の活物質薄膜の赤外透過光測定データを示す模 式図である。
[図 4]Fig. 4aは、実施例 6で得られた薄膜負極の SEM写真であり、 Fig. 4bは、実施 例 6で得られた薄膜負極の EPMA測定カゝら得られた膜厚方向の元素の総和を 100 %に換算し直した重量濃度分布である。
[図 5]Fig. 5aは、実施例 10で得られた薄膜負極の SEM写真であり、 Fig. 5bは、実 施例 10で得られた薄膜負極の EPMA測定カゝら得られた膜厚方向の元素の総和を 1 00%に換算し直した重量濃度分布である。
発明の好ましレ、形態の詳細な説明
[0020] B、 C及び Nよりなる群の中力 選択される少なくとも 1種の元素 Zを、非平衡的に特 定範囲の濃度で含有する S ゝら成膜された膜中には、 Siに最も近 、組成で平衡的 に存在する化合物 Si Z (式中 a, pは整数)等が全く又は殆ど形成されない。 Zを含む a P siは、活量が低ぐ電解液との反応が抑制される。 zを含む suりなる薄膜負極は、サ イタル後の膨張が少ない。この負極を有する非水電解質二次電池は、放電容量が高 ぐ初期及びサイクル中の充放電効率が高ぐサイクル特性に優れる。
[0021] ここで、活量について説明する。
活量とは、一種の熱力学濃度である。物質量 n、 n、、、、力もなる多成分系につい
1 2
て、成分 iの化学ポテンシャルを 、純物質の化学ポテンシャルを とすると、
IX — IX =RTlog a
で定義される aを活量と呼ぶ。
活量 aiと濃度 ciの比 γ i
ai/ ci= y l
を活量係数と呼ぶ。
[0022] 溶媒と溶質力もなるある系を熱力学的な溶液として考えた場合に、活量係数は、系 を理想溶液と考えた場合のある成分の化学ポテンシャルと、系を実在溶液と考えた 場合のある成分の真の化学ポテンシャルとの差に対応する量である。ある成分 iが溶 質である実在溶液の場合、溶質の濃度が低くなると、系は成分 iが溶質の理想溶液に 近づき、活量係数は 1に近づいていく。反対に、ある成分 iが溶媒である実在溶液の 場合、溶媒の濃度が高くなると、系は成分 iが溶媒の理想溶液に近づき、活量係数は 1に近づいていく。また、成分 iの化学ポテンシャル力 実在溶液の方が理想溶液より も安定なときは く 1となる。
[0023] 本発明にお 、ては、成分 iは Siである。溶媒とみなされる Si中に、溶質とみなされる 元素 Zを含むことで溶媒 Siの活量 aiが低下し、 γ ί< 1となり、元素 Ζを含有した Siィ匕 合物(固溶体:実在溶液と見なす)の方が Si (理想溶液と見なす)よりも安定となり、こ の結果、電解液との反応性が抑制されて ヽると考えられる。
[0024] 但し、 Siと元素 Zの平衡的に存在する化合物 Si Z等を形成すると、 Siの活量を効 a P
率的に低下させることができな 、ので、元素 Zは Si中に非平衡的に存在することが重 要となる。
[0025] 第 1アスペクトにおける Siに最も近い組成で平衡的に存在する化合物 Si Zは、 Siと a P 元素 Zの相図(例えば、 ASM International社出版の「Desk Handbooks Phase Diag rams for Binary Alloys」)に記載されている。第 1アスペクトでは、この Si Zの Z濃 a P 度 (pZ (a + p) )に対して、上述の Z濃度比 Q (Z)を設定して xを定義する。
[0026] 平衡的に存在する化合物とは、前記相図等に線図の頂として記載されている化合 物 Si Z (式中 a, pは整数)等の定比化合物のことである。例えば、 Zが Bである場合 a P
には、 SiB、 SiB、 SiBなどが定比化合物として知られており、これらは平衡的に存
3 4 6
在する化合物である。定比化合物の混合物も、やはり平衡的に存在する化合物と考 えられる。従って、 Zが Bである場合には、 SiBが本発明に係る Si Zに相当する。
3 a p
[0027] Zが Cである場合には、 SiCが安定な化合物として知られて!/、る。従って、 Zが Cであ る場合には、 SiCが Si Zに相当する。
a P
[0028] Zが Nである場合には、 Si Nが最も安定な化合物として知られている力 Si N、 S
3 4 2 3 iNも定比化合物として存在することが知られている。従って、 Zが Nである場合には、 SiNが本発明の Si Zに相当する。
a P
[0029] 一方、非平衡に存在する化合物とは、平衡的に存在する化合物以外の化合物を指 す。非平衡に存在する化合物の場合には、特定の定比化合物を形成せず、 Si原子 と Z原子がマクロに見ると均一に分散して 、る。
[0030] 負極は、集電体と、該集電体から連続的に成膜された前記活物質薄膜からなって も良い。
[0031] 前記一般式 SiZ Mにおいて、元素 Zが Cであり、 Xは 0. 053≤x≤0. 70の範囲の 数であり、前記活物質薄膜は、元素 Cが Si薄膜中に均一に分布している活物質薄膜 であっても良い。
[0032] 前記活物質薄膜のラマンスペクトル分析によるラマン RC値が 0. 0以上、 2. 0以下
、ラマン RSC値力 SO. 0以上、 0. 25以下であり、更に ίまラマン RS値力 SO. 40以上、 0.
75以下であっても良い。
[0033] 活物質薄膜のラマンスペクトル分析によるラマン RC値、ラマン RSC値、ラマン RS値 とは、以下のラマン測定方法によるラマンスペクトル分析力 求められ、各々、次のよ うに定義される。
[0034] [ラマン測定方法]
ラマン分光器 (例えば、 日本分光社製「ラマン分光器」)を用い、本発明の非水電解 質二次電池用負極を測定セルにセットし、セル内のサンプル表面にアルゴンイオン レーザー光を照射しながら測定を行う。測定したラマンスペクトルのバックグラウンド 補正を行うことにより、ラマン RC値、 RSC値、 RS値を求める。ノ ックグラウンド補正は 、ピーク終始点を直線で結び、ノ ックグラウンドを求め、その値をピーク強度力も差し 引くことにより行う。
ここでラマン測定条件は次の通りであり、スムージング処理は、コンボリューシヨン 15 ポイントの単純平均とする。
アルゴンイオンレーザー波長:514. 5nm
試料上のレーザーパワー: 15〜40mW
分解能: 10〜20cm_ 1
測定範囲: 200cm―1〜 1900cm_1
[0035] くラマン RC値〉
1300cm―1〜 1600cm_1付近に現れるピーク cのピーク強度 Ic、 300cm―1〜 500c m_1付近に現れるピーク asのピーク強度 lasを測定し、その強度比 RC (RC = Ic/las )を算出し、薄膜負極のラマン RC値と定義する。
ここで、ピーク cとピーク asは、それぞれ炭素とシリコン由来によるピークと考えられる 。従って、ラマン RC値は炭素の量を反映したものであり、ラマン RC値が 2. 0以下で あると 、うことは、炭素が殆ど検出されな 、ことを意味する。
[0036] くラマン RSC値〉
650cm―1〜 850cm_1付近に現れるピーク scのピーク強度 Isc、 300cm―1〜 500c m_1付近に現れるピーク asのピーク強度 lasを測定し、その強度比 RSC (RSC = Isc Zlas)を算出し、薄膜負極のラマン RSC値と定義する。
ここで、ピーク scとピーク asは、それぞれ SiCとシリコン由来によるピークと考えられ る。従ってラマン RSC値は SiCの量を反映したものであり、ラマン RSC値が 0. 25以 下であると!/、うことは、 SiCが殆ど検出されな 、ことを意味する。
[0037] くラマン RS値〉
520cm_1の強度 Is、 300cm―1〜 500cm_1付近に現れるピーク asのピーク強度 las を測定し、その強度比 RS (RS =IsZlas)を算出し、薄膜負極のラマン RS値と定義 する。
ラマン RS値は、 Siの状態を反映したものである。
[0038] 前記一般式 SiZ Mにおいて、元素 Zが Cで、元素 Mが酸素であり、 x、 yは、それぞ れ 0. 053≤x≤0. 70, 0<y≤0. 50の範囲の数であっても良い。
[0039] 非水電解質二次電池用負極は、充放電を行った後に、赤外分光光度計を用いた 赤外透過光分析による該活物質薄膜の IRsc値が 0. 9以上、 3. 0以下であっても良 い。
ここで、充放電を行った後とは、電池を組み立てて最初の充放電後でも良いし、複 数の充放電サイクルを終えた後でも良ぐ V、ずれの場合も上記の IRsc値を得ることを 特徴とする。
[0040] 活物質薄膜の赤外透過光分析による IRsc値とは、以下の赤外分光光度計による 赤外透過光測定から求められ、次のように定義される。
[0041] [赤外分光光度計による赤外透過光分析測定方法]
赤外分光光度計 (例えば、サーモエレクトロン社製「Magna560」)を用い、充放電 を行った後の非水電解質二次電池用負極の活物質薄膜を集電体力 剥離し、測定 セルにセットし、透過法により測定を行う。測定は、窓材がダイヤモンド製の透過測定 用サンプルフォルダーを用い、不活性雰囲気下にて行う。測定した赤外線吸収スぺ タトルのバックグラウンド補正を行うことにより、 IRsc値を求める。ノックグラウンド補正 は、 2000〜4000cm_1の範囲における最小値を結んだ直線を延長し、ノ ックグラウ ンドを求め、その値を各強度力 差し引くことにより行う。
[0042] 1600cm_1における透過光強度 Isc、 1650cm_1における透過光強度 Iacoを測定 し、その強度比 IRsc (IRsc = IscZlaco)を算出し、充放電後の IRsc値と定義する。
[0043] 詳細は不明であるが、 Iscは Si由来の皮膜、 Iacoはアルキル炭酸リチウム由来によ る皮膜と考えられる。従って、 IRscは活物質薄膜中の皮膜 (固体電解質界面: SEI) の状態と量比を反映したものであり、 IRsc値が 0. 9以上であるということは、アルキル 炭酸リチウム由来の皮膜と S油来の皮膜で構成されていることを意味する。
[0044] 前記一般式 SiZ Mにお!/、て、元素 Zが Nであり、 Siに最も近!、組成で平衡的に存 在する化合物 Si Zが SiNであり、且つ一般式 SiN Mの Xは、前記 Z濃度比 Q (Z)が
P 0. 15〜0. 85となる値であっても良い。
[0045] 前記活物質薄膜は、元素 Nが Si薄膜中に均一に分布している活物質薄膜であつ ても良い。
[0046] 前記活物質薄膜のラマンスペクトル分析によるラマン RSN値が 0. 0以上、 0. 9以 下であり、ラマン RS値が 0. 4以上、 1. 0以下であっても良い。
[0047] 活物質薄膜のラマンスペクトル分析によるラマン RSN値とは、以下のラマン測定方 法によるラマンスペクトル分析力 求められ、各々、次のように定義される。
[0048] [ラマン測定方法]
前述記載の方法を用いる。
[0049] <ラマン RSN値 >
700cm―1〜 1000cm—1付近に現れるピーク snのピーク強度 Isn、 300cm―1〜 500 cm—1付近に現れるピーク asのピーク強度 lasを測定し、その強度比 RSN (RSN = Is nZlas)を算出し、薄膜負極のラマン RSN値と定義する。
ここで、ピーク snとピーク asは、それぞれ窒化珪素とシリコン由来によるピークと考え られる。従ってラマン RSN値は窒化珪素の量を反映したものであり、ラマン RSN値が 0. 9以下であるということは、窒化珪素が殆ど検出されないことを意味する。
[0050] 前記活物質薄膜の X線回折による XIsz値が 0. 00以上、 1. 10以下であっても良い
[0051] 活物質薄膜の X線回折による XIsz値とは、以下の X線回折測定方法による X線回 折から求められ、次のように定義される。
[0052] [X線回折測定方法]
X線回折測定における活物質薄膜の XIsz値は、例えば、本発明の薄膜負極の活 物質薄膜側を照射面にセットし、 X線回折装置 (例えば、リガク社製「X線回折装置」) を用いて測定することができる。測定条件は後述の実施例において示す通りである。
XIsz値の定義は次の通りである。
[0053] <XIsz値 >
Si Z等の平衡的に存在する化合物のメインピークの角度のピーク強度 Iszと、 2 Θ a P
力 4度のピーク強度 Isを測定し、その強度比 XIsz (XIsz = IszZls)を算出し、活 物質薄膜の XIszと定義する。
[0054] ここで、元素 Zが Nの場合、 2 Θが例えば 27. 1度のピーク(Isz)と 28. 4度のピーク( Is)は、 Si Nと Si由来によるピークと考えられる。 XIsz値が 1. 20以下であるというこ
3 4
とは、平衡的に存在する化合物 Si Nが殆ど検出されないことを意味する。
3 4
[0055] 前記一般式 SiZ Mにおいて元素 Zが Bであり、 Siに最も近い糸且成で平衡的に存在 する化合物 Si Zが SiBであり、且つ、一般式 SiB Mの Xは、前記 Z濃度比 Q (Z)が p 3
0. 30〜0. 85であっても良い。
[0056] 前記活物質薄膜では、元素 Bが Si薄膜中に均一に分布していても良い。
[0057] 該活物質薄膜の X線回折による XIsz値が 0. 00以上、 0. 90以下であっても良い。
[0058] ここで、 XIsz値の定義は上述の通りである。元素 Zが Bの場合、 2 Θが例えば 33. 4 度のピーク (Isz)と 28. 4度のピーク (Is)は、 SiBと Si由来によるピークと考えられる。
4
XIsz値が 0. 90以下であるということは、平衡的に存在する化合物 SiBが殆ど検出さ
4
れないことを意味する。
[0059] 本発明の態様によれば、放電容量が高ぐ初期及びサイクル中の充放電効率が高 ぐサイクル特性に優れ、サイクル後の電極膨張が抑制された高性能の非水電解質 二次電池が提供される。この非水電解質二次電池用負極及び非水電解質二次電池 は、非水電解質二次電池が適用される電子機器等の各種の分野において好適に利 用可能である。
[0060] 以下において、 Si中に元素 Zが非平衡的に存在した相の化合物を主成分とする活 物質薄膜を有する本発明の非水電解質二次電池用負極を、薄膜負極と称す場合が ある。
[0061] この薄膜負極は、リチウムイオンを吸蔵 ·放出可能な正極及び負極、ならびに電解 質を備えたリチウム二次電池などの非水電解質二次電池における負極として極めて 有用である。例えば、薄膜負極と、通常使用されるリチウム二次電池用の金属カルコ ゲナイド系正極及びカーボネート系溶媒を主体とする有機電解液を組み合わせて構 成した非水電解質二次電池は、容量が大きぐ初期サイクルに認められる不可逆容 量が小さぐまたサイクル特性に優れ、サイクル後の電極膨張が抑制され、高温下で の放置における電池の保存性及び信頼性も高ぐ高効率放電特性及び低温におけ る放電特性に極めて優れる。以下、この薄膜の膜厚、元素 Z及び M、組成等につい て詳細に説明する。
[0062] 〔膜厚〕
活物質薄膜の膜厚は、通常 1 μ m以上、好ましくは 3 μ m以上、通常 30 μ m以下、 好ましくは 20 /z m以下、更に好ましくは 15 m以下である。活物質薄膜の膜厚がこ の範囲を下回ると、本発明の薄膜負極の 1枚当たりの容量が小さぐ大容量の電池を 得るには数多くの負極が必要となり、従って、併せて必要な正極、セパレータ、薄膜 負極自体の集電体の総容積が大きくなり、電池容積当たりに充填できる負極活物質 量が実質的に減少し、電池容量を大きくすることが困難になる。活物質薄膜の膜厚 力 この範囲を上回ると、充放電に伴う膨張'収縮で、活物質薄膜が集電体基板から 剥離する虞があり、サイクル特性が悪ィ匕する可能性がある。
[0063] この活物質薄膜は後述の製造方法に記述されるように、気相から成膜するのが好 ましい。
[0064] [元素 Z]
化合物 SiZ Mにおける元素 Zは、 B、 C及び Nよりなる群の中力 選択される少なく とも 1種の元素であり、好ましくは、 C及び N元素である。元素 Zは、 2種以上の複数の 元素を同時に用いても良い。
[0065] B、 C及び Nは、 SUりも高融点化合物を形成しうる。そして、 SUりも共有結合半径 が小さい。
B、 C及び Nは、具体的には SiB、 SiC、 Si N等の SUりも高融点である平衡的に
6 3 4
存在する化合物を形成しうる。高融点化合物は一般的に生成の自由エネルギーが 負で大きい安定な化合物である。このため、高融点化合物は Siの活量を効果的に低 下させることができ、電解液との反応性を抑制する。
元素 B、 C及び Nは、 Siの共有結合原子半径よりも小さいので、 SiZ M化合物中に 平衡的に存在する化合物を形成し難ぐ高濃度で元素 zをより均質に分布させる事 に有効と考えられ、 Siの活量をより効果的に低下させることができ、電解液との反応 性を抑制する。
Cu、 Ni等の元素のように、 Cu Si、 Ni Si等の平衡的に存在しうる化合物が Siよりも 低融点である場合は、 Siの活量が効果的に低下せず、電解液との反応性を抑制す ることが難しい。このため、後述のごとぐサイクル特性が改善されない。
SiZ M化合物中に平衡的に存在する化合物が主成分となる場合には、後述のご とぐ Siの活量が低下せず、電解液との反応性を抑制できなくなりサイクル特性が悪 化する。
[0066] 元素 Zに C及び Nを用いる方力 Bを用いるよりも更に優れて 、る。元素 Zが充電時 に Liと反応した場合、 C及び Nは Bに比べて体積変化が小さぐ Siの導電パス切れに 悪影響を及ぼさな ヽと考えられる。
[0067] 〔元素 M〕
元素 Mは、 Siと元素 Z以外の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14 族、 15族、及び 16族の元素力も選ばれる元素の 1種又は 2以上であり、好ましくは、 Cu、 Ni、 O元素であり、更に好ましくは O元素である。
[0068] 〔組成〕
活物質薄膜の組成において、 SiZ Mの Xは、 Siに最も近い組成で平衡的に存在 する化合物 Si Z (式中 a、 pは整数)の Z濃度 (pZ (a+p) )に対して、下記式で算出 a P
される Z濃度比 Q (Z)が通常 0. 10以上、好ましくは 0. 15以上、更に好ましくは 0. 30 以上、特に好ましくは 0. 40以上で、通常 0. 95以下、好ましくは 0. 85以下、更に好 ましくは 0. 75以下、特に好ましくは 0. 60以下となる値である。
Q (Z) = [x/ (l +x) ]/[p/ (a+p) ]
[0069] Z濃度比 Q (Z)がこの範囲を下回ると、 Siの活量を下げる効果が小さく電解液との 反応性を抑制できず、電極膨張が大きくなり、好ましいサイクル特性が得られ難い。 Z 濃度比 Q (Z)がこの範囲を上回ると、平衡的に存在する安定な化合物 Si Z等を形成 a P し、元素 Zを増やしても Siの活量は低下せず、電解液との反応性を抑制できない虡 力 Sある。 Si Z等は導電性が低いために、このような化合物が形成されると活物質薄 a P
膜の導電性が悪ィ匕し、リチウムのドープ、脱ドープが困難となり、充放電ができなくな る虞がある。 Z濃度比 Q (Z)がこの範囲を大きく上回ると、 Siを含むことによる高容量 化の効果が得られ難ぐ好ましい電池特性が得られ難い。 Z濃度比 Q (Z)が 1の場合 、 Siは安定な化合物 Si Zとなっていることを意味し、好ましくない。
a P [0070] 元素 Zに 2種以上の複数の元素を同時に用いる場合、複数の元素のそれぞれの Si Z基準の元素 Z濃度に対して Z濃度比 Q (Z)を求め、その合計値を Z濃度比 Q (Z)と a P
見なす。
[0071] yは通常 0以上、また、通常 0. 50以下、好ましくは 0. 30以下、更に好ましくは 0. 1 5以下、特に好ましくは 0. 10以下である。 yがこの範囲を上回ると、元素 Mの存在量 が多くなり Siと元素 Zを含む効果が得られず好ましくない。
ただし、元素 Zが C以外の場合、 =0又は 0でぁることが好ましぃ。本発明にお いて、 y^Oとは、本発明に係る活物質薄膜の成膜工程等で元素 Mが不可避的に含 まれる場合をさし、例えば、 yは 0. 08未満である。
[0072] 活物質薄膜の組成は、例えば、後述の実施例に示す如ぐ X線光電子分光器 (例 えば、アルバック 'ファイネ土製「ESCA」)を用い、薄膜負極を活物質薄膜側を上にし てその表面が平坦になるように試料台に載せ、アルミニウムの Kひ線を X線源とし、 A rスパッタを行いながらデプスプロファイル測定を行い、 Si、元素 Z、元素 Mの原子濃 度をそれぞれ算出することにより求めることができる。
[0073] <元素 Zが Cの場合の組成 >
元素 Zが Cの場合、前記 Z濃度比 Q (Z) (C濃度比 Q (C)と称す場合がある。)は、通 常 0. 10、好ましく ίま 0. 113以上、更に好ましく ίま 0. 182以上、また、通常 0. 824以 下、好ましくは 0. 667以下である。元素 Ζが Cの場合、 Siに最も近い組成で平衡的に 存在する化合物は SiCである。
[0074] 上記 C濃度比 Q (C)は、 SiC Mに当てはめると、 xが通常 0. 053以上、好ましくは
0. 06以上、更に好ましくは 0. 10以上、また、通常 0. 70以下、好ましくは 0. 50以下 に相当する。
[0075] C濃度比 Q (C)がこの範囲を下回ると、 Siの活量を下げる効果が小さく電解液との 反応性を抑制できず、電極膨張が大きくなり、好ましいサイクル特性が得られ難い。 C 濃度比 Q (C)が、この範囲を上回ると、平衡的に存在する安定な化合物 SiCを形成し 、活物質薄膜の導電性が悪化し、リチウムのドープ、脱ドープが困難となり、充放電 ができなくなる虞がある。
[0076] 元素 Zが Cの場合、一般式 SiC Mにおいて、 yは通常 0以上、通常 0. 70以下、好 ましくは 0. 50以下、更に好ましくは 0. 30以下である。 yがこの範囲を上回ると、元素 Mの存在量が多くなり Siと Cを含む効果が得られず好ましくない。
[0077] 元素 Zが Cで、且つ元素 Mが Oの場合、一般式 SiC Oにおいて、 yは通常 0より大 きぐまた、通常 0. 50以下、好ましくは 0. 30以下、更に好ましくは 0. 15以下、特に 好ましくは 0. 10以下である。 yがこの範囲を上回ると、酸素の存在量が多くなり放電 容量と初期充放電効率の低下を招く虞があり好ましくな 、。
[0078] <元素 Zが Nの場合の組成 >
元素 Zが Nの場合、前記 Z濃度比 Q (Z) (N濃度比 Q (N)と称す場合がある。)は、 通常 0. 15以上、好ましくは 0. 30以上、更に好ましくは 0. 40以上、通常 0. 85以下 、好ましくは 0. 70以下、更に好ましくは 0. 60以下である。元素 Zが Nの場合、 Siに 最も近い組成で平衡的に存在する化合物は SiNである。
[0079] N濃度比 Q (N)がこの範囲を下回ると、 Siの活量を下げる効果が小さく電解液との 反応性を抑制できず、電極膨張が大きくなり、好ましいサイクル特性が得られ難い。 N濃度比 Q (N)がこの範囲を上回ると、平衡的に存在する安定な化合物 Si Nを形
3 4 成し、活物質薄膜の導電性が悪化し、リチウムのドープ、脱ドープが困難となり、充放 電ができなくなる虞がある。
[0080] 元素 Zが Nの場合、一般式 SiZ Mにおいて、好ましくは y=0又は y^Oである。
[0081] <元素 Zが Bの場合の組成 >
元素 Zが Bの場合、前記 Z濃度比 Q (Z) (B濃度比 Q (B)と称す場合がある。 )は、通 常 0. 30以上、好ましくは 0. 40以上、更に好ましくは 0. 50以上、通常 0. 85以下、 好ましくは 0. 70以下である。元素 Zが Bの場合、 Siに最も近い組成で平衡的に存在 する化合物は SiBである。
3
[0082] B濃度比 Q (B)がこの範囲を下回ると、 Siの活量を下げる効果が小さく電解液との 反応性を抑制できず、電極膨張が大きくなり、好ましいサイクル特性が得られ難い。 B 濃度比 Q (B)が、この範囲を上回ると、平衡的に存在する安定な化合物 SiB、 SiB
3 4 等を形成し、 Bを増やしても Siの活量は低下せず、電解液との反応性を抑制できない 虞がある。
[0083] 元素 Zが Bの場合、一般式 SiZ Mにおいて、好ましくは y=0又は y^Oである。 [0084] 〔Si中の元素 Zの存在状態〕
活物質薄膜中の Si中の元素 Zの存在状態は、前述した X線回折測定において、 XI sz値が通常 2. 5以下、好ましくは 2. 0以下である。 XIsz値力この範囲以下であれば 、元素 Zが Si中に非平衡的に存在した相を主成分とし、 Si Z等の平衡的に存在する a P
化合物は主成分でないと定義し、好ましい。 XIsz値力この範囲を上回る場合、即ち、 Si Z等の平衡的に存在する化合物の相が主成分となる場合には、 Siの活量が低下 a P
せず、電解液との反応性を抑制できなくなりサイクル特性が悪ィ匕する虞がある。また、 Si Z等は導電性が低いために、活物質薄膜の導電性を悪化させ、リチウムのドープ a P
、脱ドープが困難となり、充放電ができなくなる虞があり、好ましくない。 XIsz値の下 限値は通常 0. 00以上である。
[0085] 〔Siの膜厚方向の分布〕
活物質薄膜の Siの膜厚方向の重量濃度分布は、以下に記す EPMA測定におい て、 Siの重量濃度の平均値に対する、最大値、又は最小値と平均値の差 (絶対値) が通常 40%以下、好ましくは 30%以下、更に好ましくは 25%以下である。最大値、 又は最小値と平均値の差 (絶対値)がこの範囲を上回ると、充放電に伴う膨張'収縮 が局所的に起きるため、サイクルの進行に伴い膜厚方向で導電性が悪ィ匕する虞があ る。最大値、又は最小値と平均値の差 (絶対値)がこの範囲以下であれば、実質的に 集電体から連続的に成膜されて 、ることを意味し、好まし 、。
[0086] 活物質薄膜の Siの膜厚方向の重量濃度分布は、例えば、次のようにして求められ る。
薄膜負極を活物質薄膜側を上にして、活物質薄膜の断面が平坦になるように試料 台に載せて、電子プローブマイクロアナライザー (JEOL社製「JXA— 8100」)を用い 、集電体力も活物質薄膜表面までの元素の分析を行い、測定した元素の総和を 100 %に換算し直し、 Siの膜厚方向の重量濃度分布を求める。
[0087] 〔元素 Zの分布状態〕
化合物 SiZ Mにおける元素 Zは、例えば、原子、若しくは分子、或いはクラスター 等、 1 μ m以下の大きさのレベルで存在する。元素 Zの分布状態は、好ましくは、活物 質薄膜中の膜厚方向、及び、面内方向 (膜厚方向に対して垂直な方向)に均一に分 布しており、更に好ましくは、活物質薄膜の面内方向に均一に分布していて、且つ、 活物質薄膜の膜厚方向において表面に向力つて元素 zの濃度勾配が高くなるように 傾斜している。元素 Zの分布が活物質薄膜の面内方向において不均一で、局所的に 存在して!/、る場合、 Siの充放電に伴う膨張 ·収縮が元素 Zの存在しな 、Si部分で集 中的に起きるため、サイクルの進行に伴い導電性が悪ィ匕する虞がある。元素 Zの分 散状態は、後述の実施例に示す如ぐ EPMA等で確認できる。
[0088] 元素 Zは、集電体力 連続的に成膜されていることが好ましい。元素 Zが、連続的に 成膜されているということは、上述の Siと同様、 EPMA測定において、 Zの重量濃度 の平均値に対する、最大値、又は最小値と平均値の差 (絶対値)が通常 40%以下、 好ましくは 30%以下、更に好ましくは 25%以下であることをさす。
[0089] 〔元素 Mの分布状態〕
化合物 SiZ Mにおける元素 Mの活物質薄膜中の分布状態には特に制限はなぐ 均一に分布していても、均一に分布していなくても、どちらでも良い。
[0090] 〔構造〕
本発明の薄膜負極中に成膜された活物質薄膜の構造としては、例えば、柱状構造
、層状構造等が挙げられる。
[0091] 〔ラマン RC値、ラマン RSC値、ラマン RS値、ラマン RSN値〕
元素 Zが Cの場合、本発明の薄膜負極の活物質薄膜について、ラマン法により測定 したラマン RC値は、好ましくは 2. 0以下、より好ましくは 1. 0以下、特に好ましくは 0.
5以下である。ラマン RC値力この範囲を上回ると、 Siを含むことによる高容量化の効 果が得られ難ぐ好ましい電池特性が得られ難い。ラマン RC値の下限値は測定上の 関係から、通常 0. 0以上である。
[0092] 元素 Zが Cの場合、ラマン法により測定したラマン RSC値は、好ましくは 0. 25以下
、より好ましくは 0. 20以下である。ラマン RSC値力この範囲を上回ると、導電性が悪 化し、リチウムのドープ、脱ドープが困難となり充放電ができなくなる虞がある。ラマン
RSC値の下限値は測定上の関係から、通常 0. 0以上である。
[0093] ラマン法により測定したラマン RS値は、元素 Zが Cの場合、好ましくは 0. 40以上、 より好ましくは 0. 50以上で、好ましくは 0. 75以下、より好ましくは 0. 65以下である。 ラマン法により測定したラマン RS値は、元素 Zが Nの場合、好ましくは 0. 40以上、よ り好ましくは 0. 50以上で、好ましくは 1. 00以下、より好ましくは 0. 9以下である。ラマ ン RS値がこの範囲を下回ると、サイクル特性が悪ィ匕する可能性がある。ラマン RS値 力 の範囲を上回ると、充放電できな 、可能性がある。
[0094] 元素 Zが Nの場合、ラマン法により測定したラマン RSN値は、好ましくは 0. 9以下、 より好ましくは 0. 8以下である。ラマン RSN値がこの範囲を上回ると、導電性が悪ィ匕 し、リチウムのドープ、脱ドープが困難となり充放電ができなくなる虞がある。ラマン R SN値の下限値は測定上の関係から、通常 0. 0以上である。
[0095] 〔X線回折による XIsz値〕
本発明の薄膜負極の活物質薄膜について、 X線回折により測定した XIsz値は、次 の通りである。元素 Zが Cの場合、特に制限されないが、好ましくは 1. 20以下、更に 好ましくは 0. 70以下である。元素 Zが Nの場合、好ましくは 1. 10以下、更に好ましく は 1. 00以下である。元素 Zが Bの場合、好ましくは 0. 90以下、更に好ましくは 0. 80 以下である。 XIsz値がこの範囲を上回る場合、即ち、元素 Zが Cの場合は炭化珪素、 Nの場合は窒化珪素、 Bの場合はホウ化珪素の生成が多い場合には、活物質の単 位重量当たりの放電容量が小さくなる虞があり好ましくない。 XIsz値の下限値は通常 0. 00以上である。
[0096] く元素 Zが Cの場合の XIsz値 >
2 Θ力 7度のピーク強度 Isz、 28. 4度のピーク強度 Isを測定し、その強度比 XIs z (XISZ = ISZZls)を算出し、活物質薄膜の XIszと定義する。
ここで、 2 0力 5. 7度のピークは SiCに由来のピーク、 28. 4度のピークはシリコン 由来のピークと考えられ、 XIsz値が 1. 20以下であるということは、 SiCが殆ど検出さ れないことを意味する。
[0097] く元素 Zが Nの場合の XIsz値 >
2 Θ力 2度のピーク強度 Isz、 28. 4度のピーク強度 Isを測定し、その強度比 XIs z (XISZ = ISZZls)を算出し、活物質薄膜の XIszと定義する。
ここで、 2 θ . 1度のピークは Si N由来のピーク、 28. 4度のピークはシリコン
3 4
由来のピークと考えられ、 XIsz値が 1. 10以下であるということは、 Si Nが殆ど検出 されないことを意味する。
[0098] く元素 Zが Bの場合の XIsz値 >
2 Θ力 ¾3. 4度のピーク強度 Isz、 28. 4度のピーク強度 Isを測定し、その強度比 XIs z (XISZ = ISZZls)を算出し、活物質薄膜の XIszと定義する。
ここで、 2 Θ力 33. 4度のピークは SiB又は SiB由来のピーク、 28. 4度のピークは
4 6
シリコン由来のピークと考えられ、 XIsz値が 0. 90以下であるということは、 SiB又は S
4 iBが殆ど検出されないことを意味する。
6
[0099] 〔IRsc値〕
元素 Zが Cの場合、充放電を行った後の本発明の薄膜負極の活物質薄膜について 、赤外透過光分析により測定した IRsc値は、好ましくは 0. 9以上、より好ましくは 1. 1 以上、特に好ましくは 1. 2以上である。 IRsc値力この範囲を下回ると、サイクル中に S iを含む活物質薄膜と電解液が反応し、実質的に充放電可能な活物質量が徐々に 減少し、好ましいサイクル特性が得られ難い。 IRsc値の上限値は 3. 0程度である。
[0100] 以下、集電体について詳細に説明する。
〔材質〕
集電体の材質としては、銅、ニッケル、ステンレス等が挙げられ、中でも薄膜に加工 しゃすぐ安価な銅が好ましい。銅箔には、圧延法による圧延銅箔と、電解法による 電解銅箔があり、どちらも集電体として用いることができる。銅箔の厚さが 25 mよりも 薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、 Cu - C r - Zr合金等)を用いることができる。
[0101] 圧延法により作製した銅箔力 なる集電体は、銅結晶が圧延方向に並んでいるた め、負極を密に丸めても、鋭角に丸めても割れにくぐ小型の円筒状電池に好適に 用いることができる。電解銅箔は、例えば、銅イオンが溶解された電解液中に金属製 のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を 析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法に より銅を析出させていても良い。銅箔の片面又は両面には、粗面化処理や表面処理
(例えば、厚さが数 ηπ!〜 1 μ m程度までのクロメート処理、 Ti等の下地処理など)がな されていても良い。 [0102] 〔厚さ〕
銅箔等よりなる集電体基板は、薄い方が薄い薄膜負極を製造することができ、同じ 収納容積の電池容器内に、より広い表面積の薄膜負極を詰めることができる点で好 ましいが、過度に薄いと、強度が不足し、電池製造時の捲回等で銅箔が切断する恐 れがある。このため、銅箔等よりなる集電体基板は、 10〜70 /ζ πι程度の厚さであるこ とが好ましい。銅箔の両面に活物質薄膜を形成する場合は、銅箔は更に薄い方が良 いが、充電'放電に伴う活物質薄膜の膨張'収縮による銅箔の亀裂発生を回避する 観点から、この場合において、銅箔の更に好ましい厚さは 8〜35 mである。
[0103] 集電体として銅箔以外の金属箔を使用する場合には、それぞれの金属箔に応じて 、好適な厚さのものを使用することができる力 その厚さはおおむね 10〜70 /ζ πι程 度の範囲内である。
[0104] 〔物性〕
集電体基板には、更に次のような物性が望まれる。
(1) 平均表面粗さ (Ra)
JISB0601— 1994に記載の方法で規定される集電体基板の活物質薄膜形成面 の平均表面粗さ (Ra)は、特に制限されないが、通常 0. 05 m以上、好ましくは 0. 1 /z m以上、特〖こ好ましくは 0. 15 m以上であり、通常 1. 5 m以下、好ましくは 1. 3 μ m以下、特に好ましくは 1. 0 μ m以下である。
[0105] 集電体基板の平均表面粗さ (Ra)を上記した下限と上限の間の範囲内とすることに より、良好な充放電サイクル特性が期待できる。上記下限値以上とすることにより、活 物質薄膜との界面の面積が大きくなり、活物質薄膜との密着性が向上する。平均表 面粗さ (Ra)の上限値は特に制限されるものではないが、平均表面粗さ (Ra)が 1. 5 mを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、 1. 5 m以下のものが好ましい。
[0106] (2) 引張強度
集電体基板の引張強度は、特に制限されないが、通常 lOONZmm2以上、好まし くは 250NZmm2以上、更に好ましくは 400NZmm2以上、特に好ましくは 500NZ mm以上でめる。 [0107] 引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積 で割ったものである。本発明における引張強度は、伸び率と同様な装置及び方法で 測定される。引張強度が高い集電体基板であれば、充電'放電に伴う活物質薄膜の 膨張 ·収縮による集電体基板の亀裂を抑制することができ、良好なサイクル特性を得 ることがでさる。
[0108] (3) 0. 2%耐カ
集電体基板の 0. 2%耐カは、特に制限されないが、通常 30NZmm2以上、好まし くは 150NZmm2以上、特に好ましくは 300NZmm2以上である。
[0109] 0. 2%耐力とは、 0. 2%の塑性 (永久)歪みを与えるに必要な負荷の大きさであり、 この大きさの負荷をカ卩えた後に除荷しても 0. 2%変形している事を意味している。本 発明における 0. 2%耐カは、伸び率と同様な装置及び方法で測定される。 0. 2%耐 力が高い集電体基板であれば、充電'放電に伴う活物質薄膜の膨張'収編こよる集 電体基板の塑性変形を抑制することができ、良好なサイクル特性を得ることができる
[0110] 以下、薄膜負極の第 1の好適な製造方法について詳細に説明する。
[0111] この方法では、蒸着源、スパッタ源、若しくは溶射源に、下記 (i)〜(vii)のいずれか 一つを用い、 Siと元素 Zと元素 M (ただし、 y=0又は y^Oのときは、 Siと元素 Z)を同 時に、蒸着法、スパッタ法、及び溶射法のいずれ力 1以上の手法にて、前述の集電 体基板上に 1〜30 mの厚さ、好ましくは活物質薄膜の膜厚の項で記述した厚さに 成膜する。
(i) Si、元素 Z、及び元素 Mの糸且成物(ただし、 y=0又は y^Oのときは Si及び元素 Zの組成物)
(ii) Si、元素 Z、及び元素 Mの混合物(ただし、 y=0又は y^Oのときは Si及び元素 Zの混合物)
(iii) Si、元素 Z、及び元素 Mそれぞれの単独体(各々の単独体は、それぞれの元 素を含むガスでも良い。 ) (ただし、 y=0又は y^Oのときは Si及び元素 Zのそれぞれ の単独体)
(iv) Si及び元素 Zの組成物或いは混合物と、元素 Mの単独体 (Mを含むガスでも 良い)
(v) Si、元素 Z、及び元素 Mを含むガス(ただし、 y=0又は y^Oのときは Si及び元 素 Zを含むガス)
(vi) Siの単独体と、元素 Z及び元素 Mの組成物或いは混合物
(vii) Si及び元素 Mの組成物或いは混合物と、元素 Zの単独体 (元素 Zを含むガス でも良い)
[0112] 蒸着源、スパッタ源、若しくは溶射源 (以下適宜、「原料」と記す場合がある)の Si単 独体原料としては、例えば結晶性 Si、アモルファス Si等を用いることができる。 Z原料 としては、 B, C及び N元素を用いることができる。元素 Zは、前記項目を満足する元 素であれば、 2種以上の複数の元素を同時に用いることもできる。
[0113] 原料のうち、(i) Si、元素 Z、及び元素 Mの組成物(ただし、 y=0又は y^Oのときは Si及び元素 Zの組成物)としては、 Si、元素 Z、及び元素 M、或いは、 Si、及び元素 Z を組み合わせた単一の化合物を用いても良ぐ又は、複数の化合物として用いても 良い。
これら Si、 Z原料、 M原料の形態は、例えば粉末状、顆粒状、ペレット状、塊状、板 状等として用いられる。
[0114] 一般式 SiZ Mにお!/、て、 y≠ 0で元素 Mを含む場合、元素 Mは、 Siと元素 Z以外 の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14族、 15族、及び 16族の元素 力も選ばれる元素の 1種又は 2種以上を、好ましくは、 Cu、 Ni、 O元素を、更に好まし くは O元素を用いることができる。
[0115] 活物質薄膜は、以下に詳述される
A:スパッタリング
B:真空蒸着
C : CVD
D:イオンプレーティング
E :溶射法 (フレーム溶射法、プラズマ溶射法)
の少なくとも 1つによって形成され得る。
[0116] A.スパッタリング スパッタリングでは、減圧下で、プラズマを利用して上記原料よりなるターゲットから 発せられた活物質材料を集電体基板に衝突、堆積させて薄膜を形成する。スパッタ リングによると、形成した活物質薄膜と集電体基板との界面状態が良好であり、集電 体に対する活物質薄膜の密着性も高 ヽ。
[0117] ターゲットに対するスパッタ電圧の印加方法としては、直流電圧、交流電圧のいず れも用いることができる。その際、集電体基板に実質的に負のバイアス電圧を印加し て、プラズマ力ものイオンの衝突エネルギーを制御することも可能である。
[0118] 薄膜形成を開始する前のチャンバ一内の到達真空度は、不純物の混入を防ぐため 、通常 0. 1 Pa以下である。
[0119] スパッタガスとしては、 Ne、 Ar、 Kr、 Xe等の不活性ガスが用いられる。中でも、アル ゴンガスが、スパッタ効率などの点で好ましく用いられる。化合物 SiZ M中の元素 Z 力 の場合、前記不活性ガス中に微量の窒素ガスとして共存させることが製造上好ま しい。通常、スパッタガス圧は 0. 05〜70Pa程度である。
[0120] スパッタリングにより活物質薄膜を形成する際の集電体基板は、水冷やヒーター等 により温度を制御することもできる。集電体基板の温度範囲としては、通常室温〜 90
0°Cであるが、 150°C以下が好ましい。
[0121] スパッタリングによる活物質薄膜の形成における成膜速度は、通常 0. 01〜0. 5 μ mZ分である。
[0122] 活物質薄膜形成前に、逆スパッタや、その他のプラズマ処理などの前処理により、 集電体基板表面をエッチングすることができる。このような前処理は、集電体基板とし ての銅箔表面の汚染物や酸化膜の除去、活物質薄膜の密着性の向上に有効である
[0123] B.真空蒸着
真空蒸着では、活物質となる上記原料を溶融 ·蒸発させて、集電体基板上に堆積 させる。真空蒸着は、スパッタリングに比べて高い成膜速度で薄膜を形成できる。真 空蒸着は、スパッタリングに比べて、所定膜厚の活物質薄膜の形成時間の短縮を図 る観点力も製造コスト面で有利に活用することができる。その具体的な方法としては、 誘導加熱法、抵抗加熱法、電子ビーム加熱蒸着法などを挙げることができる。誘導 加熱法では黒鉛等の蒸着坩堝を誘導電流により、抵抗加熱法では蒸着ボートなど通 電した加熱電流により、電子ビーム加熱蒸着では電子ビームにより、それぞれ蒸着材 料を加熱溶融し、蒸発させて成膜する。
[0124] 真空蒸着の雰囲気としては、一般的に真空下が用いられる。化合物 SiZ M中の元 素 Zが Nの場合、微量の窒素ガスを不活性ガスと一緒に導入しながら減圧にし、真空 下で同時に SiZ Mを形成することも可能である。
[0125] 薄膜形成を開始する前のチャンバ一内の到達真空度は、不純物の混入を防ぐため
、通常 0. 1 Pa以下である。
[0126] 真空蒸着により活物質薄膜を形成する際の集電体基板は、ヒーター等により温度を 制御することもできる。集電体基板の温度範囲としては、通常室温〜 900°Cであるが
、 150°C以下が好ましい。
[0127] 真空蒸着による活物質薄膜の形成における成膜速度は、通常 0. 1〜50 mZ分 である。
[0128] スパッタリングの場合と同様に、集電体基板上に活物質薄膜を堆積させる前に、ィ オンガンなどでイオン照射をすることにより集電体基板表面にエッチング処理を施し ても良い。このようなエッチング処理により、基板と活物質薄膜との密着性を更に高め ることができる。薄膜を形成する間に、集電体基板にイオンを衝突させることにより、 集電体基板に対する活物質薄膜の密着性を更に向上させることもできる。
[0129] C. CVD (Chemical Vapor Deposition)
CVDでは、活物質となる上記原料を気相化学反応により集電体基板上に堆積させ る。一般に CVDは、反応室内の化合物気体をガス流入によって制御するために高 純度で多様な材料が合成できる特徴を持っており、その具体的な方法としては、熱 C VD、プラズマ CVD、光 CVD、 cat— CVDなどを挙げることができる。熱 CVDでは、 蒸気圧の高いハロゲンィ匕合物の原料ガスをキヤリャガスや反応ガスとともに、 1000 °C前後に加熱した反応容器内に導入し、熱化学反応を起こさせ薄膜を形成する。プ ラズマ CVDは、熱エネルギーの代わりにプラズマを用いる。光 CVDは、熱エネルギ 一の代わりに光エネルギーを用いる。 cat— CVDは、触媒化学気相成長法のことで あり、原料ガスと加熱触媒との接触分解反応を応用することにより薄膜を形成する。 [0130] CVDで用いられる Si源としては SiH、 SiCl等であり、 Z源としては NH、 N、 BC1
4 4 3 2 3
、 CH、 C H、 C H等である。これらは 1種を単独で用いても良ぐ 2種以上を併用
4 2 6 3 8
しても良い。
[0131] D.イオンプレーティング
イオンプレーティングでは、活物質となる上記原料を溶融'蒸発させ、プラズマ下で 蒸発粒子をイオン化及び励起することで、集電体基板上に強固に成膜させる。具体 的には、原料を溶融 '蒸発させる方法としては、誘導加熱法、抵抗加熱法、電子ビー ム加熱蒸着法等を挙げることができ、イオン化及び励起する方法としては、活性化反 応蒸着法、多陰極熱電子照射法、高周波励起法、 HCD法、クラスターイオンビーム 法、マルチアーク法等を挙げることができる。また、前記原料を蒸発させる方法とィォ ン化及び励起する方法は適選組み合わせて行なうことができる。
[0132] E.溶射法
溶射法では、活物質となる上記原料を加熱により溶融若しくは軟化させ、微粒子状 にして加速し集電体基板上に粒子を凝固'堆積させる。その具体的な方法としては、 フレーム溶射法、アーク溶射法、直流プラズマ溶射法、 RFプラズマ溶射法、レーザ 一溶射法等を挙げることができる。
[0133] 蒸着法の高い成膜速度の利点と、スパッタリングの集電体基板への強い成膜密着 性の利点を利用し、例えば、スパッタリングにより第 1の薄膜層を形成し、その後蒸着 法により高速に第 2の薄膜層を形成することにより、集電体基板との密着性が良好に なる界面領域を形成すると共に、高!ヽ成膜速度で活物質薄膜を形成することができ る。このような成膜方法のハイブリッドな組合せ手法により、充放電容量が高ぐ且つ 充放電サイクル特性に優れた薄膜負極を効率的に製造することができる。
[0134] スパッタリングと蒸着法を組み合わせて活物質薄膜を形成することは、減圧雰囲気 を保ちつつ連続的に行われることが好ましい。これは、大気に暴露することなく連続 的に第 1の薄膜層と第 2の薄膜層とを形成することによって、不純物の混入を防止で きるからである。例えば、同一の真空環境の中で、集電体基板を移動させながら、ス ノ^タ及び蒸着を順次行うような薄膜形成装置を用いることが好まし 、。
[0135] 集電体基板の両面に活物質薄膜を形成する場合、集電体基板の一方の面に対す る活物質薄膜層(上記第 1の薄膜層と第 2の薄膜層の組み合せであっても良い。)の 形成と、集電体基板の他方の面に対する活物質薄膜層(上記第 1の薄膜層と第 2の 薄膜層の組み合せであっても良い。)の形成とは、減圧雰囲気を保持したまま連続し て行うことが好ましい。
[0136] 次に、薄膜負極の第 2の好適は製造方法について説明する。
一般式 SiZ Mにおいて、元素 Zが Cである場合の製造方法について以下に述べる
。蒸着源、スパッタ源、若しくは溶射源に、下記 (i)〜(vii)のいずれか一つを用い、 Si と Cと元素 M (ただし、 y=0又は y^Oのときは、 Siと C)を同時に、蒸着法、スパッタ法 、及び溶射法のいずれか 1以上の手法にて、前述の集電体基板上に 1〜30 /ζ πιの 厚さ、好ましくは活物質薄膜の膜厚の項で記述した厚さに成膜する。
(i) Si、 C、及び元素 Mの組成物(ただし、 y=0又は y^Oのときは Si及び Cの組成 物)
(ii) Si、 C、及び元素 Mの混合物(ただし、 y=0又は y^Oのときは Si及び Cの混合 物)
(iii) Si、 C、及び元素 Mそれぞれの単独体(ただし、 y=0又は y^Oのときは Si及び Cのそれぞれの単独体)
(iv) Si及び Cの組成物或いは混合物と、元素 Mの単独体 (Mを含むガスでも良 、) (V) Si、 C、及び元素 Mを含むガス(ただし、 y=0又は y^Oのときは Si及び Cを含 むガス)
(vi) Si単独体と、 C及び元素 Mの組成物或いは混合物
(vii) Si及び元素 Mの組成物或いは混合物と、 C単独体
[0137] 蒸着源、スパッタ源、若しくは溶射源 (以下適宜、「原料」と記す場合がある)の S源 料としては、例えば結晶性 Si、アモルファス Si等を用いることができる。 C原料として は、例えば天然黒鉛、人造黒鉛等の炭素材料を用いることができる。 M原料としては 、通常 Siと元素 Z以外の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14族、 15 族、及び 16族の元素であり、好ましくは、 Cu、 Ni、 O元素、特に好ましくは O元素を 用!/、ることができる。
[0138] 原料のうち、(i) Si、 C、及び元素 Mの組成物としては、 Si、 C、及び元素 Mを組み 合わせた単一の化合物を用いても良ぐ又は、複数の化合物として用いても良い。
[0139] また、これら Si、 C、 M原料の形態は、例えば粉末状、顆粒状、ペレット状、塊状、板 状等として用いられる。
[0140] また、元素 Mは、 Siや Cの窒化物や酸ィ匕物として用いても良いが、常温で気体とし て存在する O等の場合、 Si、 C成膜中に原料ガス O等として共存させることが製造上 好ましい。
[0141] 成膜には、 A:スパッタリング、 B :真空蒸着、 C : CVDが採用される。
[0142] A.スパッタリング
スパッタガスとしては、 Ne、 Ar、 Kr、 Xe等の不活性ガスが用いられる。中でも、アル ゴンガス力 スパッタ効率などの点で好ましく用いられる。一般式 SiC M中の M元素 力 soの場合、前記不活性ガス中にそれぞれ微量の酸素ガスを共存させることが製造 上好ましい。通常、スパッタガス圧は 0. 05〜70Pa程度である。
[0143] B.真空蒸着
真空蒸着の雰囲気としては、一般的に真空下が用いられる。また、一般式 SiC M 中の元素 Mが Oの場合、それぞれ微量の酸素ガスを不活性ガスと一緒に導入しなが ら減圧にし、真空下で同時に SiZCZMを形成することも可能である。
[0144] C. CVD
CVDで用いられる原料ガスは、元素 Si源としては SiH、 SiCl等であり、元素 C源
4 4
としては CH、 C H、 C H等である。これらは 1種を単独で用いても良ぐ 2種以上を
4 2 6 3 8
併用しても良い。
[0145] 次に、薄膜負極の第 3の好適な製造方法について説明する。
一般式 SiZ Mにおいて、元素 Zが Cで元素 Mが Oである場合の製造方法について 以下に述べる。
蒸着源、スパッタ源、若しくは溶射源に、下記 (I)〜 (IV)のいずれか一つを用い、成 膜ガス中(真空中で成膜する時は、残存ガス中)の酸素濃度が 0. 0001-0. 125% である雰囲気下にて、 Siと Cを同時に、蒸着法、スパッタ法、及び溶射法のいずれか 1以上の手法にて、前述の集電体基板上に 1〜30 /ζ πιの厚さ、好ましくは活物質薄 膜の膜厚の項で記述した厚さにする。 (I) Si、及び cの組成物
(II) Si,及び cの混合物
(III) Si、及び cそれぞれの単独体
(IV) Si、及び Cを含むガス
[0146] 原料である蒸着源、スパッタ源、若しくは溶射源の Si原料としては、例えば結晶性 S i、アモルファス Si等を用いることができる。 C原料としては、例えば天然黒鉛、人造黒 鉛等の炭素材料を用いることができる。成膜ガス中の酸素としては、酸素等の o元素 含有ガスを単独又は不活性ガスとの組み合せで用いる。
これら Si、 C原料の形態は、例えば粉末状、顆粒状、ペレット状、塊状、板状等とし て用いられる。また、酸素ガスは、 Si、 C成膜中に原料ガスとして共存させることが製 造上好ましい。
[0147] 成膜法としては、第 1の好適な方法と同様な成膜法を用いる。
[0148] 蒸着、スパッタ、又は溶射時の成膜ガス中(真空中で成膜する時は、残存ガス中) の酸素濃度は通常 0. 0001%以上で、通常 0. 125%以下、好ましくは 0. 100%以 下、更に好ましくは 0. 020%以下である。成膜ガス中に含まれる酸素濃度がこの範 囲を上回ると、 siZcZo薄膜中の元素 o量が多くなり、電解液との反応性が増し、 充放電効率の低下を招く虞があり好ましくない。酸素濃度が少な過ぎると SiZcZo 薄膜を成膜し得ない。
[0149] 成膜ガス中の酸素濃度は、例えば、四極子マスフィルタを用い、成膜ガスのマスス ベクトルを分析することで求めることができる。酸素ガスが共存して ヽるアルゴンガス を成膜ガスとして用いる場合には、そのアルゴンガスを酸素分析計で測定することで 求めることちでさる。
[0150] 薄膜負極の第 4の好適な製造方法について次に説明する。
一般式 SiZ Mにおいて、元素 Zが Nで、 =0又は7 0でぁる場合の製造方法 について以下に述べる。
蒸着源、スパッタ源、若しくは溶射源に、下記 (I)〜 (IV)のいずれか一つを用い、成 膜ガス中(真空中で成膜する時は、残存ガス中)の窒素濃度力 Sl〜22%である雰囲 気下にて、 Siと Nを同時に、蒸着法、スパッタ法、及び溶射法のいずれか 1以上の手 法にて、前述の集電体基板上に 1〜30 ;ζ ΐηの厚さ、好ましくは活物質薄膜の膜厚の 項で記述した厚さにする。
(I) Si単独体
(Π) Siを含む組成物
(III) Siを含む混合物
(IV) Siを含むガス
[0151] 原料である蒸着源、スパッタ源、若しくは溶射源の Si単独体原料としては、例えば 結晶性 Si、アモルファス Si等を用いることができる。成膜ガス中の Nとしては、窒素等 の N元素含有ガスを単独又は不活性ガスとの組み合せで用いる。
[0152] これら Si等の形態は、例えば粉末状、顆粒状、ペレット状、塊状、板状等として用い られる。窒素ガスは、 Si成膜中に原料ガスとして共存させることが製造上好ましい。
[0153] 成膜法は第 1の好適な方法と同様な成膜法を用いることができる。
[0154] 蒸着、スパッタ、又は溶射時の成膜ガス中(真空中で成膜する時は、残存ガス中) の窒素濃度は通常 1%以上で、通常 22%以下、好ましくは 15%以下、更に好ましく は 10%以下である。成膜ガス中に含まれる窒素濃度この範囲を上回ると、 SiN薄膜 中の元素 N量が多くなり、充放電に関与しない窒化珪素が生成し、放電容量の低下 を招く虞があり好ましくない。窒素濃度が少な過ぎると Nを含有した SiN薄膜を成膜 し得なぐ且つ、サイクル特性の低下を招き好ましくない。
[0155] 成膜ガス中の窒素濃度は、例えば、四極子マスフィルタを用い、成膜ガスのマスス ベクトルを分析することにより求められる。
[0156] 上記の薄膜負極を有した非水電解質二次電池について次に説明する。
この電池は、リチウムイオンを吸蔵 ·放出可能な正極及び負極、並びに電解質を備 える。以下において、電池を構成する負極以外の部材の材料等を例示するが、使用 し得る材料はこれらの具体例に限定されるものではない。
[0157] 正極は、集電体基板上に、正極活物質と、結着及び増粘効果を有する有機物 (結 着剤)を含有する活物質層を形成してなる。正極は、通常、正極活物質と結着及び 増粘効果を有する有機物を水あるいは有機溶媒中に分散させたスラリー状のものを 、集電体基板上に薄ぐ塗布した後、乾燥する工程、続いて所定の厚み及び密度まで 圧密するプレス工程により形成される。
[0158] 正極活物質材料には、リチウムを吸蔵'放出できる機能を有している限り特に制限 はない。例えば、リチウムコノ レト酸ィ匕物、リチウムニッケル酸ィ匕物、リチウムマンガン 酸化物等のリチウム遷移金属複合酸化物材料;二酸化マンガン等の遷移金属酸ィ匕 物材料;フッ化黒鉛等の炭素質材料などを使用することができる。具体的には、 LiFe O 、 LiCoO 、 LiNiO 、 LiMn O及びこれらの非定比化合物、 MnO 、 TiS 、 FeS 、
2 2 2 2 4 2 2 2
Nb S 、 Mo S 、 CoS 、 V O 、 P O 、 CrO 、 V O 、 TeO 、 GeO等を用いることがで
3 4 3 4 2 2 5 2 5 3 3 3 2 2
きる。これらは 1種を単独で用いても良ぐ 2種以上を併用しても良い。
[0159] 正極活物質層には、正極用導電剤を用いることができる。正極用導電剤は、用いる 正極活物質材料の充放電電位にぉ ヽて、化学変化を起こさな ヽ電子伝導性材料で あれば何でも良い。例えば、天然黒鉛 (鱗片状黒鉛など)、人造黒鉛などのグラフアイ ト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック 、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維な どの導電性繊維類、フッ化カーボン、アルミニウム等の金属粉末類、酸化亜鉛、チタ ン酸カリウムなどの導電性ウイスカ一類、酸化チタンなどの導電性金属酸化物ある ヽ はポリフエ-レン誘導体などの有機導電性材料などを単独又はこれらの混合物として 含ませることができる。こ
れらの導電剤のなかで、人造黒鉛、アセチレンブラックが特に好ましい。導電剤の添 加量は、特に限定されないが、正極活物質材料に対して 1〜50重量%が好ましぐ 特に 1〜30重量%が好ましい。カーボンやグラフアイトでは、正極活物質材料に対し て 2〜 15重量%が特に好ましい。
[0160] 正極活物質層の形成に用いられる結着及び増粘効果を有する有機物としては、特 に制限はなぐ熱可塑性榭脂、熱硬化性榭脂のいずれであっても良い。例えば、ポリ エチレン、ポリプロピレン、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リデン (PVDF)、スチレンブタジエンゴム、テトラフルォロエチレン一へキサフルォロェチレ ン共重合体、テトラフルォロエチレン一へキサフルォロプロピレン共重合体(FEP)、 テトラフルォロエチレン パーフルォロアルキルビュルエーテル共重合体(PFA)、フ ッ化ビ-リデン一へキサフルォロプロピレン共重合体、フッ化ビ-リデン—クロロトリフ ルォロエチレン共重合体、エチレンーテトラフルォロエチレン共重合体 (ETFE榭脂) 、ポリクロ口トリフルォロエチレン(PCTFE)、フッ化ビ-リデン一ペンタフルォロプロピ レン共重合体、プロピレンーテトラフルォロエチレン共重合体、エチレン クロロトリフ ルォロエチレン共重合体(ECTFE)、フッ化ビ-リデン一へキサフルォロプロピレン ーテトラフルォロエチレン共重合体、フッ化ビ-リデンーパーフルォロメチルビ-ルェ ーテルーテトラフルォロエチレン共重合体、エチレン アクリル酸共重合体又は前記 材料の(Na+)イオン架橋体、エチレンーメタクリル酸共重合体又は前記材料の (Na+ )イオン架橋体、エチレン アクリル酸メチル共重合体又は前記材料の (Na+)イオン 架橋体、エチレンーメタクリル酸メチル共重合体又は前記材料の(Na+)イオン架橋 体を挙げることができ、これらの材料を単独又は混合物として用いることができる。こ れらの材料の中でより好まし 、材料はポリフッ化ビ-リデン(PVDF)、ポリテトラフル ォロエチレン(PTFE)である。
[0161] 正極活物質層には、前述の導電剤の他、更にフィラー、分散剤、イオン伝導体、圧 力増強剤及びその他の各種添加剤を配合することができる。フイラ一は、構成された 電池にお 、て、化学変化を起こさな 、繊維状材料であれば何でも用いることができる 。通常、ポリプロピレン、ポリエチレンなどのォレフィン系ポリマー、ガラス、炭素などの 繊維が用いられる。フィラーの添加量は特に限定されないが、活物質層中の含有量 として 0〜30重量%が好ましい。
[0162] 正極活物質スラリーの調製には、水系溶媒又は有機溶媒が分散媒として用いられ る。水系溶媒としては、通常、水が用いられる力 これにエタノール等のアルコール類 、 N メチルピロリドン等の環状アミド類等の添加剤を水に対して、 30重量%以下程 度まで添加することもできる。
[0163] 有機溶媒としては、通常、 N—メチルピロリドン等の環状アミド類、 N, N ジメチル ホルムアミド、 N, N ジメチルァセトアミド等の直鎖状アミド類、ァ-ソール、トルエン 、キシレン等の芳香族炭化水素類、ブタノール、シクロへキサノール等のアルコール 類が挙げられ、中でも、 N—メチルピロリドン等の環状アミド類、 N, N ジメチルホル ムアミド、 N, N ジメチルァセトアミド等の直鎖状アミド類等が好ましい。これらは 1種 を単独で用いても良ぐ 2種以上を併用しても良い。 [0164] 正極活物質、結着剤である結着及び増粘効果を有する有機物及び必要に応じて 配合される正極用導電剤、その他フイラ一等をこれらの溶媒に混合して正極活物質 スラリーを調製し、これを正極用集電体基板に所定の厚みとなるように塗布することに より正極活物質層が形成される。
[0165] 正極活物質スラリー中の正極活物質の濃度の上限は通常 70重量%以下、好ましく は 55重量%以下であり、下限は通常 30重量%以上、好ましくは 40重量%以上であ る。正極活物質の濃度がこの上限を超えると正極活物質スラリー中の正極活物質が 凝集しやすくなり、下限を下回ると正極活物質スラリーの保存中に正極活物質が沈 降しやすくなる。
[0166] 正極活物質スラリー中の結着剤の濃度の上限は通常 30重量%以下、好ましくは 1 0重量%以下であり、下限は通常 0. 1重量%以上、好ましくは 0. 5重量以上である。 結着剤の濃度がこの上限を超えると得られる正極の内部抵抗が大きくなり、下限を下 回ると正極活物質層の結着性に劣るものとなる。
[0167] 正極用集電体基板には、例えば、電解液中での陽極酸ィ匕によって表面に不動態 皮膜を形成する弁金属又はその合金を用いるのが好ましい。弁金属としては、周期 表 4族、 5族、 13族に属する金属及びこれらの合金を例示することができる。具体的 には、 Al、 Ti、 Zr、 Hf、 Nb、 Ta及びこれらの金属を含む合金などを例示することが でき、 Al、 Ti、 Ta及びこれらの金属を含む合金を好ましく使用することができる。特に A1及びその合金は軽量であるためエネルギー密度が高くて望ま 、。正極用集電体 基板の厚みは特に限定されないが通常 1〜50 m程度である。
[0168] 電解質としては、電解液や固体電解質など、任意の電解質を用いることができる。
電解質とはイオン導電体すベてのことを! ヽ、電解液及び固体電解質は共に電解質 に含まれるものとする。
[0169] 電解液としては、例えば、非水系溶媒に溶質を溶解したものを用いることができる。
溶質としては、アルカリ金属塩や 4級アンモ-ゥム塩などを用いることができる。具体 的には、 LiCIO、 LiPF、 LiBF、 LiCF SO、 LiN (CF SO ) 、 LiN (CF CF SO )
4 6 4 3 3 3 2 2 3 2 2 2
、 LiN (CF SO ) (C F SO )、 LiC (CF SO )等が好ましく用いられる。これらの溶質
3 2 4 9 2 3 2 3
は、 1種類を選択して使用しても良いし、 2種以上を混合して使用しても良い。 電解液中のこれらの溶質の含有量は、 0. 2mol/L以上、特に 0. 5mol/L以上で 、 2molZL以下、特に 1. 5molZL以下であることが好ましい。
[0170] 非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブ チレンカーボネート、ビ-レンカーボネート等の環状カーボネート、 y ブチロラクト ンなどの環状エステルイ匕合物;1, 2—ジメトキシェタン等の鎖状エーテル;クラウンェ 一テル、 2—メチルテトラヒドロフラン、 1, 2 ジメチルテトラヒドロフラン、 1, 3 ジォキ ソラン、テトラヒドロフラン等の環状エーテル;ジェチルカーボネート、ェチルメチルカ ーボネート、ジメチルカーボネート等の鎖状カーボネートなどを用いることができる。こ れらの中でも、環状カーボネートと鎖状カーボネートを含有する非水溶媒が好ましい
[0171] これらの溶媒は 1種類を選択して使用しても良いし、 2種以上を混合して使用しても 良い。
[0172] 本発明に係る非水系電解液は、分子内に不飽和結合を有する環状炭酸エステル や従来公知の過充電防止剤、脱酸剤、脱水剤などの種々の助剤を含有していても 良い。
[0173] 分子内に不飽和結合を有する環状炭酸エステルとしては、例えば、ビニレンカーボ ネート系化合物、ビュルエチレンカーボネート系化合物、メチレンエチレンカーボネ ート系化合物等が挙げられる。
[0174] ビ-レンカーボネート系化合物としては、例えば、ビ-レンカーボネート、メチルビ- レンカーボネート、ェチルビ-レンカーボネート、 4, 5—ジメチルビ-レンカーボネー ト、 4, 5—ジェチルビ-レンカーボネート、フルォロビニレンカーボネート、トリフルォ ロメチルビ-レンカーボネート等が挙げられる。
[0175] ビュルエチレンカーボネート系化合物としては、例えば、ビュルエチレンカーボネー ト、 4ーメチルー 4 ビュルエチレンカーボネート、 4ーェチルー 4 ビュルエチレン力 ーボネート、 4—n—プロピルー4 ビュルエチレンカーボネート、 5—メチルー 4ービ -ルエチレンカーボネート、 4, 4ージビュルエチレンカーボネート、 4, 5—ジビュル エチレンカーボネート等が挙げられる。
[0176] メチレンエチレンカーボネート系化合物としては、例えば、メチレンエチレンカーボ ネート、 4, 4 ジメチルー 5ーメチレンエチレンカーボネート、 4, 4 ジェチルー 5— メチレンエチレンカーボネート等が挙げられる。
これらのうち、ビニレンカーボネート、ビニルエチレンカーボネートが好ましぐ特に ビニレンカーボネートが好まし 、。
これらは 1種を単独で用いても、 2種類以上を併用しても良 、。
[0177] 非水系電解液が分子内に不飽和結合を有する環状炭酸エステル化合物を含有す る場合、非水系電解液中におけるその割合は、通常 0. 01重量%以上、好ましくは 0 . 1重量%以上、特に好ましくは 0. 3重量%以上、最も好ましくは 0. 5重量%以上で あり、通常 8重量%以下、好ましくは 4重量%以下、特に好ましくは 3重量%以下であ る。
[0178] 分子内に不飽和結合を有する環状炭酸エステルを電解液に含有させることにより、 電池のサイクル特性を向上させることができる。その理由は明かではないが、負極の 表面に安定な保護被膜を形成することができるためと推測される。ただし、その含有 量が少ないとこの特性が十分に向上しない。しかし、含有量が多すぎると高温保存時 にガス発生量が増大する傾向にあるので、電解液中の含有量は上記の範囲にする のが好ましい。
[0179] 過充電防止剤としては、例えば、ビフエ-ル、アルキルビフエ-ル、ターフェ-ル、タ 一フエ-ルの部分水素化体、シクロへキシルベンゼン、 t ブチルベンゼン、 t—アミ ルベンゼン、ジフエ-ルエーテル、ジベンゾフラン等の芳香族化合物; 2—フルォロビ フエ二ノレ、 o シクロへキシノレフノレオ口ベンゼン、 p シクロへキシノレフノレオ口ベンゼン 等の前記芳香族化合物の部分フッ素化物; 2, 4 ジフルォロア-ノール、 2, 5 ジ フルォロア-ノール及び 2, 6 ジフルォロア-ノール等の含フッ素ァ-ソール化合 物などが挙げられる。
これらは 1種を単独で用いても良ぐ 2種類以上併用しても良 、。
[0180] 非水系電解液中における過充電防止剤の割合は、通常 0. 1〜5重量%である。過 充電防止剤を含有させることにより、過充電等のときの電池の破裂'発火を抑制する ことができる。
[0181] 他の助剤としては、例えば、フルォロエチレンカーボネート、トリフルォロプロピレン カーボネート、フエニノレエチレンカーボネート、エリスリタンカーボネート、スピロービス ージメチレンカーボネート、メトキシェチルーメチルカーボネート等のカーボネートイ匕 合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グル タコン酸、無水ィタコン酸、無水ジグリコール酸、シクロへキサンジカルボン酸無水物 、シクロペンタンテトラカルボン酸二無水物及びフエ-ルコハク酸無水物等のカルボ ン酸無水物;エチレンサルファイト、 1, 3 プロパンスルトン、 1, 4 ブタンスルトン、 メタンスルホン酸メチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン及 びテトラメチルチウラムモノスルフイド、 N, N ジメチルメタンスルホンアミド、 N, N— ジェチルメタンスルホンアミド等の含硫黄ィ匕合物; 1—メチル 2—ピロリジノン、 1—メ チルー 2 ピペリドン、 3—メチルー 2 ォキサゾリジノン、 1, 3 ジメチルー 2 イミダ ゾリジノン及び N—メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロ ヘプタン等の炭化水素化合物、フルォロベンゼン、ジフルォロベンゼン、へキサフル ォロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物などが挙げられる。 これらは 1種を単独で用いても良ぐ 2種類以上併用して用 、ても良 、。
[0182] 非水系電解液中におけるこれらの助剤の割合は、通常 0. 1〜5重量%である。これ らの助剤を含有することにより、高温保存後の容量維持特性やサイクル特性を向上さ せることができる。
[0183] 非水系電解液は、電解液中に有機高分子化合物を含ませ、ゲル状又は、ゴム状、 或いは固体シート状の固体電解質としても良い。有機高分子化合物の具体例として は、ポリエチレンォキシド、ポリプロピレンォキシド等のポリエーテル系高分子化合物; ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブ チラールなどのビュルアルコール系高分子化合物;ビュルアルコール系高分子化合 物の不溶化物;ポリェピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニル ピロリドン、ポリビ-リデンカーボネート、ポリアクリロニトリルなどのビュル系高分子化 合物;ポリ ( ω—メトキシオリゴォキシエチレンメタタリレート)、ポリ( ω—メトキシォリゴ ォキシエチレンメタタリレート一 co—メチルメタタリレート)等のポリマー共重合体など が挙げられる。
[0184] 非水電解質二次電池用負極には、電解質、負極、及び正極の他に、更に必要に 応じて、外缶、セパレータ、ガスケット、封口板、セルケースなどを用いることもできる。
[0185] セパレータの材質や形状は特に制限されない。セパレータは正極と負極が物理的 に接触しないように分離するものであり、イオン透過性が高ぐ電気抵抗が低いもので あるのが好ま ヽ。セパレータは電解液に対して安定で保液性が優れた材料の中か ら選択するのが好ましい。具体例としては、ポリエチレン、ポリプロピレン等のポリオレ フィンを原料とする多孔性シート又は不織布が挙げられる。
[0186] 本発明の非水電解質二次電池の形状は特に制限されず、例えば、シート電極及び セパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組 み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを 積層したコインタイプ等にすることができる。
[0187] 電解質、負極及び正極を少なくとも有する本発明の非水電解質二次電池を製造す る方法は特に限定されず、通常採用されている方法の中から適宜選択することがで きる。
本発明の非水電解質二次電池の製造方法の一例を挙げると、外缶上に負極を乗 せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を乗せて、 ガスケット及び封口板と共に力しめて電池を組み立てる方法が挙げられる。
実施例
[0188] 次に実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない 限り、これらの実施例によって何ら限定されるものではない。
[0189] [実施例 1]
ターゲット材として、 Siと Cの混合物(Siと Cの面積比が大凡 100対 9の円板)を用い た。集電体基板として平均表面粗さ (Ra)が 0. 2 /ζ πι、引張強度が 280NZmm2、 0 . 2%耐力が 220N/mm2で、厚さが 18 mである電解銅箔を用いた。直流スパッタ 装置 (島津製作所社製「: HSM— 52」)にて 45分間活物質薄膜の成膜を行って、薄 膜負極を得た。
集電体基板は水冷されたホルダーに取り付け、約 25°Cに維持し、チャンバーを予 め 4 X 10— 4Paまで真空引き後、高純度アルゴンガスをチャンバ一内に 40sccm流し、 メインバルブの開度を調整して 1. 6Paの雰囲気としてから、電力密度 4. 7W/cm2、 堆積速度 (成膜速度)約 1. 8nm/sec (0. 108 mZ分)で成膜を行った。このスパ ッタガスの酸素濃度は 0. 0010%であった。
薄膜形成前に、電解銅箔表面の酸化膜を除去する目的で、逆スパッタを行い基板 表面のエッチングをした。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 mであった (Fig. la, Fig. 2a参照)。
[0190] 下記の方法に従って XPSにて薄膜の組成分析をしたところ、薄膜中に元素 Cは 24 原子%含有されており、 SiC中の元素 C濃度に対する C濃度比 Q (C)は 0. 49に相当 した。原子濃度比は SiZCZO = l. 00/0. 33/0. 04であった。
下記の方法に従ってラマン測定にて薄膜のラマン値を求めたところ、 RC = 0. 05、 RSC = scピーク検出されず、 RS = 0. 55であった。
下記の方法に従って薄膜の X線回折測定を行ったところ、 SiCの明確なピークは検 出されず Xlsz = 0. 38であった。
[0191] 下記の方法に従って電子プローブマイクロアナライザー(EPMA)にて、薄膜中に おける Siの膜厚方向の重量濃度分布を測定したところ、 Fig. lbに示すように、 Siの 最大値、又は最小値と平均値の差 (絶対値)が 25%以内であり、 Siは実質的に集電 体力も連続に成膜されていた。また、薄膜中の元素 Cの分布を測定したところ、 Fig. 2cに示すように、 Si薄膜中に元素 Cは 1 μ m以下の大きさで均一に分布していた。
[0192] 以下の実施例及び比較例において、薄膜負極の分析及び測定方法は、特記しな い限り、実施例 1におけると同様であることは留意 (note)されなければならな 、。
[0193] <XPS測定 >
X線光電子分光法測定としては、 X線光電子分光器 (アルバック ·フアイ社製「ESC A」)を用い、薄膜負極の表面が平坦になるように試料台に載せ、アルミニウムの Κ α 線を X線源とし、 Arスパッタを行いながらデプスプロファイル測定を実施した。濃度一 定になった深さ(例えば、 200nm)での、 Si2p (90〜: L lOeV)と Cls (280〜300eV )と 01s (525〜545eV)のスペクトルを得た。得られた Clsのピークトップを 284. 5e Vとして帯電補正し、 Si2p、 Cls及び Olsのスペクトルのピーク面積を求め、更に装 置感度係数を掛けて、 Si、 C及び Oの原子濃度をそれぞれ算出した。算出された Siと cと oの原子濃度から、原始濃度比 siZcZo (si原子濃度 Zc原子濃度 Ζο原子 濃度)を算出し、薄膜の組成値 SiZcZoと定義する。
[0194] <ラマン測定 >
ラマン分光器(日本分光社製「ラマン分光器」)を用い、薄膜負極を測定セルへセッ トし、測定はセル内のサンプル表面にアルゴンイオンレーザー光を照射させながらラ マン測定を行った。
ラマン測定条件は次のとおりである。
アルゴンイオンレーザー波長:514. 5nm
試料上のレーザーパワー: 15〜40mW
分解能: 10〜 20cm— 1
測定範囲: 200cm―1〜 1900cm—1
スムージング処理:単純平均、コンボリューシヨン 15ポイント
[0195] <X線回折測定 >
リガク社製「: RINT2000PCJを用い、薄膜負極を測定セルへセットし、 Out- of- Plan e法にて、 2 θ = 10〜70度の範囲で X線回析を行った。ノ ックグラウンドの補正は、 2 Θ = 15〜20度付近と、 40〜45度付近を直線で結び行った。
[0196] <ΕΡΜΑ測定 >
ΕΡΜΑによる膜厚方向の重量濃度分布、又は薄膜断面の分布分析としては、電子 プローブマイクロアナライザー (JEOL社製「JXA— 8100」)を用い、榭脂包埋を行わ ずにミクロトームで断面作成した薄膜負極にっ 、て、集電体から薄膜表面までの元 素分析を行った。膜厚方向の重量濃度分布を求める時は、測定した元素の総和を 1 00%に換算し直した値を用いて、 Siの膜厚方向の重量濃度分布を求めた。
[0197] 上記で製造された薄膜負極を用いて、下記の方法に従ってリチウム二次電池を作 製し、この電池について、下記方法で放電容量、充放電効率、サイクル特性 (A)、 5 0サイクル時充放電効率、及びサイクル後の電極膨張率の評価を行い、結果を表 2 に示した。
[0198] <リチウム二次電池作製方法 >
上記方法で作製した薄膜負極を 10mm φに打ち抜き、 110°Cで真空乾燥した後、 グローブボックスへ移し、アルゴン雰囲気下で、電解液とセパーレータと対極とを用い てコイン電池(リチウム二次電池)を作製した。電解液としてはエチレンカーボネート(
EC) Zジェチルカーボネート (DEC) = 3/7 (重量比)の混合液を溶媒とした lmol /L-LiPF電解液とを用いた。セパレータとしてポリエチレンセパレータとを用いた
6
。対極としてリチウム金属対極を用いた。
[0199] <放電容量評価 >
1. 23mAZcm2の電流密度でリチウム対極に対して 10mVまで充電し、更に、 10 mVの一定電圧で電流値が 0. 123mAになるまで充電し、負極中にリチウムをドープ した後、 1. 23mAZcm2の電流密度でリチウム対極に対して 1. 5Vまで放電を行なう 充放電サイクルを 5サイクル繰り返し、 3〜5サイクル目の放電の平均値を放電容量と した。重量当りの放電容量とする場合は、活物質重量は負極重量から同面積に打ち 抜いた銅箔の重量を差し引くことで求め、以下にの式で計算した。
放電容量 (mAhZg)
= 3〜5サイクル目の平均放電容量 (mAh) Z活物質重量 (g)
活物質重量 (g) =負極重量 (g)—同面積の銅箔重量 (g)
[0200] <充放電効率評価 >
放電容量の測定時に、以下の式で計算した。
充放電効率 (%) = {初回放電容量 (mAh) Z初回充電容量 (mAh) } X 100 [0201] くサイクル特性 (A)評価〉
上述の放電容量の測定方法に従い、この充放電サイクルを 50回繰り返し、以下の 式でサイクル維持率 (A)を計算した。
サイクル維持率 (A) (%)
= { 50サイクル後の放電容量 (mAh) Z3〜5サイクルの平均放電容量 (mAh) } X 100
[0202] < 50サイクル時の充放電効率評価 >
上述のサイクル特性 (A)の測定方法に従!、、この充放電サイクルを 50回繰り返し、 以下の式で 50サイクル時の充放電効率を計算した。
50サイクル時の充放電効率(%) = 0回時の放電容量(mAh) Z50回時の充電容量(mAh) } X 100
[0203] <サイクル後の電極膨張率測定 >
上述のサイクル特性 (A)の測定後(50サイクル後)、放電状態のコイン電池をアル ゴングローブボックス中で短絡させないように解体し、電極を取り出して、脱水したジ メチルエーテル溶媒で洗浄、乾燥後、 SEM観察にてサイクル後放電時の電極の厚 み (銅箔除く)を測定した。電池作製前の電極の厚み (銅箔除く)を基準として、次式 に基づ!/、てサイクル後の電極膨張率を求めた。
サイクル後の電極膨張率 (倍) = (サイクル後の電極厚み Z充放電前の電極厚み
)
[0204] 下記の方法に従って、上述のサイクル特性 (A)の測定後の負極を取り出し、活物 質薄膜を剥離して赤外透過光測定を行ったところ、表 2に示す通り、サイクル後 IRsc = 1. 5であった。同様な方法で未充放電の薄膜負極について赤外透過光測定を行 つたところ、 IRsc = 0. 3であり、 Fig. 3に示すように 1600〜1650cm_1付近の吸収 は殆ど見られな力つた。
[0205] <赤外透過光測定 >
赤外分光光度計 (サーモエレクトロン社製「Magna560」)を用い、充放電を行った 後の薄膜負極力 活物質薄膜を剥離して測定セルにセットし、透過法により赤外透 過光測定を行った。
活物質薄膜は、上記のサイクル特性 (A)の測定後(50サイクル後)、放電状態のコ イン電池をアルゴングローブボックス中で短絡させな 、ように解体し、電極を取り出し て、脱水したジメチルエーテル溶媒で洗浄、乾燥後、集電体銅箔カゝら剥離して測定 に用いた。
バックグラウンドの補正は、 Fig. 3〖こ示すよう〖こ、 2000〜4000cm_ 1の範囲〖こおけ る最小値を結んだ直線を延長し、ノ ックグラウンドを求め、その値を各強度力も差し 引くことで行った。
[0206] [実施例 2]
ターゲット材の Siと Cの面積比を 100対 2に変えた以外は、実施例 1と同様にして活 物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は約 2. 3nmZseCで 4 0分間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Cは 6原子%含有されており、 SiC中 の元素 C濃度に対する C濃度比 Q (C)は 0. 13に相当した。原子濃度比は SiZCZ 0 = 1. OO/O. 07/0. 08であった。
薄膜のラマン値を求めたところ、 RC = cピーク検出されず、 RSC = scピーク検出さ れず、 RS = 0. 45であった。
薄膜の X線回折測定を行ったところ、 SiCの明確なピークは検出されず Xlsz = 0. 1 5であった。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Cの分布を測定し たところ、実施例 1と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 Si 薄膜中に元素 Cは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[実施例 3]
ターゲット材に Si粒子と C粒子の混合物を焼結したものを用いた以外は、実施例 1と 同様にして活物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は約 1. 7 nmZsecで 45分間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Cは 30原子%含有されており、 SiC中 の元素の濃度に対する C濃度比 Q (C)は 0. 63に相当した。原子濃度比は SiZCZ 0 = 1. 00/0. 45/0. 06であった。
薄膜のラマン値を求めたところ、 RC = 0. 09、RSC = 0. 13、RS = 0. 59であった 薄膜の X線回折測定を行ったところ、 SiCの明確なピークは検出されず Xlsz = 0. 6 0であった。 EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Cの分布を測定し たところ、実施例 1と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 Si 薄膜中に元素 Cは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0208] [実施例 4]
約 20 mの Si粒子と黒鉛を重量比で 8対 2の割合で混合して、ペレットを作成し蒸 着源とし、集電体基板として平均表面粗さ (Ra)が 0. 2 μ τη,引張強度が 280NZm m2、 0. 2%耐力が 220NZmm2で、厚さが 18 μ mである電解銅箔を用い、 ULVAC 社製「EX— 400装置」にて電子ビーム加熱蒸着を行って、薄膜負極を作製した。こ の時、チャンバ一を予め 9 X 10— 5Paまで真空引き後、ェミッション電流 60mAで、堆 積速度約 5nmZsecで 15分間成膜を行った。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 4 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Cは 18原子%含有されており、 SiC中 の元素 C濃度に対する C濃度比 Q (C)は 0. 43に相当した。原子濃度比は SiZCZ 0 = 1/0. 28/0. 26であった。
薄膜のラマン値を求めたところ、 RC = 0. 10、RSC = 0. 15、RS = 0. 60であった 薄膜の X線回折測定を行ったところ、 SiCの明確なピークは検出されず Xlsz = 0. 3 8であった。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Cの分布を測定し たところ、実施例 1と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 Si 薄膜中に元素 Cは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0209] [実施例 5]
成膜時の高純度アルゴンガス流量を 90sccmとし、メインノ レブの開度を調整して 5 . 3Paの雰囲気とした以外は、実施例 2と同様にして活物質薄膜を成膜して薄膜負極 を作製した。この時、堆積速度は約 1. 5nmZsecで 50分間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Cは 22原子%含有されており、 SiC中 の元素 C濃度に対する C濃度比 Q (C)は 0. 57に相当した。原子濃度比で SiZCZ 0 = 1/0. 40/0. 42であった。
薄膜のラマン値を求めたところ、 RC = 0. 11、RSC = 0. 17、RS = 0. 68であった 薄膜の X線回折測定を行ったところ、 SiCの明確なピークは検出されず Xlsz = 0. 7 3であった。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Cの分布を測定し たところ、実施例 1と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 Si 薄膜中に元素 Cは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[実施例 6]
ターゲット材として Siを用い、集電体基板として平均表面粗さ (Ra)が 0. 2 μ ι,引 張強度が 280NZmm2、 0. 2%耐力が 220NZmm2で、厚さが 18 mである電解 銅箔を用い、直流スパッタ装置(島津製作所社製「: HSM— 52」)にて 28分間活物質 薄膜の成膜を行って、薄膜負極を得た。
この時、集電体基板は水冷されたホルダーに取り付け、約 25°Cに維持し、チャンバ 一を予め 4 X 10— 4Paまで真空引き後、メインノ レブの開度を調整しながら、チャンバ 一内に高純度窒素ガスを流して圧力を 0. 16Paにし、続いて高純度アルゴンガスを 流して圧力を 1. 6Paの雰囲気としてから、電力密度 7. lW/cm2、堆積速度 (成膜速 度)約 4nmZsec (0. 24 μ mZ分)で成膜を行った。この時スパッタガスの窒素濃度 は 10%であった。
なお、薄膜形成前に、電解銅箔表面の酸化膜を除去する目的で、逆スパッタを行 V、基板表面のエッチングをした。
[0211] 得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった (Fig. 4a参照)。
下記の方法に従って XPSにて薄膜の組成分析をしたところ、薄膜中に元素 Nは 33 原子%含有されており、 SiN中の元素 Nの濃度に対する N濃度比 Q (N)は 0. 68に 相当した。原子濃度比は SiZNZO = l. 00/0. 51/0. 02であった。
実施例 1におけると同様のラマン測定にて薄膜のラマン値を求めたところ、 RSN= 0. 44、RS = 0. 72であった。
下記の方法に従って薄膜の X線回折測定を行ったところ、 Si N等の明確なピーク
3 4
は検出されず Xlsz = 0. 91であった。
実施例 1と同様の EPMAで薄膜中の Siの膜厚方向の重量濃度分布を測定したとこ ろ、 Fig. 4bに示すように、 Siの最大値、又は最小値と平均値の差 (絶対値)が 25% 以内であり、 Siは実質的に集電体力 連続に成膜されて 、た。
薄膜中の元素 Nの分布を測定したところ、実施例 1の元素 Cと同様に Si薄膜中に元 素 Nは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0212] <XPS測定 >
X線光電子分光法測定としては、 X線光電子分光器 (アルバック ·フアイ社製「ESC A」)を用い、薄膜負極の表面が平坦になるように試料台に載せ、アルミニウムの Κ α 線を X線源とし、 Arスパッタを行いながらデプスプロファイル測定を実施した。濃度一 定になった深さ(例えば、 200nm)での、 Si2p (90〜: L lOeV)と Nls (394〜414eV )と Ols (525〜545eV)のスペクトルを得た。不純物等として若干検出される Clsの ピークトップを 284. 5eVとして帯電補正し、 Si2p、 Nls、 Olsのスペクトルのピーク 面積を求め、更に装置感度係数を掛けて、 Si、 N、 Oの原子濃度をそれぞれ算出し た。得られたその Siと Nと Oの原子濃度から、 Si Z基準の元素 Z濃度、原子濃度比 S a P
i/N/O (Si原子濃度 ZN原子濃度 ZO原子濃度)を算出した。
[0213] <Χ線回折測定 > X線回折測定としては、 2 Θ = 10〜90度の範囲を測定した以外は、実施例 1と同じ 方法で行った。ノ ックグラウンドの補正は、 2 Θ = 10〜20度付近と、 50〜70度付近 を直線で結び行った。
[0214] [実施例 7]
チャンバ一内に高純度窒素ガスを流した時の圧力を 0. 24Paに変えた以外は、実 施例 6と同様にして活物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度 は約 3nmZsecで 30分間成膜した。スパッタガスの窒素濃度は 15%であった。 得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Nは 41原子%含有されており、 SiN中 の元素 N濃度に対する N濃度比 Q (N)は 0. 82に相当した。原子濃度比は SiZNZ 0 = 1. OO/O. 70/0. 02であった。
薄膜のラマン値を求めたところ、 RSN= 0. 69、 RS = 0. 79であった。また、薄膜の X線回折測定を行ったところ、 Si N等の明確なピークは検出されず Xlsz = 0. 94で
3 4
めつに。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Nの分布を測定し たところ、実施例 6と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 Si 薄膜中に元素 Nは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0215] [実施例 8]
チャンバ一内に高純度窒素ガスを流した時の圧力を 0. 08Paに変えた以外は、実 施例 6と同様にして活物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度 は約 4nmZsecで 27分間成膜した。スパッタガスの窒素濃度は 5%であった。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Nは 20原子%含有されており、 SiN中 の元素 N濃度に対する N濃度比 Q (N)は 0. 43に相当した。原子濃度比は SiZNZ 0 = 1. 00/0. 27/0. 06であった。
薄膜のラマン値を求めたところ、 RSN=0. 17、RS = 0. 57であった。
薄膜の X線回折測定を行ったところ、 Si N等の明確なピークは検出されず XIsz =
3 4
0. 94であった。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Nの分布を測定し たところ、実施例 1と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 Si 薄膜中に元素 Nは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[実施例 9]
ターゲット材として、 Siと Nの混合物(Si円板上に、 Siと Si Nの面積比が大凡 100
3 4
対 100となるように、 Si Nのチップを貼り付けたもの)を用い、チャンバ一内に高純度
3 4
アルゴンガスのみを流して圧力を 1. 6Paの雰囲気にした以外は、実施例 6と同様に して活物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は約 4nmZseC で 25分間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Nは 20原子%含有されており、 SiN中 の元素 N濃度に対する N濃度比 Q (N)は 0. 42に相当した。原子濃度比は SiZNZ 0 = 1. 00/0. 26/0. 06であった。
薄膜のラマン値を求めたところ、 RSN=0. 15、RS = 0. 55であった。
薄膜の X線回折測定を行ったところ、 Si N等の明確なピークは検出されず XIsz =
3 4
0. 95であった。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Nの分布を測定し たところ、実施例 6と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 Si 薄膜中に元素 Nは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。 [0217] [実施例 10]
ターゲット材として、 Siと Bの混合物(Si円板上に、 Siと Bの面積比が大凡 100対 8と なるように、 Bのチップを貼り付けたもの)を用い、チャンバ一内に高純度アルゴンガス のみを流して圧力を 1. 6Paの雰囲気にした以外は、実施例 6と同様にして活物質薄 膜を成膜して薄膜負極を作製した。この時、堆積速度は約 3nmZseCで 28分間成膜 した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった (Fig. 5a参照)。
実施例 6と同様な方法で薄膜の組成分析をしたところ、薄膜中に元素 Bは 35原子 %含有されており、 SiB中の元素 Bの濃度に対する B濃度比 Q (B)は 0. 47に相当し
3
た。原子濃度比は SiZBZO = l . 00/0. 54/0. 02であった。
下記の方法に従って薄膜の X線回折測定を行ったところ、 SiB
4等の明確なピーク は検出されず Xlsz = 0. 46であった。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布を測定したところ、 Fig. 5bに示 すように、 Siの最大値、又は最小値と平均値の差 (絶対値)が 25 %以内であり、 Siは 実質的に集電体から連続に成膜されていた。
薄膜中の元素 Bの分布を測定したところ、実施例 1の元素 Cと同様に Si薄膜中に元 素 Bは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0218] < X線回折測定 >
X線回折測定としては、 2 Θ = 10〜90度の範囲を測定した以外は、実施例 1と同じ 方法で行った。ノ ックグラウンドの補正は、 2 Θ = 10〜20度付近と、 60〜70度付近 を直線で結び行った。
[0219] [実施例 1 1 ]
ターゲット材として、 Si円板上に、 Siと Bの面積比が大凡 100対 10となるようにしたも のを用いた以外は、実施例 10と同様にして活物質薄膜を成膜して薄膜負極を作製 した。この時、堆積速度は約 3nmZsecで 36分間成膜した。 得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Bは 42原子%含有されており、 SiB
3 中の元素 B濃度に対する B濃度比 Q (B)は 0. 57に相当した。原子濃度比は SiZB /0 = 1. OO/O. 74/0. 02であった。
薄膜の X線回折測定を行ったところ、 SiB等の明確なピークは検出されず Xlsz = 0
4
. 46であった。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Bの分布を測定し たところ、実施例 10と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 S i薄膜中に元素 Bは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[実施例 12]
ターゲット材として、 Si円板上に、 Siと Bの面積比が大凡 100対 12となるようにしたも のを用いた以外は、実施例 10と同様にして活物質薄膜を成膜して薄膜負極を作製 した。この時、堆積速度は約 3nmZsecで 42分間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Bは 53原子%含有されており、 SiB
3 中の元素 B濃度に対する B濃度比 Q (B)は、 0. 71に相当した。原子濃度比は SiZB /0 = 1. 00/1. 15/0. 02であった。
薄膜の X線回折測定を行ったところ、 SiB等の明確なピークは検出されず Xlsz = 0
4
. 64であった。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Bの分布を測定し たところ、実施例 10と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 S i薄膜中に元素 Bは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。 [0221] [実施例 13]
ターゲット材として、 Siと Cの混合物(Siと Cの面積比が大凡 100対 9の円板)を用い た以外は、実施例 8と同様にして活物質薄膜を成膜して薄膜負極を作製した。、この 時、堆積速度は約 3nmZsecで 35分間成膜した。スパッタガスの窒素濃度は 5%で めつに。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Cが 6原子%、元素 Nが 19原子%含 有されており、 SiC中の元素 C濃度に対する C濃度比 Q (C)は 0. 16に、 SiN中の元 素 N濃度に対する N濃度比 Q (N)は 0. 42に相当し、それらの合計値である Z濃度比 Q (C+N)は 0. 58であった。原子濃度比は SiZC及び NZO= l. 00/0. 09/0. 27/0. 06であった。
薄膜のラマン値を求めたところ、 RC = cピーク検出されず、 RSC = scピーク検出さ れず、 RSN=0. 16、RS = 0. 56であった。
薄膜の X線回折測定を行ったところ、 SiC、 Si N
3 4等の明確なピークは検出されず X lsz = 0. 14 (SiC基準)、若しくは 0. 92 (Si N基準)であった。
3 4
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 C及び Nの分布を 測定したところ、実施例 1と同様に Siは実質的に集電体から連続に成膜されおり、且 つ、 Si薄膜中に元素 C及び Nは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0222] [実施例 14]
破砕 Siを蒸着源とし、集電体基板として平均表面粗さ (Ra)が 0. 2 ^ πι,引張強度 力 00N/mm2、 0. 2%耐力が 380N/mm2で、厚さが 18 mである粗面化した圧 延銅箔を用い、 ULVAC社製「DRP— 40E装置」にて電子ビーム加熱蒸着式イオン プレーティングを行って、薄膜負極を作製した。
この時、チャンバ一を予め 2 X 10—3Paまで真空引き後、バルブの開度を調整しなが ら、チャンバ一内に高純度窒素ガスを流して圧力を 0. 05Paの雰囲気とした。その後 、 Siを蒸発させる電子ビーム加熱条件として電圧 10kV、電流 140mAで、窒素をィ オン化させる RF方式条件としてコイル出力 200Wで、基板のバイアス電圧 0. 5kV 、電流 10mA、堆積速度約 2nmZsecで 35分間成膜を行った。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 4 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Nは 18原子%含有されており、 SiN中 の元素 N濃度に対する N濃度比 Q (N)は 0. 37に相当した。原子濃度比は SiZNZ 0 = 1. OO/O. 23/0. 08であった。
薄膜のラマン値を求めたところ、 RSN= 0. 13、RS = 0. 55であった。
薄膜の X線回折測定を行ったところ、 Si N等の明確なピークは検出されず XIsz =
3 4
0. 94であった。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Nの分布を測定し たところ、実施例 6と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 Si 薄膜中に元素 Nは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[実施例 15]
破砕 Siを蒸着源とし、集電体基板として平均表面粗さ (Ra)が 0. 2 μ τη,引張強度 力 00N/mm2、 0. 2%耐力が 380N/mm2で、厚さが 18 mである粗面化した圧 延銅箔を用い、セキスィメディカル電子社製「MU— 1700D高周波誘導加熱装置」と 、ァリオス社製「MP201イオン銃装置」を組み合わせた装置にて、高周波誘導加熱 蒸着式イオンプレーティングを行って、薄膜負極を作製した。
この時、チャンバ一を予め 7 X 10— 4Paまで真空引き後、バルブの開度を調整しなが ら、チャンバ一内に高純度窒素ガスを流して圧力を 0. lPaの雰囲気とした。その後、 Siを蒸発させる高周波誘導加熱条件として電流 12Aで、窒素をイオン化させる条件 として出力 150W、イオン加速電圧 12kVで、基板のバイアス電圧— 0. 5kVにて、堆 積速度約 20nmZsecで 5分間成膜を行った。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Nは 23原子%含有されており、 SiN中 の元素 N濃度に対する N濃度比 Q (N)は 0. 48に相当した。原子濃度比は SiZNZ
0 = 1. OO/O. 32/0. 07であった。
薄膜のラマン値を求めたところ、 RSN=0. 23、RS = 0. 61であった。
薄膜の X線回折測定を行ったところ、 Si N等の明確なピークは検出されず XIsz =
3 4
0. 92であった。
EPMAで薄膜中の Siの膜厚方向の重量濃度分布、及び、元素 Nの分布を測定し たところ、実施例 6と同様に Siは実質的に集電体から連続に成膜されおり、且つ、 Si 薄膜中に元素 Nは 1 μ m以下の大きさで均一に分布していた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0224] [比較例 1]
ターゲット材に Siを用いた以外は、実施例 1と同様にして活物質薄膜を成膜して薄 膜負極を作製した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 C及び Nは含有されておらず、原子濃 度比は SiZO = l. 00/0. 02であった。
薄膜のラマン値を求めたところ、 RC = cピーク検出されず、 RSC = scピーク検出さ れず、 RS = 0. 30、RSN = 0. 09であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0225] [比較例 2]
蒸着源に SiOを用い、集電体基板として平均表面粗さ (Ra)が 0. 2 mで、厚さが 1 8 μ mである電解銅箔を用い、 ULVAC社製「VPC— 260F装置」にて抵抗加熱蒸 着を行った。この時、チャンバ一を予め 3 X 10— 3Paまで真空引き後、 155Aの電流を 流し、堆積速度約 lOnmZsecで成膜を行って、薄膜負極を作製した。 得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 C及び Nは含有されておらず、原子濃 度比は SiZO = l. 00/1. 33であった。
薄膜のラマン値を求めたところ、 RC = 0. 17、RSC = 0. 06、RS = 1. 09、 RSN = 0. 10であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0226] [比較例 3]
ターゲット材を、 Siと Niの混合物(Si円板上に、 Siと Niの面積比が大凡 100対 4とな るように、 Niのチップを貼りつけたもの)に変えた以外は、実施例 10と同様にして活 物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は約 5nmZseCで 25分 間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Niは 25原子%含有されており、 NiSi
2 中の元素 Ni濃度に対する Ni濃度比 Q (Ni)は 0. 79に相当した。原子濃度比は SiZ Ni/0= 1. 00/0. 35/0. 06であった。
薄膜のラマン値を求めたところ、 RC = cピーク検出されず、 RSC = 0. 04、 RS = 0. 28、RSN = 0. 07であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0227] [比較例 4]
ターゲット材を、 Siと Cuの混合物(Si円板上に、 Siと Cuの面積比が大凡 100対 3と なるように Cuのチップを貼り付けたもの)に変えた以外は、実施例 10と同様にして活 物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は約 5nmZseCで 25分 間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Cuは 26原子%含有されており、 Cu
3
S冲の元素 Cu濃度に対する Cu濃度比 Q (Cu)は 0. 35に相当した。原子濃度比は Si/Cu/0 = 1. 00/0. 36/0. 03であった。
薄膜のラマン値を求めたところ、 RC = cピーク検出されず、 RSC = scピーク検出さ れず、 RS = 0. 34、RSN = 0. 09であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0228] [比較例 5]
ターゲット材を、 Siと Coの混合物(Si円板上に、 Siと Coの面積比が大凡 100対 4と なるように Coのチップを貼り付けたもの)に変えた以外は、実施例 10と同様にして活 物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は約 5nmZseCで 25分 間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Coは 18原子%含有されており、 CoSi 中の元素 Co濃度に対する Co濃度比 Q (Co)は 0. 54に相当した。原子濃度比は Si
2
/Co/0 = l. 00/0. 22/0. 01であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0229] [比較例 6]
成膜時の高純度アルゴンガス中の酸素濃度を 0. 150%に変えた以外は、実施例 2 と同様にして活物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は約 0. 6nmZsecで 140分間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Cは 27原子%含有されており、 SiC中 の元素 C濃度に対する C濃度比 Q (C)は 0. 81に相当した。原子濃度比は SiZCZ 0 = 1. 00/0. 68/0. 83であった。
薄膜のラマン値を求めたところ、 RC = 2. 69、RSC = 0. 35、RS = 0. 84であった 薄膜の X線回折測定を行ったところ、 Xlsz = 0. 77であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0230] [比較例 7]
ターゲット材に Si粒子と SiO粒子と C粒子の混合物を焼結したものを用いた以外は 、実施例 1と同様にして活物質薄膜を成膜して薄膜負極を作製した。この時、堆積速 度は約 InmZsecで 80分間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Cは 69原子%含有されており、 SiC中 の元素 C濃度に対する C濃度比 Q (C)は 1. 55に相当した。原子濃度比は SiZCZ 0 = 1. 00/3. 45/0. 55であった。
薄膜のラマン値を求めたところ、 RC = 27. 7、RSC= 1. 05、RS = 0. 38であった 薄膜の X線回折測定を行ったところ、 Xlsz = 0. 42であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0231] [比較例 8]
ターゲット材の Siと Cの面積比を 100対 1に変えた以外は、実施例 2と同様にして活 物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は約 2nmZseCで 40分 間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Cは 3原子%含有されており、 SiC中 の元素 C濃度に対する C濃度比 Q (C)は 0. 06に相当した。原子濃度比は SiZCZ 0 = 1. 00/0. 03/0. 06であった。
薄膜のラマン値を求めたところ、 RC = cピーク検出されず、 RSC = scピーク検出さ れず、 RS = 0. 41であった。
薄膜の X線回折測定を行ったところ、 SiCの明確なピークは検出されず Xlsz = 0. 1 3であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0232] [比較例 9]
チャンバ一内に高純度窒素ガスを流した時の圧力を 0. 4Paに変えた以外は、実施 例 6と同様にして活物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は 約 3nmZsecで 40分間成膜した。スパッタガスの窒素濃度は 25%であった。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 7 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Nは 53原子%含有されており、 SiN中 の元素 N濃度に対する N濃度比 Q (N)は 1. 07に相当した。原子濃度比は SiZNZ 0 = 1. 00/1. 15/0. 02であった。
薄膜のラマンスペクトル分析をしたところ、ラマンピークは得られな力つた。 薄膜の X線回折測定を行ったところ、 XIsz= l. 18であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0233] [比較例 10]
チャンバ一内に高純度窒素ガスを流した時の圧力を 3. 2 X 10—3Paに変えた以外は 、実施例 6と同様にして活物質薄膜を成膜して薄膜負極を作製した。この時、堆積速 度は約 3nmZsecで 28分間成膜した。スパッタガスの窒素濃度は 0. 2%であった。 得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Nは 1原子%含有されており、 SiN中 の元素 N濃度に対する N濃度比 Q (N)は 0. 02に相当した。原子濃度比は SiZNZ 0 = 1. 00/0. 01/0. 01であった。
薄膜のラマン値を求めたところ、 RSN=0. 08、RS = 0. 31であった。
薄膜の X線回折測定を行ったところ、 Xlsz = 0. 98であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0234] [比較例 11]
ターゲット材として、 Siと Bの面積比が大凡 100対 17の円板を用いた以外は、実施 例 10と同様にして活物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は 約 2nmZsecで 50分間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 6 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Bは 73原子%含有されており、 SiB
3 中の元素 B濃度に対する B濃度比 Q (B)は 0. 98に相当した。原子濃度比は SiZB
/0 = 1. 00/2. 81/0. 04であった。
薄膜の X線回折測定を行ったところ、 XIsz= l . 10であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0235] [比較例 12]
ターゲット材として、 Siと Bの面積比が大凡 100対 1の円板を用いた以外は、実施例 10と同様にして活物質薄膜を成膜して薄膜負極を作製した。この時、堆積速度は約 4nmZsecで 25分間成膜した。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、成膜され た薄膜の膜厚は 5 μ mであった。
薄膜の組成分析をしたところ、薄膜中に元素 Bは 4. 5原子%含有されており、 SiB
3 中の元素 N濃度に対する B濃度比 Q (B)は、 0. 06に相当した。原子濃度比は SiZB
/0 = 1. 00/0. 05/0. 02であった。
薄膜の X線回折測定を行ったところ、 Xlsz = 0. 10であった。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0236] [比較例 13]
ターゲット材に Siを用い、比較例 1と同様な方法で Si薄膜を 4. 成膜した。更 に、ターゲット材に Cを用い、この Si活物質薄膜の上に C薄膜を 0. 5 m成膜した。 この薄膜の組成を堆積した重量比力 算出したところ、原子濃度比で表すと SiZC = 1. 00/0. 26であった。
得られた薄膜負極の薄膜の断面の走査型電子顕微鏡 (SEM)観察から、 Si薄膜表 面はカーボン層で覆われており、 Siと Cが二層構造になっていた。
この薄膜負極を用いて実施例 1と同様にしてコイン電池の作製及び評価を行い、結 果を表 2に示した。
[0237] [表 1]
S¾2023 一 *, 定比化合物例 Si My薄膜の組成 SiZxMy
SiaZp Z濃度比 SiZxMy薄膜のラマン値 膜厚 例 融点 Q(Z) IB ί子濃度比
種類 X線回折
化合物 種類
(°C) Si Ζ 0 RC RSC SN RS ΧΙεζ 実施例 1 C SiC SiC 2545 0.49 1.00 0.33 0.04 0.05 ピ一ク無 ― 0.55 0.38 5 実施例 2 C SiC SiC 2545 0.13 1.00 0.07 0.08 ピ-ク無 ピーク無 0.45 0.15 5 実施例 3 C SiC SiC 2545 0.63 1.00 0.45 0.06 0.09 0.13 ― 0.59 0.60 5 実施例 4 C SiC SiC 2545 0.43 1.00 0.28 0.26 0.10 0.15 ― 0.60 0.38 4 実施例 5 C SiC SiC 2545 0.57 1.00 0.40 0.42 0.11 0.17 ― 0.68 0.73 5 実施例 6 N SiN Si3N4 1900 0.68 1.00 0.51 0.02 ― ― 0.44 0.72 0.91 6 実施例 7 N SiN Si3N4 1900 0.82 1.00 0.70 0.02 —■ - 0.69 0.79 0.94 6 実施例 8 N SiN Si3N4 1900 0.43 1.00 0.27 0.06 ― - 0.17 0.57 0.94 6 実施例 9 N SiN Si3N4 1900 0.42 1.00 0.26 0.06 ― - 0.15 0.55 0.95 6 実施例 10 B SiB3 SiBB 1850 0.47 1.00 0.54 0.02 ― - ― ― 0.46 5 実施例 11 B SiB3 SiB6 1850 0.57 1.00 0.74 0.02 ― - ― ― 0.46 6 実施例 12 B SiB3 SiB6 1850 0.71 1.00 1.15 0.02 ― ― ― 一 0.64 6 実施例 13 C,N SiC.SiN SiC,Si3N4 2545,1900 0.58 1.00 0.09,0.27 0.06 ピ-ク無 ピ-ク無 0.16 0.56 0.14,0.92 6 実施例 14 N SiN Si3N4 1900 0.37 1.00 0.23 0.08 ― ― 0.13 0.55 0.94 4 実施例 15 N SiN Si3N4 1900 0.48 1.00 0.32 0.07 - ― 0.23 0.61 0.92 5 比較例 1 (Si) (Si) (Si) (1414) (0.00) 1.00 (0.00) 0.02 ピ―ク無 ピ―ク無 0.09 0.30 ― 5 比較例 2 (0) (Si02) (Si02) (1726) (0.85) 1.00 (0.00) 1.33 0.17 0,06 0.10 1.09 ― 6 比較例 3 (Ni) (NiSi2) (Ni2Si) (1306) (0.79) 1.00 (0.35) 006 ピ-ク無 004 0.07 0.28 - 6 比較例 4 (Cu) (Cu3Si) (Cu3Si) (859) (0.35) 1.00 (0.36) 0.03 ピ-ク無 匕ーク 0.09 0.34 - 6 比較例 5 (Co) (CoSi2) (CoSi) 1460 (0.54; 1.00 (0.22) 0.01 ― ― ― - ― 6 比較例 6 C,(0) SiC SiC 2545 0.81 1.00 0.68 0.83 2.69 0.35 ― 0.84 0.77 5 比較例 7 c SiC SiC 2545 1.55 1.00 3.45 0.55 27.70 1.05 ― 0.38 0.42 5 比較例 8 c SiC SiC 2545 0.06 1.00 0.03 0.06 ピ―ク無 ピーク無 ― 0.41 0.13 5 比較例 9 N SiN Si3N4 1900 107 100 1 15 002 ― ― 得られず 得られず 1 18 7 比較例 10 N SiN Si3N, 1900 0.02 1.00 0.01 0.01 ― ― 0.08 0.31 0.98 比較例 11 B SiB3 SiB6 1850 0.98 1.00 2.81 0.04 ― ― ― 1.10 6 比較例 12 B SiB3 SiB6 1850 0.06 1.00 0.05 0.02 ― ― ― 0.10 5 比較例 13 (C) ― ― ― ― 1.00 0.26 ― ― ― ― ― ― 5
※表中、カツコ内は元素 zに相当しないものである。
Figure imgf000061_0001
[0239] 表 1, 2より次のことが分力る。
比較例 1の負極の活物質薄膜は、集電体力 連続的に成膜された Si薄膜である力 S 、薄膜中に元素 Zが存在せず本発明の規定範囲外であり、その結果、良いサイクル 特性が得られず、且つ、サイクル後の電極膨張率が大き力つた。
[0240] 比較例 2の負極の活物質薄膜は、元素 Oが Si中に非平衡的に存在した相を主成 分とする、集電体力 連続的に成膜された SiO薄膜であるが、薄膜中に元素 Zに相 当する物が存在せず本発明の規定範囲外であり、その結果、充放電効率が低ぐ高 容量な電池特性を得ることはできな力つた。
[0241] 比較例 3の負極の活物質薄膜は、元素 Niが Si中に非平衡的に存在した相を主成 分とする、集電体力も連続的に成膜された SiZNi薄膜であるが、薄膜中に元素 Zに 相当する物が存在せず、本発明の規定範囲外であり、その結果、良いサイクル特性 が得られな力つた。
[0242] 比較例 4の負極の活物質薄膜は、元素 Cuが Si中に非平衡的に存在した相を主成 分とする、集電体力 連続的に成膜された SiZCu薄膜であるが、薄膜中に元素 Zに 相当する物が存在せず、本発明の規定範囲外であり、その結果、良いサイクル特性 が得られな力つた。
[0243] 比較例 5の負極の活物質薄膜は、元素 Coが Si中に非平衡的に存在した相を主成 分とする、集電体力 連続的に成膜された SiZCo薄膜であるが、薄膜中に元素 Zに 相当する物が存在せず、本発明の規定範囲外であり、その結果、良いサイクル特性 が得られな力つた。
[0244] 比較例 6の負極の活物質薄膜は、元素 Cが Si中に非平衡的に存在した相を主成分 とする、集電体力 連続的に成膜された SiZCZO薄膜であるが、薄膜中の元素 O 量が本発明の規定範囲を上回っており、その結果、 Siを含有している効果が現れず 、 Cのみが充放電し、且つ、 O量が多い為に充放電効率が低ぐ高容量な電池特性 を得ることはできな力 た。
[0245] 比較例 7の負極の活物質薄膜は、元素 Cが Si中に非平衡的に存在した相を主成分 とする、集電体力 連続的に成膜された SiZCZO薄膜であるが、薄膜中の元素 C 量が本発明の規定範囲を大きく上回っており、その結果、 Siを含有している効果が 現れず、 Cのみが充放電し、充放電効率が低ぐ高容量な電池特性を得ることはでき なかった。
[0246] 比較例 8の負極の活物質薄膜は、元素 Cが Si中に非平衡的に存在した相を主成分 とする、集電体力 連続的に成膜された SiZCZO薄膜であるが、薄膜中の元素 C 量が本発明の規定範囲を下回っており、その結果、 Cを含有している効果が少なぐ 電極膨張が大きくなり、良いサイクル特性が得られなカゝつた。
[0247] 比較例 9の負極の活物質薄膜は、元素 Nが Si中に非平衡的に存在した相を主成 分とする、集電体力 連続的に成膜された SiZN薄膜であるが、薄膜中の元素 N量 が本発明の規定範囲を上回っており、一部 Si Nが形成され、充放電しな力 た。
3 4
[0248] 比較例 10の負極の活物質薄膜は、元素 Nが Si中に非平衡的に存在した相を主成 分とする、集電体力 連続的に成膜された SiZN薄膜であるが、薄膜中の元素 N量 が本発明の規定範囲を下回っており、その結果、電極膨張が大きくなり、良いサイク ル特性が得られなカゝつた。
[0249] 比較例 11の負極の活物質薄膜は、元素 Bが Si中に非平衡的に存在した相を主成 分とする、集電体力 連続的に成膜された SiZB薄膜であるが、薄膜中の元素 B量 が本発明の規定範囲を上回っており、その結果、良いサイクル特性が得られなかつ た。
[0250] 比較例 12の負極の活物質薄膜は、元素 Bが Si中に非平衡的に存在した相を主成 分とする、集電体力 連続的に成膜された SiZB薄膜であるが、薄膜中の元素 B量 が本発明の規定範囲を下回っており、その結果、電極膨張が大きくなり、良いサイク ル特性が得られなカゝつた。
[0251] 比較例 13の負極の活物質薄膜は、原子濃度比が本発明の範囲内である元素じと Siからなる力 Cが Si薄膜表面に存在しているために Cの分布が不均一であり、その 結果、電極膨張が大きくなり、良いサイクル特性が得られなカゝつた。
[0252] これらに対して、実施例 1〜15の本発明の薄膜負極の活物質薄膜は、元素 Zが Si 中に非平衡的に存在した相を主成分とする、特定の化合物 SiZ Mからなり、且つ、 該元素 Zは、 B、 C及び Nよりなる群の中力 選択される少なくとも 1種の元素であり、 全てが本発明の規定範囲を満たしている。そして、このような薄膜負極を用いると、放 電容量が高ぐ初期及びサイクル中の充放電効率が高ぐサイクル特性に優れ、サイ クル後の電極膨張が抑えられた高性能の電池が得られる。
[0253] [実施例 16]
実施例 1で成膜した薄膜負極を用いて、下記の方法に従ってビ-レンカーボネート (VC)を添加した電解液でリチウム二次電池を作製した。この電池について、下記の サイクル特性 (B)の評価を行った。その結果、 120サイクル後のサイクル維持率 (B) は 77%であった。
[0254] <リチウム二次電池作製方法 >
作製した薄膜負極を 10mm φに打ち抜き、 85°Cで真空乾燥した後、グローブボッ タスへ移し、アルゴン雰囲気下で、電解液とセパレータと対極を用いてコイン電池(リ チウムニ次電池)を作製した。電解液としては、エチレンカーボネート (EC) Zジェチ ルカーボネート (DEC) =3Z7 (重量比)に VCを 2重量%添加した混合液を溶媒とし た ImolZL—LiPF電解液を用いた。セパレータとしてはガラス不織布セパレータを
6
用いた。対極としてはリチウムコバルト正極を用いた。
[0255] <サイクル特性 (B)評価 >
1. 53mAZcm2の電流密度でリチウムコバルト正極に対して 4. 2Vまで充電し、更 に、 4. 2Vの一定電圧で電流値が 0. 255mAZcm2になるまで充電し、負極中にリ チウムをドープした後、 1. 53mAZcm2の電流密度でリチウムコバルト正極に対して 2. 5 Vまで放電を行う充放電サイクルを 120回繰り返し、以下の式でサイクル維持率 (B)を計算した。
サイクル維持率 (B) (%)
= { 120サイクル後の放電容量 (mAh) Z3サイクルの放電容量
(mAh) } X 100
[0256] [実施例 17]
電解液をエチレンカーボネート(EC) Zジェチルカーボネート (DEC) = 3/7 (重 量比)の混合液とし、 VCを添加しな力つたこと以外は、実施例 16と同様にしてコイン 電池を作製し、同様にサイクル特性 (B)の評価を行った。その結果、 120サイクル後 のサイクル維持率 (B)は 67%であった。
[0257] 実施例 16, 17の結果を表 3に示す。表 3より、本発明に係る薄膜負極に対して分子 内に不飽和結合を有する環状炭酸エステル化合物を含有する非水系電解液を用い ることにより、電池のサイクル特性を向上させることができることが分かる。
[0258] [表 3] サイクル維持率 (B) 電解液 %
実施例 16 EC+DEC+VC 77 実施例 17 EC+DEC 67

Claims

請求の範囲
[1] Si中に元素 Zが非平衡的に存在した相の化合物を主成分とする活物質薄膜を有 する非水電解質二次電池用負極であって、
上記化合物が一般式 SiZ M (式中 Z、 M、 x、 yは下記条件の通り)で表され、 元素 Zは、 B、 C及び Nよりなる群の中力 選択される少なくとも 1種の元素である; 元素 Mは Siと元素 Z以外の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14 族、 15族、及び 16族力も選ばれる少なくとも 1種の元素である;
Xは、 Siに最も近い組成で平衡的に存在する化合物 Si Z (式中 a、 pは整数)の Z濃 a P
度 (pZ (a+p) )に対して、下記式で算出される Z濃度比 Q (Z)が 0. 10〜0. 95とな る値である;そして
Q (Z) = [x/ (l +x) ]/[p/ (a+p) ]
yは、 0≤y≤0. 50の範囲の数である。
[2] 集電体と、該集電体から連続的に成膜された前記活物質薄膜とを有することを特 徴とする請求項 1に記載の非水電解質二次電池用負極。
[3] 前記一般式 SiZ Mにおいて、元素 Zが Cであり、 Xは 0. 053≤x≤0. 70の範囲の 数であり、前記活物質薄膜は、元素 Cが Si薄膜中に均一に分布している活物質薄膜 であることを特徴とする請求項 1に記載の非水電解質二次電池用負極。
[4] 前記活物質薄膜のラマンスペクトル分析によるラマン RC値が 0. 0以上、 2. 0以下 であり、且つ、ラマン RSC値が 0. 0以上、 0. 25以下であることを特徴とする請求項 3 記載の非水電解質二次電池用負極。
[5] 前記活物質薄膜のラマンスペクトル分析によるラマン RS値が 0. 40以上、 0. 75以 下であることを特徴とする請求項 3に記載の非水電解質二次電池用負極。
[6] 前記一般式 SiZ Mにおいて、元素 Zが Cで、元素 Mが酸素であり、 x、 yは、それぞ れ 0. 053≤x≤0. 70, 0<y≤0. 50の範囲の数であることを特徴とする請求項 3に 記載の非水電解質二次電池用負極。
[7] 充放電を行った後に、前記活物質薄膜の赤外分光光度計を用いた赤外透過光分 析による IRsc値が 0. 9以上、 3. 0以下であることを特徴とする請求項 3に記載の非 水電解質二次電池用負極。
[8] 前記一般式 SiZ Mにお!/、て、元素 Zが Nであり、 Siに最も近!、組成で平衡的に存 在する化合物 Si Zが SiNであり、且つ一般式 SiN Mの Xは、前記 Z濃度比 Q (Z)が
P
0. 15〜0. 85となる値であることを特徴とする請求項 1に記載の非水電解質二次電 池用負極。
[9] 前記活物質薄膜は、元素 Nが Si薄膜中に均一に分布している活物質薄膜であるこ とを特徴とする請求項 8に記載の非水電解質二次電池用負極。
[10] 前記活物質薄膜のラマンスペクトル分析によるラマン RSN値が 0. 0以上、 0. 9以 下であることを特徴とする請求項 8に記載の非水電解質二次電池用負極。
[11] 前記活物質薄膜のラマンスペクトル分析によるラマン RS値が 0. 4以上、 1. 0以下 であることを特徴とする請求項 8に記載の非水電解質二次電池用負極。
[12] 前記活物質薄膜の X線回折による XIsz値が 0. 00以上、 1. 10以下であることを特 徴とする請求項 8に記載の非水電解質二次電池用負極。
[13] 前記一般式 SiZ Mにおいて元素 Zが Bであり、 Siに最も近い組成で平衡的に存在 する化合物 Si Zが SiBであり、且つ、一般式 SiB Mの Xは、前記 Z濃度比 Q (Z)が p 3
0. 30〜0. 85となる値であることを特徴とする請求項 1に記載の非水電解質二次電 池用負極。
[14] 前記活物質薄膜は、元素 Bが Si薄膜中に均一に分布している活物質薄膜であるこ とを特徴とする請求項 13に記載の非水電解質二次電池用負極。
[15] 前記活物質薄膜の X線回折による XIsz値が 0. 00以上、 0. 90以下であることを特 徴とする請求項 13に記載の非水電解質二次電池用負極。
[16] 集電体と、該集電体上に成膜された、一般式 SiZ M (式中 Z、 M、 x、 yは下記条件 の通り)で表される化合物を主成分とする活物質薄膜とで構成される非水電解質二 次電池用負極を製造する方法であって、
蒸着源、スパッタ源、若しくは溶射源が、 Si、元素 Z、及び元素 Mを含み、 Siと元素 Zと元素 Mとを同時に、蒸着法、スパッタ法、及び溶射法のうちのいずれか 1以上の手法にて、集電体基板上に上記化合物が 1〜30 mの厚さに成膜され、 元素 Zは、 B、 C及び Nよりなる群の中力 選択される少なくとも 1種の元素である; 元素 Mは Siと元素 Z以外の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14 族、 15族、及び 16族力も選ばれる少なくとも 1種の元素である;
Xは、 Siに最も近い組成で平衡的に存在する化合物 SiZ (式中 a、 pは整数)の Z濃
a P
度 (pZ(a+p))に対して、下記式で算出される Z濃度比 Q(Z)が 0. 10〜0. 95とな る値である;そして
Q(Z) = [x/(l+x)]/[p/(a+p)]
yは、 0<y≤0. 50の範囲の数である。
[17] 集電体と、該集電体上に成膜された、一般式 SiZ M (式中 Z、 M、 x、 yは下記条件
X y
の通り)で表される化合物を主成分とする活物質薄膜とで構成される非水電解質二 次電池用負極を製造する方法であって、
蒸着源、スパッタ源、若しくは溶射源が、 Si、及び元素 Zを含み、
Siと元素 Zとを同時に、蒸着法、スパッタ法、及び溶射法のうちのいずれか 1以上の 手法にて、集電体基板上に 1〜30 mの厚さに上記化合物が成膜され、
元素 Zは、 B、 C及び Nよりなる群の中力 選択される少なくとも 1種の元素である; 元素 Mは Siと元素 Z以外の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14 族、 15族、及び 16族力も選ばれる少なくとも 1種の元素である;
Xは、 Siに最も近い組成で平衡的に存在する化合物 SiZ (式中 a、 pは整数)の Z濃
a P
度 (pZ(a+p))に対して、下記式で算出される Z濃度比 Q(Z)が 0. 10〜0. 95とな る値である;そして
Q(Z) = [x/(l+x)]/[p/(a+p)]
yは、 y=0又は y^Oである。
[18] 前記一般式 SiZ Mにお!/ヽて、元素 Z力 で、 0. 053≤x≤0. 70、 0<y≤0. 50
x y
であり、
蒸着源、スパッタ源、若しくは溶射源が、 Si、 C、及び元素 Mを含み、
Siと Cと元素 Mとを同時に、蒸着法、スパッタ法、及び溶射法のうちのいずれ力 1以 上の手法にて、集電体基板上に 1〜30 mの厚さに上記化合物が成膜されることを 特徴とする請求項 16に記載の非水電解質二次電池用負極の製造方法。
[19] 前記一般式 SiZ Mにお!/ヽて、元素 Z力 で、 0. 053≤x≤0. 70、 y=0X«y=0
x y
であり、 蒸着源、スパッタ源、若しくは溶射源が、 Si、及び Cを含み、
Siと Cとを同時に、蒸着法、スパッタ法、及び溶射法のうちのいずれか 1以上の手法 にて、集電体基板上に 1〜30 mの厚さに上記化合物が成膜されることを特徴とす る請求項 17に記載の非水電解質二次電池用負極の製造方法。
[20] 集電体と、該集電体上に成膜された、一般式 SiC O (式中、 X, yは、それぞれ 0. 0
53≤x≤0. 70, 0< y≤0. 50の範囲の数である)で示される化合物を主成分とする 活物質薄膜とで構成される非水電解質二次電池用負極を製造する方法であって、 蒸着源、スパッタ源、若しくは溶射源が、 Si及び Cを含み、
成膜ガス中の酸素濃度が 0. 0001-0. 125%である雰囲気下にて、 Siと Cとを同 時に、蒸着法、スパッタ法、及び溶射法のうちのいずれか 1以上の手法にて、集電体 基板上に上記化合物が 1〜30 mの厚さに成膜される。
[21] 集電体と、該集電体上に成膜された、一般式 SiZ M (式中 Z、 M、 x、 yは下記条件 の通り)で表される化合物を主成分とする活物質薄膜とで構成される非水電解質二 次電池用負極を製造する方法であって、
蒸着源、スパッタ源、若しくは溶射源が、 Siを含み、
成膜ガス中の窒素濃度が 1〜22%である雰囲気下にて、 Siと Nとを同時に、蒸着 法、スパッタ法、及び溶射法のうちのいずれか 1以上の手法にて、集電体基板上に 1 〜30 μ mの厚さに上記化合物が成膜され、
元素 Zは、 Nである;
元素 Mは Siと N以外の周期表 2族、 4族、 8族、 9族、 10族、 11族、 13族、 14族、 1 5族、及び 16族力 選ばれる少なくとも 1種の元素である;
Xは、 Siに最も近い組成で平衡的に存在する化合物 SiNの N濃度 50原子%に対し て、下記式で算出される N濃度比 Q (N)が 0. 15〜0. 85となる値である;そして
Q (N) = [x/ ( l +x) ] /0. 5)
yは、 y= 0又は y^ Oである。
[22] リチウムイオンを吸蔵 ·放出可能な正極及び負極、並びに電解質を備える非水電解 質二次電池において、該負極が、請求項 1に記載の非水電解質二次電池用負極で あることを特徴とする非水電解質二次電池。
[23] 分子内に不飽和結合を有する環状炭酸エステル化合物を含有する非水系電解液 を用いたことを特徴とする請求項 22に記載の非水電解質二次電池。
[24] リチウムイオンを吸蔵 ·放出可能な正極及び負極、並びに電解質を備える非水電解 質二次電池において、該負極が、請求項 16に記載の非水電解質二次電池用負極 の製造方法により製造された非水電解質二次電池用負極であることを特徴とする非 水電解質二次電池。
[25] 分子内に不飽和結合を有する環状炭酸エステル化合物を含有する非水系電解液 を用いたことを特徴とする請求項 24に記載の非水電解質二次電池。
[26] リチウムイオンを吸蔵 ·放出可能な正極及び負極、並びに電解質を備える非水電解 質二次電池において、該負極が、請求項 17に記載の非水電解質二次電池用負極 の製造方法により製造された非水電解質二次電池用負極であることを特徴とする非 水電解質二次電池。
[27] 分子内に不飽和結合を有する環状炭酸エステル化合物を含有する非水系電解液 を用いたことを特徴とする請求項 26に記載の非水電解質二次電池。
[28] リチウムイオンを吸蔵 ·放出可能な正極及び負極、並びに電解質を備える非水電解 質二次電池において、該負極が、請求項 20に記載の非水電解質二次電池用負極 の製造方法により製造された非水電解質二次電池用負極であることを特徴とする非 水電解質二次電池。
[29] 分子内に不飽和結合を有する環状炭酸エステル化合物を含有する非水系電解液 を用いたことを特徴とする請求項 28に記載の非水電解質二次電池。
[30] リチウムイオンを吸蔵 ·放出可能な正極及び負極、並びに電解質を備える非水電解 質二次電池において、該負極が、請求項 21に記載の非水電解質二次電池用負極 の製造方法により製造された非水電解質二次電池用負極であることを特徴とする非 水電解質二次電池。
[31] 分子内に不飽和結合を有する環状炭酸エステル化合物を含有する非水系電解液 を用いたことを特徴とする請求項 30に記載の非水電解質二次電池。
PCT/JP2005/010344 2004-06-15 2005-06-06 非水電解質二次電池とその負極 WO2005124897A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05751033.1A EP1772915B1 (en) 2004-06-15 2005-06-06 Nonaqueous electrolyte secondary battery and negative electrode thereof
US11/629,654 US20080118844A1 (en) 2004-06-15 2005-06-06 Nonaqueous Electrolyte Secondary Battery and Negative Electrode Thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-177153 2004-06-15
JP2004177153 2004-06-15
JP2004-242578 2004-08-23
JP2004242578 2004-08-23
JP2004-286444 2004-09-30
JP2004286444 2004-09-30

Publications (1)

Publication Number Publication Date
WO2005124897A1 true WO2005124897A1 (ja) 2005-12-29

Family

ID=35510018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010344 WO2005124897A1 (ja) 2004-06-15 2005-06-06 非水電解質二次電池とその負極

Country Status (4)

Country Link
US (1) US20080118844A1 (ja)
EP (1) EP1772915B1 (ja)
KR (1) KR100860341B1 (ja)
WO (1) WO2005124897A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136393A1 (en) * 2007-07-27 2010-06-03 Hideharu Takezawa Lithium ion secondary battery
CN103022478A (zh) * 2011-09-28 2013-04-03 比亚迪股份有限公司 一种锂离子电池负极材料及其制备方法和一种锂离子电池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8715865B2 (en) 2007-07-11 2014-05-06 Basf Corporation Non-aqueous electrolytic solutions and electrochemical cells comprising the same
KR100878718B1 (ko) * 2007-08-28 2009-01-14 한국과학기술연구원 리튬이차전지용 실리콘 박막 음극, 이의 제조방법 및 이를포함하는 리튬이차전지
JP5333820B2 (ja) * 2008-05-23 2013-11-06 ソニー株式会社 二次電池用負極およびそれを備えた二次電池
CN102132443A (zh) * 2008-10-31 2011-07-20 日立麦克赛尔株式会社 非水二次电池
JP4800440B1 (ja) * 2010-12-22 2011-10-26 富久代 市村 シリコン化合物による固体型二次電池及びその製造方法
KR20120126303A (ko) * 2011-05-11 2012-11-21 삼성에스디아이 주식회사 극판 및 이를 포함하는 이차전지 및 극판의 제조방법
JP2013008586A (ja) * 2011-06-24 2013-01-10 Sony Corp リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6141641B2 (ja) * 2013-01-09 2017-06-07 三井金属鉱業株式会社 電解銅箔及び電子デバイス
KR102288128B1 (ko) * 2018-10-19 2021-08-11 주식회사 엘지에너지솔루션 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극 활물질의 제조 방법
CN110635139A (zh) * 2019-09-12 2019-12-31 深圳先进技术研究院 铜集流体及其制备方法、负电极以及二次电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302588A (ja) * 1994-05-10 1995-11-14 Mitsubishi Cable Ind Ltd リチウム二次電池用負極およびその製造方法
JPH08138744A (ja) * 1994-11-16 1996-05-31 Fuji Photo Film Co Ltd 非水二次電池
JPH08259213A (ja) * 1995-03-03 1996-10-08 Moli Energy 1990 Ltd 炭素質挿入化合物およびその再充電可能電池の負極としての使用
JPH11135115A (ja) * 1997-10-27 1999-05-21 Kao Corp 非水系二次電池用負極材料とその製造方法
JP2000149951A (ja) * 1998-09-11 2000-05-30 Nippon Steel Corp リチウム二次電池およびリチウム二次電池用負極活物質
JP2002356314A (ja) * 2001-03-26 2002-12-13 Shin Etsu Chem Co Ltd 部分窒化酸化珪素粉末およびその製造方法
JP2003007295A (ja) * 2001-03-06 2003-01-10 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2005216601A (ja) * 2004-01-28 2005-08-11 Sony Corp 負極および電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2423065A1 (fr) * 1978-04-12 1979-11-09 Battelle Memorial Institute Procede de fabrication d'electrodes pour piles a combustible, dispositif pour la mise en oeuvre du procede et electrodes resultant de ce procede
US5360680A (en) * 1990-07-19 1994-11-01 Electric Fuel Limited Mechanically rechargeable electric batteries and anodes for use therein
US6555272B2 (en) * 1998-09-11 2003-04-29 Nippon Steel Corporation Lithium secondary battery and active material for negative electrode in lithium secondary battery
WO2000033404A1 (fr) * 1998-12-03 2000-06-08 Kao Corporation Pile secondaire au lithium et son procede de fabrication
US20030099882A1 (en) * 2001-06-12 2003-05-29 Hampden-Smith Mark J. Methods and materials for the preparation of a zinc anode useful for batteries and fuel cells
EP1596460B1 (en) * 2003-01-14 2012-08-29 Mamoru Baba Light-detectable solid thin-film secondary battery
KR100721500B1 (ko) * 2003-03-26 2007-05-23 캐논 가부시끼가이샤 리튬2차전지용의 전극재료 및 이 전극재료를 가진전극구조체
US20080026297A1 (en) * 2005-01-11 2008-01-31 Air Products And Chemicals, Inc. Electrolytes, cells and methods of forming passivaton layers
JP5217433B2 (ja) * 2005-05-16 2013-06-19 三菱化学株式会社 非水電解質二次電池、その負極、及びその材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302588A (ja) * 1994-05-10 1995-11-14 Mitsubishi Cable Ind Ltd リチウム二次電池用負極およびその製造方法
JPH08138744A (ja) * 1994-11-16 1996-05-31 Fuji Photo Film Co Ltd 非水二次電池
JPH08259213A (ja) * 1995-03-03 1996-10-08 Moli Energy 1990 Ltd 炭素質挿入化合物およびその再充電可能電池の負極としての使用
JPH11135115A (ja) * 1997-10-27 1999-05-21 Kao Corp 非水系二次電池用負極材料とその製造方法
JP2000149951A (ja) * 1998-09-11 2000-05-30 Nippon Steel Corp リチウム二次電池およびリチウム二次電池用負極活物質
JP2003007295A (ja) * 2001-03-06 2003-01-10 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2002356314A (ja) * 2001-03-26 2002-12-13 Shin Etsu Chem Co Ltd 部分窒化酸化珪素粉末およびその製造方法
JP2005216601A (ja) * 2004-01-28 2005-08-11 Sony Corp 負極および電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136393A1 (en) * 2007-07-27 2010-06-03 Hideharu Takezawa Lithium ion secondary battery
CN103022478A (zh) * 2011-09-28 2013-04-03 比亚迪股份有限公司 一种锂离子电池负极材料及其制备方法和一种锂离子电池

Also Published As

Publication number Publication date
KR20070046066A (ko) 2007-05-02
EP1772915A1 (en) 2007-04-11
EP1772915A4 (en) 2008-06-11
KR100860341B1 (ko) 2008-09-26
US20080118844A1 (en) 2008-05-22
EP1772915B1 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP4972880B2 (ja) 非水電解質二次電池用負極及びその製造方法、並びに非水電解質二次電池
WO2005124897A1 (ja) 非水電解質二次電池とその負極
JP4671950B2 (ja) リチウム電池用負極活物質、その製造方法、及びこれを採用したリチウム電池用負極とリチウム電池
JP5217433B2 (ja) 非水電解質二次電池、その負極、及びその材料
KR100666822B1 (ko) 개선된 전기화학 특성을 갖는 음극활물질 및 이를 포함하는전기 화학 소자
JP6070540B2 (ja) 二次電池および電解液
KR101579641B1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
JP2008305781A (ja) 電極及びその製造方法、並びに非水電解質二次電池
JP2008077993A (ja) 電極及び非水電解質二次電池
US20100092856A1 (en) Anode and secondary battery
JP4899841B2 (ja) 非水電解液二次電池
JP2004146292A (ja) 非水電解質二次電池
JP5961910B2 (ja) リチウム二次電池用負極活物質、リチウム二次電池、リチウム二次電池の製造方法、及び、リチウム二次電池用の負極の製造方法
US20100124706A1 (en) Secondary battery and anode
JP5194483B2 (ja) 非水電解質二次電池用シリコン負極集電体、非水電解質二次電池用シリコン負極及びその製造方法、並びに非水電解質二次電池
JP6927038B2 (ja) リチウムイオン二次電池
JP2007188871A (ja) リチウムイオン二次電池
JP5320671B2 (ja) 非水電解質二次電池用負極材、非水電解質二次電池用負極、及び非水電解質二次電池
JP2007184252A (ja) 非水電解質二次電池用電極材の製造方法、非水電解質二次電池用電極及びその製造方法、非水電解質二次電池用電極集電体の製造方法、並びに非水電解質二次電池
JP2007188877A (ja) 電極及びその製造方法、並びに非水電解質二次電池
CN100485999C (zh) 非水电解质二次电池及其负极
US20210020918A1 (en) Negative electrode for electrochemical element and a lithium ion secondary battery
WO2018084046A1 (ja) リチウムイオン二次電池、その製造方法およびリチウムイオン二次電池の前駆体
US11848446B2 (en) Anode-free rechargeable lithium battery including transition metal dichalcogenide layer and method of manufacturing same
JP2008108459A (ja) 非水電解質二次電池用電極材の製造方法、非水電解質二次電池用電極及び非水電解質二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580019725.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005751033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077000783

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005751033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11629654

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11629654

Country of ref document: US