JP2009135328A - 不揮発性半導体記憶装置 - Google Patents

不揮発性半導体記憶装置 Download PDF

Info

Publication number
JP2009135328A
JP2009135328A JP2007311340A JP2007311340A JP2009135328A JP 2009135328 A JP2009135328 A JP 2009135328A JP 2007311340 A JP2007311340 A JP 2007311340A JP 2007311340 A JP2007311340 A JP 2007311340A JP 2009135328 A JP2009135328 A JP 2009135328A
Authority
JP
Japan
Prior art keywords
layer
memory device
memory
nonvolatile semiconductor
columnar semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007311340A
Other languages
English (en)
Inventor
Yoshiaki Fukuzumi
嘉晃 福住
Hideaki Aochi
英明 青地
Ryuta Katsumata
竜太 勝又
Takashi Kito
傑 鬼頭
Masaru Kito
大 木藤
Hiroyasu Tanaka
啓安 田中
Yasuyuki Matsuoka
泰之 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007311340A priority Critical patent/JP2009135328A/ja
Priority to US12/325,711 priority patent/US8350314B2/en
Publication of JP2009135328A publication Critical patent/JP2009135328A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】安価に高集積化された不揮発性半導体記憶装置を提供する。
【解決手段】不揮発性半導体記憶装置100は、電気的に書き換え可能な複数のメモリセルが直列に接続された複数のメモリストリングスMSを有する。メモリストリングスMSは、基板に対して垂直方向に延びるメモリ柱状半導体層38と、半導体基板Baに対して平行に形成され且つメモリ柱状半導体層38の側壁との間に第4空隙Ag4を有する第1〜第4ワード線導電層36a〜36dと、第4空隙Ag4に面する第1〜第4ワード線導電層36a〜36dの側面に形成された電荷蓄積層39bの側壁側に形成された電荷蓄積層39bとを備える。第1〜第4ワード線導電層36a〜36dは、メモリ柱状半導体層38に対して相対移動可能に構成されている。
【選択図】図4

Description

本発明は、電気的にデータの書き換えが可能な半導体記憶装置に関し、半導体記憶装置の中でも、特に、不揮発性半導体記憶装置に関する。
従来、シリコン基板上の2次元平面内に素子を集積して、LSIが形成されてきた。メモリの記憶容量を増加させるには、一素子の寸法を小さくする(微細化する)しかないが、近年その微細化もコスト的、技術的に困難なものになってきた。微細化のためにはフォトリソグラフィの技術向上が必要であるが、仮に微細化が達成されたとしても、駆動電圧などがスケーリングされない限り、素子間の耐圧など物理的な限界点を迎える事が予想される。
そこで、近年、メモリの集積度を高めるために、様々な施策が検討されている。例えば、その施策として、多値技術を採用する構成、メモリセルを3次元的に積層する構成(特許文献1乃至3参照)、MEMS(Micro Electro Mechanical Systems)を用いる構成が挙げられる。しかしながら、以上に挙げた施策であっても、その実現には多くの問題を有する。例えば、3次元的にメモリセルを積層した場合、従来の方法では積層数を1層追加する度に増加する工程数が多く、コスト増加の要因と成り得る。また、MEMSを用いた所謂シーク・スキャン型のメモリについても、1ビットのデータを保持するために必要な記録媒体上の面積が、熱的安定性等から決まっており、記録密度には上限値がある。
特開2003−078044号 米国特許第5599724号 米国特許第5707885号
本発明は、安価に高集積化された不揮発性半導体記憶装置を提供する。
本発明の一態様に係る不揮発性半導体記憶装置は、電気的に書き換え可能な複数のメモリセルが直列に接続された複数のメモリストリングスを有する不揮発性半導体記憶装置であって、前記メモリストリングスは、基板に対して垂直方向に延びる柱状半導体層と、前記基板に対して平行に形成され且つ前記柱状半導体層の側壁との間に空隙を有する複数の導電層と、前記空隙に面する前記柱状半導体層の側面或いは前記空隙に面する前記導電層の側面側に形成された、印加電圧に伴い特性が変化する特性変化層とを備え、前記複数の導電層は、前記柱状半導体層に対して所定方向に相対移動可能に構成されていることを特徴とする。
本発明は、安価に高集積化された不揮発性半導体記憶装置を提供することが可能となる。
以下、図面を参照して、本発明に係る不揮発性半導体記憶装置の一実施形態について説明する。
[第1実施形態]
(第1実施形態に係る不揮発性半導体記憶装置100の構成)
図1は、本発明の第1実施形態に係る不揮発性半導体記憶装置100の概略図を示す。図1に示すように、第1実施形態に係る不揮発性半導体記憶装置100は、主として、メモリセル領域12、ワード線駆動回路13、ソース側選択ゲート線(SGS)駆動回路14、ドレイン側選択ゲート線(SGD)駆動回路15、センスアンプ16を有する。メモリセル領域12は、データを記憶するメモリセルを有する。ワード線駆動回路13は、ワード線WLにかける電圧を制御する。ソース側選択ゲート線(SGS)駆動回路14は、ソース側選択ゲート線SGSにかける電圧を制御する。ドレイン側選択ゲート線(SGD)駆動回路15は、ドレイン側選択ゲート線(SGD)にかける電圧を制御する。センスアンプ16は、メモリセルから読み出した電位を増幅する。なお、上記の他、第1実施形態に係る不揮発性半導体記憶装置100は、ビット線BLにかける電圧を制御するビット線駆動回路、ソース線SLにかける電圧を制御するソース線駆動回路を有する(図示略)。
また、図1に示すように、第1実施形態に係る不揮発性半導体記憶装置100においては、メモリセル領域12を構成するメモリセルは、半導体層を複数積層することによって形成されている。また、図1に示すとおり各層のワード線WLは、ある領域で2次元的に広がっている。各層のワード線WLは、それぞれ同一層からなる平面構造を有しており、板状の平面構造となっている。
図2は、第1実施形態に係る不揮発性半導体記憶装置100のメモリセル領域12の一部の概略構成図である。第1実施形態においては、メモリセル領域12は、メモリセルMTr1mn〜MTr4mn、ソース側選択トランジスタSSTrmn及びドレイン側選択トランジスタSDTrmnからなるメモリストリングスMSをm×n個(m、nは自然数)を有している。図2においては、m=3、n=4の一例を示している。
各メモリストリングスMSのメモリセル(MTr1mn〜MTr4mn)のゲートに接続されているワード線(WL1〜WL4)は、それぞれ同一の導電膜によって形成されており、それぞれ共通である。即ち、各メモリストリングスMSのメモリセルMTr1mnは、トランジスタの構成を有し、そのゲートの全てがワード線WL1に接続されている。また、各メモリストリングスMSのメモリセルMTr2mnのゲートの全てがワード線WL2に接続されている。また、各メモリストリングスMSのメモリセルMTr3mnのゲートの全てがワード線WL3に接続されている。また、各メモリストリングスMSのメモリセルMTr4mnのゲートの全てがワード線WL4に接続されている。第1実施形態に係る不揮発性半導体記憶装置100においては、図1及び図2に示すように、ワード線(WL1〜WL4)は、それぞれ、2次元的に広がっており、板状の平面構造を有している。また、ワード線(WL1〜WL4)は、それぞれ、メモリストリングスMSに略垂直に配置されている。
各メモリストリングスMSは、半導体基板BaのP−well領域Ba1に形成されたn+領域の上に柱状の柱状半導体CLmn(図2に示す場合、m=1〜3、n=1〜4)を有している。各柱状半導体CLmnは、半導体基板Baから垂直方向に形成されており、半導体基板Ba及びワード線(WL1〜WL4)の面上においてマトリクス状になるように配置されている。つまり、メモリストリングスMSも、柱状半導体CLmnに垂直な面内にマトリクス状に配置されている。柱状半導体CLmnと、ワード線WL1〜WL4との間には、絶縁層(図示せず)、及び空隙(第4空隙)Ag4が形成されている。なお、この柱状半導体CLmnは、円柱状であっても、角柱状であってもよい。また、柱状半導体CLmnとは、段々形状を有する柱状の半導体を含む。
また、図2に示すように、メモリストリングスMSの下方には、柱状半導体CLmnと絶縁層(図示せず)を介し接してソース側選択トランジスタSSTrmnを構成するソース側選択ゲート線SGSが設けられている。ソース側選択ゲート線SGSは、ワード線WL1〜WL4と同様に、2次元的に広がっており、板状の平面構造を有している。また、ソース側選択ゲート線SGSを貫通するように柱状半導体層CLmnが設けられている。なお、上記構成においては、板状平面構造のソース側選択ゲート線SGSを用いたが、後述のドレイン側選択ゲート線SGDと同様に、ソース側選択ゲート線SGSは、ライン状に加工しても良い。
また、図2に示すように、メモリストリングスMSの上方には、柱状半導体CLmnと絶縁膜(図示せず)を介し接してドレイン側選択トランジスタSDTrmnを構成するドレイン側選択ゲート線SGD(図2に示す場合、SGD1〜SGD4)が設けられている。各ドレイン側選択ゲート線SGDは、互いに絶縁分離され、ワード線WL1〜WL4とは異なり、カラム方向に所定ピッチの間隔を設けてロウ方向に延びるストライプ状に形成されている。また、ストライプ状に形成された各ドレイン側選択ゲート線SGDの幅方向の中心には、その中心を貫通するように柱状半導体層CLmnが設けられている。なお、上記のロウ方向とは、半導体基板Baに平行な方向(積層方向に直交する方向)である。また、カラム方向とは、積層方向及びロウ方向に直交する方向である。
次に、図2及び図3を参照して、第1実施形態におけるメモリストリングスMSにより構成される回路構成及びその動作を説明する。図3は、第1実施形態における一つのメモリストリングスMSの回路図である。
図2及び図3に示すように、第1実施形態において、メモリストリングスMSは、4つのメモリセルMTr1mn〜MTr4mn並びにソース側選択トランジスタSSTrm及びドレイン側選択トランジスタSDTrmnを有している。これら4つのメモリセルMTr1mn〜MTr4mn並びにソース側選択トランジスタSSTrmn及びドレイン側選択トランジスタSDTrmnは、それぞれ直列に接続されている(図3参照)。第1実施形態のメモリストリングスMSにおいては、半導体基板Ba上のP−型領域(P−Well領域)Ba1に形成されたn+領域に柱状半導体CLmnが形成されている。つまり、ソース側選択トランジスタSSTrmnのソースにはソース線SL(半導体基板BaのP−well領域Ba1に形成されたn+領域)が接続されている。また、ドレイン側選択トランジスタSDTrmnのドレインにはビット線BLが接続されている。
各メモリセルMtrmnは、柱状半導体CLmn、その柱状半導体CLmnを空隙Ag4(図2を参照)を介して取り囲むように形成された絶縁層及び電荷蓄積層(図2、図3では図示せず)、それら絶縁層及び電荷蓄積層を取り囲むように形成されたワード線WLを有する。ワード線WLの絶縁膜に囲まれた電荷蓄積層に接する端部は、メモリセルMtrmnの制御ゲート電極として機能する。メモリセルMTrmnのソース及びドレインは、柱状半導体CLmnに形成される。
ソース側選択トランジスタSSTrmnは、柱状半導体CLmn、その柱状半導体CLmnを取り囲むように形成された絶縁層、その絶縁層を取り囲むように形成されたソース側選択ゲート線SGSを有する。ソース側選択ゲート線SGSの絶縁層に接する端部は、ソース側選択トランジスタSSTrmnの制御ゲートとして機能する。
ドレイン側選択トランジスタSDTrmnは、柱状半導体CLmn、その柱状半導体CLmnを取り囲むように形成された絶縁層、その絶縁層を取り囲むように形成されたドレイン側選択ゲート線SGDを有する。ドレイン側選択ゲート線SGDの絶縁層に接する端部は、ドレイン側選択トランジスタSDTrmnの制御ゲートとして機能する。
上記構成を有する不揮発性半導体記憶装置100においては、ビット線BL1〜BL3、ドレイン側選択ゲート線SGD、ワード線WL1〜WL4、ソース側選択ゲート線SGS、ソース線SLの電圧は、ビット線駆動回路(図示略)、ドレイン側選択ゲート線駆動回路15、ワード線駆動回路13、ソース側選択ゲート線駆動回路14、ソース線駆動回路(図示略)、及びビット線駆動回路(図示略)によって制御される。すなわち、所定のメモリセルMTrmnの電荷蓄積層の電荷を制御することによって、データの読み出し、書き込み、消去を実行する。つまり、ドレイン側選択ゲート線駆動回路15、ワード線駆動回路13、ソース側選択ゲート線駆動回路14、ソース線駆動回路、及びビット線駆動回路は、メモリストリングスMSを制御する制御回路としての機能を有する。
(第1実施形態に係る不揮発性半導体記憶装置の具体的構成)
次に、図4及び図5を参照して、不揮発性半導体記憶装置100の更に具体的構成を説明する。図4は、第1実施形態に係る不揮発性半導体記憶装置100の断面構造図である。図4に示すように、不揮発性半導体記憶装置100(メモリセルストリングスMS)は、下層から上層へと、ソース側選択トランジスタ層20、メモリ層30、及びドレイン側選択トランジスタ層40を有する。ソース側選択トランジスタ層20は、ソース側選択トランジスタSSTrmnとして機能する。メモリ層30は、メモリセルMtrmnとして機能する。ドレイン側選択トランジスタ層40は、ドレイン側選択トランジスタSDTrmnとして機能する。
ソース側選択トランジスタ層20は、半導体基板Baのソース線層(ソース線SLとして機能)上に形成されたソース側第1絶縁層21と、ソース側第1絶縁層21の上面に形成されたソース側導電層22と、ソース側導電層22の上面に形成されたソース側第2絶縁層23とを有する。
また、ソース側選択トランジスタ層20は、ソース側第1絶縁層21、ソース側導電層22、及びソース側第2絶縁層23を貫通して形成されたソース側ホール24、及びソース側ホール24内に形成されたソース側柱状半導体層25を有する。ソース側柱状半導体層25の側壁と、ソース側第1絶縁層21、ソース側導電層22、及びソース側第2絶縁層23との間には、ソース側ゲート絶縁層26が形成されている。ソース側柱状半導体層25は、アモルファスシリコンにて形成されている。ソース側ゲート絶縁層26は、酸化シリコン(SiO)にて形成されている。
図5は、メモリ層30の上面図である。図5に示すように、メモリ層30は、周辺領域からメモリセル領域12へと向かって、上面からみてメモリセル領域12を囲むように矩形枠状に形成された第1フレーム層31、第2フレーム層32、及び第3フレーム層33を有する。第1フレーム層31、第2フレーム層32、及び第3フレーム層33は、シリコン(Si)にて形成されている。
第1フレーム層31は、図4に示すように、ソース側第2絶縁層23上の分離絶縁層34の上面に形成されている。すなわち、第1フレーム層31は、分離絶縁層34に対して固定されている。また、メモリセル領域12側の第1フレーム層31の側壁及び分離絶縁層34の上面には、第1保護絶縁層31aが形成されている。また、メモリセル領域12と反対側の第1フレーム層31の側壁及び分離絶縁層34の上面には、第1フレーム層31の上面まで堆積された周辺絶縁層31bが形成されている。第1保護絶縁層31a及び周辺絶縁層31bは、酸化シリコン(SiO)にて形成されている。
第2フレーム層32は、図5に示すように、ロウ方向の両端に形成されカラム方向に延びる2対の第1接続層32aを介して第1フレーム層31に接続されている。2対の第1接続層32aにより、第2フレーム層32は、図4に示すように、第1保護絶縁層31aとの間にロウ方向及びカラム方向に形成された第1空隙Ag1を介して配置されている。また、第2フレーム層32は、分離絶縁層34から積層方向に第2空隙Ag2を介して配置されている。すなわち、第2フレーム層32は、第1フレーム層31及び分離絶縁層34に対しロウ方向へ相対移動可能に構成されている。第2フレーム層32の側壁には、第2保護絶縁層32bが形成されている。第2保護絶縁層32bは、酸化シリコン(SiO)にて形成されている。
第3フレーム層33は、図5に示すように、ロウ方向の両端に形成されロウ方向に延びる2対の第2接続層33aを介して第2フレーム層32に接続されている。2対の第2接続層33aにより、第3フレーム層33は、図4に示すように、第2フレーム層32との間のロウ方向及びカラム方向に第3空隙Ag3を介して配置されている。また、第3フレーム層33は、分離絶縁層34から積層方向に第2空隙Ag2を介して配置されている。第3フレーム層33の底部には、図4に示すように、第3フレーム層33のロウ方向及びカラム方向の端部まで延びる第3フレーム底部層33bが形成されている。すなわち、第3フレーム層33は、第2フレーム層32に対しカラム方向へ相対移動可能に構成されている。第3フレーム層33の側壁及び第3フレーム底部層33bの下面には、第3保護絶縁層33cが形成されている。第3保護絶縁層33cは、酸化シリコン(SiO)にて形成されている。
第3フレーム底部層33bの上面には、層間絶縁層35が形成され、この層間絶縁層35の間に、第1〜第4ワード線導電層36a〜36dが形成されている。第1〜第4ワード線導電層層36a〜36dは、ワード線WL1〜WL4として機能する。第1〜第4ワード線導電層36a〜36dは、2次元的に広がり、そのロウ方向の端部は、階段状に形成されている。第1〜第4ワード線導電層36a〜36dの上面のロウ方向端部には、メモリ層30の上面まで延びるプラグ導電体361が形成されている。図示は省くが、プラグ導電体361の上面に接続された配線は、第1接続層32a及び第2接続層33a上を通して、周辺領域に取り出されている。層間絶縁層35は、酸化シリコン(SiO)にて構成されている。第1〜第4ワード線導電層36a〜36dは、ポリシリコンにて構成されている。
ここで、図5に示すように、第1フレーム層31及び第2フレーム層32の間には、第1アクチュエータAc1が設けられている。また、第2フレーム層32及び第3フレーム層33の間には、第2アクチュエータAc2が設けられている。第1アクチュエータAc1は、第2フレーム層32を第1フレーム層31に対してロウ方向に変位させる。第2アクチュエータAc2は、第3フレーム層33を第2フレーム層32に対してカラム方向に変位させる。第1アクチュエータAc1及び第2アクチュエータAc2は、櫛歯静電容量型に構成されている。また、第1アクチュエータAc1及び第2アクチュエータAc2は、ピエゾ素子、熱膨張型素子にて構成されたものであってもよい。
また、メモリ層30は、ソース側柱状半導体25と整合する位置に、層間絶縁層35、第1〜第4ワード線導電層36a〜36d、第3フレーム底部層33b、第3保護絶縁層33c、第1保護絶縁層31a、及び分離絶縁層34を貫通するようにメモリホール37が形成されている。メモリホール37内には、ソース側柱状半導体層25と整合する位置にメモリ柱状半導体層38が形成されている。メモリ柱状半導体層38は、アモルファスシリコンにて形成されている。メモリ柱状半導体層38と後述するブロック絶縁層39cとの間には、第4空隙Ag4が介在している。なお、メモリ柱状半導体層38は、半導体基板Baに対して固定されている。
また、図6は、図4の拡大図である。図6に示すように、メモリホール37内の第1〜第4ワード線導電層36a〜36dの側壁には、順次、ブロック絶縁層39a、電荷蓄積層39b、トンネル絶縁層39cが形成されている。ブロック絶縁層39aは、酸化シリコンにて形成されている。電荷蓄積層39bは、窒化シリコン(SiN)にて形成されている。トンネル絶縁層39cは、酸化シリコン(SiO)にて形成されている。
図7は、図4に示したメモリ層30の一部概略上面図である。図4及び図7に示すように、メモリホール37の径は、メモリ柱状半導体層38の径よりも大きく形成されており、メモリホール37とメモリ柱状半導体層38との間には、第4空隙Ag4が形成されている。ここで、例えば、メモリホール37の径が”F”であり、隣接するメモリホール37の最短距離が”F”であるとする。このような条件において、単位面積当たりのメモリホール37に面する電荷蓄積層の周の長さの割合Rは、R=πF/4F≒0.79/Fとなる。
上記メモリ層30の構成を換言すると、第1〜第4ワード線導電層36a〜36dは、半導体基板Baに対して平行に形成され且つメモリ柱状半導体層38との間に第4空隙Ag4を有する。また、電荷蓄積層39bは、第4空隙Ag4に面する第1〜第4ワード線導電層36a〜36dの側面側に形成されている。
ドレイン側選択トランジスタ層40は、周辺絶縁層31b上に形成されたドレイン側第1絶縁層41と、ドレイン側第1絶縁層41の上面に形成されたドレイン側導電層42と、ドレイン側導電層42の上面に形成されたドレイン側第2絶縁層43とを有する。ここで、ドレイン側選択トランジスタ層40(ドレイン側第1絶縁層41)は、メモリ層30の上面に設けられた第5空隙Ag5を介して形成されている。ドレイン側第1絶縁層41、ドレイン側導電層42、及びドレイン側第2絶縁層43は、カラム方向に所定ピッチの間隔を設けてロウ方向に延びるストライプ状に形成されている。ストライプ状に形成されたドレイン側第1絶縁層41、ドレイン側導電層42、及びドレイン側第2絶縁層43のカラム方向の間には、層間絶縁層が設けられている(図示略)。例えば、ドレイン側第1絶縁層41及びドレイン側第2絶縁層43は、酸化シリコン(SiO)にて形成されている。ドレイン側導電層42は、ポリシリコンにて形成されている。なお、ドレイン側導電層42の一端は、上述したドレイン側選択トランジスタSDTrmnの制御ゲートとして機能する。
また、ドレイン側選択トランジスタ層40は、ドレイン側第1絶縁層41、ドレイン側導電層42、及びドレイン側第2絶縁層43を貫通してドレイン側ホール44、及びドレイン側ホール44内に形成されたドレイン側柱状半導体層45を有する、ドレイン側柱状半導体層45の側壁と、ドレイン側第1絶縁層41、ドレイン側導電層42、及びドレイン側第2絶縁層43との間には、ドレイン側ゲート絶縁層46が形成されている。ドレイン側柱状半導体層45は、アモルファスシリコンにて形成されている。ドレイン側ゲート絶縁層46は、酸化シリコンにて形成されている。
また、ドレイン側柱状半導体層45の上部であって、ドレイン側柱状半導体層45と整合する位置にビット線層47が形成されている。ビット線層47は、ビット線BL(図2参照)として機能する。
(第1実施形態に係る不揮発性半導体記憶装置100の動作)
次に、図8及び図9を参照して、第1実施形態に係る不揮発性半導体記憶装置100の動作について説明する。図8(a)は、通常時における不揮発性半導体記憶装置100のメモリストリングスMSの断面図を示し、図8(b)は、その上面図を示す。図9(a)は、第2フレーム層32の移動時における不揮発性半導体記憶装置100のメモリストリングスMSの断面図を示し、図9(b)は、その上面図を示す。
上記構成により、第1アクチュエータAc1は、第2フレーム層32及び第2フレーム層32に形成された層、第3フレーム層33及び第3フレーム層33に形成された層をロウ方向に移動させる。第2アクチュエータAc2は、第3フレーム層33及び第3フレーム層33に形成された層をカラム方向に移動させる。
通常時、第1アクチュエータAc1及び第2アクチュエータAc2により、図8に示すように、メモリストリングスMSにおいて、メモリ柱状半導体層38の中心は、メモリホール37の中心と一致するようにされている。
一方、データの書き込み時及び読み出し時、第1アクチュエータAc1及び第2アクチュエータAc2により、第3フレーム層33は、カラム方向及びロウ方向(図9に示す矢印M1)に移動する。つまり、第1〜第4ワード線導電層36a〜36dは、メモリ柱状半導体層38に対して相対的に移動する。この移動に伴い、図9に示すように、メモリストリングスMSにおいて、メモリ柱状半導体層38の中心は、メモリホール37の中心から偏心した位置となる。換言すると、メモリ柱状半導体層38の側壁の一部が、電荷蓄積層39bの一部に対し接近する。そして、図9に示す状態において、例えば、第4ワード線導電層36dに電圧が印加されると、メモリ柱状半導体層38が接近した電荷蓄積層39bの一部へのデータの書き込み及び電荷蓄積層39bの一部からのデータの読み出しが実行される。ここで、メモリ柱状半導体層38に対する電荷蓄積層39bの相対移動距離は、最大で10nm程度である。上述した第1〜第4ワード線導電層36a〜36dの移動方向を変えることにより、メモリホール37(第4空隙Ag4)周りの一周の電荷蓄積層39bの複数箇所(ロウ方向、及びカラム方向に亘る箇所)においてデータの書き込み及び読み出しを実行することができる。
(第1実施形態に係る不揮発性半導体記憶装置100の製造方法)
次に、図10〜図26を参照して、第1実施形態に係る不揮発性半導体記憶装置100の製造方法について説明する。先ず、図10に示すように、半導体基板Ba上にソース側トランジスタ層20を形成する。
続いて、図11に示すように、窒化シリコン(SiN)、酸化シリコン(SiO)、シリコンゲルマニウム(SiGe)、酸化シリコン(SiO)、及びシリコン(Si)を堆積させ、分離絶縁層34、第1保護絶縁層31a、第1犠牲層51a、第2保護絶縁層33c、及び第3フレーム底部層33bを形成する。
続いて、図12に示すように、ソース側柱状半導体層25と整合する位置に、第3フレーム底部層33b、第2保護絶縁層33c、第1犠牲層51a、第1保護絶縁層31a、及び分離絶縁層34を貫通するように第1メモリホール37aを形成する。
次に、図13に示すように、第1メモリホール37aの側壁から順次、シリコンゲルマニウム(SiGe)、及びアモルファスシリコンを堆積及び異方性エッチングすることで、第2犠牲層51b、及び第1メモリ柱状半導体層38aを形成する。
続いて、図14に示すように、第1メモリ柱状半導体層38aの上面、第2犠牲層51bの上面、及び第3フレーム底部層33bの上面に、交互に、酸化シリコン(SiO)、ポリシリコンを積層させ、第1〜第4ワード線導電層36a〜36d、及びそれらの上下に層間絶縁層35を形成する。
次に、図15に示すように、第1メモリホール37aと整合する位置に、第1〜第4ワード線導電層36a〜36d、及びそれらの上下に形成された層間絶縁層35を貫通するように第2メモリホール37bを形成する。なお、第1メモリホール37aと第2メモリホール37bとを合わせて、メモリホール37を構成する。
続いて、図16に示すように、第2メモリホール37bの側壁から、順次、酸化シリコン(SiO),窒化シリコン(SiN)、酸化シリコン(SiO)、シリコンゲルマニウム(SiGe)、及びアモルファスシリコンを積層させる。つまり、第2メモリホール37bの側壁から、順次、ブロック絶縁層39a、電化蓄積層39b、トンネル絶縁層39c、第3犠牲層51c、及び第2メモリ柱状半導体層38bを形成する。なお、第1メモリ柱状半導体層38aと第2メモリ柱状半導体層38bとを合わせて、メモリ柱状半導体層38を構成する。
次に、図17に示すように、第1保護絶縁層31a、第1犠牲層51a、第3フレーム底部層33b、第1〜第4ワード線導電層36a〜36d、及び層間絶縁層35を階段状に加工する。
続いて、図18に示すように、メモリ柱状半導体層38の上面まで酸化シリコンを堆積させ、層間絶縁層52を形成する。
次に、図19に示すように、分離絶縁層34の上面に達するまで層間絶縁層52を貫通するように第1溝53aを形成する。この第1溝53aは、上面からみてメモリセル領域12を囲む矩形枠状とする。この第1溝53aには、シリコンを堆積させ、第1フレーム層31を形成する。
また、第1犠牲層51aの上面に達するまで層間絶縁層52を貫通するように第2溝53bを形成する。この第2溝53bは、第1溝53aよりもメモリセル領域12側に形成され、その形状は、上面からみてメモリセル領域12を囲う矩形形状とする。この第2溝53bには、シリコンゲルマニウムを堆積させ、第4犠牲層51dを形成する。
また、第1犠牲層51aの上面に達するまで層間絶縁層52を貫通するように第3溝53cを形成する。この第3溝53cは、第2溝53bよりもメモリセル領域12側に形成され、その形状は、上面からみてメモリセル領域12を囲む矩形枠状とする。この第3溝53cには、シリコンを堆積させ、第2フレーム32を形成する。
また、第1犠牲層51aの上面に達するまで層間絶縁層52を貫通するように第4溝53dを形成する。この第4溝53dは、第3溝53cよりもメモリセル領域12側に形成され、その形状は、上面からみてメモリセル領域12を囲む矩形枠状とする。この第4溝53dには、シリコンゲルマニウムを堆積させ、第5の犠牲像51eを形成する。
また、第3フレーム底部層33bの上面に達するまで層間絶縁層52を貫通するように第5溝53eを形成する。この第5溝53eは、第4溝53dよりもメモリセル領域12側に形成され、その形状は、上面からみてメモリセル領域12を囲む矩形枠状とする。この第5溝53eには、シリコンを堆積させ、第3フレーム33を形成する。
また、各第1〜第4ワード線導電層36a〜36dのロウ方向端部の上面に達するまで層間絶縁層52を貫通するように第1〜第4ホール53f〜53iを形成する。これら第1〜第4ホール53f〜53iには、ポリシリコンを堆積させ、プラグ導電体361を形成する。
続いて、図20に示すように、メモリ柱状半導体層38の上面であって、第1フレーム層31の上面を覆うように、第6犠牲層51fを形成する。その後、第6犠牲層51f上に酸化シリコン(SiO)を堆積させ、ドレイン側第1絶縁層41を形成する。
次に、図21に示すように、メモリホール37に整合する位置に、ドレイン側第1絶縁層41及び第6犠牲層51fを貫通するように第1ドレイン側ホール44aを形成する。
続いて、図22に示すように、第1ドレイン側ホール44aの側壁から、シリコンゲルマニウム、及びアモルファスシリコンを堆積及び異方性エッチングすることで、第7犠牲層51g、及びドレイン側第1柱状半導体層45aを形成する。
次に、図23に示すように、ドレイン側第1絶縁層41を更に堆積させた後、そのドレイン側第1絶縁層41上に、ポリシリコン及び酸化シリコン(SiO)を堆積させ、ドレイン側導電層42及びドレイン側第2絶縁層43を形成する。
続いて、図24に示すように、ドレイン側第1ホール44aに整合する位置に、ドレイン側第2絶縁層43及びドレイン側導電層42を貫通するようにドレイン側第2ホール44bを形成する。なお、ドレイン側第1ホール44aとドレイン側第2ホール44bとを合わせて、ドレイン側ホール44を構成する。
次に、図25に示すように、ドレイン側第2ホール44bの側壁に、順次、酸化シリコン及びアモルファスシリコンを堆積させ、ドレインゲート絶縁層46、及びドレイン側第2柱状半導体層45bを形成する。なお、ドレイン側第1柱状半導体層45aとドレイン側第2柱状半導体層45bとを合わせて、ドレイン側柱状半導体層45を構成する。
続いて、図26に示すように、ドレイン側第2絶縁層43上に、酸化シリコン(SiO)を更に堆積させ、ドレイン側第2絶縁層43を更に厚く形成する。
次に、図27に示すように、ドレイン側ホール44と整合する位置に、ドレイン側第2絶縁層43を貫通するようにビット線配線溝44cを形成する。また、第6犠牲層51fに達する深さまで、ドレイン側第2絶縁層43、ドレイン側導電層42、及びドレイン側第1絶縁層41を貫通するようにドレイン側第3ホール44dを形成する。なお、ビット線配線溝44cには、ポリシリコンを堆積させ、ビット線層47を形成する。
そして、図27に示す工程の後、例えばCIFの蒸気雰囲気中で、ドレイン側第3ホール44dから、第1〜第7犠牲層51a〜51gを除去し、図4に示す不揮発性半導体記憶装置100の構成を形成する。ここで、第1犠牲層の51aの除去により、第2空隙Ag2が形成される。また、第2犠牲層51b及び第3犠牲層51cの除去により、第4空隙Ag4が形成される。また、第4犠牲層51dの除去により、第1空隙Ag1が形成される。また、第5犠牲層51eの除去により、第3空隙Ag3が形成される。また、第6犠牲層51f及び第7犠牲層51gの除去により、第5空隙Ag5が形成される。
(第1実施形態に係る不揮発性半導体記憶装置100の効果)
次に、第1実施形態に係る不揮発性半導体記憶装置100の効果について説明する。第1実施形態に係る不揮発性半導体記憶装置100は、上記積層構造に示したように高集積化可能である。また、不揮発性半導体記憶装置100は、メモリセルMTrmnとなる各層、及びソース側選択トランジスタSSTrmn,ドレイン側選択トランジスタSDTrmnとなる各層を、ワード線WL(ワード線導電層)の積層数に関係なく所定のリソグラフィ工程数で製造することができる。
また、第1実施形態に係る不揮発性半導体記憶装置100は、第1〜第4ワード線導電層36a〜36dをメモリ柱状半導体層38に対して、任意の2次元(ロウ方向及びカラム方向)方向に相対移動させた状態で、データの書き込み及び読み出しが実行されるように構成されている。これにより、第1実施形態に係る不揮発性半導体記憶装置100は、電荷蓄積層39bの複数箇所(ロウ方向及びカラム方向に亘る箇所)においてデータの書き込み及び読み出しを実行することができる。つまり、第1実施形態に係る不揮発性半導体記憶装置100は、上記相対移動により、円周上の電荷蓄積層39bの一部を分割して使用することで、記憶密度を高めている。
また、メモリ柱状半導体層38に対する電荷蓄積層39bの相対移動距離は、最大で10nm程度であるので、長距離に亘るアクチュエータのリニアリティ制御は不要である。したがって、第1アクチュエータAc1及び第2アクチュエータAc2は、単純な構造でよい。アクチュエータが占めるチップ面積を削減でき、不揮発性半導体記憶装置の低コスト化に寄与できる。
以上のように、第1実施形態に係る不揮発性半導体記憶装置100は、安価に高集積化するという効果を奏する。
[第2実施形態]
(第2実施形態に係る不揮発性半導体記憶装置の具体的構成)
次に、図28を参照して、第2実施形態に係る不揮発性半導体記憶装置について説明する。図28は、第2実施形態に係る不揮発性半導体記憶装置における拡大断面構造図である。なお、第2実施形態において、第1実施形態と同様の構成については、同一符号を付し、説明を省略する。
第2実施形態に係る不揮発性半導体記憶装置は、第1実施形態と比較して、メモリ層30bの構成が異なる。
メモリ層30bは、第1実施形態と異なり、第4空隙Ag4に面する第1〜第4ワード線導電層361a〜361dの側壁が、層間絶縁層351の側壁よりも窪んで形成されている。また、第4空隙Ag4に面するブロック絶縁層391aの表面、電荷蓄積層391bの表面、及びトンネル絶縁層391cの表面は、第1〜第4ワード線導電層361a〜361dの窪みに伴い、凹凸状に形成されている。
(第2実施形態に係る不揮発性半導体記憶装置の効果)
次に、第2実施形態に係る不揮発性半導体記憶装置の効果を説明する。第2実施形態に係る不揮発性半導体記憶装置は、第1実施形態と同様の効果を奏する。
また、第2実施形態に係る不揮発性半導体記憶装置は、ブロック絶縁層391aの表面、電荷蓄積層391bの表面、トンネル絶縁層391cの表面が凹凸状に形成されている。これにより、第1実施形態と比較して、第1〜第4ワード線導電層361a〜361dとメモリ柱状半導体層38との間の接触面積は低減する。したがって、第1実施形態と比較して、過度の静電気力によって、第1〜第4ワード線導電層361a〜361dとメモリ柱状半導体層38とが密着したままの状態となることを抑制することができ、より安定な相対移動を実現する。
[第3実施形態]
(第3実施形態に係る不揮発性半導体記憶装置の具体的構成)
次に、図29を参照して、第3実施形態に係る不揮発性半導体記憶装置について説明する。図29は、メモリ層30cを示す一部概略上面図である。なお、第3実施形態において、第1実施形態と同様の構成については、同一符号を付し、説明を省略する。
第3実施形態に係る不揮発性半導体記憶装置は、第1実施形態と比較して、メモリ層30cの構成が異なる。
メモリ層30cは、第1実施形態と異なるメモリホール371を有する。メモリホール371は、第1実施形態と同様に、第1〜第4ワード線導電層36a〜36dに設けられている。メモリホール371は、上面からみてロウ方向を短手方向、カラム方向を長手方向とするスリット状に形成されている。メモリホール371のロウ方向(短手方向)の両端は、直線状に形成されている。メモリホール371のカラム方向(長手方向)の両端は、円弧状に形成されている。したがって、このメモリホール371の側壁とメモリ柱状半導体層38の側壁との間には、第8空隙Ag8が構成されている。ここで、例えば、メモリホール371のロウ方向(短手方向)の両端の長さが”F”であり、メモリホール371のカラム方向(長手方向)の両端の長さが”10F”であり、隣接するメモリホール371の最短距離が”F”であるとする。また、メモリホール371の両端の円弧の直径が”F”であるとする。このような条件において、単位面積当たりのメモリホール371に面する電荷蓄積層39bの周の長さの割合R1は、R1=(18+π)F/20F≒1.06/Fとなる。なお、上述したように第1実施形態の割合Rは、R=0.79/Fであり、第1実施形態の割合Rと比較して、第3実施形態に係る不揮発性半導体装置の割合R1は、高い値となる。
(第3実施形態に係る不揮発性半導体記憶装置の効果)
次に、第3実施形態に係る不揮発性半導体記憶装置の効果を説明する。第3実施形態に係る不揮発性半導体記憶装置は、第1実施形態と同様の効果を奏する。
また、第3実施形態のメモリホール371によって、第1実施形態のメモリホール37よりも単位面積当たりのメモリホール371に面する電荷蓄積層39bの周の長さを長くすることができる。データ1ビット分を安定して記憶するのに必要な電荷蓄積層の長さを一定とすると、周の長さを大きくできることで、第3実施形態に係る不揮発性半導体記憶装置は、第1実施形態よりもさらに高密度記憶化することができる。
[第4実施形態]
(第4実施形態に係る不揮発性半導体記憶装置の具体的構成)
次に、図30を参照して、第4実施形態に係る不揮発性半導体記憶装置について説明する。図30は、第4実施形態に係る不揮発性半導体記憶装置における一部概略断面構造図である。なお、第4実施形態において、第1実施形態と同様の構成については、同一符号を付し、説明を省略する。
第4実施形態に係る不揮発性半導体記憶装置は、第1実施形態と比較して、メモリ層30dの構成が異なる。
メモリ層30dにおいては、メモリホール37の側壁ではなく、メモリ柱状半導体層38の側壁に、順次、トンネル絶縁層39c、電荷蓄積層39b、及びブロック絶縁層39aが形成されている。
(第4実施形態に係る不揮発性半導体記憶装置の効果)
次に、第4実施形態に係る不揮発性半導体記憶装置の効果を説明する。第4実施形態に係る不揮発性半導体記憶装置は、第1実施形態と同様の効果を奏する。また、第4実施形態に係る不揮発性半導体記憶装置において、ブロック絶縁層39aは、第4空隙Ag4に曝され、ブロック絶縁層39aと比較して膜厚の薄いトンネル絶縁層39cは、メモリ柱状半導体層38に接している。したがって、トンネル絶縁層39cは、第3フレーム層33の駆動に伴い、メモリ柱状半導体層38と接触した場合であっても、損傷することはない。つまり、第4実施形態に係る不揮発性半導体記憶装置は、第1実施形態よりも信頼性を高めることができる。
[第5実施形態]
(第5実施形態に係る不揮発性半導体記憶装置の具体的構成)
次に、図31を参照して、第5実施形態に係る不揮発性半導体記憶装置について説明する。図31は、第5実施形態に係る不揮発性半導体記憶装置における一部概略断面構造図である。なお、第5実施形態において、第1実施形態と同様の構成については、同一符号を付し、説明を省略する。
第5実施形態に係る不揮発性半導体記憶装置は、第1実施形態と比較して、ソース側トランジスタ層20a、及びメモリ層30eの構成が異なる。
ソース側トランジスタ層20aは、第1実施形態と異なり、ソース側導電層22を有しておらず、ソース側第4絶縁層28に形成されたソース側ホール24内にソース側柱状半導体層25を堆積した構成を有する。つまり、ソース側トランジスタ層20aは、ソース側選択トランジスタSGSを構成していない。
メモリ層30eは、第1〜第4ワード線導電層36a〜36dの替わりに、第1〜第4p型半導体層61a〜61dを有する。この第1〜第4p型半導体層61a〜61dのメモリホール37(第4空隙Ag4)側の側壁には、第1〜第4n型半導体層62a〜62dが設けられている。さらに、メモリホール37の側壁に形成された第1〜第4n型半導体層62a〜62d及び層間絶縁層34を覆うように抵抗変化層63が設けられている。第1〜第4p型半導体層61a〜61d及び第1〜第4n型半導体層62a〜62dは、ポリシリコンにプラズマ・ドーピング技術を施したものである。抵抗変化層63は、酸化チタン(TiO)又は酸化ニッケル(NiO)から構成されている。
また、抵抗変化層63は、窒化シリコン(SiN)又は酸化シリコン(SiO)から構成してもよい。また、メモリ柱状半導体層38をn型半導体とし、メモリホール37(第4空隙Ag4)に面する第1〜第4p型半導体層61a〜61dを設け、第1〜第4n型半導体層62a〜62dを省略した構成としてもよい。また、メモリ柱状半導体層38をp型半導体とし、
メモリホール37(第4空隙Ag4)に面して且つ板状に形成された第1〜第4p型半導体層62a〜62dを設け、第1〜第4n型半導体層61a〜61dを省略した構成としてもよい。
ここで、図32は、第5実施形態に係る不揮発性半導体記憶装置の一つのメモリストリングスの回路図である。図32に示すように、第5実施形態に係る不揮発性半導体記憶装置において、第1〜第4p型半導体層61a〜61d及び第1〜第4n型半導体層62a〜62dは、ダイオードDI1〜DI4を構成する。そして、第1〜第4n型半導体層62a〜62dに接する抵抗変化層63は、ダイオードDI1〜DI4に直列接続された抵抗変化素子Fu1〜Fu4として機能する。第5実施形態に係る不揮発性半導体記憶装置は、これら抵抗変化素子Fu1〜Fu4及びダイオードDI1〜DI4により、直列接続されたメモリセルMS1mn〜MS4mnを構成している。メモリセルMS4mnの一端には、ドレイン側選択トランジスタSDTrmnの一端が接続されている。第5実施形態に係る不揮発性半導体記憶装置は、所定のメモリセルMS1mn〜MS4mnの抵抗変化素子Fu1〜Fu4を構成する抵抗変化層63の抵抗を制御することによって、データの読み出し、書き込み、消去を実行する。
(第5実施形態に係る不揮発性半導体記憶装置の効果)
第5実施形態に係る不揮発性半導体記憶装置は、メモリ素子として抵抗変化素子Fu1〜Fu4を用いながら、第1実施形態と同様の効果を奏する。
[第6実施形態]
(第6実施形態に係る不揮発性半導体記憶装置の具体的構成)
次に、図33〜図35を参照して、第6実施形態に係る不揮発性半導体記憶装置について説明する。図33は、第6実施形態に係る不揮発性半導体記憶装置のメモリ層30fの一部概略上面図である。図34は、図33のロウ方向断面図であり、図35は、図33のカラム方向断面図である。なお、第6実施形態において、第1実施形態と同様の構成については、同一符号を付し、説明を省略する。
図33〜図35に示すように、第6実施形態に係る不揮発性半導体記憶装置は、第1実施形態と比較してメモリ層30fの構成が異なる。また、第6実施形態に係る不揮発性半導体装置は、メモリ層30fの上部(ドレイン側トランジスタ層40)に静電層70を有する。
メモリ層30fは、第1実施形態と比較して、第1空隙Ag1〜第3空隙Ag3、第5空隙Ag5、第1〜第3フレーム層31〜33、及び第3フレーム底部層33bが形成されておらず、それらの代わりに層間絶縁層が形成されている。つまり、第6実施形態に係る不揮発性半導体記憶装置においては、メモリ層30fは、第1〜第5実施形態のように第1及び第2アクチュエータAc1,Ac2を有しておらず、ソース側トランジスタ層20及びドレイン側トランジスタ層40に対して固定されている。また、メモリ層30fは、可撓性を有するメモリ柱状半導体層381を有する。第6実施形態に係るメモリ柱状半導体層381は、第1実施形態よりも小さい径を有する。また、メモリ柱状半導体層381は、エピタキシャル成長させたシリコン単結晶膜、又はシリコンゲルマニウム(SiGe)膜にて構成されている。このような構成により、メモリ柱状半導体層381は、可撓性を有する。メモリ柱状半導体層381は、この他の可撓性を有する半導体、例えば、半導体性カーボンナノチューブ等にて構成しても良い。
静電層70は、メモリ層30f上に層間絶縁層71を介して下部配線層72(図35参照),及び上部配線層73(図34参照)を有する。最上部の層間絶縁層71の上面は、ドレイン側第1絶縁層41に接するように形成されている。下部配線層72は、図33に示すように、ロウ方向に所定ピッチで配置されカラム方向に延びるストライプ状に形成されている。上部配線層73は、図34及び図35から明らかなように、下部配線層72よりも上層に位置し、カラム方向に所定ピッチで配置されロウ方向に延びるストライプ状に形成されている。静電層70には、メモリホール37と整合する位置に設けられた静電ホール74を有する。静電ホール74は、メモリホール37よりも小さい径にて形成されている。静電ホール74の側壁には、ポリシリコンにて構成された側壁導電層75が形成されている。また、メモリ柱状半導体層381の上部には、静電柱状半導体層76が形成されている。静電柱状半導体層76は、側壁導電層75との間に第9空隙Ag9を設けて配置されている。静電柱状半導体層76は、メモリ柱状半導体層381と略同一の径を有している。また、静電柱状半導体層76の上面には、ドレイン側柱状半導体層45が接続されている。また、静電柱状半導体層76は、エピタキシャル成長させたシリコン単結晶膜、又はシリコンゲルマニウム(SiGe)膜にて構成されている。上記の静電層70は、静電柱状半導体層76及びメモリ柱状半導体層381に対して所定方向に静電気力を働かせて、メモリ柱状半導体層381を変形させる機能を有する。
(第6実施形態に係る不揮発性半導体記憶装置の動作)
次に、図36を参照して、第6実施形態に係る不揮発性半導体記憶装置の動作を説明する。図36に示すように、第6実施形態に係る不揮発性半導体記憶装置において、下部配線層72及び上部配線層73に電圧を印加し、側壁導電層74に電界を生じさせる。この電界により、静電柱状半導体層76の側壁と、対向する側壁導電層74の側壁との間に静電気力が生じる。つまり、下部配線層72及び上部配線層73の印加電圧に伴う静電気力により、メモリ柱状半導体層381(静電柱状半導体層76)は、所定のロウ方向及びカラム方向(図36に示す矢印M2方向)に撓む。すなわち、所定のロウ方向及びカラム方向において静電柱状半導体層76と側壁導電層74との間及び、メモリ柱状半導体層381とトンネル絶縁層39cとの間が、その他の位置と比較して最短の距離Lminとなる。
静電層70への電圧の印加に引き続き、読み出し又は書き込みを行おうとするメモリセルに接続されたワード線(ここでは、第4ワード線導電層36dとする)に電圧を印加する。ここで、メモリ柱状半導体層381とトンネル絶縁層39cとの間は最短の距離Lminであるので、メモリ柱状半導体層381は、さらに最短の距離Lmin’を構成する所定のロウ方向及びカラム方向に撓む。続いて、第4ワード線導電層36dと同様に、順次、第3ワード線導電層36c、第2ワード線導電層36b、及び第1ワード線導電層36aに電圧を印加し、メモリ柱状半導体層381(静電柱状半導体層76)を所定のロウ方向及びカラム方向に撓ませる。以上の動作により、メモリ柱状半導体層381の全体が、所定のロウ方向及びカラム方向に撓む(移動する)こととなる。上記図36のようにメモリ柱状半導体層381を撓ませた状態で、電荷蓄積層39bの電荷を制御し、データの書き込み、消去、及び読み出しを実行する。
(第6実施形態に係る不揮発性半導体記憶装置の効果)
次に、第6実施形態に係る不揮発性半導体記憶装置の効果を説明する。第6実施形態に係る不揮発性半導体記憶装置は、第1実施形態と同様の効果を奏する。また、第6実施形態に係る不揮発性半導体記憶装置は、第1実施形態〜第5実施形態のように第1アクチュエータAc1及び第2アクチュエータAc2を必要としない、つまり、第6実施形態に係る不揮発性半導体記憶装置は、第1〜第3フレーム層31〜33を省略することができるので、第1実施形態〜第5実施形態と比較して、さらに高集積化することが可能である。
また、第6実施形態に係る不揮発性半導体記憶装置は、特定の下部配線層72及び上部配線層73を駆動させることにより、個々のメモリ柱状半導体層381をそれぞれ撓ませることができる。したがって、メモリ柱状半導体層381が十分に電荷蓄積層39bに接近できない、或いはメモリ柱状半導体層381が過度の力で電荷蓄積層39bに押圧される等のメモリ柱状半導体層381と電荷蓄積層39bとの間における接触不良の問題を抑制することができる。また、第6実施形態に係る不揮発性半導体記憶装置は、第1〜第5実施形態と比較して、アクチュエータやフレーム層を形成する必要がなく、低コスト化を実現することができる。
また、第6実施形態に係る不揮発性半導体記憶装置において、メモリ柱状半導体層381及び静電柱状半導体層76は、エピタキシャル成長させたシリコン単結晶膜、又はシリコンゲルマニウム(SiGe)膜にて構成されている。この構成により、メモリ柱状半導体層381及び静電柱状半導体層76は、ポリシリコン等の多結晶体により構成した場合に比べて機械的特性を揃えて形成されている。したがって、静電層70を低電圧で駆動でき且つ高い信頼性で、メモリ柱状半導体層381及び静電柱状半導体層76を撓ませることができる。
[第7実施形態]
(第7実施形態に係る不揮発性半導体記憶装置の具体的構成)
次に、図37を参照して、第7実施形態に係る不揮発性半導体記憶装置について説明する。図37は、第7実施形態に係る不揮発性半導体記憶装置の一部断面拡大図である。なお、第7実施形態において、第1〜第6実施形態と同様の構成については、同一符号を付し、説明を省略する。
図37に示すように、第7実施形態に係る不揮発性半導体記憶装置は、第6実施形態と異なるメモリ層30gを有する。また、第7実施形態に係る不揮発性半導体記憶装置は、第6実施形態の構成に加えて、更に、下部駆動層80a、及び上部駆動層80bを有する。下部駆動層80aは、ソース側トランジスタ層20とメモリ層30gとの間に形成されている。上部駆動層80bは、静電層70とドレイン側トランジスタ層40との間に形成されている。
メモリ層30gは、第6実施形態と比較して、メモリホール37の側壁ではなく、メモリ柱状半導体層381の側壁に、順次、トンネル絶縁層39c、電荷蓄積層39b、及びブロック絶縁層39aが形成されている。
下部駆動層80aは、ソース側第2絶縁層23上に順次形成された下部第1絶縁層81a、下部第1電極層82a、ピエゾ素子膜83a、下部第2電極層84a、及び下部第2絶縁層85aを有する。下部第2絶縁層85aは、メモリ層30fの最下層の層間絶縁層35に接するように形成されている。下部第1電極層82a、及び下部第2電極層84aは、例えば、AlやTiN膜にて構成されている。ピエゾ素子膜83aは、例えば、(Pb,Zr)TiO3やAlNにて構成されている。
また、下部駆動層80aにおいて、ソース側ホール24と整合する位置で、下部第2絶縁層85a、下部第2電極層84a、ピエゾ素子膜83a、及び下部第1電極層82a、及び下部第1絶縁層81aを貫通するように下部駆動ホール86aが形成されている。下部駆動ホール86a内には、下部柱状半導体層87aが形成されている。下部柱状半導体層87aは、メモリ柱状半導体層381と同じ径を有する。下部柱状半導体層87aの下面は、ソース側柱状半導体層25の上面と接するように形成されている。下部柱状半導体層87aの上面は、メモリ柱状半導体層381の下面と接するように形成されている。なお、上記の下部駆動ホール86aの側壁と、下部柱状半導体層87aの側壁との間に、第10空隙Ag10が形成されている。
上部駆動層80bは、静電層70上に順次形成された上部第1絶縁層81b、上部第1電極層82b、ピエゾ素子膜83b、上部第2電極層84b、及び上部第2絶縁層85bを有する。上部第2絶縁層85bは、ドレイン側第1絶縁層41の下部と接するように形成されている。上部第1電極層82b、及び上部第2電極層84bは、例えば、AlやTiN膜にて構成されている。ピエゾ素子膜83bは、例えば、(Pb,Zr)TiO3やAlNにて構成されている。
また、上部駆動層80bにおいて、静電ホール74と整合する位置で、上部第2絶縁層85b、上部第2電極層84b、ピエゾ素子膜83b、上部第1電極層82b、及び上部第1絶縁層81bを貫通するように上部駆動ホール86bが形成されている。上部駆動ホール86b内には、上部柱状半導体層87bが形成されている。上部柱状半導体層87bは、静電柱状半導体層76と同じ径を有する。上部柱状半導体層87bの下面は、静電柱状半導体層76の上面と接し、上部柱状半導体層87bの上面は、ドレイン柱状半導体層45の下面と接するように形成されている。なお、上記の上部駆動ホール86bの側壁、及び上部柱状半導体層87bの側壁との間に、第11空隙Ag11が形成されている。
(第7実施形態に係る不揮発性半導体記憶装置の動作)
次に、図38及び図39を参照して、第7実施形態に係る不揮発性半導体記憶装置の動作を説明する。図38に示すように、下部第1電極82a、及び下部第2電極84aに所定電圧を印加し、ピエゾ素子膜83aを膨張させる。一方、図38に示すように、上部第1電極82b、及び上部第2電極84bに所定電圧を印加し、ピエゾ素子膜83bを収縮させる。これにより、第1ワード線導電層36a〜第4ワード線導電層36dは、電荷蓄積層39b及びメモリ柱状半導体層381に対して上方に相対移動する。
また、図39に示すように、下部第1電極82a、及び下部第2電極84aに所定電圧を印加し、ピエゾ素子膜83aを収縮させる。一方、図39に示すように、上部第1電極82b、及び上部第2電極84bに所定電圧を印加し、ピエゾ素子膜83bを膨張させる。これにより、第1ワード線導電層36a〜第4ワード線導電層36dは、電荷蓄積層39b及びメモリ柱状半導体層381に対して下方に相対移動する。
上記図38又は図39のように第1ワード線導電層36a〜第4ワード線導電層36dをメモリ柱状半導体層381に対して上下方向に相対移動させた状態から、引き続き、第6実施形態と同様にメモリ柱状半導体層381を撓ませる。つまり、第1ワード線導電層36a〜第4ワード線導電層36dは、電荷蓄積層39bの一部に対して、ロウ方向、カラム方向、及び積層方向に相対的に移動する。そして、第1〜第4ワード線導電層36a〜36に電圧が印加されると、第1〜第4ワード線導電層36a〜36dに接近した電荷蓄積層39bの一部へのデータの書き込み及び電荷蓄積層39bの一部からのデータの読み出しが実行される。上述した第1〜第4ワード線導電層36a〜36dの移動方向、及びメモリ柱状半導体層381の撓ませる方向を変えることにより、メモリホール37(第4空隙Ag4)周りの一周の電荷蓄積層39bの複数箇所(ロウ方向、カラム方向、及び積層方向に亘る箇所)においてデータの書き込み及び読み出しを実行することができる。
(第7実施形態に係る不揮発性半導体記憶装置の効果)
次に、第7実施形態に係る不揮発性半導体記憶装置の効果を説明する。第7実施形態に係る不揮発性半導体記憶装置は、第6実施形態と同様の効果を奏する。また、第7実施形態に係る不揮発性半導体記憶装置は、電荷蓄積層39bに対して、第1〜第4ワード線導電層36a〜36dをロウ方向及びカラム方向に加えて、上下方向に相対移動可能に構成されている。これにより、第7実施形態に係る不揮発性半導体記憶装置は、電荷蓄積層39bの複数の箇所(ロウ方向、カラム方向、及び積層方向に亘る箇所)においてデータの書き込み及び読み出しを実行することができる。つまり、第7実施形態に係る不揮発性半導体記憶装置は、第1〜第4ワード線導電層36a〜36dの上下方向の相対移動により、第6実施形態よりも更に記憶密度を高めている。
[その他の実施形態]
以上、不揮発性半導体記憶装置の一実施形態を説明してきたが、本発明は、上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、追加、置換等が可能である。
例えば、第1〜第7実施形態においては、ワード線WL(第1〜第4ワード線導電層36a〜36d)を板状構造として説明したが、ワード線WLは、板状構造に限定されるものではない。ワード線WLは、例えば、短冊状構造としてもよい。
また、上記第1〜第7実施形態においては、メモリ層30〜30gにおいて、メモリ柱状半導体層側からトンネル絶縁層(Oxide)、電荷蓄積層(Nitride)、ブロック絶縁層(Oxide)を積層させた構成(ONO構成)としたが、トンネル絶縁層(Oxide)を省略した構成(NO構成)であってもよい。
また、上記第6及び第7実施形態において、メモリ層30f,30gの代わりに、第5実施形態におけるメモリ層30eの構成を適用することも可能である。
また、上記第6及び第7実施形態において、第1〜第4ワード線導電層36a〜36dをロウ方向及びカラム方向に相対移動可能とする空隙、及びアクチュエータを設け、第1〜第4ワード線導電層36a〜36dをロウ方向及びカラム方向に移動可能な構成としてもよい。
本発明の第1実施形態に係る不揮発性半導体記憶装置100の構成概略図である。 第1実施形態に係る不揮発性半導体記憶装置100のメモリセル領域12の一部概略斜視図である。 第1実施形態における一つのメモリストリングスMSの回路図である。 第1実施形態における不揮発性半導体記憶装置100の断面構造図である。 第1実施形態に係る不揮発性半導体記憶装置100のメモリ層30の上面図である。 図4の拡大図である。 第1実施形態に係る不揮発性半導体記憶装置100のメモリホール37の一部概略上面図である。 第1実施形態に係る不揮発性半導体記憶装置100の動作を説明する図である。 第1実施形態に係る不揮発性半導体記憶装置100の動作を説明する図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第1実施形態に係る不揮発性半導体記憶装置100の製造工程を示す図である。 本発明の第2実施形態における不揮発性半導体記憶装置の拡大断面構造図である。 本発明の第3実施形態に係る不揮発性半導体記憶装置のメモリ層30cの一部概略上面図である。 本発明の第4実施形態に係る不揮発性半導体記憶装置の一部概略断面構造図である。 本発明の第5実施形態に係る不揮発性半導体記憶装置の一部概略断面構造図である。 第5実施形態における一つのメモリストリングスの回路図である。 本発明の第6実施形態に係る不揮発性半導体記憶装置の一部概略上面図である。 第6実施形態に係る不揮発性半導体記憶装置の一部概略断面構造図である。 第6実施形態に係る不揮発性半導体記憶装置の一部概略断面構造図である。 第6実施形態に係る不揮発性半導体記憶装置の動作を説明する図である。 本発明の第7実施形態に係る不揮発性半導体記憶装置の一部概略断面構造図である。 第7実施形態に係る不揮発性半導体記憶装置の動作を説明する図である。 第7実施形態に係る不揮発性半導体記憶装置の動作を説明する図である。
符号の説明
100…不揮発性半導体記憶装置、12…メモリセル領域、13…ワード線駆動回路、14…ソース側選択ゲート線駆動回路、15…ドレイン側選択ゲート線駆動回路、16…センスアンプ、20,20a…ソース側選択トランジスタ層、30,30b,30c,30d,30e,30g…メモリ層、40…ドレイン側選択トランジスタ層、70…静電層、80a…下部駆動層、80b…上部駆動層。

Claims (5)

  1. 電気的に書き換え可能な複数のメモリセルが直列に接続された複数のメモリストリングスを有する不揮発性半導体記憶装置であって、
    前記メモリストリングスは、
    基板に対して垂直方向に延びる柱状半導体層と、
    前記基板に対して平行に形成され且つ前記柱状半導体層の側壁との間に空隙を有する複数の導電層と、
    前記空隙に面する前記柱状半導体層の側面或いは前記空隙に面する前記導電層の側面側に形成された、印加電圧に伴い特性が変化する特性変化層と
    を備え、
    前記複数の導電層は、前記柱状半導体層に対して所定方向に相対移動可能に構成されている
    ことを特徴とする不揮発性半導体記憶装置。
  2. 前記空隙に面する前記特性変化層の表面は、凹凸状に形成されていることを特徴とする請求項1記載の不揮発性半導体記憶装置。
  3. 前記空隙は、前記複数の導電層に設けられ且つ上方からみてスリット状に形成されたホールから構成されていることを特徴とする請求項1又は請求項2記載の不揮発性半導体記憶装置。
  4. 前記特性変化層は、印加電圧に伴い抵抗を変化させる抵抗変化層、又は電荷を蓄積する電荷蓄積層から構成されていることを特徴とする請求項1乃至請求項3のいずれか1項記載の不揮発性半導体記憶装置。
  5. 前記柱状半導体層は、可撓性を有し、
    前記空隙を介して前記柱状半導体層に対して所定方向に静電気力を働かせて前記柱状半導体層を変形させる静電層を備える
    ことを特徴とする請求項1乃至請求項4のいずれか1項記載の不揮発性半導体記憶装置。
JP2007311340A 2007-11-30 2007-11-30 不揮発性半導体記憶装置 Abandoned JP2009135328A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007311340A JP2009135328A (ja) 2007-11-30 2007-11-30 不揮発性半導体記憶装置
US12/325,711 US8350314B2 (en) 2007-11-30 2008-12-01 Semiconductor memory device and method for fabricating semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007311340A JP2009135328A (ja) 2007-11-30 2007-11-30 不揮発性半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2009135328A true JP2009135328A (ja) 2009-06-18

Family

ID=40720714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007311340A Abandoned JP2009135328A (ja) 2007-11-30 2007-11-30 不揮発性半導体記憶装置

Country Status (2)

Country Link
US (1) US8350314B2 (ja)
JP (1) JP2009135328A (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014675A (ja) * 2009-07-01 2011-01-20 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2011054899A (ja) * 2009-09-04 2011-03-17 Toshiba Corp 不揮発性半導体記憶装置、及びその製造方法
JP2011060838A (ja) * 2009-09-07 2011-03-24 Toshiba Corp 不揮発性半導体記憶装置、及びその製造方法
JP2011199177A (ja) * 2010-03-23 2011-10-06 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
JP2012054550A (ja) * 2010-09-01 2012-03-15 Macronix International Co Ltd メモリストリングにダイオードを有する3次元アレイのメモリアーキテクチャ
JP2012151169A (ja) * 2011-01-17 2012-08-09 Toshiba Corp 半導体記憶装置
KR101206508B1 (ko) 2011-03-07 2012-11-29 에스케이하이닉스 주식회사 3차원 구조를 갖는 비휘발성 메모리 장치 제조방법
US8710484B2 (en) 2010-02-23 2014-04-29 Panasonic Corporation Method for manufacturing non-volatile memory device, non-volatile memory element, and non-volatile memory device
US8822322B2 (en) 2010-08-30 2014-09-02 Samsung Electronics Co., Ltd. Semiconductor devices and methods of fabricating the same
US8981458B2 (en) 2010-11-05 2015-03-17 Samsung Electronics Co., Ltd. Three-dimensional semiconductor devices and methods of fabricating the same
US8994091B2 (en) 2011-05-03 2015-03-31 Samsung Electronics Co., Ltd. Non-volatile memory device having a vertical structure and method of fabricating the same
US9006793B2 (en) 2010-07-01 2015-04-14 Panasonic Intellectual Property Management Co., Ltd. Non-volatile memory cell, non-volatile memory cell array, and method of manufacturing the same
US9214471B2 (en) 2010-09-01 2015-12-15 Macronix International Co., Ltd. Memory architecture of 3D array with diode in memory string
JP5889486B1 (ja) * 2014-06-10 2016-03-22 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 柱状半導体メモリ装置及びその製造方法
US10020364B2 (en) 2015-03-12 2018-07-10 Toshiba Memory Corporation Nonvolatile semiconductor memory device and method of manufacturing the same
CN109509500A (zh) * 2017-09-14 2019-03-22 东芝存储器株式会社 半导体存储装置
US10833096B2 (en) 2018-03-19 2020-11-10 Toshiba Memory Corporation Semiconductor device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10788608B2 (en) 2007-08-12 2020-09-29 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures
US10048415B2 (en) 2007-08-12 2018-08-14 Toyota Motor Engineering & Manufacturing North America, Inc. Non-dichroic omnidirectional structural color
US9739917B2 (en) 2007-08-12 2017-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Red omnidirectional structural color made from metal and dielectric layers
US10870740B2 (en) 2007-08-12 2020-12-22 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures and protective coatings thereon
US10690823B2 (en) 2007-08-12 2020-06-23 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers
US9612369B2 (en) 2007-08-12 2017-04-04 Toyota Motor Engineering & Manufacturing North America, Inc. Red omnidirectional structural color made from metal and dielectric layers
US9229140B2 (en) * 2007-08-12 2016-01-05 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional UV-IR reflector
US9063291B2 (en) * 2007-08-12 2015-06-23 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional reflector
JP2009200443A (ja) * 2008-02-25 2009-09-03 Toshiba Corp 不揮発性半導体記憶装置、及びその製造方法
US8541831B2 (en) 2008-12-03 2013-09-24 Samsung Electronics Co., Ltd. Nonvolatile memory device and method for fabricating the same
KR20100111165A (ko) * 2009-04-06 2010-10-14 삼성전자주식회사 3차원 메모리 소자
JP4975794B2 (ja) * 2009-09-16 2012-07-11 株式会社東芝 不揮発性半導体記憶装置
KR101597686B1 (ko) * 2009-11-03 2016-02-25 삼성전자주식회사 3차원 반도체 장치 및 그 제조 방법
JP5450165B2 (ja) * 2010-02-26 2014-03-26 株式会社東芝 不揮発性半導体記憶装置、及び不揮発性半導体記憶装置の製造方法
KR101660432B1 (ko) 2010-06-07 2016-09-27 삼성전자 주식회사 수직 구조의 반도체 메모리 소자
JP2013187294A (ja) 2012-03-07 2013-09-19 Toshiba Corp 半導体記憶装置
US9343469B2 (en) 2012-06-27 2016-05-17 Intel Corporation Three dimensional NAND flash with self-aligned select gate
US9678260B2 (en) 2012-08-10 2017-06-13 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with semiconductor absorber layer
US9658375B2 (en) 2012-08-10 2017-05-23 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers
US9664832B2 (en) 2012-08-10 2017-05-30 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with combination semiconductor absorber and dielectric absorber layers
KR102003529B1 (ko) 2012-08-22 2019-07-25 삼성전자주식회사 적층된 전극들을 형성하는 방법 및 이를 이용하여 제조되는 3차원 반도체 장치
KR20140113024A (ko) * 2013-03-15 2014-09-24 에스케이하이닉스 주식회사 저항 변화 메모리 장치 및 그 구동방법
KR102091729B1 (ko) 2013-10-10 2020-03-20 삼성전자 주식회사 3차원 반도체 메모리 소자의 제조 방법 및 그 방법에 의해 제조된 3차원 반도체 메모리 소자
US11018149B2 (en) 2014-03-27 2021-05-25 Intel Corporation Building stacked hollow channels for a three dimensional circuit device
JP6741586B2 (ja) 2014-04-01 2020-08-19 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 色シフトのない多層構造
US9263459B1 (en) 2014-09-26 2016-02-16 Intel Corporation Capping poly channel pillars in stacked circuits
US9810824B2 (en) 2015-01-28 2017-11-07 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural colors
US9478561B2 (en) 2015-01-30 2016-10-25 Samsung Electronics Co., Ltd. Semiconductor memory device and method of fabricating the same
US9721961B2 (en) 2015-05-29 2017-08-01 Kabushiki Kaisha Toshiba Semiconductor memory device
US9704922B2 (en) 2015-05-29 2017-07-11 Kabushiki Kaisha Toshiba Semiconductor memory device and method of manufacturing the same while avoiding process damage to a variable resistance film
US9922991B2 (en) * 2016-03-16 2018-03-20 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
US9847345B2 (en) * 2016-03-18 2017-12-19 Toshiba Memory Corporation Semiconductor memory device and method of manufacturing the same
US10276585B2 (en) 2016-08-12 2019-04-30 Toshiba Memory Corporation Semiconductor memory device
US10566339B2 (en) * 2017-02-28 2020-02-18 Toshiba Memory Coporation Semiconductor memory device and method for manufacturing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229012B2 (ja) * 1992-05-21 2001-11-12 株式会社東芝 半導体装置の製造方法
KR0165398B1 (ko) * 1995-05-26 1998-12-15 윤종용 버티칼 트랜지스터의 제조방법
JP3566944B2 (ja) 2001-06-23 2004-09-15 富士雄 舛岡 半導体記憶装置及びその製造方法
US6924538B2 (en) * 2001-07-25 2005-08-02 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
JP4822841B2 (ja) * 2005-12-28 2011-11-24 株式会社東芝 半導体記憶装置及びその製造方法
JP5016832B2 (ja) * 2006-03-27 2012-09-05 株式会社東芝 不揮発性半導体記憶装置及びその製造方法
JP4691124B2 (ja) * 2008-03-14 2011-06-01 株式会社東芝 不揮発性半導体記憶装置の製造方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014675A (ja) * 2009-07-01 2011-01-20 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2011054899A (ja) * 2009-09-04 2011-03-17 Toshiba Corp 不揮発性半導体記憶装置、及びその製造方法
US8426908B2 (en) 2009-09-07 2013-04-23 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
JP2011060838A (ja) * 2009-09-07 2011-03-24 Toshiba Corp 不揮発性半導体記憶装置、及びその製造方法
US8710484B2 (en) 2010-02-23 2014-04-29 Panasonic Corporation Method for manufacturing non-volatile memory device, non-volatile memory element, and non-volatile memory device
JP2011199177A (ja) * 2010-03-23 2011-10-06 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
US8530957B2 (en) 2010-03-23 2013-09-10 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US8415242B2 (en) 2010-03-23 2013-04-09 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US9006793B2 (en) 2010-07-01 2015-04-14 Panasonic Intellectual Property Management Co., Ltd. Non-volatile memory cell, non-volatile memory cell array, and method of manufacturing the same
US9559112B2 (en) 2010-08-30 2017-01-31 Samsung Electronics Co., Ltd. Semiconductor devices and methods of fabricating the same
US8822322B2 (en) 2010-08-30 2014-09-02 Samsung Electronics Co., Ltd. Semiconductor devices and methods of fabricating the same
JP2012054550A (ja) * 2010-09-01 2012-03-15 Macronix International Co Ltd メモリストリングにダイオードを有する3次元アレイのメモリアーキテクチャ
US9214471B2 (en) 2010-09-01 2015-12-15 Macronix International Co., Ltd. Memory architecture of 3D array with diode in memory string
US10038007B2 (en) 2010-11-05 2018-07-31 Samsung Electronics Co., Ltd. Three-dimensional semiconductor devices
US8981458B2 (en) 2010-11-05 2015-03-17 Samsung Electronics Co., Ltd. Three-dimensional semiconductor devices and methods of fabricating the same
US11107833B2 (en) 2010-11-05 2021-08-31 Samsung Electronics Co., Ltd. Semiconductor devices
US9536895B2 (en) 2010-11-05 2017-01-03 Samsung Electronics Co., Ltd. Methods of fabricating three-dimensional semiconductor devices
US10748929B2 (en) 2010-11-05 2020-08-18 Samsung Electronics Co., Ltd. Three-dimensional semiconductor devices
US10559590B2 (en) 2010-11-05 2020-02-11 Samsung Electronics Co., Ltd. Three-dimensional semiconductor devices
JP2012151169A (ja) * 2011-01-17 2012-08-09 Toshiba Corp 半導体記憶装置
US8461003B2 (en) 2011-03-07 2013-06-11 Hynix Semiconductor Inc. Method for fabricating 3D-nonvolatile memory device
KR101206508B1 (ko) 2011-03-07 2012-11-29 에스케이하이닉스 주식회사 3차원 구조를 갖는 비휘발성 메모리 장치 제조방법
US8994091B2 (en) 2011-05-03 2015-03-31 Samsung Electronics Co., Ltd. Non-volatile memory device having a vertical structure and method of fabricating the same
US9536896B2 (en) 2011-05-03 2017-01-03 Samsung Electronics Co., Ltd. Non-volatile memory device having a vertical structure and method of fabricating the same
JP5889486B1 (ja) * 2014-06-10 2016-03-22 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 柱状半導体メモリ装置及びその製造方法
US10020364B2 (en) 2015-03-12 2018-07-10 Toshiba Memory Corporation Nonvolatile semiconductor memory device and method of manufacturing the same
CN109509500A (zh) * 2017-09-14 2019-03-22 东芝存储器株式会社 半导体存储装置
CN109509500B (zh) * 2017-09-14 2022-12-06 铠侠股份有限公司 半导体存储装置
US10833096B2 (en) 2018-03-19 2020-11-10 Toshiba Memory Corporation Semiconductor device

Also Published As

Publication number Publication date
US8350314B2 (en) 2013-01-08
US20090146190A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP2009135328A (ja) 不揮発性半導体記憶装置
JP5086851B2 (ja) 不揮発性半導体記憶装置
JP4649487B2 (ja) 不揮発性半導体記憶装置及びその製造方法
JP5193551B2 (ja) 不揮発性半導体記憶装置、及びその製造方法
JP5148242B2 (ja) 不揮発性半導体記憶装置、及びその製造方法
JP5364394B2 (ja) 不揮発性半導体記憶装置
TWI580011B (zh) 非揮發性半導體記憶裝置
JP4226205B2 (ja) 半導体記憶装置の製造方法
JP5395460B2 (ja) 不揮発性半導体記憶装置、及びその製造方法
JP5388600B2 (ja) 不揮発性半導体記憶装置の製造方法
JP3963664B2 (ja) 半導体記憶装置及びその製造方法
JP2009206451A (ja) 不揮発性半導体記憶装置、及びその製造方法
JP2009004510A (ja) 不揮発性半導体記憶装置
JP2010147125A (ja) 不揮発性半導体記憶装置、及びその製造方法
JP2010161132A (ja) 不揮発性半導体記憶装置、及びその製造方法
JP2009224468A (ja) 不揮発性半導体記憶装置
JP2010114369A (ja) 不揮発性半導体記憶装置
JP2009158529A (ja) 不揮発性半導体記憶装置
CN111430355A (zh) 半导体器件结构及其制作方法
US20070108504A1 (en) Non-volatile memory and manufacturing method and operating method thereof
KR101383760B1 (ko) 수평 구동형 전기기계 메모리 소자 및 그 제조방법
KR101411362B1 (ko) H셀 구조를 갖는 수평 구동형 전기기계 메모리 소자 및 그 제조방법
JP2008047901A (ja) 電気的機械的メモリ素子及びその製造方法
JP2012256932A (ja) 半導体記憶装置
JP2023044164A (ja) 半導体記憶装置、および半導体記憶装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120515