JP2008536127A - ガラス検査装置及びその使用方法 - Google Patents

ガラス検査装置及びその使用方法 Download PDF

Info

Publication number
JP2008536127A
JP2008536127A JP2008505569A JP2008505569A JP2008536127A JP 2008536127 A JP2008536127 A JP 2008536127A JP 2008505569 A JP2008505569 A JP 2008505569A JP 2008505569 A JP2008505569 A JP 2008505569A JP 2008536127 A JP2008536127 A JP 2008536127A
Authority
JP
Japan
Prior art keywords
transparent material
glass plate
inspection apparatus
light beam
line scan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008505569A
Other languages
English (en)
Inventor
アール サード ゾエラー,レオン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2008536127A publication Critical patent/JP2008536127A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • G01N2021/177Detector of the video camera type
    • G01N2021/1772Array detector
    • G01N2021/1774Line array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • G01N2021/8965Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod using slant illumination, using internally reflected light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • G01N2201/0612Laser diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0635Structured illumination, e.g. with grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0638Refractive parts

Abstract

ガラス板上またはガラス板内の欠陥(例えば、インクルージョン、オンクルージョン、掻き傷、染み、膨れ、脈理、あるいは表面の不連続性または材料の不均一性にともなうその他の欠陥)を識別する、いくつかの異なる検査装置及び方法が説明される。

Description

関連出願の説明
本出願は、2005年4月6日に出願された、名称を「ガラス検査装置及びその使用方法(Glass Inspection System and Methods for Using Same)」とする、米国特許出願第60/669171号の恩典を主張する。この特許出願の明細書は本明細書に参照として含まれる。
本発明は、全般的に、ガラス板上またはガラス板内の欠陥を識別するために用いられる検査装置及び方法に関する。
ガラス板製造業者は、ガラス板(例えば液晶ディスプレイ(LCD)ガラス基板)上またはガラス板内の欠陥(例えば、インクルージョン、オンクルージョン、掻き傷、染み、膨れ、脈理、あるいは表面の不連続性または材料の不均一性にともなうその他の欠陥)を識別するために用いることができる、新規の、改善された検査装置の設計を常に試みている。
本発明の課題は、ガラス板上またはガラス板内の欠陥を識別するために用いることができる、新規の、改善された検査装置を提供することである。
本発明は、ガラス板上またはガラス板内の欠陥(例えば、インクルージョン、オンクルージョン、掻き傷、染み、膨れ、脈理)を識別するための検査装置及び方法の、いくつかの異なる実施形態を含む。一実施形態において、検査装置は、照明器、レンズ及びラインスキャンセンサを備える。照明器が光ビームを発し、レンズが光ビームを受け取り、次いでガラス板の一領域を通る平行光ビームを放射する。次いでラインスキャンセンサが、ガラス板を通過した平行光ビームを受け取り、ラインスキャンセンサとガラス板の間への別のレンズの配置を必要とせずに、ガラス板の欠陥に焦点を合せることができる。
以下の詳細な説明を添付図面とともに参照することで本発明のより完全な理解を得ることができる。
図1A〜1Fを参照すれば、本発明にしたがう第1の実施形態の検査装置100に関する6つの図が示されている。図1Aは、レーザ光線104の全てを屈折して、ガラス板110を透過してラインスキャンセンサ112で受けられる平行光108のビームにする円柱レンズ106を通過するレーザ光線104を発生するダイオードレーザ102を備える、検査装置100を示す。検査装置100の重要な態様は、ラインスキャンセンサ112がラインスキャンセンサ112とガラス板110の間への別のレンズの配置を必要とせずにガラス板110の欠陥に焦点を合せ得ることである。本例において、円柱レンズ106とセンサ112の間隔はほぼ4"(約100mm)である。平行光108のビームの幅は3〜5"(約75〜125mm)である。ガラス板110の位置は、円柱レンズ106とセンサ112の間で、±1インチ(±約25mm)変わり得る。
検査装置100は、ガラス板110の欠陥に焦点を合せるためにガラス板110とセンサ112の間にレンズを精確に配置する必要がある従来の検査装置に優る、顕著な改善である。例えば、およそ1〜200μmの欠陥を検出できる従来の検査装置では、被写界深度が数mmより狭いことが必要であった。対照的に、本発明の検査装置100は数インチ(50〜75mm程度)の範囲の等価被写界深度を有する。これは、検査装置100が、レーザ102から(光線を互いに平行にすることだけが目的の)コリメータレンズ106を通ってセンサ112の小形センサ素子まで直接に進行する光線104に依存するからである。また、欠陥のような何か小さな対象が光路を擾乱すれば、この擾乱がセンサ112によって捕捉される。擾乱はレーザ102とセンサ112の間の光路のいかなる点においてもおこり得る。したがって、検査装置100は、従来の検査装置に比較すれば、かなり大きく緩和されたセンサ−対象距離をもって欠陥を検出及び測定することができる。
図1B〜1Eは検査装置100でスキャンした様々なガラス板110に関する様々な欠陥像を示す。それぞれの像を得るため、センサ112は、デジタル化してグラフィックス形式で表示できるように画像処理アルゴリズムを用いて解析するコンピュータ(図示せず)に入力される、信号を出力するであろう。生成された像を考察する場合、信号高が欠陥によって生じていることに注意すべきである。欠陥は小さなインクルージョンであり、この実験シリーズにおいては、白金、ジルコニウム、ステンレス鋼またはその他の何らかの汚染物の小さな粒子であった。これらの像を生成するためには、フレネル効果が可能になるように極めてコヒーレンスが高い光線104をつくるレーザ102が必要であった。フレネル効果は、光エネルギーが見えない欠陥で回折されて、レーザ102でつくられる光104より高くなり得るピークを生じる効果である。したがって、フレネル効果により、小さな欠陥の容易な検出が可能になる、非常に高い信号対雑音比が得られる。
図1Fは、センサ112から1"(約25mm)、1.5"(約37.5mm)、2.0"(約50mm)、2.5"(約62.5mm)及び3"(約75mm)離れた位置でスキャンしたガラス板110の欠陥の寸法変化を示す。欠陥の寸法は変化するが、変化は他の測定値に比較して小さく、変化は測定可能であり、予測可能である。グラフは、計算される欠陥の寸法が、欠陥がセンサから遠くに離れるにつれて、予測可能な量だけ大きくなることも示す。さらに、グラフは、ガラス板110とセンサ112の間隔が既知である場合、この寸法変化の逆数が欠陥の正しい寸法を計算するために用いることができる補正因子であることを示す。
検査装置100はいくつかの別の利点も有し、それらの利点のいくつかが以下に説明される:
・検査装置100はミリメートルではなくインチの(約25倍の)オーダーの擬または等価被写界深度を生じる光学的構成(光入射角/光反射角)を有する。取扱いまたは移動が容易ではない大寸(例えば2m×2m)LCDガラス板に対し、このことは、センサ位置をガラス表面に対して少しずつ変えることができ、それでも欠陥を検出及び測定できることを意味する;
・検査装置100は光をセンサ112に入れるための効率が非常に高い方法であるレーザ送達構成を用いる。小形高速センサ素子を用いる他の方法では光量が不足し、5〜100μmの欠陥の検出には実用にならない;
・検査装置100は円柱レンズ106がなくとも実施できるが、正確な結果は得られないであろう。例えば、この別形の実施形態において、ガラス板110の欠陥の存在及び測定値の計算にはより多くの処理時間がかかるであろう。
図2A〜2Cを参照すれば、本発明にしたがう第2の実施形態の検査装置200に関する3つの図が示されている。図2Aは、レーザ光線204の全てを屈折して可能な限り垂直に近い角度でガラス板210を透過する平行光208のビームにする円柱レンズ206を通過するレーザ光線204を発生するダイオードレーザ202を備える。この過程の間、光ビーム208の一部(約4%)がガラス板210の前面から反射され、光ビーム208の一部(約4〜5%)がガラス板210の背面から反射される。2つの反射ビーム211がラインスキャンセンサ212で受けられる。レーザビーム208は極めてコヒーレンスが高いから、センサ212及びコンピュータ(図示せず)による2つの反射ビーム211からの干渉パターン像の生成が可能になる。
図2Aからわかるように、コヒーレント光208のビームがガラス板210に向けられると、ガラス板210の前面及び背面のいずれからも反射があって、つくられた2つの波は位相が同じ状態及び位相がずれた状態になり、干渉縞パターンをつくる(図2Bを見よ)。この干渉縞パターンはガラス板210の厚さの変化または屈折率の変化によって変わり得る。干渉縞パターンは、ガラス板210の厚さ及び/または屈折率に小さな変化があれば、南北方向に流れる。また、東西方向で単位面積当りの干渉縞ストリークが多くなるほど、示される厚さ変化及び/または屈折率変化は激しくなる。したがって、レーザ202でつくられるコヒーレント光204によって、厚さまたは屈折率の変化のセンサ212による検出及びコンピュータ(図示せず)によるマップ作成が可能になる。さらに、コンピュータを、干渉縞パターンのコラムの平均をとり、この和の最小値及び最大値を見いだすことによって、ガラス板210の厚さまたは屈折率の変化の測定精度を高めるために用いることができる(最小値及び最大値は90°位相がずれている状態であり、測定を行うために用いられる光の波長の1/2の厚さの変化を表すことに注意されたい)。最小値点と最大値点の間の領域を10分割することによって波長の1/10まで測定値を細かくすることができる。
2つの例示的な干渉パターンが図2B及び2Cに示される。図2Bにおいて、干渉パターンのそれぞれの干渉縞は光ビーム204の波長の1/2に等しいガラス板210の厚さの変化を表す。図2Cにおいて、ラインスキャンCCDで生成された像はガラス板210のインクルージョンを示す。この像の中心部は192μmの見えないインクルージョンからの反射であることに注意すべきである。この像には中心部を囲むいくつかの干渉縞もある。これらの干渉縞は、ガラス板210内の見えないインクルージョンによって生じた、厚さ及び/または屈折率の変化を示す。
2つの反射光ビーム211は、レーザ光204の1/2波長の幅の空間を進行する毎に、位相が合った状態及び位相がずれた状態(増強度状態及び減強度状態)に入るコヒーレント波形を形成するから、これらの像を生成することが可能である。例えば、波長が400nmの紫色レーザ202を用いていれば、200nm間隔で干渉縞の明領域が見られ、200nm間隔で干渉縞の暗領域が見られたであろう。暗領域及び明領域は光211の波長のほぼ1/6だけ隔てられているであろう。紫色光211が用いられれば、この明暗間隔は66nmになるであろう。センサ212が明暗干渉縞パターンを検出できるように、反射明視野(RBF)スキャンニングの構成にセンサ212を用いることができるのは、この現象のためである。また、この干渉縞パターンを横切って明干渉縞(または暗干渉縞)を計数し、この数に光211の波長の1/3を乗ずることによって、ガラス板210の厚さ変化の大きさを決定することができる。一般に、この解析だけでは干渉縞パターン変化が厚さ変化で生じているかまたは屈折率変化で生じているかを決定することはできない。しかし、ガラス製造プロセスの経験があれば、干渉パターンを解析して、何が特有の干渉縞パターンを生じさせているかを決定することができる。
検査装置200はレーザ光204の波長の少なくとも約1%までの歪を測定することもできる。これは、レーザ光204の波長の1/3の波長の幅の空間を進行する毎に位相が合った状態及び位相がずれた状態に入る2つの波形の干渉によって干渉縞パターンが生じるから、可能である。干渉縞の最高強度(最も明るい領域)は0°位相に関係付けることができ、最低強度(最も暗い領域)は90°位相に関係付けることができる。したがって、干渉縞の最も明るい領域と最も暗い領域の中間点であろう干渉パターン内の点は、本例においては、光204の波長の1/12に対応するから、45°位相であろうと推定することができる。紫色400nmレーザについては、これは紫色光(404nm)に対してほぼ30nmになろう。これが、いかにして干渉縞パターンを少なくとも干渉縞当り1/12まで分解できるかである。
検査装置200はいくつかの他の利点も有し、それらの利点のいくつかが以下に説明される:
・光204の入射角をガラス板210の法線の比較的近くに維持することができれば、この光学構成でmmよりもインチの(約25倍の)オーダーの擬被写界深度を生じさせることができる。これは、取扱いあるいは移動が容易ではない大寸(例えば2m×2mの)ガラス板に対し、センサ位置をガラス面に対して少しずつ変えることができ、それでも欠陥を検出及び測定できることを意味する。このスキャンニング構成で得られる自由度により、標準的な工場内搬送システムでガラス板を運搬しながら、ガラス板をスキャンすることが可能になる;
・検査装置200は、ガラス板の精確な位置決めを必要とせずに、板厚の測定及び微細欠陥の検出のいずれをも可能にする;
・検査装置200は、欠陥がガラス板表面を歪ませているか否かに関する局所情報を生成し、スキャンに用いられるレーザ光の波長のすくなくとも約1%までの歪を測定することができる;
・検査装置200で生成された干渉縞パターンを解析し、次いでガラス板210の厚さの大局的変化を決定することができる;
・検査装置200により、インクルージョンの領域における厚さまたは屈折率の変化の検出及び測定が可能になる;
・検査装置200により、欠陥の近傍を通過するストリークとして現れるであろう、ガラス板210の延伸方向における厚さまたは屈折率のいかなる変化も検出することができる;
・検査装置200は円柱レンズ206がなくとも実施できるが、正確な結果は得られないであろう。例えば、この別形の実施形態において、ガラス板210の厚さまたは屈折率の変化の計算にはより多くの処理時間がかかるであろう。
図3A〜3Bを参照すれば、本発明にしたがう第3の実施形態の検査装置300に関する5つの図が示されている。図3Aはガラス板306の応力を識別するために用いられるセンサ302及び照明器304を備える。本例における照明器304は移動しているガラス板306の一部を通過する偏光ビーム310aを放射するレーザ306及びレンズ308(任意)を有する。センサ302(例えば3ラインセンサ302)は、ガラス板306を通過した偏光ビーム310bを受けるために、3つの検出器列312a,312b及び312c(例えばCCD検出器312a,312b及び312c)を用いる(図3Bを見よ)。本例において、偏光ビーム310aの幅は3〜5"(約75〜125mm)である。また、センサ302は移動しているガラス板306からほぼ2"(約50mm)離して配置される。
図3Bに示されるように、第1のCCD検出器列312aは、入射光310bを0°方位に偏光させる、第1の偏光コーティング314aで遮蔽/被覆される。第2のCCD検出器列312bは、入射光310bをCCD検出器312aに対して120°方位に偏光させる、第2の偏光コーティング314bで遮蔽/被覆される。さらに、第3のCCD検出器列312cは、入射光310bをCCD検出器312aに対して240°方位に偏光させる、第3の偏光コーティング314cで遮蔽/被覆される。あるいは、検査装置300は、それぞれの間の相対角変位が約120°である限りいかなる3つの角度とすることもできる偏光コーティング312a,312b及び312cを用いても作用し得ることに注意すべきである。さらに、相対角変位を120°から変えた場合、検査装置300は、確度は低下するが、それでもまだ作用するであろう。15°,135°及び255°のような角度は、それぞれの相対角変位が120°であるから、0°,120°及び240°と同様に有効であろう。15°,160°及び230°のような角度もある程度は有効であろうが、最確値を得ることはできないであろう。この結果、相対角変位は120°に近くするべきであり、この理想値からのいかなる偏差も、確度は低下するが、それでも許容できる結果を得ることができる検査装置300が得られるであろう。
動作において、センサ302が偏光光310bで照射されると、CCD検出器列312a,312b及び312cのそれぞれからの出力は入力偏光光310bとCCD検出器列312a,312b及び312cにともなう偏光フィルタ角のベクトル積である。したがって、偏光光310aが検出可能な大きさの応力を有するガラス板306を通過すると、応力は光ビーム310bの偏光角を変化させ、よって、3つのラインスキャンCCD検出器列312a,312b及び312cからの信号にも応力の大きさに応じた変化が生じる。これらの信号はガラス板306の応力を識別するために用いられる。
すなわち、ガラス板306に応力がなければ、受ける偏光光310bの偏光角はレーザ306で放射された光310aと同じ角度を有するであろう。ガラス板306に小さな応力が存在すれば、この応力は光310bの偏光角を少し変化させるであろう。この偏光角変化は3つの偏光CCD検出器列312a,312b及び312cからの出力を解析することによって測定及び計算することができる。また、ガラス板306に大きな応力が存在すれば、ガラス板306を通過する光310bの偏光角は大きく変わるであろう。この偏光角変化も3つの偏光CCD検出器列312a,312b及び312cによって測定することができる。
直交偏光子を有する2つのCCD検出器列(例えば)312a及び312bで偏光角を一意的に識別することができると考える人がいるかもしれないが、一意的にならない場合がある。これを説明するため、2つの入り波形の2つの相異なる偏光角が、2つの直交偏光CCD検出器312a及び312bに投射されたときに、同じ偏光量に解されてしまう、図3C及び3Dを参照する。これらの2つの波形に対しては、それぞれの偏光角を一意的に識別することは不可能である。この問題は第3のCCD検出器列(例えば)312cを付加することによって解決することができる。
図3Eは、ラインスキャン像がセンサ302によって生成されている間に動的に曲げられているLCDガラス片306の例を示す。時間の経過にともなう干渉縞パターンの変化は応力の変化を示す。一般に、ガラス板306のある領域にかけて変わり得る応力の量は多くの環境効果に依存し、ガラス板306がどのように形成されたかにも依存することが多い。
検査装置300はいくつかの他の利点も有し、それらの利点のいくつかが以下に説明される:
・検査装置300は可動部品を必要としない;
・検査装置300はオンライン測定に適する;
・検査装置300はLCDガラス板306の全面積にわたる応力マップを生成するために用いることができる。例えば、ガラス板306の幅と同じ長さのセンサを形成するために一列に揃えて配置した複数のセンサ302を用いることにより、ガラス板306の完全な応力マップを生成することができ、これらのセンサ302から生成された信号は、コンピュータを用いて、ガラス板306の全面にわたる応力像を生成するために用いることができる;
・上に示したように、検査装置300は円柱レンズ308がなくとも実施できるが、正確な結果は得られないであろう。例えば、この別形の実施形態において、ガラス板306の応力を計算/識別するにはより多くの処理時間がかかるであろう。
図4A〜4Cを参照すれば、本発明にしたがう第4の実施形態の検査装置400に関する3つの図が示されている。図4Aは、ガラス板406内またはガラス板406上の欠陥を識別するために用いられる、複ラインスキャンカラーセンサ402及び複数の照明器(レーザ)404a,404b,404c及び404dを備える検査装置400を示す。本例において、複ラインスキャンセンサ402は複数のCCD検出器列412a,412b,412c及び412dを有し、これらのCCD検出器はそれぞれ、分光フィルタ414a,414b,414c及び414dで被覆されている(図4Bを見よ)。また、4つの相異なる照明器404a,404b,404c及び404dはそれぞれ、フィルタ付CCD検出器列412a,412b,412c及び412dの内の1つのエネルギー帯域内のエネルギーを有する、色光ビーム416a,416b,416c及び416dを放射する。図4B〜4Cは、それぞれの分光フィルタ414a,414b,414c及び414dにより、光ビーム416a,416b,416c及び416dの内の注目する1つの特定の色(波長)だけが対応するCCD検出器列412a,412b,412c及び412d上に送られ、光ビーム416a,416b,416c及び416dの内の他の全てが遮断されるかがどのようにして可能になるかを示す。
図4A〜4Cに示される例示的検査装置400において、赤色照明器404aは赤色光ビーム416aを放射し、赤色光ビーム416aはレンズ418を通り、次いでガラス板406を通って、赤色光ビーム416aのエネルギー帯域を受けるためのフィルタが付けられたCCD検出器列412a上に入る。本例において、CCD検出器列412aはガラス板406内の微視的インクルージョンに感度をもつ。緑色照明器406bは緑色光ビーム416bを放射し、緑色光ビーム416bはガラス板406から反射されて、緑色光ビーム416bのエネルギー帯域を受けるためのフィルタが付けられたCCD検出器列412内に導かれる。本例において、CCD検出器列412bはインクルージョン及びガラス厚に感度をもつ。青色照明器404cは青色光ビーム416cを放射し、青色光ビーム416cは回折格子420を通り、次いでガラス板406を通って、青色光ビーム416cのエネルギー帯域を受けるためのフィルタが付けられたCCD検出器列412c上に入る。本例において、CCD検出器列412cはガラス板406のストリーク及び屈折率変化に感度をもつ。また、灰色(赤外線)照明器406dは灰色光ビーム416dを放射し、灰色光ビーム416dはレンズ424を通り、次いでガラス板406を通って、灰色(IR)光ビーム406dのエネルギー帯域を受けるためのフィルタがつけられたCCD検出器列412d上に入る。本例において、CCD検出器列412dはガラス板406の欠陥の位置の測定を可能にする。同様の態様において、検査装置400は赤外エネルギー帯域及び紫外エネルギー帯域のような異なるエネルギー帯域にある光ビームを用いてガラス板406の別の属性を検出するように構成することができるであろう。以上からわかるように、1つのセンサ402をもつ検査装置400によって、ガラス板406の汚染物及び形状に関する多くの属性の測定が可能になる。
全ての実用目的に対し、どのタイプの属性(例えば、微視的インクルージョン、ガラス厚)の検出にどの波長の光416a,416b,416c及び416dが用いられるかは問題ではない。例えば、ガラス板406の微視的インクルージョンの代りに屈折率変化を検出するために赤色光ビーム416a及びCCD検出器列412aを用いることが容易にできるであろう。この場合も、色分光フィルタ414b,414c及び414dは、例えば、非赤色CCD検出器列412b,412c及び412dを赤色レーザ404aから放射された赤色光416aに応答させないでおくために用いられる。このことは、色が相異なる光416a,416b,416c及び416dを、それぞれの属性(幾何学的構成−センサ402上の光入射角及び光反射角)によって与えられる情報を他の属性(構成)によって生成される情報との干渉から分離するために用い得ることを意味する。
4つのレーザ406a,406b,406c及び406dの波長も、それぞれを4つのCCD検出器列412a,412b,412c及び412dの前面に配置される分光フィルタ414a,414b,414c及び414dによって分離することができる限り、問題ではない。すなわち、レーザ406a,406b,406c及び406dの波長は、404nm,750nm,870nm及び950nmのような、市販されている安価なレーザの波長に一致するように選ぶことができる。さらに、光の波長には200nmから2000nmの間のいずれか有用な波長を用いることができる。
検査装置400はいくつかの他の利点も有し、それらの利点のいくつかが以下に説明される:
・空間調整:1つの複スキャンセンサ402から全ての測定値が生成されるから、異なるラインスキャンアレイ412a,412b,412c及び412dのそれぞれによって与えられる、異なる視野の間の空間関係を調整することはかなり容易である;
・コスト低減:この場合、CCD検出器列412a,412b,412c及び412dの内の2つまたはそれより多くを1枚の基板の上に実装することができ、これは、1つの取付け具、1つのインターフェース及び、おそらくは、1つのレンズを意味する;
・寸法縮小:この場合、検査装置400はより多くのスペースをとるであろう2つまたはそれより多くのセンサの代りに1つのセンサ402を有することになろう。
図5A〜5Cを参照すれば、本発明にしたがう第5の実施形態の検査装置に関する3つの図が示されている。今日、検査装置は品質制御及びプロセス情報を得るために、様々な材料(例えば、紙、プラスチック、鋼、アルミニウム及びガラス板)を、これらの製造中に、スキャンして異常(欠陥)を検出及び分類するために用いられることは周知である。しかし、これらのスキャンニングプロセスは、材料の表面上に付着し、検査装置によって検出される、製造プロセス中に生じる異物粒子によって混乱させられ得る。ガラス板のような透明材料では、材料表面上に粒子(例えば、埃、塵、ガラス破片)がある場合、これらは検査装置によって材料内部にある粒子(インクルージョン)と同一視され得る。このため、検査装置で得られる結果は不正確になる。実際、いくつかのプロセスにおいては表面粒子数は内部粒子数の10〜100倍になることがあり、この結果スキャンニング結果が無意味になりがちである。本発明の検査装置500は、透明材料504(例えばガラス板504)に埋め込まれている欠陥502を、表面粒子506を検出せずに、検出することによってこの問題に対処する。
図5A及び5Bに示されるように、検査装置500はある角度でガラス板504に向かう光510を放射する照明器508を用いる。角度は、光510の一部が移動しているガラス板504内で、移動しているガラス板504に光510が入り、出てくる位置から離れた領域に向かって、内部反射するであろうように選ばれる。次いで、ラインスキャンカメラ512を、その領域に焦点を合せて、内部傷502から反射される光510は検出し、移動しているガラス板504に光510が入り、出てくる場所にある表面粒子506から反射される光510は検出しないでおくことができるような位置に配置することができる。これらの2つの図は、照明器508からの光510がガラス板504に入り、出てくる、移動しているガラス板504上の点から離れた場所におかれたラインスキャンカメラ512を示す。この場合も、この位置にあるラインスキャンカメラ512は、表面粒子506を検出せずに、内部傷502に焦点を合せて検出することができる。
別の実施形態において、ラインスキャンカメラ512は、ラインスキャンセンサ、時間遅延積分(TDI)センサ及び接触センサで置き換えることができる。また照明器508は、レーザ、レーザ光線、または蛍光灯508a(図5Cを見よ)のようなその他いずれかの照明器とすることができる。蛍光灯508aのような照明器が用いられる場合には、移動しているガラス板504に沿う光510aの内部反射が可能になり、同時に、ラインスキャンカメラ512がガラス板504を視ている点における移動しているガラス板504への光510aの出入りを遮蔽するように(図5cの検査装置500cを見よ)、シールド514を用いる必要があるであろう。
検査装置500はいくつかの他の利点も有し、それらの利点のいくつかが以下に説明される:
・検査装置500は、ガラス板504に加えて、例えばガラスウエブ、及び板形態またはウエブ形態のその他の透明材料を含む、様々な製品形態をスキャンするために用いることができる。
図6A〜6Dを参照すれば、本発明にしたがう第6の実施形態の検査装置600に関する4つの図が示されている。ガラス作成の当業者にはガラス板602の作成時につくられたガラス板602の屈折率及び/または厚さの僅かな変化が、コリメーションの差が測定可能であるレベルまでコリメート光を屈折させ得ることは周知である。この効果は、ガラス板602(LCDディスプレイ602)を見たときに人間の眼で検出することができ、欠陥と見なされる。図6A及び6Bは、光604が点源606(レーザ606)から放射され、光604を屈折させて白色背景608上に明暗ストリークを生じさせる、望ましくない平ガラス板602を透過するときに生じる、この効果を示す。本発明の検査装置600はガラス板602(またはいずれかの平板透明材料)の厚さ及び/または屈折率のそのような僅かな変動の検出を可能にする。これは、望ましくないガラス板602を、LCDディスプレイのような製品に用いる前に検出できることになるから、重要である。
図6Cは光強度が比較的等しい扇形光612をつくるレーザ610を備える検査装置600を示す。検査装置600は、光612を回折して扇形形態から平行光線616にする、コリメートレンズ614も備える。光616は、本例ではピッチが500対/インチ(約20対/mm)でフィルファクタが50%の、回折格子618に入射する。回折格子618は、ガラス板602(例えばLCDガラス板602)を通してラインスキャンCCDセンサ620上に投射される、一連の暗線622a及び輝線622bを形成する。本例において、回折格子618とガラス板602の間隔は2"(約50mm)である。回折格子618とセンサ620の間隔は4"(約100mm)である。また、平行光ビーム616の幅は3"〜4"(約75mm〜100mm)である。
厚さ及び屈折率が一定の例示的な平「基準」ガラス板602の一片を検査装置600で解析すれば、図6Dの最上段に示される波形1のような基準波形を生成してコンピュータ(図示せず)に格納することができる。波形1は、回折格子618の存在によって生じた、交互する明領域及び暗領域を示す。コンピュータは他のガラス板602からの波形と比較するための基準または標準として波形1を用いる。例えば、比較的良好なガラス板602を回折格子618とセンサ620の間におけば、波形2にかなり似た波形が生成されるであろう。明領域が等しくなるように波形1及び2のそれぞれの頭をクリップして、2つの波形1及び2の差をとれば、波形3のような波形が生成されるであろう。波形3は、正または負の値をとり得る、小さなブリップを方形波の端に示す。ブリップの幅は、基準ガラス板602にともなう波形1が良好なガラス板602にともなう波形2とほぼ同じであるから、比較的小さい。波形4は、それぞれの波形の正の端だけでつくられた(負の端でつくられたブリップは無視した)、波形3に示されるブリップの積分である。この場合、波形4に示されるブリップの積分は、良好なガラス板602は基準ガラス板602とほぼ同じ品質を有するから、小さい。ブリップの有効性は、以下で、非均一ガラス板602の波形が基準ガラス板602の波形と比較されるときに、さらに詳細に説明される。
波形6は、屈折率が変化しているかまたは厚さ変動を有する、不均一ガラス板602の検査後に生成された。屈折率が変化しているかまたは厚さが一定ではない領域が光616の方向を屈折または変化させ、したがって、波形の端を左右に移動させた。得られた波形が右に移動していれば、不均一ガラス板602を通過した光線616は右に曲げられている。また、同様に、波形が左に移動していれば、光線616は左に曲げられている。波形6を(基準波形1と同じ)波形5から差し引けば、厚さ、形状及び/または屈折率が変化していることを示す波形7が得られるであろう。波形7の「暗」陰影領域は波形5の正の端でつくられたブリップである。また「明」陰影領域は波形5の負の端でつくられたブリップである。ブリップの幅は光616が不均一ガラス板602を通り抜けて行く間の光616の方向の変化の大きさの指標である。波形5の端に比較して、正または負の、波形7のブリップの方向は光616の方向変化を決定する。例えば、正ブリップに関係付けられる波形5の正の端(「暗」ブリップ)は、光線が左に曲げられたことを示す。また、波形5の負の「暗」ブリップは光線が右に曲げられたことを示す。全ての「暗」ブリップの頂点を線で結べば、波形8がつくられる。波形8の積分値が正であれば、これは光線が左に曲げられたことを示し、積分値がゼロに近ければ光線は曲げられておらず、積分値が負であれば光線は右に曲げられている。基本的に、波形8の積分値がゼロから離れるほど、不均一ガラス板602の厚さ、形状及び/または屈折率の変化は望ましくなくなる。
検査装置600はいくつかの他の利点も有し、それらの利点のいくつかが以下に説明される:
・検査装置600は、ガラス板602の屈折率変化、厚さ変化または形状変化の結果であり得る、ガラス板602の微細ストリークを測定するために用いることができる。検査装置600は方向情報及び相対的大きさ情報のいずれをも生成し、ガラス板602の表面内で1000読み値/インチ(約40読み値/mm)を生成することができる。
図7A〜7Dを参照すれば、本発明にしたがう第7の実施形態の検査装置700に関する4つの図が示されている。微視的欠陥をスキャンするために検査装置100,200,...,600によって用いられる上述した技法は、比較的大きな被写界深度を有するという事実により、空間内の欠陥の検出に優れているが、この大きな被写界深度(例えば2インチ(約50mm))は、欠陥がセンサから離れている距離を検出できる能力においてこれらのスキャン技法が劣っていることを意味する。また、LCDガラスの場合、欠陥があるか否か及び欠陥がLCDガラスのA面近傍にあるかまたはB面近傍あるかを決定できる検査装置があれば有用であろう。この能力は、LCDガラスにコーティングを施す場合に、コーティングはガラス板の一方の面上の欠陥に対して他方の面上の欠陥に対するよりも影響を受け易くなるから有益であろう。したがって、欠陥がB面にあれば問題はないかもしれないが、欠陥がA面近傍またはA面上にあれば極めて好ましくないから、いずれの面上に欠陥があるかを判定することは重要である。以下に説明する検査装置700はガラス板に対する深さ方向であるz方向における欠陥の位置の判定を可能にする。
図7Aは、本例においてはガラス板710の同じ横位置にある2つの欠陥706及び708の相対位置を判定するための、それぞれの波長が相異なる2つのレーザ線源702a及び702b及び、2つのラインスキャンアレイ712a及び712bをもつ、センサ706を用いる検査装置700の側面図を示す。図は、一定速度(V)で上方に移動しており、センサ704から固定距離(D)にあるガラス板710を示す。2つのラインスキャナアレイ712aと712bの間隔(d)は既知である。また、ラインスキャナアレイ712a及び712bのそれぞれは相異なる光波長に感度を有する。例えば、下部ラインスキャンアレイ712bは赤色レーザ702aによって放射される赤色光714aに感度を有する。また、上部ラインスキャンアレイ712aは緑色レーザ702bによって放射される緑色光714bに感度を有する。上部ラインスキャンアレイ712aはセンサ704の法線に対して角度アルファ(A)をなして照射される。また、下部ラインスキャンアレイ712bはガラス板710及びセンサ704に垂直な角度で下側のレーザ702aによって照射される。本例において、CCDラインスキャンセンサ704は5μm毎に新しいピクセルを生じ、欠陥706及び708のいずれの像も1つまたはそれより多くのスキャンにおいて記録される。図7Aは、欠陥706及び708のいずれもがレーザ702aからの光714を遮っている、時刻0における検査装置700の瞬間図を表す。
図7Bは、ガラス板710のA面上の欠陥708がレーザ702bから放射される光714bを遮っている、時刻T1における検査装置700の瞬間図である。CCDラインスキャンセンサ704は1つまたはそれより多くのピクセルスキャンにおいてこの欠陥708の像を記録する。
図7Cは、ガラス板710のB面上の欠陥706がレーザ702bから放射される光714bを遮っている、時刻T2における検査装置700の瞬間図である。CCDラインスキャンセンサ704は1つまたはそれより多くのピクセルスキャンにおいてこの欠陥706の像を記録する。
図7Dは先のセンサスキャンの全てを合せて示し、欠陥706及び708の3つの像を示す。第1に、A面欠陥708及びB面欠陥706はいずれも同じ時刻0に検出されているから、欠陥708及び706の像は互いに重ね合されて示される。第2に、レーザ702bから放射された光ビーム714bが時刻T1においてA面欠陥708を通過しているから、A面欠陥708の像が示される。第3に、レーザ702bから放射された光ビーム714bが時刻T2においてB面欠陥706を通過しているから、B面欠陥706の像が示される。
A面欠陥708が移動した距離は、時刻0から時刻T1の間につくられたスキャン線を計数し、計数値に本例におけるピクセルのμmを単位とする寸法である5を乗じることによって計算することができる。同様に、B面欠陥706が移動した距離は、時刻0から時刻T2の間につくられたスキャン線を計数し、計数値に同じく本例におけるピクセルのμmを単位とする寸法である5を乗じることによって計算することができる。B面欠陥706が光ビーム714bを横切るにはA面欠陥708より長い時間がかかっているから、B面欠陥706に対してはより多くのスキャン線があり、より大きな距離が計算されることになろう。
結局、A面欠陥708のセンサ704からの距離は、A面欠陥708が移動した距離に角度Aの正接を乗じることによって計算することができる。同様に、B面欠陥706のセンサ704からの距離は、B面欠陥706が移動した距離に角度Aの正接を乗じることによって計算することができる。このタイプの距離計算をガラス板710の表面上にある1つまたはそれより多くの欠陥について行い得ることは当然である。
別の実施形態において、欠陥が第1のレーザ702aの前方から第2のレーザ702bを遮るまで移動するにかかる時間である移動時間をモニタすることによって、検査装置700を用いて欠陥の位置を決定することができる。
事例I:A面欠陥708の移動時間は、
=(d+D・tan(A))/V
として計算することができる。
事例II:B面欠陥706の移動時間は、
=(d+(D+T(n/n))・tan(A))/V
として計算することができる。
上式において、nは空気の屈折率であり、nはガラス板710の屈折率である。
事例III:ガラス板710内部の位置Pにある欠陥(図示せず)に対する移動時間は、
=(d+(D+P(n/n))・tan(A))/V
として計算することができる。
この式を位置Pについて解けば、
P=n・((t・V)−d−D・tan(A))/(n・tan(A))
となる。
一例において、レーザ702bの角度を20°とし、ガラス板710の速度を3インチ/秒(約75mm/秒)に等しいとし、ガラス板710のセンサ704からの距離を2インチ(約50mm)とし、空気の屈折率を1とし、ラインスキャンアレイ712aと712bの間隔を90μmとし、ピクセル寸法を5μmとし、ガラスの屈折率を1.5とする。これで、ガラス板710における3つの異なる位置:(1)P=0であるA面、(2)Pが300μmに等しいガラス内部及び(3)Pが700μmに等しいB面において計算を実行することができる。これらの3つの位置において、移動時間は:
・B面において、移動時間=0.243827秒
・300μmにおいて、移動時間=0.243827+0.0095
=0.244777秒
・A面において、移動時間=0.243827+0.0220
=0.246027秒
である。
次いで、欠陥の位置を計算するためには、検査装置700の測定精度を知る必要があり、本例において、センサ702は5μmピクセルにおいて測定できる。この分解能を達成するためには、ガラス板710の速度(V)を5μmのピクセル寸法で除した値に等しいレートでスキャンが行われなければならず、これは15240スキャン/秒に相当する。この数の逆数をとることで、スキャン間の時間すなわち0.0000656秒/スキャンが得られる。これは、700μm厚ガラス板710に対して、B面から生じる移動時間とA面から生じる移動時間の間に33本のスキャン差を与える。このことからわかるように、この測定は良好な位置情報を与えるに十分に正確である。
上述した検査装置100,200,...,700のいずれにも用いることができるセンサはコダック(Kodak)KLI14441センサ及びコダックKLI4101センサのような、センサとし得ることに注意すべきである。しかし、特定のタイプのセンサであることは重要ではない。重要なことは、複数のカメラ視野からの情報または複数のカメラ形状寸法を合せ込み、調整するに役立つ、複数のラインスキャン素子アレイをセンサが有するという事実である。
本発明のいくつかの実施形態を添付図面に示し、上記の詳細な説明に述べたが、開示した実施形態に本発明が限定されず、添付される特許請求の範囲に述べられ、定められる、本発明の精神を逸脱しない、数多くの再構成、改変及び置換が可能であることは当然である。
本発明にしたがう検査装置の第1の実施形態に関する第1の図を示す 本発明にしたがう検査装置の第1の実施形態に関する第2の図を示す 本発明にしたがう検査装置の第1の実施形態に関する第3の図を示す 本発明にしたがう検査装置の第1の実施形態に関する第4の図を示す 本発明にしたがう検査装置の第1の実施形態に関する第5の図を示す 本発明にしたがう検査装置の第1の実施形態に関する第6の図を示す 本発明にしたがう検査装置の第2の実施形態に関する第1の図を示す 本発明にしたがう検査装置の第2の実施形態に関する第2の図を示す 本発明にしたがう検査装置の第2の実施形態に関する第3の図を示す 本発明にしたがう検査装置の第3の実施形態に関する第1の図を示す 本発明にしたがう検査装置の第3の実施形態に関する第2の図を示す 本発明にしたがう検査装置の第3の実施形態に関する第3の図を示す 本発明にしたがう検査装置の第3の実施形態に関する第4の図を示す 本発明にしたがう検査装置の第3の実施形態に関する第5の図を示す 本発明にしたがう検査装置の第4の実施形態に関する第1の図を示す 本発明にしたがう検査装置の第4の実施形態に関する第2の図を示す 本発明にしたがう検査装置の第4の実施形態に関する第3の図を示す 本発明にしたがう検査装置の第5の実施形態に関する第1の図を示す 本発明にしたがう検査装置の第5の実施形態に関する第2の図を示す 本発明にしたがう検査装置の第5の実施形態に関する第3の図を示す 本発明にしたがう検査装置の第6の実施形態に関する第1の図を示す 本発明にしたがう検査装置の第6の実施形態に関する第2の図を示す 本発明にしたがう検査装置の第6の実施形態に関する第3の図を示す 本発明にしたがう検査装置の第6の実施形態に関する第4の図を示す 本発明にしたがう検査装置の第7の実施形態に関する第1の図を示す 本発明にしたがう検査装置の第7の実施形態に関する第2の図を示す 本発明にしたがう検査装置の第7の実施形態に関する第3の図を示す 本発明にしたがう検査装置の第7の実施形態に関する第4の図を示す
符号の説明
100 検査装置
102 ダイオードレーザ
104 レーザ光
106 円柱レンズ
108 平行光
110 ガラス板
112 ラインスキャンセンサ

Claims (10)

  1. 平板透明材料にある欠陥を識別する方法において、前記方法が、
    光ビームを放射するために照明器を使用する段階、
    前記光ビームを受け取り、前記平板透明材料の一部を通る平行光ビームを放射するために第1のレンズを使用する段階、
    前記平板透明材料の前記一部を通過した前記平行光ビームを受け取るため及び前記平板透明材料にある前記欠陥に焦点を合せるためにラインスキャンセンサを使用し、前記ラインスキャンセンサの前方への第2のレンズの配置は必要としない、段階、
    を含むことを特徴とする方法。
  2. 前記平板透明材料の前記一部を通過した前記平行光ビームの構造が前記欠陥及び前記平板透明材料の特性によって定められることを特徴とする請求項1に記載の方法。
  3. 前記ラインスキャンセンサが1インチ(約25mm)より大きい被写界深度を有することを特徴とする請求項1に記載の方法。
  4. 前記ラインスキャンセンサが、前記平板透明材料にある前記欠陥の検出を可能にする前記平板透明材料を通過した前記平行光ビームにともなうフレネル効果を示す像を生成するコンピュータによって解析される信号を出力することを特徴とする請求項1に記載の方法。
  5. 前記ラインスキャンセンサが、前記平板透明材料の厚さまたは屈折率の変化の検出を可能にする前記平板透明材料を通過した前記平行光ビームにともなう干渉パターンを示す像を生成するコンピュータによって解析される信号を出力することを特徴とする請求項1に記載の方法。
  6. 平板透明材料にある欠陥を識別するための検査装置において、前記検査装置が、
    光ビームを放射することができる照明器、
    前記光ビームを受け取ることができ、前記平板透明材料の一部を通る平行光ビームを放射することができる第1のレンズ、
    前記平板透明材料の前記一部を通過した前記平行ビームを受け取ることができ、さらに前記平板透明材料にある前記欠陥に焦点を合せることができるラインスキャンセンサ、
    を備え、
    前記ラインスキャンセンサの前方に第2のレンズを配置する必要がない、
    ことを特徴とする検査装置。
  7. 前記平板透明材料の前記一部を通過した前記平行光ビームの構造が前記欠陥及び前記平板透明材料の特性によって定められることを特徴とする請求項6に記載の検査装置。
  8. 前記ラインスキャンセンサが1インチ(約25mm)より大きい擬被写界深度を有することを特徴とする請求項6に記載の検査装置。
  9. 前記ラインスキャンセンサが、前記平板透明材料にある前記欠陥の検出を可能にする前記平板透明材料を通過した前記平行光ビームにともなうフレネル効果を示す像を生成するコンピュータによって解析される信号を出力することを特徴とする請求項6に記載の検査装置。
  10. 前記ラインスキャンセンサが、前記平板透明材料の厚さまたは屈折率の変化の検出を可能にする前記平板透明材料を通過した前記平行光ビームにともなう干渉パターンを示す像を生成するコンピュータによって解析される信号を出力することを特徴とする請求項6に記載の検査装置。
JP2008505569A 2005-04-06 2006-04-06 ガラス検査装置及びその使用方法 Pending JP2008536127A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66917105P 2005-04-06 2005-04-06
PCT/US2006/013012 WO2006108137A2 (en) 2005-04-06 2006-04-06 Glass inspection systems and methods for using same

Publications (1)

Publication Number Publication Date
JP2008536127A true JP2008536127A (ja) 2008-09-04

Family

ID=37074107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008505569A Pending JP2008536127A (ja) 2005-04-06 2006-04-06 ガラス検査装置及びその使用方法

Country Status (6)

Country Link
EP (1) EP1866625A4 (ja)
JP (1) JP2008536127A (ja)
KR (1) KR20070121820A (ja)
CN (1) CN101175986B (ja)
TW (1) TWI360652B (ja)
WO (1) WO2006108137A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216219A (ja) * 2007-03-08 2008-09-18 Hitachi Ltd 照明装置並びにそれを用いた欠陥検査装置及びその方法並びに高さ計測装置及びその方法
CN102645435A (zh) * 2012-04-19 2012-08-22 深圳市华星光电技术有限公司 基板的检测方法和装置
KR20150038608A (ko) * 2012-08-13 2015-04-08 카와사키 주코교 카부시키 카이샤 판유리의 검사 유닛 및 제조 설비
KR20160005160A (ko) * 2014-07-03 2016-01-14 (주)엘지하우시스 유리 기판의 부식 검출 방법

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048745A (ja) * 2008-08-25 2010-03-04 Asahi Glass Co Ltd 欠陥検査システムおよび欠陥検査方法
KR101292570B1 (ko) 2008-12-31 2013-08-12 엘지디스플레이 주식회사 액정표시장치의 변형 검사시스템
EP2253949A1 (de) * 2009-05-22 2010-11-24 Dr. Schenk GmbH Industriemesstechnik Vorrichtung und Verfahren zum Detektieren eines optisch ablenkenden und/oder polarisationsdrehenden Fehlers
EP2261633A1 (en) * 2009-06-10 2010-12-15 Becton Dickinson France Supporting device for a transparent article and method for putting said article under compression
CN101650307B (zh) * 2009-07-17 2011-02-09 富美科技有限公司 刮刀片表面检测系统
CN102081047B (zh) * 2009-11-27 2015-04-08 法国圣-戈班玻璃公司 用于对基板的缺陷进行区分的方法和系统
CN101988908A (zh) * 2009-07-31 2011-03-23 法国圣-戈班玻璃公司 用于对基板的缺陷进行区分的方法和系统
BE1019378A3 (fr) * 2010-06-17 2012-06-05 Agc Glass Europe Analyse des marques de trempe.
KR20130126638A (ko) * 2010-12-15 2013-11-20 아사히 가라스 가부시키가이샤 유리판, 유리판의 검사 방법 및 유리판의 제조 방법
DE102012002174B4 (de) * 2012-02-07 2014-05-15 Schott Ag Vorrichtung und Verfahren zum Erkennen von Fehlstellen innerhalb des Volumens einer transparenten Scheibe und Verwendung der Vorrichtung
CN102621149B (zh) * 2012-03-21 2015-07-22 深圳市华星光电技术有限公司 基板的检测装置及方法
CN102608132B (zh) * 2012-04-09 2014-06-11 昆山胜泽光电科技有限公司 多类型玻璃瑕疵检测装置及检测方法
CN102721692B (zh) * 2012-06-19 2015-11-25 深圳市华星光电技术有限公司 玻璃基板卡匣的检测装置
CN102778460A (zh) * 2012-07-31 2012-11-14 法国圣戈班玻璃公司 一种检测基质内缺陷的方法
EP2725348A1 (en) * 2012-10-29 2014-04-30 Scientific Visual SARL Optical quality control device
CN103886573B (zh) * 2012-12-20 2018-10-12 联想(北京)有限公司 物体检测方法和物体检测装置
DE102013105693A1 (de) 2013-06-03 2013-10-31 Viprotron Gmbh Verfahren und Vorrichtung zur optischen Fehlerinspektion
CN104237137B (zh) * 2013-06-07 2016-12-28 昆山胜泽光电科技有限公司 测量玻璃不同角度颜色、亮度和反射率光谱的装置
DE102013107215B3 (de) 2013-07-09 2014-10-09 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung eines Spiegelsubstrat-Rohlings aus Titan-dotiertem Kieselglas für die EUV-Lithographie, sowie System zur Positionsbestimmung von Defekten in einem Rohling
CN106461572A (zh) * 2013-12-23 2017-02-22 康宁股份有限公司 用于光学检查的非成像相干的行扫描仪系统和方法
CN103791835A (zh) * 2014-01-26 2014-05-14 扬州苏庆非标装备研发有限公司 条状光学玻璃截面轮廓及体积检测方法
CN103868478A (zh) * 2014-04-01 2014-06-18 四川虹视显示技术有限公司 透明平板平面度的快速检测方法及装置
CN103913466A (zh) * 2014-04-08 2014-07-09 上海华力微电子有限公司 晶圆缺陷的检测装置及其检测方法
KR101942260B1 (ko) 2014-07-03 2019-01-28 (주)엘지하우시스 유리 기판의 부식 검출 방법
CN104297264A (zh) * 2014-11-03 2015-01-21 苏州精创光学仪器有限公司 玻璃表面缺陷在线检测系统
US10578595B2 (en) 2014-12-19 2020-03-03 Merck Patent Gmbh Method and device for the optical scanning of a chromatographic sample
JP2018528396A (ja) * 2015-06-19 2018-09-27 コーニング インコーポレイテッド 光学技術を使用して基板に欠陥があるかを検査し、かつ、かかる欠陥を三次元で位置決めするための方法および装置
CN105372253A (zh) * 2015-12-14 2016-03-02 陈艳 一种灯管瑕疵检测系统
CN107132244B (zh) * 2016-02-29 2020-01-07 鞍钢股份有限公司 一种钢中夹杂物定量评价方法
CN105675617B (zh) * 2016-04-06 2020-05-01 东旭科技集团有限公司 用于测量平板玻璃表面颗粒度的方法及设备
WO2018085237A1 (en) 2016-11-02 2018-05-11 Corning Incorporated Method and apparatus for inspecting defects on transparent substrate and method of emitting incident light
KR102537558B1 (ko) 2016-11-02 2023-05-26 코닝 인코포레이티드 투명 기판 상의 결함 검사 방법 및 장치
CN106556573B (zh) * 2016-11-17 2018-01-12 仝宁瑶 一种用于测定玻璃折射率的实验装置
TWI622764B (zh) * 2017-01-11 2018-05-01 由田新技股份有限公司 用於表面異物檢測的自動光學檢測系統
JP6796704B2 (ja) * 2017-02-28 2020-12-09 東洋ガラス株式会社 容器の検査装置及び容器の検査方法
JP6285597B1 (ja) * 2017-06-05 2018-02-28 大塚電子株式会社 光学測定装置および光学測定方法
CN107345918B (zh) * 2017-08-16 2023-05-23 广西大学 一种板材质量检测装置及方法
CN107515222A (zh) * 2017-09-20 2017-12-26 哈尔滨工程大学 一种冰的微观结构观测装置
WO2020029237A1 (zh) * 2018-08-10 2020-02-13 合刃科技(深圳)有限公司 检测方法和系统
CN109187550A (zh) * 2018-08-15 2019-01-11 苏州富鑫林光电科技有限公司 一种基于光栅成像的缺陷检测成像方法
CN109827974B (zh) * 2018-08-30 2022-03-08 东莞市微科光电科技有限公司 一种树脂滤光片膜裂检测设备及检测方法
CN110095590A (zh) * 2019-04-23 2019-08-06 深圳市华星光电半导体显示技术有限公司 玻璃基板残材侦测方法及装置
CN110044931B (zh) * 2019-04-23 2021-03-26 华中科技大学 一种曲面玻璃表面和内部缺陷的检测装置
CN110031481B (zh) * 2019-05-05 2021-11-12 苏州天准科技股份有限公司 一种基于偏振的方波结构光照明实现方法
CN112147710B (zh) * 2019-06-26 2022-02-18 上海微电子装备(集团)股份有限公司 一种湿法光胶装置的检测方法及检测装置
CN114796730B (zh) * 2022-03-29 2024-02-27 深圳市好克医疗仪器股份有限公司 气泡检测装置、方法、设备及计算机可读存储介质
CN115338168A (zh) * 2022-07-28 2022-11-15 宜昌中威清洗机有限公司 一种曲轴清洗系统
CN116934752B (zh) * 2023-09-18 2023-12-08 山东国泰民安玻璃科技有限公司 一种基于人工智能的玻璃检测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484139A (en) * 1987-09-28 1989-03-29 Teijin Ltd Film flaw detecting device
JP2001194313A (ja) * 2000-01-07 2001-07-19 Horiba Ltd 異物検査装置
JP2002090310A (ja) * 2000-09-19 2002-03-27 Sekisui Chem Co Ltd シート検査装置
JP2002529698A (ja) * 1998-10-30 2002-09-10 フォウタン ダイナミクス カナダ インク. ガラス検査装置
JP2003083902A (ja) * 2001-09-11 2003-03-19 Fuji Photo Film Co Ltd 被検物の検査方法および装置
JP2004028785A (ja) * 2002-06-25 2004-01-29 Fuji Photo Film Co Ltd 平行光発生装置及びウェブ欠陥検出装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340304A (en) * 1978-08-11 1982-07-20 Rockwell International Corporation Interferometric method and system
JPS57120804A (en) * 1981-01-20 1982-07-28 Hitachi Metals Ltd Inspecting method of surface defect
SU1260773A1 (ru) * 1984-11-29 1986-09-30 Специальное Конструкторско-Технологическое Бюро Института Радиофизики И Электроники Ан Усср Устройство дл обнаружени дефектов в прозрачных тонкопленочных издели х
JPH04178545A (ja) * 1990-11-14 1992-06-25 Fuji Photo Film Co Ltd 透明帯状体の検査方法及び装置
JPH06100555B2 (ja) * 1990-12-19 1994-12-12 東洋ガラス株式会社 透明物体の欠陥検査方法とその装置
JPH0579994A (ja) * 1991-09-21 1993-03-30 Kowa Co 透明体欠陥検査装置
JP2795595B2 (ja) * 1992-06-26 1998-09-10 セントラル硝子株式会社 透明板状体の欠点検出方法
US5576827A (en) * 1994-04-15 1996-11-19 Micromeritics Instrument Corporation Apparatus and method for determining the size distribution of particles by light scattering
US5610391A (en) * 1994-08-25 1997-03-11 Owens-Brockway Glass Container Inc. Optical inspection of container finish dimensional parameters
US6040900A (en) * 1996-07-01 2000-03-21 Cybernet Systems Corporation Compact fiber-optic electronic laser speckle pattern shearography
JP2001041719A (ja) * 1999-07-27 2001-02-16 Canon Inc 透明材の検査装置及び検査方法並びに記憶媒体
US6404489B1 (en) * 2000-03-29 2002-06-11 Corning Incorporated Inclusion detection
US6633377B1 (en) * 2000-04-20 2003-10-14 Image Processing Systems Inc. Dark view inspection system for transparent media
US6943898B2 (en) * 2002-05-07 2005-09-13 Applied Materials Israel, Ltd. Apparatus and method for dual spot inspection of repetitive patterns
GB0219248D0 (en) * 2002-08-17 2002-09-25 Univ York OPtical assembly and method for detection of light transmission
EP1535043A4 (en) * 2002-08-19 2010-03-24 Green Vision Systems Ltd ELECTROOPTICAL EXAMINATION AND DETERMINATION OF INTERNAL CHARACTERISTICS AND CHARACTERISTICS OF A LONGITUDINALLY MOVING MATERIAL STICK
US7142295B2 (en) * 2003-03-05 2006-11-28 Corning Incorporated Inspection of transparent substrates for defects

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484139A (en) * 1987-09-28 1989-03-29 Teijin Ltd Film flaw detecting device
JP2002529698A (ja) * 1998-10-30 2002-09-10 フォウタン ダイナミクス カナダ インク. ガラス検査装置
JP2001194313A (ja) * 2000-01-07 2001-07-19 Horiba Ltd 異物検査装置
JP2002090310A (ja) * 2000-09-19 2002-03-27 Sekisui Chem Co Ltd シート検査装置
JP2003083902A (ja) * 2001-09-11 2003-03-19 Fuji Photo Film Co Ltd 被検物の検査方法および装置
JP2004028785A (ja) * 2002-06-25 2004-01-29 Fuji Photo Film Co Ltd 平行光発生装置及びウェブ欠陥検出装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216219A (ja) * 2007-03-08 2008-09-18 Hitachi Ltd 照明装置並びにそれを用いた欠陥検査装置及びその方法並びに高さ計測装置及びその方法
CN102645435A (zh) * 2012-04-19 2012-08-22 深圳市华星光电技术有限公司 基板的检测方法和装置
KR20150038608A (ko) * 2012-08-13 2015-04-08 카와사키 주코교 카부시키 카이샤 판유리의 검사 유닛 및 제조 설비
KR101697216B1 (ko) * 2012-08-13 2017-01-17 카와사키 주코교 카부시키 카이샤 판유리의 검사 유닛 및 제조 설비
KR20160005160A (ko) * 2014-07-03 2016-01-14 (주)엘지하우시스 유리 기판의 부식 검출 방법
KR101952617B1 (ko) 2014-07-03 2019-02-28 (주)엘지하우시스 유리 기판의 부식 검출 방법

Also Published As

Publication number Publication date
WO2006108137A2 (en) 2006-10-12
WO2006108137A3 (en) 2006-11-16
EP1866625A4 (en) 2010-12-29
EP1866625A2 (en) 2007-12-19
TWI360652B (en) 2012-03-21
TW200706859A (en) 2007-02-16
KR20070121820A (ko) 2007-12-27
CN101175986B (zh) 2010-10-13
CN101175986A (zh) 2008-05-07

Similar Documents

Publication Publication Date Title
JP2008536127A (ja) ガラス検査装置及びその使用方法
JP3730612B2 (ja) 薄膜検査方法およびその装置
US4988886A (en) Moire distance measurement method and apparatus
TWI285737B (en) Inspection of transparent substrates for defects
US8081840B2 (en) Appliance for controlling transparent or reflective elements
JP7169994B2 (ja) 反射面の曲率を測定する方法及び関連する光学デバイス
CN109425619B (zh) 光学测量系统及方法
JP4427632B2 (ja) 高精度三次元形状測定装置
JP4597946B2 (ja) 端部傾斜角測定方法、起伏を有する被検査物の検査方法および検査装置
KR100951110B1 (ko) 라인스캔방식 고분해능 편광측정장치
US20120057172A1 (en) Optical measuring system with illumination provided through a void in a collecting lens
JP2000002514A (ja) 膜厚測定装置及びアライメントセンサ並びにアライメント装置
JP2007171145A (ja) 検査装置及び方法
JP2008046075A (ja) 光学系、薄膜評価装置および薄膜評価方法
JP2012032356A (ja) 透明板状部材の歪み検出装置
US9217633B2 (en) Inspection arrangement
JP2015042967A (ja) 透過波面計測装置及び透過波面計測方法
JPH0613963B2 (ja) 表面欠陥検査方法
CN212378715U (zh) 测角仪
WO2021039900A1 (ja) 試料測定装置および試料測定方法
JP3139862B2 (ja) 表面欠陥検査装置
JP3381888B2 (ja) 光学素子等の特性測定方法及びその装置
JP2007024559A (ja) レンズユニット、形状検出装置、形状検出方法およびシートの製造方法
KR20220036531A (ko) 면적 스캔 기능을 구비한 복합 영상 분광기
RU2615662C2 (ru) Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110610

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920