TWI360652B - Glass inspection systems and method for using same - Google Patents

Glass inspection systems and method for using same Download PDF

Info

Publication number
TWI360652B
TWI360652B TW95112334A TW95112334A TWI360652B TW I360652 B TWI360652 B TW I360652B TW 95112334 A TW95112334 A TW 95112334A TW 95112334 A TW95112334 A TW 95112334A TW I360652 B TWI360652 B TW I360652B
Authority
TW
Taiwan
Prior art keywords
transparent flat
flat material
transparent
sensor
inspection system
Prior art date
Application number
TW95112334A
Other languages
Chinese (zh)
Other versions
TW200706859A (en
Inventor
R Zoeller Leon Iii
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW200706859A publication Critical patent/TW200706859A/en
Application granted granted Critical
Publication of TWI360652B publication Critical patent/TWI360652B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • G01N2021/177Detector of the video camera type
    • G01N2021/1772Array detector
    • G01N2021/1774Line array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • G01N2021/8965Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod using slant illumination, using internally reflected light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • G01N2201/0612Laser diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0635Structured illumination, e.g. with grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0638Refractive parts

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

1360652 九、發明說明: 【發明所屬之技術領域】 本發明一般係關於檢視系統以及使用來辨識玻璃片上 或玻璃片内缺陷之方法。 【先前技術】 玻璃片製造商永遠地嘗試設計新穎的及改良的檢視系 統,其能夠使用來辨識玻璃片上或玻璃片内(例如液晶顯示 器玻璃基板)之缺陷(例如雜質,刮痕,污點,氣泡,細線條或 其他與表面不連續性地或材料非均勻性之缺點)^數項新 穎的及改良檢視系統為本發明主要目標。 【發明内容】 本發明包含數項檢視系統及辨識玻璃片上或玻璃片内 缺陷(雜質,刮痕,污點,氣泡,細線條)方法之不同實施例。 在一項實施例中,檢視系統包含照明器,透鏡及透鏡掃描咸 測器。照明器發射光束以及透鏡接收光束以及再發射平^于 光束通過部份玻璃片。線掃瞄感測器再接收通過玻璃片之 平行光束以及能夠聚焦於玻璃片中缺陷上而不需要使另一 透鏡放置於線掃瞄感測器及玻璃片之間。 【實施方式】 —參考圖1A-1F,其中顯示出依據本發明檢視系統1〇〇第 一實施例相關之六個圖式。圖1A顯示檢視系統1〇〇包含產 生雷射光線104之二極體1〇2,該光線通過圓柱形透鏡1〇6, 其折射所有雷射光線104成為平行光束1〇8,該光束透射通 過玻璃片110及被線性掃瞄感測器112接收。檢視系統1〇〇 重要項目在於線性掃瞄感測器112能夠聚焦於玻璃片u〇中 缺陷上而不需要放置另一透鏡於線性掃瞄感測器112與玻 璃片no之間。在該範例中,圓柱形透鏡106與感測器112間 距離大約為4"。平行光束ι〇8之光束寬度約為3_5„。以及, 玻璃片110在圓柱形透鏡1〇6及感測器112間之位置能夠變 第5 頁 1360652 化±1英ρ寸。 檢視系統100為顯著的改善優於傳統檢視系統,傳統檢 視系統需要透麵確地放置於玻璃片110與感測器112之門 以聚焦於玻璃片110中之缺陷。例如,傳統‘視系統能夠曰 測出大約1至200微求之缺陷,其需要具有場深為小於數毫 米。加以比較,本發明之檢視系統100相對具有場深度在數 英吋範圍内。即因為檢視系統100依靠光線104直接^由雷 射102運行通過準直透鏡106(目的在於使光線彼此平彳# 行)到達感測器112中小的感測器元件。假如任何小的物體 例如缺陷擾動光學路徑,則該擾動被感測器112所捕捉。擾 動會^生於雷射102與感測112間光學路徑中任何點處。 因而當與傳統檢視系統作比較時,檢視家統能夠利用對 物距非常不嚴格之感測器進行感測及量測缺陷。 &圖1B-1E顯示出不同玻璃片11〇相關之不同的缺陷影像 ,其藉由檢視系統100加以掃瞄。為了得到每一影像,感測 器112將輸出數位化影像以及輸入至計算機(並未顯示出), 其利用影像處理演算法加以分析,使得其能夠以圖像形式 顯示出。觀看所產生之影像,人們了解訊號強度由缺陷所 產生。缺陷為小的雜質以及在該系列試驗中,其為小顆粒 翻,錯,不鏽鋼或一些其他污染物。為了產生這些影像,雷 射102必需產生高度同調光線1〇4以產生夫涅耳效應。夫涅 耳效應發生於光線能量繞著黑的缺陷運行以及形成為尖峰 ,夠高於雷射所產生之光線1〇4。因而夫涅耳效應產生 非常高之訊劈比,其能夠使小的缺陷容易地感測出。 圖1F為曲線圖,其顯示出玻璃片11〇中距離感測器112 為1,1.5,2.0",2.5"及3"位置處掃瞄缺陷大小之變化。 缺陷尺寸會變化,但是與其他量測比較為較小的,以及變化 為y量測的以及可預測的。曲線圖亦顯示出當缺陷離開感 ’則器112較遠時,缺陷之計算出尺寸比預測數值大。除此, 第6 頁 1360652 曲線圖顯示該尺寸變化倒數為改正係數,當玻璃片110與感 測器m間之距離多已知咚能夠使用該係、獒枣言十算缺陷之 改正尺寸。 檢視系統100亦具有數項其他優點,其說明於底下: •檢視系統100具有光學幾何形狀(入射光線角度/反射光 線之角度),其產生虛擬或等值場深度約為數英吋而非數毫 米。對於大的LCD玻璃片(例如2m X 2m),其無法容易地處 理或移動,其表示感測器能夠相對於玻璃表面改變數英吋 以及缺陷仍然能夠加以感測及量測。 •檢視系統100使用透射雷射幾何特性,該特性為非常有效 方式使光線到達感測器。使用小的高速感測器之其他幾何 特性為缺乏光線,而對5至1〇〇微米之缺陷感測並不實用。 •檢視系統100亦能夠加以實施而不使用圓柱形透鏡106, 但是結果為精確的。例如,在該實施例中,需要更多處理以 計算玻璃片110中缺陷之存在及量測。 、 參考圖2A-2C,其顯示出依據本發明檢視系統2〇〇第二 實施例相關之三個圖式。圖2A顯示檢視系統2〇〇包含產生 雷射光線204之工^體202,該光線通過圓柱形透鏡206,其 折射所有雷射光線204成為平行光束208,該光束儘可能接 近垂直地透射通過玻璃片21〇。在該處理過程中,部份(大 約4%)光束208被反射離開玻璃片21〇之前端表面以及部份( 大約4-5%)光束208被反射離開玻璃片21〇之後端表面。兩 個被反射光束211被線性掃瞄感測器212接收。因為雷射光 士為高度同調,兩個所反射光束2Π能夠使感測器212及計 算機(並未顯示出)以產生干涉圖案之影像。 如圖2A所示,當同調光束2〇8導引至玻璃片210,其亦由 ^210前端及後端表面反射以及兩個反射波產生加強 銷相位而產生條紋圖案(參閱圖2Β)。該條紋圖案能夠 藉由改變厚度或改變玻璃片21〇折射率而加以改變。彳鼠如 1360652 玻璃片210中折射率及/或厚度少量變化,條紋圖案以南北 方向傳播。假如每;單位面積在東西方向存在大量條紋之形 成,其表示厚度變化更為顯著及/或折射率變:更為顯著。 因而,由雷射202產生之同調光線2〇4能夠使厚度或折射率 變化被感測器212感測到以及被計算機(並未顯示出)繪製 出。除此,能夠使用計算機藉由平均條紋圖案縱列以及求 出該總和最小值及最大值以增加量測玻璃片21 〇厚度或折 射率變化之精確度(注意最小值及最大值為偏移9〇度相位 以及表示使用來進行量測光線一半波長之厚度變化)。人 們亦能夠藉由細分最小點與最大點間區域為1/1〇可量測低 至1/10波長。 、— 在圖2B及2C中顯示兩個範例性干涉圖案。在圖2β中 在干涉圖案中每一條紋代表玻璃片210厚度變化等於光束 204波長之一半。在圖2C中,線性掃瞄CCD產生影像顯示出 玻璃片210中之雜質。人們了解該影像中央部份為192微米 雜質之反射。該影像亦包含一些條紋圍繞著中央部份。這 些條紋顯示厚度及/或折射率變化,其由玻璃板内專暗 雜質所產生。 …9 有可能產生這些影像,因為兩條反射光束211形成同調 波形,其當光東運行通過雷射光線204 —半波長間距空間^ 加強及減弱相(增加強度及減小強度)。例如彳艮如使用^皮長 為400舰紫色雷射202,則每一 200nm可看到條紋明亮區域以 及在200nm間距處可看到條紋之黑暗區域。黑暗區域及明 亮區域分離光線1/6波長。假如使用光線2U則明亮至黑暗 分離為66nm。由於該現象,能夠使用感測器212於^射^'^ 場掃瞄幾何特性,使得感測器能夠感測明亮及黑暗條紋圖冗 案。藉由橫越該條紋圖案,人們能夠計算明亮條紋(^累暗 條紋)數目以及該計數乘以光線211波長之1/3以測定出曰玻 璃片210厚度改變大小。通常藉由該本身分析,無法測定出 1360652 是否條紋圖案變化是由厚度變化或由折射率變化產生。不 過,假如人們對玻璃製造處理過程具有經驗,其能夠分析干 涉圖案以及測定出產生獨特條紋圖案之原因。 檢視系統200亦能夠量測雷射光線2〇4波長失真之百分 比。此為可能的,因為條紋圖案由兩個波形干涉產生,當光 線通過雷射光線204波長1/3間距空間時將加強及相位 。人們能夠將條紋最高強度(最亮部份)以〇度表示以及最 低強度(黑暗部伤)以90度表不。因而,人們可推論在本範 例中條紋圖案中最明亮及最黑暗部份間一半之點處為45度 ,因為其相對應於光線204波長1/12。對於紫色光線400^!! 雷射,該數值大約為紫色光線(404nm)之30nm。此即為人們 如何將條紋圖案組譯低至條紋之1/12。 檢視系統200亦具有數項其他優點,其將說明於底下: •饭如入射光線204角度能夠保持相當地接近垂直於玻璃 片210,則該光學幾何特性能夠產生虛擬場深度大約為數英 吋而非數毫米。對於大的玻璃片(例如2m X 2m ),其無法 容易地處理或移動,其表示感測器能夠相對玻璃表面改變 數英忖以及缺陷仍然能夠加以感測及量測。該掃猫組件增 加之自由度能夠使玻璃片當由標準工廠輸送系統移動時被 掃瞒。 •檢視系統200能夠使玻璃片作厚度量測以及感測微細缺 陷而不需要精確地定位玻璃片。 •檢視系統200產生局部資訊關於缺陷以扭曲玻璃片表面 以及該扭曲能夠量測低至掃瞄所使用雷射光線波長之一個 百分比。人們能夠分析由檢視系統2〇〇產生之條紋圖案以 及再測定出玻璃片210厚度之全域變化。 •檢視系統200能夠感測及量測雜質區域中厚度或折射率 變化。 •檢視系統200亦能夠感測任何玻璃片21〇抽拉方向厚度或 第9頁 1360652 折射率變化,其將顯示變化本身為經由缺陷視場之條紋。 •檢視系統200亦能夠_實施而不需要圓柱形透鏡2〇6,但是 結果為精確的。例如,在另一實施例中,需要更多處理以計 鼻出玻璃片210中厚度或折射率變化。 參考圖3A-3C,其顯示出依據本發明檢視系統3〇〇第三 實施例相關之五個圖式。圖3Α顯示檢視系統300包含感測 器302以及使用來辨識玻璃片306應力之照明器304。在該 範例中照明器304包含雷射316及透鏡308(選擇性),其發射 出偏極光束310a通過部份移動玻璃片306。感測器(例如三 -線性感測器302)使用三列感測器312a,312b及312c(例如 CCD感測器312a,312b及312c)以接收通過玻璃片306之偏極 化光束310b(參閱圖3B)。在該範例中,偏極光束3i〇a為3-5 英吋寬度。感測器302位於距離移動玻璃片306大約2"處。 如圖3B所示,第一列CCD感測器312a為模組化/塗覆第 一偏極塗膜314a,其將入射光線31〇b偏極化為〇度指向。第 二列CCD感測器312b為模組化/塗覆第二偏極塗膜314b,其 將入射光線310b偏極化相對於CCD感測器312a具有120度指 向。第三列CCD感測器312c為模組化/塗覆第三偏極塗臈 314c,其將入射光線310b偏極化相對於CCD感測器312a具有 240度指向。可加以變化,人們了解檢視系統300能夠與偏 極塗膜312a,312b及312c運作,只要三個角度間相對之角度 差值為120度。120度相對角度差值變化越大,則檢視系統 300變為越不精確,但是仍然可運作。相位角度為丨5度,i % 度及255度與0度,120度及240度運作情況一樣良好,因為其 相對角度差值為120度。角度為15度,160度及230度將可運 作,但是不會產生最精確之結果。因而,相對角度差值應該 接近120度以及任何偏離該理想值將導致較不精確之檢視 系統300,但是仍然產生可接受之結果。 在操作中,當感測器302以偏極光線310b照射時,由每 第10 頁 1360652 一列CCD感測器312a, 312b及312c輸出為輸入偏極光線3i〇b 與每一列CCD.感測器312a, 312b及312c相關偏極遽波器角度 之向量積。因而,當偏極光線310a通過含有可感測應力之 玻璃片306時,則應力改變光束310b偏極角度,其產生係來 自三個線性掃瞄列CCD感測器312a,312b及312c之訊號亦相 對於應力大小改變。使用這些訊號以辨識玻璃片306中應 力。 因而假如玻璃片306中並不存在應力,則接收偏極光線 310b之偏極角度將與雷射316發射出光線310a具有相同的 角度。假如玻璃片306存在少量應力,則該應力將改變少量 光線31 Ob之偏極角度,其能夠藉由分析三列偏極CCD感測器 312a,312b及312c之輸出加以量測及計算。假如在玻璃片 306存在大的應力,則通過玻璃片306之偏極光線310b角度 將大大地改變以及偏極變化能夠藉由三列偏極(XJ)感測器 312a,312b及312c加以量測。 人們可想像有可能獨特地辨識兩列CCD感測器312a及 312b(例如)偏極角度,其包含相互垂直偏極器,但是存在非 獨特性之情況。為了顯示該情況,參考圖3C至3D,當光線投 射於兩個相互垂直偏極CCD感測器312a及312b時,兩個入射 波形之兩個不同偏極角度轉變為相同的偏極大小。對於該 兩個波形並不可能獨特地辨識其偏極角度。該問題能夠藉 由增加第三列CCD感測器312c(例如)加以解決。 圖3E為相片圖,其顯示出由感測器3〇2產生之一片可動 態地彎曲LCD玻璃306的線性掃瞄景象之範例。通常,在玻 璃片306區域内改變應力值通常決定於一些環境效應以及 玻璃片306如何形成。 檢視系統300亦具有數項其他優點,其將說明於底下: •檢視系統300並不需要移動性組件。 •檢視系統300適合作為連線量測。 第11 頁 1360652 •檢視系統300能夠加以使用以產生LCD玻璃片306上所有 區域應力圖。例如,人們能夠藉由使用多個感測器對準為 一列以形成與破璃片306 一樣大長的感測器而產生玻璃片 完全應力圖以及由這些感測器3〇2產生之訊號能夠利用 計算機來產生整個玻璃片306之應力影像。 •如上述所顯示,亦能夠使用檢視系統300而不具有圓柱开j 透鏡進行,但疋結果並不十分精確。例如,在該替代實施例 中,需要更多處理以計算/辨識玻璃片306申之應力。 參考圖4A-4C,其顯示出依據本發明檢視系統棚第四 實施例相關之三個圖式。圖4A顯示檢視系統4〇〇包含彩色 多線掃猫感測器402以及多個照明器(雷射)4〇4a,4〇4b,404c 及404d(顯示出四個),其使用來辨識玻璃片4〇6上或玻璃片 内缺陷。在該範例中,多線掃瞄感測器402具有多列CQ)感 測器412a,412b,412c及412d,每一感測器由頻譜濾波器41乜 ,414b,414c及414d所覆蓋(參閱圖3B)。四個不同的照明器 404a,404b,404c 及 404d 均發射彩色光束 416a,416b, 416c °及 416d,其能量在滤波列CCD感測器412a, 412b, 412c及412d — 個能量帶範圍内。圖4B-4C顯示出每一頻譜濾波器414a, 414b,414c及414d只能夠使只有一個特殊有益彩色(波長) 光束415a,416b,416c及416d通過到達相對應列之CQ)感測 器412a,412b,412c及412d以及阻隔所有其他光束415a, 416b,416c&416d。 ’ 在圖4A-4C所顯示範例性檢視系統4〇〇中,紅色照明器 404a發射紅色光束416a經由透鏡418以及再通過玻璃片4〇6 到達過濾CCD感測器412a列上以接收紅色光束416a之能量 帶。在該範例中,CCD感測器412a對玻璃片406中微小的雜 質十分靈敏。綠色照明器406b發射綠色光束416b,其由玻 璃片406反射回來以及導引進入過濾CCD感測器412列以接 收綠色光束416b之能量帶。在該範例中,CCD感測器412b對 第12頁 1360652 雜質及玻璃厚度為靈敏的。藍色照明器406c發射藍色光束 416c通過光栅420以及再通過玻璃片406到達參慮CQ)感測 器412c列上以接收藍色光束416c之能量帶。在該範例中, CCD感測器412c對玻璃片406中條紋及折射率變化為靈敏的 • 。灰色(紅外線)照明器406d發射灰色光束416d通過透鏡 424以及再通過玻璃片406到達過濾CCD感測器412d列上以 接收灰色光束406d之能量帶。在該範例中,CCD感測器412d 能夠量測玻璃片406中雜質之位置。在類似形式中,能夠設 計檢視系統400使用不同能量帶中光束例如紅外線及紫外 線能量帶以感測玻璃片406中其他特性。如圖所示,具有一 •個感測器檢視系統400能夠量測一些關於關於玻璃片406污 染及形狀之特性。 基於實用目的,其並不在意使用那一波長之光線41如, 416b,416c及416d以感測那一形式之特性(例如微小的雜質 ,玻璃厚度)。例如,人們能夠容易地使用紅色光束416a以 及CCD感測器412a以感測玻璃片406中折射率變化而非微小 的雜質。由於使用彩色滤波器414b,414c及414d以保持例 如由紅色雷射404a發射之紅色光線416a避免被非紅色CCD 感測器412b,412c及412d看到。此係指能夠使用不同色彩 鲁 光線416a,416b,416c及416d以分離由每一特性所提供之資 訊(幾何特性-光線入射角度以及在感測器402上反射光線 之角度)避免干擾由其他特性(幾何特性)產生之資訊。 亦無關於四種雷射406a,406b,406c及406d之波長,只 要其能夠被頻譜濾波器414a,414b,414c及414d所分離,該 濾波器放置於四列CCD感測器412a,412b,412c及412d前面 。因而,選擇雷射406a,406b,406c及406d之波長以與便宜 商業化可利用雷射例如404nm,750nm,870nm以及950nm相匹 配。除此,光線波長能夠採用200nm至2000nm任何有用的波 長。 第13 頁 檢視系統400亦具有數項其他優點,其將說明於底下: •空間,標:所有量測由-個多掃晦感感測器4〇2產生只 要其相當容易定出由每一不同線性掃瞄陣列412a,412b, 412c及412d提供不同視場間之空間關係。 •降低價格:在此兩列或多列CCD感測器412a,412b,412c及 412d能夠實祕一個級上,其係指一個按裝裝置一個界 面及儘可能地一個透鏡。 •減小尺寸:在5亥情>兄中,檢視系統棚具有一個感測器舰 而非佔用較大空間之兩個或多個感測器。 參考圖5A-5C,其顯示出依據本發明檢視系統5〇〇第五 實施例相蝴式。目前人們熟知賴使驗視系統 來掃猫一系列材料(例如紙,娜,鋼,紹,以及玻璃片)以感 測^分類像差(缺陷),當其進行製造以得到品質控制及處 理資訊。不過,這些掃瞄處理過程會被製造處理過程中產 生之外界顆粒所取肴,該顆粒位於材料表面上以及被檢視 系統感測出。對於透明材樹列如玻璃片當顆粒(例如污物 ’灰塵,玻璃碎片)位於材料表面上,其能夠被檢視系統視為 相當於材料内之顆粒(雜質)。此導致檢視系統產生不正確 之結果。實際上,在一些處理過程中表面顆粒數目為内部 1,100倍·傾向將使掃⑽絲縣無意義。 本發明檢視系統500藉由感測埋嵌於透明材料5〇4(例如玻 璃片504)中之雙陷而不感測表面顆粒5〇6而解決該問題。 〜如圖5A及办所示,檢視系統500使用照明器508,其以特 定角度發射光線510朝向玻璃片5〇4。選擇角度使得部份光 ,510 2在雜玻璃片5〇4内進行内部反射到達一區域,該 區域為遠離光線51〇進入及離開移動玻璃片5〇4之位置。線 f掃瞄攝影機512能夠放置於一位置,使得其能夠聚焦於該 區域以及感測反射離開内部缺陷5〇2之光線以及並不感測 反射離開表面顆粒506之光線,該顆粒位於光線51〇進入及 第14 頁 離開移動玻璃片504處。該兩個圖顯示出線性掃瞄攝影機 5以其位於遠離移動性玻璃片5〇4上之點處7照明器5〇8發 出光線510進入及離開玻璃片504。在該位置之線性掃瞄攝 影機512能夠聚焦於及感測内部缺陷502而並不會感測表面 顆粒506。 在另一實施例中,線性掃瞄攝影機512能夠以線性掃瞄 感測器,時間延遲廨分(TDI)感測器及接觸感測器替代。照 明器508能夠為雷射,雷射線,或任何其他照明器例如螢光 508a(參閱圖5C)。假如使用例如螢光508a之照明器,則需 要使用及放置遮蔽514使得光線510a内部地反射至移動玻 璃片504,同時阻隔光線510a避免進入或離開移動性玻璃片 504 —點處,其中線性線性掃瞄攝影機512觀察玻璃片5〇4( 參閱圖5C中所顯示檢視系統500a)。 檢視系統500亦具有數個其他優點,其將說明於底下: •檢視系統500能夠使用來掃瞄除了玻璃片504之不同產品 格式透明材料例如玻璃捲筒,以及其他為板狀或捲筒形式 之透明材料。 參考圖6A-6D,其顯示出依據本發明檢視系統咖第六 實施例相關之四個圖式。製造玻璃業界熟知此技術者了解 當玻璃片602能夠折射準直光線至準直性差值能夠量測時, 玻璃片602折射率及/或厚度產生些微地變化。該效應當注 視玻璃片602(LCD顯示器)時能夠被肉眼感測到以及視為缺 陷。圖6A及6B顯示出該效應,當光線6〇4離開光源6〇6(雷射) 一點以及透射通過平坦不想要玻璃片602時產生,該玻璃片 折射光線604導致明亮及黑暗條紋於白色背景6〇8上。本發 明檢視系統600能夠使這些玻璃片6〇2(或任何透明平坦材 料)厚度及/或折射率些微的變化被感測出。此為重要的, 因為不想要的玻璃片602能夠在使用於製造例如LCD顯示器 之前加以感測出。 ° 第15頁 1360652 圖6C顯示出包含雷射610之檢視系統該雷射產生扇 強度相畲均勻之光線612。檢視系統6〇〇亦包含準直透鏡614 ,其使扇形格式光線612折射為平行線性光線616❶光線的6 入射於光柵618上,在本範例中該光柵週期為5〇〇對線條每 英忖以及50%填絲數。細形成一系列暗線62以及亮線 622b,其投力通過玻郁(例如w玻制_)於線性掃 瞄CCD感測器620上。在該範例中,光柵與玻璃片6〇2間距離 為2"。光栅618與感測器620間之距離為4”。平行光走fi1 β 之光束寬度-5"。 假如了片具有固定厚度及折射率之非常平坦參考玻璃 片由檢視系統600加以分析,則參考波形例如顯示於圖肋頂 部中之波形1能夠產生以及健存於計算機(並未顯示出)。 波=1顯示出由存在光柵618產生之交替明亮及黑暗區域。 a十鼻機使用波形1作為參考或標準以比較由其他玻璃片602 產生之波形。例如,假如相當良好的玻璃片602放置於光柵 618及感測器·62〇之間,則產生十分類似於波形2之波形。假 如頂部被截除,使得明亮區域為相等的以及兩個波形1及2 被刪減,則將產生類似波形3之波形。波形3顯示小的標記 於方形波之邊緣,其大小為正值或負值。標記寬度為相當 小,因為與參考玻璃片602相關之波形1大約與良好玻璃片 602相關之波形3相同。波形4為顯示於波形3中標記積分, 其只由每一波形正值邊緣產生(負值邊緣產生之標記加以 忽略)。在該情況中,波形4中所顯示標記積分為小的,因為 良好玻璃片602幾乎具有與參考玻璃片6〇2相同的品質。當 非均勻玻璃片602之波形與參考玻璃片602波形作比較時, 關於相關標記之說明將在底下提出。 在折射率改變或厚度變化之非均勻玻璃片檢視後,產 生波形6。折射率改變區域或厚度並不固定之區域促使光 線616之方向被折射或改變,其再促使波形由一侧至另一側 第16 頁 移動。假如產生波形移動至右邊,則移動通過非均勻玻璃 片602之光線616彎向右邊。同樣地假如線形移動至左邊, 則光線616彎向左邊。假如波形6由波形5扣減(其與參考波 形丄相同),則波形7表示達成改變厚度,形狀及/或折射率。 波月1j 7中黑暗陰影區域為波形5正值邊緣產生之標記。I, 明凴"陰影區域由波形5負值邊緣產生。標記寬度為光線橫 越過非均勻玻璃片602時光線616方向變化之大小。與波形 5邊緣比較,波形7中標記方向為正值或負值決定出光線616 f向之變化。例如,與正值標記相關之波形5正值邊緣表示 光束彎向左邊。波形5中負值"黑暗"標記表示光線彎向右 邊。假如一條線由所有黑暗標記頂部劃出,則產生波形8。 假如在波形中積分值為正值,其表示光線彎向左邊,假如其 接近零,則光線無彎曲,以及假如為負值則光線彎向右邊。 基本上,波形8中大於零數值越大,則不想要非均勻玻璃片 之厚度,形狀及/或折射率變化越大。 檢視系統600亦具有數個其他優點,其將說明於底下: •能夠使用檢視系統600來量測玻璃片602中微細條紋,其 由於玻璃片602折射率變化,厚度變化或形狀變化所導致。 其產生方向及相對大小之資訊以及在通過整個玻璃片6〇2 表面產生千個讀數/英吋。 參考圖7A-7D,其顯示出依據本發明檢視系統700第七 實施例相關之四個圖式。甚至於先前所提及被檢視系統 1〇〇’ 200. ·. 600使用以掃瞄微細缺陷之技術對感測空間缺 陷為良好的,因為其具有相當大的場深。不過,該大的場深 (例如^2英吋)係指這些掃瞄技術並不具有良好能力以感測 ,陷遠離感測器。在LCD玻璃情況中,假如檢視系統能夠測 疋出是否存在缺陷以及是否該缺陷在或接近LCD玻璃側邊A 或側邊B為有用的。該能力為有益的,因為在塗覆LCD玻璃 處理過程中,其對玻璃片一側上而不在另一側上缺陷為更 1360652 敏感。因而測定出缺陷在那一側為重要的因為假如缺陷 车側邊B,雙养不令人困擾以及假如色陷接近或车側 邊A上則非常麻煩。底下所說明檢視系統700能夠測定出缺 陷在z方向之位置,其為相對於玻璃片深度方向。 圖7A顯示出使用兩個雷射光源702a及702b之檢視系統 700的側視圖,每一雷射具有不同的波長以及感測器704而 具有兩個線性掃瞄陣列712a及712b以測定出兩個缺陷706 及708之相對位置,在該範例中其位於玻璃片Ή〇相同水平 位置上。附圖顯示出玻璃片71〇以固定速度⑺向上移動以 及距離感測器704為固定距離(D)。兩個線性掃瞄陣列712a 及712b分離已知的距離⑷。每一線性掃瞄陣列7i2a及712b 對不同的波長為靈敏的。例如,底部線性掃瞄陣列712b對 紅色雷射702a發射紅色光線714a為靈敏的。頂部線性掃瞄 陣列712a以相對於感測器7〇4法線為α角度W)照射。底部 線性掃瞄陣列712b由底部雷射以相對於玻璃片71〇及感測 器704垂直角度照射。在該範例中,ccd線性掃瞄感測器7〇4 產生5微米新的圖素以及兩個缺陷706界708之影像在一次 或多次掃瞄中加以記錄。圖7A顯示檢視系統7〇〇在時間為 〇時當兩個缺陷706及708被雷射702a發出光線戴取時之快 照圖。 、 圖7B顯示檢視系統700在時間為T1時當位於玻璃片71〇 側邊A上缺陷708被雷射702發出光線714b截取之快照圖。 CCD線性掃猫感測器704在一次或多次圖素掃聪中記錄該缺 陷708之影像。 、 圖7C顯示檢視系統700在時間為T2時當位於玻璃片γιο 側邊B上缺陷706被雷射702b發出光線714b截取之快照圖。 CCD線性掃瞄感測器704在一次或多次圖素掃瞄中記錄該缺 陷706之影像。 、°Λ、 圖7D顯示先前所有感測器掃猫之複合圖以及其顯示出 第18 頁 1360652 缺陷706及708之三個影像。第一,其顯示出a側邊缺陷7〇8 及B侧邊缺陷706兩個影像彼此重疊,由於其在相同的時間〇 時感測的。第'一’其顯不出在時間T1時通過由雷射7〇2b發 射出光束714b之A側邊缺陷708的影像。第三,其顯示出在 時間T2時通過由雷射702b發射出光束714b之B側邊缺陷7〇6 的影像。 ' A侧邊缺陷708運行之距離能夠計數時間0及時間T1間 產生之掃瞄線數目以及將該數目乘以5而計算出數字5為 該範例中以微米表示之圖素尺寸。同樣地^側邊缺陷7〇6 運行之距離能夠計數時間〇及時間T2間產生之掃瞄線數目 以及將該數目乘以5而計算出,數字5為該範例中以微米表 示之圖素尺寸。因為,Β侧邊缺陷7〇6通過光束714b需要較 長時間,比A側邊缺陷情況長,b側邊缺陷7〇6具有較多掃瞄 線以及計算較大距離。 一在這些步驟後,A侧邊缺陷708與感測器7〇4之距離能夠 ,由將A側邊缺陷708已運行距離乘以角度A之正切值而計 算出。同樣地^ 8側邊缺陷706與感測器704之距離能夠_由 將B側邊缺陷7〇6已運行距離乘以角度a u切值而計算日出 。人們了解該形式之距離計算能夠對位於玻璃片71〇表面 上之一個或多個缺陷進行。 在另一實施例中,人們能夠使用檢視系統7〇〇藉由監測 感測缺陷由帛-雷射卿前端機持續到鮮二雷射7〇2b 相父所需要的時間以測定出缺陷之位置。1360652 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to inspection systems and methods for identifying defects on or on a glass sheet. [Prior Art] Glass sheet manufacturers are forever trying to design novel and improved inspection systems that can be used to identify defects (such as impurities, scratches, stains, bubbles) on or in a glass sheet (such as a liquid crystal display glass substrate). , thin lines or other shortcomings of surface discontinuity or material non-uniformity) The novel and improved inspection system is the main goal of the invention. SUMMARY OF THE INVENTION The present invention comprises several inspection systems and different embodiments of methods for identifying defects (impurities, scratches, blemishes, bubbles, thin lines) on or in a glass sheet. In one embodiment, the inspection system includes a illuminator, a lens and a lens scanning sniffer. The illuminator emits a beam of light as well as the lens receiving beam and re-emits the beam through a portion of the glass sheet. The line scan sensor then receives the parallel beam passing through the glass sheet and is capable of focusing on the defects in the glass sheet without the need to place another lens between the line scan sensor and the glass sheet. [Embodiment] - Referring to Figures 1A-1F, there are shown six diagrams associated with a first embodiment of a viewing system 1 in accordance with the present invention. 1A shows a viewing system 1A comprising a diode 1 2 that produces a laser beam 104 that passes through a cylindrical lens 1 〇 6 that refracts all of the laser ray 104 into a parallel beam 1 〇 8 that is transmitted through The glass sheet 110 is received by the linear scan sensor 112. The inspection system 1 〇〇 important item is that the linear scan sensor 112 can focus on the defects in the glass sheet without the need to place another lens between the linear scan sensor 112 and the glass sheet no. In this example, the distance between the cylindrical lens 106 and the sensor 112 is approximately 4". The beam width of the parallel beam 〇8 is about 3_5 „. And, the position of the glass piece 110 between the cylindrical lens 1〇6 and the sensor 112 can be changed to 1360652 by ±1 inch ρ. The inspection system 100 is Significant improvements are superior to conventional viewing systems that require transparent placement of the glass sheet 110 and the door of the sensor 112 to focus on defects in the glass sheet 110. For example, conventional 'view systems can detect approximately A defect of 1 to 200 micro-required, which needs to have a field depth of less than a few millimeters. In comparison, the inspection system 100 of the present invention has a field depth in the range of a few inches. That is, because the inspection system 100 relies on the light 104 directly The shot 102 travels through the collimating lens 106 (with the aim of aligning the light rays to each other) to a small sensor element in the sensor 112. If any small object, such as a defect, perturbs the optical path, the disturbance is detected by the sensor 112. Captured. The disturbance will be generated at any point in the optical path between the laser 102 and the sensing 112. Thus, when compared to a conventional inspection system, the viewing system can utilize sensors that are very tight in object distance. Sensing and measuring defects. & Figures 1B-1E show different defective images of different glass sheets 11 ,, which are scanned by inspection system 100. In order to obtain each image, sensor 112 will output digital The image is input to a computer (not shown), which is analyzed by an image processing algorithm so that it can be displayed in the form of an image. It is known that the intensity of the signal is generated by the defect. Impurities and in this series of tests, which are small particles turned, wrong, stainless steel or some other contaminant. To produce these images, the laser 102 must produce a highly homogenous light 1〇4 to produce the Fresnel effect. The effect occurs when the light energy travels around the black defect and forms a spike that is higher than the light produced by the laser by 1〇4. The Fresnel effect thus produces a very high signal-to-noise ratio, which enables small defects to be easily Figure 1F is a graph showing the change in scan defect size at the 1, 1.5, 2.0 ", 2.5" and 3" positions of the glass sensor 11 距离 distance sensor 112 The defect size will vary, but is smaller compared to other measurements, and the change is y-measured and predictable. The graph also shows that when the defect is far away, the defect is calculated. The size is larger than the predicted value. In addition, the 1360652 graph on page 6 shows that the reciprocal of the dimensional change is the correction coefficient. When the distance between the glass piece 110 and the sensor m is known, the system can be used. Correction Dimensions of Defects The inspection system 100 also has several other advantages, which are illustrated below: • The inspection system 100 has an optical geometry (incident ray angle / angle of reflected light) that produces a virtual or equivalent field depth of about a few inches. Not a few millimeters. For large LCD glass sheets (e.g., 2m X 2m), which cannot be easily handled or moved, it means that the sensor can change several inches with respect to the glass surface and defects can still be sensed and measured. • Viewing system 100 uses transmitted laser geometry, which is a very efficient way to get light to reach the sensor. Other geometric features of using small high speed sensors are lack of light, and defect sensing of 5 to 1 micron is not practical. • The inspection system 100 can also be implemented without the use of a cylindrical lens 106, but the results are accurate. For example, in this embodiment, more processing is required to calculate the presence and measurement of defects in the glass sheet 110. Referring to Figures 2A-2C, there are shown three figures associated with the second embodiment of the viewing system 2 in accordance with the present invention. 2A shows a viewing system 2 that includes a working body 202 that produces a laser beam 204 that passes through a cylindrical lens 206 that refracts all of the laser beam 204 into a parallel beam 208 that is transmitted through the glass as nearly as perpendicularly as possible. Slice 21〇. During this process, a portion (about 4%) of the beam 208 is reflected off the front end surface of the glass sheet 21 and a portion (about 4-5%) of the beam 208 is reflected off the back surface of the glass sheet 21〇. The two reflected beams 211 are received by linear scan sensor 212. Because the lasers are highly homogenous, the two reflected beams 2 Π enable the sensor 212 and the computer (not shown) to produce an image of the interference pattern. As shown in Fig. 2A, when the coherent light beam 2〇8 is guided to the glass piece 210, it is also reflected by the front end and rear end surfaces of the ^210 and the two reflected waves produce a reinforcing pin phase to produce a stripe pattern (see Fig. 2A). The stripe pattern can be changed by changing the thickness or changing the refractive index of the glass sheet 21. The moles such as 1360652 glass sheet 210 have a small change in refractive index and/or thickness, and the stripe pattern propagates in the north-south direction. If there is a large number of stripes per unit area in the east-west direction, it means that the thickness variation is more pronounced and/or the refractive index is changed: more significant. Thus, the coherent light 2 〇 4 produced by the laser 202 enables the thickness or refractive index change to be sensed by the sensor 212 and plotted by a computer (not shown). In addition, it is possible to increase the accuracy of the thickness or refractive index change of the glass sheet 21 by using the average stripe pattern and the sum of the minimum and maximum values of the sum by the computer (note that the minimum and maximum values are offset 9). The phase of the twist and the change in thickness used to measure the half wavelength of the light. It is also possible to measure down to 1/10 wavelength by subdividing the minimum and maximum inter-point regions by 1/1. - Two exemplary interference patterns are shown in Figures 2B and 2C. In Fig. 2β, each stripe in the interference pattern represents a change in thickness of the glass sheet 210 equal to one-half the wavelength of the beam 204. In Figure 2C, the linear scan CCD produces an image showing the impurities in the glass sheet 210. It is known that the central portion of the image is a reflection of 192 microns of impurities. The image also contains stripes that surround the central portion. These stripes show changes in thickness and/or refractive index that result from specialized dark impurities in the glass sheet. ...9 It is possible to generate these images because the two reflected beams 211 form a coherent waveform that travels through the laser ray 204 - half-wavelength spacing space to enhance and weaken the phase (increasing the intensity and reducing the intensity). For example, if you use a 400-ship purple laser 202, you can see the bright areas of the stripes at 200 nm and the dark areas of the stripes at 200 nm. The dark and bright areas separate the light by 1/6 wavelength. If you use light 2U, it will be bright to dark and separated to 66nm. Due to this phenomenon, the sensor 212 can be used to scan the geometrical characteristics of the field so that the sensor can sense the brightness of the bright and dark fringe patterns. By traversing the stripe pattern, one can calculate the number of bright stripes (^ dark stripes) and multiply the count by 1/3 of the wavelength of the light 211 to determine the thickness change of the glass sheet 210. Usually by this analysis, it is impossible to determine whether 1360652 is caused by a change in thickness or a change in refractive index. However, if one has experience with the glass manufacturing process, it can analyze the interference pattern and determine the cause of the unique stripe pattern. The inspection system 200 is also capable of measuring the percentage of the 2 〇 4 wavelength distortion of the laser light. This is possible because the fringe pattern is produced by two waveform interferences that will be enhanced and phased as the light passes through the 1/3 pitch space of the laser ray 204. One can show the highest intensity of the stripe (the brightest part) in degrees and the lowest intensity (dark part) at 90 degrees. Thus, one can deduce that at this point in the example, the half point between the brightest and darkest portions of the stripe pattern is 45 degrees because it corresponds to a wavelength of 1/12 of the light 204. For a purple light 400^!! laser, this value is approximately 30 nm of purple light (404 nm). This is how people translate the stripe pattern group down to 1/12 of the stripe. The inspection system 200 also has several other advantages that will be described below: • The angle of the rice, such as the incident ray 204, can remain fairly close to perpendicular to the glass sheet 210, and the optical geometry can produce a virtual field depth of about a few inches instead of A few millimeters. For large glass sheets (e.g., 2m X 2m), they cannot be easily handled or moved, which means that the sensor can change a few inches relative to the glass surface and defects can still be sensed and measured. The increased freedom of the sweeping cat assembly enables the glass sheet to be broomed as it moves from a standard factory transport system. • Inspection system 200 enables the glass sheet to be thickness measured and to sense fine defects without the need to accurately position the glass sheet. • Viewing system 200 generates local information about defects to distort the surface of the glass sheet and the distortion can measure as low as a percentage of the wavelength of the laser light used for scanning. One can analyze the stripe pattern produced by the inspection system 2 and then determine the global variation of the thickness of the glass sheet 210. • Viewing system 200 is capable of sensing and measuring thickness or refractive index changes in the impurity regions. • Viewing system 200 is also capable of sensing any glass sheet 21 〇 pull direction thickness or page 1 1360652 refractive index change, which will show the change itself as a streak through the defect field of view. • The inspection system 200 can also be implemented without the need for a cylindrical lens 2〇6, but the results are accurate. For example, in another embodiment, more processing is required to account for variations in thickness or refractive index in the glass sheet 210. Referring to Figures 3A-3C, there are shown five figures associated with a third embodiment of a viewing system 3 in accordance with the present invention. Figure 3A shows the inspection system 300 including a sensor 302 and an illuminator 304 that is used to identify the stress of the glass sheet 306. In this example illuminator 304 includes a laser 316 and a lens 308 (optional) that emits a polarized beam 310a that partially moves the glass sheet 306. A sensor (eg, three-wire sensor 302) uses three columns of sensors 312a, 312b, and 312c (eg, CCD sensors 312a, 312b, and 312c) to receive polarized beam 310b through glass sheet 306 (see Figure 3B). In this example, the polarized beam 3i 〇 a is 3-5 inches wide. The sensor 302 is located approximately 2" from the moving glass sheet 306. As shown in Fig. 3B, the first column of CCD sensors 312a is a modular/coated first polarizer film 314a that polarizes the incident ray 31 〇 b to a 〇 degree. The second column of CCD sensors 312b is a modular/coated second polarizer film 314b that polarizes incident light 310b with a 120 degree orientation relative to CCD sensor 312a. The third column of CCD sensors 312c is a modular/coated third polarizer 314c that polarizes the incident ray 310b with a 240 degree orientation relative to the CCD sensor 312a. It can be varied to understand that the inspection system 300 can operate with the polarizer films 312a, 312b, and 312c as long as the relative angular difference between the three angles is 120 degrees. The greater the change in the 120 degree relative angle difference, the less precise the viewing system 300 becomes, but it still works. The phase angle is 丨5 degrees, i% degrees and 255 degrees are as good as 0 degrees, 120 degrees and 240 degrees, because the relative angle difference is 120 degrees. Angles of 15 degrees, 160 degrees and 230 degrees will work, but will not produce the most accurate results. Thus, the relative angular difference should be close to 120 degrees and any deviation from this ideal value would result in a less accurate viewing system 300, but still yield acceptable results. In operation, when the sensor 302 is illuminated by the polarized light 310b, each column of the 1360652 CCD sensors 312a, 312b, and 312c is output as the input polarized light 3i〇b and each column of the CCD. The vector product of the 312a, 312b, and 312c related polarization chopper angles. Thus, when the polarized light ray 310a passes through the glass sheet 306 containing the sensible stress, the stress changes the polarization angle of the light beam 310b, which produces signals from the three linear scan column CCD sensors 312a, 312b, and 312c. Change with respect to the magnitude of the stress. These signals are used to identify the stress in the glass sheet 306. Thus, if there is no stress in the glass sheet 306, the polarization angle of the receiving polarized light 310b will be at the same angle as the laser 316 emitting light 310a. If there is a small amount of stress on the glass sheet 306, the stress will change the polarization angle of a small amount of light 31 Ob, which can be measured and calculated by analyzing the outputs of the three columns of polarized CCD sensors 312a, 312b, and 312c. If there is a large stress on the glass sheet 306, the angle of the polarized light 310b passing through the glass sheet 306 will be greatly changed and the polarization change can be measured by the three columns of polarized electrodes (XJ) sensors 312a, 312b and 312c. . It is conceivable that it is possible to uniquely identify the two columns of CCD sensors 312a and 312b, for example, the polarization angles, which comprise mutually perpendicular polarizers, but in the case of non-uniqueness. To show this, referring to Figures 3C through 3D, when light is incident on two mutually perpendicular polarized CCD sensors 312a and 312b, the two different polarization angles of the two incident waveforms are converted to the same polarization. It is not possible for the two waveforms to uniquely identify their polarization angles. This problem can be solved by adding a third column CCD sensor 312c (for example). Fig. 3E is a photograph showing an example of a linear scanning scene in which a sheet of the LCD glass 306 is dynamically curved by the sensor 3〇2. Generally, varying the stress value in the area of the glass sheet 306 is generally determined by some environmental effects and how the glass sheet 306 is formed. Viewing system 300 also has several other advantages that will be described below: • Viewing system 300 does not require a mobility component. • Viewing system 300 is suitable as a connection measurement. Page 11 1360652 • Viewing system 300 can be used to create a stress map for all areas of LCD glass sheet 306. For example, one can generate a full stress map of the glass sheet by using a plurality of sensors aligned in a row to form a sensor as large as the glass 306, and the signals generated by the sensors 3〇2 can A computer is used to generate a stress image of the entire glass sheet 306. • As shown above, it is also possible to use the inspection system 300 without a cylindrical open j lens, but the results are not very accurate. For example, in this alternative embodiment, more processing is required to calculate/recognize the stress applied to the glass sheet 306. Referring to Figures 4A-4C, there are shown three figures associated with a fourth embodiment of a viewing system shed in accordance with the present invention. 4A shows a viewing system 4A comprising a color multi-line swept cat sensor 402 and a plurality of illuminators (lasers) 4〇4a, 4〇4b, 404c and 404d (four shown) used to identify the glass. Defects on the sheet 4〇6 or in the glass sheet. In this example, multi-line scan sensor 402 has multiple columns of CQ) sensors 412a, 412b, 412c, and 412d, each of which is covered by spectral filters 41, 414b, 414c, and 414d (see Figure 3B). The four different illuminators 404a, 404b, 404c and 404d each emit color beams 416a, 416b, 416c° and 416d with energy in the range of energy bands of the filtered column CCD sensors 412a, 412b, 412c and 412d. 4B-4C show that each of the spectral filters 414a, 414b, 414c, and 414d can only pass only one particular beneficial color (wavelength) beam 415a, 416b, 416c, and 416d to the corresponding column CQ sensor 412a. 412b, 412c and 412d and block all other beams 415a, 416b, 416c & 416d. In the exemplary viewing system 4A shown in Figures 4A-4C, red illuminator 404a emits red light beam 416a via lens 418 and through glass sheet 4〇6 to filter CCD sensor 412a column to receive red light beam 416a. Energy band. In this example, CCD sensor 412a is very sensitive to tiny impurities in glass sheet 406. The green illuminator 406b emits a green light beam 416b that is reflected back by the glass sheet 406 and directed into the filtered CCD sensor 412 column to receive the energy band of the green light beam 416b. In this example, CCD sensor 412b is sensitive to impurity and glass thickness on page 12, 1360652. The blue illuminator 406c emits a blue light beam 416c through the grating 420 and through the glass sheet 406 to the column of the sensor CQ) sensor 412c to receive the energy band of the blue light beam 416c. In this example, CCD sensor 412c is sensitive to variations in fringe and refractive index in glass sheet 406. Gray (infrared) illuminator 406d emits gray light beam 416d through lens 424 and through glass sheet 406 to the array of filtered CCD sensors 412d to receive the energy band of gray light beam 406d. In this example, CCD sensor 412d is capable of measuring the location of impurities in glass sheet 406. In a similar form, the design review system 400 can use beams of different energy bands, such as infrared and ultraviolet energy bands, to sense other characteristics in the glass sheet 406. As shown, having one of the sensor inspection systems 400 is capable of measuring some of the characteristics regarding the stain and shape of the glass sheet 406. For practical purposes, it is not intended to use light rays 41 of that wavelength, such as 416b, 416c, and 416d, to sense the characteristics of that form (e.g., minute impurities, glass thickness). For example, one can easily use red light beam 416a and CCD sensor 412a to sense changes in refractive index in glass sheet 406 rather than minute impurities. The use of color filters 414b, 414c and 414d to avoid red light 416a emitted by, for example, red laser 404a from being seen by non-red CCD sensors 412b, 412c and 412d. This means that different color lu lights 416a, 416b, 416c and 416d can be used to separate the information provided by each characteristic (geometric characteristics - angle of incidence of light and angle of light reflected on sensor 402) to avoid interference by other characteristics. (geometric characteristics) generated information. There is also no wavelength for the four types of lasers 406a, 406b, 406c and 406d, as long as they can be separated by spectral filters 414a, 414b, 414c and 414d, which are placed in four columns of CCD sensors 412a, 412b, 412c And 412d front. Thus, the wavelengths of the lasers 406a, 406b, 406c, and 406d are selected to match commercially available lasers such as 404 nm, 750 nm, 870 nm, and 950 nm. In addition, the wavelength of the light can be any useful wavelength from 200 nm to 2000 nm. The viewing system 400 also has several other advantages, which will be described below: • Space, standard: All measurements are produced by a multi-broom sensor 4〇2 as long as it is fairly easy to determine by each Different linear scan arrays 412a, 412b, 412c, and 412d provide spatial relationships between different fields of view. • Reduced price: The two or more columns of CCD sensors 412a, 412b, 412c, and 412d can be used on one level, which refers to an interface of a mounting device and as much as possible a lens. • Reduced size: In the 5th brother, the viewing system shed has one sensor ship instead of two or more sensors occupying a large space. Referring to Figures 5A-5C, there is shown a fifth embodiment of a viewing system 5 in accordance with the present invention. It is well known that the inspection system is used to scan a series of materials (such as paper, na, steel, and glass) to sense the classification aberration (defect) when it is manufactured for quality control and processing information. . However, these scanning processes are produced by the outer boundary particles produced during the manufacturing process, which are located on the surface of the material and sensed by the inspection system. For transparent material trees such as glass sheets, when particles (e.g., dirt & dust, glass fragments) are located on the surface of the material, they can be considered by the inspection system to correspond to particles (impurities) within the material. This causes the viewing system to produce incorrect results. In fact, in some processes, the number of surface particles is 1,100 times internal. The tendency will make the sweep (10) silk county meaningless. The inspection system 500 of the present invention solves this problem by sensing the double trap embedded in the transparent material 5〇4 (e.g., glass sheet 504) without sensing the surface particles 5〇6. As shown in FIG. 5A and the office, the inspection system 500 uses an illuminator 508 that emits light 510 at a particular angle toward the glass sheet 5〇4. The angle is selected such that a portion of the light, 510 2 , is internally reflected within the hybrid glass sheet 5〇4 to an area that is away from the light 51 and enters and exits the moving glass sheet 5〇4. The line f scan camera 512 can be placed in a position such that it can focus on the area and sense the light that reflects off the internal defect 5〇2 and does not sense the light reflected off the surface particle 506, which is located in the light 51〇 And page 14 leaves the moving glass sheet 504. The two figures show that the linear scan camera 5 emits light 510 into and out of the glass sheet 504 at a point 7 away from the movable glass sheet 5〇4. Linear scan camera 512 at this location is capable of focusing and sensing internal defects 502 without sensing surface particles 506. In another embodiment, linear scan camera 512 can be replaced with a linear scan sensor, a time delay split (TDI) sensor, and a contact sensor. Illuminator 508 can be a laser, a lightning ray, or any other illuminator such as fluorescent 508a (see Figure 5C). If a illuminator such as fluorescent 508a is used, then the mask 514 needs to be used and placed such that the light 510a is internally reflected to the moving glass sheet 504 while blocking the light 510a from entering or exiting the point of the movable glass sheet 504, where a linear linear sweep The sight camera 512 observes the glass sheet 5〇4 (see the inspection system 500a shown in Fig. 5C). The inspection system 500 also has several other advantages that will be described below: • The inspection system 500 can be used to scan different product format transparent materials such as glass reels other than the glass sheets 504, and other forms in the form of sheets or rolls. Transparent material. Referring to Figures 6A-6D, there are shown four figures associated with a sixth embodiment of a viewing system in accordance with the present invention. It is well known to those skilled in the art of manufacturing glass that when the glass sheet 602 is capable of refracting collimated light to a difference in collimation, the refractive index and/or thickness of the glass sheet 602 is slightly changed. This effect can be sensed by the naked eye and considered a defect when the glass piece 602 (LCD display) is inspected. Figures 6A and 6B show this effect, which occurs when light 6〇4 leaves the light source 6〇6 (laser) and transmits through the flat unwanted glass sheet 602, which refracts light 604 resulting in bright and dark stripes on a white background. 6〇8. The inspection system 600 of the present invention is capable of sensing a slight change in the thickness and/or refractive index of the glass sheets 6〇2 (or any transparent flat material). This is important because the unwanted glass sheet 602 can be sensed prior to use in the manufacture of, for example, an LCD display. ° Page 15 1360652 Figure 6C shows a viewing system comprising a laser 610 that produces a relatively uniform intensity of light 612. The viewing system 6A also includes a collimating lens 614 that refracts the fan-shaped ray 612 into a parallel linear ray 616 ❶ ray 6 incident on the grating 618, which in this example is 5 〇〇 pairs of lines per inch and 50% filler wire count. A series of dark lines 62 and bright lines 622b are formed in a fine manner, and the force is applied to the linear scanning CCD sensor 620 through a glass (for example, glass). In this example, the distance between the grating and the glass piece 6〇2 is 2". The distance between the grating 618 and the sensor 620 is 4". The parallel light travels the beam width of the fi1 β -5". If the sheet has a very flat reference glass with a fixed thickness and refractive index analyzed by the inspection system 600, then the reference Waveforms such as waveform 1 shown in the top of the rib can be generated and stored in a computer (not shown). Wave=1 shows alternating bright and dark areas produced by the presence of grating 618. a ten nose machine uses waveform 1 as Reference or standard to compare waveforms produced by other glass sheets 602. For example, if a relatively good glass sheet 602 is placed between the grating 618 and the sensor 62 则, a waveform that is very similar to waveform 2 is produced. The truncation, such that the bright areas are equal and the two waveforms 1 and 2 are truncated, will produce a waveform similar to waveform 3. Waveform 3 shows a small mark on the edge of the square wave, the size of which is positive or negative. The mark width is quite small because the waveform 1 associated with the reference glass piece 602 is approximately the same as the waveform 3 associated with the good glass piece 602. Waveform 4 is the mark integral shown in waveform 3, which is only The positive edge of the waveform is generated (the mark produced by the negative edge is ignored). In this case, the mark integral shown in the waveform 4 is small because the good glass piece 602 has almost the same quality as the reference glass piece 6〇2. When the waveform of the non-uniform glass piece 602 is compared with the waveform of the reference glass piece 602, the description of the relevant mark will be made below. After the non-uniform glass piece inspection of the refractive index change or the thickness change, the waveform 6 is generated. The area or area where the thickness is not fixed causes the direction of the light 616 to be refracted or changed, which in turn causes the waveform to move from side to side on page 16. If the resulting waveform is moved to the right, it moves through the non-uniform glass sheet 602. The light 616 is bent to the right. Similarly, if the line moves to the left, the light 616 is bent to the left. If the waveform 6 is deducted by the waveform 5 (which is the same as the reference waveform )), the waveform 7 indicates that the thickness, shape and/or thickness is changed. The index of darkness in the dark moon 1j 7 is the mark produced by the positive edge of the waveform 5. I, the alum area is generated by the negative edge of the waveform 5 The mark width is the magnitude of the change of the direction of the light 616 when the light traverses the non-uniform glass piece 602. Compared with the edge of the waveform 5, the positive or negative value of the mark in the waveform 7 determines that the light 616 f changes to it. For example, with a positive value The positive edge of the marker-related waveform 5 indicates that the beam is bent to the left. The negative value in the waveform 5 "Dark" mark indicates that the light is bent to the right. If a line is drawn from the top of all dark marks, waveform 8 is generated. The mid-integral value is a positive value, which means that the light is bent to the left, if it is close to zero, the light is not bent, and if it is negative, the light is bent to the right. Basically, the larger the value in waveform 8 is greater than zero, then you do not want The thickness, shape and/or refractive index of the non-uniform glass sheet changes more. The inspection system 600 also has several other advantages, which will be described below: • The inspection system 600 can be used to measure the fine streaks in the glass sheet 602 due to changes in the refractive index of the glass sheet 602, thickness variations or shape changes. It produces information on the direction and relative size and produces thousands of readings/inch on the surface of the entire glass sheet 6〇2. Referring to Figures 7A-7D, there are shown four figures associated with a seventh embodiment of a viewing system 700 in accordance with the present invention. Even the previously mentioned inspection system 1 〇〇 ' 200. · 600 uses a technique for scanning fine defects to be good for sensing space defects because it has a considerable depth of field. However, this large depth of field (e.g., 2 inches) means that these scanning techniques do not have the ability to sense and trap away from the sensor. In the case of LCD glass, it is useful if the viewing system is capable of detecting the presence or absence of a defect and whether the defect is at or near the side A or side B of the LCD glass. This ability is beneficial because during the process of coating the LCD glass, it is more sensitive to the 1360652 defect on one side of the glass sheet and not on the other side. Therefore, it is important to determine that the defect is on that side because if the side B of the vehicle is defective, the double raising is not troublesome and it is very troublesome if the color is close to the side or the side A of the vehicle. The inspection system 700 described below is capable of measuring the position of the defect in the z direction relative to the depth direction of the glass sheet. Figure 7A shows a side view of an inspection system 700 using two laser sources 702a and 702b, each having a different wavelength and sensor 704 with two linear scan arrays 712a and 712b to determine two The relative positions of the defects 706 and 708, which in this example are located at the same horizontal position of the glass sheet. The drawing shows that the glass piece 71 is moved upward at a fixed speed (7) and the distance sensor 704 is at a fixed distance (D). The two linear scan arrays 712a and 712b are separated by a known distance (4). Each linear scan array 7i2a and 712b is sensitive to different wavelengths. For example, bottom linear scan array 712b is sensitive to red laser light 714a emitted by red laser 702a. The top linear scan array 712a is illuminated at an angle a relative to the sensor 7〇4 normal. The bottom linear scan array 712b is illuminated by a bottom laser at a vertical angle relative to the glass sheet 71 and the sensor 704. In this example, the ccd linear scan sensor 7〇4 produces a 5 micron new pixel and the image of the two defects 706 boundary 708 is recorded in one or more scans. Figure 7A shows a snapshot of the inspection system 7 when two defects 706 and 708 are illuminated by the laser 702a at time 〇. Figure 7B shows a snapshot of the inspection system 700 at time T1 when the defect 708 is located on the side A of the glass sheet 71 by the laser 702 emitting light 714b. The CCD linear sweeping cat sensor 704 records the image of the defect 708 in one or more of the tiles. Figure 7C shows a snapshot of the inspection system 700 at time T2 when the defect 706 is located on the side B of the glass sheet γιο and is intercepted by the laser 702b. The CCD linear scan sensor 704 records the image of the defect 706 in one or more pixel scans. Fig. 7D shows a composite view of all previous sensor sweeping cats and three images showing 1360652 defects 706 and 708 on page 18. First, it shows that the two images of the a side defect 7〇8 and the B side edge defect 706 overlap each other because they are sensed at the same time 〇. The first 'one' does not show an image of the A side defect 708 of the beam 714b emitted by the laser 7〇2b at time T1. Third, it shows an image of the B side edge defect 7〇6 of the beam 714b emitted by the laser 702b at time T2. The distance at which the A side defect 708 is operated can count the number of scan lines generated between time 0 and time T1 and multiply the number by 5 to calculate the number 5 as the pixel size in microns in this example. Similarly, the distance of the side defect 7〇6 can be calculated by counting the number of scan lines generated between time 〇 and time T2 and multiplying the number by 5, which is the pixel size expressed in micrometers in this example. . Because the side edge defect 7〇6 takes a long time to pass the light beam 714b, which is longer than the side defect of the A side, and the b side edge defect 7〇6 has more scanning lines and calculates a larger distance. Once these steps, the distance between the A side defect 708 and the sensor 7〇4 can be calculated by multiplying the A side edge defect 708 by the running distance by the tangent of the angle A. Similarly, the distance between the side edge defect 706 and the sensor 704 can be calculated by multiplying the B side edge defect 7〇6 by the running distance by the angle a u the cut value. It is known that the distance calculation of this form can be performed on one or more defects located on the surface of the glass sheet 71. In another embodiment, one can use the inspection system 7 to determine the location of the defect by monitoring the time required for the sensing defect to continue from the 帛-Lao Ying front end machine to the fresh two laser 7〇2b parent. .

情況I: A侧邊缺陷運行時間能夠計算如下: ta=(d+D*tan(A))/VCase I: A side defect runtime can be calculated as follows: ta=(d+D*tan(A))/V

情況II:B側邊缺陷運行時間能夠計算如下: tb=(d+(D+T(na/ng) )*tan( A) )/V 上述公式中m為空氣折射率及仏為玻璃# 71〇之折射率。 情況III:在位置p處玻璃# 71〇内側位置之傾向運行時間能 第19 頁 夠計算如下: tp=(d+(D+T(na/ng))*tan(A))/V -假如該公式對位置P求解,則公式變為: P=ng*( (tP*V)-d-D*tan( A) )/(na*tan(a)) 在範1中,假設雷射702b角度為20度,則玻璃片710速度等 於3英吋每秒,玻璃片71〇與感測器7〇4之距離為2英吋,空氣 折射率為1,線性掃瞄陣列712a及712b間距離為90微米,圖 素尺寸為5微米,以及玻璃折射率為1· 5。因而人們能夠在 破璃片710中三個不同位置處進行計算:⑴在p等於〇之側 邊A處;(2)在P等於3〇〇微米之玻璃内側;以及(3)在p等於 700之侧邊B處。在這些三個位置處運行時間為如下: •在侧邊B處:運行時間=〇.243827秒 •在300微米處:運行時間=0.243827 + 0.00095 = 0.244777 秒 •在側邊A處:運行時間=〇.243827 + 0.00220 = 〇. 246027 秒、 為了計算缺陷之位置,人們需要知道檢視系統能夠量 測之精確度以及在該範例中感測器7〇2能夠量測5微米圖素 。為了達成該解析度,需要使速度等於玻璃片710速度⑺ 除以5微米圖素尺寸以及此因而得到1524〇掃瞄每秒。藉由 求該數值之倒氣人們得到掃瞄間之時間或〇. 0000656秒/ 掃瞒。對於700微米厚度玻璃片710由側邊B與側邊A產生運 行時間之間掃猫差值為33。如人們所知,該量測足夠精確 以產生良好的位置資訊。 人們了解先前所提及檢視系統1〇〇, 200. ·. 7〇〇中能夠Case II: B side defect running time can be calculated as follows: tb=(d+(D+T(na/ng) )*tan( A) )/V In the above formula, m is the refractive index of air and 仏 is glass # 71〇 Refractive index. Case III: The tendency of the inner position of the glass #71〇 at the position p can be calculated as follows: tp=(d+(D+T(na/ng))*tan(A))/V - if this When the formula solves the position P, the formula becomes: P=ng*( (tP*V)-dD*tan( A) )/(na*tan(a)) In the range 1, the angle of the laser 702b is assumed to be 20 Degree, the speed of the glass piece 710 is equal to 3 inches per second, the distance between the glass piece 71〇 and the sensor 7〇4 is 2 inches, the refractive index of the air is 1, and the distance between the linear scanning arrays 712a and 712b is 90 micrometers. The pixel size is 5 microns and the refractive index of the glass is 1.5. Thus one can calculate at three different locations in the glazing 710: (1) at p side equal to the side A of the crucible; (2) inside the glass where P is equal to 3 micrometers; and (3) at p equal to 700. At the side B. The run times at these three locations are as follows: • At side B: Run time = 〇.243827 seconds • At 300 microns: Run time = 0.243827 + 0.00095 = 0.244777 seconds • At side A: Run time = 243.243827 + 0.00220 = 〇. 246027 seconds, in order to calculate the position of the defect, one needs to know the accuracy of the inspection system and in this example the sensor 7〇2 can measure 5 micron pixels. In order to achieve this resolution, it is necessary to divide the speed equal to the speed of the glass sheet 710 (7) by the size of the 5 micron pixel and thus obtain a 1524 scan per second. By asking for this value, people get the time between scans or 〇. 0000656 seconds / broom. For a 700 micron thick glass sheet 710, the difference between the running time of the side B and the side A is 33. As is known, this measurement is accurate enough to produce good positional information. People understand that the previously mentioned inspection system 1〇〇, 200. ·. 7〇〇 can

使用感測器例如為Kpdak KLI 14441感測器以及Kodak KLI 4104感測器。不過特定形式之感測器並不重要。重要的是 感測器具有多陣列線性感測器元件,其有助於對多個攝影 機影像或多個攝影機幾何特性之資料對準及標定。 第20 頁 1360652 雖然附圖中已顯示本發明數個實施例以及詳細加以說 明,人們了解本發明並不受限於所揭示實施例,但是能夠作 許多再排列,改變及替代而並不會脫離下列申請專利範圍 所揭示及界定之本發明精神。Sensors such as the Kpdak KLI 14441 sensor and the Kodak KLI 4104 sensor are used. However, the specific form of the sensor is not important. It is important that the sensor has a multi-array line sensor component that facilitates alignment and calibration of data for multiple camera images or multiple camera geometries. The present invention is not limited to the disclosed embodiments, but can be re-arranged, altered, and replaced without departing from the detailed description of the invention. The spirit of the invention disclosed and defined by the scope of the following claims.

第21 頁 1360652 【圖式簡單說明】 關之_鱗拇犧視_—實施例相 關之示出依據本發明檢視系統第二實施例相 關之讀示出依據本發明檢視系統第三實施例相 關之顯示出依據本發明檢視系統第四實施例相Page 21 1360652 [Simplified illustration of the drawings] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Shown in accordance with a fourth embodiment of the inspection system of the present invention

第五圖A~C顯不出依據本發明檢視系統第施例相 關之三個圖式。 A 第六圖A-D顯示出依據本發明檢視系統第六實施例相 關之四個圖式。 第七圖A-D顯示出依據本發明檢視系統第七實施例相 關之四個圖式。 附圖元件數字符號說明: 檢視系統100::^體1〇2;雷射光線104;透鏡1〇6; 平行光束108;玻璃片110;掃瞄感測器112;檢視系統, 200;二極體202;雷射光線204;透鏡206;平行光束208; 玻璃片210;反射光束211;掃瞄感測器212;檢視系統 300;感測器302;照明器304;玻璃片306;透鏡308;偏極 光束 310a,310b;感測器 312a,312b,312c;塗膜 314a, 314b’314c;雷射316;檢視系統棚;感測器4〇2;照明器 404a,404b,404c,404d;玻璃片 406;感測器 412,412a, 412b,412c,412d;濾、波器 414a,414b,414c, 414d;光束 416a, 416b,416c’416d;透鏡 418;光柵 420;透鏡 424;檢 視系統500;檢視系統500a;透明材料504;表面顆粒 506;照明器508;螢光508a;光線510;光線510a;掃瞒攝 影機512;遮蔽514;檢視系統600;玻璃片602;光線6〇4 第22 頁 1360652 ;光源606;白色背景608;雷射610;光線612;準直透鏡 614;光線616;光栅618;感測器620;暗線622a;亮線 622b;檢視系統700;雷射光源702a,702b;感測器704;缺 陷706, 708;玻璃片710;掃瞄陣列712a,712b;光線 ’ 714b。The fifth diagrams A to C show three diagrams relating to the first embodiment of the inspection system according to the present invention. A sixth diagram A-D shows four diagrams relating to a sixth embodiment of the inspection system in accordance with the present invention. The seventh diagram A-D shows four diagrams relating to the seventh embodiment of the inspection system in accordance with the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view of a digital symbol: a viewing system 100::1 body 2; a laser beam 104; a lens 1〇6; a parallel beam 108; a glass piece 110; a scanning sensor 112; a viewing system, 200; Body 202; laser beam 204; lens 206; parallel beam 208; glass sheet 210; reflected beam 211; scan sensor 212; inspection system 300; sensor 302; illuminator 304; glass sheet 306; Bipolar beam 310a, 310b; sensor 312a, 312b, 312c; coating film 314a, 314b'314c; laser 316; inspection system shed; sensor 4〇2; illuminator 404a, 404b, 404c, 404d; Sheet 406; sensors 412, 412a, 412b, 412c, 412d; filters, waves 414a, 414b, 414c, 414d; beams 416a, 416b, 416c' 416d; lens 418; grating 420; lens 424; viewing system 500; System 500a; transparent material 504; surface particles 506; illuminator 508; fluorescent 508a; light 510; light 510a; broom camera 512; mask 514; viewing system 600; glass sheet 602; light 6〇4 page 22 1360652; Light source 606; white background 608; laser 610; light 612; collimating lens 614; light 616; grating 618; sensor 620; dark line 622a; bright line 622b; viewing system 700; laser source 702a 702b; 704 sensor; defects 706, 708; 710 glass; scan array 712a, 712b; light '714b.

第23 頁Page 23

Claims (1)

ί仰年ί Ο月㈣修(更)正本 ...........I ......._l 咖M_|_ 十、申請專利範圍: 1. 一種辨識透明平坦材料中缺陷之檢視系統,該檢視系統 包含: 能狗發射雷射光束之雷射照明器; 第一透鏡,其能夠接收同調光束及發射平行同調光束通過部份 透明平坦材料; 線性掃瞄感測器,其能夠接收平行同調光束,該同調光束通過部 丨份透明平坦材料以及以聚焦於透明平坦材料中缺陷上-而並不 需要第二透鏡放置於線性掃瞄感測器之前方。 2. 依據申請專利範圍第1項之檢視系統,其中通過部份透明 平坦材料之平行同調光束藉由透明平坦材料之缺陷以及特性構 成。 3. 依據申凊專利範圍第1項之檢視系統,其中線性掃瞎感測 器具有虛擬場深度為大於1英吋。 4·依據申請專利範圍第1項之檢視系統,其中線性掃瞄感測 器輸出由計算機分析之訊號,其產生顯示平行同調光束相關夫 違耳效應之影像,該同調光束通過透明平坦材料,其能夠感測透 明平坦材料中之缺陷。 5·依據申請專利範圍第1項之檢視系統,其中線性掃猫感 測器輪出由計算機分析之訊號,其產生顯示平行同調光束相關 之干涉圖案,該同調光束通過透明平坦材料,其能夠感測透明平 坦材料中厚度或折射率之變化。 6·依據申請專利範圍第1項之檢視系統,其中透明平坦材料為 坡螭片。 第 24 頁 峨Χ_4 ;1€03383661:-α 1360652 7. —種辨識透明平坦材料十缺陷之方法,該方法包含下列 步驟: 使用雷射照明器作為發射雷射光束; 透 使用第-透鏡以接收同調光束及發射平行同調光束通過部 明平坦材料; 77 使用線性掃晦感測器以接收平行同調光束其通過部份透明 平坦材料以及以聚焦於透明平坦材料中缺陷上而並不需要 第二透鏡放置於線性掃瞄感測器之前方。 8·依據申請專利範圍第7項之方法其中通過部份透明平坦 鲁 材料之平行同調光束藉由透明平坦材料之缺陷及特性構成。 9. 依據申請專纖圍第7項之方法,其中線性掃喊測器之 场深度為大於1英忖。 10. 依據申請專利範圍第7項之方法其中線性掃猫感測器輪 出由計异機分析之訊?虎,其產生顯示平行同調光束相關夫淫耳 效應之影像,制調縣通财明平坦材料,其能触測透明平 坦材料中之缺陷。 11. 依據申請專利範圍第7項之方法,其中線性掃描感測器輸 φ 出由計算機分析之域,其產生顯示平行同調光束相關之干涉 圖案,該同調光束通過透明平坦材料,其能夠感測透明平坦材料 中厚度或折射率之變化。 12. 依據申請專利範圍第7項之方法,其中透明平坦材料為玻 璃片。 13. -種辨識透明平坦材料中缺陷之檢視系統,該檢視系統 包含: 頁 第 25 095112334 1003363661-0 能夠發射同調光束之照明器; 第一透鏡,其能夠接收雷射光束及發射平行雷射光束通 過部份透明平坦材料; 線性掃瞄感測器,其能夠接收平行同調光束,該同調光束由透明 平坦材料之前端表面及後端表面反射以及以聚焦於透明平坦 材料中缺陷上而並不需要第二透鏡放置於線性掃瞄感測 - Is之前方。 14. 依據申請專利範圍第13項之檢視系統,其中由透明平坦 材料之前端表面及後端表面反射的平行同調光束藉由透明平坦 材料之缺陷以及特性構成。 15. 依據申請專利範圍第13項之檢視系統,其中線性掃瞄感 測器具有場深度為大於1英吋。 16·依據申請專利範圍第13項之檢視系統,其中線性掃瞄感 測器輸出由計算機分析之訊號,其產生反射明亮場條紋圖 案影像,其能夠感測透明平坦材料中之缺陷。 17. 依據申請專利範圍第13項之檢視系統,其中線性掃瞄感 測器輪出由計算機分析之訊號,其產生反射亮場條紋圖案 影像,其能夠感測透明平坦材料中厚度或折射率之變化。 18. 依據申請專利範圍第13項之檢視系統,其中透明平坦材 料為破螭片。 19·—種辨識透明平坦材料中缺陷之方法,該方法包含下列 步驟: 使用雷射照明器作為發射雷射光束; 使用第一透鏡以接收同調光束及發射平行同調光束通過部份透 第 26 l〇O3S$3661r〇 1360652 明平坦材料; 使用線性掃瞄感測器以接收平行同調光束,該同調光束由透明 平坦材料之前端表面及後端表面反射以及以聚焦於透明平坦 材料中缺陷上而並不需要第二透鏡放置於線性掃瞄感測器 之前方。 20. 依據申請專利範圍第19項之方法,其中由透明平坦材料 之前端表面及後端表面反射之平行同調光束藉由透明平坦材料 之缺陷及特性構成。 21. 依據申請專利範圍第19項之方法,其中線性掃瞄感測器 之場深度為大於1英吋。 22. 依據申請專利範圍第19項之方法,其中線性掃瞄感測器 輸出由計算機分析之訊號,其產生反射明亮場條紋圖案影 像,其能夠感測透明平坦材料中之缺陷。 23. 依據申請專利範圍第19項之方法,其中線性掃瞄感測器 輸出由計算機分析之訊號,其產生反射明亮場條紋圖案影 像,其能夠感測透明平坦材料中厚度或折射率之變化。 24. 依據申請專利範圍第19項之方法,其中透明平坦材料為 玻璃片。 25. —種辨識透明平坦材料中應力之檢視系統,該檢視系統 包含: 感測器;以及 能夠發射偏極同調光束經由部份透明平坦材料朝向感測器之 照明器; δ亥感測器能夠接收通過透明平坦材料之偏極同調光束,其藉 第 27 頁 095112334 1003363661-0 1360652 由使用下列感測器達成: 利用第一偏極器模組之第一列感測器; 利用第二偏極器模組之第二列感測器; 利用第三偏極器模組之第三列感測器;以及 其中假如在透明平坦材料内存在可感測數量之應力則 應力改變通過透明平坦材料之偏極化同調光束的偏極角度其 能夠藉由三列感測器感測及量測出。仰仰年年 Ο月(四)修(更)本本..........I......._l 咖 M_|_ X. Patent application scope: 1. Identification of transparent flat materials a defect inspection system, the inspection system comprising: a laser illuminator capable of emitting a laser beam by a dog; a first lens capable of receiving a coherent beam and emitting a parallel coherent beam through a partially transparent flat material; a linear scan sensor, It is capable of receiving a parallel coherent beam that passes through the portion of the transparent planar material and focuses on defects in the transparent planar material - and does not require the second lens to be placed in front of the linear scan sensor. 2. The inspection system according to claim 1, wherein the parallel coherent light beam passing through the partially transparent flat material is formed by defects and characteristics of the transparent flat material. 3. The inspection system according to claim 1, wherein the linear broom sensor has a virtual field depth greater than 1 inch. 4. The inspection system according to the scope of claim 1, wherein the linear scan sensor outputs a signal analyzed by a computer, which produces an image showing a parallel coherent beam effect, the homogenous beam passing through a transparent flat material, Ability to sense defects in transparent flat materials. 5. The inspection system according to claim 1, wherein the linear sweeping cat sensor rotates a signal analyzed by a computer, which produces an interference pattern related to the parallel coherent light beam, the coherent light beam passing through the transparent flat material, which can be sensed The change in thickness or refractive index in the transparent flat material is measured. 6. The inspection system according to item 1 of the patent application scope, wherein the transparent flat material is a sloping sheet. Page 24 峨Χ_4 ;1€03383661:-α 1360652 7. A method for identifying ten defects of transparent flat material, the method comprising the steps of: using a laser illuminator as a launching laser beam; using a lenticular lens to receive The coherent beam and the parallel coherent beam pass through the flattened material; 77 a linear broom sensor is used to receive the parallel coherent beam, which passes through the partially transparent planar material and focuses on defects in the transparent flat material without the need for a second lens Place it in front of the linear scan sensor. 8. The method of claim 7, wherein the parallel coherent beam of the partially transparent flat material is formed by defects and characteristics of the transparent flat material. 9. According to the method of applying for the special fiber enclosure item 7, the depth of the linear sweep detector is greater than 1 inch. 10. According to the method of claim 7 of the scope of the patent application, wherein the linear sweeping cat sensor rotates the signal analyzed by the counting machine, which produces an image showing the parallel coherent effect of the parallel homology beam, and adjusts the county Tongcai Ming A flat material that can sense defects in transparent flat materials. 11. The method of claim 7, wherein the linear scan sensor outputs a domain analyzed by a computer that produces an interference pattern associated with a parallel coherent beam that passes through a transparent planar material that is capable of sensing A change in thickness or refractive index in a transparent flat material. 12. The method of claim 7, wherein the transparent flat material is a glass sheet. 13. An inspection system for identifying defects in a transparent flat material, the inspection system comprising: page 25 095112334 1003363661-0 an illuminator capable of transmitting a coherent beam; a first lens capable of receiving a laser beam and emitting a parallel laser beam By a partially transparent flat material; a linear scan sensor capable of receiving parallel coherent beams that are reflected by the front end surface and the rear end surface of the transparent flat material and to focus on defects in the transparent flat material without The second lens is placed in front of the linear scan sensing - Is. 14. The inspection system according to claim 13, wherein the parallel coherent light beam reflected by the front end surface and the rear end surface of the transparent flat material is composed of defects and characteristics of the transparent flat material. 15. The inspection system according to claim 13 wherein the linear scan sensor has a field depth greater than 1 inch. 16. The inspection system of claim 13, wherein the linear scan sensor outputs a signal analyzed by a computer that produces a reflected bright field fringe pattern image that is capable of sensing defects in the transparent flat material. 17. The inspection system of claim 13, wherein the linear scan sensor rotates a signal analyzed by a computer that produces a reflected bright field stripe pattern image that is capable of sensing thickness or refractive index in the transparent planar material. Variety. 18. The inspection system according to claim 13 of the patent application, wherein the transparent flat material is a broken sheet. 19. A method for identifying defects in a transparent flat material, the method comprising the steps of: using a laser illuminator as the emission laser beam; using the first lens to receive the coherent beam and emitting the parallel coherent beam through the partial permeable 26 l 〇O3S$3661r〇1360652 bright flat material; using a linear scan sensor to receive parallel coherent beams that are reflected by the front and back end surfaces of the transparent flat material and focused on defects in the transparent flat material and There is no need for the second lens to be placed in front of the linear scan sensor. 20. The method according to claim 19, wherein the parallel coherent light beam reflected by the front end surface and the rear end surface of the transparent flat material is composed of defects and characteristics of the transparent flat material. 21. The method of claim 19, wherein the linear scan sensor has a field depth greater than 1 inch. 22. The method of claim 19, wherein the linear scan sensor outputs a signal analyzed by a computer that produces a reflected bright field fringe pattern image that is capable of sensing defects in the transparent flat material. 23. The method of claim 19, wherein the linear scan sensor outputs a signal analyzed by a computer that produces a reflected bright field fringe pattern image that is capable of sensing a change in thickness or refractive index in the transparent planar material. 24. The method of claim 19, wherein the transparent flat material is a glass sheet. 25. An inspection system for identifying stress in a transparent flat material, the inspection system comprising: a sensor; and an illuminator capable of emitting a polarized coherent beam toward the sensor via a portion of the transparent flat material; Receiving a polarized coherent beam through a transparent planar material, which is achieved by using the following sensors on page 27, 095112334 1003363661-0 1360652: using the first column of sensors of the first polarizer module; utilizing the second bias a second column of sensors of the module; a third column of sensors utilizing a third polarizer module; and wherein the stress changes through the transparent planar material if there is a measurable amount of stress within the transparent planar material The polarization angle of the polarization-polarized beam can be sensed and measured by three columns of sensors. 26. 依據申請專利範圍第25項之檢視系統,其中: 第一偏極器為塗覆第一列感測器之〇度偏極器; 第二偏極器為塗覆第二列感測器之120度偏極器; 第二偏極器為塗覆第三列感測器之240度偏極器。 27. 依據申請專利範圍第25項之檢視系統,其中更進一步包 含多個感測器,其能夠使所有透明平坦材料產生之應力圖。 28. 依據申請專利範圍第25項之檢視系統,其中該透明平坦 材料為玻璃片。26. The inspection system according to claim 25, wherein: the first polarizer is a twisted polarizer coated with the first column of sensors; and the second polarizer is a second column of sensors coated The 120 degree polarizer; the second polarizer is a 240 degree polarizer coated with the third column of sensors. 27. The inspection system of claim 25, further comprising a plurality of sensors capable of producing a stress map of all of the transparent flat materials. 28. The inspection system of claim 25, wherein the transparent flat material is a glass sheet. 29. -種辨識透明平坦材料中缺陷之方法該方法包含下列 步驟: 使用發射偏極同調光束軸部份透明平坦材料朝向感測器之 照明器; "° 使用感測為以接收通過透明平坦材料之偏極同調光束,其藉 由使用下列感測器達成: ’八曰 以及 10033^3661-0 利用第一偏極器模組之第一列感測器 利用第二偏極器模組之第二列感測器 利用第三偏極器模組之第三列感測器 第 28 0951.1.2334 其中假如在透明平坦材料畴在可感聽量之應力,則 ,力,通過透明平坦材料之偏極化_光束的偏極角度其 能夠藉由三列感測器感測及量測出。 30·依據申請專利範圍第29項之方法其中: 第一偏極器為0度偏極器,其覆蓋第-列感測器; 第-偏極器為120度偏極器,其覆蓋第二列感測器; 第二偏極||為240度偏極H,其覆蓋第三列感測器。 31. 依據申凊專利範圍第29項之方法,其中更進一步包含多 個感測器’其能夠使所有透明平坦材料產生之應力圖。 32. 依據申請專利範圍第29項之方法其中該透明平坦材料 為玻璃片。 33. —種辨織透明平坦材料内或透明平坦材料上不同缺陷 種類之檢視系統,該檢視系統包含: 感測器;以及 第一照明器,其能夠發射具有特定能量頻帶之第一同調光束, 其反射離開或通過部份透明平坦材料朝向感測器; 第二照明器’其能夠發射具有特定能量頻帶之第二同調光束, 其反射離開或通過部份透明平坦材料朝向感測器; 該感測器能夠接收反射離開或通過透明平坦材料之第一 及第·一同調光束,其糟由使用下列感測器達成: 第一列感測器,其塗覆第一頻譜濾波器,其設計成只允 許第一同調光束被第一列感測器接收;以及 第·一列感測器,其塗覆第一頻譜濾、波器,其設計成只允 許第二同調光束被第二列感測器接收;以及 第 29 頁 095112334 1003363661-0 其中每i❹彳H能賊測剌平坦材料喊透明平坦 材料上不同缺陷種類。 一 34. 依據申請專利範圍第33項之檢視系統,其中更進—e 3其他照明器以及其他列感測器以及頻譜據波器。 35. 依據申請專利範圍第33項之檢視系統 細線條; 匕3. 條紋; 微小的雜質; 折射率變化。 36·依據申請專利範圍第33項之檢視系統,其中該透明平坦 材料為玻璃片。 一 37. -麵識透日胖蝴料喊透明平蝴料上不同缺陷 種類之方法,該方法包含下列步驟: 使用第-照明器以發射具有特定能量頻帶之第一同調光束, 其反射離開或通過部份透明平坦材料朝向感測器; ’ 使用第二照明器以發射具有特定能_帶之第二同調光束, 其反射離開或通過部份透明平坦材料朝向感測器; 使用感測器以接收反射離開或通過透明平坦材料之第一 及第一同調光束,其藉由使用下列感測器達成: 第一列感測器,其塗覆第一頻譜濾波器,其設計成只允 許第一同調光束被第一列感測器接收;以及 第一列感測器,其塗覆第二頻譜濾波器,其設計成只允 許第二同調光束被第二列感測器接收;以及 其中母一列感測器能夠感測透明平坦材料内或透明平土曰 第 30 •頁 10033 ;P95la.23S4: 材料上不同缺陷種類β 讥依據申請專利範圍第37項之方法其中更進一步包含使 用其他照明器以及其他列感測器以及頻譜滤波器而能夠感 測透明平坦材料喊義平坦材料上更多缺陷種類。 39. 依據申請專利範圍第37項之方法其中缺陷包含: 細線條; 條紋; 微小的雜質; 折射率變化。 40. 依據申請專利範圍帛37項之方法其中該透明平坦材料 為玻璃片。 41· 一種辨識透明平坦材料内缺陷之檢視系統,該檢視系統 包含: 照明器,其能夠以預先角度發射同調光束朝向透明平坦材料, 使得部份同調光束内部反射至透明平坦材料區域,其位於遠離 原先同調光束進入及離開透明平坦材料處以及更進一步能夠感 測反射離開透明平坦材料内缺陷而不受透明平坦材料表面 上被顆粒反射之光線影響; 感測器,其能夠聚焦於透明平坦材料區域上,其位於遠離 同調光束原先進入以及離開透明平坦材料處以及更進一步能夠 感測反射離開透明平坦材料内缺陷的光線而不受到透明平 坦材料表面上顆粒反射之光線影響。 42.依據申請專利範圍第41項之檢視系統,其中照明器包含 至少一項下列種類: 第 31 頁 095112334 1003363661-0 雷射線;以及 光源’其使用遮蔽使光線内部反射於透明平坦材料内,同 時阻隔光線防止進入以及離開透明平坦材料於感測器聚焦 於透明平坦材料上一點處。 43. 依據申請專利範圍第41項之檢視系統其中該感測器包 含至少一項下列種類: 線性掃瞄感測器; 線性掃瞄攝影機; 時間延遲積分器;以及 接觸感測器。 44. 依據申請專利範圍第41項之檢視系統,其中透明平坦材 料為玻璃片。 45. —種辨識透明平坦材料内缺陷之方法該方法包含下列 步驟: 使用照明器以預先角度發射同調光束朝向透明平坦材料,使 得部份同調光束内部反射至透明平坦材料區域,其位於遠離原 先同調光束進入及離開透明平坦材料處;以及 使用聚焦於透明平坦材料中區域之感測器,該區域位於 遠離原先同調光束進入及離開透明平坦材料處以感測反射離開 透明平坦材料内缺陷之光線而不受透明平坦材料表面上被 顆粒反射之光線影響。 46. 依據申請專利範圍第45項之方法,其中照明器包含至少 一項下列種類: 第 32 頁 雷射線;以及 光源,其使用遮蔽使光線内部反射於透明平坦材料内同 時阻隔光線防止進入以及離開透明平垣材料於感測器聚焦 於透明平坦材料上一點處。 AK“'' 47·依據申請專利範圍第45項之方法,其中該感測器包含至 少一項下列種類·. 線性掃瞄感測器; 線性掃瞄攝影機; 時間延遲積分器;以及 接觸感測器。 其中透明平坦材料為 48.依據申請專利範圍第45項之方法, 玻璃片。 49. 一種感測透明平坦材料中厚度及/或折射率變化之檢視 系統,該檢視系統包含: 能夠發射雷射光束之照明器; 透鏡,其能夠接收同調光束以及發射平行同調光束. 光柵,其㈣接收所發射平行_光紅及再形成系列導 朝向透明平坦材料之亮線及暗線; 感測器,其能夠接收通過透明平坦材料之系列亮線及暗 線以及更進-步能誠生通過翻平續料㈣亮線及暗 線相關之輸出波前;以及 處理單7G’其能夠相對於參考波前比較輸出波前以及產 生代表透日砰坦材解度及/或崎率變化之差值波前。 095112334 1003: 1360652 變化之大小 50.依據申請專利範圍第49項之檢視系統,其中差值波前具 有至少一個標記,其寬度代表通過透明平坦材料同調光束方向 51. 依據申請專利範圍第49項之檢視系統,其中透明平坦材 料為液晶顯示器玻璃片。 52. —種感測透明平坦材料中厚度及/或折射率變化之方法 ,該方法包含下列步驟:29. A method for identifying defects in a transparent flat material. The method comprises the steps of: using a partially polarized beam axis that emits a polarized beam axis to face the illuminator of the sensor; "° using sensing to receive through transparent flat The material's polarization-coherent beam is achieved by using the following sensors: 'Bagua and 10033^3661-0. The first column of sensors using the first polarizer module utilizes the second polarizer module. The second column of sensors utilizes a third column of the third polarizer module. No. 28 0951.1.2334, wherein if the transparent flat material domains are in a audible amount of stress, then the force passes through the transparent flat material. The polarization angle of the polarization_beam can be sensed and measured by three columns of sensors. 30. The method according to claim 29, wherein: the first polarizer is a 0 degree polarizer, which covers the first column sensor; the first polarizer is a 120 degree polarizer, which covers the second Column sensor; second pole || is a 240 degree pole H, which covers the third column of sensors. 31. The method of claim 29, further comprising a plurality of sensors 'which are capable of producing a stress map of all of the transparent flat materials. 32. The method according to claim 29, wherein the transparent flat material is a glass piece. 33. An inspection system for discriminating between different types of defects in a transparent flat material or on a transparent flat material, the inspection system comprising: a sensor; and a first illuminator capable of emitting a first coherent beam having a specific energy band, Reflecting away from or through a portion of the transparent planar material toward the sensor; the second illuminator' is capable of emitting a second coherent beam having a particular energy band that reflects off or passes through the partially transparent planar material toward the sensor; The detector is capable of receiving the first and first coherent beams that are reflected off or through the transparent planar material, which is achieved by using the following sensors: a first column of sensors coated with a first spectral filter designed to Only the first coherent beam is allowed to be received by the first column of sensors; and the first column of sensors is coated with a first spectral filter, which is designed to allow only the second coherent beam to be illuminated by the second column of sensors Receive; and page 29 095112334 1003363661-0 where each ❹彳H can thief test flat material shouting different types of defects on the transparent flat material. A 34. The inspection system according to the scope of claim 33, wherein the other illuminators and other column sensors and spectral data filters are further advanced. 35. Inspection system according to Article 33 of the patent application. Fine lines; 匕 3. Stripes; tiny impurities; refractive index change. 36. The inspection system according to claim 33, wherein the transparent flat material is a glass sheet. A method of illuminating different types of defects on a transparent flat material, the method comprising the steps of: using a first illuminator to emit a first coherent light beam having a specific energy band, the reflection of which leaves or Using a partially transparent flat material toward the sensor; 'using a second illuminator to emit a second coherent beam with a specific energy band that reflects off or through a partially transparent flat material toward the sensor; using a sensor to Receiving the first and first coherent beams that are reflected off or through the transparent planar material by using the following sensors: a first column of sensors coated with a first spectral filter designed to allow only the first The coherent beam is received by the first column of sensors; and a first column of sensors coated with a second spectral filter designed to only allow the second coherent beam to be received by the second column of sensors; and wherein the parent column The sensor can sense transparent flat material or transparent flat soil. Page 30 • Page 10033; P95la.23S4: Different defect types on the material β 讥 according to the method of claim 37 It further includes the use of other illuminators, as well as other column sensors and spectral filters, to sense more defects on transparent flat material shouting flat materials. 39. According to the method of claim 37, the defects include: fine lines; stripes; minute impurities; refractive index changes. 40. The method according to claim 37, wherein the transparent flat material is a glass piece. 41. An inspection system for identifying defects in a transparent flat material, the inspection system comprising: an illuminator capable of emitting a coherent beam toward a transparent flat material at a pre-angle, such that a portion of the coherent beam is internally reflected to a region of the transparent flat material, which is located away from The original coherent beam enters and exits the transparent planar material and is further capable of sensing the reflection away from the defect in the transparent planar material without being affected by the light reflected by the particle on the surface of the transparent planar material; the sensor is capable of focusing on the transparent planar material region Above, it is located away from the coherent beam originally entering and leaving the transparent planar material and further capable of sensing light reflected off the defect in the transparent planar material without being affected by light reflected from the particles on the surface of the transparent planar material. 42. The inspection system according to claim 41, wherein the illuminator comprises at least one of the following categories: page 31 095112334 1003363661-0 lightning rays; and the light source 'which uses shielding to reflect light inside the transparent flat material while Blocking light prevents entry and exit of the transparent flat material at a point where the sensor focuses on the transparent flat material. 43. The inspection system according to claim 41, wherein the sensor comprises at least one of the following categories: a linear scan sensor; a linear scan camera; a time delay integrator; and a contact sensor. 44. The inspection system according to claim 41, wherein the transparent flat material is a glass sheet. 45. A method for identifying defects in a transparent flat material. The method comprises the steps of: using a illuminator to emit a coherent beam toward a transparent flat material at a pre-angle, such that a portion of the coherent beam is internally reflected to a region of transparent flat material that is located away from the original homology The light beam enters and exits the transparent planar material; and a sensor that focuses on a region in the transparent planar material that is located away from the original coherent beam entering and exiting the transparent planar material to sense light that is reflected off the defect in the transparent planar material without It is affected by the light reflected by the particles on the surface of the transparent flat material. 46. The method of claim 45, wherein the illuminator comprises at least one of the following categories: a thunder ray on page 32; and a light source that uses the shield to internally reflect the light within the transparent flat material while blocking light from entering and exiting The transparent flat material is focused on the transparent flat material at the sensor. AK "'' 47. The method according to claim 45, wherein the sensor comprises at least one of the following categories: a linear scanning sensor; a linear scanning camera; a time delay integrator; and a contact sensing The transparent flat material is 48. The glass sheet according to the method of claim 45. 49. An inspection system for sensing thickness and/or refractive index change in a transparent flat material, the inspection system comprising: capable of launching a mine a illuminator for a beam; a lens capable of receiving a coherent beam and emitting a parallel coherent beam. The grating, (4) receiving the parallel _light red emitted and re-forming the series of bright and dark lines toward the transparent flat material; the sensor, Able to receive a series of bright and dark lines through a transparent flat material and more forward-steps to pass the flattening (4) bright line and dark line related output wavefront; and process a single 7G' which can compare output with respect to the reference wavefront The wavefront and the wavefront that produces a difference in the resolution and/or the change in the rate of the turbulence. 095112334 1003: 1360652 The size of the change 50. According to the inspection system of claim 49, wherein the difference wavefront has at least one mark, the width of which represents the direction of the beam by the transparent flat material. 51. The inspection system according to claim 49, wherein the transparent flat material is liquid crystal Display glass sheet 52. A method of sensing thickness and/or refractive index changes in a transparent flat material, the method comprising the steps of: 使用發射雷射光束之雷射照明器; 使用透鏡以接收同調光束以及發射平行同調光束; 使用光柵以接收所發射平行同調光束以及再形成系列導引朝 向透明平坦材料之亮線及暗線; 使用感測器以接收通過透明平坦材料之系列亮線及暗線 以及產生ϋ過透明平坦㈣㈣銳及暗_關之輸出波 前;以及 1 使用處理單元以相對於參考波前比較輸出波前以及產生 代表透明平坦材料厚度及/錢射率變化之差值波前。 53. 依據申請專利範圍第52項之方法其中差值波前具有至 少-個標記,其寬度代錢顿料坦材__束方向變化 之大小。 54. 依據㈣專纖_ 52項之方法,其巾透明平坦材 液晶顯示器玻璃片。 55. -麵賊a胖坦材_歧卿坦㈣上缺陷位置 之檢視系統,該檢視系統包含: 感測器;以及 第 34 頁· Q95112334 ;:1Ό03363661;-σ 1360652 第一照明器,其能夠發射具有第一波長之第—同豆 過部份透明平坦材料朝向感測器; 第二照明器,其能夠發射具有第二波長之第二同調 過部份透明平坦材料朝向感測器; 該感測器包含: 第一列感測器,其能夠接收通過透明平坦材料之第一 同調光束; 第二列感測器,其能夠接收通過透明平坦材料之第二 同調光束; 處理單70,其能夠比較由第一及第二列感測器所接收之 影像以及再辨識透明平坦材料内或透明平坦材料上缺陷之 位置。 %依據申請專利範圍第55項之檢視系統,其中處理單元比 較由第及第一列感測器所接收之影像以及再辨識透明平 坦材料内或透明平坦材料上缺陷之位置係藉由下列步驟達 成: 计算透明平坦材料内或透明平坦材料上缺陷運行距離, 其移動於感卿及第—及第:照㈣之間;以及 將所。十算距離乘以第一同調光束與第二同調光束相對於感測器 間角度之正切值。 57.依據申請專利範圍第55項之檢視系統 ,其中: 第歹J感測盗對第-同調光束為靈敏的以及對第二同調光束並 不靈敏;以及 第二列感測器對第二同調光束為靈敏的以及對第一同調光束並 頁 第35 095112334 1003363661-0 不靈敏 其中透明平坦材 依據申請專利範圍第55項之檢視系統,A 料為破璃片》 、 59. 種_透日胖坦材料喊透明平坦娜上缺陷位置 之方法,該方法包含下列步驟: 照明器以發射具有第—波長之第—同調光束,其通 過。P伤透明平坦材料朝向感測器; 、f用第二照明器以發射具有第二波長之第二同調光束 ,其通 過部份透明平坦材料朝向感測器; 該感測器包含: 第列感測器,其能夠接收通過透明平坦材料之第一 同調光束; 第二列感測器,其能夠接收通過透明平坦材料之第二 同調光束; 使用處理單元以比較由第一及第二列感測器所接收之 影像以及再辨識透明平坦材料内或透明平坦材料上缺陷之 位置。 60.依據申請專利範圍第59項之方法其中處理單元比較由 第一及第二列感測器所接收之影像以及再辨識透明平坦材 料内或透明平坦材料上缺陷之位置係藉由下列步驟達成: 計算透明平坦材料内或透明平坦材料上缺陷運行距離, 其移動於感測器及第一及第二照明器之間;以及 將所計算距離乘以第一同調光束與第二同調光束相對於感測器 間角度之正切值。 第 36 頁 095112^3,4 ,1003363661-0 1360652 61·依據申請專利範圍第59項之方法其中. 第一列感測器對笫一同梱忠A 八· 不靈敏;以及 料束為致敏的以及對第二同調光束並 同調光束並 第-列感測ϋ料二同調縣為靈敏的以及對第一 不靈敏。 =璃1據申請專利範圍第59項之方法,其中透明平坦材料為 63. -種辨識透明平坦材料中_之檢視系統綠視系統 包含: 雷射照明器,其能夠發射通過部份透明平坦材料之雷射 同調光束; 線性掃瞄感測器,其能夠接收通過透明平坦材料之同調光束 以及更進一步能夠聚焦於透明平坦材料中缺陷上而並不需 要第二透鏡放置於線性掃瞄感測器之前方。 64. —種辨識透明平坦材料中缺陷之方法該方法包含下列 步驟: 使用雷射照明器以發射通過部份透明平坦材料之雷射光 束; 使用線性掃瞄感測器以接收通過透明平坦材料之同調光束以 及更進一步能夠聚焦於透明平坦材料中缺陷上而並不需要 第二透鏡放置於線性掃瞄感測器之前方。 65. —種辨識透明平坦材料中缺陷之檢視系統,該檢視系統 包含: 照明器,其能夠發射朝向部份透明平坦材料之同調光束; 第 37 頁 095112334 1003363661-0 1360652 線性掃猫感測裔’其能夠接收由透明平坦材料前端表面 及後端表面所反射之同調光束以及更進一步能夠聚焦於透明平 坦材料中缺陷上而並不需要第二透鏡放置於線性掃睹感測 器之前方。 66. —種辨識透明平坦材料中缺陷之方法,該方法包含下列 步驟: 使用雷射照明器以發射朝向部份透明平坦材料之雷射光 束;Using a laser illuminator that emits a laser beam; using a lens to receive the coherent beam and emitting a parallel coherent beam; using a grating to receive the parallel coherent beam emitted and then forming a series of bright and dark lines directed toward the transparent flat material; The detector receives the series of bright and dark lines through the transparent flat material and produces an output wavefront that passes through the transparent flat (four) (four) sharp and dark_off; and 1 uses the processing unit to compare the output wavefront with respect to the reference wavefront and produces a representative transparency The difference between the thickness of the flat material and the change in the rate of money and the wavefront. 53. According to the method of claim 52, wherein the difference wavefront has at least one mark, the width of which is the magnitude of the change in the direction of the beam. 54. According to (4) special fiber _ 52 method, the towel transparent flat material LCD glass. 55. - Face thief a fat _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Emulating a first wavelength-to-be-partial transparent flat material toward the sensor; a second illuminator capable of emitting a second coherent portion of the transparent flat material having a second wavelength toward the sensor; The detector comprises: a first column of sensors capable of receiving a first coherent beam passing through the transparent planar material; a second column of sensors capable of receiving a second coherent beam passing through the transparent planar material; processing unit 70 capable of The images received by the first and second columns of sensors are compared and the locations of defects in the transparent planar material or on the transparent planar material are re-identified. % According to the inspection system of claim 55, wherein the processing unit compares the images received by the first and first columns of sensors and re-identifies the position of defects in the transparent flat material or on the transparent flat material by the following steps: : Calculate the distance traveled by defects in a transparent flat material or on a transparent flat material, which is moved between Sensation and the first and third: (4); The ten calculation distance is multiplied by the tangent of the angle between the first coherent beam and the second coherent beam relative to the sensor. 57. The inspection system according to claim 55, wherein: the third sense sensor is sensitive to the first-coherent beam and is insensitive to the second coherent beam; and the second column sensor is second to the same tone The beam is sensitive and the first coherent beam is not sensitive to the 35th 095112334 1003363661-0. The transparent flat material is in accordance with the inspection system of the 55th patent application, A material is broken glass, 59. The method of calling a transparent flat surface on a defect surface includes the following steps: The illuminator emits a first-coherent light beam having a first wavelength, which passes. P indenting the transparent flat material toward the sensor; f, using the second illuminator to emit a second coherent light beam having a second wavelength, the partially transparent flat material being directed toward the sensor; the sensor comprising: a detector capable of receiving a first coherent beam passing through the transparent planar material; a second column of sensors capable of receiving a second coherent beam passing through the transparent planar material; using a processing unit to compare the sensing by the first and second columns The image received by the device and the location of the defect in the transparent flat material or on the transparent flat material. 60. The method of claim 59, wherein the processing unit compares images received by the first and second columns of sensors and re-identifies locations of defects in the transparent planar material or on the transparent planar material by the following steps : calculating a defect travel distance in the transparent flat material or on the transparent flat material, moving between the sensor and the first and second illuminators; and multiplying the calculated distance by the first coherent beam and the second coherent beam with respect to The tangent of the angle between the sensors. Page 36 095112^3,4,1003363661-0 1360652 61. According to the method of claim 59. The first column of sensors is 不 A A 不 不 ; ; ; ; ;; And the second coherent beam and the coherent beam and the first column sensed dichotomous county are sensitive and insensitive to the first. = glass 1 according to the method of claim 59, wherein the transparent flat material is 63. - The identification of the transparent flat material _ the inspection system green vision system comprises: a laser illuminator capable of emitting through a partially transparent flat material Laser coherent beam; linear scan sensor capable of receiving a coherent beam through a transparent planar material and further capable of focusing on defects in a transparent planar material without the need for a second lens to be placed on the linear scan sensor The former side. 64. A method of identifying defects in a transparent planar material. The method comprises the steps of: using a laser illuminator to emit a laser beam that passes through a portion of the transparent planar material; using a linear scanning sensor to receive the transparent planar material The coherent beam and, further, the ability to focus on defects in the transparent planar material does not require the second lens to be placed in front of the linear scan sensor. 65. An inspection system for identifying defects in a transparent flat material, the inspection system comprising: an illuminator capable of emitting a coherent light beam directed toward a partially transparent flat material; page 37 095112334 1003363661-0 1360652 Linear Scanning Cat Sensing It is capable of receiving coherent beams reflected by the front and back surfaces of the transparent planar material and is further capable of focusing on defects in the transparent planar material without the need for the second lens to be placed in front of the linear broom sensor. 66. A method of identifying defects in a transparent planar material, the method comprising the steps of: using a laser illuminator to emit a laser beam directed toward a portion of the transparent planar material; 使用線性掃瞄感測器以接收由透明平坦材料前端表面及 後端表面所反射之同調光束以及聚焦於透明平坦材料中缺陷上 而並不需要第二透鏡放置於線性掃瞄感測器之前方。 第 38 頁 1003363661:-0 ;P^?51.123 34- 1360652 1360652Using a linear scan sensor to receive the coherent beam reflected by the front and back surfaces of the transparent flat material and focusing on defects in the transparent flat material without the need for the second lens to be placed in front of the linear scan sensor . Page 38 1003363661:-0; P^?51.123 34- 1360652 1360652 (Jl i · nil 第一圖F 1360652(Jl i · nil first picture F 1360652 13606521360652 第三闺ΛThird il.(- "ill·Il.(- "ill· 13606521360652 第三圖I: 1360652 1360652 1360652 第五圖B 1360652Third Figure I: 1360652 1360652 1360652 Fifth Figure B 1360652 ring _腦_腦画腦醒麗ΜΜΜ_ί_+ 1調驟卩獄胃 1360652 1360652 1360652 Ί 0 第七圖_脑_脑画脑醒丽ΜΜΜ_ί_+ 1 调卩 卩 胃 1360652 1360652 1360652 Ί 0 7th 第七圖1)Figure 7)
TW95112334A 2005-04-06 2006-04-06 Glass inspection systems and method for using same TWI360652B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US66917105P 2005-04-06 2005-04-06

Publications (2)

Publication Number Publication Date
TW200706859A TW200706859A (en) 2007-02-16
TWI360652B true TWI360652B (en) 2012-03-21

Family

ID=37074107

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95112334A TWI360652B (en) 2005-04-06 2006-04-06 Glass inspection systems and method for using same

Country Status (6)

Country Link
EP (1) EP1866625A4 (en)
JP (1) JP2008536127A (en)
KR (1) KR20070121820A (en)
CN (1) CN101175986B (en)
TW (1) TWI360652B (en)
WO (1) WO2006108137A2 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581563B2 (en) * 2007-03-08 2014-09-03 株式会社日立製作所 Illumination apparatus, defect inspection apparatus and method using the same, height measurement apparatus and method
JP2010048745A (en) * 2008-08-25 2010-03-04 Asahi Glass Co Ltd Defect inspection system and defect inspection method
KR101292570B1 (en) 2008-12-31 2013-08-12 엘지디스플레이 주식회사 System for testing distortion of liquid crystal display device
EP2253949A1 (en) * 2009-05-22 2010-11-24 Dr. Schenk GmbH Industriemesstechnik Device and method for detecting an optically diverting and/or polarisation-rotating error
EP2261633A1 (en) * 2009-06-10 2010-12-15 Becton Dickinson France Supporting device for a transparent article and method for putting said article under compression
CN101650307B (en) * 2009-07-17 2011-02-09 富美科技有限公司 Scraper blade surface detection system
CN101988908A (en) * 2009-07-31 2011-03-23 法国圣-戈班玻璃公司 Method and system for distinguishing fault of substrate
CN102081047B (en) * 2009-11-27 2015-04-08 法国圣-戈班玻璃公司 Method and system for distinguishing defects of substrate
BE1019378A3 (en) * 2010-06-17 2012-06-05 Agc Glass Europe ANALYSIS OF DRYING BRANDS.
JPWO2012081398A1 (en) * 2010-12-15 2014-05-22 旭硝子株式会社 Glass plate, glass plate inspection method, and glass plate manufacturing method
DE102012002174B4 (en) * 2012-02-07 2014-05-15 Schott Ag Apparatus and method for detecting defects within the volume of a transparent pane and using the apparatus
CN102621149B (en) * 2012-03-21 2015-07-22 深圳市华星光电技术有限公司 Substrate detection device and method
CN102608132B (en) * 2012-04-09 2014-06-11 昆山胜泽光电科技有限公司 Multi-type glass flaw detection device and detection method
CN102645435A (en) * 2012-04-19 2012-08-22 深圳市华星光电技术有限公司 Method and device for detecting substrate
CN102721692B (en) * 2012-06-19 2015-11-25 深圳市华星光电技术有限公司 The pick-up unit of glass substrate board box
CN102778460A (en) * 2012-07-31 2012-11-14 法国圣戈班玻璃公司 Method for detecting internal flaw of substrate
IN2015KN00605A (en) * 2012-08-13 2015-07-17 Kawasaki Heavy Ind Ltd
EP2725348A1 (en) * 2012-10-29 2014-04-30 Scientific Visual SARL Optical quality control device
CN103886573B (en) * 2012-12-20 2018-10-12 联想(北京)有限公司 Object detecting method and article detection device
DE102013105693A1 (en) 2013-06-03 2013-10-31 Viprotron Gmbh Method for optical error inspection of object, involves projecting light beams from illumination surface on projection surface arranged behind object, and detecting shadow impact generated on projection surface with optical detection unit
CN104237137B (en) * 2013-06-07 2016-12-28 昆山胜泽光电科技有限公司 Measure glass different angles color, brightness and the device of reflectance spectrum
DE102013107215B3 (en) 2013-07-09 2014-10-09 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a mirror substrate blank made of titanium-doped silica glass for EUV lithography, and system for determining the position of defects in a blank
JP2017502295A (en) * 2013-12-23 2017-01-19 コーニング インコーポレイテッド Non-imaging coherent line scanner system and optical inspection method
CN103791835A (en) * 2014-01-26 2014-05-14 扬州苏庆非标装备研发有限公司 Profile and size detecting method of section of strip-shaped optical glass
CN103868478A (en) * 2014-04-01 2014-06-18 四川虹视显示技术有限公司 Rapid detection method and device for flatness of transparent flat plate
CN103913466A (en) * 2014-04-08 2014-07-09 上海华力微电子有限公司 Detection device and detection method for wafer defect
KR101942260B1 (en) 2014-07-03 2019-01-28 (주)엘지하우시스 Method of detecting corrosion of glass substrate
KR101952617B1 (en) * 2014-07-03 2019-02-28 (주)엘지하우시스 Method of detecting corrosion of glass substrate
CN104297264A (en) * 2014-11-03 2015-01-21 苏州精创光学仪器有限公司 Glass surface blemish on-line detecting system
US10578595B2 (en) 2014-12-19 2020-03-03 Merck Patent Gmbh Method and device for the optical scanning of a chromatographic sample
KR20180033186A (en) * 2015-06-19 2018-04-02 코닝 인코포레이티드 Method and apparatus for inspecting a substrate for defects and locating such defects in three dimensions using optical techniques
CN105372253A (en) * 2015-12-14 2016-03-02 陈艳 Light tube defect detection system
CN107132244B (en) * 2016-02-29 2020-01-07 鞍钢股份有限公司 Quantitative evaluation method for inclusions in steel
CN105675617B (en) * 2016-04-06 2020-05-01 东旭科技集团有限公司 Method and apparatus for measuring surface granularity of plate glass
CN110073203B (en) 2016-11-02 2022-07-08 康宁股份有限公司 Method and apparatus for inspecting defects on transparent substrates
WO2018085237A1 (en) 2016-11-02 2018-05-11 Corning Incorporated Method and apparatus for inspecting defects on transparent substrate and method of emitting incident light
CN106556573B (en) * 2016-11-17 2018-01-12 仝宁瑶 A kind of experimental provision for being used to determine glass refraction
TWI622764B (en) * 2017-01-11 2018-05-01 由田新技股份有限公司 An automatic optical inspecting system for particle inspection from the surface
KR102205582B1 (en) * 2017-02-28 2021-01-21 도요 가라스 가부시키가이샤 Container inspection device and container inspection method
JP6285597B1 (en) * 2017-06-05 2018-02-28 大塚電子株式会社 Optical measuring apparatus and optical measuring method
CN107345918B (en) * 2017-08-16 2023-05-23 广西大学 Plate material quality detection device and method
CN107515222A (en) * 2017-09-20 2017-12-26 哈尔滨工程大学 A kind of microstructure observation device of ice
CN111226110A (en) * 2018-08-10 2020-06-02 合刃科技(深圳)有限公司 Detection method and system
CN109187550A (en) * 2018-08-15 2019-01-11 苏州富鑫林光电科技有限公司 A kind of defects detection imaging method based on grating image
CN109827974B (en) * 2018-08-30 2022-03-08 东莞市微科光电科技有限公司 Resin optical filter film crack detection device and detection method
CN110095590A (en) * 2019-04-23 2019-08-06 深圳市华星光电半导体显示技术有限公司 Glass substrate residual material method for detecting and device
CN110044931B (en) * 2019-04-23 2021-03-26 华中科技大学 Detection apparatus for curved surface glass surface and internal defect
CN110031481B (en) * 2019-05-05 2021-11-12 苏州天准科技股份有限公司 Square wave structured light illumination implementation method based on polarization
CN112147710B (en) * 2019-06-26 2022-02-18 上海微电子装备(集团)股份有限公司 Detection method and detection device of wet-process optical cement device
CN114796730B (en) * 2022-03-29 2024-02-27 深圳市好克医疗仪器股份有限公司 Bubble detection apparatus, bubble detection method, bubble detection device, and bubble detection program
CN115338168A (en) * 2022-07-28 2022-11-15 宜昌中威清洗机有限公司 Crankshaft cleaning system
CN116934752B (en) * 2023-09-18 2023-12-08 山东国泰民安玻璃科技有限公司 Glass detection method and system based on artificial intelligence

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340304A (en) * 1978-08-11 1982-07-20 Rockwell International Corporation Interferometric method and system
JPS57120804A (en) * 1981-01-20 1982-07-28 Hitachi Metals Ltd Inspecting method of surface defect
SU1260773A1 (en) * 1984-11-29 1986-09-30 Специальное Конструкторско-Технологическое Бюро Института Радиофизики И Электроники Ан Усср Device for detecting defects in transparent thin-film articles
JPS6484139A (en) * 1987-09-28 1989-03-29 Teijin Ltd Film flaw detecting device
JPH04178545A (en) * 1990-11-14 1992-06-25 Fuji Photo Film Co Ltd Method and apparatus for inspecting transparent band-like body
JPH06100555B2 (en) * 1990-12-19 1994-12-12 東洋ガラス株式会社 Defect inspection method and device for transparent object
JPH0579994A (en) * 1991-09-21 1993-03-30 Kowa Co Transparent body defect inspecting device
JP2795595B2 (en) * 1992-06-26 1998-09-10 セントラル硝子株式会社 Defect detection method for transparent plate
US5576827A (en) * 1994-04-15 1996-11-19 Micromeritics Instrument Corporation Apparatus and method for determining the size distribution of particles by light scattering
US5610391A (en) * 1994-08-25 1997-03-11 Owens-Brockway Glass Container Inc. Optical inspection of container finish dimensional parameters
US6040900A (en) * 1996-07-01 2000-03-21 Cybernet Systems Corporation Compact fiber-optic electronic laser speckle pattern shearography
CA2252308C (en) * 1998-10-30 2005-01-04 Image Processing Systems, Inc. Glass inspection system
JP2001041719A (en) * 1999-07-27 2001-02-16 Canon Inc Inspection device and method of transparent material and storage medium
JP4358955B2 (en) * 2000-01-07 2009-11-04 株式会社堀場製作所 Foreign matter inspection device
US6404489B1 (en) * 2000-03-29 2002-06-11 Corning Incorporated Inclusion detection
US6633377B1 (en) * 2000-04-20 2003-10-14 Image Processing Systems Inc. Dark view inspection system for transparent media
JP2002090310A (en) * 2000-09-19 2002-03-27 Sekisui Chem Co Ltd Sheet inspection device
JP2003083902A (en) * 2001-09-11 2003-03-19 Fuji Photo Film Co Ltd Method and device for inspecting specimen
US6943898B2 (en) * 2002-05-07 2005-09-13 Applied Materials Israel, Ltd. Apparatus and method for dual spot inspection of repetitive patterns
JP2004028785A (en) * 2002-06-25 2004-01-29 Fuji Photo Film Co Ltd Parallel light generator, and web defect detector
GB0219248D0 (en) * 2002-08-17 2002-09-25 Univ York OPtical assembly and method for detection of light transmission
EP1535043A4 (en) * 2002-08-19 2010-03-24 Green Vision Systems Ltd Electro-optically inspecting and determining internal properties and characteristics of a longitudinally moving rod of material
US7142295B2 (en) * 2003-03-05 2006-11-28 Corning Incorporated Inspection of transparent substrates for defects

Also Published As

Publication number Publication date
WO2006108137A2 (en) 2006-10-12
EP1866625A4 (en) 2010-12-29
KR20070121820A (en) 2007-12-27
EP1866625A2 (en) 2007-12-19
JP2008536127A (en) 2008-09-04
CN101175986B (en) 2010-10-13
WO2006108137A3 (en) 2006-11-16
CN101175986A (en) 2008-05-07
TW200706859A (en) 2007-02-16

Similar Documents

Publication Publication Date Title
TWI360652B (en) Glass inspection systems and method for using same
KR100437024B1 (en) The inspection method of thin film and the same apparatus
KR102286356B1 (en) High-Throughput, High-Resolution Optical Techniques for Reflective and Transmissive Nanophoton Devices
US7382457B2 (en) Illumination system for material inspection
US6226080B1 (en) Method for detecting defect of transparent body, method for producing transparent body
TWI497061B (en) Method and apparatus for detecting defects in glass sheet
TWI285737B (en) Inspection of transparent substrates for defects
US7495762B2 (en) High-density channels detecting device
JP4511978B2 (en) Surface flaw inspection device
CN109916909A (en) The detection method and its device of optical element surface pattern and subsurface defect information
TW201205114A (en) Linear chromatic confocal microscope system
US6376829B1 (en) Method of and apparatus for inspecting surface irregularities of transparent plate
US7869034B2 (en) Multi-angle and multi-channel inspecting device
CN104764798A (en) Visual magnetic flux leakage detection device
TWI320099B (en)
JP2009042040A (en) Polarization analyzer utilizing polarization imaging camera
WO2018072447A1 (en) Differential interference-based optical film defect detection method
JP3742801B2 (en) Film thickness acquisition method
TW201339569A (en) Defect testing method
US11035794B2 (en) Scalable, large-area optical sensing platform with compact light delivery and imaging system
JP3860202B2 (en) Transparency sheet defect inspection system
KR100829501B1 (en) The testing equipment for detecting alien substance sticked on surface of display panel and the testing methode of the same
JP2012068211A (en) Distortion inspection device for sheet member and distortion inspection method for sheet member
CN218481439U (en) Glasses optical lens piece defect detecting device
TWI380009B (en) Optical inspection apparatus and method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees