JP3860202B2 - Transparency sheet defect inspection system - Google Patents

Transparency sheet defect inspection system Download PDF

Info

Publication number
JP3860202B2
JP3860202B2 JP2006008874A JP2006008874A JP3860202B2 JP 3860202 B2 JP3860202 B2 JP 3860202B2 JP 2006008874 A JP2006008874 A JP 2006008874A JP 2006008874 A JP2006008874 A JP 2006008874A JP 3860202 B2 JP3860202 B2 JP 3860202B2
Authority
JP
Japan
Prior art keywords
light
sheet
light receiving
inspection
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006008874A
Other languages
Japanese (ja)
Other versions
JP2006106015A (en
Inventor
順一 原田
正樹 布施
慎太郎 田代
徳之 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2006008874A priority Critical patent/JP3860202B2/en
Publication of JP2006106015A publication Critical patent/JP2006106015A/en
Application granted granted Critical
Publication of JP3860202B2 publication Critical patent/JP3860202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、透光性シート状物中の気泡または異屈折率ゲル状異物等の欠陥を光学的に検出する欠陥検査装置に関する。   The present invention relates to a defect inspection apparatus that optically detects defects such as bubbles or different refractive index gel-like foreign matters in a translucent sheet.

従来、透光性を有するシート状物の検査を行う場合、その性質を利用して光学的に検査する方法が採用されている。
たとえば、透光性シート状物の一方の主表面側から光を照射し、他方の主表面側に配置された受光部で透過光を受光し、シート状物内の欠陥によって光が散乱して受光量が減少した部分を欠陥として検出する方法が知られている。この様な透過照明を用いる方法においては、正常部分からの透過光の光量が大きいので、小さな欠陥による受光量の減少を検出しにくく、正常部分からの透過光の受光量を小さくするには、受光部や照明装置の方向の非常に微妙な調整が必要であった。また内部欠陥と主表面に付着したほこりとの区別が難しいという欠点があった。
Conventionally, in the case of inspecting a sheet-like material having translucency, a method of optically inspecting using the property has been adopted.
For example, light is irradiated from one main surface side of the translucent sheet material, the transmitted light is received by a light receiving portion arranged on the other main surface side, and the light is scattered by defects in the sheet material. A method of detecting a portion where the amount of received light is reduced as a defect is known. In such a method using transmitted illumination, since the amount of transmitted light from the normal part is large, it is difficult to detect a decrease in the amount of received light due to a small defect, and in order to reduce the amount of transmitted light from the normal part, A very delicate adjustment of the direction of the light receiving unit and the illumination device was necessary. In addition, it is difficult to distinguish between internal defects and dust adhering to the main surface.

これを改良するものとして、シート状物の端面からシート状物内に光を入射させ、2つの主表面による内面全反射を利用してシート状物内を導光させ、欠陥により反射または散乱されて主表面から出射する光を検出する方法が、特開昭61−284648号公報(特許文献1)に開示されている。   To improve this, light enters the sheet-like material from the end face of the sheet-like material, guides the inside of the sheet-like material using total internal reflection by the two main surfaces, and is reflected or scattered by defects. A method of detecting light emitted from the main surface is disclosed in Japanese Patent Application Laid-Open No. 61-284648 (Patent Document 1).

この方法は欠陥に起因する光を検出するものであって、正常部分が発する光量は小さい。従って、入射光量を増大させることにより、正常部分が発する光量と欠陥からの反射又は散乱光との光量差を大きくすることができ、容易に検出感度を向上させることができる。またこの方法はシート状物上に乗った埃等を検出せずに、内部欠陥だけを検出し得るという利点がある。
特開昭61−284648号公報
This method detects light caused by defects, and the amount of light emitted by the normal portion is small. Therefore, by increasing the amount of incident light, the difference in amount of light between the amount of light emitted from the normal part and the reflected or scattered light from the defect can be increased, and the detection sensitivity can be easily improved. In addition, this method has an advantage that only internal defects can be detected without detecting dust or the like on the sheet-like material.
Japanese Patent Laid-Open No. 61-284648

しかし、この方法においては、端面から入射した光がシート状物内を反射を繰り返しながら通過する内に、漏光やシート材料による光の吸収等により光が次第に減衰するため、光入射端面からの距離によってシート状物から出射する光量が異なる。また、受光部側の問題として、画角を有する受光部を用いて検査する場合、各受光素子は受光方向と異なる方向からの光を受光する。検査位置によって受光方向と光の方向がなす角度、即ち受光角は異なり、受光角により受光素子の受光率は異なるため、検査位置によって受光部からの出力が異なる。   However, in this method, while the light incident from the end face passes through the sheet-like object while being repeatedly reflected, the light gradually attenuates due to light leakage, absorption of light by the sheet material, etc., so the distance from the light incident end face The amount of light emitted from the sheet-like material varies depending on the type. Further, as a problem on the light receiving unit side, when inspection is performed using a light receiving unit having an angle of view, each light receiving element receives light from a direction different from the light receiving direction. The angle between the light receiving direction and the light direction, that is, the light receiving angle differs depending on the inspection position, and the light receiving rate of the light receiving element differs depending on the light receiving angle, so the output from the light receiving unit differs depending on the inspection position.

即ちこの方法は、特にシート状物の検査範囲が広い場合において、検査位置によって受光部からの出力のレベルが異なるため、安定した検査を行うことが困難であった。そのため特に液晶用ガラス基板などの精密な検査を要するものの検査において不都合があった。
本発明の目的は、欠陥の位置に関係なく安定した高精度の欠陥検査を行うことができる透光性シート状物の欠陥の検査装置を提供することにある。
That is, in this method, particularly when the inspection range of the sheet-like object is wide, it is difficult to perform a stable inspection because the output level from the light receiving unit varies depending on the inspection position. For this reason, there is a disadvantage in the inspection of a glass substrate for liquid crystal that requires a precise inspection.
An object of the present invention is to provide a defect inspection apparatus for a translucent sheet material capable of performing a stable and highly accurate defect inspection regardless of the position of the defect.

本発明の透光性シート状物の欠陥検査装置は、一対の主表面を有する透光性シート状物の一方の端面から照明光を主表面に対して傾いた角度で入射させる光源と、シート状物の主表面の少なくとも一方から出射する光を受光する受光部と、シート状物の光入射端面と検査位置との距離を算出する距離算出手段と、その距離に応じて各検査位置に対応する閾値を調整する閾値調整手段と、この閾値に基づいて受光部の各受光素子からの出力を二値化処理することにより、シート状物中の欠陥を光学的に検出する信号処理部〔I〕とを有するものである。   A defect inspection apparatus for a translucent sheet-like material according to the present invention includes a light source that makes illumination light incident at an angle inclined with respect to the main surface from one end surface of the translucent sheet-like material having a pair of main surfaces, and a sheet A light receiving unit that receives light emitted from at least one of the main surfaces of the object, a distance calculation unit that calculates the distance between the light incident end face of the sheet object and the inspection position, and corresponds to each inspection position according to the distance A threshold adjusting means for adjusting a threshold value to be detected, and a signal processing unit [I for optically detecting a defect in the sheet-like material by binarizing the output from each light receiving element of the light receiving unit based on the threshold value. ].

以上のような本発明によれば、シートの検査範囲が広い場合であっても欠陥の位置に関係なく安定した精度の高い欠陥検査を行うことができる。特に、液晶用ガラス基板などの精密な検査を要するものの欠陥検査に好適である。   According to the present invention as described above, even when the inspection range of a sheet is wide, a stable and highly accurate defect inspection can be performed regardless of the position of the defect. In particular, it is suitable for defect inspection of a liquid crystal glass substrate that requires precise inspection.

本発明において検査対象となる一対の主表面を有する透光性シート状物(以下単に「シート」という)は、例えばガラスやアクリル樹脂等の透光性を有する素材からなる。なお、主表面とはシート表面のうち、広い面積を有する対向した面のことをいう。シート主表面及び端面は平面であることが好ましく、主表面は互いに平行であることが好ましい。   In the present invention, a translucent sheet-like product (hereinafter simply referred to as “sheet”) having a pair of main surfaces to be inspected is made of a translucent material such as glass or acrylic resin. The main surface refers to a facing surface having a large area on the sheet surface. The sheet main surface and the end surface are preferably flat, and the main surfaces are preferably parallel to each other.

以下適宜図を参照しつつ、本発明の概要を説明する。
図1は本発明の欠陥検査装置を、被検査体であるシート7の側面から見た模式図である。検査対象であるシートはシート状物保持部3によって保持され、光源1によって光がシート内に入射される。シート中の欠陥によって反射・屈折した光はシート主表面(以下「シート表面」という)から出射され、受光部2によって受光される。その際レンズ21は検査範囲からの光を集める。受光部からの信号は信号処理装置4によって処理され、信号処理装置はホストコンピュータ5によって制御される。欠陥情報はCRT6によって表示される。また図中θは光源からシートに入射される光とシート表面とがなす角度(以下「入射角」という)、θは受光部が最もよく光を受光する方向(以下「受光方向」という)とシート表面とがなす角度である。
The outline of the present invention will be described below with reference to the drawings as appropriate.
FIG. 1 is a schematic view of the defect inspection apparatus of the present invention viewed from the side of a sheet 7 that is an object to be inspected. The sheet to be inspected is held by the sheet-like object holding unit 3, and light is incident on the sheet by the light source 1. Light reflected and refracted by defects in the sheet is emitted from the main sheet surface (hereinafter referred to as “sheet surface”) and received by the light receiving unit 2. At that time, the lens 21 collects light from the inspection range. A signal from the light receiving unit is processed by the signal processing device 4, and the signal processing device is controlled by the host computer 5. The defect information is displayed by the CRT 6. In the figure, θ 1 is an angle formed between light incident on the sheet from the light source and the sheet surface (hereinafter referred to as “incident angle”), and θ 2 is a direction in which the light receiving unit receives light most frequently (hereinafter referred to as “light receiving direction”). ) And the sheet surface.

図2は光源方向から受光部とシートをみたときの図である。受光部とシートとの間の破線は受光部が受光する範囲を示し、一点鎖線は受光方向を示す。   FIG. 2 is a view of the light receiving unit and the sheet as viewed from the light source direction. A broken line between the light receiving unit and the sheet indicates a range in which the light receiving unit receives light, and an alternate long and short dash line indicates a light receiving direction.

シートのy方向の一方の端面(以下適宜「光入射端面」という)から、シート表面に対して入射角θで入射された光(以下「入射光」という)はシート表面により内面反射して略y方向に伝搬されるため、光はシート表面から実質的に出射されない。しかし、シート内に気泡や異屈折率のゲル状異物等の欠陥が存在すると、それにより屈折又は反射した光がシート表面から出射される。従って正常部分は暗く、欠陥部分は明るくなる。一方受光部はシート表面からの光を受光する。その後受光部からの信号を閾値を境に二値化することにより、前記シート中の欠陥を検出することができる。ところで、シート端面から入射した光はシート内で吸収されたり漏光したりして減衰する。そのため、光入射端面から遠い位置においては光量が小さくなっているので、同一の欠陥によりシート表面から出射する光の光量も小さくなる。従ってこの光を受光部により受光した場合、その出力レベルは検査位置により異なる。 Light incident on the sheet surface at an incident angle θ 1 (hereinafter referred to as “incident light”) from one end surface in the y direction of the sheet (hereinafter referred to as “light incident end surface” as appropriate) is internally reflected by the sheet surface. Since the light is propagated substantially in the y direction, light is not substantially emitted from the sheet surface. However, if there are defects such as bubbles or gel-like foreign matters having different refractive index in the sheet, the light refracted or reflected by the defect is emitted from the sheet surface. Therefore, the normal part is dark and the defective part is bright. On the other hand, the light receiving unit receives light from the sheet surface. Thereafter, the signal in the light receiving unit is binarized with a threshold as a boundary, whereby a defect in the sheet can be detected. Incidentally, light incident from the end face of the sheet is attenuated by being absorbed in the sheet or leaking light. For this reason, the amount of light emitted from the sheet surface is also reduced by the same defect because the amount of light is small at a position far from the light incident end face. Therefore, when this light is received by the light receiving unit, the output level differs depending on the inspection position.

一方受光部として画角を有する受光部を用いる場合、即ち図2に示すように受光部がその受光面積よりも広い検査範囲の光をレンズなどによって集めて受光する場合がある。この範囲を角度で示したθが画角である。検査範囲からの光は集束しながら受光部にはいるので、その光の進行方向は様々である。ここで各受光素子の受光方向が検査範囲からの光の進行方向に向けられていた場合、各受光素子の受光方向と検査範囲からの光の進行方向とがなす角度(以下「受光角」という)は全ての受光素子について0度となる。しかし、通常各受光素子の受光方向は一定方向に向けられているため、ほとんどの検査範囲からの光は受光方向と傾いた方向から受光素子にはいる。例えば図2においては破線とシート表面が交わる部分からの光は略θの受光角をもって受光素子にはいる。受光角により受光素子の受光率は異なるため、やはり検査位置によって受光部からの出力レベルは異なる。 On the other hand, when a light receiving portion having an angle of view is used as the light receiving portion, that is, as shown in FIG. 2, the light receiving portion may collect and receive light of an inspection range wider than the light receiving area by a lens or the like. The angle of view 3 represents the angle in this range. Since the light from the inspection range enters the light receiving unit while being focused, the traveling direction of the light varies. Here, when the light receiving direction of each light receiving element is directed to the light traveling direction from the inspection range, the angle formed by the light receiving direction of each light receiving element and the light traveling direction from the inspection range (hereinafter referred to as “light receiving angle”). ) Is 0 degree for all the light receiving elements. However, since the light receiving direction of each light receiving element is normally directed to a certain direction, light from most inspection ranges enters the light receiving element from a direction inclined with respect to the light receiving direction. For example, light from the intersection is dashed and the sheet surface in FIG. 2 will enter with a light receiving angle of substantially theta 3 to the light receiving element. Since the light receiving rate of the light receiving element varies depending on the light receiving angle, the output level from the light receiving unit also varies depending on the inspection position.

そこで、本発明の第一の態様においては、光入射端面と検査位置との距離により閾値を調整し(以下適宜「閾値調整手段1」という)、第二の態様においては第一の態様において更に検査位置による受光角の違いを加味して閾値を調整する(以下適宜「閾値調整手段2」という)。第三の態様においては第一、第二の態様において、閾値を調整する代わりに入射光量を変動させる(以下それぞれ「光量調整手段1」、「光量調整手段2」という)。   Therefore, in the first aspect of the present invention, the threshold value is adjusted by the distance between the light incident end face and the inspection position (hereinafter referred to as “threshold adjustment means 1” as appropriate), and in the second aspect, the first aspect is further improved. The threshold value is adjusted in consideration of the difference in the light receiving angle depending on the inspection position (hereinafter referred to as “threshold adjusting means 2” as appropriate). In the third mode, instead of adjusting the threshold value in the first and second modes, the amount of incident light is varied (hereinafter referred to as “light level adjusting unit 1” and “light level adjusting unit 2”, respectively).

以下本発明をより詳細に説明する。
本発明においてシートの保持態様は特に限定されず、その端部を保持する構成にすることも載置台を設けてその全体を保持する構成にすることも可能である。
Hereinafter, the present invention will be described in more detail.
In the present invention, the sheet holding mode is not particularly limited, and it is possible to have a configuration in which the end portion is held or a configuration in which a mounting table is provided to hold the whole.

シート端面からの入射光はシート表面に対して所定角度に傾いている。このときシート表面に対して臨界角をこえて入射された光はシート内で反射せず、外部に出射されるため、入射角は臨界角以下であることが好ましい。臨界角をこえて入射される成分はシート外部に漏光するため検査の役に立たず、さらに受光部により受光されて欠陥と誤認されるおそれがあるため少ない程良い。なお臨界角は、シートの屈折率及び外部の屈折率により異なる。例えばガラス板を空気中で検査する場合、その臨界角は35度程度であり、入射角θは0度〜30度の範囲内であることが好ましい。 Incident light from the sheet end face is inclined at a predetermined angle with respect to the sheet surface. At this time, since the light incident on the sheet surface exceeding the critical angle is not reflected in the sheet and is emitted to the outside, the incident angle is preferably equal to or less than the critical angle. The component incident beyond the critical angle leaks to the outside of the sheet, so that it is not useful for inspection and may be received by the light receiving unit and misidentified as a defect. The critical angle varies depending on the refractive index of the sheet and the external refractive index. For example, when a glass plate is inspected in air, the critical angle is about 35 degrees, and the incident angle θ 1 is preferably in the range of 0 degrees to 30 degrees.

シート端面から入射させる光としては、入射角の調整を容易にするため指向性のある光が好ましく、また、光をシート全面に行き渡らせるため強い光であるほど好ましい。このような条件を満たす光源として、光ファイバを用いたライン状光源などが挙げられる。シートのy方向の長さが短い場合、強い光でなくてもよく、例えば蛍光灯やロッド状光源などにスリットを付けて指向性を高めて光を入射させることにより同様の効果が得られる。   The light incident from the end face of the sheet is preferably directional light for facilitating the adjustment of the incident angle, and is more preferably strong light for spreading the light over the entire surface of the sheet. As a light source satisfying such conditions, a line light source using an optical fiber can be cited. When the length of the sheet in the y direction is short, it may not be strong light. For example, a similar effect can be obtained by making a light incident on a fluorescent lamp or a rod-shaped light source by attaching a slit to improve directivity.

入射光を正確に制御するため、シートの光入射端面と光源とはできるだけ近づけておくことが好ましい。
受光部はシート表面の少なくとも一方から出射する光を受光する。通常表面のいずれか一方から受光する構成にするが、両方から受光するような構成をとっても差し支えない。
In order to accurately control the incident light, it is preferable to keep the light incident end face of the sheet and the light source as close as possible.
The light receiving unit receives light emitted from at least one of the sheet surfaces. Normally, the light is received from either one of the surfaces, but a structure in which light is received from both is acceptable.

また、シート内を伝搬してくる光が欠陥によって反射又は屈折し、シート表面から外部に出射される方向は様々であるため、出力が十分に得られれば受光部の受光方向は特に限定されない。しかし、出射光量の多い方向は欠陥の種類などに依存する傾向があるので、特に検出したい欠陥の種類に応じて出射光量の大きい方向に受光方向を設定することが好ましい。例えば、ガラス基板の泡欠陥を検査する場合は、欠陥によって反射する光の成分よりも屈折する光の成分が多いため、光入射端側(図1の左側)に出射する成分よりも逆側(図1の右側)に出射する成分が多い。そのうちガラスの臨界角をこえた成分が外部に出射することが多いことから、この場合受光方向は光入射端と逆側のガラス表面方向に対して30度〜60度くらいに設定することが望ましい。装置全体がコンパクトにまとまるように考慮して設置することがさらに好ましい。   Further, since the light propagating in the sheet is reflected or refracted by the defect and is emitted from the sheet surface to the outside in various directions, the light receiving direction of the light receiving unit is not particularly limited as long as the output is sufficiently obtained. However, since the direction in which the amount of emitted light is large tends to depend on the type of defect or the like, it is preferable to set the light receiving direction in the direction in which the amount of emitted light is large, depending on the type of defect to be detected. For example, when inspecting a bubble defect in a glass substrate, since there are more components of light refracted than components of light reflected by the defect, the side opposite to the component emitted to the light incident end side (left side in FIG. 1) ( There are many components emitted in the right side of FIG. Of these, components exceeding the critical angle of the glass often exit to the outside, and in this case, the light receiving direction is preferably set to about 30 to 60 degrees with respect to the glass surface direction opposite to the light incident end. . It is more preferable to install the apparatus so that the entire apparatus is compact.

受光部としては例えばラインセンサ、エリアセンサなど公知のものを用いることができる。また、CCDカメラを用いることが好ましいが、フォトダイオード等によっても対応できる。光入射端面と検査位置との距離をより正確に把握するためには受光部としてラインセンサを用いることが望ましい。受光部としてラインセンサや受光範囲の小さいエリアセンサなどシートの検査範囲全域をカバーすることができないものを用いる場合は、受光部が検査範囲全体を走査するように検査対象となるシートと受光部との位置関係を相対的に移動させる移動機構を用いることによって、検査範囲全体を連続して検査することができる。このような移動機構としては受光部とシート保持部の一方を移動させる構成、両方を移動させる構成のいずれもとりうる。装置を単純化するため受光部を移動させるのが好ましい。移動のための駆動装置としては公知のものを用いることができる。   As the light receiving unit, for example, a known sensor such as a line sensor or an area sensor can be used. Further, although it is preferable to use a CCD camera, it can also be handled by a photodiode or the like. In order to more accurately grasp the distance between the light incident end face and the inspection position, it is desirable to use a line sensor as the light receiving unit. When a light receiving unit that cannot cover the entire inspection range of the sheet, such as a line sensor or an area sensor with a small light receiving range, is used, the sheet to be inspected and the light receiving unit so that the light receiving unit scans the entire inspection range. By using a moving mechanism that relatively moves the positional relationship, the entire inspection range can be inspected continuously. As such a moving mechanism, either a configuration in which one of the light receiving unit and the sheet holding unit is moved or a configuration in which both are moved can be used. It is preferable to move the light receiving part in order to simplify the apparatus. A known drive device can be used for the movement.

なお、一つ又は複数の受光部により検査範囲全面をカバーする場合には、移動機構は必ずしも必要としない。
また、光入射方向と受光方向をシート表面(図中xy平面)上に投影したとき、両者は互いに平行であることが好ましい。y方向に入射される入射光のy方向の光量分布と、欠陥に起因する出射光のy方向の光量分布とは相似する傾向があるからである。
When the entire inspection range is covered by one or a plurality of light receiving units, the moving mechanism is not necessarily required.
Further, when the light incident direction and the light receiving direction are projected onto the sheet surface (xy plane in the figure), it is preferable that both are parallel to each other. This is because the light amount distribution in the y direction of incident light incident in the y direction tends to be similar to the light amount distribution in the y direction of outgoing light caused by defects.

本発明の第一の態様においては光入射端面と検査位置との距離を距離算出手段により算出し、閾値調整手段1は、その距離に応じて各検査位置に対応する受光素子からの出力を後述のように信号処理する際の閾値を調整する。なお、距離算出手段及び閾値調整手段にはシーケンサやコンピュータなどの各種情報処理装置を用いることができる。   In the first aspect of the present invention, the distance between the light incident end face and the inspection position is calculated by the distance calculation means, and the threshold adjustment means 1 outputs an output from the light receiving element corresponding to each inspection position according to the distance. As described above, the threshold for signal processing is adjusted. Various information processing apparatuses such as a sequencer and a computer can be used for the distance calculation means and the threshold adjustment means.

光入射端面と検査位置との距離は、受光素子の位置や受光方向、移動装置を用いる場合は移動距離等から算出することができる。例えば受光部としてラインセンサを用いる場合、ラインセンサをその検査範囲がシートの光入射端面と平行になるように設置し、光入射端面と検査範囲の平行関係を保ったまま両者を相対的に移動させ、移動距離に基づき距離を算出するような構成にすれば距離を容易に把握することができ、好ましい。また、広範囲を検査しうるエリアセンサ等の受光部を用いる場合、受光素子の位置や移動距離等に基いて光入射端面と素子ごとの検査位置との距離を算出するような構成にすることが好ましい。   The distance between the light incident end face and the inspection position can be calculated from the position of the light receiving element, the light receiving direction, and the moving distance when a moving device is used. For example, when a line sensor is used as the light receiving unit, the line sensor is installed so that its inspection range is parallel to the light incident end face of the sheet, and the two are relatively moved while maintaining the parallel relationship between the light incident end face and the inspection range. If the configuration is such that the distance is calculated based on the movement distance, the distance can be easily grasped, which is preferable. In addition, when using a light receiving unit such as an area sensor capable of inspecting a wide range, the distance between the light incident end face and the inspection position for each element may be calculated based on the position and moving distance of the light receiving element. preferable.

なお、閾値を調整する際に用いられる距離は必ずしも絶対値でなくてもよいので、閾値を調整する際の距離として、移動距離の代わりに経時カウンタなどにより測定される移動時間を用いることもできる。移動速度が一定でなく、速度が変化する場合は、例えば速度が一定である場合の時間の測定と速度が変化する場合の時間の測定にそれぞれ速度変化に対応した別の経時カウンタを用いることにより、時間値を移動距離に相当する値として用いることができる。   Note that the distance used when adjusting the threshold value does not necessarily have to be an absolute value. Therefore, the travel time measured by a time-lapse counter or the like can be used instead of the travel distance as the distance when adjusting the threshold value. . If the moving speed is not constant and the speed changes, for example, by using different time counters corresponding to the speed change respectively for the time measurement when the speed is constant and the time measurement when the speed changes. The time value can be used as a value corresponding to the movement distance.

受光部として検査範囲全面をカバーするものを用いる場合には、各受光素子の検査範囲が固定されているので、各受光素子について光入射端面と検査位置との距離は変化しない。従って、この場合は距離算出手段、閾値調整手段1を用いず、受光素子それぞれからの出力に対してあらかじめ閾値を設定し、後述のように信号処理することも可能である。また、距離算出手段を用いず、閾値調整手段1だけを用いて、閾値の調整を行い、その閾値に基づき信号処理することも可能である。   When using a light receiving unit that covers the entire inspection range, the inspection range of each light receiving element is fixed, so the distance between the light incident end face and the inspection position does not change for each light receiving element. Therefore, in this case, it is also possible to set a threshold value in advance for the output from each light receiving element without using the distance calculating unit and the threshold value adjusting unit 1 and perform signal processing as described later. It is also possible to adjust the threshold value using only the threshold value adjusting means 1 without using the distance calculating means, and to perform signal processing based on the threshold value.

光入射端面と検査位置との距離とシート表面からの光出射量との関係は検査するシート材料などにより異なるため、閾値の調整方法はそれに応じて決定する。シート中のある位置におけるシート表面からの光出射量は、その位置においてシート内部を伝搬する光量にほぼ比例するので、閾値の調整は例えば見本となるシートについて光入射端面からの距離と、シート内部を伝播する光の減衰率または減衰量等との関係を実際に測定し、その値に基づいて行われる。なお、より正確に閾値を調整しようとする場合には、光入射端面からの距離が異なる位置に同じ形状の欠陥を有するシートを製作し、欠陥検査時と同じ条件で、欠陥によりシート表面から出射する光の光量を測定し、その値に基づいて行う方法もあるが、この方法は煩雑である。具体的な演算処理としては光の減衰がない場合において基準となる閾値を設定し、その基準閾値と距離ごとの光減衰率とを乗算する方法を用いることが好ましい。閾値の調整にコンピュータなどを用いる場合にはこの測定結果から光入射端面からの距離と光減衰率の関係を近似する関数を求めておき、それを用いると正確な処理を容易に行うことができ好ましい。   Since the relationship between the distance between the light incident end face and the inspection position and the amount of light emitted from the sheet surface varies depending on the sheet material to be inspected, the threshold adjustment method is determined accordingly. The amount of light emitted from the sheet surface at a certain position in the sheet is almost proportional to the amount of light propagating inside the sheet at that position, so the threshold value can be adjusted, for example, with respect to the distance from the light incident end surface of the sample sheet The relationship with the attenuation rate or attenuation amount of light propagating through the light is actually measured, and this is performed based on the value. In order to adjust the threshold value more accurately, a sheet having a defect having the same shape at a position where the distance from the light incident end face is different is manufactured and emitted from the sheet surface due to the defect under the same conditions as in the defect inspection. There is a method of measuring the amount of light to be measured and performing it based on the value, but this method is complicated. As a specific calculation process, it is preferable to use a method of setting a reference threshold value when there is no light attenuation, and multiplying the reference threshold value and the light attenuation rate for each distance. When a computer is used to adjust the threshold value, a function that approximates the relationship between the distance from the light incident end face and the light attenuation rate is obtained from this measurement result, and accurate processing can be easily performed using this function. preferable.

以下本発明の第一の態様について、例を挙げて具体的に説明する。図3はサンプル1〜4の4種類のガラス基板について、その光入射端面から検査位置までの距離と光量との関係を測定し、近似式を算出し、グラフに示したものである。この近似値は、測定対象となる品種であって、長さの異なるサンプルを用意し、それぞれ一方の端面から長さ方向に光を入射させ、他方の端面から出射する光の光量を測定し、その値に基づいて算出されたものである。
図3に示される近似式は指数関数式(4)である。

Figure 0003860202
Hereinafter, the first embodiment of the present invention will be specifically described with reference to examples. FIG. 3 shows the relationship between the distance from the light incident end face to the inspection position and the amount of light for the four types of glass substrates of Samples 1 to 4, and the approximate expression is calculated and shown in the graph. This approximate value is a variety to be measured, prepared samples of different lengths, each incident light in the length direction from one end face, and measured the amount of light emitted from the other end face, It is calculated based on the value.
The approximate expression shown in FIG. 3 is the exponential function expression (4).
Figure 0003860202

(式中、αは光減衰率、Yは光入射端面と検査位置との距離、D,Eは係数である。)
なお、図3においては光入射端面であるY=0mmの位置の光減衰率を1(100%)としている。また、サンプル1〜4についてはD=1であり、Eの値は順に−0.0005、−0.0011、−0.0019、及び−0.0046である。
(Where α is the light attenuation factor, Y is the distance between the light incident end face and the inspection position, and D and E are coefficients.)
In FIG. 3, the light attenuation factor at the position of Y = 0 mm which is the light incident end face is 1 (100%). For samples 1 to 4, D = 1, and values of E are −0.0005, −0.0011, −0.0019, and −0.0046 in this order.

この場合サンプル4で言えば、Y=500mmの位置に欠陥があった場合はY=200mmに欠陥があった場合に対して約1/4倍の出力低下がある。そこで、後者の閾値を1/4にすることで同じような精度で欠陥を検出することができる。即ち、基準となる閾値に光減衰率を乗算することでより正確な検査を行うことができるようになる。例えば下記式(1)を用いることが好ましい。

Figure 0003860202
In this case, in the case of sample 4, when there is a defect at the position of Y = 500 mm, there is an output reduction of about ¼ times that when there is a defect at Y = 200 mm. Therefore, the defect can be detected with the same accuracy by setting the latter threshold value to 1/4. That is, a more accurate inspection can be performed by multiplying the reference threshold value by the light attenuation rate. For example, it is preferable to use the following formula (1).
Figure 0003860202

(式中、Yは光入射端面と検査位置との距離、D,Eは係数である。)
一方本発明の第二の態様においては、画角を有する受光部を用いる場合により正確な検査を期すために、閾値調整手段2によって、前記第一の態様でなされる補正に更に素子ごとの受光角の違いに基づく受光素子の出力レベルの違いを加味した閾値の補正がなされる。
(In the formula, Y is the distance between the light incident end face and the inspection position, and D and E are coefficients.)
On the other hand, in the second aspect of the present invention, in order to perform a more accurate inspection when using a light receiving unit having an angle of view, the threshold adjustment means 2 further performs light reception for each element in addition to the correction made in the first aspect. The threshold value is corrected in consideration of the output level difference of the light receiving element based on the difference in angle.

例えば、図4は検査時において検査位置に相当する位置から、x方向一列に5000個(端から受光素子番号1〜5000番とする)の画素を有するラインCCDカメラに光を照射し、中心に位置する画素の受光率が最大になるように受光方向を調整し、受光素子ごとの出力比を測定し、近似式を算出したものの一例をグラフに示したものである。図4に示された関数は、式(5)で示される二次関数である。

Figure 0003860202
For example, in FIG. 4, light is irradiated to a line CCD camera having 5000 pixels in a row in the x direction (light receiving element numbers 1 to 5000 from the end) from a position corresponding to the inspection position at the time of inspection. The graph shows an example in which an approximate expression is calculated by adjusting the light receiving direction so that the light receiving rate of the pixel located is maximized, measuring the output ratio for each light receiving element. The function shown in FIG. 4 is a quadratic function expressed by Equation (5).
Figure 0003860202

(式中、βは受光率、Xは素子の位置、A,B,Cは係数である。)
なお、式(5)及び図4において、受光率が最大となる画素(受光素子番号が2501番の画素)について、受光素子の位置X=0とし、この場合の受光率を1(100%)としている。
(In the formula, β is the light receiving rate, X is the position of the element, and A, B, and C are coefficients.)
In Equation (5) and FIG. 4, for the pixel having the maximum light receiving rate (the pixel having the light receiving device number of 2501), the light receiving device position X = 0, and the light receiving rate in this case is 1 (100%). It is said.

このとき、中心から2000画素の位置に欠陥があった場合は中心の画素に欠陥があった場合に対して約0.8倍の出力低下がある。そこで、閾値を0.8倍することで同じような精度で検出することができる。即ち、閾値調整手段1により補正された閾値に更に受光率を乗算することでより正確な検査を行うことができるようになる。例えば下記式(2)を用いることが好ましい。

Figure 0003860202
At this time, when there is a defect at the position of 2000 pixels from the center, there is an output reduction of about 0.8 times that when there is a defect in the center pixel. Therefore, detection can be performed with the same accuracy by multiplying the threshold by 0.8. That is, a more accurate inspection can be performed by further multiplying the threshold corrected by the threshold adjusting unit 1 by the light reception rate. For example, it is preferable to use the following formula (2).
Figure 0003860202

(式中、Xは素子の位置、A,B,Cは係数である。)
なお、ここでは一方向に画素が配列されたラインセンサを用いた場合についてのみ説明したが、エリアセンサなど二次元的な画素配列を有するものであって、x、y方向に画角を有するものについては、x、y方向について同様の処理を行うことにより閾値を調整することができる。
(In the formula, X is the position of the element, and A, B, and C are coefficients.)
Here, only the case of using a line sensor in which pixels are arranged in one direction has been described. However, an area sensor or the like having a two-dimensional pixel arrangement and having an angle of view in the x and y directions. For, the threshold value can be adjusted by performing the same processing in the x and y directions.

本発明の第三の態様として、閾値を調整する代わりに光量を調整することもできる。即ち閾値調整手段の代わりにそれぞれ光量変動手段1、または光量変動手段2を用いることもできる。例えば、光量が減衰したり、受光部の出力が小さくなる場合即ちそれぞれ光入射端面と検査範囲の距離が遠い場合、CCDの受光率が小さくなる場合等はシートに入射させる光量を増加させる。光量の増加率(量)については前述のように光減衰率(量)や受光率の変化の傾向を測定し、それに基づいて決定することができる。このような光量変動手段としては、各種情報処理装置などを用いることができる。   As a third aspect of the present invention, the amount of light can be adjusted instead of adjusting the threshold value. That is, instead of the threshold adjustment means, the light quantity fluctuation means 1 or the light quantity fluctuation means 2 can be used. For example, the amount of light incident on the sheet is increased when the amount of light is attenuated or when the output of the light receiving unit is small, that is, when the distance between the light incident end face and the inspection range is long, or when the light receiving rate of the CCD is small. As described above, the increase rate (amount) of the light amount can be determined based on the tendency of changes in the light attenuation rate (amount) or the light reception rate as described above. As such a light quantity variation means, various information processing apparatuses can be used.

本発明の第四の態様として、閾値を調整する代わりに各受光素子からの出力を調整することもできる。即ち閾値調整手段の代わりにそれぞれゲイン調整手段1、またはゲイン調整手段2を用いることもできる。受光素子からの出力の調整後の値を以下「ゲイン調整値」という。例えば、光量が減衰したり、受光素子からの出力が小さくなる場合即ちそれぞれ光入射端面と検査範囲の距離が遠い場合、CCDの受光率が小さくなる場合等はその受光素子からの出力を増幅させる。出力の増幅率(量)については前述のように光減衰率(量)や受光率の変化の傾向を測定し、それに基づいて決定することができる。例えば式(4)に示した光減衰率の逆数を受光素子からの出力に乗算することにより、光入射端面と検査位置との距離に応じて調整されたゲイン調整値を得ることが可能である。従ってこの場合ゲイン調整手段1は下記式(3)の演算を行うことによりゲイン調整値を得るように構成されることが好ましい。

Figure 0003860202
As a fourth aspect of the present invention, the output from each light receiving element can be adjusted instead of adjusting the threshold value. That is, instead of the threshold adjustment means, the gain adjustment means 1 or the gain adjustment means 2 can be used. The value after adjustment of the output from the light receiving element is hereinafter referred to as “gain adjustment value”. For example, the output from the light receiving element is amplified when the amount of light is attenuated or the output from the light receiving element is small, that is, when the distance between the light incident end face and the inspection range is long, or when the light receiving rate of the CCD is small. . As described above, the amplification factor (amount) of the output can be determined based on the tendency of changes in the light attenuation factor (amount) and the light reception rate. For example, it is possible to obtain a gain adjustment value adjusted according to the distance between the light incident end face and the inspection position by multiplying the output from the light receiving element by the reciprocal of the light attenuation rate shown in Expression (4). . Accordingly, in this case, the gain adjusting means 1 is preferably configured to obtain a gain adjustment value by performing the calculation of the following equation (3).
Figure 0003860202

(式中、Yは光入射端と検査位置との距離、D、Eは係数である。)
このようなゲイン調整手段としては、各種信号処理装置や各種情報処理装置などを用いることができる。
(In the formula, Y is the distance between the light incident end and the inspection position, and D and E are coefficients.)
As such gain adjusting means, various signal processing devices, various information processing devices, and the like can be used.

なお、本発明の第一、第二の態様において、これらの閾値調整処理は必ずしも各受光素子単位で行う必要はなく、また受光部が一回走査する毎に行う必要はない。例えばある一定範囲の受光素子を纏め、その範囲内の受光素子について一律にその範囲内で平均的な閾値を設定することもできる。又、受光部の複数回の走査について一律に平均的な閾値を設定することもできる。各受光素子ごとに、又各走査ごとに閾値の調整を行えば検査の正確性は増すものの処理が煩雑になる。   In the first and second aspects of the present invention, these threshold value adjustment processes do not necessarily need to be performed for each light receiving element, and need not be performed every time the light receiving unit scans once. For example, the light receiving elements in a certain range can be collected, and the average threshold value can be set uniformly for the light receiving elements in the range. It is also possible to uniformly set an average threshold for a plurality of scans of the light receiving unit. If the threshold value is adjusted for each light receiving element and each scan, the accuracy of the inspection is increased, but the processing becomes complicated.

一方一律に処理する範囲を広げすぎると簡便ではあるが検査の正確性が犠牲になる。従って、一律に閾値を設定する範囲及び受光部の走査回数は要求される検査精度等により適宜設定すればよい。閾値を調整する代わりに光量を調整する第三の態様においても同様のことが言える。   On the other hand, if the range to be uniformly processed is too wide, it is convenient, but the accuracy of the inspection is sacrificed. Therefore, the range in which the threshold is uniformly set and the number of scans of the light receiving unit may be appropriately set depending on the required inspection accuracy. The same applies to the third mode in which the light amount is adjusted instead of adjusting the threshold value.

また、本発明の第四の態様においても同様に受光素子の出力を調整する処理を必ずしも各受光素子単位で、また各走査毎に行う必要はない。ある一定範囲について一律にゲイン調整値を算出する場合、その範囲は前記の閾値調整処理の場合と同様に要求される検査精度等により適宜設定すればよい。   Similarly, in the fourth embodiment of the present invention, it is not always necessary to perform the process of adjusting the output of the light receiving element for each light receiving element and for each scan. When the gain adjustment value is calculated uniformly for a certain range, the range may be set as appropriate according to the required inspection accuracy as in the case of the threshold adjustment process.

また、本発明の第二、第三、及び第四の態様において、受光部としてCIS(密着型イメージセンサ)等の等倍で結像するものを用いた場合は、画角が小さいので受光角の違いによる閾値や光量の調整は検査の正確性に大きな影響を及ぼさない。   In the second, third, and fourth aspects of the present invention, when a light receiving unit that forms an image at the same magnification as a CIS (contact image sensor) is used, the light receiving angle is small because the field angle is small. Adjustment of the threshold value and the light amount due to the difference in difference does not greatly affect the accuracy of the inspection.

第一、第二、または第三の態様によって閾値や照射光量を調整しながら、または調整した後、第一もしくは第二の態様において用いられる信号処理部〔I〕又は第三の態様において信号処理部〔I〕の代わりに用いられる信号処理部〔II〕は受光部からの出力を閾値に基づいて二値化し欠陥を検出する。第四の態様において信号処理部〔I〕の代わりに用いられる信号処理部〔III〕はゲイン調整値を所定の閾値を用いて二値化し、欠陥を検出する。信号処理部としてはコンピュータなどの各種情報処理装置などを用いることができる。   The signal processing unit [I] used in the first or second aspect or after the signal is processed in the third aspect while adjusting or adjusting the threshold value or the irradiation light amount according to the first, second, or third aspect. The signal processing unit [II] used instead of the unit [I] binarizes the output from the light receiving unit based on the threshold value to detect a defect. In the fourth embodiment, the signal processing unit [III] used in place of the signal processing unit [I] binarizes the gain adjustment value using a predetermined threshold value, and detects a defect. As the signal processing unit, various information processing devices such as a computer can be used.

なお、距離算出手段、閾値調整手段、信号処理部としてそれぞれ別々の装置を用いてもよいし、複数の処理を行うことができる装置を用いてもよい。閾値調整手段の代わりに光量変動手段を用いる場合も同様である。また、閾値調整手段の代わりにゲイン調整手段を用いる場合も同様である。   Note that separate devices may be used as the distance calculation unit, the threshold adjustment unit, and the signal processing unit, or devices that can perform a plurality of processes may be used. The same applies to the case where the light amount changing means is used instead of the threshold adjusting means. The same applies to the case where a gain adjusting unit is used instead of the threshold adjusting unit.

以下実施例により本発明をさらに詳細に説明する。
実施例1
照明装置としては光ファイバを一列に並べ、一端に光源を配置したライン状光源を用い、これを図1に示すようにシートの端面からシート内に光が入射するように配置した。検査対象となるシートは液晶用ガラス基板であった。ガラス基板は黒色板状体の上に載せて保持した。ガラス主表面とライン状光源からの光の照射方向とがなす角度θは10度になるように設定した。ライン状光源の照射端とガラス端面との距離は1mmに設定した。受光部としてはラインCCDカメラ(三菱レイヨン株式会社製SCD−5000、画素数は5000)を4台用い、図2に示すように、これらの検査範囲とライン状光源の照射端との長手方向(x方向)が平行になるようにこれらを配置した。これらの検査範囲はガラスの幅方向(x方向)の範囲を全てカバーしている。また、図1のようにこれらの受光方向とガラス表面とがなす角度θは45度に設定した。なおこの角度θはガラス基板中の泡欠陥を主として検出することを念頭に置いて設定されたものである。このラインCCDカメラは図示しない移動装置により図1のy方向に移動するような構造になっており、ガラス全体を走査できる。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
As the illuminating device, a linear light source in which optical fibers are arranged in a line and a light source is arranged at one end is used so that light enters the sheet from the end face of the sheet as shown in FIG. The sheet to be inspected was a liquid crystal glass substrate. The glass substrate was placed on and held on a black plate. The angle θ 1 formed by the glass main surface and the irradiation direction of light from the line light source was set to be 10 degrees. The distance between the irradiation end of the line light source and the glass end face was set to 1 mm. As the light receiving unit, four line CCD cameras (SCD-5000 manufactured by Mitsubishi Rayon Co., Ltd., the number of pixels is 5000) are used, and as shown in FIG. 2, the longitudinal direction between these inspection ranges and the irradiation end of the line light source ( These were arranged so that (x direction) became parallel. These inspection ranges cover the entire range in the glass width direction (x direction). Further, as shown in FIG. 1, the angle θ 2 formed by these light receiving directions and the glass surface was set to 45 degrees. This angle θ 2 is set with the intention of mainly detecting bubble defects in the glass substrate. This line CCD camera is structured to move in the y direction of FIG. 1 by a moving device (not shown), and can scan the entire glass.

一方、検査対象とする品種のガラス基板であって、y方向の長さが異なるガラス基板を用意し、それぞれ一方の端面から長さ方向に光を入射させ、他方の端面から出射する光の光量を測定した。測定結果に基づきガラス基板内の端面からの距離と光量との関係を示す近似式を算出し、図3にサンプル4として示される指数関数式α=e−0.0046Yを得た。 On the other hand, a glass substrate of a type to be inspected, which has a glass substrate with a different length in the y direction, is made to enter light in the length direction from one end surface, and the amount of light emitted from the other end surface Was measured. Based on the measurement results, an approximate expression indicating the relationship between the distance from the end face in the glass substrate and the amount of light was calculated, and an exponential function expression α = e− 0.0046Y shown as sample 4 in FIG.

ここでラインCCDカメラを前述のように移動させながらガラス表面からの光を受光し、この移動距離に基づいて光入射端面から検査位置までの距離を算出した。また、光入射端面と検査位置との距離の変化に応じて式(6)に基づき閾値を調整しながら、信号処理装置においてカメラからの出力を二値化して欠陥を検出した。なお、基準となる閾値は検査位置が入射端面(Y=0mm)の位置である場合の閾値に等しく設定した。また、距離算出、閾値調整、信号処理は全て一台のコンピュータ中で行った。

Figure 0003860202
Here, the light from the glass surface was received while moving the line CCD camera as described above, and the distance from the light incident end surface to the inspection position was calculated based on this moving distance. Further, while adjusting the threshold based on the equation (6) according to the change in the distance between the light incident end face and the inspection position, the signal processing apparatus binarized the output from the camera to detect the defect. The reference threshold value was set equal to the threshold value when the inspection position was the position of the incident end face (Y = 0 mm). The distance calculation, threshold adjustment, and signal processing were all performed in one computer.
Figure 0003860202

検査結果は良好であり、ガラス基板の欠陥、特に気泡を欠陥の位置に関係なく安定して検出することができた。   The inspection result was good, and defects of the glass substrate, particularly bubbles, could be stably detected regardless of the position of the defect.

実施例2
検査時において検査位置に相当する位置からラインCCDカメラに光を照射し、中心に位置する画素の受光率が最大になるように受光方向を調整し、受光素子ごとの出力比を測定し、近似式を算出したところ、図4に示される二次関数β=(−5×10−8)X+1を得た。
Example 2
At the time of inspection, the line CCD camera is irradiated with light from the position corresponding to the inspection position, the light receiving direction is adjusted so that the light receiving rate of the pixel located at the center is maximized, the output ratio for each light receiving element is measured, and approximated When the equation was calculated, the quadratic function β = (− 5 × 10 −8 ) X 2 +1 shown in FIG. 4 was obtained.

受光素子の位置と受光率の関係を導くため以上の操作を事前に行い、式(6)で得られる閾値にラインCCDカメラ素子毎の受光率をさらに乗算した式(7)を実施例1の式(6)の代わりに用いた他は実施例1と同様にガラス基板の欠陥を検査した。検査結果はより良好であり、ガラス基板の欠陥、特に気泡を欠陥の位置に関係なくより安定して検出することができた。

Figure 0003860202
The above operation is performed in advance to derive the relationship between the position of the light receiving element and the light receiving rate, and Expression (7) obtained by further multiplying the threshold obtained by Expression (6) by the light receiving rate for each line CCD camera element is shown in FIG. The glass substrate was inspected for defects in the same manner as in Example 1 except that it was used instead of Equation (6). The inspection result was better, and defects of the glass substrate, particularly bubbles, could be detected more stably regardless of the position of the defect.
Figure 0003860202

実施例3
実施例1においてラインCCDカメラのy方向への移動中においてラインCCDカメラの移動開始からの時間を継続的に測定し、その値を光入射端面から検査位置までの距離に相当する値として出力する経時カウンタを用い、また後述するコンピュータからの電圧により制御され、カメラからの受光素子の出力を調整してゲイン調整値を出力するゲインアンプを用いた。
Example 3
In Example 1, during the movement of the line CCD camera in the y direction, the time from the start of the movement of the line CCD camera is continuously measured, and the value is output as a value corresponding to the distance from the light incident end surface to the inspection position. A gain counter that uses a time counter and is controlled by a voltage from a computer, which will be described later, and adjusts the output of the light receiving element from the camera and outputs a gain adjustment value is used.

また、距離算出、閾値調整、及び調整された閾値に基づく信号処理を行うコンピュータの代わりに、経時カウンタからの信号に基づいて算出される光減衰率αの逆数を電圧値として出力してゲインアンプを制御し、ゲイン調整値を所定の閾値により二値化処理して欠陥を検出する信号処理するコンピュータを用いた。   Also, instead of a computer that performs distance calculation, threshold adjustment, and signal processing based on the adjusted threshold, a gain amplifier that outputs the reciprocal of the optical attenuation factor α calculated based on the signal from the time-lapse counter as a voltage value A computer that performs signal processing for detecting defects by binarizing the gain adjustment value with a predetermined threshold is used.

これら以外の点については実施例1と同様にしてガラス基板の欠陥を検査した。即ち、本実施例においては経時カウンタから出力される光入射端面から検査位置までの距離に相当する値に応じて下記式(8)に基づいたゲイン調整値を得、そのゲイン調整値を二値化処理することにより欠陥を検出した。検査結果は良好であった。

Figure 0003860202
About the point other than these, it carried out similarly to Example 1, and investigated the defect of the glass substrate. That is, in the present embodiment, a gain adjustment value based on the following equation (8) is obtained according to a value corresponding to the distance from the light incident end face output from the time counter to the inspection position, and the gain adjustment value is binary. Defects were detected by the treatment. The test result was good.
Figure 0003860202

本発明の欠陥検査装置の模式側面図である。It is a model side view of the defect inspection apparatus of this invention. 光源方向からみた受光部とシートの配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship between a light-receiving part and a sheet | seat seen from the light source direction. シートの光入射端面からの距離と光減衰率との関係を示す図である。It is a figure which shows the relationship between the distance from the light-incidence end surface of a sheet | seat, and a light attenuation factor. 受光素子のx方向の位置と受光率の関係を示す図である。It is a figure which shows the relationship between the position of the x direction of a light receiving element, and a light reception rate.

符号の説明Explanation of symbols

1 光源
2 受光部
4 信号処理装置
7 透光性シート状物
DESCRIPTION OF SYMBOLS 1 Light source 2 Light-receiving part 4 Signal processing apparatus 7 Translucent sheet-like material

Claims (5)

一対の主表面を有する透光性シート状物の一方の端面から内部へ照明光を入射させるライン状光源と、
前記ライン状光源のラインと平行に配置し、前記シート状物の主表面の少なくとも一方から出射する光を受光するラインセンサと、
前記ラインセンサにより前記シート状物の検査範囲が全て走査されるように前記シート状物と前記ラインセンサとの相対的な位置関係を変更する移動手段と、
前記移動手段による前記ラインセンサとの相対的な位置関係の変更することによる前記シート状物の光入射端面と検査位置との距離の変化を算出する距離算出手段と、
前記距離の変化に応じて各検査位置に対応する閾値を調整する閾値調整手段と、
この閾値に基づいて前記ラインセンサの各受光素子からの出力を二値化処理することにより、シート状物中の欠陥を光学的に検出する信号処理手段と
を有する透光性シート状物の欠陥検査装置。
A line light source to be incident illumination light to the interior from one end face of the translucent sheet material having a pair of main surfaces,
A line sensor that is arranged in parallel with the line of the linear light source and receives light emitted from at least one of the main surfaces of the sheet-like object;
Moving means for changing a relative positional relationship between the sheet sensor and the line sensor so that the entire inspection range of the sheet object is scanned by the line sensor;
A distance calculating means for calculating a change in the distance between the light incident end face of the sheet-like object and the inspection position by changing a relative positional relationship with the line sensor by the moving means ;
And threshold adjustment means for adjusting the threshold value corresponding to the inspection position in accordance with a change of the distance,
A defect in a translucent sheet material having signal processing means for optically detecting a defect in the sheet material by binarizing the output from each light receiving element of the line sensor based on the threshold value Inspection device.
請求項1に記載の欠陥検査装置において、閾値調整手段として下記式(1)の演算を行う装置を用いる透光性シート状物の欠陥検査装置。
Figure 0003860202
(式中、Yは光入射端面と検査位置との距離、D,Eは係数である。)
The defect inspection apparatus of Claim 1 WHEREIN: The defect inspection apparatus of the translucent sheet-like object using the apparatus which calculates the following formula (1) as a threshold value adjustment means.
Figure 0003860202
(In the formula, Y is the distance between the light incident end face and the inspection position, and D and E are coefficients.)
閾値調整手段が、更に各受光素子の受光角を加味した閾値調整手段であることを特徴とする請求項1または2に記載の透光性シート状物の欠陥検査装置。 3. The translucent sheet-like defect inspection apparatus according to claim 1, wherein the threshold adjustment unit is a threshold adjustment unit that further considers a light receiving angle of each light receiving element. 閾値調整手段として下記式(2)の演算を行う装置を用いることを特徴とする請求項3に記載の透光性シート状物の欠陥検査装置。
Figure 0003860202
(式中、Xは素子の位置、A,B,Cは係数である)
4. The translucent sheet-like defect inspection device according to claim 3, wherein a device that performs the calculation of the following formula (2) is used as the threshold adjustment means.
Figure 0003860202
(Where X is the element position, and A, B, and C are coefficients)
前記検査位置と前記ラインセンサを結ぶ光軸と、該検査位置から前記照明光の出射する方向の前記主表面とのなす角が30〜60度になるように、前記ラインセンサを設置したことを特徴とする請求項1から4のいずれかに記載の透光性シート状物の欠陥検査装置。 The line sensor is installed so that an angle formed between an optical axis connecting the inspection position and the line sensor and the main surface in a direction in which the illumination light is emitted from the inspection position is 30 to 60 degrees. The defect inspection apparatus for a translucent sheet-like material according to any one of claims 1 to 4.
JP2006008874A 1997-09-18 2006-01-17 Transparency sheet defect inspection system Expired - Fee Related JP3860202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008874A JP3860202B2 (en) 1997-09-18 2006-01-17 Transparency sheet defect inspection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25311297 1997-09-18
JP2006008874A JP3860202B2 (en) 1997-09-18 2006-01-17 Transparency sheet defect inspection system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09022298A Division JP3819144B2 (en) 1997-09-18 1998-04-02 Transparency sheet defect inspection system

Publications (2)

Publication Number Publication Date
JP2006106015A JP2006106015A (en) 2006-04-20
JP3860202B2 true JP3860202B2 (en) 2006-12-20

Family

ID=36375878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008874A Expired - Fee Related JP3860202B2 (en) 1997-09-18 2006-01-17 Transparency sheet defect inspection system

Country Status (1)

Country Link
JP (1) JP3860202B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309494A (en) * 2007-06-12 2008-12-25 Canon Chemicals Inc Defect detection method and device of plate-like body
CN109696444A (en) * 2019-01-18 2019-04-30 北京兆维电子(集团)有限责任公司 A kind of condenser type mould group screen appearance detection system and method
CN111208148A (en) * 2020-02-21 2020-05-29 凌云光技术集团有限责任公司 Dig hole screen light leak defect detecting system

Also Published As

Publication number Publication date
JP2006106015A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US7142295B2 (en) Inspection of transparent substrates for defects
KR101326455B1 (en) Apparatus and method for characterizing defects in a transparent substrate
WO2006108137A2 (en) Glass inspection systems and methods for using same
JPH03267745A (en) Surface property detecting method
JP4104924B2 (en) Optical measuring method and apparatus
JP3859859B2 (en) Defect detection method and apparatus for transparent plate
JP3860202B2 (en) Transparency sheet defect inspection system
US8547547B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JP3819144B2 (en) Transparency sheet defect inspection system
JPH09145631A (en) Surface foreign matter detector
JPH11248643A (en) Detection device for foreign matter in transparent film
JP2016114602A (en) Surface shape measurement device, and defect determination device
JPH03115844A (en) Detection of surface defect
JP2001264259A (en) Sheet inspecting device
JPS61207951A (en) Defect inspecting device for transparent object
JPH0579994A (en) Transparent body defect inspecting device
JPH10293103A (en) Method and equipment for optical measurement and optical measuring equipment for patterned substrate
JP3815628B2 (en) Optical inspection system for workpieces
JPH08145849A (en) Color filter inspection apparatus
JP2003075356A (en) Method and device for inspecting transparent subject
KR20190061256A (en) Camera assembly for line scan
JPH06100553B2 (en) Defect detection device
JPH04132943A (en) Defect detection method of transparent plate shaped body
JPH0694632A (en) Automatic apparatus for inspecting specular surface
JP2016118519A (en) Inspection device and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees