JP3859859B2 - Defect detection method and apparatus for transparent plate - Google Patents

Defect detection method and apparatus for transparent plate Download PDF

Info

Publication number
JP3859859B2
JP3859859B2 JP06873998A JP6873998A JP3859859B2 JP 3859859 B2 JP3859859 B2 JP 3859859B2 JP 06873998 A JP06873998 A JP 06873998A JP 6873998 A JP6873998 A JP 6873998A JP 3859859 B2 JP3859859 B2 JP 3859859B2
Authority
JP
Japan
Prior art keywords
transparent plate
light source
plate
linear light
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06873998A
Other languages
Japanese (ja)
Other versions
JPH11264803A (en
Inventor
真一 岡村
源志 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP06873998A priority Critical patent/JP3859859B2/en
Publication of JPH11264803A publication Critical patent/JPH11264803A/en
Application granted granted Critical
Publication of JP3859859B2 publication Critical patent/JP3859859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス板等の透明板状体中の微細な泡、異物等の内部欠陥、及びキズ等の表面欠陥を検出する方法、および装置に関する。
【0002】
【従来の技術】
ガラス板や樹脂板等の透明板状体の欠陥検出方法、装置に於ける従来技術としては、リボン状に連なった透明板状体の欠陥を検査するものや、切断後の透明板状体の欠陥を検査するもの等、それぞれについて種々のものが知られている。
【0003】
まず、リボン状の透明板状体の欠陥を検出するものとして、特開平1−189549号公報に示される様に、ガラスを搬送制御する機構と、線状に配置した光源からの光をスリットを通して、ガラスに投光することにより、ガラスの内部欠点、表面欠点を光の陰影として1次元カメラにて捉え、2次元データに変換後ガラスの良否を判定するガラス欠点検出装置が開示されている。
【0004】
また、実開平3−27343号公報に示されるように、移動する板ガラスの一表面より隔離して設けられ板ガラスに光線を照射する点状の光源と、板ガラスの他の表面から隔離して設けられ、該光源から照射され板ガラスを透過した透過光線により形成される映像を映写するスクリーンと、該スクリーン上を走査し板ガラスの欠点の映像をラインセンサーにより検出する板ガラス欠点検出装置が開示されている。
【0005】
さらに、特開昭61ー176838号、特開昭61ー176839号に見られる様な光の屈折の違いを利用して背景の線の歪みを捉えるもの、レーザーフライングスポットによるレーザー光の透過光、反射光を利用したものなどがあげられる。
【0006】
また、切断後の透明板状体の欠陥を検出するものとしては、例えば特開平4−320951号公報には、表面が平滑な被検査のガラス板を支持台に支持し、該ガラス板の側面に対して、適当な角度の白色光束を投射して内面により全反射させ、前記表面に存在する欠陥による該全反射光の散乱光を、前記表面側または裏面側で目視により観察し、または受光器により受光して該欠陥を検出するガラス板の表面欠陥検査方法と、ベース盤に固定され、表面が平滑な被検査の角型ガラス板の4辺を支持するフレームと、該フレームに支持された該角型ガラス板の直交する2辺の側面に対して適当な角度の白色光束を投射する2個の線光源と、該角型ガラス板の内面による全反射光の欠陥による散乱光を受像する受像カメラ、および前記側面の反射光による該受像に対する妨害を排除する遮蔽板とよりなるガラス板の表面欠陥検査装置が開示されている。
【0007】
【発明が解決しようとする課題】
まず、特開平1−189549号のように、線状に配置した光源からの光を1つのスリットを通して移動する板ガラスに投光することにより、板ガラスの欠点を光の陰影として1次元カメラにて検出し画像処理する例に於いては、透明板状体に付着した埃、汚れと欠陥の判別が不可能で、微小欠陥を検出しようとすると、埃、汚れなどを誤検出してしまう。
【0008】
次に、実開平3−27343のように、移動する板ガラスに点状の光源による光線を照射し、板硝子を透過後のスクリーンへの投影像を1次元カメラにて走査し、欠点による明暗部を検出する例においては、歪み欠陥の検出は可能であるが、外乱(外部光、埃、汚れ等)の影響を受け易く、また微細な欠陥の検出もできない。
【0009】
更に、特開昭61−176838〜9号の様に、検出すべき欠点部の大きさよりも狭い間隔で等間隔な複数の線列を透明な板状体を介して観察し、欠点部を線列の乱れとして、カメラで検出処理する例に於いては、等間隔の線列を横切って走査することにより欠点部分を通過する光の屈折率の違いにより、規則正しいパルス幅、ピッチの信号とは異なる信号を検出することを利用するもので、透明板状体の種々の欠点中、微小、もしくは淡いディストーションを伴った欠点の検出に於て、同方法を当てはめようとすると線列の乱れは確実に検出できない。しかも、透明板状体に付着した埃、汚れと欠点の判別が不可能で、埃、汚れを誤検出してしまう。
【0010】
レーザーフライングスポットによるレーザー光の透過光、反射光を利用したものについては、装置自体も大型化となり高価格であり、非常に微細な欠点の検出が可能であるが、埃等による誤検出も多いという問題点がある。
【0011】
すなわち、前述のような従来の検出方法にあっては、いずれの方法にしても、透明板状体の種々の欠点の内、例えば泡や異物等の透明板状体中の内部欠陥や、キズ等の表面欠陥のミクロンオーダーの微細な欠陥の検出について、確実に検出することができないという問題点があった。
【0012】
さらに、切断後の透明板状体の欠陥を検出するものとして示した特開平4−320951号公報については、ガラス板を支持台上で支持し、ガラス板の側面に対して白色光束を投射し、側面の反射光により受像カメラに対する妨害を排除するための遮蔽板を必要とするものであり、本公報のものはガラス板のサイズが大きい場合、ガラス板が湾曲するが欠陥検査には差し支えない旨の記載があるが、近年基板も大型化かつ薄板化し、大サイズの薄板を検査する場合に、撓みによりカメラとガラス板の距離が一定とはならず、ピントが甘くなり、微小欠陥を検出しようとした場合、検出感度の低下により精度のよい欠陥検査ができない恐れがあった。さらに、ガラス板のサイズが大きくなると、投射した光量が端面から遠く離れるに従って少しづつ減衰して弱くなり、光源から離れた位置にある欠陥部分の輝度が減少することにより実際より小さめのサイズと判断され、許容範囲外のサイズの欠陥であっても許容範囲内のサイズであると誤判断される恐れがある。
【0013】
さらにまた、二次元カメラをX軸、Y軸方向に移動させてガラス板を検査をする旨の記載があるが、この方法は処理に時間がかかるという難点がある。
【0014】
【課題を解決するための手段】
本発明は、このような点に鑑みてなされたものであり、従来困難であった非常に微細なミクロン単位の泡、異物等の内部欠陥、およびキズ等の表面欠陥を塵埃や汚れの影響も受けず、安価にしかも確実、かつ速いタクトで自動的に全数検査できることを目的とするものである。 すなわち、本発明は、 エアテーブル上に搬入し位置決めした透明板状体の一端面から光を照射し、透明板状体の上方に設けたラインカメラにて透明板状体の表面を走査し、得られた画像信号により透明板状体の欠陥を検出する方法において、線状光源を昇降自在とし、検査中のみ透明板状体の端面に近接させ、非検査時は搬送コンベアの頂部よりやや下方に待避させ、透明板状体の搬出時に通過自在とし、透明板状体の端面のみから前記線状光源を照射して透明板状体の表裏面間を繰り返し全反射させ、透明板状体の斜め上方に設けたラインカメラをカメラの走査方向と直交する水平方向に一定速度で移動させながら透明板状体面の法線に対して角度θの傾斜角度をもって透明板状体全面を撮像走査し、得られた輝度信号の所定レベルを境界として良否を判定することを特徴とする透明板状体の欠陥検出方法である。
あるいはまた、本発明は、透明板状体の端面より照射する前記線状光源と走行移動するカメラの走査位置との距離に応じて感度補正を行い、光源からの距離の遠近による差を無くすようにしたことを特徴とする上述の透明板状体の欠陥検出方法である。
あるいはまた、本発明は、透明板状体を浮上させるエアテーブルと、浮上した透明板状体を搬送手段により搬送させ、所定位置で位置決め停止させる位置決め手段と、透明板状体の一端面と近接し端面より光を照射する線状光源と、透明板状体面の斜め上部に設け透明板状体面を幅方向に走査するラインカメラと、ラインカメラを透明板状体を搬送する方向に一定速度で走行させる走行手段と、撮像した輝度信号を処理し所定レベルを境界として良否を判定処理する判定処理手段とからなり、前記線状光源を複数本の光ファイバーからなる帯状光源とし、該帯状光源を位置決めされた透明板状体の一端面に近接離反させ、検査時のみ透明板状体の端面に近接させて端面より光を入射させる昇降手段を設けたことを特徴とする透明板状体の欠陥検出装置である。
あるいはまた、本発明は、エアテーブルで浮上した透明板状体の片端面に当接、かつフリー回転する円筒状の押圧ローラーと、対向する端面に当接する円筒状の駆動ローラーとで、透明板状体の対向する二辺を押圧挟持し、前記駆動ローラーの回転で透明板状体を搬送するようにした搬送手段を設けたことを特徴とする上述の透明板状体の欠陥検出装置である。
【0015】
【発明の実施の形態】
本発明は、ガラス板やアクリル等の樹脂板等の透明板状体中の微細な泡、異物等の内部欠陥、及びキズ等の表面欠陥を検出する方法、および装置であって、前記課題を解決するための手段に記載した通りの構成からなる。
【0016】
すなわち、本装置1は、透明板状体Gを浮上させるエアテーブル12と、浮上した透明板状体Gを搬送する搬送手段10と、所定位置で位置決め停止させる位置決め手段20と、透明板状体Gの一端面と近接し端面より光を照射する線状光源3と、透明板状体Gの面の斜め上部に設け、透明板状体G面の法線に対して角度θの傾斜角度をもって、該面を幅方向に走査する複数のラインカメラ5、5、・・と、該ラインカメラ5、5、・・を透明板状体Gを搬送する方向に一定速度で走行させる走行手段30と、撮像した明暗の輝度信号を処理し所定レベルを境界として良否を判定処理する判定処理手段としてのパソコン52とからなり、好ましくは線状光源3を昇降自在とする昇降手段40を設けた。
【0017】
前記ラインカメラの走査線と透明板状体G面の法線との傾斜角度θは0〜60度程度であるが、検出感度的には30〜45度の範囲とする方が好ましい。
エアテーブル12は、架台7上に設け、上部面をフラットとしたテーブル板に複数の細孔を等間隔に設け、該細孔から高圧エアを噴出させるようにし、搬入したガラス板や樹脂板等の透明板状体Gを浮上させることができる。
【0018】
該エアテーブル11の上部には、エアテーブル11上に搬入され浮上する透明板状体Gの端面に当接する押圧ロール21、21、・・と駆動ロール14、14、・・とで挟持押圧して搬送する搬送手段10を設けた。
【0019】
該搬送手段10は透明板状体Gの搬送方向と平行に設けた押圧フレーム23上に複数の押圧レバー22、22、・・の片端を軸着し、該押圧レバー22、22、・・の他端側先端部のそれぞれに透明板状体Gの端面に当接し自由回転する円筒形状の押圧ロール21、21、・・を設けた。
【0020】
前記押圧レバー22、22、・・と押圧フレーム23間にはそれぞれスプリング24、24、・・を設け、該スプリング24、24、・・の弾性力によって透明板状体Gの端面を適度な押圧力で常時押圧できるように押圧位置調整手段25によって調整する。
【0021】
また、透明板状体Gの押圧ロール21、21、・・と当接する辺と対向する辺の端面には、円筒形状の駆動ロール14、14、・・を当接させ、該駆動ロール14、14、・・は駆動モーター15により駆動ベルト16を介して回転駆動される。
【0022】
また、エアテーブル12の先端の所定位置には昇降自在なストッパーからなる位置決め手段を設け、透明板状体Gがエアテーブル12上の所定位置にきた時に下降し、透明板状体Gの先端端面とストッパーを当接させて位置決めさせ、該位置で停止させるようにした。
【0023】
線状光源3は、透明板状体Gの先端部端面より光を入射させるものであり、複数本の細長い光ファイバーを帯状に束ね、各ファイバーの先端の光の照射する部分の断面形状を線状とした帯状光源であり、光ファイバーの他端付近に設けたハロゲン光や水銀光等の光源からの光を光ファイバーを経由して透明板状体の先端部の端面へ導くようにしたもので、図6、図7に示すように搬出コンベア13とエアテーブル12間に設けた浮揚コンベア17の下方位置に線状光源3を光源支持部材8を介して取り付け、昇降手段40によって浮揚コンベア17と共に昇降自在となるように設けた。
【0024】
前記線状光源3としては前記光ファイバーを束ねたものに限らず、細長い1本のスリットを通して光源からの光を透明板状体Gの端面に照射するようにさせても良い。
【0025】
また、前記線状光源3の光源の照射方向角度は図1に示すように、水平面より斜め下方の角度φ(10度程度)から透明板状体Gの端面を照射するように配置させ、さらに、線状光源3の上部で線状光源3とラインカメラ5、5、・・間には、線状光源3からの直接光がラインカメラ5、5、・・に入射しないような位置に遮蔽カバー9を設けるようにした。
【0026】
該昇降手段40は、昇降シリンダ41のシリンダロッドの先端に取付部材42を介して昇降部材44と遮蔽板43を設けた。該昇降部材44の上部には浮揚コンベア17の下端部と当接する回動自在な押上ロール45を設け、昇降シリンダ41の作動により浮揚コンベア17を昇降させる。
【0027】
また、同時に昇降シリンダ41の作動と共に遮蔽板43が上昇し、透明板状体Gの先端の下端辺に当接させ、線状光源3からの光を透明板状体Gの端面以外の下面から入射しないようにさせるものである。
【0028】
浮揚コンベア17の浮揚側の下方には線状光源3の先端を光源支持部材8を介して取り付け固定し、浮揚コンベア17の上昇と共に透明板状体Gの先端側端面に近接させるものである。
【0029】
また、走行手段30は、図1に示すように、透明板状体Gの斜め上方にはθの角度をもって、複数台のラインカメラ5、5、・・を設け、透明板状体Gの面の幅方向を各ラインカメラ5、5、・・で分担して走査させる。
【0030】
当該ラインカメラ5、5、・・は、図5に示すように、架台7より支柱を設け、該支柱の上端側で透明板状体Gの搬送方向と平行な方向に走行レール32を設け、該レール32と嵌合し、レール32に沿って走行するガイドに走行フレーム33を搬送コンベアを横切る幅方向に水平に設けた。該走行フレーム33には取付部材34、34、・・を介してラインカメラ5、5、・・を同一角度で同一方向に一列に取付け固定した。
【0031】
さらに、前記押圧位置調整手段25は、図4に示すように、検査する透明板状体Gの大きさによって調整する。前記押圧レバー22、22、・・の先端に回動自在に設けた押圧ロール21、21、・・がスプリング24、24、・・の弾性力によって透明板状体Gの端面を適度な押圧力で常時押圧できるように、ハンドル操作により、押圧フレーム23の位置を自由に調整できる。
【0032】
また、前記判定処理手段としてのパソコン52は、複数台のラインカメラ5、5、・・によって撮像した明暗の輝度信号を画像処理装置51によって、所定の輝度レベルを境界として二値化し、不合格となる画素の大きさが所定の画素数を超えた時に、符号良否を判定処理するものである。
【0033】
さらに、感度補正手段60は、透明板状体Gの端面より照射する前記線状光源3の位置を固定し、ラインカメラ5、5、・・を走行手段30により走行移動させた時に、ラインカメラ5、5、・・の走査位置が線状光源3から離れるため、照度低下となるため、走査位置と線状光源3との距離に応じて感度補正、すなわち二値化のためのスライスレベルを下げるか、明暗の輝度信号を上げる等のいずれかを行い、線状光源3からの距離の遠近による差を無くすようにした。
【0034】
本発明の欠陥検査装置1は前記構成からなるものであり、つぎに本装置を用いて欠陥を検査する方法について述べる。
まず、搬入コンベア11により透明板状体Gを搬送させ、上面に複数の細孔を設け、該細孔より高圧エアを噴出するエアテーブル12上にガラス板や樹脂板等の透明板状体Gを搬入して浮上させる。
【0035】
続いて、浮上させた状態の透明板状体Gを搬送する方向と平行な辺の一端面に自由回転する円筒形状の押圧ロール21、21、・・を当接させ、対向する一辺の端面に円筒形状の駆動ロール14、14、・・を押圧させて挟持し、エアテーブル12の先端の所定位置まで搬送移動させる。
【0036】
透明板状体Gが前記搬送手段10によってエアテーブル12の先端の所定位置に移動接近すると、エアテーブル12内に設けた図示しないセンサーによって駆動モーター15を減速させ、エアテーブル12の先端付近に設けたストッパを透明板状体Gの先端辺に当接する高さまで下降させ、透明板状体Gを浮上状態のまま停止させる。
【0037】
続いて、エアテーブル12と搬出コンベア13間の浮揚コンベア17を昇降シリンダ41の作動によって上昇浮揚させ、浮揚コンベア17の下部に設けた線状光源3を透明板状体Gの先端側端面の斜め下方に近接させる。また、同時に昇降手段によって上昇した遮蔽板43を透明板状体Gの先端辺より僅かに突き出すように当接させ、斜め下方からの線状光源3の光が透明板状体Gの下面から入射しないようにした。
【0038】
また、線状光源3の先端部の上部で線状光源3とラインカメラ5、5、・・を結ぶ中心線上には遮蔽カバー9を設け、線状光源3からの光が直接ラインカメラ5、5、・・に入射しないようにした。
【0039】
前記線状光源3は、光源からの光が帯状に束ねたファイバーを経由して透明板状体Gの端面より斜めに入射し、透明板状体Gの表裏両面間を繰り返し全反射し、透明板状体G中の泡や異物等の内部欠陥に光が照射したり、キズ等の表面欠陥に光が照射したりすると該欠陥部分の光が散乱し、散乱光がラインセンサー5、5、・・で撮像される。
【0040】
図1、図5に示すように、エアテーブル12の上方に一列に設けた複数台のラインカメラ5、5、・・により、透明板状体Gの全幅を分割して走査するが、各ラインセンサー5、5、・・によって撮像された画像データはカメラのコントローラーによって輝度レベルを表す電気信号に変換後、画像処理装置51に取り込まれ、透明板状体Gの検査幅に組み立て合成される。
【0041】
得られた輝度波形について設定したスライスレベルで二値化し、低輝度信号「0」と高輝度信号「1」に分け、高輝度信号の画素数が規定数より大の場合、欠陥とみなし、パソコン等にそのX座標、Y座標等を記憶させる。
【0042】
また、図3、図5に示すような走行手段30により各ラインカメラ5、5、・・が透明板状体Gの先端側から後端側に走行しながら透明板状体Gの全面を走査し、走査線毎にそれぞれの輝度信号波形を前記と同様にスライスレベルで二値化し、良否の判定を行う。
【0043】
このようにして透明板状体Gを複数台のラインカメラ5、5、・・で走査しながら、走行手段30を走行移動させて透明板状体Gの全面について欠陥を検出するものである。
【0044】
また、透明板状体Gの端面より照射する前記線状光源3と走行移動するカメラの走査位置との距離に応じて感度補正を行うようにした。
さらに、透明板状体Gの端面より照射する前記線状光源3の位置を固定し、ラインカメラ5、5、・・を走行手段30により走行移動させた時に、ラインカメラ5、5、・・の走査位置が線状光源3から徐々に遠く離れて僅かづつ照度低下となるため、感度補正手段60により、走査位置と線状光源3との距離に応じて感度補正、すなわち二値化のためのスライスレベルを下げるか、明暗の輝度信号レベルを上げる等のいずれかの補正を行い、線状光源3からの距離の遠近による輝度差を無くし一定となるようにした。
【0045】
さらに、透明板状体Gの端縁より数ミリ部分については、シーミング部分の散乱光がラインカメラ5、5、・・に入射しても、欠陥とみなさないように、ソフト的にマスキング処理等を行うようにした。
【0046】
透明板状体Gの全面について検査が完了すると、前記線状光源3は昇降手段40の昇降シリンダ41の復動により遮蔽板43と昇降部材44が下降する。
昇降部材44の下降により浮揚コンベア17が下降し、浮揚コンベア17の下部に固定された線状光源3も下降し、透明板状体Gを搬出可能とし、搬送手段10と搬出コンベア13の作動により透明板状体を搬出させた。
【0047】
さらに、得られた結果をパソコン等にて記憶処理させれば、前記ラインカメラ5、5、・・の走行手段30による走行位置と合わせて、透明板状体GのX軸、Y軸方向の欠陥位置、大きさ等により、管理情報を得ることが出来る。
【0048】
本発明のように、エアテーブル12上で透明板状体Gを浮上させた状態で欠陥を検査するようにしたので、台上に載置して検査する場合に比べて、透明板状体Gが撓むことなくフラットな好条件で欠陥検査ができる。
【0049】
非常に微小な欠陥を検出しなければならないので、透明板状体の表面を撮像する時のピントは精度を要し、エアテーブル12はエアテーブル12上で浮上する透明板状体Gの大きさ、板厚が変わっても、透明板状体Gの浮上高さがテーブル上端面から常に一定になるように風量を調節することができ、透明板状体のサイズ、板厚毎の風量を予め設定登録しておけば、検査品種の変更時にワンタッチで変更できる。
【0050】
また、ファイバーによる帯状の線状光源3を透明板状体Gの端面に近接させて斜め下方より照射するようにし、透明板状体Gの下方より遮蔽板43を透明板状体Gのエッジより僅かにはみ出すような位置に当接させるようにしたので、線状光源3による光が透明板状体Gの端面以外から入射することがなく、精度よく安定して欠陥の検出が可能である。
【0051】
さらに、欠陥検出装置1を透明板状体Gを搬送するラインの途中に設け、照明である線状光源3を昇降自在とし、検査開始時、終了時に瞬時に昇降し透明板状体Gの端面に近接、あるい離反させるようにしたので、処理タクトの高速化を図ることができる。
【0052】
以上のようにして、ガラス板やアクリル樹脂板、ポリカーボネート樹脂板のような透明板状体Gの表面欠陥、および内部欠陥を検出したがこれに限るものではなく種々の透明板状体に応用ができる。
【0053】
また、透明板状体Gの板厚も0.55mmや0.7mmといった1mm以下の薄板から数mmの板厚のものまで対応できる。
以上のようにして検出された欠陥は更に演算処理を行い、求められた欠陥のX軸、Y軸座標位置等の情報をパソコン等に出力記憶させ、後工程においてパソコン等の指示制御に基づいて欠陥と判定された部分を含むガラスを除去し、あるいは各種管理情報に加工することもできる。
【0054】
【発明の効果】
本発明は、線状光源をファイバー光源としたので、非常に板厚の薄い透明板状体であっても、確実にその端面に近接させ、端面より照射することができる。
【0055】
また、線状光源を昇降手段により昇降自在としたので、検査中のみ透明板状体の端面に近接するようにし、検査完了後は瞬時に搬送コンベアの下方に待避するので、透明板状体の入れ替えが高速となり、速いタクトで全数全面検査が実現できる。
【0056】
さらに、10ミクロン程度の微細な内部欠陥と表面欠陥であっても自動的に安価に確実に検出でき、透明板状体に付着した汚れや埃、ゴミ等の影響も受けることがない。
【0057】
さらにまた、エアテーブル上で透明板状体を浮上させた状態で検査し、その搬送も透明板状体の端面エッジを挟持押圧して行うので、透明板状体の自重による撓みもないフラットな状態で検査でき、誤検出もなく、検査により透明板状体にキズをつけたり汚したりする恐れもない。
【図面の簡単な説明】
【図1】本発明の欠陥検出装置の要部概略斜視図。
【図2】ラインカメラが撮像した輝度信号波形。
【図3】本発明の欠陥検出装置の側面図。
【図4】本発明の欠陥検出装置の平面図。
【図5】本発明の欠陥検出装置の正面図。
【図6】線状光源を上昇させて、透明板状体の検査状態を示す欠陥検出装置の側面図。
【図7】線状光源を下降させて、透明板状体の搬送状態を示す欠陥検出装置の側面図。
【符号の説明】
G 透明板状体
1 欠陥検出装置
2 欠陥
3 線状光源
5 ラインカメラ
6 コントローラー
7 架台
9 遮蔽カバー
10 搬送手段
11 搬入コンベア
12 エアテーブル
13 搬出コンベア
14 駆動ロール
15 駆動モーター
16 駆動ベルト
17 浮揚コンベア
20 位置決め手段
21 押圧ロール
22 押圧レバー
23 押圧フレーム
24 スプリング
25 押圧位置調整手段
26 調整手段走行レール
30 走行手段
32 走行レール
33 走行フレーム
40 昇降手段
41 昇降シリンダ
43 遮蔽板
44 昇降部材
45 押上ロール
51 画像処理装置
52 パソコン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for detecting fine bubbles, internal defects such as foreign matters, and surface defects such as scratches in a transparent plate-like body such as a glass plate.
[0002]
[Prior art]
As a conventional technique in a transparent plate-like defect detection method and apparatus such as a glass plate or a resin plate, there are inspections for defects in transparent plate-like bodies connected in a ribbon shape, and transparent plate-like bodies after cutting. Various things are known for each, such as those for inspecting defects.
[0003]
First, for detecting defects in a ribbon-like transparent plate-like body, as shown in Japanese Patent Laid-Open No. 1-189549, a mechanism for transporting glass and light from a linearly arranged light source are passed through a slit. In addition, a glass defect detection device is disclosed in which, by projecting onto glass, internal defects and surface defects of glass are captured by a one-dimensional camera as light shadows, and the quality of the glass is determined after conversion into two-dimensional data.
[0004]
Further, as shown in Japanese Utility Model Laid-Open No. 3-27343, it is provided separately from one surface of a moving plate glass and provided separately from a point light source for irradiating the plate glass with light and another surface of the plate glass. A screen for projecting an image formed by transmitted light that is irradiated from the light source and transmitted through the plate glass, and a plate glass defect detection device that scans the screen and detects an image of the defect of the plate glass by a line sensor are disclosed.
[0005]
Furthermore, using the difference in refraction of light as seen in JP-A-61-176838 and JP-A-61-176839, the distortion of the background line is captured, the transmitted light of the laser beam by the laser flying spot, The thing using reflected light is mention | raise | lifted.
[0006]
In addition, as for detecting a defect of a transparent plate-like body after cutting, for example, in Japanese Patent Laid-Open No. 4-320951, a glass plate to be inspected with a smooth surface is supported on a support base, and the side surface of the glass plate On the other hand, a white light beam of an appropriate angle is projected and totally reflected by the inner surface, and the scattered light of the totally reflected light due to defects existing on the surface is visually observed on the front side or the back side, or received. A glass plate surface defect inspection method for detecting the defect by receiving light by a detector, a frame fixed to a base board and supporting four sides of a square glass plate to be inspected having a smooth surface, and supported by the frame In addition, two linear light sources projecting a white light beam having an appropriate angle to the two side surfaces orthogonal to each other of the rectangular glass plate, and scattered light due to a defect of total reflection light from the inner surface of the rectangular glass plate are received. Receiving camera and reflection of the side surface Surface defect inspection apparatus further comprising a glass plate and the shielding plate to eliminate interference is disclosed for receiving image by.
[0007]
[Problems to be solved by the invention]
First, as disclosed in Japanese Patent Laid-Open No. 1-189549, light from a linearly arranged light source is projected onto a plate glass that moves through one slit, thereby detecting a defect of the plate glass as a shadow of light with a one-dimensional camera. However, in the example of image processing, it is impossible to discriminate between dust, dirt and defects adhering to the transparent plate-like body, and dust, dirt, etc. are erroneously detected when trying to detect minute defects.
[0008]
Next, as in Japanese Utility Model Publication No. 3-27343, a moving plate glass is irradiated with a light beam from a point light source, and a projected image on a screen after passing through the plate glass is scanned with a one-dimensional camera. In the detection example, distortion defects can be detected, but they are easily affected by disturbances (external light, dust, dirt, etc.), and fine defects cannot be detected.
[0009]
Furthermore, as disclosed in JP-A-61-176838-9, a plurality of line arrays that are equally spaced at intervals smaller than the size of the defect portion to be detected are observed through a transparent plate, and the defect portion is line-formed. In the example of detection processing by the camera as the disturbance of the column, the regular pulse width and pitch signals are caused by the difference in the refractive index of the light passing through the defective part by scanning across the line column at equal intervals. This method uses the detection of different signals, and in detecting various defects of transparent plates with defects that are fine or light, it is certain that the line train will not be disturbed if this method is applied. Cannot be detected. Moreover, it is impossible to distinguish between dust, dirt and defects attached to the transparent plate-like body, and dust and dirt are erroneously detected.
[0010]
For devices using laser light transmitted or reflected by a laser flying spot, the device itself is large and expensive, and it is possible to detect very fine defects, but there are also many false detections due to dust, etc. There is a problem.
[0011]
That is, in any of the conventional detection methods as described above, any of the various defects of the transparent plate-like body, for example, internal defects or scratches in the transparent plate-like body such as bubbles and foreign matters There has been a problem that detection of fine defects on the order of microns such as surface defects cannot be reliably performed.
[0012]
Furthermore, for JP-A-4-320951 shown as detecting a defect in a transparent plate after cutting, a glass plate is supported on a support base and a white light beam is projected onto the side surface of the glass plate. , Which requires a shielding plate for eliminating interference with the image-receiving camera due to the reflected light from the side surface, and in this publication, when the glass plate is large, the glass plate is curved, but there is no problem for defect inspection. Although there is a statement that, in recent years, the substrate has also become larger and thinner, and when inspecting a large-sized thin plate, the distance between the camera and the glass plate does not become constant due to bending, the focus becomes sweet, and minute defects are detected When trying to do so, there is a possibility that accurate defect inspection cannot be performed due to a decrease in detection sensitivity. Furthermore, when the size of the glass plate is increased, the amount of light projected is gradually attenuated and weakened as the distance from the end face increases, and the brightness of the defective part located away from the light source decreases, so it is determined to be smaller than the actual size. Even if the defect has a size outside the allowable range, it may be erroneously determined that the size is within the allowable range.
[0013]
Furthermore, although there is a description that the glass plate is inspected by moving the two-dimensional camera in the X-axis and Y-axis directions, this method has a drawback that it takes time.
[0014]
[Means for Solving the Problems]
The present invention has been made in view of the above points, and has been affected by dust and dirt due to extremely fine micron-sized bubbles, internal defects such as foreign matters, and surface defects such as scratches, which have been difficult in the past. The objective is to be able to inspect all the products automatically at a low cost, reliably and quickly . That is, the present invention irradiates light from one end surface of the transparent plate that is carried and positioned on the air table, scans the surface of the transparent plate with a line camera provided above the transparent plate, In the method of detecting a defect in the transparent plate-like body using the obtained image signal, the linear light source can be moved up and down, close to the end surface of the transparent plate-like body only during the inspection, and slightly below the top of the conveyor when not inspecting is retracted to, and freely pass during unloading of the transparent plate-shaped object, is totally reflected repeatedly between the front and back surfaces of the transparent plate-shaped object transparent plate-shaped object by irradiating said linear light source from the end face only, the transparent plate-shaped object The entire surface of the transparent plate is imaged and scanned with an inclination angle of θ with respect to the normal of the transparent plate surface while moving the line camera provided obliquely above at a constant speed in a horizontal direction perpendicular to the scanning direction of the camera, Bounds the predetermined level of the obtained luminance signal A defect detection method for a transparent plate-shaped object, characterized in that to determine the acceptability and.
Alternatively, the present invention corrects the sensitivity according to the distance between the linear light source irradiated from the end face of the transparent plate-like body and the scanning position of the moving camera, and eliminates the difference due to the distance from the light source. This is a defect detection method for a transparent plate-like body as described above .
Alternatively, the present invention provides an air table for levitating the transparent plate-like body, a positioning means for carrying the levitated transparent plate-like body by the carrying means, and stopping the positioning at a predetermined position, and one end face of the transparent plate-like body. A linear light source that emits light from the end face, a line camera that is provided obliquely above the transparent plate-like body surface and scans the transparent plate-like body surface in the width direction, and the line camera at a constant speed in the direction of transporting the transparent plate-like body a traveling means for traveling, Ri Do a predetermined level processes the luminance signal taken from the determination processing unit for determining processing quality as a boundary, the belt-shaped light source formed of the linear light source from a plurality of optical fibers, the belt-like light source is close to and away from the one end surface of the positioned transparent plate-shaped object, the defect of the transparent plate-shaped object, characterized in that a lifting means through which light enters from the end surface in proximity to the end face of the transparent plate-shaped object only when testing A detection device.
Alternatively, the present invention provides a transparent plate that includes a cylindrical pressing roller that is in contact with one end surface of a transparent plate-like body that has been levitated by an air table and that rotates freely, and a cylindrical driving roller that is in contact with an opposite end surface. two opposite sides of the Jo body pressed sandwich is the defect detection apparatus of the transparent plate-shaped object described above, characterized in that a conveying means adapted to convey the transparent plate-shaped body with rotation of said drive roller .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a method and apparatus for detecting fine bubbles, internal defects such as foreign matter, and surface defects such as scratches in a transparent plate-like body such as a glass plate or a resin plate such as acrylic. It consists of a structure as described in the means for solving.
[0016]
That is, the apparatus 1 includes an air table 12 that floats the transparent plate G, a transport unit 10 that transports the floated transparent plate G, a positioning unit 20 that stops positioning at a predetermined position, and a transparent plate A linear light source 3 that is close to one end face of G and irradiates light from the end face, and is provided obliquely above the surface of the transparent plate G, and has an inclination angle θ with respect to the normal of the transparent plate G surface. A plurality of line cameras 5,... That scan the surface in the width direction, and traveling means 30 that causes the line cameras 5, 5,. Further, a lifting / lowering means 40 is provided, which comprises a personal computer 52 as a determination processing means for processing the picked-up brightness / darkness luminance signal and determining the quality with a predetermined level as a boundary, and preferably allowing the linear light source 3 to move up and down.
[0017]
The inclination angle θ between the scanning line of the line camera and the normal line of the transparent plate-like body G surface is about 0 to 60 degrees, but the detection sensitivity is preferably in the range of 30 to 45 degrees.
The air table 12 is provided on the gantry 7, and a plurality of pores are provided at equal intervals on a table plate having a flat upper surface so that high-pressure air is ejected from the pores. The transparent plate-like body G can be levitated.
[0018]
The upper part of the air table 11 is sandwiched and pressed by pressing rolls 21, 21,... That are brought into contact with the end surface of the transparent plate-like body G that is carried and floats on the air table 11, and the driving rolls 14, 14,. A conveying means 10 is provided.
[0019]
The transport means 10 has one end of a plurality of press levers 22, 22,... Mounted on a press frame 23 provided in parallel with the transport direction of the transparent plate G, and the press levers 22, 22,. Cylindrical pressing rolls 21, 21,... That are in contact with the end surface of the transparent plate-like body G and freely rotate are provided at the respective other end portions.
[0020]
.. Are provided between the pressing levers 22, 22,... And the pressing frame 23, respectively, and the end face of the transparent plate G is appropriately pressed by the elastic force of the springs 24, 24,. Adjustment is performed by the pressing position adjusting means 25 so that the pressure can be always pressed.
[0021]
Further, cylindrical drive rolls 14, 14,... Are brought into contact with the end faces of the sides opposite to the sides in contact with the pressing rolls 21, 21,. 14,... Are rotated by a drive motor 15 via a drive belt 16.
[0022]
Further, a positioning means comprising a stopper that can be moved up and down is provided at a predetermined position at the tip of the air table 12, and when the transparent plate G comes to a predetermined position on the air table 12, the tip end surface of the transparent plate G is lowered. And the stopper are brought into contact with each other to be positioned and stopped at that position.
[0023]
The linear light source 3 allows light to enter from the end surface of the transparent plate G, bundles a plurality of elongated optical fibers into a strip shape, and forms a cross-sectional shape of the portion irradiated with light at the tip of each fiber in a linear shape. This is a strip-shaped light source that guides light from a light source such as halogen light or mercury light provided near the other end of the optical fiber to the end surface of the transparent plate-like body via the optical fiber. 6. As shown in FIG. 7, the linear light source 3 is attached to the lower position of the levitation conveyor 17 provided between the carry-out conveyor 13 and the air table 12 via the light source support member 8, and can be moved up and down together with the levitation conveyor 17 by the lifting means 40. It was provided so that.
[0024]
The linear light source 3 is not limited to the bundle of the optical fibers, and the end face of the transparent plate G may be irradiated with light from the light source through a single elongated slit.
[0025]
Further, the irradiation direction angle of the light source of the linear light source 3 is arranged so as to irradiate the end face of the transparent plate G from an angle φ (about 10 degrees) obliquely below the horizontal plane, as shown in FIG. The direct light from the linear light source 3 is shielded at a position above the linear light source 3 between the linear light source 3 and the line cameras 5, 5,. A cover 9 was provided.
[0026]
The elevating means 40 is provided with an elevating member 44 and a shielding plate 43 via a mounting member 42 at the tip of the cylinder rod of the elevating cylinder 41. A rotatable push-up roll 45 that abuts the lower end of the levitation conveyor 17 is provided on the upper part of the elevating member 44, and the levitation conveyor 17 is moved up and down by the operation of the elevating cylinder 41.
[0027]
At the same time, the shielding plate 43 rises with the operation of the elevating cylinder 41 and is brought into contact with the lower end side of the tip of the transparent plate G, so that the light from the linear light source 3 is transmitted from the lower surface other than the end surface of the transparent plate G. This prevents the incident.
[0028]
The tip of the linear light source 3 is attached and fixed below the levitation side of the levitation conveyor 17 via the light source support member 8, and is brought close to the tip side end surface of the transparent plate G as the levitation conveyor 17 rises.
[0029]
Further, as shown in FIG. 1, the traveling means 30 is provided with a plurality of line cameras 5,... With a θ angle obliquely above the transparent plate G, and the surface of the transparent plate G Are scanned by the line cameras 5, 5,.
[0030]
As shown in FIG. 5, the line cameras 5, 5,... Have a support column from the gantry 7, and a traveling rail 32 is provided in a direction parallel to the transport direction of the transparent plate G on the upper end side of the support column. A traveling frame 33 is horizontally provided on a guide that fits the rail 32 and travels along the rail 32 in the width direction across the conveyor. The line cameras 5, 5,... Are attached and fixed to the traveling frame 33 in the same direction at the same angle via the attachment members 34, 34,.
[0031]
Further, as shown in FIG. 4, the pressing position adjusting means 25 adjusts according to the size of the transparent plate G to be inspected. The press rolls 21, 21,... Rotatably provided at the ends of the press levers 22, 22,... Have an appropriate pressing force on the end surface of the transparent plate-like body G by the elastic force of the springs 24, 24,. The position of the pressing frame 23 can be freely adjusted by operating the handle so that it can always be pressed.
[0032]
Further, the personal computer 52 serving as the determination processing means binarizes the brightness signal of the brightness captured by the plurality of line cameras 5, 5,. When the size of the pixel to become exceeds a predetermined number of pixels, the code quality is judged.
[0033]
Further, the sensitivity correction means 60 fixes the position of the linear light source 3 irradiated from the end face of the transparent plate G, and when the line cameras 5, 5,. Since the scanning position of 5, 5,... Is away from the linear light source 3, the illuminance decreases, so that the slice level for binarization is set for sensitivity correction according to the distance between the scanning position and the linear light source 3. The difference due to the distance from the linear light source 3 is eliminated by either reducing the brightness or increasing the brightness signal of brightness.
[0034]
The defect inspection apparatus 1 according to the present invention has the above-described configuration. Next, a method for inspecting defects using the apparatus will be described.
First, the transparent plate-like body G is conveyed by the carry-in conveyor 11, a plurality of pores are provided on the upper surface, and the transparent plate-like body G such as a glass plate or a resin plate is provided on the air table 12 that ejects high-pressure air from the pores. Bring in and lift up.
[0035]
Subsequently, the cylindrical pressing rolls 21, 21,... That freely rotate are brought into contact with one end surface of the side parallel to the direction in which the transparent plate G in the floated state is conveyed, and the opposite end surface of one side is brought into contact with the end surface. The cylindrical drive rolls 14, 14,... Are pressed and sandwiched, and conveyed to a predetermined position at the tip of the air table 12.
[0036]
When the transparent plate G moves and approaches the predetermined position at the tip of the air table 12 by the transport means 10, the drive motor 15 is decelerated by a sensor (not shown) provided in the air table 12 and is provided near the tip of the air table 12. The stopper is lowered to a height at which it comes into contact with the front end side of the transparent plate G, and the transparent plate G is stopped in a floating state.
[0037]
Subsequently, the levitation conveyor 17 between the air table 12 and the carry-out conveyor 13 is lifted and floated by the operation of the lifting cylinder 41, and the linear light source 3 provided at the lower part of the levitation conveyor 17 is slanted on the end surface on the front end side of the transparent plate G Move close to the bottom. At the same time, the shielding plate 43 raised by the elevating means is brought into contact so as to slightly protrude from the front end side of the transparent plate-like body G, and the light of the linear light source 3 from obliquely below enters from the lower surface of the transparent plate-like body G. I tried not to.
[0038]
Further, a shielding cover 9 is provided on the center line connecting the linear light source 3 and the line cameras 5, 5,... Above the tip of the linear light source 3, and the light from the linear light source 3 is directly reflected on the line camera 5, 5, so that it is not incident on.
[0039]
The linear light source 3 is incident obliquely from the end surface of the transparent plate G through a fiber bundled with light from the light source, and repeatedly and totally reflects between the front and back surfaces of the transparent plate G. When light is applied to internal defects such as bubbles or foreign substances in the plate-like body G, or light is applied to surface defects such as scratches, the light of the defective portions is scattered, and the scattered light is scattered to the line sensors 5, 5,・ ・ It is imaged in.
[0040]
As shown in FIGS. 1 and 5, the entire width of the transparent plate G is divided and scanned by a plurality of line cameras 5, 5,... Arranged in a line above the air table 12. The image data picked up by the sensors 5, 5,... Is converted into an electric signal representing the luminance level by the camera controller, and then taken into the image processing device 51, and assembled and synthesized into the inspection width of the transparent plate G.
[0041]
The obtained luminance waveform is binarized at the set slice level, divided into a low luminance signal “0” and a high luminance signal “1”. If the number of pixels of the high luminance signal is larger than the specified number, it is regarded as a defect and the personal computer The X coordinate, the Y coordinate, etc. are stored in the.
[0042]
3 and 5 scans the entire surface of the transparent plate G while each line camera 5, 5,... Runs from the front side to the rear side of the transparent plate G. Then, each luminance signal waveform for each scanning line is binarized at the slice level in the same manner as described above, and quality is determined.
[0043]
In this way, while the transparent plate G is scanned by the plurality of line cameras 5, 5,..., The traveling means 30 is moved to detect defects on the entire surface of the transparent plate G.
[0044]
Further, sensitivity correction is performed according to the distance between the linear light source 3 irradiated from the end face of the transparent plate G and the scanning position of the traveling camera.
Further, when the position of the linear light source 3 irradiated from the end face of the transparent plate G is fixed and the line cameras 5, 5,. Since the illuminance gradually decreases far from the linear light source 3 and the illuminance gradually decreases, the sensitivity correction means 60 performs sensitivity correction according to the distance between the scanning position and the linear light source 3, that is, binarization. In order to eliminate the luminance difference due to the distance from the linear light source 3 and to make it constant, correction is performed such as lowering the slice level or increasing the bright and dark luminance signal level.
[0045]
Further, for several millimeters from the edge of the transparent plate G, a masking process or the like is performed in a soft manner so that even if scattered light from the seaming part is incident on the line cameras 5, 5,. To do.
[0046]
When the inspection is completed for the entire surface of the transparent plate G, the shielding plate 43 and the elevating member 44 of the linear light source 3 are lowered by the backward movement of the elevating cylinder 41 of the elevating means 40.
As the elevating member 44 is lowered, the levitation conveyor 17 is lowered, the linear light source 3 fixed to the lower part of the levitation conveyor 17 is also lowered, and the transparent plate G can be carried out. The transparent plate was carried out.
[0047]
Further, if the obtained results are stored and processed by a personal computer or the like, the X-axis and Y-axis directions of the transparent plate G are combined with the travel position by the travel means 30 of the line cameras 5, 5,. Management information can be obtained based on the position and size of the defect.
[0048]
As in the present invention, the defect is inspected in the state where the transparent plate G is levitated on the air table 12, so that the transparent plate G is compared with the case where it is placed on the table and inspected. Defect inspection can be performed under favorable flat conditions without bending.
[0049]
Since a very small defect must be detected, focus is required when imaging the surface of the transparent plate, and the air table 12 is a size of the transparent plate G that floats on the air table 12. Even if the plate thickness changes, the air volume can be adjusted so that the flying height of the transparent plate G is always constant from the upper end surface of the table. If you register the settings, you can change them with a single touch when changing the inspection type.
[0050]
Further, a belt-like linear light source 3 made of fiber is made to irradiate obliquely from below and close to the end surface of the transparent plate G, and the shielding plate 43 from the edge of the transparent plate G from below the transparent plate G. Since it is made to contact | abut in the position which protrudes slightly, the light by the linear light source 3 does not inject from other than the end surface of the transparent plate-shaped body G, and a defect can be detected accurately and stably.
[0051]
Further, the defect detection device 1 is provided in the middle of the line for transporting the transparent plate G, and the linear light source 3 that is illumination is freely raised and lowered, and is instantaneously raised and lowered at the start and end of inspection, and the end face of the transparent plate G As a result, the processing tact can be speeded up.
[0052]
As described above, the surface defects and internal defects of the transparent plate-like body G such as a glass plate, an acrylic resin plate, and a polycarbonate resin plate were detected. However, the present invention is not limited to this and can be applied to various transparent plate-like bodies. it can.
[0053]
The plate thickness of the transparent plate G can correspond to a plate thickness of 1 mm or less such as 0.55 mm or 0.7 mm to a plate thickness of several mm.
The defect detected as described above is further processed, and information such as the X-axis and Y-axis coordinate positions of the obtained defect is output and stored in a personal computer or the like, and in the subsequent process based on instruction control of the personal computer or the like. The glass including the part determined to be a defect can be removed or processed into various types of management information.
[0054]
【The invention's effect】
In the present invention, since the linear light source is a fiber light source, even a transparent plate having a very thin thickness can be reliably brought close to the end face and irradiated from the end face.
[0055]
In addition, since the linear light source can be raised and lowered by the lifting means, it is close to the end face of the transparent plate-like body only during the inspection, and after the inspection is completed, it is retracted immediately below the conveyor, so the transparent plate-like body Replacement is fast and complete inspection is possible with a fast tact.
[0056]
Further, even minute internal defects and surface defects of about 10 microns can be automatically and reliably detected at low cost, and are not affected by dirt, dust, dust, or the like attached to the transparent plate.
[0057]
Furthermore, since the transparent plate-like object is inspected in a floating state on the air table, and the conveyance is performed by holding and pressing the end surface edge of the transparent plate-like object, it is flat without being bent by its own weight. It can be inspected in the state, there is no false detection, and there is no fear of scratching or soiling the transparent plate-like body due to the inspection.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a main part of a defect detection apparatus of the present invention.
FIG. 2 is a luminance signal waveform captured by a line camera.
FIG. 3 is a side view of the defect detection apparatus of the present invention.
FIG. 4 is a plan view of the defect detection apparatus of the present invention.
FIG. 5 is a front view of the defect detection apparatus of the present invention.
FIG. 6 is a side view of the defect detection apparatus showing the inspection state of the transparent plate by raising the linear light source.
FIG. 7 is a side view of the defect detection apparatus showing a state of transporting a transparent plate by lowering a linear light source.
[Explanation of symbols]
G Transparent plate 1 Defect detection device 2 Defect 3 Linear light source 5 Line camera 6 Controller 7 Mounting base 10 Shield cover 10 Conveying means 11 Carrying conveyor 12 Air table 13 Carrying out conveyor 14 Driving roll 15 Driving motor 16 Driving belt 17 Floating conveyor 20 Positioning means 21 Pressing roll 22 Pressing lever 23 Pressing frame 24 Spring 25 Pressing position adjusting means 26 Adjusting means Traveling rail 30 Traveling means 32 Traveling rail 33 Traveling frame 40 Lifting means 41 Lifting cylinder 43 Shielding plate 44 Lifting member 45 Pushing roll 51 Image processing Device 52 PC

Claims (4)

エアテーブル上に搬入し位置決めした透明板状体の一端面から光を照射し、透明板状体の上方に設けたラインカメラにて透明板状体の表面を走査し、得られた画像信号により透明板状体の欠陥を検出する方法において、線状光源を昇降自在とし、検査中のみ透明板状体の端面に近接させ、非検査時は搬送コンベアの頂部よりやや下方に待避させ、透明板状体の搬出時に通過自在とし、透明板状体の端面のみから前記線状光源を照射して透明板状体の表裏面間を繰り返し全反射させ、透明板状体の斜め上方に設けたラインカメラをカメラの走査方向と直交する水平方向に一定速度で移動させながら透明板状体面の法線に対して角度θの傾斜角度をもって透明板状体全面を撮像走査し、得られた輝度信号の所定レベルを境界として良否を判定することを特徴とする透明板状体の欠陥検出方法。Light is irradiated from one end face of the transparent plate that is carried on and positioned on the air table, and the surface of the transparent plate is scanned with a line camera provided above the transparent plate, and the obtained image signal is used. In the method for detecting defects in the transparent plate, the linear light source can be moved up and down, close to the end surface of the transparent plate only during inspection, and retracted slightly below the top of the conveyor when not inspected. and freely pass during unloading Jo body, a transparent plate-shaped object is totally reflected repeatedly between the front and back surfaces of the transparent plate-shaped object by irradiating said linear light source from the end face only, provided obliquely above the transparent plate-shaped object line While moving the camera at a constant speed in the horizontal direction perpendicular to the scanning direction of the camera, the entire surface of the transparent plate is imaged and scanned at an angle θ with respect to the normal of the transparent plate surface, and the luminance signal obtained is Pass / fail is determined at a predetermined level as a boundary Defect detection method of the transparent plate-shaped object, wherein the door. 透明板状体の端面より照射する前記線状光源と走行移動するカメラの走査位置との距離に応じて感度補正を行い、光源からの距離の遠近による差を無くすようにしたことを特徴とする請求項1記載の透明板状体の欠陥検出方法。  Sensitivity correction is performed according to the distance between the linear light source irradiated from the end face of the transparent plate-like body and the scanning position of the traveling camera, so that the difference due to the distance from the light source is eliminated. The defect detection method for a transparent plate-like body according to claim 1. 透明板状体を浮上させるエアテーブルと、浮上した透明板状体を搬送手段により搬送させ、所定位置で位置決め停止させる位置決め手段と、透明板状体の一端面と近接し端面より光を照射する線状光源と、透明板状体面の斜め上部に設け透明板状体面を幅方向に走査するラインカメラと、ラインカメラを透明板状体を搬送する方向に一定速度で走行させる走行手段と、撮像した輝度信号を処理し所定レベルを境界として良否を判定処理する判定処理手段とからなり、前記線状光源を複数本の光ファイバーからなる帯状光源とし、該帯状光源を位置決めされた透明板状体の一端面に近接離反させ、検査時のみ透明板状体の端面に近接させて端面より光を入射させる昇降手段を設けたことを特徴とする透明板状体の欠陥検出装置。An air table for levitating the transparent plate-like body, a positioning means for carrying the floated transparent plate-like body by a carrying means and stopping the positioning at a predetermined position, and an end face close to one end surface of the transparent plate-like body and irradiating light from the end face A linear light source, a line camera that is provided obliquely above the transparent plate-like body surface, scans the transparent plate-like body surface in the width direction, traveling means that runs the line camera at a constant speed in the direction of transporting the transparent plate-like body, and imaging Ri Do predetermined level processes the luminance signal and a determination processing means for determining processing quality as a boundary, the belt-shaped light source formed of the linear light source from a plurality of optical fibers, transparent plate-shaped body that is positioned belt-like light source An apparatus for detecting defects in a transparent plate-like body, comprising elevating means for bringing light into the end surface of the transparent plate-like body and causing light to enter from the end face only in the inspection . エアテーブルで浮上した透明板状体の片端面に当接、かつフリー回転する円筒状の押圧ローラーと、対向する端面に当接する円筒状の駆動ローラーとで、透明板状体の対向する二辺を押圧挟持し、前記駆動ローラーの回転で透明板状体を搬送するようにした搬送手段を設けたことを特徴とする請求項記載の透明板状体の欠陥検出装置。Two opposing sides of the transparent plate-like body, a cylindrical pressing roller that makes contact with one end surface of the transparent plate-like object that floats on the air table and rotates freely, and a cylindrical drive roller that makes contact with the opposite end surface The defect detection device for a transparent plate-like body according to claim 3 , further comprising a conveying unit configured to convey the transparent plate-like body by rotating the driving roller.
JP06873998A 1998-03-18 1998-03-18 Defect detection method and apparatus for transparent plate Expired - Fee Related JP3859859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06873998A JP3859859B2 (en) 1998-03-18 1998-03-18 Defect detection method and apparatus for transparent plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06873998A JP3859859B2 (en) 1998-03-18 1998-03-18 Defect detection method and apparatus for transparent plate

Publications (2)

Publication Number Publication Date
JPH11264803A JPH11264803A (en) 1999-09-28
JP3859859B2 true JP3859859B2 (en) 2006-12-20

Family

ID=13382469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06873998A Expired - Fee Related JP3859859B2 (en) 1998-03-18 1998-03-18 Defect detection method and apparatus for transparent plate

Country Status (1)

Country Link
JP (1) JP3859859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505498B1 (en) 2013-09-16 2015-03-24 주식회사 엠티엠 Cover-glass Analysis Apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359686B1 (en) * 1999-06-29 2002-03-19 Corning Incorporated Inspection system for sheet material
EP1816466B1 (en) 2004-11-24 2010-06-23 Asahi Glass Company, Limited Method and device for inspecting defect of transparent plate body
JP4780984B2 (en) * 2005-03-18 2011-09-28 オリンパス株式会社 Substrate transfer device
JP2008076097A (en) * 2006-09-19 2008-04-03 Olympus Corp Substrate inspection device
KR100803046B1 (en) 2007-03-28 2008-02-18 에스엔유 프리시젼 주식회사 Vision inspection system and method for inspecting workpiece using the same
JP5693001B2 (en) * 2009-12-28 2015-04-01 キヤノン株式会社 Measurement system, image correction method, and computer program
WO2015159352A1 (en) * 2014-04-14 2015-10-22 株式会社東芝 Web inspection device, web inspection method, and web inspection program
CN104698156B (en) * 2015-02-12 2016-08-24 沭阳鑫达新材料有限公司 Plate glass quality detection device and using method thereof
SG11202107495UA (en) 2019-02-28 2021-08-30 Yoshino Gypsum Co Ltd Apparatus for inspecting plate-like bodies
CN109765183B (en) * 2019-03-28 2023-11-24 青岛海鼎通讯技术有限公司 Mobile phone screen detection device and application method thereof
JP7292713B2 (en) * 2019-05-10 2023-06-19 株式会社ヒューテック Inspection function confirmation method and inspection function confirmation device for optical inspection machine
CN110624856A (en) * 2019-10-11 2019-12-31 东莞领益精密制造科技有限公司 OCA check out test set
CN112763503A (en) * 2020-12-24 2021-05-07 山西大数据产业发展有限公司 High-grade cold-rolled silicon steel hole detection system based on machine vision
CN113376155B (en) * 2021-06-03 2022-12-09 深圳凯吉星农产品检测认证有限公司 Intelligent food detection system and detection method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505498B1 (en) 2013-09-16 2015-03-24 주식회사 엠티엠 Cover-glass Analysis Apparatus

Also Published As

Publication number Publication date
JPH11264803A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
JP3859859B2 (en) Defect detection method and apparatus for transparent plate
JP5521377B2 (en) Glass plate defect identification method and apparatus
JP4842422B2 (en) Sheet material inspection method
US5132791A (en) Optical sheet inspection system
KR20100095078A (en) Detection apparatus for particle on the glass and detection method using the same
JPH11337504A (en) Inspection method and apparatus for discriminating defects in glass sheet
KR20090033031A (en) Substrate surface inspection apparatus
KR20120031872A (en) Glass substrate defect inspection device and glass substrate defect inspection method
KR20120094465A (en) Defect inspection apparatus for separated and transparent or translucent articles with low rigidity and inspection method thereof
KR20180116154A (en) Inspection apparatus for cover glass
JPH10148619A (en) Method and device for inspecting face defect of substrate under inspection
JP2015225003A (en) Appearance inspection device
KR101111065B1 (en) Apparatus for inspecting substrate
JP2010101692A (en) Method and device for inspecting sheetlike article
JP2013246106A (en) Conveyance unit, conveyance device, and inspection apparatus
JP2004513046A (en) Apparatus for continuously moving a plurality of objects having rotational symmetry and application of the apparatus to visual inspection and checking
JP2005083906A (en) Defect detector
JP3860202B2 (en) Transparency sheet defect inspection system
JP3677885B2 (en) Sheet inspection equipment
JP4243837B2 (en) Transparent substrate surface inspection method and inspection apparatus
CN211825732U (en) Non-contact film pressing backlight panel detection device and backlight panel automatic detection line
JPH11248643A (en) Detection device for foreign matter in transparent film
JP2006349599A (en) Device and method for inspecting transparent substrate
JP4232893B2 (en) Coating surface inspection device for vehicles
JP2004333198A (en) Substrate inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees