JPH10148619A - Method and device for inspecting face defect of substrate under inspection - Google Patents

Method and device for inspecting face defect of substrate under inspection

Info

Publication number
JPH10148619A
JPH10148619A JP31851596A JP31851596A JPH10148619A JP H10148619 A JPH10148619 A JP H10148619A JP 31851596 A JP31851596 A JP 31851596A JP 31851596 A JP31851596 A JP 31851596A JP H10148619 A JPH10148619 A JP H10148619A
Authority
JP
Japan
Prior art keywords
defect
light
inspection
surface defect
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31851596A
Other languages
Japanese (ja)
Inventor
Takashi Mizuno
尊司 水野
Tadaaki Hosoda
忠昭 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP31851596A priority Critical patent/JPH10148619A/en
Publication of JPH10148619A publication Critical patent/JPH10148619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a fine hair-line-like defect with relatively less change in the quantity of light, and at the same time, discriminate whether the defect is located on the front or reverse side by applying, light in straight band shape onto both the front and reverse sides of a substrate to be inspected and detecting scattered light generated from each surface with a CCD camera. SOLUTION: A glass substrate 11 is carried and moved in the direction of an arrow (a) by each carrying roller 22 of a carrying mechanism 21, and light 32a and 32b in straight band shape from light sources 31a and 31b is applied continuously to a specific position of each glass surface of a surface side 12 and a reverse side 13 of the glass substrate 11. A defect detection signal captured by one-dimensional CCD cameras 41a and 41b is processed by corresponding defect signal processors 42a and 42b and then is inputted to a microprocessor 43. The microcomputer 43 performs processing as the amount of feature of each face defect signal, makes comparison along with defect signal position data, judges whether the detected defect is on the surface side 12 or on the reverse side 13, and judges whether the glass substrate 11 is conforming to an inspection standard or not.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、検査基体の面欠陥
検査方法及び装置に関し、さらに詳しくは、例えば、液
晶表示素子に適用されるガラス基板や、表面に酸化膜
(SiO2 )あるいは透明導電膜(ITO)を被着させ
たガラス基板等の面欠陥(特に、ヘヤーラインと呼ばれ
るキズ欠陥)検査をなすための一次元CCD(Charge Co
upled Device) カメラによる面欠陥検査方法及び装置の
改良に係るものである。
BACKGROUND OF THE INVENTION The present invention relates to a surface defect inspection method and apparatus for inspecting a substrate, more particularly, for example, a glass substrate which is applied to a liquid crystal display device, the oxide film on the surface (SiO 2) or the transparent conductive One-dimensional CCD (Charge Co.) for inspecting surface defects (especially, flaws called hair lines) on a glass substrate or the like on which a film (ITO) is applied.
upled Device) This relates to an improvement of a method and an apparatus for inspecting a surface defect using a camera.

【0002】[0002]

【従来の技術】一般に、この種の各種製品に対する面欠
陥検査については、従来から目視によって行われてきた
が、CCDカメラの性能向上に伴い、各種の産業分野に
おいて広くCCDカメラを用いた自動検査に置き換えら
れつつあり、特に、液晶表示技術分野では、目視によっ
ては必ずしも達成し得ない微細なヘヤーラインの確認に
合わせて、より厳しく且つ高速な製品検査、つまり、こ
こでは液晶表示面を形成する基板材料としてのガラス基
板や、表面にSiO2 膜あるいはITO膜を被着させた
ガラス基板の面検査を行う必要上、一次元CCDカメラ
による面欠陥検査が望まれており、一部においては既に
利用され始めている。
2. Description of the Related Art In general, surface defect inspection of various kinds of products of this kind has been carried out visually, but with the improvement of the performance of the CCD camera, automatic inspection using the CCD camera has been widely performed in various industrial fields. In particular, in the field of liquid crystal display technology, more rigorous and faster product inspection, that is, the liquid crystal display surface is formed here, in accordance with the confirmation of fine hair lines that cannot always be achieved visually. Since it is necessary to perform surface inspection of a glass substrate as a substrate material or a glass substrate having a surface coated with a SiO 2 film or an ITO film, surface defect inspection using a one-dimensional CCD camera is desired. It is starting to be used.

【0003】図3ないし図5に従来の一次元CCDカメ
ラを用いた一般的な面欠陥検査装置の概要を模式的に示
す。
FIGS. 3 to 5 schematically show a general surface defect inspection apparatus using a conventional one-dimensional CCD camera.

【0004】ここで、通常の欠陥としては、先に述べた
ヘヤーラインのような微細なキズの他にも、例えば、異
物の付着、ピンホール、その他のキズ等が挙げられる
が、検査対象物(検査基体)が光透過性である場合に
は、図3に示すように、暗視野下で光源1からの直線帯
状の照射光、例えば、蛍光灯やハロゲンランプを用いた
伝送ライトによって得られる直線帯状の照射光1aを矢
印方向に搬送される検査対象物(この場合、ガラス基板
に相当)2に照射して透過させ、該透過光1bを搬送方
向に直交して直線的に配した一次元CCDカメラ3に捉
えて電気信号に変換するようにしたもので、この図3の
従来例では、照射光1aが検査対象物2を透過する際
に、該検査対象物2の該当透過面部分に欠陥が存在する
と、該欠陥によって透過光量が変化することから、その
透過光量の変化を一次元CCDカメラ3で検出するので
ある。
[0004] Examples of ordinary defects include, in addition to the fine scratches such as the hairline described above, for example, adhesion of foreign matter, pinholes, and other scratches. When the (inspection base) is light-transmissive, as shown in FIG. 3, it is obtained by a linear band-shaped irradiation light from the light source 1 under a dark field, for example, a transmission light using a fluorescent lamp or a halogen lamp. A linear band-shaped irradiation light 1a is applied to an inspection object (corresponding to a glass substrate in this case) 2 conveyed in the direction of the arrow and transmitted therethrough, and the transmitted light 1b is linearly arranged orthogonally to the conveyance direction. In the conventional example of FIG. 3, when the irradiation light 1a passes through the inspection target 2, the corresponding transmission surface portion of the inspection target 2 is used. If there is a defect in the Since the amount varies, it is to detect a change in the transmitted light intensity in the one-dimensional CCD camera 3.

【0005】また、検査対象物2が光透過性でない場合
には、図4に示すように、光源4からの同様な直線帯状
の照射光4aを同様に矢印方向に搬送される検査対象物
(この場合、表面にSiO2 膜あるいはITO膜を被着
させたガラス基板に相当)5に所定の入射角度で照射し
て反射させ、該反射光4bを同様に一次元CCDカメラ
6に捉えるようにしたもので、この図4の従来例では、
照射光4aが検査対象物5の面で反射される際に、該検
査対象物5の該当反射面部分に欠陥が存在すると、該欠
陥によって反射光量が変化することから、その反射光量
の変化を一次元CCDカメラ6で検出するのである。
When the inspection object 2 is not light-transmitting, as shown in FIG. 4, a similar linear band-shaped irradiation light 4a from the light source 4 is similarly transported in the direction of the arrow. In this case, a one-dimensional CCD camera 6 similarly captures the reflected light 4b by irradiating it at a predetermined incident angle onto a glass substrate 5 whose surface is coated with a SiO 2 film or an ITO film, and reflecting the reflected light 4b. In the conventional example of FIG.
When the irradiation light 4a is reflected by the surface of the inspection object 5, if there is a defect on the corresponding reflection surface portion of the inspection object 5, the amount of reflected light changes due to the defect. This is detected by the one-dimensional CCD camera 6.

【0006】ところが、これらの図3及び図4に示す従
来の各手段では、その何れもが一次元CCDカメラ3、
6のベース信号に透過光1bないしは反射光4bが重畳
されるために、先に述べたヘヤーラインのような微細な
キズ欠陥に伴う光量変化の少ない欠陥を検出し得ないも
のであった。
However, in the conventional means shown in FIGS. 3 and 4, all of them are one-dimensional CCD camera 3,
Since the transmitted light 1b or the reflected light 4b is superimposed on the base signal of No. 6, it is impossible to detect a defect with a small change in the amount of light due to a fine flaw defect such as the hairline described above.

【0007】この対応策として、図5に示すように、光
源7からの同様な直線帯状の照射光7aを同様に矢印方
向に搬送される検査対象物(この場合、ガラス基板に相
当)8に所定の入射角度で照射して反射させ、該照射光
7aによる直接光あるいは反射光以外に、被照射面の面
欠陥によって発生する散乱光7bを同様に一次元CCD
カメラ9に捉えるようにしたもので、この図5の従来例
では、照射光7aが検査対象物8の面で反射される際
に、該検査対象物8の該当反射面部分に欠陥が存在する
と、該欠陥によって散乱されるが、このときの散乱光量
のみを一次元CCDカメラ9で検出するのである。
As a countermeasure for this, as shown in FIG. 5, a similar linear band irradiation light 7a from a light source 7 is similarly applied to an inspection object (corresponding to a glass substrate) 8 which is conveyed in the direction of the arrow. Irradiation is performed at a predetermined incident angle and reflected, and scattered light 7b generated due to a surface defect of a surface to be irradiated other than direct light or reflected light by the irradiation light 7a is similarly subjected to a one-dimensional CCD.
In the conventional example of FIG. 5, when the irradiation light 7a is reflected on the surface of the inspection object 8, it is determined that a defect exists in the corresponding reflection surface portion of the inspection object 8. The one-dimensional CCD camera 9 detects only the amount of light scattered by the defect.

【0008】即ち、この図5に示す従来の手段において
は、透過光ないしは反射光の何れもが一次元CCDカメ
ラ9のベース信号には重畳されず、散乱光7bのみが重
畳されるために、ヘヤーラインのような光量変化の少な
い微細なキズ欠陥、例えば、1μm程度の幅をもつキズ
欠陥や、同様に1μm程度の微小な密集欠陥の検出が可
能であって、液晶表示技術分野での厳しい検査基準によ
る製品検査を高速で行う目的のために実用化されてい
る。
That is, in the conventional means shown in FIG. 5, neither the transmitted light nor the reflected light is superimposed on the base signal of the one-dimensional CCD camera 9, and only the scattered light 7b is superimposed. It is possible to detect a fine flaw having a small change in the amount of light such as a hairline, for example, a flaw having a width of about 1 μm, and a similarly fine flaw of about 1 μm, which is severe in the field of liquid crystal display technology. It has been put to practical use for the purpose of performing high-speed product inspection based on inspection standards.

【0009】[0009]

【発明が解決しようとする課題】ここで、液晶表示技術
分野をはじめとする各種技術分野での機能性材料として
の検査基体に対する表面側の検査基準は、その裏面側と
は異なって、該表面側に膜付け等の後処理がなされるの
が必須であることから、該当検査基準がますます厳しく
なる傾向にある。
Here, the inspection standard on the front side of a test substrate as a functional material in various technical fields including the liquid crystal display field is different from that of the back side, Since it is necessary to perform post-processing such as film-coating on the side, the inspection standards tend to be more strict.

【0010】先に述べた従来の各検査手段の場合には、
検査基体のそれ自体が、例えば、ガラス基板のように表
裏両面の態様がほぼ同様で、該表裏を比較的判断し難い
ものであると、検出される検査基体の欠陥が表面側に存
在するのか裏面側に存在するのかが容易には区別でき
ず、それほど厳しい検査基準を必要としない裏面側に対
しても、表面側と全く同様な厳しい検査基準のもとに検
査を行なわざるを得ないため、該裏面側での検査基準が
厳し過ぎることになり、たとえ裏面側としては良品であ
っても、これを不良品として判別する場合が多く、この
結果、製品全体の製造歩留り低下を招く惧れがあった。
In the case of each of the conventional inspection means described above,
If the inspection substrate itself has almost the same aspect on both sides as a glass substrate, for example, and it is relatively difficult to judge the front and back, if a defect of the inspection substrate to be detected exists on the front surface side? It is not easy to distinguish whether it exists on the back side, and even the back side that does not require so strict inspection standards must be inspected under exactly the same strict inspection standards as the front side However, the inspection standard on the back side is too strict, and even if the back side is a good product, it is often determined as a defective product. As a result, the production yield of the entire product may be reduced. was there.

【0011】従って、最近では、この種の検査基体に対
する検査として、欠陥が検出された場合、特に、該欠陥
が表面側の欠陥であるか、あるいは裏面側の欠陥である
かを容易に判別して検査し得る手段の提案が望まれてい
る。
Therefore, recently, when a defect is detected as an inspection of this type of inspection substrate, it is particularly easy to determine whether the defect is a front-side defect or a rear-side defect. There is a need for a proposal of a means that can be inspected by using the method.

【0012】そこで、このような検査基体の表裏を明確
に区分するという要望に応えるために、搬送移動する検
査基体の被検出面に対して非常に浅い入射角度で直線帯
状の照射光を照射し、且つその反射光のみを一次元CC
Dカメラに捉えて検出する手段も提案されてはいるが、
この場合には、照射角度が浅いので、該対象となる検査
基体の反りとか搬送に伴う上下振動によって検出感度が
大きく影響されることになり、ここでの液晶表示技術分
野でのように、ガラス基板のように比較的大きな検査基
体が対象であると、該手段を実質的には採用できないも
のであった。
Therefore, in order to meet such a demand for clearly separating the front and back of the inspection base, a linear belt-shaped irradiation light is applied at a very shallow incident angle to the detection surface of the inspection base to be transported and moved. And only the reflected light is one-dimensional CC
Means of detecting and detecting with a D camera have been proposed,
In this case, since the irradiation angle is shallow, the detection sensitivity is greatly affected by the warpage of the target test substrate or the vertical vibration associated with the conveyance. If a relatively large test substrate such as a substrate is a target, this means cannot be substantially adopted.

【0013】本発明は、このような従来の問題点を解消
するためになされたもので、その目的とするところは、
たとえヘヤーライン状のキズ欠陥のように比較的光量変
化の少ない微細な欠陥をも検出できて、しかも該検出さ
れる欠陥が表面側であるか裏面側であるかを容易に判別
可能にすると共に、該表面側と裏面側とに対してそれぞ
れに相応する異なった検査基準を適用して製造歩留りの
よい製品検査を高速且つ能率的になし得るようにした検
査基体の面欠陥検査方法及び装置を提供することであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem.
Even a fine defect having a relatively small change in the amount of light, such as a hairline-shaped flaw defect, can be detected, and it is possible to easily determine whether the detected defect is on the front side or the back side. A method and an apparatus for inspecting a surface defect of an inspection base, which can perform a product inspection with a good production yield at high speed and efficiently by applying different inspection standards corresponding to the front side and the rear side, respectively. To provide.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る請求項1に記載の検査基体の面欠陥検
査方法は、表裏両面を有する検査基体の面に直線帯状の
照射光を照射した状態で、該照射光による直接光あるい
は反射光以外に、被照射面の面欠陥によって発生する散
乱光を一次元CCDカメラで採光して検出し、該被照射
面の面欠陥の有無を検出する検査方法において、前記検
査基体の表裏双方の面にそれぞれ直線帯状の照射光を照
射した状態で、該表裏双方の被照射面の各面欠陥によっ
て発生する散乱光をそれぞれに各別の一次元CCDカメ
ラで採光して表裏それぞれの面欠陥検出信号を得ると共
に、表面側一次元CCDカメラによって得た表面側面欠
陥検出信号の特徴量と裏面側一次元CCDカメラによっ
て得た裏面側面欠陥検出信号の特徴量とを比較し、検出
された面欠陥が表面側の面欠陥であるか裏面側の面欠陥
であるかを判断することを特徴とするものである。
According to a first aspect of the present invention, there is provided a method for inspecting a surface defect of an inspection substrate, the method comprising: In the state where the light is irradiated, in addition to the direct light or the reflected light by the irradiation light, the scattered light generated by the surface defect of the irradiation surface is collected and detected by a one-dimensional CCD camera, and the presence or absence of the surface defect of the irradiation surface In the inspection method of detecting the irradiating light in the form of a linear strip on both the front and back surfaces of the inspection substrate, scattered light generated by each surface defect of the irradiated surface on both the front and back surfaces is respectively different from each other. A one-dimensional CCD camera is used to obtain the surface defect detection signals for each of the front and back sides, and the characteristic amount of the front side defect detection signal obtained by the front side one-dimensional CCD camera and the back side surface defect obtained by the back side one-dimensional CCD camera. Comparing the feature quantity of the detection signal, in which the detected surface defect is characterized by determining whether the back side of the surface defect or a surface defect on the surface side.

【0015】本発明に係る請求項2に記載の検査基体の
面欠陥検査方法は、請求項1の面欠陥検査方法におい
て、面欠陥検出信号特徴量の少なくとも二つ以上を用い
て面欠陥が表面側の面欠陥であるか裏面側の面欠陥であ
るかを判断することを特徴とするものである。
According to a second aspect of the present invention, there is provided a method of inspecting a surface defect of an inspection substrate according to the first aspect, wherein at least two or more surface defect detection signal characteristic amounts are used to detect a surface defect. It is characterized by determining whether the defect is a surface defect on the side or a surface defect on the back side.

【0016】本発明に係る請求項3に記載の検査基体の
面欠陥検査方法は、請求項1または2の何れかの面欠陥
検査方法において、前記検査基体が、光透過性検査基体
であることを特徴とするものである。
According to a third aspect of the present invention, in the method of inspecting a surface defect of an inspection substrate according to any one of the first and second aspects, the inspection substrate is a light transmitting inspection substrate. It is characterized by the following.

【0017】また、本発明に係る請求項4に記載の検査
基体の面欠陥検査装置は、表裏両面を有する検査基体の
面に直線帯状の照射光を照射した状態で、該照射光によ
る直接光あるいは反射光以外に、被照射面の面欠陥によ
って発生する散乱光を一次元CCDカメラで採光して検
出し、該被照射面の面欠陥の有無を検出する検査装置に
おいて、前記検査基体を所定速度で連続的に搬送する搬
送手段と、該搬送される検査基体の表裏両面の各特定位
置にそれぞれ光源からの直線帯状の照射光を所定入射角
度で照射する各照射手段と、該各照射光による直接光あ
るいは反射光以外に、各被照射面の面欠陥によって発生
する散乱光をそれぞれに捉えて電気信号に変換する各一
次元CCDカメラと、該各一次元CCDカメラによって
検出されたそれぞれの各面欠陥検出信号を処理する各欠
陥信号処理器と、該各欠陥信号処理器で処理されたそれ
ぞれの各信号を処理して面欠陥検出信号の特徴量を得た
上で、表面側面欠陥検出信号の特徴量と裏面側面欠陥検
出信号の特徴量とを比較して前記検査基体の表面側と裏
面側とを判別するマイクロコンピュータとを備えること
を特徴とするものである。
According to a fourth aspect of the present invention, there is provided an apparatus for inspecting a surface defect of an inspection substrate, wherein the surface of the inspection substrate having both front and back surfaces is irradiated with a linear band of irradiation light, and the direct light by the irradiation light is applied. Alternatively, in addition to the reflected light, a one-dimensional CCD camera collects and detects scattered light generated by a surface defect on the irradiated surface, and detects the presence or absence of a surface defect on the irradiated surface. Conveyance means for continuously conveying at a speed, irradiation means for irradiating linear band-shaped irradiation light from a light source at a predetermined incident angle to each specific position on each of the front and back surfaces of the conveyed inspection base, and each irradiation light A one-dimensional CCD camera that captures scattered light generated by a surface defect of each illuminated surface and converts the scattered light into an electric signal, in addition to the direct light or reflected light, and each one detected by the one-dimensional CCD camera. A defect signal processor for processing each surface defect detection signal, and processing each signal processed by each of the defect signal processors to obtain a characteristic amount of the surface defect detection signal. A microcomputer is provided for comparing the characteristic amount of the detection signal with the characteristic amount of the back side surface defect detection signal to determine the front side and the back side of the inspection base.

【0018】本発明に係る請求項5に記載の検査基体の
面欠陥検査装置は、請求項4の面欠陥検査装置におい
て、前記検査基体が、光透過性検査基体であることを特
徴とするものである。
According to a fifth aspect of the present invention, there is provided an apparatus for inspecting a surface defect of an inspection substrate, wherein the inspection substrate is a light-transmitting inspection substrate. It is.

【0019】本発明の検査方法及び装置では、搬送機構
によって搬送される検査基体での表裏の被検出面に直線
帯状の照射光を照射し、該表裏両面の欠陥に基づくそれ
ぞれの散乱光を一次元CCDカメラに捉えて電気信号に
変換した上で、対応する各欠陥信号処理器によって信号
処理すると共に、マイクロコンピュータによってそれぞ
れの各欠陥検出信号の特徴量を相互に比較することによ
り、検査基体の欠陥が表面側であるか裏面側であるかの
判断を容易になし得る。
In the inspection method and apparatus according to the present invention, the detection surfaces on the front and back surfaces of the inspection substrate conveyed by the conveyance mechanism are irradiated with linear band-shaped irradiation light, and the respective scattered lights based on the defects on both front and back surfaces are firstarily scattered. After being captured by the original CCD camera and converted into electric signals, the signals are processed by the corresponding defect signal processors, and the feature values of the respective defect detection signals are compared with each other by the microcomputer. It is easy to determine whether the defect is on the front side or the back side.

【0020】[0020]

【発明の実施の形態】以下、本発明に係る検査基体の面
欠陥検査方法及び装置の各別による夫々の実施形態例に
つき、図1及び図2を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the method and apparatus for inspecting a surface defect of an inspection substrate according to the present invention will be described in detail with reference to FIGS. 1 and 2. FIG.

【0021】[0021]

【実施例1】図1は、本発明方法の実施例1を適用した
面欠陥検査装置の概要を模式的に示す説明図である。
FIG. 1 is an explanatory view schematically showing an outline of a surface defect inspection apparatus to which a first embodiment of the method of the present invention is applied.

【0022】この図1に示す実施例1の装置構成におい
て、検査対象となる検査基体、この場合、表面にSiO
2 膜あるいはITO膜11aを被着させた液晶表示用の
ガラス基板11は、搬送機構21を構成する各搬送ロー
ラー22によって矢印aに示す搬送方向へ所定の搬送速
度で搬送移動される。ここで、前記ガラス基板11につ
いては、説明の便宜上、SiO2 膜あるいはITO膜1
1aを被着させた側を表面側12とし、且つその反対側
を裏面側13とする。また、本実施例1の場合、前記搬
送機構21については、矢印bに示す逆方向への同一搬
送速度による搬送も可能にされている。
In the apparatus configuration of the first embodiment shown in FIG. 1, an inspection substrate to be inspected, in this case, a SiO.sub.
The glass substrate 11 for liquid crystal display on which the two films or the ITO films 11a are adhered is transported by a transport roller 22 constituting the transport mechanism 21 in a transport direction shown by an arrow a at a predetermined transport speed. Here, the glass substrate 11 is made of SiO 2 film or ITO film 1 for convenience of explanation.
The side on which 1a is attached is referred to as a front side 12 and the opposite side is referred to as a back side 13. Further, in the case of the first embodiment, the transport mechanism 21 can also be transported in the opposite direction indicated by the arrow b at the same transport speed.

【0023】前記搬送機構21の各搬送ローラー22に
よって任意の面を上向きまたは下向きにして搬送される
ガラス基板11には、暗視野のもとで、搬送移動する上
方面の特定位置に対して、例えば、ハロゲンやメタルハ
ライド等のランプを用いた光源31からの直線帯状の照
射光32を比較的深い入射角度で照射可能にすると共
に、該照射される照射光32の反射光33を直接的には
捉えることのない上方位置にあって、搬送方向に直交し
て配置される一次元CCDカメラ41により、該照射さ
れている上方面に存在する可能性のあるキズ欠陥14に
よる散乱光34のみを捉えて電気信号に変換するように
し、さらに、変換された電気信号を処理して面欠陥検出
信号を出力する欠陥信号処理器42と、各入力信号を判
別する演算処理装置としてのマイクロコンピュータ43
とを設けたものである。なお、図中15は下方面に存在
する可能性のあるキズ欠陥であり、また、前記直線帯状
の照射光32を得る光源12の形態としては、ライン状
の光源であっても、例えば、点状光源からの光束を入射
する側で集束され、出射する側でライン状に展開された
光ファイバーを導光に用い、且つ出射側にロッドレンズ
を配した構成であってもよい。
The glass substrate 11 conveyed with any surface upward or downward by each of the conveyance rollers 22 of the conveyance mechanism 21 has a specific position on the upper surface where the conveyance moves under a dark field. For example, a linear band-shaped irradiation light 32 from a light source 31 using a lamp such as a halogen or a metal halide can be irradiated at a relatively deep incident angle, and the reflected light 33 of the irradiation light 32 is directly reflected. The scattered light 34 due to the flaw 14 that may be present on the irradiated upper surface is captured by the one-dimensional CCD camera 41 that is located at an upper position that cannot be captured and that is disposed orthogonal to the transport direction. A defect signal processor 42 for processing the converted electric signal to output a surface defect detection signal, and an arithmetic processing unit for discriminating each input signal The microcomputer 43 of the to
Are provided. In the figure, reference numeral 15 denotes a flaw that may be present on the lower surface. The light source 12 for obtaining the linear band-shaped irradiation light 32 may be a linear light source, for example, a point light source. A configuration in which an optical fiber that is focused on the side where the light beam from the shape light source is incident and that is developed linearly on the side where the light beam is emitted is used as light guide, and a rod lens is disposed on the output side.

【0024】従って、本実施例1による装置構成では、
次のように検査基体としてのガラス基板11の欠陥検査
が行われる。
Therefore, in the device configuration according to the first embodiment,
A defect inspection of the glass substrate 11 as an inspection base is performed as follows.

【0025】まず最初に、搬送機構21の各搬送ローラ
ー22によってガラス基板11を矢印aの搬送方向へ所
定の搬送速度で搬送移動させると共に、暗視野のもとで
該ガラス基板11の上向きにされている一方のガラス面
の特定位置、例えば、この場合には表面側12の特定位
置を光源31からの直線帯状の照射光32で連続的に照
射する。このとき、上向き面である表面側12にキズ欠
陥が存在しない場合には、照射光32がそのまま反射さ
れて反射光33となり、該キズ欠陥が存在する場合に
は、散乱光34となる。ここで、一次元CCDカメラ4
1は、反射光32以外の散乱光34を捉えて電気信号に
変換し、該変換された信号が欠陥信号処理器42で処理
され、その面欠陥検出信号、ここでは表面側12の欠陥
存在位置データを含む面欠陥検出信号の特徴量が検出さ
れてマイクロコンピュータ43に入力される。
First, the glass substrate 11 is transported by the transport rollers 22 of the transport mechanism 21 at a predetermined transport speed in the transport direction of arrow a, and the glass substrate 11 is turned upward in a dark field. A specific position on one of the glass surfaces, for example, a specific position on the front side 12 in this case, is continuously irradiated with the linear band-shaped irradiation light 32 from the light source 31. At this time, if there is no scratch defect on the front side 12 which is the upward surface, the irradiation light 32 is reflected as it is and becomes reflected light 33, and if the scratch defect exists, it becomes scattered light 34. Here, the one-dimensional CCD camera 4
Reference numeral 1 denotes a scattered light 34 other than the reflected light 32, which is converted into an electric signal. The converted signal is processed by a defect signal processor 42, and a surface defect detection signal, here, a defect existing position on the front side 12 is provided. The feature amount of the surface defect detection signal including the data is detected and input to the microcomputer 43.

【0026】引続き、前記一方の面である表面側12が
検査されたガラス基板11を手動もしくはハンドリング
ロボット等で反転する、つまり、今度は裏面側13を上
向きにして矢印bの逆方向に搬送移動させることで同様
な検査をなし、同様に裏面側13の欠陥存在位置データ
を含む面欠陥検出信号の特徴量が検出されてマイクロコ
ンピュータ43に入力される。
Subsequently, the glass substrate 11 on which the one surface, the front surface 12 has been inspected, is inverted manually or by a handling robot or the like. That is, this time, the rear surface 13 is turned upward and transported in the direction opposite to the arrow b. By doing so, a similar inspection is performed, and similarly, the characteristic amount of the surface defect detection signal including the defect existing position data on the back surface 13 is detected and input to the microcomputer 43.

【0027】マイクロコンピュータ43では、これらの
入力される各信号データから、表面側12と裏面側13
とのそれぞれの各面欠陥検出信号の特徴量を比較するこ
とにより、検出されたキズ欠陥が表面側12の欠陥であ
るかあるいは裏面側13の欠陥であるかが判別され、そ
の後、該判別結果に対応して表面側12ないしは裏面側
13の各検査基準に合わせてガラス基板11の良・不良
を判断するもので、この判断によれば、表面側12に対
しては表面側検査基準を裏面側13に対しては裏面側検
査基準をそれぞれに適用し得るので、上記従来の手法の
ような不利が容易に解消されるのである。
The microcomputer 43 derives the front side 12 and the back side 13 from these input signal data.
By comparing the feature amounts of the respective surface defect detection signals with each other, it is determined whether the detected flaw defect is a defect on the front side 12 or a defect on the back side 13. According to this, the quality of the glass substrate 11 is determined in accordance with each inspection standard of the front side 12 or the rear side 13, and according to this determination, the front side inspection standard is Since the back side inspection standard can be applied to each side 13, disadvantages such as the above-described conventional method can be easily eliminated.

【0028】ちなみに、光源31としてハロゲンランプ
を用い、360mm×460mmサイズのガラス基板1
1で代表的な欠陥であるサンプルにより、検出閾値を4
0mVとし、且つ他の検出条件を種々に変えて検査し、
面欠陥信号の特徴量の一つであるピーク信号強度を測定
したところ、次の表1に示す結果が得られた。即ち、こ
の結果から、表面側12の欠陥では、その何れも表面側
ピーク信号強度が大きく、裏面側13の欠陥は、裏面側
ピーク信号強度が何れも大きくなっており、このピーク
信号強度によって表裏の判別が可能となることが確認さ
れた。
Incidentally, a halogen lamp is used as the light source 31 and the glass substrate 1 having a size of 360 mm × 460 mm is used.
The detection threshold is set to 4 by the sample which is a typical defect in 1
0 mV, and various other detection conditions were tested.
When the peak signal intensity, which is one of the features of the surface defect signal, was measured, the results shown in Table 1 below were obtained. That is, from this result, for the defects on the front side 12, the peak signal intensity on the front side is all large, and for the defects on the rear side 13, the peak signal intensity on the rear side is all large. It was confirmed that the determination could be made.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【実施例2】図2は、本発明方法の実施例2を適用した
面欠陥検査装置の概要を模式的に示す説明図である。
Embodiment 2 FIG. 2 is an explanatory view schematically showing the outline of a surface defect inspection apparatus to which a second embodiment of the method of the present invention is applied.

【0031】この図2に示す実施例2の装置構成におい
ても、検査対象となる検査基体である表面にSiO2
あるいはITO膜11aを被着させたガラス基板11
は、搬送機構21の各搬送ローラー22によって矢印a
に示す搬送方向へのみ所定の搬送速度で搬送移動され
る。この各搬送ローラー22によって搬送されるガラス
基板11には、暗視野のもとで、搬送移動する表面側1
2及び裏面側13の各面(ここでは、説明の便宜上、表
面側12を上面とし、裏面側13を下面とする)の特定
位置に対して、それぞれ上方及び下方の各光源31a、
31bからの直線帯状の照射光32a、32bを比較的
深い入射角度で照射可能にすると共に、該各照射光32
a、32bの反射光33a、33bを直接的には捉える
ことのない上方及び下方の各位置に配置されるそれぞれ
の各一次元CCDカメラ41a、41bにより、該照射
されている表面側12及び裏面側13に存在する可能性
のあるキズ欠陥14及び15による各散乱光34a、3
4bのみを捉えて電気信号に変換するようにし、さら
に、変換された電気信号を処理して面欠陥検出信号を出
力する各欠陥信号処理器42a、42bと、これらの各
欠陥信号処理器42a、42bからの入力信号の相互を
判別する演算処理装置としてのマイクロコンピュータ4
3とを設けたものである。
In the apparatus configuration of the second embodiment shown in FIG. 2, a glass substrate 11 having an SiO 2 film or an ITO film 11a adhered to the surface of an inspection substrate to be inspected is also provided.
Is indicated by an arrow a by each transport roller 22 of the transport mechanism 21.
Are transported at a predetermined transport speed only in the transport direction shown in FIG. The glass substrate 11 transported by each transport roller 22 has a front side 1 that is transported and moved under a dark field.
2 and the rear surface 13 (here, for convenience of description, the front surface 12 is the upper surface and the rear surface 13 is the lower surface), and the light sources 31a,
The irradiation light 32a, 32b in the form of a straight band from the irradiation light 31b can be irradiated at a relatively deep incident angle, and the irradiation light 32
The one-dimensional CCD cameras 41a, 41b arranged at respective upper and lower positions that do not directly capture the reflected light 33a, 33b of the a, 32b. Each scattered light 34 a, 3 due to flaws 14 and 15 that may be present on the side 13
4b, each of which converts the converted electric signal into an electric signal, processes the converted electric signal and outputs a surface defect detection signal, and outputs each of the defect signal processors 42a, 42b; Microcomputer 4 as an arithmetic processing unit for discriminating between input signals from input terminal 42b
3 is provided.

【0032】従って、本実施例2による装置構成では、
次のように検査基体としてのガラス基板11の欠陥検査
が行われる。
Therefore, in the device configuration according to the second embodiment,
A defect inspection of the glass substrate 11 as an inspection base is performed as follows.

【0033】まず最初に、搬送機構21の各搬送ローラ
ー22によってガラス基板11を矢印aの搬送方向へ所
定の搬送速度で搬送移動させると共に、暗視野のもとで
該ガラス基板11の上向きにされた表面側12と下向き
にされた裏面側13との各ガラス面の特定位置を光源3
1a及び31bからの直線帯状の各照射光32a、32
bでそれぞれ連続的に照射する。この場合、これらの各
照射光32a、32bによる照射は、必ずしもガラス基
板11の上下同一の特定位置領域に対してなされる必要
はなく、両者相互の干渉を避けるために、各照射領域及
び各一次元CCDカメラ41a、41bの検査領域をそ
れぞれ相互にずらして設定することも好ましい一つの手
段である。
First, the glass substrate 11 is transported by the transport rollers 22 of the transport mechanism 21 at a predetermined transport speed in the transport direction indicated by the arrow a, and the glass substrate 11 is turned upward in a dark field. The specific position of each glass surface of the front side 12 and the back side 13 facing downward is determined by the light source 3.
Linear irradiation light beams 32a, 32a from 1a and 31b
Irradiation is successively performed at b. In this case, the irradiation by each of the irradiation lights 32a and 32b does not necessarily have to be performed on the same specific position area on the upper and lower sides of the glass substrate 11, and in order to avoid mutual interference, each irradiation area and each primary It is also preferable to set the inspection areas of the original CCD cameras 41a and 41b so as to be shifted from each other.

【0034】ついで、前記各一次元CCDカメラ41
a、41bで捉えられたそれぞれの欠陥検出信号は、対
応する各欠陥信号処理器42a、42bによってそれぞ
れに処理された後、共通のマイクロコンピュータ43に
入力され、各面欠陥信号の特徴量(例えば、ピーク信号
強度、面積、積算信号強度等)として処理された上で、
欠陥検出位置データと合わせて比較され、ここでも前例
の場合と同様に、検出されたキズ欠陥が表面側12の欠
陥であるかあるいは裏面側13の欠陥であるかが判別さ
れ、その後、該判別結果に対応して表面側12ないしは
裏面側13の各検査基準に合わせてガラス基板11の良
・不良を判断するもので、この判断によれば、表面側1
2に対しては表面側検査基準を裏面側13に対しては裏
面側検査基準をそれぞれに適用し得るので、上記従来の
手法のような不利が容易に解消されるのである。なお、
前記各欠陥信号処理器42a、42bによるそれぞれの
各欠陥信号検出条件については、必ずしも同一である必
要ななく、表面側12と裏面側13とのそれぞれの各検
査基準をもとに異なる検出条件を採用してもよい。
Next, each of the one-dimensional CCD cameras 41
The respective defect detection signals caught by the a and 41b are respectively processed by the corresponding defect signal processors 42a and 42b, and then input to the common microcomputer 43, where the characteristic amount of each surface defect signal (for example, , Peak signal strength, area, integrated signal strength, etc.)
The defect is compared with the defect detection position data. Here, similarly to the case of the previous example, it is determined whether the detected flaw is a defect on the front side 12 or a defect on the rear side 13. In accordance with the results, the quality or defect of the glass substrate 11 is determined according to each inspection standard of the front side 12 or the back side 13.
2 can be applied to the front side inspection standard and the back side 13 can be applied to the rear side inspection standard, so that the disadvantages of the above-described conventional method can be easily eliminated. In addition,
The respective defect signal detection conditions by the respective defect signal processors 42a and 42b do not necessarily have to be the same, and different detection conditions based on the respective inspection standards of the front side 12 and the back side 13 may be used. May be adopted.

【0035】ここでも、前記各光源31a、31bとし
てハロゲンランプを用い、360mm×460mmサイ
ズのガラス基板11につき、検出閾値を40mV、搬送
速度を1m/分、各欠陥信号処理器42a、42bの信
号増幅度であるゲインを1倍と2倍にして検査した。こ
の結果、ヘアーライン状キズ欠陥の代表的なものとし
て、表面側12での限界欠陥サンプルである約1μm
幅, 表面側12での通常欠陥サンプルである約49μm
幅, 及び裏面側13での通常欠陥サンプルである約10
0μm幅の各キズ欠陥によって、次の表2に示す結果が
得られた。即ち、この結果から、ゲインが1倍であれ
ば、ピーク信号強度の比較によって表裏の判別が可能と
なるが、限界サンプルまで検出可能なゲインが2倍で
は、各一次元CCDカメラ41a、41bのダイナミッ
クレンジが約1V程度であるために、裏面側13の通常
欠陥の場合、そのピーク信号強度が飽和してしまって差
がなくなり、表裏の判別が困難になる。ところが、一方
で面欠陥信号特徴量として欠陥検出画素数を用いること
により、このようにピーク信号強度の飽和時でも表裏の
判断が可能になる。即ち、表裏判断の基礎となる面欠陥
信号特徴量は、単にピーク信号強度にのみ限定されるも
のではなく、目的に応じて適当に選択採用できるのであ
る。
Here, a halogen lamp is used as each of the light sources 31a and 31b, and the detection threshold is 40 mV, the transport speed is 1 m / min, and the signals of the defect signal processors 42a and 42b are applied to the glass substrate 11 of 360 mm × 460 mm size. The test was performed with the gain, which is the amplification degree, set to 1 and 2 times. As a result, as a typical example of the hairline-shaped flaw defect, a critical defect sample of about 1 μm
Width, about 49μm which is a normal defect sample on the front side 12
Width, and about 10 which is a normal defect sample on the back side 13
The results shown in the following Table 2 were obtained for each scratch defect having a width of 0 μm. That is, from this result, if the gain is 1, it is possible to distinguish between the front and back sides by comparing the peak signal intensities. However, if the gain that can be detected up to the limit sample is twice, each of the one-dimensional CCD cameras 41a, 41b Since the dynamic range is about 1 V, in the case of a normal defect on the back side 13, the peak signal intensity is saturated and there is no difference, making it difficult to distinguish between the front and back sides. However, on the other hand, the use of the number of defect detection pixels as the surface defect signal feature amount enables the determination of the front and back sides even when the peak signal intensity is saturated. In other words, the surface defect signal characteristic amount serving as the basis for the front / back determination is not limited to merely the peak signal intensity, but can be appropriately selected and adopted according to the purpose.

【0036】[0036]

【表2】 [Table 2]

【0037】さらに、前記実施例2の検査装置によっ
て、表面側12での通常欠陥サンプルである約49μm
幅のキズ欠陥をゲイン1倍に維持して搬送速度2m/分
で検査したところ、次の表3に示す結果が得られた。即
ち、この結果によれば、検出信号が小さくなれば面欠陥
検出画素数の差がなくなることから、より広い範囲の欠
陥サイズで高信頼性の表裏判断をなすのには、例えば、
小さいキズ欠陥の場合、ピーク信号強度を用い、一定以
上のピーク信号強度をもつ大きな欠陥の場合、面欠陥検
出画素数を用いる等の少なくとも二つ以上の面欠陥検出
信号特徴量を組み合わせることが望ましい。
Further, the inspection apparatus of the second embodiment is used to measure a normal defect sample on the front side 12 of about 49 μm.
When the width defect was inspected at a conveyance speed of 2 m / min while maintaining the gain at 1 time, the results shown in the following Table 3 were obtained. That is, according to this result, if the detection signal becomes smaller, the difference in the number of surface defect detection pixels disappears, so for making a highly reliable front / back determination with a wider range of defect sizes, for example,
In the case of a small defect, it is desirable to use the peak signal intensity, and in the case of a large defect having a peak signal intensity of a certain level or more, it is desirable to combine at least two or more surface defect detection signal feature amounts such as using the number of surface defect detection pixels. .

【0038】[0038]

【表3】 [Table 3]

【0039】なお、上記実施例2による検査装置は、表
面側と裏面側とにそれぞれ配置された二つの一次元CC
Dカメラ系で得られる面欠陥検出信号特徴量を相互に比
較することで、面欠陥に関して何らかの判断を行う任意
の検査手段にも適用可能であり、上記液晶技術分野での
ガラス基板やSiO2 あるいはITO等の膜付きガラス
基板の面検査をはじめとして、その他のプラズマディス
プレイ等の各種表示装置に用いられる基板もしくは任意
の膜付き基板等の面検査に極めて有用である。
The inspection apparatus according to the second embodiment has two one-dimensional CCs arranged on the front side and the back side, respectively.
By comparing the surface defect detection signal feature amount obtained by the D camera system to one another, it is also applicable to any test means for performing some judgment with respect to a surface defect, or a glass substrate or SiO 2 in the liquid crystal art It is very useful for surface inspection of a substrate used for various display devices such as a plasma display or an arbitrary substrate with a film, including surface inspection of a glass substrate with a film such as ITO.

【0040】[0040]

【発明の効果】以上、各実施の態様によって詳述したよ
うに、本発明によれば、搬送機構によって搬送される検
査基体での表裏の被検出面に直線帯状の照射光を照射
し、該表裏両面の欠陥に基づくそれぞれの散乱光を一次
元CCDカメラに捉えて電気信号に変換した上で、対応
する各欠陥信号処理器によって信号処理すると共に、マ
イクロコンピュータによってそれぞれの各欠陥検出信号
の特徴量を相互に比較するようにしたから、従来の手法
とは異なって基体自体の反りや搬送の際の上下振動等に
全く影響されずに、検査基体の欠陥が表面側であるか裏
面側であるかの判断を高い信頼性のもとで容易になし得
るのであり、この結果、表面側と裏面側とで相互に異な
る検査基準を対応させての検査基体の欠陥検査を行うこ
とができるという優れた利点がある。
As described above in detail in each embodiment, according to the present invention, the detection surfaces on the front and back sides of the inspection substrate conveyed by the conveyance mechanism are irradiated with linear band irradiation light. Each scattered light based on the defects on the front and back sides is captured by a one-dimensional CCD camera, converted into an electric signal, processed by the corresponding defect signal processor, and the characteristics of each defect detection signal by a microcomputer. Since the amounts are compared with each other, unlike the conventional method, the defect of the inspection substrate is not affected by the warpage of the substrate itself or the vertical vibration at the time of transport, and the defect of the inspection substrate is on the front side or the back side. This makes it possible to easily judge whether there is any defect or not with high reliability. As a result, it is possible to perform a defect inspection of the inspection base in accordance with mutually different inspection standards on the front side and the rear side. Excellent There is an advantage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1を適用した面欠陥検査装置の
概要を模式的に示す説明図である。
FIG. 1 is an explanatory diagram schematically showing an outline of a surface defect inspection apparatus to which a first embodiment of the present invention is applied.

【図2】本発明の実施例2を適用した面欠陥検査装置の
概要を模式的に示す説明図である。
FIG. 2 is an explanatory diagram schematically showing an outline of a surface defect inspection apparatus to which a second embodiment of the present invention is applied.

【図3】従来の光透過型面欠陥検査装置の概要を模式的
に示す説明図である。
FIG. 3 is an explanatory view schematically showing an outline of a conventional light transmission type surface defect inspection apparatus.

【図4】従来の光反射型面欠陥検査装置の概要を模式的
に示す説明図である。
FIG. 4 is an explanatory view schematically showing an outline of a conventional light reflection type surface defect inspection apparatus.

【図5】従来の散乱光検出型面欠陥検査装置の概要を模
式的に示す説明図である。
FIG. 5 is an explanatory view schematically showing an outline of a conventional scattered light detection type surface defect inspection apparatus.

【符号の説明】[Explanation of symbols]

11 ガラス基板(検査基体) 11a ガラス基板表面側のSiO2 膜あるいはITO
膜 12 ガラス基板の表面側 13 ガラス基板の裏面側 14 表面側のキズ欠陥 15 裏面側のキズ欠陥 21 搬送機構 22 搬送機構の搬送ローラー 31、31a、31b 光源 32、32a、32b 照射光 33、33a、33b 反射光 34、34a、34b 散乱光 41、41a、41b 一次元CCDカメラ 42、42a、42b 欠陥信号処理器 43 マイクロコンピュータ
11 Glass substrate (inspection base) 11a SiO 2 film or ITO on glass substrate surface
Film 12 Front side of glass substrate 13 Back side of glass substrate 14 Defects on front side 15 Defects on back side 21 Transport mechanism 22 Transport rollers of transport mechanism 31, 31a, 31b Light source 32, 32a, 32b Irradiation light 33, 33a , 33b Reflected light 34, 34a, 34b Scattered light 41, 41a, 41b One-dimensional CCD camera 42, 42a, 42b Defect signal processor 43 Microcomputer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表裏両面を有する検査基体の面に直線帯
状の照射光を照射した状態で、該照射光による直接光あ
るいは反射光以外に、被照射面の面欠陥によって発生す
る散乱光を一次元CCDカメラで採光して検出し、該被
照射面の面欠陥の有無を検出する検査方法において、 前記検査基体の表裏双方の面にそれぞれ直線帯状の照射
光を照射した状態で、該表裏双方の被照射面の各面欠陥
によって発生する散乱光をそれぞれに各別の一次元CC
Dカメラで採光して表裏それぞれの面欠陥検出信号を得
ると共に、表面側一次元CCDカメラによって得た表面
側面欠陥検出信号の特徴量と裏面側一次元CCDカメラ
によって得た裏面側面欠陥検出信号の特徴量とを比較
し、検出された面欠陥が表面側の面欠陥であるか裏面側
の面欠陥であるかを判断することを特徴とする検査基体
の面欠陥検査方法。
In a state in which a surface of an inspection substrate having both front and back surfaces is irradiated with a linear band of irradiation light, scattered light generated by a surface defect of a surface to be irradiated is also primaryly reflected in addition to direct light or reflected light by the irradiation light. In an inspection method of detecting and detecting the presence or absence of a surface defect on the surface to be illuminated by a source CCD camera, the surface of the inspection substrate is illuminated with a linear band of illumination light on both the front and back surfaces. Scattered light generated by each surface defect of the surface to be illuminated
A D-camera is used to obtain the front and back surface defect detection signals, and the characteristic amount of the front side surface defect detection signal obtained by the front side one-dimensional CCD camera and the back side side defect detection signal obtained by the back side one-dimensional CCD camera. A method of inspecting a surface defect of an inspection substrate, comprising comparing a detected characteristic with a characteristic amount to determine whether the detected surface defect is a surface defect on the front side or a surface defect on the back side.
【請求項2】 面欠陥検出信号特徴量の少なくとも二つ
以上を用いて面欠陥が表面側の面欠陥であるか裏面側の
面欠陥であるかを判断することを特徴とする請求項1に
記載の検査基体の面欠陥検査方法。
2. The method according to claim 1, wherein it is determined whether the surface defect is a front surface side defect or a rear surface side surface defect using at least two or more of the surface defect detection signal characteristic amounts. A method for inspecting a surface defect of an inspection substrate according to the above.
【請求項3】 前記検査基体が、光透過性検査基体であ
ることを特徴とする請求項1または2の何れかに記載の
検査基体の面欠陥検査方法。
3. The method according to claim 1, wherein the inspection substrate is a light-transmitting inspection substrate.
【請求項4】 表裏両面を有する検査基体の面に直線帯
状の照射光を照射した状態で、該照射光による直接光あ
るいは反射光以外に、被照射面の面欠陥によって発生す
る散乱光を一次元CCDカメラで採光して検出し、該被
照射面の面欠陥の有無を検出する検査装置において、 前記検査基体を所定速度で連続的に搬送する搬送手段
と、該搬送される検査基体の表裏両面の各特定位置にそ
れぞれ光源からの直線帯状の照射光を所定入射角度で照
射する各照射手段と、該各照射光による直接光あるいは
反射光以外に、各被照射面の面欠陥によって発生する散
乱光をそれぞれに捉えて電気信号に変換する各一次元C
CDカメラと、該各一次元CCDカメラによって検出さ
れたそれぞれの各面欠陥検出信号を処理する各欠陥信号
処理器と、該各欠陥信号処理器で処理されたそれぞれの
各信号を処理して面欠陥検出信号の特徴量を得た上で、
表面側面欠陥検出信号の特徴量と裏面側面欠陥検出信号
の特徴量とを比較して前記検査基体の表面側と裏面側と
を判別するマイクロコンピュータとを備えることを特徴
とする検査基体の面欠陥検査装置。
4. In a state where a linear band-shaped irradiation light is irradiated on a surface of an inspection substrate having both front and back surfaces, scattered light generated by a surface defect of a surface to be irradiated other than a direct light or a reflected light by the irradiation light is primary. An inspection device for detecting and detecting the presence or absence of a surface defect on the surface to be irradiated by detecting and detecting light with an original CCD camera, comprising: transport means for continuously transporting the inspection substrate at a predetermined speed; Irradiation means for irradiating a linear band-shaped irradiation light from a light source at a predetermined incident angle to each specific position on both surfaces, and a defect caused by a surface defect of each irradiation surface other than direct light or reflected light by each irradiation light. Each one-dimensional C that captures scattered light and converts it into an electric signal
A CD camera; a respective defect signal processor for processing each of the surface defect detection signals detected by the respective one-dimensional CCD camera; and a respective surface for processing the respective signals processed by the respective defect signal processors. After obtaining the feature amount of the defect detection signal,
A surface defect of the inspection substrate, comprising: a microcomputer that compares the characteristic amount of the front side surface defect detection signal and the characteristic amount of the rear surface side defect detection signal to determine the front side and the rear side of the inspection substrate. Inspection equipment.
【請求項5】 前記検査基体が、光透過性検査基体であ
ることを特徴とする請求項4に記載の検査基体の面欠陥
検査装置。
5. The inspection apparatus according to claim 4, wherein the inspection base is a light-transmitting inspection base.
JP31851596A 1996-11-15 1996-11-15 Method and device for inspecting face defect of substrate under inspection Pending JPH10148619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31851596A JPH10148619A (en) 1996-11-15 1996-11-15 Method and device for inspecting face defect of substrate under inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31851596A JPH10148619A (en) 1996-11-15 1996-11-15 Method and device for inspecting face defect of substrate under inspection

Publications (1)

Publication Number Publication Date
JPH10148619A true JPH10148619A (en) 1998-06-02

Family

ID=18099982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31851596A Pending JPH10148619A (en) 1996-11-15 1996-11-15 Method and device for inspecting face defect of substrate under inspection

Country Status (1)

Country Link
JP (1) JPH10148619A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004663A (en) * 2001-06-27 2003-01-08 Hitachi Electronics Eng Co Ltd Surface inspection apparatus
JP2006184022A (en) * 2004-12-24 2006-07-13 Saki Corp:Kk Visual inspection system
JP2006194657A (en) * 2005-01-12 2006-07-27 Yokogawa Electric Corp Pseudo defective image creation method and device using it
JP2008203280A (en) * 2001-09-21 2008-09-04 Olympus Corp Defect inspection apparatus
JP2008275474A (en) * 2007-04-27 2008-11-13 Kubota Matsushitadenko Exterior Works Ltd Method for detecting shape defect of molded article
CN102200519A (en) * 2010-03-26 2011-09-28 郭上鲲 Inspection system
WO2011155294A1 (en) * 2010-06-09 2011-12-15 シャープ株式会社 Substrate processing apparatus, substrate transfer apparatus, and dent detecting apparatus
KR101101980B1 (en) * 2009-09-04 2012-01-02 (주)에이앤아이 Apparatus for detecting the particle of substrate for displays
CN102645437A (en) * 2012-04-11 2012-08-22 法国圣戈班玻璃公司 Optical measurement device and optical measurement method
KR101365851B1 (en) * 2006-12-22 2014-02-21 엘지디스플레이 주식회사 Glass transfer apparatus
JP2016085212A (en) * 2014-10-22 2016-05-19 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Defect detection system and method
CN107462585A (en) * 2017-08-10 2017-12-12 武汉华星光电技术有限公司 The defects of automatic optical checking machine and glass substrate inspection method
CN107907544A (en) * 2017-11-20 2018-04-13 无锡华氏恒辉精密装备科技有限公司 white glass detection device
CN107966102A (en) * 2018-01-18 2018-04-27 中山市鑫光智能系统有限公司 A kind of plate production six-face detection device
CN110146515A (en) * 2019-04-19 2019-08-20 广州超音速自动化科技股份有限公司 Plate drilling and surface defect detection apparatus and application method
CN115372381A (en) * 2022-10-21 2022-11-22 沃卡姆(山东)真空玻璃科技有限公司 Automatic detection feeding conveying line for vacuum glass sheet combining device and detection method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004663A (en) * 2001-06-27 2003-01-08 Hitachi Electronics Eng Co Ltd Surface inspection apparatus
JP2008203280A (en) * 2001-09-21 2008-09-04 Olympus Corp Defect inspection apparatus
JP2006184022A (en) * 2004-12-24 2006-07-13 Saki Corp:Kk Visual inspection system
JP2006194657A (en) * 2005-01-12 2006-07-27 Yokogawa Electric Corp Pseudo defective image creation method and device using it
JP4513962B2 (en) * 2005-01-12 2010-07-28 横河電機株式会社 Pseudo defect image creation method and apparatus using the same
KR101365851B1 (en) * 2006-12-22 2014-02-21 엘지디스플레이 주식회사 Glass transfer apparatus
JP2008275474A (en) * 2007-04-27 2008-11-13 Kubota Matsushitadenko Exterior Works Ltd Method for detecting shape defect of molded article
KR101101980B1 (en) * 2009-09-04 2012-01-02 (주)에이앤아이 Apparatus for detecting the particle of substrate for displays
CN102200519A (en) * 2010-03-26 2011-09-28 郭上鲲 Inspection system
WO2011155294A1 (en) * 2010-06-09 2011-12-15 シャープ株式会社 Substrate processing apparatus, substrate transfer apparatus, and dent detecting apparatus
CN102645437A (en) * 2012-04-11 2012-08-22 法国圣戈班玻璃公司 Optical measurement device and optical measurement method
JP2016085212A (en) * 2014-10-22 2016-05-19 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Defect detection system and method
CN107462585A (en) * 2017-08-10 2017-12-12 武汉华星光电技术有限公司 The defects of automatic optical checking machine and glass substrate inspection method
CN107907544A (en) * 2017-11-20 2018-04-13 无锡华氏恒辉精密装备科技有限公司 white glass detection device
CN107966102A (en) * 2018-01-18 2018-04-27 中山市鑫光智能系统有限公司 A kind of plate production six-face detection device
CN110146515A (en) * 2019-04-19 2019-08-20 广州超音速自动化科技股份有限公司 Plate drilling and surface defect detection apparatus and application method
CN115372381A (en) * 2022-10-21 2022-11-22 沃卡姆(山东)真空玻璃科技有限公司 Automatic detection feeding conveying line for vacuum glass sheet combining device and detection method
CN115372381B (en) * 2022-10-21 2022-12-23 沃卡姆(山东)真空玻璃科技有限公司 Automatic detection feeding conveying line for vacuum glass sheet combining device and detection method

Similar Documents

Publication Publication Date Title
US5790247A (en) Technique for determining defect positions in three dimensions in a transparent structure
EP1816466B1 (en) Method and device for inspecting defect of transparent plate body
US7551274B1 (en) Defect detection lighting system and methods for large glass sheets
KR101324015B1 (en) Apparatus and method for detecting the surface defect of the glass substrate
JPH10148619A (en) Method and device for inspecting face defect of substrate under inspection
WO1997013140A9 (en) Technique for determining defect positions in three dimensions in a transparent structure
JP2003139523A (en) Surface defect detecting method and surface defect detecting device
JP2015040835A (en) Defect inspection device and defect inspection method for transparent tabular body
JP3938227B2 (en) Foreign object inspection method and apparatus
JP4158227B2 (en) Inspection method and inspection apparatus for minute unevenness
KR102162693B1 (en) System and method for defect detection
JP2006138830A (en) Surface defect inspection device
JP2003065966A (en) Foreign matter inspecting method to film and apparatus therefor
JPH11316195A (en) Surface defect detecting device of transparent plate
WO2023164809A1 (en) Bubble detection method and detection system for curved substrate
CN110646432A (en) Glass crack inspection system and method
JPH11248643A (en) Detection device for foreign matter in transparent film
JPH10132754A (en) Device for inspecting appearance of lead frame
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
JP5471157B2 (en) Method and apparatus for detecting adhering matter on glass plate surface
JP3293257B2 (en) Surface defect inspection equipment
JPH0755720A (en) Defect inspecting apparatus for transparent and opaque films
JP2014186030A (en) Defect inspection device
JPH10111252A (en) Detecting equipment of flaw of glass plate
JPH0587781B2 (en)