JPH09145631A - Surface foreign matter detector - Google Patents

Surface foreign matter detector

Info

Publication number
JPH09145631A
JPH09145631A JP7333981A JP33398195A JPH09145631A JP H09145631 A JPH09145631 A JP H09145631A JP 7333981 A JP7333981 A JP 7333981A JP 33398195 A JP33398195 A JP 33398195A JP H09145631 A JPH09145631 A JP H09145631A
Authority
JP
Japan
Prior art keywords
foreign matter
shaped irradiation
band
irradiation region
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7333981A
Other languages
Japanese (ja)
Inventor
Koichiro Komatsu
宏一郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7333981A priority Critical patent/JPH09145631A/en
Publication of JPH09145631A publication Critical patent/JPH09145631A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure foreign matter positions extending over the entire surface to-be- inspected with high precision by detecting the positions of foreign matters based on the time detecting the foreign matter in the first band-shaped irradiating area and the second band-shaped irradiating area which forms an irradiation means, and relative moving speed between the to-be-inspected surface and the irradiation means. SOLUTION: The light emitted from a light source 10 forms a band-shaped irradiation area 2 on the surface of a pellicle film 1 spread on a mask, through an irradiation optical system 11. The mask is held on a stage which is allowed to move along the x-direction so that the surface of the film 1 is parallel to the x-y flat surface. The area 2 is formed along the y-direction perpendicular to the scanning direction, and the stage is driven in the x-direction, and the entire surface of the film 1 can be scanned with the area 2. The scattered light from the area 2 is made incident to the end surface of a fiber bundle 12 into which multiple optical fiber is bundled, and converged on the photodetecting surface of a photoelectric conversion element 13. The element 13 outputs the scattering signal corresponding to the intensity of the scattered light from the foreign matter of the element 13, and the foreign matter is detected based on the signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被検査面に付着し
た異物を検査する表面異物検査装置に関し、特にフラッ
トパネルディスプレイなどの回路パターンを焼き付ける
露光機用の大型マスクのペリクル膜上の異物位置を検査
する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface foreign matter inspection apparatus for inspecting foreign matter adhering to a surface to be inspected, and particularly to a foreign matter position on a pellicle film of a large mask for an exposure machine for printing a circuit pattern such as a flat panel display. Relating to a device for inspecting.

【0002】[0002]

【従来の技術】フラットパネルディスプレイなどの回路
パターンの製造工程においては、異物付着防止用の薄膜
すなわちペリクルが張架されたマスクに形成されたパタ
ーンを感光性基板上に転写する。この際、ペリクル膜に
ゴミ等の大きな異物が付着していると、その異物像が基
板上に転写され、回路パターンの欠陥が発生する。した
がって、転写を行う前に、表面異物検査装置を用いて異
物の存在およびその位置を検査する必要がある。
2. Description of the Related Art In a process of manufacturing a circuit pattern for a flat panel display or the like, a pattern formed on a mask on which a thin film for preventing foreign matter, that is, a pellicle is stretched is transferred onto a photosensitive substrate. At this time, if a large foreign matter such as dust adheres to the pellicle film, the foreign matter image is transferred onto the substrate, causing a defect in the circuit pattern. Therefore, it is necessary to inspect the presence and position of the foreign matter by using the surface foreign matter inspection apparatus before the transfer.

【0003】従来のこの種の表面異物検査装置では、走
査光学系を用いて被検査面上でビームスポットを走査
し、ビームスポットに対する異物(微小なゴミ等)から
の散乱光を受光光学系を介して検出している。あるい
は、被検査面に照明光を照射し、照明光に対する異物か
らの散乱光をCCDなどの画像検出素子を介して検出し
ている。なお、画像検出素子で検出する場合には、広い
検出視野を得るために、被検査面上の検出領域を縮小投
影光学系を介して画像検出素子上に縮小投影をすること
もある。
In this type of conventional surface foreign matter inspection apparatus, a scanning optical system is used to scan a beam spot on a surface to be inspected, and a scattered light from a foreign matter (fine dust or the like) on the beam spot is received by an optical receiving system. Have detected through. Alternatively, the surface to be inspected is illuminated with illumination light, and the scattered light from the foreign matter with respect to the illumination light is detected via an image detection element such as a CCD. When the image is detected by the image detection element, the detection area on the surface to be inspected may be reduced and projected onto the image detection element via the reduction projection optical system in order to obtain a wide detection visual field.

【0004】[0004]

【発明が解決しようとする課題】ところで、フラットパ
ネルディスプレイなどの回路パターンを焼き付ける露光
機用のマスクは大型化している。したがって、ビームス
ポットを走査する従来の検査装置では、マスクの大型化
に伴って、走査範囲が増大している。その結果、走査光
学系および受光光学系の所要視野が増大し、光学系の設
計および製造が困難になってしまう。また、所要視野の
増大に伴って各光学素子が大型化するため、その配置の
自由度も少なくなってしまう。
By the way, a mask for an exposure machine for printing a circuit pattern on a flat panel display or the like is becoming larger. Therefore, in the conventional inspection device that scans the beam spot, the scanning range is increased with the increase in size of the mask. As a result, the required fields of view of the scanning optical system and the light receiving optical system are increased, and it becomes difficult to design and manufacture the optical system. In addition, since the size of each optical element increases as the required field of view increases, the degree of freedom in its arrangement also decreases.

【0005】一方、画像検出素子で検出する従来の検査
装置でも、マスクの大型化に伴って、各光学素子を大型
化するか、あるいは受光光学系の縮小倍率を小さくする
必要がある。その結果、検査装置が大型化したり、異物
位置の検出感度が位置により変動したりすることが考え
られる。
On the other hand, even in the conventional inspection apparatus for detecting with the image detecting element, it is necessary to increase the size of each optical element or decrease the reduction ratio of the light receiving optical system with the increase in size of the mask. As a result, the size of the inspection apparatus may increase, and the detection sensitivity of the foreign matter position may change depending on the position.

【0006】本発明は、前述の課題に鑑みてなされたも
のであり、装置を大型化することなく、大きな被検査面
の全体に亘って異物位置を高精度に検出することのでき
る表面異物検査装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and a surface foreign matter inspection capable of highly accurately detecting a foreign matter position over a large inspected surface without increasing the size of the apparatus. The purpose is to provide a device.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に、本発明においては、被検査面上に帯状の照射領域を
形成するための照射手段と、前記帯状照射領域の長手方
向を横切る方向に前記被検査面を前記照射手段に対して
相対移動させるための走査手段と、前記帯状照射領域に
おける異物からの散乱光に基づいて前記異物の位置を検
出するための検出手段とを備えた表面異物検査装置にお
いて、前記照射手段は、第1の帯状照射領域と、該第1
の帯状照射領域との間隔が単調に変化する第2の帯状照
射領域とを形成し、前記検出手段は、前記第1の帯状照
射領域において前記異物を検出した時間と、前記第2の
帯状照射領域において前記異物を検出した時間と、前記
被検査面と前記照射手段との相対移動速度とに基づい
て、前記異物の位置を検出することを特徴とする表面異
物検査装置を提供する。
In order to solve the above-mentioned problems, in the present invention, an irradiation means for forming a belt-shaped irradiation region on a surface to be inspected, and a direction crossing the longitudinal direction of the belt-shaped irradiation region. A surface provided with scanning means for moving the surface to be inspected relative to the irradiation means, and detection means for detecting the position of the foreign matter based on scattered light from the foreign matter in the belt-like irradiation region In the foreign matter inspection device, the irradiation means includes a first strip-shaped irradiation region and the first strip-shaped irradiation region.
And a second strip-shaped irradiation region in which the interval between the strip-shaped irradiation region and the second strip-shaped irradiation region is monotonically changed, and the detection unit detects the foreign matter in the first strip-shaped irradiation region and the second strip-shaped irradiation region. There is provided a surface foreign matter inspection apparatus characterized in that the position of the foreign matter is detected based on the time when the foreign matter is detected in the area and the relative movement speed of the surface to be inspected and the irradiation means.

【0008】本発明の好ましい態様によれば、前記第1
の帯状照射領域は、前記走査方向に対して垂直な第1の
直線方向に沿って形成され、前記第2の帯状照射領域
は、前記第1の直線方向に対して所定の角度で交わる第
2の直線方向に沿って形成されている。
According to a preferred aspect of the present invention, the first
Band-shaped irradiation region is formed along a first straight line direction perpendicular to the scanning direction, and the second band-shaped irradiation region crosses the first straight line direction at a predetermined angle. Are formed along the straight line direction.

【0009】[0009]

【発明の実施の形態】本発明においては、第1の帯状照
射領域と、この第1の帯状照射領域との間隔が単調に変
化する第2の帯状照射領域とを被検査面上に形成する。
そして、第1の帯状照射領域および第2の帯状照射領域
で被検査面を所定方向に沿って走査する。こうして、各
帯状照射領域において異物を検出した時間と走査速度と
に基づいて異物位置を検出することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a first band-shaped irradiation region and a second band-shaped irradiation region in which the interval between the first band-shaped irradiation region and the first band-shaped irradiation region monotonously changes are formed on the surface to be inspected. .
Then, the surface to be inspected is scanned along the predetermined direction in the first strip-shaped irradiation region and the second strip-shaped irradiation region. In this way, the position of the foreign matter can be detected based on the time when the foreign matter is detected and the scanning speed in each band-shaped irradiation region.

【0010】具体的な実施の形態によれば、第1の帯状
照射領域を走査方向に垂直な方向に沿って、第2の帯状
照射領域を第1の帯状照射領域に対して傾斜した方向に
沿って形成する。この場合、第1帯状照射領域において
異物を検出した時間と走査速度とに基づいて走査方向に
沿った異物位置を、各帯状照射領域において異物を検出
した時間差と走査速度とに基づいて走査直交方向に沿っ
た異物位置をそれぞれ検出することができる。
According to a specific embodiment, the first strip-shaped irradiation region is arranged along the direction perpendicular to the scanning direction, and the second strip-shaped irradiation region is inclined with respect to the first strip-shaped irradiation region. Form along. In this case, the foreign matter position along the scanning direction is detected based on the time when the foreign matter is detected in the first strip irradiation area and the scanning speed, and the scanning orthogonal direction is determined based on the time difference when the foreign matter is detected in each strip irradiation area and the scanning speed. It is possible to detect the position of each foreign object along the line.

【0011】このように、本発明においては、各照射領
域における異物からの散乱光の有無を検出するだけで、
異物位置を検出することができる。したがって、被検査
面が大きくても、その全体に亘って検出感度の変動もな
く、異物位置を高精度に検出することができる。また、
異物からの散乱光を検出するための光学系は、たとえば
所定方向に沿って延びた入射端を有するライトガイドな
どを有する簡素な構成で十分である。その結果、装置全
体を大型化することなく、ライトガイドの入射端を所定
方向に長くするだけで被検査面の大型化に対応すること
ができる。
As described above, according to the present invention, the presence or absence of scattered light from a foreign matter in each irradiation region is simply detected.
The foreign object position can be detected. Therefore, even if the surface to be inspected is large, the detection sensitivity does not fluctuate over the entire surface, and the position of the foreign matter can be detected with high accuracy. Also,
An optical system for detecting scattered light from a foreign substance may have a simple configuration including, for example, a light guide having an incident end extending along a predetermined direction. As a result, it is possible to cope with an increase in the size of the surface to be inspected by simply increasing the incident end of the light guide in a predetermined direction without increasing the size of the entire device.

【0012】本発明の実施例を、添付図面に基づいて説
明する。図1は、本発明の第1実施例にかかる表面異物
検査装置の構成を概略的に示す斜視図である。図2は、
図1のペリクル膜1の表面に形成される2つの帯状照射
領域を示す図である。なお、図1では、2つの帯状照射
領域2および3のうち一方の帯状照射領域2に対応する
照射手段および検出手段だけを示し、他方の帯状照射領
域3に対応する照射手段および検出手段の図示を省略し
ている。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view schematically showing the structure of a surface foreign matter inspection apparatus according to the first embodiment of the present invention. FIG.
It is a figure which shows two strip | belt-shaped irradiation areas formed in the surface of the pellicle film 1 of FIG. In FIG. 1, only the irradiation means and the detection means corresponding to one of the two belt-shaped irradiation areas 2 and 3 are shown, and the irradiation means and the detection means corresponding to the other belt-shaped irradiation area 3 are shown. Is omitted.

【0013】図1において、光源10から射出された光
は、適当な照射光学系11を介して、マスク(不図示)
に張架されたペリクル膜1の表面上に帯状の照射領域2
を形成する。マスクは、ペリクル膜1の表面がxy平面
に平行になるように、x方向に沿って移動可能なステー
ジ(不図示)上に保持されている。また、照射領域2
は、走査方向と直交するy方向に沿って形成される。し
たがって、ステージをx方向に駆動することによって、
ペリクル膜1の全面を照射領域2によって走査すること
ができる。
In FIG. 1, the light emitted from the light source 10 is passed through an appropriate irradiation optical system 11 and a mask (not shown).
A belt-shaped irradiation region 2 on the surface of the pellicle film 1 stretched over the
To form The mask is held on a stage (not shown) movable in the x direction so that the surface of the pellicle film 1 is parallel to the xy plane. Also, the irradiation area 2
Are formed along the y direction orthogonal to the scanning direction. Therefore, by driving the stage in the x direction,
The entire surface of the pellicle film 1 can be scanned by the irradiation area 2.

【0014】照射領域2からの散乱光は、多数の光ファ
イバーを束ねて構成されたライトガイド手段であるファ
イバーバンドル12の端面に入射する。ファイバーバン
ドル12を介して導かれた散乱光は、光電子増倍管やシ
リコンフォトダイオードなどの光電変換素子13の受光
面上に集光する。そして、光電変換素子13は、異物か
らの散乱光の強度に応じた散乱信号を出力する。こうし
て、散乱信号に基づいて、異物を検出することができ
る。
The scattered light from the irradiation area 2 is incident on the end face of a fiber bundle 12 which is a light guide means constituted by bundling a large number of optical fibers. The scattered light guided through the fiber bundle 12 is condensed on the light receiving surface of the photoelectric conversion element 13 such as a photomultiplier tube or a silicon photodiode. Then, the photoelectric conversion element 13 outputs a scattered signal according to the intensity of scattered light from the foreign matter. In this way, the foreign matter can be detected based on the scattered signal.

【0015】このように、光源10および照射光学系1
1は、被検査面であるペリクル膜1の表面上に第1の帯
状の照射領域2を形成するための照射手段を構成してい
る。また、ファイバーバンドル12および光電変換素子
13は、第1の帯状の照射領域2における異物からの散
乱光を受光して異物を検出するための検出手段を構成し
ている。
As described above, the light source 10 and the irradiation optical system 1
Reference numeral 1 constitutes irradiation means for forming a first strip-shaped irradiation region 2 on the surface of the pellicle film 1 which is the surface to be inspected. Further, the fiber bundle 12 and the photoelectric conversion element 13 constitute a detection means for receiving scattered light from the foreign matter in the first band-shaped irradiation region 2 and detecting the foreign matter.

【0016】第1実施例では、図2に示すように、走査
方向(x方向)に垂直な方向(y方向)に沿った第1の
帯状照射領域2に加えて、第2の帯状照射領域3が形成
されるように構成されている。この第2の帯状照射領域
3は、走査方向を横切り且つ第1の帯状照射領域2の長
手方向と所定の角度θで交わる方向に沿って形成され
る。なお、前述したように、図1では第2の帯状照射領
域3に対応する照射手段および検出手段の図示を省略し
ているが、その構成は第1の帯状照射領域2に対応する
照射手段および検出手段の構成と基本的に同じである。
In the first embodiment, as shown in FIG. 2, in addition to the first strip-shaped irradiation region 2 along the direction (y-direction) perpendicular to the scanning direction (x-direction), the second strip-shaped irradiation region is provided. 3 is formed. The second strip-shaped irradiation region 3 is formed along the direction crossing the scanning direction and intersecting the longitudinal direction of the first strip-shaped irradiation region 2 at a predetermined angle θ. As described above, in FIG. 1, the irradiation means and the detection means corresponding to the second band-shaped irradiation area 3 are omitted, but the configuration is such that the irradiation means and the detection means corresponding to the first band-shaped irradiation area 2 are omitted. The structure of the detecting means is basically the same.

【0017】以上の如く、第1および第2の帯状照射領
域からの散乱光をそれぞれ各光電変換素子によって変換
して生成された各出力信号は、不図示の信号処理系に入
力される。さらに、被検物体としてのマスクを保持する
ステージからの走査速度等の駆動情報も、信号処理系に
入力される。そして、信号処理系は、後述する所定の演
算を実行し、異物の位置を検出する。
As described above, each output signal generated by converting the scattered light from the first and second strip-shaped irradiation regions by each photoelectric conversion element is input to a signal processing system (not shown). Further, driving information such as the scanning speed from the stage holding the mask as the object to be inspected is also input to the signal processing system. Then, the signal processing system executes a predetermined calculation described below to detect the position of the foreign matter.

【0018】図3は、第1実施例において検出される散
乱信号を示す図であって、(a)は第1の帯状照射領域
2からの散乱信号を、(b)は第2の帯状照射領域3か
らの散乱信号をそれぞれ示している。なお、図3におい
て、検出の開始時刻を基準とした時間を横軸に、各照射
領域から検出された光信号の強度を縦軸にそれぞれ示し
ている。図3では、検出の開始時刻から時間Tだけ経過
した時点において照射領域2からの光信号が検出され、
さらにΔtだけ時間が経過した時点において照射領域3
からの光信号が検出された状態を示している。
FIG. 3 is a diagram showing scattered signals detected in the first embodiment, where (a) shows scattered signals from the first band-shaped irradiation region 2 and (b) shows second band-shaped irradiation. Scatter signals from region 3 are shown respectively. In FIG. 3, the horizontal axis represents the time with reference to the detection start time, and the vertical axis represents the intensity of the optical signal detected from each irradiation region. In FIG. 3, the optical signal from the irradiation region 2 is detected at the time point when time T has elapsed from the detection start time,
Irradiation area 3 at the time when Δt has further elapsed
The state where the optical signal from is detected is shown.

【0019】以下、図2および図3を参照して、ペリク
ル膜1の表面上における異物4の位置を求める方法につ
いて述べる。一般に、x方向については、検出開始の時
点における照射領域2の位置を原点とすることができ
る。多くの場合、マスクの縁端またはペリクル膜1の枠
からの散乱光が照射領域2からほぼ一度に検出されるの
で、この散乱光をトリガーとして検出を開始することが
できる。図2では、ペリクル膜1の枠に照射領域2が達
した位置をx方向についての原点0としている。
A method for determining the position of the foreign matter 4 on the surface of the pellicle film 1 will be described below with reference to FIGS. 2 and 3. Generally, in the x direction, the position of the irradiation region 2 at the time of starting the detection can be set as the origin. In many cases, scattered light from the edge of the mask or the frame of the pellicle film 1 is detected from the irradiation region 2 almost at once, so that the scattered light can be used as a trigger to start detection. In FIG. 2, the position where the irradiation region 2 reaches the frame of the pellicle film 1 is the origin 0 in the x direction.

【0020】一方、y方向については、照射領域2と照
射領域3との間のx方向に沿った距離のわかっている位
置を原点とすることができる。図2では、照射領域2と
照射領域3との間のx方向に沿った距離がaである位置
をy方向についての原点0としている。
On the other hand, with respect to the y direction, a position where the distance between the irradiation region 2 and the irradiation region 3 along the x direction is known can be set as the origin. In FIG. 2, the position where the distance between the irradiation region 2 and the irradiation region 3 along the x direction is a is set as the origin 0 in the y direction.

【0021】上述の条件において、異物4の座標(x,
y)は、以下の式(1)および(2)によって表され
る。 x=v・T (1) y=(v・Δt−a)cot θ (2) ここで、 v:走査速度
Under the above conditions, the coordinates (x,
y) is represented by the following equations (1) and (2). x = v · T (1) y = (v · Δt−a) cot θ (2) where, v: scanning speed

【0022】このように、第1実施例では、第1の帯状
照射領域2において異物4を検出した時間Tと走査速度
vとに基づいて走査方向(x方向)に沿った異物位置を
検出することができる。また、各帯状照射領域2および
3において異物4を検出した時間差Δtと走査速度vと
に基づいて走査直交方向(y方向)に沿った異物位置を
検出することができる。
As described above, in the first embodiment, the foreign matter position along the scanning direction (x direction) is detected based on the scanning time v and the time T when the foreign matter 4 is detected in the first band-shaped irradiation region 2. be able to. Further, it is possible to detect the foreign matter position along the scanning orthogonal direction (y direction) based on the scanning time difference Δt and the scanning speed v at which the foreign matter 4 is detected in each of the strip-shaped irradiation regions 2 and 3.

【0023】このように、第1実施例においては、各照
射領域2および3における異物からの散乱光の有無を検
出するだけで、異物位置を検出することができる。した
がって、被検査面であるペリクル膜1が大きくても、そ
の全体に亘って検出感度の変動もなく、異物位置を高精
度に検出することができる。また、装置全体を大型化す
ることなく、ファイバーバンドル12の入射端を所定方
向に長くするだけで被検査面の大型化に対応することが
できる。
As described above, in the first embodiment, the position of the foreign matter can be detected only by detecting the presence or absence of scattered light from the foreign matter in the irradiation areas 2 and 3. Therefore, even if the pellicle film 1 that is the surface to be inspected is large, the detection sensitivity does not fluctuate over the entire surface, and the position of the foreign matter can be detected with high accuracy. Further, it is possible to cope with the increase in size of the surface to be inspected by simply increasing the incident end of the fiber bundle 12 in a predetermined direction without increasing the size of the entire apparatus.

【0024】図4は、本発明の第2実施例にかかる表面
異物検査装置の構成を概略的に示す斜視図である。な
お、図4においても、2つの帯状照射領域のうち一方の
帯状照射領域に対応する照射手段および検出手段だけを
示し、他方の帯状照射領域に対応する照射手段および検
出手段の図示を省略している。第2実施例と第1実施例
とはほぼ同じ構成を有するが、第2実施例では照射領域
2とファイバーバンドル12との間の光路中に、レンズ
アレイ14および視野絞り15が配置されている点だけ
が第1実施例と基本的に異なる。したがって、図4にお
いて図1の要素と同じ機能を有する要素には図1と同じ
参照符号を付している。以下、第1実施例との相違点に
着目して第2実施例を説明する。
FIG. 4 is a perspective view schematically showing the structure of a surface foreign matter inspection apparatus according to the second embodiment of the present invention. Also in FIG. 4, only the irradiation means and the detection means corresponding to one of the two belt-shaped irradiation areas are shown, and the irradiation means and the detection means corresponding to the other belt-shaped irradiation area are omitted. There is. The second embodiment and the first embodiment have almost the same configuration, but in the second embodiment, the lens array 14 and the field stop 15 are arranged in the optical path between the irradiation region 2 and the fiber bundle 12. Only the points are basically different from the first embodiment. Therefore, in FIG. 4, elements having the same functions as those in FIG. 1 are denoted by the same reference numerals as in FIG. Hereinafter, the second embodiment will be described focusing on the differences from the first embodiment.

【0025】図4に示すように、第2実施例では、照射
領域2からの散乱光がレンズアレイ14を介して集光さ
れた後、照射領域2と光学的に共役に配置された視野絞
り15に入射する。すなわち、レンズアレイ14を介し
て集光された照射領域2からの散乱光だけが、視野絞り
15を介してファイバーバンドル12の入射端に達す
る。このように、第2実施例では、照射領域2からの散
乱光以外の光がファイバーバンドル12の入射端に達し
にくく構成されているので、いわゆる迷光の発生を回避
して高精度な検出が可能になる。
As shown in FIG. 4, in the second embodiment, after the scattered light from the irradiation area 2 is condensed through the lens array 14, the field stop disposed optically conjugate with the irradiation area 2. It is incident on 15. That is, only the scattered light from the irradiation region 2 that is collected through the lens array 14 reaches the incident end of the fiber bundle 12 through the field stop 15. As described above, in the second embodiment, the light other than the scattered light from the irradiation region 2 is configured to hardly reach the incident end of the fiber bundle 12, so that so-called stray light is avoided and highly accurate detection is possible. become.

【0026】なお、第1実施例では、照射領域2が走査
方向に対して直交している場合について示したが、照射
領域2の長手方向が走査方向に対して必ずしも直交して
いる必要はない。本発明において必須な点は、2つの照
射領域が走査方向を横切るように形成され、且つ2つの
照射領域の間隔が単調に変化していることである。ま
た、上述の各実施例では、帯状の照射領域の視野を光電
変換素子の受光面上に変換するための光学素子として、
ファイバーバンドルを用いている。しかしながら、ファ
イバーバンドルに代えて、一体化された光伝導ロッドな
どの光学素子を用いてもよい。
Although the irradiation area 2 is orthogonal to the scanning direction in the first embodiment, the longitudinal direction of the irradiation area 2 need not necessarily be orthogonal to the scanning direction. . An essential point in the present invention is that the two irradiation areas are formed so as to cross the scanning direction, and the interval between the two irradiation areas changes monotonically. Further, in each of the above-mentioned embodiments, as an optical element for converting the visual field of the belt-shaped irradiation area onto the light receiving surface of the photoelectric conversion element,
A fiber bundle is used. However, instead of a fiber bundle, an optical element such as an integrated photoconductive rod may be used.

【0027】さらに、本発明では、ファイバーバンドル
等のライトガイド手段を用いることなく、たとえば図5
に示すように、各帯状照射領域2からの散乱光を検出し
得る位置に、帯状(長方形状)のCCD等の光電変換素
子130をそれぞれ配置し、第1の帯状照射領域から散
乱光を第1の光電変換素子で光電検出し、第2の帯状照
射領域からの散乱光を第2の光電変換素子で光電検出す
る構成としてもよい。
Further, in the present invention, without using a light guide means such as a fiber bundle, for example, as shown in FIG.
As shown in FIG. 3, photoelectric conversion elements 130 such as strip-shaped (rectangular) CCDs are arranged at positions where scattered light from each strip-shaped irradiation region 2 can be detected, and scattered light from the first strip-shaped irradiation region The photoelectric conversion element may be photoelectrically detected by the first photoelectric conversion element, and the scattered light from the second band-shaped irradiation region may be photoelectrically detected by the second photoelectric conversion element.

【0028】さらに、上述の各実施例では、2つの照射
領域からの散乱光をそれぞれ別個の検出手段で受光する
例を示している。しかしながら、特に第2実施例のよう
な受光系を採用する場合には、レンズアレイ14と視野
絞り15との協働作用により受光領域が限定されるの
で、2つの照射領域全体を1つの照射光学系を介して照
射してもよい。また、上述の各実施例では、2つの照射
領域を形成する例を示しているが、位置検出の感度等を
向上させるために3つ以上の照射領域を形成してもよ
い。
Further, in each of the above-described embodiments, an example is shown in which scattered light from the two irradiation areas is received by separate detecting means. However, particularly when the light receiving system as in the second embodiment is adopted, the light receiving region is limited by the cooperative action of the lens array 14 and the field stop 15. Therefore, the entire two irradiation regions are combined into one irradiation optical system. Irradiation may be through the system. Further, in each of the above-described embodiments, an example in which two irradiation areas are formed is shown, but three or more irradiation areas may be formed in order to improve the sensitivity of position detection and the like.

【0029】[0029]

【効果】以上説明したように、本発明では、2つの帯状
照射領域を形成し、各帯状照射領域において異物を検出
した時間と走査速度とに基づいて異物位置を検出する。
すなわち、各照射領域における異物からの散乱光の有無
を検出するだけで、異物位置を検出することができる。
したがって、被検査面が大きくても、その全体に亘って
検出感度の変動もなく、異物位置を高精度に検出するこ
とができる。また、装置全体を大型化することなく、フ
ァイバーバンドルの入射端を所定方向に長くするだけで
被検査面の大型化に対応することができる。
As described above, in the present invention, two strip-shaped irradiation regions are formed, and the foreign substance position is detected based on the time when the foreign substance is detected in each strip-shaped irradiation region and the scanning speed.
That is, the position of the foreign matter can be detected only by detecting the presence or absence of scattered light from the foreign matter in each irradiation region.
Therefore, even if the surface to be inspected is large, the detection sensitivity does not fluctuate over the entire surface, and the position of the foreign matter can be detected with high accuracy. Further, it is possible to cope with the increase in size of the surface to be inspected by simply increasing the incident end of the fiber bundle in a predetermined direction without increasing the size of the entire apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例にかかる表面異物検査装置
の構成を概略的に示す図である。
FIG. 1 is a diagram schematically showing a configuration of a surface foreign matter inspection apparatus according to a first embodiment of the present invention.

【図2】図1のペリクル膜1の表面に形成される2つの
帯状照射領域を示す図である。
FIG. 2 is a diagram showing two strip-shaped irradiation regions formed on the surface of the pellicle film 1 of FIG.

【図3】第1実施例において検出される散乱信号を示す
図であって、(a)は第1の帯状照射領域2からの散乱
信号を、(b)は第2の帯状照射領域3からの散乱信号
をそれぞれ示している。
3A and 3B are diagrams showing scattered signals detected in the first embodiment, wherein FIG. 3A is a scattered signal from the first band-shaped irradiation region 2 and FIG. 3B is a second band-shaped irradiation region 3. The scatter signals of are shown respectively.

【図4】本発明の第2実施例にかかる表面異物検査装置
の構成を概略的に示す図である。
FIG. 4 is a diagram schematically showing a configuration of a surface foreign matter inspection apparatus according to a second embodiment of the present invention.

【図5】本発明の実施例の変形例の概略的な構成を示す
図である。
FIG. 5 is a diagram showing a schematic configuration of a modified example of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ペリクル膜 2 第1の帯状照射領域 3 第2の帯状照射領域 4 異物 10 光源 11 照射光学系 12 ファイバーバンドル 13 光電変換素子 14 レンズアレイ 15 視野絞り DESCRIPTION OF SYMBOLS 1 Pellicle film 2 1st strip | belt-shaped irradiation area | region 3 2nd strip | belt-shaped irradiation area | region 4 Foreign material 10 Light source 11 Irradiation optical system 12 Fiber bundle 13 Photoelectric conversion element 14 Lens array 15 Field stop

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検査面上に帯状の照射領域を形成する
ための照射手段と、前記帯状照射領域の長手方向を横切
る方向に前記被検査面を前記照射手段に対して相対移動
させるための走査手段と、前記帯状照射領域における異
物からの散乱光に基づいて前記異物の位置を検出するた
めの検出手段とを備えた表面異物検査装置において、 前記照射手段は、第1の帯状照射領域と、該第1の帯状
照射領域との間隔が単調に変化する第2の帯状照射領域
とを形成し、 前記検出手段は、前記第1の帯状照射領域において前記
異物を検出した時間と、前記第2の帯状照射領域におい
て前記異物を検出した時間と、前記被検査面と前記照射
手段との相対移動速度とに基づいて、前記異物の位置を
検出することを特徴とする表面異物検査装置。
1. An irradiation unit for forming a belt-shaped irradiation region on a surface to be inspected, and a unit for moving the surface to be inspected relative to the irradiation unit in a direction transverse to a longitudinal direction of the band-shaped irradiation region. In a surface foreign matter inspection device comprising a scanning means and a detection means for detecting the position of the foreign matter based on the scattered light from the foreign matter in the strip-shaped irradiation area, the irradiation means is a first strip-shaped irradiation area. A second band-shaped irradiation region in which a distance between the first band-shaped irradiation region and the second band-shaped irradiation region monotonously changes, and the detection unit detects the foreign matter in the first band-shaped irradiation region, 2. A surface foreign matter inspection apparatus, which detects a position of the foreign matter based on a time when the foreign matter is detected in the band-shaped irradiation area of No. 2 and a relative moving speed between the surface to be inspected and the irradiation means.
【請求項2】 前記第1の帯状照射領域は、前記走査方
向に対して垂直な第1の直線方向に沿って形成され、 前記第2の帯状照射領域は、前記第1の直線方向に対し
て所定の角度で交わる第2の直線方向に沿って形成され
ていることを特徴とする請求項1に記載の表面異物検査
装置。
2. The first strip-shaped irradiation region is formed along a first linear direction perpendicular to the scanning direction, and the second strip-shaped irradiation region is formed with respect to the first linear direction. 2. The surface foreign matter inspection apparatus according to claim 1, wherein the surface foreign matter inspection apparatus is formed along a second linear direction that intersects at a predetermined angle.
【請求項3】 前記走査手段は、前記被検査面を有する
物体を保持して前記走査方向に沿って移動可能なステー
ジ手段であることを特徴とする請求項1または2に記載
の表面異物検査装置。
3. The surface foreign matter inspection according to claim 1, wherein the scanning unit is a stage unit that holds an object having the surface to be inspected and is movable along the scanning direction. apparatus.
【請求項4】 前記照射手段は、前記被検査面上に前記
第1の帯状照射領域を形成するための第1照射系と、前
記被検査面上に前記第2の帯状照射領域を形成するため
の第2照射系とを有し、 前記検出手段は、前記第1の帯状照射領域からの散乱光
を受光して伝搬するための第1ライトガイド手段と、前
記第1ライトガイド手段を介した前記第1の帯状照射領
域からの散乱光を光電変換するための第1光電変換素子
と、前記第2の帯状照射領域からの散乱光を受光して伝
搬するための第2ライトガイド手段と、 前記第2ライトガイド手段を介した前記第2の帯状照射
領域からの散乱光を光電変換するための第2光電変換素
子とを有することを特徴とする請求項1乃至3のいずれ
か1項に記載の表面異物検査装置。
4. The irradiation means forms a first irradiation system for forming the first strip-shaped irradiation region on the surface to be inspected and a second strip-shaped irradiation region on the surface to be inspected. A second irradiation system for receiving the scattered light from the first band-shaped irradiation region and propagating the scattered light from the first belt-shaped irradiation region, and the first light guide unit. A first photoelectric conversion element for photoelectrically converting scattered light from the first strip-shaped irradiation region, and second light guide means for receiving and propagating scattered light from the second strip-shaped irradiation region. 4. A second photoelectric conversion element for photoelectrically converting scattered light from the second strip-shaped irradiation region via the second light guide means, and the second photoelectric conversion element according to claim 1. The surface foreign matter inspection device described in.
【請求項5】 前記検出手段は、 前記第1の帯状照射領域からの散乱光を集光するための
第1レンズアレイと、前記第2の帯状照射領域からの散
乱光を集光するための第2レンズアレイと、前記第1の
帯状照射領域に対して光学的にほぼ共役な位置に設けら
れた第1視野絞りと、前記第2の帯状照射領域に対して
光学的にほぼ共役な位置に設けられた第2視野絞りとを
さらに有し、 前記第1ライトガイド手段は、前記第1レンズアレイお
よび前記第1視野絞りを介した前記第1の帯状照射領域
からの散乱光を受光し、前記第2ライトガイド手段は、
前記第2レンズアレイおよび前記第2視野絞りを介した
前記第2の帯状照射領域からの散乱光を受光することを
特徴とする請求項4に記載の表面異物検査装置。
5. The first detection means for collecting scattered light from the first band-shaped irradiation area, and the detection means for collecting scattered light from the second band-shaped irradiation area. A second lens array, a first field stop provided at a position that is substantially optically conjugate with the first band-shaped irradiation region, and a position that is optically substantially conjugate with the second band-shaped irradiation region. A second field stop provided in the first light guide means for receiving scattered light from the first band-shaped irradiation region via the first lens array and the first field stop. , The second light guide means,
The surface foreign matter inspection device according to claim 4, wherein the scattered light from the second band-shaped irradiation region via the second lens array and the second field stop is received.
【請求項6】 前記照射手段は、前記被検面上に前記第
1帯状照射領域を形成する第1照射系と、前記被検面上
に前記第2帯状照射領域を形成する第2照射系とを有
し、 前記検出手段は、前記第1帯状照射領域からの散乱光を
受光して光電変換する第1光電変換素子と、前記第2帯
状照射領域からの散乱光を受光して光電変換する第2光
電変換素子とを有することを特徴とする請求項1乃至3
のいずれか1項に記載の表面異物検査装置。
6. The irradiation means includes a first irradiation system that forms the first strip-shaped irradiation area on the test surface, and a second irradiation system that forms the second strip-shaped irradiation area on the test surface. And a first photoelectric conversion element that receives scattered light from the first band-shaped irradiation region and photoelectrically converts the scattered light from the first band-shaped irradiation region; and a photoelectric conversion device that receives scattered light from the second band-shaped irradiation region. And a second photoelectric conversion element that operates.
The surface foreign matter inspection device according to claim 1.
JP7333981A 1995-11-29 1995-11-29 Surface foreign matter detector Pending JPH09145631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7333981A JPH09145631A (en) 1995-11-29 1995-11-29 Surface foreign matter detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7333981A JPH09145631A (en) 1995-11-29 1995-11-29 Surface foreign matter detector

Publications (1)

Publication Number Publication Date
JPH09145631A true JPH09145631A (en) 1997-06-06

Family

ID=18272161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7333981A Pending JPH09145631A (en) 1995-11-29 1995-11-29 Surface foreign matter detector

Country Status (1)

Country Link
JP (1) JPH09145631A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950408A (en) * 1997-07-25 1999-09-14 Mtd Products Inc Bag-full indicator mechanism
US6230608B1 (en) 1997-07-25 2001-05-15 Mtd Products Inc Vacuum actuated control mechanism
US7113624B2 (en) 2002-10-15 2006-09-26 Palo Alto Research Center Incorporated Imaging apparatus and method employing a large linear aperture
US7145645B2 (en) 1999-11-04 2006-12-05 Regents Of The University Of Minnesota Imaging of biological samples using electronic light detector
US7280261B2 (en) 2004-12-20 2007-10-09 Palo Alto Research Center Incorporated Method of scanning and light collection for a rare cell detector
US7286224B2 (en) 2004-12-21 2007-10-23 Palo Alto Research Center Incorporated Time-multiplexed scanning light source for multi-probe, multi-laser fluorescence detection systems
US7305112B2 (en) 2002-10-15 2007-12-04 The Scripps Research Institute Method of converting rare cell scanner image coordinates to microscope coordinates using reticle marks on a sample media
JP2008191066A (en) * 2007-02-07 2008-08-21 Topcon Corp Surface inspection method and surface inspection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950408A (en) * 1997-07-25 1999-09-14 Mtd Products Inc Bag-full indicator mechanism
US6230608B1 (en) 1997-07-25 2001-05-15 Mtd Products Inc Vacuum actuated control mechanism
US7145645B2 (en) 1999-11-04 2006-12-05 Regents Of The University Of Minnesota Imaging of biological samples using electronic light detector
US7113624B2 (en) 2002-10-15 2006-09-26 Palo Alto Research Center Incorporated Imaging apparatus and method employing a large linear aperture
US7277569B2 (en) 2002-10-15 2007-10-02 Palo Alto Research Center Incorporated Apparatus and method for detecting and locating rare cells
US7305112B2 (en) 2002-10-15 2007-12-04 The Scripps Research Institute Method of converting rare cell scanner image coordinates to microscope coordinates using reticle marks on a sample media
US7280261B2 (en) 2004-12-20 2007-10-09 Palo Alto Research Center Incorporated Method of scanning and light collection for a rare cell detector
US7286224B2 (en) 2004-12-21 2007-10-23 Palo Alto Research Center Incorporated Time-multiplexed scanning light source for multi-probe, multi-laser fluorescence detection systems
JP2008191066A (en) * 2007-02-07 2008-08-21 Topcon Corp Surface inspection method and surface inspection device

Similar Documents

Publication Publication Date Title
US4595289A (en) Inspection system utilizing dark-field illumination
US6366352B1 (en) Optical inspection method and apparatus utilizing a variable angle design
JP3101290B2 (en) Surface condition inspection device, exposure apparatus, and surface condition inspection method
JP3259331B2 (en) Surface condition inspection device
US6909501B2 (en) Pattern inspection apparatus and pattern inspection method
JP2000162137A (en) Surface inspecting device
JPH07229844A (en) Dust particle inspection system
JPS6352696B2 (en)
JPH09145631A (en) Surface foreign matter detector
JP3048168B2 (en) Surface condition inspection apparatus and exposure apparatus having the same
JP4961615B2 (en) Photomask inspection method and apparatus
JP3860202B2 (en) Transparency sheet defect inspection system
JPH0511257B2 (en)
JPH06258237A (en) Defect inspection device
JP3336392B2 (en) Foreign matter inspection apparatus and method
JP2001272355A (en) Foreign matter inspecting apparatus
JP2000131241A (en) Inspection device and inspecting method for optical element
JP2970235B2 (en) Surface condition inspection device
JPH01259244A (en) Foreign matter detection system
JPH06258235A (en) Surface inspection device
JP3406951B2 (en) Surface condition inspection device
JPS6067845A (en) Foreign matter inspecting device
JPH11183151A (en) Transparent sheet inspecting equipment
JPH0547091B2 (en)
JPH102864A (en) Foreign matter inspecting device