JPH06258237A - Defect inspection device - Google Patents
Defect inspection deviceInfo
- Publication number
- JPH06258237A JPH06258237A JP4491293A JP4491293A JPH06258237A JP H06258237 A JPH06258237 A JP H06258237A JP 4491293 A JP4491293 A JP 4491293A JP 4491293 A JP4491293 A JP 4491293A JP H06258237 A JPH06258237 A JP H06258237A
- Authority
- JP
- Japan
- Prior art keywords
- light beam
- light
- reticle
- edges
- defect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/94—Investigating contamination, e.g. dust
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/064—Stray light conditioning
- G01N2201/0642—Light traps; baffles
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば半導体素子等を
フォトリソグラフィ工程で製造する際に原版として使用
されるレチクル若しくはフォトマスク、又はこれら原版
の防塵膜(ペリクル)の表面上に付着した異物等の欠陥
を検査する場合に適用して好適な欠陥検査装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reticle or a photomask used as an original plate when manufacturing a semiconductor device or the like in a photolithography process, or a foreign substance adhered to the surface of a dustproof film (pellicle) of these original plates. The present invention relates to a defect inspection apparatus suitable for application when inspecting defects such as.
【0002】[0002]
【従来の技術】半導体素子又は液晶表示素子等をフォト
リソグラフィ工程で製造する際に、原版としてのレチク
ル又はフォトマスク(以下、「レチクル」と総称する)
に形成されたパターンを投影光学系を介して感光基板上
に転写する露光装置が使用されている。そのレチクルの
パターン形成面若しくはパターン形成面の対向面に所定
の規格より大きい異物が付着しているか、又はそのパタ
ーン形成面のパターンに欠陥が存在すると、感光基板上
に形成されるパターンに不良が生じるため、レチクルを
露光装置に装着する前に、異物を含む欠陥の有無、欠陥
の位置及び欠陥の大きさ等を検査する必要がある。ま
た、レチクルのパターン形成面に直接異物が付着するの
を防止するため、レチクルの両面(又は片面)にはペリ
クルと呼ばれる防塵膜が張設されていることがあるが、
このようにペリクルが張設されたレチクルについては、
ペリクルの表面の異物をも含む欠陥の有無、欠陥の位置
及び欠陥の大きさ等を検査する必要がある。2. Description of the Related Art A reticle or photomask as an original plate (hereinafter referred to as a "reticle") when a semiconductor device, a liquid crystal display device, or the like is manufactured by a photolithography process.
There is used an exposure device that transfers the pattern formed on the photosensitive substrate through a projection optical system. If a foreign substance larger than a predetermined standard adheres to the pattern forming surface of the reticle or the surface opposite to the pattern forming surface, or if the pattern on the pattern forming surface has a defect, the pattern formed on the photosensitive substrate is defective. Therefore, before mounting the reticle on the exposure apparatus, it is necessary to inspect the presence / absence of a defect including a foreign substance, the position of the defect, the size of the defect, and the like. Further, in order to prevent foreign matter from directly adhering to the pattern forming surface of the reticle, a dustproof film called a pellicle may be stretched on both sides (or one side) of the reticle.
Regarding the reticle with the pellicle stretched in this way,
It is necessary to inspect the presence / absence of a defect including foreign matter on the surface of the pellicle, the position of the defect, and the size of the defect.
【0003】図5は、従来の欠陥検査装置の一例を示
し、この図5において検査対象のレチクル1は載物台2
上に載置され、載物台2は駆動装置3によりY方向へ移
動できるように構成され、載物台2のY方向への移動量
はリニアエンコーダ等の測長装置4により測長される。
そして、レーザ光源よりなる光源5から射出された光ビ
ームL1は、負のシリンドリカルレンズ6及び正のシリ
ンドリカルレンズ7によりほぼY方向に垂直なX方向に
拡大されたシート状の光ビームL2となり、この光ビー
ムL2がレチクル1の表面上のほぼX方向に延びたスリ
ット状の照明領域8に照射される。FIG. 5 shows an example of a conventional defect inspection apparatus. In FIG. 5, the reticle 1 to be inspected is a stage 2
The table 2 is placed on the table, and the table 2 is configured to be movable in the Y direction by the drive device 3. The amount of movement of the table 2 in the Y direction is measured by the length measuring device 4 such as a linear encoder. .
The light beam L1 emitted from the light source 5 including the laser light source becomes a sheet-shaped light beam L2 expanded in the X direction substantially perpendicular to the Y direction by the negative cylindrical lens 6 and the positive cylindrical lens 7. The light beam L2 is applied to the slit-shaped illumination region 8 extending in the X direction on the surface of the reticle 1.
【0004】仮に、レチクル1の表面上のスリット状の
照明領域8内に異物等の欠陥9が存在していると、光ビ
ームL2によって欠陥9からは散乱光L3が発生し、こ
の散乱光L3は受光レンズ10により集光され、1次元
CCD等の1次元撮像素子11上の撮像面上に欠陥9の
像が結像される。欠陥9のレチクル1上のX方向の座標
は、1次元撮像素子11の何番目の受光画素で受光され
たかにより換算され、欠陥9のY方向の座標は、そのと
きの測長装置4の測長出力によって求めることができ
る。更に、1次元撮像素子11は受光した光量に比例し
た大きさの画素出力信号を出力するため、この画素出力
信号の大小により欠陥9のおおまかな大きさを判定する
ことができる。従って、検査結果を例えば、欠陥のX座
標値及びY座標値に欠陥の大きさを対応させた表として
表示したり、CRTディスプレイの表示画面上の欠陥の
マップとして表示したりすることができる。If a defect 9 such as a foreign substance exists in the slit-shaped illumination area 8 on the surface of the reticle 1, scattered light L3 is generated from the defect 9 by the light beam L2, and this scattered light L3 is generated. Is collected by the light receiving lens 10 and an image of the defect 9 is formed on the image pickup surface of the one-dimensional image pickup device 11 such as a one-dimensional CCD. The X-direction coordinate of the defect 9 on the reticle 1 is converted by the number of the light-receiving pixel of the one-dimensional image pickup device 11 that receives the light, and the Y-direction coordinate of the defect 9 is measured by the length measuring device 4 at that time. It can be obtained by long output. Further, since the one-dimensional image pickup device 11 outputs a pixel output signal having a size proportional to the amount of received light, the rough size of the defect 9 can be determined by the size of the pixel output signal. Therefore, the inspection result can be displayed, for example, as a table in which the defect size is associated with the X coordinate value and the Y coordinate value of the defect, or as a map of the defect on the display screen of the CRT display.
【0005】しかし、図5の従来の欠陥検査装置におい
ては、レチクル1の上面1a上の欠陥を検査する場合
に、レチクル1を光ビームL2が透過して、この透過し
た光がレチクル1の下面1b上の微細な回路パターンで
回折され、この回折光があたかも欠陥からの散乱光とし
て受光レンズ10で集光され、1次元撮像素子11で検
出されてしまうという不都合がある。そこで、特にレチ
クル1の回路パターンの形成面に対向する面を検査する
場合は、図6のような構成をとることがある。However, in the conventional defect inspection apparatus of FIG. 5, when inspecting a defect on the upper surface 1a of the reticle 1, the light beam L2 is transmitted through the reticle 1, and the transmitted light is the lower surface of the reticle 1. There is an inconvenience that the light is diffracted by the fine circuit pattern on 1b, and the diffracted light is condensed by the light receiving lens 10 as scattered light from the defect and is detected by the one-dimensional image sensor 11. Therefore, in particular, when inspecting the surface of the reticle 1 facing the surface on which the circuit pattern is formed, a configuration as shown in FIG. 6 may be adopted.
【0006】図6は従来の他の欠陥検査装置を示し、こ
の図6において、レーザ光源よりなる光源12から射出
された光ビームL4が、負のシリンドリカルレンズ13
及び集光レンズ14により一方向に拡大されてシート状
の光ビームL5が生成される。そして、この光ビームL
5が、レチクル1の被検面上のX方向に伸びたスリット
状の照明領域15に対して角度αで斜めに照射され、照
明領域15内の欠陥からの散乱光が受光レンズ10を介
して1次元撮像素子11により検出される。角度αを5
゜以下とすると、レチクル1の透過率は著しく小さくな
るため、入射する光ビームL5はほとんど反射されて回
路パターンが形成された下面1bには達しない。従っ
て、回路パターンからの回折光量も小さくなり、回路パ
ターンからの回折光をレチクル1上の欠陥からの散乱光
として誤って検出することがなくなる。FIG. 6 shows another conventional defect inspection apparatus. In FIG. 6, a light beam L4 emitted from a light source 12 composed of a laser light source has a negative cylindrical lens 13.
The sheet-shaped light beam L5 is generated by being expanded in one direction by the condenser lens 14. And this light beam L
5 is obliquely irradiated to the slit-shaped illumination area 15 extending in the X direction on the surface to be inspected of the reticle 1 at an angle α, and scattered light from a defect in the illumination area 15 passes through the light receiving lens 10. It is detected by the one-dimensional image sensor 11. Angle α is 5
When the angle is less than or equal to 0 °, the transmittance of the reticle 1 is significantly reduced, so that the incident light beam L5 is hardly reflected and does not reach the lower surface 1b on which the circuit pattern is formed. Therefore, the amount of diffracted light from the circuit pattern also becomes small, and the diffracted light from the circuit pattern will not be erroneously detected as scattered light from a defect on the reticle 1.
【0007】[0007]
【発明が解決しようとする課題】上記の如き従来の技術
においては、光源5又は光源12としてはレーザ光源が
使用される。レーザ光源は高輝度であるため、スリット
状の照明領域8又は15を形成しても、照明領域内での
単位面積当たりの光量(以下、「照度」と称する)が大
きくなるため、微小な欠陥からの散乱光も確実に検出す
ることができるからである。しかしながら、レーザ光源
から射出される光ビームは、ガウスビームと呼ばれるよ
うに光ビームの中心が最も輝度が高く、周辺に行くに従
って同心円状に輝度が低くなっていく。そのため、図5
の照明領域8及び図6の照明領域15の照度分布もそれ
ぞれ周辺程低くなっている。In the prior art as described above, a laser light source is used as the light source 5 or the light source 12. Since the laser light source has high brightness, even if the slit-shaped illumination area 8 or 15 is formed, the amount of light per unit area in the illumination area (hereinafter, referred to as “illuminance”) becomes large, and thus minute defects are generated. This is because it is possible to reliably detect scattered light from. However, the light beam emitted from the laser light source has the highest brightness at the center of the light beam, which is called a Gaussian beam, and the brightness decreases concentrically toward the periphery. Therefore,
The illuminance distributions of the illumination area 8 and the illumination area 15 of FIG. 6 are also lower toward the periphery.
【0008】図7(a)は、図5の照明領域8の一断面
のY方向の照度分布S(Y)、図7(b)は、図5の照
明領域8の一断面のX方向の照度分布S(X)を示し、
図7(b)に示すように、X方向の両端部8a及び8b
における照度は中央部に比べてかなり小さくなってい
る。図6の照明領域15の照度分布も同様である。この
場合、図5の駆動装置3による載物台2の移動速度を、
検査対象とする任意の点において図7(a)のY方向の
照度分布のピークの光ビームによる散乱光が必ず検出さ
れるような速度とすれば、レチクル1のY方向について
は常にほぼ一様の照度で光ビームを照射することにな
る。FIG. 7 (a) is an illuminance distribution S (Y) in the Y direction on one cross section of the illumination region 8 in FIG. 5, and FIG. 7 (b) is a cross section of the one cross section of the illumination region 8 in the X direction in FIG. Shows the illuminance distribution S (X),
As shown in FIG. 7B, both end portions 8a and 8b in the X direction are
The illuminance at is much smaller than that at the center. The illuminance distribution of the illumination area 15 of FIG. 6 is also the same. In this case, the moving speed of the stage 2 by the drive device 3 of FIG.
If the speed is such that scattered light by the light beam at the peak of the illuminance distribution in the Y direction in FIG. 7A is always detected at an arbitrary point to be inspected, the reticle 1 is always substantially uniform in the Y direction. The light beam is emitted with the illuminance of.
【0009】しかしながら、レチクル1のX方向につい
ては、レチクル1の中心付近では照度が高く、X方向の
両端部8a,8bでは照度が低いため、同じ照度の光で
あれば同じ量の散乱光を発生するような欠陥がレチクル
1上に存在しても、その欠陥のX方向の付着位置によっ
ては、1次元撮像素子11の画素出力信号の値は異なる
値を取ることになる。従って、画素出力信号の値から欠
陥の大きさを推測する際に、欠陥のX方向の付着位置に
より大きな誤差を生じてしまうという不都合がある。However, in the X direction of the reticle 1, the illuminance is high near the center of the reticle 1 and the illuminance is low at both ends 8a and 8b in the X direction. Even if a defect that may occur exists on the reticle 1, the value of the pixel output signal of the one-dimensional image pickup device 11 takes different values depending on the attachment position of the defect in the X direction. Therefore, when estimating the size of the defect from the value of the pixel output signal, there is a disadvantage that a large error occurs due to the attachment position of the defect in the X direction.
【0010】斯かる不都合に対しては、X方向の位置、
即ち1次元撮像素子11の受光画素の番地(何番目の画
素かを示す数値)に応じて、各画素出力信号にX方向の
照度の逆数を補正係数として乗ずることにより、X方向
の位置に依らない出力が得られる。ところが、このよう
に補正する方式を図6のような欠陥検査装置に適用した
場合、光ビームL5がレチクル1に対して角度αで斜め
に入射しているため、仮にレチクル1のZ方向の高さが
△hだけ変化すると、レチクル1上の照明領域15の照
度中心(最大照度が得られるレチクル1上のX方向の位
置)は、(Δh/tanα)だけ偏心する。例えば、α
=5゜のとき、レチクル1の表面がZ方向に1mmずれ
ただけで、照度中心は1mm/tan5゜、即ち11m
mもずれてしまう。従って、レチクル1上の特に左右の
照度は場合によっては数分の1〜数倍も変化して、当然
に1次元撮像素子11の画素出力信号もこの割合で変化
してしまう。言い替えると、レチクル1の高さが変わる
ことにより、特にX方向の左右で検出感度が変動すると
いうことになる。For such inconvenience, the position in the X direction,
That is, by multiplying the output signal of each pixel by the reciprocal of the illuminance in the X direction as a correction coefficient in accordance with the address of the light receiving pixel of the one-dimensional image pickup device 11 (a numerical value indicating the number of the pixel), the position in the X direction can be changed. No output is obtained. However, when the correction method as described above is applied to the defect inspection apparatus as shown in FIG. 6, since the light beam L5 is obliquely incident on the reticle 1 at an angle α, the height of the reticle 1 in the Z direction is temporarily increased. Changes by Δh, the illuminance center of the illumination area 15 on the reticle 1 (the position in the X direction on the reticle 1 where the maximum illuminance is obtained) is eccentric by (Δh / tan α). For example, α
= 5 °, the surface of the reticle 1 is displaced by 1 mm in the Z direction, and the illuminance center is 1 mm / tan 5 °, that is, 11 m.
It will be offset by m. Therefore, the illuminance on the reticle 1, especially on the left and right, may change by a fraction to several times depending on the case, and naturally the pixel output signal of the one-dimensional image pickup device 11 also changes at this ratio. In other words, a change in the height of the reticle 1 causes a change in the detection sensitivity especially on the left and right in the X direction.
【0011】上記の不都合は、レチクル1上のX方向の
照度分布が、図7(b)で示すように山型(ガウス分
布)をしていることに起因しているため、その照度分布
をX方向の位置に依らずほぼ一様な照度にすることによ
り解消することができる。そのように照度分布を一様に
する方法としては、図5のレンズ群6,7及び図6のレ
ンズ群13,14の拡大倍率を大きくして、ガウス分布
の中央部のみを使うようにすればよい。しかし、単に光
ビームを拡大してレチクル1に照射しただけでは、レチ
クル1の側面1c,1dの近傍や載物台2にも光ビーム
が照射され、これらの部分から強い散乱光が発生して欠
陥からの散乱光と区別できなくなってしまうという不都
合が新たに生じる。そこで、更なる対策として、拡大さ
れた光ビームの両端部を遮光板により遮光することが考
えられる。The above-mentioned inconvenience is caused by the fact that the illuminance distribution in the X direction on the reticle 1 has a mountain shape (Gaussian distribution) as shown in FIG. 7B. This can be solved by making the illuminance substantially uniform regardless of the position in the X direction. As a method of making the illuminance distribution uniform, it is recommended to increase the magnification of the lens groups 6 and 7 in FIG. 5 and the lens groups 13 and 14 in FIG. 6 so that only the central portion of the Gaussian distribution is used. Good. However, if the light beam is simply expanded and applied to the reticle 1, the light beam is also applied to the vicinity of the side faces 1c and 1d of the reticle 1 and the stage 2, and strong scattered light is generated from these parts. There is a new inconvenience that the light cannot be distinguished from the scattered light from the defect. Therefore, as a further measure, it is conceivable to block both ends of the expanded light beam with a light blocking plate.
【0012】図8は、図5の装置にそのような対策を施
した装置の要部を示し、この図8において、レーザ光源
よりなる光源5から射出されたガウス分布を有する光ビ
ームL1が、負のシリンドリカルレンズ6A及び正のシ
リンドリカルレンズ7AによりX方向に拡大されて光ビ
ームL6が形成される。この光ビームL6が、X方向に
長い矩形の開口17が形成された遮光板16に照射さ
れ、その遮光板16により光ビームL6のX方向の両端
を遮光して得られる光ビームL7が、レチクル1上でX
方向に伸びたスリット状の照明領域18に照射されてい
る。これにより、レチクル1上のスリット状の照明領域
18内でのX方向の照度むらは少なくなり、レチクル1
の側面1c,1dの近傍に光ビームが照射されることも
防止され、不要な散乱光も発生しないで済む。FIG. 8 shows a main part of an apparatus in which such a measure is applied to the apparatus of FIG. 5. In FIG. 8, a light beam L1 having a Gaussian distribution emitted from a light source 5 composed of a laser light source is The negative cylindrical lens 6A and the positive cylindrical lens 7A expand in the X direction to form the light beam L6. The light beam L6 is applied to the light blocking plate 16 having a rectangular opening 17 elongated in the X direction, and the light beam L7 obtained by blocking both ends of the light beam L6 in the X direction with the light blocking plate 16 is a reticle. X on 1
Irradiation is performed on a slit-shaped illumination region 18 extending in the direction. As a result, the illuminance unevenness in the X direction within the slit-shaped illumination area 18 on the reticle 1 is reduced, and the reticle 1
It is also possible to prevent the light beam from being irradiated near the side surfaces 1c and 1d, and unnecessary scattered light is not generated.
【0013】しかし、図8のように遮光板16により光
ビームL6の照明領域を制限すると、光ビームL6が矩
形の開口17を通過するときの回折効果が問題となる。
ここで、ガウスビームの幅を、一般的な例にならって最
大照度に対して照度が13.5%になる点の幅で規定す
るものとして、光ビームL6のX方向の幅を△X、Y方
向の幅を△Yとする。更に、遮光板16の矩形の開口1
7のX方向の長さ(長手方向の長さ)をa、Y方向の幅
をbとしたとき、次の関係が成立している。However, if the illuminating area of the light beam L6 is limited by the light shielding plate 16 as shown in FIG. 8, the diffraction effect when the light beam L6 passes through the rectangular opening 17 becomes a problem.
Here, assuming that the width of the Gaussian beam is defined by the width of the point where the illuminance becomes 13.5% with respect to the maximum illuminance, the width of the light beam L6 in the X direction is ΔX, The width in the Y direction is ΔY. Further, the rectangular opening 1 of the light shielding plate 16
When the length in the X direction (length in the longitudinal direction) of 7 is a and the width in the Y direction is b, the following relationship is established.
【0014】△X≫a (1) △Y≪b (2)ΔX >> a (1) ΔY << b (2)
【0015】従って、開口17においてY方向には回折
は起こらず、X方向にのみ回折が起こるため、スリット
状の照明領域18のX方向の幅はほぼaであっても、そ
の照明領域18内のX方向の照度分布S(X)は、図9
に示すように微細構造を持つことは回折理論から明白で
ある。図9に示すように、その照明領域18内のX方向
の照度分布S(X)は特に両端部で正弦波状に変化し、
例えばX方向の位置18a及び18bでは照度が谷部に
なっている。従って、図5の駆動装置3を用いて載物台
2を駆動して、レチクル1をY方向に移動させても、図
9の位置18a及び18bでは常に光ビームの照度が弱
くなり、欠陥検出の感度が他の領域に比べて落ちてしま
うという不都合がある。Therefore, since the diffraction does not occur in the Y direction in the opening 17 but only in the X direction, even if the width of the slit-shaped illumination region 18 in the X direction is approximately a, the illumination region 18 has the same width. The illuminance distribution S (X) in the X direction of FIG.
It is clear from diffraction theory that it has a fine structure as shown in. As shown in FIG. 9, the illuminance distribution S (X) in the X direction in the illumination area 18 changes in a sine wave shape particularly at both ends,
For example, the illuminance is a valley at the positions 18a and 18b in the X direction. Therefore, even if the reticle 1 is moved in the Y direction by driving the stage 2 using the driving device 3 of FIG. 5, the illuminance of the light beam is always weak at the positions 18a and 18b of FIG. However, there is a disadvantage that the sensitivity of is lower than that of other areas.
【0016】本発明は斯かる点に鑑み、光ビームを被検
物上のスリット状の照明領域に照射して、その照明領域
からの散乱光により欠陥の検査を行う欠陥検査装置にお
いて、その照明領域が被検物上の検査対象領域以外の部
分にかからないようにすると共に、そのスリット状の照
明領域内の照度分布のばらつきにより欠陥検出の感度に
ばらつきが生じないようにすることを目的とする。In view of the above point, the present invention provides a defect inspection apparatus which irradiates a slit-shaped illumination area on a test object with a slit-like illumination area and inspects a defect by scattered light from the illumination area. The object is to prevent the area from covering a portion other than the inspection target area on the inspection object, and to prevent variations in the sensitivity of defect detection due to variations in the illuminance distribution in the slit-shaped illumination area. .
【0017】[0017]
【課題を解決するための手段】本発明による欠陥検査装
置は、例えば図1に示す如く、光ビームを発生する光源
(5)と、その光ビームを所定の方向に拡大して被検物
(1)上に照射する光ビーム拡大手段(6A,7A)
と、その光ビームが拡大された方向に交差する方向に光
ビーム拡大手段(6A,7A)と被検物(1)とを相対
的に走査する走査手段(2,3)と、被検物(1)上の
欠陥(異物を含む)から発生する散乱光を光電変換する
受光手段(10,11)とを有し、この受光手段により
得られる光電変換信号に基づいてその欠陥の検査を行う
装置において、被検物(1)上でその光ビームにより照
射される照明領域(20)をその光ビームが拡大された
方向(X方向)で制限するための複数のエッジ(19
a,19b)を有する遮光手段(16)を設け、それら
複数のエッジの内の少なくとも1つのエッジをその相対
的な走査の方向(Y方向)に交差する方向に平行にした
ものである。A defect inspection apparatus according to the present invention comprises, for example, as shown in FIG. 1, a light source (5) for generating a light beam and an object to be inspected () by expanding the light beam in a predetermined direction. 1) Light beam expansion means (6A, 7A) for irradiating the upper part
And scanning means (2, 3) for relatively scanning the light beam expanding means (6A, 7A) and the test object (1) in a direction intersecting the expanded direction of the light beam, and the test object. (1) It has a light receiving means (10, 11) for photoelectrically converting scattered light generated from the above defect (including a foreign substance), and inspects the defect based on the photoelectric conversion signal obtained by this light receiving means. In the device, a plurality of edges (19) for limiting an illumination area (20) illuminated by the light beam on the object to be inspected (1) in a direction in which the light beam is expanded (X direction).
The light shielding means (16) having a, 19b) is provided, and at least one of the plurality of edges is parallel to the direction intersecting the relative scanning direction (Y direction).
【0018】この場合、その遮光手段(16)の一例
は、照明領域(20)をその光ビームが拡大された方向
で両側から制限するための対向する2つのほぼ平行なエ
ッジ(19a,19b)を有し、これら2つのエッジが
その相対的な走査の方向に交差する方向にほぼ平行であ
るものである。また、その遮光手段の他の例は、例えば
図4(c)に示すように、その照明領域をその光ビーム
が拡大された方向(X方向)で両側から制限するための
対向する扇型に開いた2つのエッジ(24a,24b)
を有し、これら2つのエッジがそれぞれその相対的な走
査の方向(Y方向)に交差する方向に平行であるもので
ある。In this case, one example of the shading means (16) is two opposing parallel edges (19a, 19b) for limiting the illuminated area (20) from both sides in the direction in which the light beam is expanded. And these two edges are substantially parallel to the direction intersecting the direction of their relative scans. Another example of the light-shielding means is, as shown in FIG. 4C, an opposing fan shape for limiting the illumination area from both sides in the direction in which the light beam is expanded (X direction). Two open edges (24a, 24b)
And these two edges are parallel to the direction intersecting the relative scanning direction (Y direction).
【0019】[0019]
【作用】斯かる本発明によれば、光源(5)から射出さ
れたガウス分布を有する光ビームL1は、光ビーム拡大
手段(6A,7A)により所定の方向(これをX方向と
する)に拡大された光ビームL6となって、遮光手段
(16)の複数のエッジでX方向の幅が制限された開口
(19)に入射する。開口(19)を通過した光ビーム
L8は、被検物(1)上のX方向に伸びたスリット状の
照明領域(20)上に入射する。被検物(1)は、走査
手段(2,3)によりその照明領域(20)に対して相
対的にY方向に移動できるようになっている。According to the present invention, the light beam L1 having a Gaussian distribution emitted from the light source (5) is directed in a predetermined direction (this is defined as the X direction) by the light beam expanding means (6A, 7A). The expanded light beam L6 is incident on the opening (19) whose width in the X direction is limited by the plurality of edges of the light shielding means (16). The light beam L8 that has passed through the opening (19) is incident on the slit-shaped illumination area (20) extending in the X direction on the test object (1). The test object (1) can be moved in the Y direction relative to the illumination area (20) by the scanning means (2, 3).
【0020】図1(b)は、開口(19)に入射する光
ビームL6を光源(5)側から見たときのXY平面内の
図であり、この図1(b)において、開口(19)の左
側のエッジ(19a)と右側のエッジ(19b)とは、
それぞれX軸にもY軸にも傾いている。例えばエッジ
(19a)及び(19b)が共に、走査方向であるY軸
に対して45゜傾いているとする。光ビームL6が開口
(19)を通過するときは、エッジ(19a,19b)
が光ビームL6を遮っているので、これら2つのエッジ
によってのみ回折効果が生じ、エッジ(19a,19
b)と平行に回折効果による照度むらが生じる。その様
子を図2(a)及び(b)に示す。FIG. 1 (b) is a view in the XY plane when the light beam L6 incident on the opening (19) is viewed from the light source (5) side. In FIG. 1 (b), the opening (19) is shown. ) The left edge (19a) and the right edge (19b) of
Both are tilted to the X and Y axes. For example, it is assumed that both the edges (19a) and (19b) are inclined by 45 ° with respect to the Y axis which is the scanning direction. When the light beam L6 passes through the aperture (19), the edges (19a, 19b)
Block the light beam L6, a diffraction effect is generated only by these two edges, and the edges (19a, 19a
Irregularity of illuminance occurs due to the diffraction effect in parallel with b). This is shown in FIGS. 2 (a) and 2 (b).
【0021】図2(a)及び(b)は、開口(19)を
透過した後の光ビームL8、即ち被検物(1)上の照明
領域(20)での照度分布を簡略化して示し、図2
(a)は、照明領域(20)内の同一照度の部分を実線
で結んだいわば照度の等高線であり、回折効果により開
口(19)のエッジ(19a,19b)と平行な方向
(Y軸と45゜で交差する方向)に照度むらの縞が表れ
ている。その照明領域(20)をX軸と平行な直線PP
´で切断したときのX方向の照度分布は図2(b)の実
線の分布SPの様になり、同じくその照明領域(20)
をX軸と平行な直線QQ´で切断したときのX方向の照
度分布は図2(b)の破線の分布SQの様になる。図2
(b)の分布SPと分布SQとを比べてみれば分かるよ
うに、分布SPでは谷だった例えば位置X1の照度は、
分布SQでは山となっている。2 (a) and 2 (b) show a simplified illuminance distribution in the light beam L8 after passing through the aperture (19), that is, in the illumination area (20) on the object (1). , Fig. 2
(A) is, so to speak, a contour line of the illuminance in which a portion having the same illuminance in the illumination region (20) is connected by a solid line, and due to the diffraction effect, a direction parallel to the edges (19a, 19b) of the opening (19) (Y axis Streaks of uneven illuminance appear in the direction of intersection at 45 °. The illumination area (20) is a straight line PP parallel to the X axis.
The illuminance distribution in the X direction when cut at ′ is like the solid line distribution SP in FIG. 2B, and the illumination area (20)
2 is cut by a straight line QQ ′ parallel to the X axis, the illuminance distribution in the X direction becomes like the distribution SQ indicated by the broken line in FIG. Figure 2
As can be seen by comparing the distribution SP and the distribution SQ in (b), the illuminance at the position X1, which is a valley in the distribution SP, is
It is a mountain in the distribution SQ.
【0022】つまり、仮に被検物(1)と光ビームによ
る照明領域(20)とをY方向に相対移動させるとき、
X方向の位置X1での照度はY方向への相対移動量に応
じて変化するが、必ず谷部と山部とがある、即ち低照度
のときもあるが高照度のときもあるということになる。
従って、被検物(1)と照明領域(20)とを相対的に
走査することにより、被検物(1)の被検面での照度分
布は全面でほぼ一様になり、欠陥の検出感度も一様とな
る。That is, if the object (1) and the illumination area (20) by the light beam are moved relative to each other in the Y direction,
The illuminance at the position X1 in the X direction changes according to the relative movement amount in the Y direction, but there is always a valley and a peak, that is, there are low illuminance and high illuminance. Become.
Therefore, by relatively scanning the inspection object (1) and the illumination area (20), the illuminance distribution on the inspection surface of the inspection object (1) becomes substantially uniform over the entire surface, and the defect detection The sensitivity is also uniform.
【0023】また、その遮光手段(16)が、照明領域
(20)をその光ビームが拡大された方向で両側から制
限するための対向する2つのほぼ平行なエッジ(19
a,19b)を有し、これら2つのエッジがその相対的
な走査の方向に交差する方向にほぼ平行である場合に
は、遮光手段(16)の製作が容易である。また、その
遮光手段が、その照明領域をその光ビームが拡大された
方向(X方向)で両側から制限するための対向する扇型
に開いた2つのエッジ(24a,24b)を有し、これ
ら2つのエッジがそれぞれその相対的な走査の方向(Y
方向)に交差する方向に平行である場合にも、その遮光
手段の製作が容易である。The light-shielding means (16) also has two opposing, substantially parallel edges (19) for limiting the illuminated area (20) from both sides in the direction in which the light beam is expanded.
a, 19b) and the two edges are substantially parallel to the direction intersecting the relative scanning direction, the shading means (16) is easy to manufacture. Further, the light shielding means has two opposed fan-shaped edges (24a, 24b) for limiting the illumination area from both sides in the direction in which the light beam is expanded (X direction). Each of the two edges has a relative scanning direction (Y
Even when the light shielding means is parallel to the direction intersecting the (direction), the light shielding means can be easily manufactured.
【0024】[0024]
【実施例】以下、本発明による欠陥検査装置の一実施例
につき図1〜図4を参照して説明する。本例は、図8の
装置の遮光板16内の開口の形状を改善したものであ
り、図1において、図5及び図8に対応する部分には同
一符号を付してその詳細説明を省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the defect inspection apparatus according to the present invention will be described below with reference to FIGS. In this example, the shape of the opening in the light shielding plate 16 of the device of FIG. 8 is improved. In FIG. 1, parts corresponding to those of FIGS. 5 and 8 are designated by the same reference numerals and detailed description thereof is omitted. To do.
【0025】図1(a)は本例の欠陥検査装置の構成を
示し、この図1(a)において、検査対象のレチクル1
は載物台2上に載置され、載物台2は駆動装置3により
Y方向へ移動され、載物台2のY方向への移動量は測長
装置4により測長される。そして、レーザ光源よりなる
光源5から射出された光ビームL1は、負のシリンドリ
カルレンズ6A及び正のシリンドリカルレンズ7Aによ
りほぼY方向に垂直なX方向に拡大されたシート状の光
ビームL6となり、この光ビームL6が遮光板16の平
行四辺形状の開口19上に照射される。この開口19を
通過した光ビームL8が、レチクル1の表面上のほぼX
方向に延びたスリット状の照明領域20に照射される。
その照明領域20内の異物を含む欠陥からの散乱光が、
受光レンズ10を介して1次元撮像素子11上にその欠
陥の像を結像する。FIG. 1A shows the structure of the defect inspection apparatus of this example. In FIG. 1A, the reticle 1 to be inspected is shown.
Is placed on the stage 2, and the stage 2 is moved in the Y direction by the drive unit 3, and the amount of movement of the stage 2 in the Y direction is measured by the length measuring device 4. Then, the light beam L1 emitted from the light source 5 made of a laser light source becomes a sheet-like light beam L6 expanded in the X direction substantially perpendicular to the Y direction by the negative cylindrical lens 6A and the positive cylindrical lens 7A. The light beam L6 is applied to the parallelogrammatic opening 19 of the light shielding plate 16. The light beam L8 that has passed through the aperture 19 is almost X-ray on the surface of the reticle 1.
The slit-shaped illumination area 20 extending in the direction is irradiated.
The scattered light from the defect including the foreign matter in the illumination area 20 is
An image of the defect is formed on the one-dimensional image pickup device 11 via the light receiving lens 10.
【0026】図1(b)は本例の遮光板16を光源5か
ら見た平面図であり、この図1(b)に示すように、遮
光板16中の開口19の4個の頂点をA,B,C,Dと
すると、辺ABよりなるエッジ19aと辺BCよりなる
エッジ19bとが互いに平行であり、且つエッジ19a
及び19bは相対的な走査の方向であるY方向に45°
で交差しており、辺DC及び辺ABは共にX方向に平行
である。また、開口19のエッジ19a及び19bによ
り光ビームL6のX方向の両端部が制限され、開口19
の辺AB及び辺DCはそれぞれ光ビームL6に対してY
方向の外側に在る。従って、図1(a)のスリット状の
照明領域20上では、開口19による回折効果により、
エッジ19a及び19bに平行な方向に回折パターンが
形成されるが、辺AB及び辺DCに平行な方向には回折
パターンは形成されない。FIG. 1B is a plan view of the light shielding plate 16 of this embodiment as seen from the light source 5. As shown in FIG. 1B, the four vertices of the opening 19 in the light shielding plate 16 are Assuming A, B, C, and D, the edge 19a composed of the side AB and the edge 19b composed of the side BC are parallel to each other, and the edge 19a
And 19b are 45 ° in the Y direction, which is the relative scanning direction.
And the sides DC and AB are both parallel to the X direction. Further, both ends in the X direction of the light beam L6 are restricted by the edges 19a and 19b of the opening 19,
Side AB and side DC of Y with respect to the light beam L6, respectively.
Outside of the direction. Therefore, on the slit-shaped illumination area 20 of FIG.
The diffraction pattern is formed in the direction parallel to the edges 19a and 19b, but the diffraction pattern is not formed in the direction parallel to the sides AB and DC.
【0027】図1(b)の平行四辺形状の開口19での
回折効果による、レチクル1上の照明領域20での光ビ
ームL8の照度分布は、図2(a)及び(b)に示され
るものとなる。図3は、図2の照明領域20における光
ビームL8の照度分布のより詳細な構造を示し、図3
(a)はその照明領域20において同一照度の部分を実
線で結んだ一種の照度の等高線である。図3(a)の照
度分布を、X軸と平行なEE´線及びFF′線に沿って
切断したときのX方向の照度分布S(X)は、それぞれ
図3(b)の実線の分布SE及び破線の分布SFとな
る。また、図3(a)の照度分布を、Y軸と平行なGG
´線及びHH′線に沿って切断したときのY方向の照度
分布S(Y)は、それぞれ図3(c)の実線の分布SG
及び破線の分布SHとなる。この場合、図1の載物台2
をY方向に移動することにより、レチクル1上の任意の
点は、それぞれ図3(b)の照度の分布SE及びSFで
照明されるので、時間的に積分するとレチクル1の全面
での照度分布はほぼ一様となる。従って、レチクル1の
全面での欠陥の検出感度もほぼ一様である。The illuminance distribution of the light beam L8 in the illumination area 20 on the reticle 1 due to the diffraction effect in the parallelogrammatic aperture 19 of FIG. 1B is shown in FIGS. 2A and 2B. Will be things. 3 shows a more detailed structure of the illuminance distribution of the light beam L8 in the illumination area 20 of FIG.
(A) is a kind of illuminance contour line in which the parts of the same illuminance in the illumination area 20 are connected by a solid line. The illuminance distribution S (X) in the X direction when the illuminance distribution in FIG. 3A is cut along the EE ′ line and the FF ′ line parallel to the X-axis is the solid line distribution in FIG. 3B. The distribution SE is SE and the broken line SF. In addition, the illuminance distribution of FIG.
The illuminance distribution S (Y) in the Y direction when cut along the lines 'and HH' is the solid line distribution SG in FIG. 3C, respectively.
And the distribution SH of the broken line. In this case, the stage 2 of FIG.
By moving in the Y direction, arbitrary points on the reticle 1 are illuminated by the illuminance distributions SE and SF shown in FIG. 3B, respectively. Is almost uniform. Therefore, the detection sensitivity of defects on the entire surface of the reticle 1 is substantially uniform.
【0028】ところで、図3(b)の照度分布の包絡線
21が示すように、もともとガウス分布のレーザビーム
をいくら拡大して開口を通してみても、やはりいくらか
の照度不均一性を生じることはやむを得ない。勿論、従
来の図6の装置のような斜入射系において開口19を有
する遮光板16を適用すると、ガウス分布の光ビームを
そのまま照射する場合と比べて、レチクル1の高さが変
わっても検出感度ははるかに変化しにくい。本例では、
図3(b)の包絡線21で示すように依然として残るX
方向の照度不均一性は、図1の1次元撮像素子11の画
素出力信号を受光画素の番地毎に異なる補正係数を乗ず
ることにより補正する。具体的には、1次元撮像素子1
1の受光画素の番地毎に包絡線21が示す照度の逆数
を、それぞれその画素出力信号の増幅器でのその番地の
増幅度とすればよい。By the way, as shown by the envelope 21 of the illuminance distribution in FIG. 3B, no matter how much the laser beam originally having the Gaussian distribution is expanded and viewed through the aperture, it is inevitable that some illuminance nonuniformity will occur. Absent. Of course, when the light shielding plate 16 having the opening 19 is applied to the oblique incidence system like the conventional device of FIG. 6, even if the height of the reticle 1 is changed, it is detected as compared with the case where the light beam having the Gaussian distribution is directly irradiated. Sensitivity is much less likely to change. In this example,
The remaining X as shown by the envelope 21 in FIG.
The illuminance non-uniformity in the direction is corrected by multiplying the pixel output signal of the one-dimensional image pickup device 11 in FIG. 1 by a correction coefficient which differs for each address of the light receiving pixel. Specifically, the one-dimensional image sensor 1
The reciprocal of the illuminance indicated by the envelope 21 for each address of one light receiving pixel may be set as the amplification degree of that address in the amplifier of the pixel output signal.
【0029】また、レチクル1をY方向へ移動する際の
移動速度は、レチクル1上のX方向の任意の位置におい
て、散乱光の強度の検出時に必ず照明領域20内の照度
分布の山部が照射されるようにしなければならない。例
えば、光ビームを全体としてみると、図3(a)に示す
ように、照明領域20のY方向の幅が△yで且つ回折パ
ターンが生じていないとすると、△y/4以下のステッ
プ量でY方向にレチクル1を送っていけば、Y方向の照
度むらは10%の幅以内に抑えられる。これに対して本
実施例においては、照明領域20内の光ビームは図3
(a)のように斜め方向に周期的な2次元的な分布を持
っている。Further, the moving speed when moving the reticle 1 in the Y direction is such that at any position in the X direction on the reticle 1, when the intensity of scattered light is detected, the peak portion of the illuminance distribution within the illumination area 20 is always detected. It has to be illuminated. For example, when the entire light beam is viewed, as shown in FIG. 3A, if the width of the illumination area 20 in the Y direction is Δy and no diffraction pattern is generated, the step amount is Δy / 4 or less. By sending the reticle 1 in the Y direction, the illuminance unevenness in the Y direction can be suppressed within a width of 10%. On the other hand, in the present embodiment, the light beam in the illumination area 20 is shown in FIG.
As in (a), it has a two-dimensional distribution that is periodic in the diagonal direction.
【0030】そこで、図3(c)に示す分布SGのY方
向の幅△yG 、分布SHのY方向の幅△yH (何れも△
yより小さい値となる)をそれぞれY方向のビーム幅と
考え、レチクル1上のX方向の任意の位置における幅△
yG (又は幅△yH )の最小値(これを「min(△y
G(X))」又は「min(△yH(X))」と表す)を用
いて、min(△yG(X))/4以下又はmin(△y
H(X))/4以下のステップ量でレチクル1をY方向に
送らなければならない。以上のことを簡単にまとめる
と、本実施例のように変形した開口19が形成された遮
光板16を用いた欠陥検査装置においては、X方向及び
Y方向のレチクル1上の2次元的な照度むらは、遮光板
16内の開口の形状と移動速度(レチクル1と光ビーム
とのY方向の相対速度)とによって決定されるというこ
とである。Therefore, the width Δy G in the Y direction of the distribution SG and the width Δy H in the Y direction of the distribution SH shown in FIG.
(a value smaller than y) is regarded as the beam width in the Y direction, and the width Δ at an arbitrary position in the X direction on the reticle 1
The minimum value of y G (or width Δy H )
G (X)) ”or“ min (Δy H (X)) ”), min (Δy G (X)) / 4 or less or min (Δy
The reticle 1 must be sent in the Y direction with a step amount of H (X)) / 4 or less. To summarize the above briefly, in the defect inspection apparatus using the light shielding plate 16 in which the deformed opening 19 is formed as in the present embodiment, the two-dimensional illuminance on the reticle 1 in the X and Y directions. The unevenness is determined by the shape of the opening in the light shielding plate 16 and the moving speed (the relative speed of the reticle 1 and the light beam in the Y direction).
【0031】次に、図1の1次元撮像素子11の画素出
力信号の処理については、レチクル1をY方向に移動す
るのに伴い欠陥上の光ビームの照度が変化して、その欠
陥に対応する画素出力信号の値も変化するので、その画
素出力信号の最大値を取り込むようにする。つまり、図
3(a)のEE´線の照度分布が欠陥上に位置するとき
よりも、FF´線の照度分布が欠陥上に位置するときの
方が1次元撮像素子11の画素出力信号の値が大きいと
きには、その大きい方の値と、そのときの1次元撮像素
子11の受光画素の番地と、測長装置4の測長出力とを
メモリ等の記憶部にデータとして格納する。Next, regarding the processing of the pixel output signal of the one-dimensional image pickup device 11 of FIG. 1, as the reticle 1 is moved in the Y direction, the illuminance of the light beam on the defect changes, and the defect is dealt with. Since the value of the pixel output signal to be changed also changes, the maximum value of the pixel output signal is taken in. That is, the pixel output signal of the one-dimensional image pickup element 11 when the illuminance distribution of the EE ′ line in FIG. 3A is located on the defect is higher than when the illuminance distribution of the FF ′ line is located on the defect. When the value is large, the larger value, the address of the light receiving pixel of the one-dimensional image pickup device 11 at that time, and the length measurement output of the length measuring device 4 are stored as data in a storage unit such as a memory.
【0032】次に、図1(b)の遮光板16内に形成す
る開口の他の例につき図4を参照して説明する。図4
(a)は、遮光板16内に6角形の開口22が形成され
ている場合を示し、この図4(a)において、開口22
上には図1のシリンドリカルレンズ7Aから射出された
光ビームL6が照射されている。また、その開口22の
X方向の左側の2つの互いにほぼ直交するエッジ22
a,22bと、右側の2つの互いにほぼ直交するエッジ
22c,22dとにより、光ビームL6のX方向の幅が
制限されている。エッジ22a,22b及び22c,2
2dはそれぞれY方向に斜めに交差しており、光ビーム
L6はそれら斜めのエッジ22a,22b及び22c,
22dにより回折されて、レチクル上を市松模様状の2
次元の照度分布をもった光として照射する。従って、図
1(b)の開口を使用した場合と同様に、レチクルをY
方向に移動すればX方向の光ビームの照度むらは解消さ
れる。Next, another example of the opening formed in the light shielding plate 16 of FIG. 1B will be described with reference to FIG. Figure 4
4A shows a case where a hexagonal opening 22 is formed in the light shielding plate 16, and in FIG. 4A, the opening 22 is formed.
The light beam L6 emitted from the cylindrical lens 7A shown in FIG. Further, two edges 22 on the left side of the opening 22 in the X direction that are substantially orthogonal to each other
The width of the light beam L6 in the X direction is limited by a and 22b and the two right edges 22c and 22d that are substantially orthogonal to each other. Edges 22a, 22b and 22c, 2
2d intersects each other in the Y direction at an angle, and the light beam L6 has the oblique edges 22a, 22b and 22c,
2d in a checkered pattern on the reticle after being diffracted by 22d.
Irradiate as light having a three-dimensional illuminance distribution. Therefore, as in the case of using the opening shown in FIG.
If it moves in the direction, the unevenness of the illuminance of the light beam in the X direction is eliminated.
【0033】図4(b)は、遮光板16内に両端が円弧
状の開口23が形成されている場合を示し、この図4
(a)において、開口23のX方向の両端がそれぞれ円
弧状のエッジ23a及び23bとなっている。従って、
光ビームL6はそれら円弧状のエッジ23a及び23b
により回折されて、レチクル上を同心円状の2次元の照
度分布をもった光として照射する。従って、図1(b)
の開口を使用した場合と同様に、レチクルをY方向に移
動すればX方向の光ビームの照度むらは解消される。FIG. 4B shows a case where the light shielding plate 16 is formed with openings 23 having arcuate ends.
In (a), both ends of the opening 23 in the X direction are arc-shaped edges 23a and 23b, respectively. Therefore,
The light beam L6 has the arc-shaped edges 23a and 23b.
Is radiated on the reticle as light having a concentric two-dimensional illuminance distribution. Therefore, FIG.
Similar to the case of using the aperture of (1), if the reticle is moved in the Y direction, the unevenness of the illuminance of the light beam in the X direction is eliminated.
【0034】図4(c)は、遮光板16内に3角形の開
口24が形成されている場合を示し、この図4(c)に
おいて、開口24上には図1のシリンドリカルレンズ7
Aから射出された光ビームL6が照射されている。ま
た、その開口24のX方向の左側のエッジ24aと、右
側のエッジ24bとは扇型に開き、それらエッジ24
a,24bにより、光ビームL6のX方向の幅が制限さ
れている。エッジ24a及び24bはそれぞれY方向に
斜めに交差しており、光ビームL6はそれら斜めのエッ
ジ24a及び24bにより回折されて、レチクル上を菱
型状の2次元の照度分布をもった光として照射する。従
って、図1(b)の開口を使用した場合と同様に、レチ
クルをY方向に移動すればX方向の光ビームの照度むら
は解消される。FIG. 4C shows a case where a triangular opening 24 is formed in the light shield plate 16. In FIG. 4C, the cylindrical lens 7 of FIG.
The light beam L6 emitted from A is irradiated. The left edge 24a and the right edge 24b of the opening 24 in the X direction open in a fan shape.
The width of the light beam L6 in the X direction is limited by a and 24b. The edges 24a and 24b intersect each other obliquely in the Y direction, and the light beam L6 is diffracted by the oblique edges 24a and 24b, and is irradiated onto the reticle as light having a rhombic two-dimensional illuminance distribution. To do. Therefore, as in the case of using the aperture of FIG. 1B, if the reticle is moved in the Y direction, the illuminance unevenness of the light beam in the X direction is eliminated.
【0035】なお、上述実施例は、被検物上にほぼ垂直
に光ビームが入射する場合に本発明を適用したものであ
るが、図6のような斜入射系においても本発明は適用で
きることは言うまでもない。図6のような斜入射系に本
発明を適用した場合にも、レチクル上での光ビームの照
度むらの方向を相対的な走査の方向に対応して設定し、
且つレチクルの相対的な移動速度を所定の速度に設定す
ることにより、レチクルの全面での欠陥の検出感度を一
様化できる。Although the present invention is applied to the above-described embodiment when the light beam is incident on the object to be examined substantially vertically, the present invention can be applied to an oblique incidence system as shown in FIG. Needless to say. Even when the present invention is applied to the oblique incidence system as shown in FIG. 6, the direction of the illuminance unevenness of the light beam on the reticle is set in correspondence with the relative scanning direction,
In addition, by setting the relative moving speed of the reticle to a predetermined speed, it is possible to make the detection sensitivity of defects on the entire surface of the reticle uniform.
【0036】また、レチクルのみならず、例えばレチク
ル上に張設されたペリクルの欠陥検査を行う場合にも、
本発明を適用することができる。このように、本発明は
上述実施例に限定されず本発明の要旨を逸脱しない範囲
で種々の構成を取り得る。Further, not only the reticle but also the pellicle stretched on the reticle is inspected for defects,
The present invention can be applied. As described above, the present invention is not limited to the above-described embodiments, and various configurations can be taken without departing from the gist of the present invention.
【0037】[0037]
【発明の効果】本発明によれば、遮光手段により被検物
上の光ビームの照射領域を所望の領域に制限できる。更
に、遮光手段のエッジにより形成される、被検物上での
光ビームの微視的な2次元的な照度むらを、走査手段に
より走査方向で積分することにより低減できるので、被
検物上の全面での欠陥の検出感度を一様化できる利点が
ある。According to the present invention, the light beam irradiation area on the object can be limited to a desired area by the light shielding means. Furthermore, since the microscopic two-dimensional illuminance unevenness of the light beam on the object to be inspected, which is formed by the edge of the light shielding means, can be reduced by integrating in the scanning direction by the scanning means. There is an advantage that the detection sensitivity of the defects on the entire surface can be made uniform.
【0038】また、その遮光手段が、その照明領域をそ
の光ビームが拡大された方向で両側から制限するための
対向する2つのほぼ平行なエッジを有し、これら2つの
エッジがその相対的な走査の方向に非平行である場合、
又はその遮光手段が、その照明領域をその光ビームが拡
大された方向で両側から制限するための対向する扇型に
開いた2つのエッジを有し、これら2つのエッジがそれ
ぞれその相対的な走査の方向に非平行である場合は、そ
れぞれ構成が簡略である。The shading means also has two substantially parallel edges facing each other for limiting the illuminated area from both sides in the direction in which the light beam is expanded, these two edges being relative to each other. If it is non-parallel to the scan direction,
Or the shading means has two opposed fan-shaped edges for limiting the illuminated area from both sides in the direction in which the light beam is expanded, each of these two edges being relative to each other. When it is not parallel to the direction of, the configuration is simple.
【図1】(a)は本発明による欠陥検査装置の一実施例
を示す斜視図、(b)は図1(a)内の遮光板16を示
す平面図である。1A is a perspective view showing an embodiment of a defect inspection apparatus according to the present invention, and FIG. 1B is a plan view showing a light shielding plate 16 in FIG. 1A.
【図2】(a)は図1のレチクル上の照明領域の照度分
布の一種の等高線を示す図、(b)は図2(a)の照度
分布の2つの断面でのX方向の照度分布を示す図であ
る。2A is a diagram showing a kind of contour line of the illuminance distribution of the illumination area on the reticle in FIG. 1, and FIG. 2B is an illuminance distribution in the X direction at two cross sections of the illuminance distribution in FIG. 2A. FIG.
【図3】(a)は図1のレチクル上の照明領域の照度分
布のより詳細な一種の等高線を示す図、(b)は図3
(a)の照度分布の2つの断面でのX方向の照度分布を
示す図、(c)は図3(a)の照度分布の2つの断面で
のY方向の照度分布を示す図である。3A is a diagram showing a kind of more detailed contour line of the illuminance distribution of the illumination area on the reticle shown in FIG. 1, and FIG.
3A is a diagram showing an illuminance distribution in the X direction in two cross sections of the illuminance distribution in FIG. 3A, and FIG. 3C is a diagram showing an illuminance distribution in the Y direction in two cross sections in the illuminance distribution in FIG.
【図4】(a)〜(c)はそれぞれ実施例の遮光板16
上に形成される開口の変形例を示す平面図である。4 (a) to 4 (c) are respectively a light shielding plate 16 of the embodiment.
It is a top view which shows the modification of the opening formed above.
【図5】従来の欠陥検査装置の一例を示す斜視図であ
る。FIG. 5 is a perspective view showing an example of a conventional defect inspection apparatus.
【図6】従来の欠陥検査装置の他の例を示す斜視図であ
る。FIG. 6 is a perspective view showing another example of a conventional defect inspection apparatus.
【図7】(a)は図5の照明領域8のY方向の照度分布
を示す図、(b)は図5の照明領域8のX方向の照度分
布を示す図である。7A is a diagram showing an illuminance distribution in the Y direction of the illumination region 8 in FIG. 5, and FIG. 7B is a diagram showing an illuminance distribution in the X direction in the illumination region 8 in FIG.
【図8】図6の欠陥検査装置において、光ビームをより
拡大し且つ遮光板で照明領域を制限する場合を示す斜視
図である。FIG. 8 is a perspective view showing a case where the light beam is further expanded and an illumination area is limited by a light shielding plate in the defect inspection apparatus of FIG.
【図9】図8のレチクル上の照明領域でのX方向の照度
分布を示す図である。9 is a diagram showing an illuminance distribution in the X direction in an illumination area on the reticle shown in FIG.
【符号の説明】 1 レチクル 2 載物台 3 駆動装置 4 測長装置 5 光源 6A 負のシリンドリカルレンズ 7A 正のシリンドリカルレンズ 10 受光レンズ 11 1次元撮像素子 16 遮光板 19,22,23,24 開口 20 スリット状の照明領域[Explanation of reference symbols] 1 reticle 2 stage 3 driving device 4 length measuring device 5 light source 6A negative cylindrical lens 7A positive cylindrical lens 10 light receiving lens 11 one-dimensional image sensor 16 light-shielding plate 19, 22, 23, 24 aperture 20 Slit-shaped illumination area
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01L 21/66 J 7630−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // H01L 21/66 J 7630-4M
Claims (3)
る光ビーム拡大手段と、 前記光ビームが拡大された方向に交差する方向に前記光
ビーム拡大手段と前記被検物とを相対的に走査する走査
手段と、 前記被検物上の欠陥から発生する散乱光を光電変換する
受光手段とを有し、該受光手段により得られる光電変換
信号に基づいて前記欠陥の検査を行う装置において、 前記被検物上で前記光ビームにより照射される照明領域
を前記光ビームが拡大された方向で制限するための複数
のエッジを有する遮光手段を設け、 前記複数のエッジの内の少なくとも1つのエッジを前記
相対的な走査の方向に交差する方向に平行にしたことを
特徴とする欠陥検査装置。1. A light source for generating a light beam, a light beam expanding means for expanding the light beam in a predetermined direction and irradiating the object with the light beam, and a light beam expanding direction for intersecting the expanded direction of the light beam. The light beam expanding unit has a scanning unit that relatively scans the test object, and a light receiving unit that photoelectrically converts scattered light generated from a defect on the test object, and is obtained by the light receiving unit. In an apparatus for inspecting the defect based on a photoelectric conversion signal, a light shield having a plurality of edges for limiting an illumination area irradiated by the light beam on the object to be inspected in a direction in which the light beam is expanded. A defect inspection apparatus comprising means for arranging at least one edge of the plurality of edges parallel to a direction intersecting the relative scanning direction.
ビームが拡大された方向で両側から制限するための対向
する2つのほぼ平行なエッジを有し、該2つのエッジが
前記相対的な走査の方向に交差する方向にほぼ平行であ
ることを特徴とする請求項1記載の欠陥検査装置。2. The light blocking means has two substantially parallel edges facing each other for limiting the illumination area from both sides in a direction in which the light beam is expanded, and the two edges are relative to each other. The defect inspection apparatus according to claim 1, wherein the defect inspection apparatus is substantially parallel to a direction intersecting the scanning direction.
ビームが拡大された方向で両側から制限するための対向
する扇型に開いた2つのエッジを有し、該2つのエッジ
がそれぞれ前記相対的な走査の方向に交差する方向に平
行であることを特徴とする請求項1記載の欠陥検査装
置。3. The light shielding means has two fan-shaped edges facing each other for limiting the illumination area from both sides in the direction in which the light beam is expanded, and the two edges are respectively the above-mentioned edges. The defect inspection apparatus according to claim 1, wherein the defect inspection apparatus is parallel to a direction intersecting a relative scanning direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4491293A JPH06258237A (en) | 1993-03-05 | 1993-03-05 | Defect inspection device |
US08/427,738 US5473426A (en) | 1993-03-05 | 1995-04-24 | Defect inspection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4491293A JPH06258237A (en) | 1993-03-05 | 1993-03-05 | Defect inspection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06258237A true JPH06258237A (en) | 1994-09-16 |
Family
ID=12704677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4491293A Withdrawn JPH06258237A (en) | 1993-03-05 | 1993-03-05 | Defect inspection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06258237A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002098631A (en) * | 2000-09-25 | 2002-04-05 | Matsushita Electric Ind Co Ltd | Smaller sample concentration measuring apparatus |
JP2002168787A (en) * | 2000-12-04 | 2002-06-14 | Fuji Photo Film Co Ltd | Image reading method and device |
US7388659B2 (en) | 2005-04-20 | 2008-06-17 | Canon Kabushiki Kaisha | Particle inspection apparatus and method, exposure apparatus, and device manufacturing method |
US8722424B2 (en) | 2000-09-25 | 2014-05-13 | Panasonic Corporation | Chromatography quantitative measuring apparatus |
CN103792197A (en) * | 2014-01-28 | 2014-05-14 | 北京京东方显示技术有限公司 | Detection device and detection method |
JP2017523394A (en) * | 2014-05-29 | 2017-08-17 | コーニング インコーポレイテッド | Particle detection method on flexible substrate |
CN114152631A (en) * | 2021-11-29 | 2022-03-08 | 上海华力微电子有限公司 | Wafer defect scanning method and system |
-
1993
- 1993-03-05 JP JP4491293A patent/JPH06258237A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002098631A (en) * | 2000-09-25 | 2002-04-05 | Matsushita Electric Ind Co Ltd | Smaller sample concentration measuring apparatus |
US8722424B2 (en) | 2000-09-25 | 2014-05-13 | Panasonic Corporation | Chromatography quantitative measuring apparatus |
US8722425B2 (en) | 2000-09-25 | 2014-05-13 | Panasonic Corporation | Chromatography quantitative measuring apparatus |
US8778698B2 (en) | 2000-09-25 | 2014-07-15 | Panasonic Healthcare Co., Ltd. | Chromatography quantitative measuring apparatus |
US8822230B2 (en) | 2000-09-25 | 2014-09-02 | Panasonic Healthcare Co., Ltd. | Chromatography quantitative measuring apparatus |
JP2002168787A (en) * | 2000-12-04 | 2002-06-14 | Fuji Photo Film Co Ltd | Image reading method and device |
US7388659B2 (en) | 2005-04-20 | 2008-06-17 | Canon Kabushiki Kaisha | Particle inspection apparatus and method, exposure apparatus, and device manufacturing method |
CN103792197A (en) * | 2014-01-28 | 2014-05-14 | 北京京东方显示技术有限公司 | Detection device and detection method |
JP2017523394A (en) * | 2014-05-29 | 2017-08-17 | コーニング インコーポレイテッド | Particle detection method on flexible substrate |
CN114152631A (en) * | 2021-11-29 | 2022-03-08 | 上海华力微电子有限公司 | Wafer defect scanning method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5177559A (en) | Dark field imaging defect inspection system for repetitive pattern integrated circuits | |
JP3258385B2 (en) | Optical board inspection system | |
US4595289A (en) | Inspection system utilizing dark-field illumination | |
US6084664A (en) | Method of and apparatus for inspecting reticle for defects | |
JP2796316B2 (en) | Defect or foreign matter inspection method and apparatus | |
US5473426A (en) | Defect inspection apparatus | |
US20080204736A1 (en) | Defect Inspection Method and Defect Inspection Apparatus | |
JPH0915163A (en) | Method and equipment for inspecting foreign substance | |
JPH075115A (en) | Surface condition inspection apparatus | |
JPS5982727A (en) | Method and apparatus for detecting foreign matter | |
JPH06258237A (en) | Defect inspection device | |
JP2003185593A (en) | Visual examination device for wafer | |
JP3185878B2 (en) | Optical inspection equipment | |
JP4961615B2 (en) | Photomask inspection method and apparatus | |
JPH09145631A (en) | Surface foreign matter detector | |
JP2705764B2 (en) | Defect detection device for transparent glass substrate | |
JP3410013B2 (en) | Defect or foreign matter inspection method and apparatus | |
JP3068636B2 (en) | Pattern inspection method and apparatus | |
JP3166320B2 (en) | Method and apparatus for inspecting foreign matter in resist coating film | |
JPS63208746A (en) | Defect inspecting device | |
JP2599378Y2 (en) | Sample for sensitivity inspection of defect inspection equipment | |
JPH1183752A (en) | Method and apparatus for inspecting surface state | |
JPH07128250A (en) | Foreign matter inspection device for photomask for manufacturing semiconductor device | |
JP2947916B2 (en) | Surface condition inspection device | |
JPH07333167A (en) | Surface state inspection device and exposure device using the inspection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000509 |