JP2010048745A - Defect inspection system and defect inspection method - Google Patents

Defect inspection system and defect inspection method Download PDF

Info

Publication number
JP2010048745A
JP2010048745A JP2008215091A JP2008215091A JP2010048745A JP 2010048745 A JP2010048745 A JP 2010048745A JP 2008215091 A JP2008215091 A JP 2008215091A JP 2008215091 A JP2008215091 A JP 2008215091A JP 2010048745 A JP2010048745 A JP 2010048745A
Authority
JP
Japan
Prior art keywords
plate
camera
defect inspection
bright
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008215091A
Other languages
Japanese (ja)
Inventor
Shizunori Kaneko
静則 金子
Masashi Yaku
昌司 夜久
Kotaro Kodama
孝太郎 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008215091A priority Critical patent/JP2010048745A/en
Priority to PCT/JP2009/063445 priority patent/WO2010024082A1/en
Priority to CN2009801335442A priority patent/CN102132148B/en
Priority to KR1020117004448A priority patent/KR20110058784A/en
Priority to TW098125949A priority patent/TW201009324A/en
Publication of JP2010048745A publication Critical patent/JP2010048745A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N2021/8905Directional selective optics, e.g. slits, spatial filters

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a defect by discriminating efficiently whether a defect exists on a plate-like body or not, in a manufacture line or the like of the plate-like body having transparency such as a glass plate. <P>SOLUTION: When photographing a bright field image by the first camera from transmitted light projected from the first linear light source and transmitted through the plate-like body, a knife edge-shaped optical path shielding member is provided on a position in front of the first camera in an optical path for the transmitted light of the first camera. A bright part domain is searched for from inside the bright field image by using as a threshold, a high signal value in comparison with a signal value of a background component of the bright field image from inside the photographed bright field image, and when extracting a bright part domain as a result of search, it is discriminated by using the bright part domain whether a defect domain exists on the plate-like body or not. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、透明性を有するガラス板等の板状体に存在する欠陥を検出する欠陥検査システムおよび欠陥検査方法に関する。   The present invention relates to a defect inspection system and a defect inspection method for detecting defects present in a plate-like body such as a glass plate having transparency.

今日、ガラス板は、フラットパネルディスプレイ等の電子機器に用いられることから、板厚が薄く、泡等の欠陥が極めて少ない、あるいは全く存在しないガラス板が強く求められている。
ガラス板に含まれる泡や表面のキズ等の欠陥は、低減することが可能であるが、必ずしも完全に除去できるものではないため、検査工程で泡等の存在するガラス板の部分は除去する等の処置が必要である。このため、従来より、製造されたガラス板等の透明性を有する板状体に存在する泡等の欠陥を検査する装置が種々提案されている。
Today, glass plates are used in electronic devices such as flat panel displays, and therefore, there is a strong demand for glass plates that are thin and have very few or no defects such as bubbles.
Defects such as bubbles and scratches on the surface of the glass plate can be reduced, but they cannot always be completely removed. For example, parts of the glass plate where bubbles are present are removed in the inspection process. Treatment is necessary. For this reason, conventionally, various apparatuses for inspecting defects such as bubbles existing in a transparent plate-like body such as a manufactured glass plate have been proposed.

例えば、図6に示すように、搬送されるガラス板Gの一方の側に、ガラス板Gの幅より長い線状光源52を設けてガラス板Gに所定の光強度で投光し、ガラス板Gを透過した透過光の明視野画像を、他方の側に設けたラインセンサタイプのカメラ54で撮影し、この画像を処理ユニット56へ送る。処理ユニット56で、明視野画像に含まれる暗部となった領域を抽出して欠陥領域として抽出する。このとき、ガラス基板Gに投光する線状光源52は、ラインセンサタイプのカメラ54で撮影するために、ガラス板Gの幅方向に延びる細長いスリットを用いて、略平行光とする。これにより、搬送されるガラス板Gの欠陥を検出することができる。   For example, as shown in FIG. 6, a linear light source 52 longer than the width of the glass plate G is provided on one side of the conveyed glass plate G, and light is projected onto the glass plate G with a predetermined light intensity. A bright field image of the transmitted light that has passed through G is taken by a line sensor type camera 54 provided on the other side, and this image is sent to the processing unit 56. The processing unit 56 extracts a dark area included in the bright field image and extracts it as a defective area. At this time, the linear light source 52 that projects light onto the glass substrate G is made to be substantially parallel light using a long and narrow slit extending in the width direction of the glass plate G in order to capture an image with a line sensor type camera 54. Thereby, the defect of the glass plate G conveyed can be detected.

一方、下記特許文献1には、透明板状体における欠点を検出するための欠陥検出方法が提案されている。当該検出方法では、板状体の面に対して垂直に近い角度で照明する照明器と、平行に近い角度で照明する照明器とを設け、これらの照明器を用いて得られる画像の画像処理を行うことにより、板状体の表面および内部に存在する欠陥を検出することができる、とされている。   On the other hand, Patent Document 1 below proposes a defect detection method for detecting a defect in a transparent plate. In this detection method, an illuminator that illuminates at an angle close to perpendicular to the plane of the plate-like body and an illuminator that illuminates at an angle close to parallel are provided, and image processing of an image obtained using these illuminators is performed. By performing the above, it is said that defects existing on the surface and inside of the plate-like body can be detected.

特開2002−214158号公報JP 2002-214158 A

上記特許文献1に記載の欠陥検出方法や上述の図6に示す方法では、ガラス板の面に存在する欠陥と内部に存在する欠陥を区別することができない。さらに、特許文献1のように2つの照明器を用いて照明方法を変えて撮影するのでは、一定速度で搬送されるガラス板から、オンラインで欠陥を検出することはできない。このため、ガラス板の製造ライン上で上記欠陥検出方法を実施することはできない、といった問題がある。   In the defect detection method described in Patent Document 1 and the method shown in FIG. 6 described above, it is not possible to distinguish between defects present on the surface of the glass plate and defects present inside. Furthermore, as described in Patent Document 1, if two illuminators are used to change the illumination method and shoot, it is not possible to detect a defect online from a glass plate conveyed at a constant speed. For this reason, there exists a problem that the said defect detection method cannot be implemented on the production line of a glass plate.

そこで、本発明は、上記問題点を解決するために、ガラス板等の透明性を有する板状体の製造ライン等で有効に用いることのできる欠陥検査システム、欠陥検査方法であって、板状体に存在する欠陥か、否かを効率よく判別して検出することのできる欠陥検査システムおよび欠陥検査方法を提供するとともに、この検査方法を用いた板状体の製造方法を提供することを目的とする。   Accordingly, the present invention provides a defect inspection system and a defect inspection method that can be used effectively in a production line for a plate-like body having transparency, such as a glass plate, in order to solve the above problems. An object is to provide a defect inspection system and a defect inspection method capable of efficiently determining and detecting whether or not a defect exists in a body, and to provide a method for manufacturing a plate-like body using this inspection method And

上記課題を解決するために、本発明は、透明性を有する板状体に存在する欠陥を検出する欠陥検査システムであって、前記板状体の面に投光する第1の線状光源と、前記板状体を通過した透過光を集光して明視野画像を撮影する第1のカメラと、前記第1のカメラの透過光の光路中の前記第1のカメラの前面の位置に設けられるナイフエッジ状の光路遮蔽部材と、を有する第1の欠陥検査装置と、前記第1のカメラで撮影された明視野画像の中から、明視野画像の背景成分の信号値に比べて高い信号値を閾値として、明視野画像の中から明部の領域を探索し、探索の結果、明部の領域を抽出したとき、この明部の領域を用いて、前記板状体に欠陥領域が存在するか否かを判別する処理装置と、を備えることを特徴とする欠陥検査システムを提供する。   In order to solve the above-described problems, the present invention provides a defect inspection system for detecting a defect present in a transparent plate-like body, the first linear light source projecting on the surface of the plate-like body, A first camera that collects the transmitted light that has passed through the plate-like body to capture a bright-field image, and a front surface of the first camera in the optical path of the transmitted light of the first camera. A signal that is higher than the signal value of the background component of the bright-field image from among the bright-field images photographed by the first defect inspection device having a knife-edge-shaped optical path shielding member and the first camera. When a bright area is searched from the bright field image using the value as a threshold, and a bright area is extracted as a result of the search, a defect area exists in the plate using the bright area. A defect inspection system comprising: a processing device that determines whether or not to perform That.

その際、前記第1の光源は、線状光源であり、前記第1のカメラの受光面の前面には、板状体の像を結像するための結像レンズが設けられ、前記第1の光源から、前記結像レンズを介して前記第1のカメラの受光面に至る前記第1の光源の透過光の光束の拡がり角の半分の角度を照明発光有効角とし、前記第1のカメラの受光面の位置から前記結像レンズを介して前記第1の光源の照射面に至る視野範囲の見込み角の半分の角度を画角とし、前記第1の光源の発光指向性を表す値をαとしたとき、前記照明発光有効角に対する前記画角の比率に前記第1の光源の発光指向性を表す値αを乗算した値が、2より大きい第1の条件と、前記光路遮蔽部材の前記透過光の通過位置において、前記結像レンズの光軸に直交する面にできる前記受光面からみた視野範囲である錯乱円を定めたとき、前記光路遮蔽部材により前記錯乱円が遮断される部分の面積が、前記錯乱円の面積の43〜57%になる第2の条件と、を満たすように、前記第1の光源、前記結像レンズおよび前記第1のカメラが設定されていることが好ましい。例えば、前記第1の条件および前記第2の条件を満たすように、前記第1のカメラの絞り値、前記第1のカメラと板状体との間の距離、板状体と前記第1の光源との間の距離、前記第1の光源の発光幅が定められる。
特に、第1のカメラの受光素子が、板状体を挟んで、第1の光源に正対するように第1のカメラを配置するのが好ましい。ここで正対するように配置するとは、前記第1のカメラの受光素子が、ガラス板Gを挟んで、第1の光源の最大光強度の方向に位置するように配置することをいう。
In this case, the first light source is a linear light source, and an imaging lens for forming an image of a plate-like body is provided on the front surface of the light receiving surface of the first camera. The first camera is defined as an illumination light emission effective angle that is a half of the divergence angle of the transmitted light beam of the first light source from the light source to the light receiving surface of the first camera through the imaging lens. A value representing the light emission directivity of the first light source is defined as an angle of view which is a half of the expected angle of the visual field range from the position of the light receiving surface to the irradiation surface of the first light source through the imaging lens. When α is set, a value obtained by multiplying the ratio of the angle of view with respect to the illumination light emission effective angle by a value α representing the light emission directivity of the first light source is greater than 2, a first condition, and the optical path shielding member From the light receiving surface that can be a surface orthogonal to the optical axis of the imaging lens at the transmitted light passing position. When the circle of confusion that is the visual field range is determined, the second condition is such that the area of the portion where the circle of confusion is blocked by the optical path shielding member is 43 to 57% of the area of the circle of confusion. Preferably, the first light source, the imaging lens, and the first camera are set. For example, the aperture value of the first camera, the distance between the first camera and the plate, the plate and the first so as to satisfy the first condition and the second condition A distance to the light source and a light emission width of the first light source are determined.
In particular, it is preferable to arrange the first camera so that the light receiving element of the first camera faces the first light source with the plate-shaped body interposed therebetween. Here, arranging so as to face each other means arranging the light receiving elements of the first camera so as to be positioned in the direction of the maximum light intensity of the first light source with the glass plate G interposed therebetween.

また、前記第1の欠陥検査装置の他に、前記第1の欠陥検査装置の検査対象とする板状体に対して、板状体から反射した照明光を受光して、欠陥を検査する第2の欠陥検査装置を有し、前記第2の欠陥検査装置は、板状体の面に照明光を照射する第2の光源と、照射され板状体の面から出射した反射光を集光し、明視野反射画像を撮影する、板状体から見て前記第2の光源と同じ側に設けられる第2のカメラと、を有し、前記処理装置は、前記第2のカメラで撮影された明視野反射画像から、板状体で反射した画像中の暗部の領域を抽出し、この暗部の領域が前記明部の領域と近接して向かい合う場合、板状体に欠陥が存在すると判別することが好ましい。
その際、前記処理装置は、板状体で反射した画像中の前記暗部の領域と、板状体の他方の面で反射した画像中の暗部との位置ずれに基づいて、板状体の厚さ方向の、欠陥の位置情報を求めることが好ましい。
In addition to the first defect inspection apparatus, the plate-shaped body to be inspected by the first defect inspection apparatus receives illumination light reflected from the plate-shaped body and inspects the defect. The second defect inspection apparatus has a second light source for irradiating illumination light onto the surface of the plate-like body, and collects reflected light emitted from the surface of the plate-like body. A second camera provided on the same side as the second light source as viewed from the plate-like body, and the processing device is photographed by the second camera. If a dark area in the image reflected by the plate-like body is extracted from the bright-field reflected image, and this dark area is close to the bright area, it is determined that a defect exists in the plate-like body. It is preferable.
At this time, the processing device determines the thickness of the plate-like body based on the positional deviation between the dark portion area in the image reflected by the plate-like body and the dark portion in the image reflected by the other surface of the plate-like body. It is preferable to obtain defect position information in the vertical direction.

なお、前記板状体は、一方向に搬送されて移動し、前記第1の欠陥検査装置と前記第2の欠陥検査装置は、前記第1の欠陥検査装置が、前記第2の欠陥検査装置の上流側に設けられていることが好ましい。しかし、前記第1の欠陥検査装置が、前記第2の欠陥検査装置の下流側に設けられていてもよい。
ここで、前記第1の欠陥検査装置と前記第2の欠陥検査装置は、搬送方向において隣り合うようにして設けられることが好ましい。前記第1の欠陥検査装置と前記第2の欠陥検査装置との距離が短い方が、長い場合に比べて、欠陥の検出と特定を、より短い時間内で処理できることになるからである。
The plate-like body is transported and moved in one direction, and the first defect inspection apparatus and the second defect inspection apparatus are the first defect inspection apparatus and the second defect inspection apparatus. It is preferable that it is provided on the upstream side. However, the first defect inspection apparatus may be provided on the downstream side of the second defect inspection apparatus.
Here, it is preferable that the first defect inspection apparatus and the second defect inspection apparatus are provided adjacent to each other in the transport direction. This is because, when the distance between the first defect inspection apparatus and the second defect inspection apparatus is shorter, defect detection and identification can be processed within a shorter time than when the distance is longer.

更に、本発明は、透明性を有する板状体に存在する欠陥を検出する欠陥検査方法であって、第1の線状光源から前記板状体の面に投光し、前記板状体を通過した透過光を集光して第1のカメラで明視野画像を撮影するとき、前記第1のカメラの透過光の光路中の前記第1のカメラの前面の位置にナイフエッジ状の光路遮蔽部材を設けて撮影し、前記第1のカメラで撮影された明視野画像の中から、明視野画像の背景成分の信号値に比べて高い信号値を閾値として、明視野画像の中から明部の領域を探索し、探索の結果、明部の領域を抽出したとき、この屈折異常がもたらす明部の領域を用いて、前記板状体に欠陥領域が存在するか否かを判別することを特徴とする欠陥検査方法を提供する。   Further, the present invention is a defect inspection method for detecting a defect present in a transparent plate-like body, wherein the plate-like body is projected from a first linear light source onto the surface of the plate-like body. When the transmitted light that has passed is collected and a bright-field image is taken by the first camera, a light path shielding in the form of a knife edge is provided at the position in front of the first camera in the optical path of the transmitted light of the first camera. A bright part is picked up from a bright-field image by setting a signal value higher than the signal value of the background component of the bright-field image as a threshold from the bright-field image photographed by the first camera. When a bright area is extracted as a result of the search, it is determined whether or not a defect area exists in the plate using the bright area caused by this refractive error. A feature defect inspection method is provided.

なお、本発明は、板状体の厚みに制限を受けることは特になく、例えば、フラットパネルディスプレイ(FPD)においては、薄板タイプを含む液晶ディスプレイ(LCD)用途であって、厚みが0.1〜0.7mmのものや、プラズマディスプレイパネル(PDP)等においては、厚み1mm以上のもの、例えば、厚みが1.8mmのものや、厚みが2.8mmのもの、さらには、建材用途の板ガラス、及び、板状体の中間形態をとる透明な物品の製造に適用することができる。   The present invention is not particularly limited by the thickness of the plate-like body. For example, in a flat panel display (FPD), the present invention is applied to a liquid crystal display (LCD) including a thin plate type, and the thickness is 0.1. In the case of up to 0.7 mm, plasma display panels (PDP), etc., those having a thickness of 1 mm or more, for example, those having a thickness of 1.8 mm, those having a thickness of 2.8 mm, and further plate glass for building materials And can be applied to the production of a transparent article having an intermediate form of a plate-like body.

本発明の欠陥検査システムおよび欠陥検査方法では、第1のカメラの透過光の光路中の第1のカメラの前面の位置に、ナイフエッジ状の光路遮蔽部材を設け、第1のカメラで撮影された明視野画像の中から、明視野画像の背景成分の信号値に比べて高い信号値を閾値として、明視野画像の中から明部の領域を抽出し、この抽出した明部の領域を、板状体に存在する欠陥領域の検出に用いることにより、板状体に存在する欠陥か、否かを効率よく判別して検出することができる。
特に、照明発光有効角に対する画角の比率に第1の光源の発光指向性を表す値α(0以上1以下の数値)を乗算した値が、2より大きい第1の条件と、光路遮蔽部材により前記錯乱円が遮断される部分の面積が前記錯乱円の面積の43〜57%になるように設定される第2の条件と、を満たすように第1のカメラの光学系を設定することにより、明視野画像に上記明部を有効に生じさせることができる。特に、計測に用いる第1の光源と第1のカメラとが、ガラス板Gを挟んで正対するように設けることで、より効果的に欠陥検査を行なうことができる。
また、板状体の面に照明光を照射する前記第2の光源と、照射され板状体の面で反射して得られる反射光を集光し、明視野反射画像を撮影する、板状体から見て前記第2の光源と同じ側に設けられる前記第2のカメラと、を有し、前記処理装置は、前記第2のカメラで撮影された明視野反射画像から、板状体の面で反射した画像中の暗部の領域を抽出し、この暗部の領域が前記明部の領域と近接して向かい合う場合、欠陥の実像と欠陥の鏡像との位置ずれに基づいて、板状体に位置する欠陥の厚さ方向の位置情報を求めることができる。
In the defect inspection system and the defect inspection method of the present invention, a knife edge-shaped optical path shielding member is provided at a position in front of the first camera in the optical path of the transmitted light of the first camera, and the first camera captures the image. From the bright field image, a bright area is extracted from the bright field image using a signal value higher than the signal value of the background component of the bright field image as a threshold, and the extracted bright area is By using it for detecting a defect area existing in the plate-like body, it is possible to efficiently determine and detect whether the defect exists in the plate-like body.
In particular, a first condition in which a value obtained by multiplying a ratio of an angle of view with respect to an effective illumination emission angle by a value α (a numerical value between 0 and 1) representing the light emission directivity of the first light source is greater than 2, and an optical path shielding member The optical system of the first camera is set so as to satisfy the second condition in which the area of the portion where the circle of confusion is blocked is set to 43 to 57% of the area of the circle of confusion. Thus, the bright part can be effectively generated in the bright field image. In particular, the defect inspection can be performed more effectively by providing the first light source used for measurement and the first camera so as to face each other across the glass plate G.
Further, the second light source for irradiating illumination light onto the surface of the plate-like body, and the reflected light obtained by irradiating and reflecting on the surface of the plate-like body is collected, and a bright field reflection image is photographed. The second camera provided on the same side as the second light source when viewed from the body, and the processing device is configured to obtain a plate-like body from a bright-field reflection image photographed by the second camera. When the dark area in the image reflected by the surface is extracted and this dark area is in close proximity to the bright area, the plate-like body is formed based on the positional deviation between the real image of the defect and the mirror image of the defect. Position information in the thickness direction of the defect located can be obtained.

以下、本発明の欠陥検査システムおよび欠陥検査方法について、添付の図面に示される好適実施例を基に詳細に説明する。
図1に示される欠陥検査システム10は、第1の欠陥検査装置12と、第2の欠陥検査装置14と、処理装置16と、を有して構成されている。
第1の欠陥検査装置12と第2の欠陥検査装置14は、ガラス板Gの搬送経路に沿って上流側から、この順に設けられる。処理装置16は、第1の欠陥検査装置12と第2の欠陥検査装置14で得られた画像を処理し、欠陥検出を行う装置である。
ガラス板Gは、溶融炉から取り出され所定の厚さとなった長尺状の板材であり、搬送経路に設けられた複数の駆動ローラ18上で搬送される。
Hereinafter, the defect inspection system and the defect inspection method of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.
A defect inspection system 10 shown in FIG. 1 includes a first defect inspection device 12, a second defect inspection device 14, and a processing device 16.
The first defect inspection device 12 and the second defect inspection device 14 are provided in this order from the upstream side along the conveyance path of the glass sheet G. The processing device 16 is a device that processes the images obtained by the first defect inspection device 12 and the second defect inspection device 14 and performs defect detection.
The glass plate G is a long plate material that is taken out of the melting furnace and has a predetermined thickness, and is conveyed on a plurality of drive rollers 18 provided in a conveyance path.

第1の欠陥検査装置12は、欠陥検査システム10の搬送側最上流に位置し、ガラス板Gの欠陥を検査する装置である。
具体的には、第1の欠陥検査装置12は、ガラス板Gの面に、駆動ローラ18の側(下側)から投光する第1の線状光源20と、ガラス板Gを通過した透過光を集光して明視野画像を撮影する第1のカメラ22と、第1の線状光源20の透過光の光路中の第1のカメラ22の前面の位置に設けられるナイフエッジ状の光路遮蔽部材24と、を有する。
The first defect inspection apparatus 12 is an apparatus that is located on the most upstream side of the defect inspection system 10 on the conveyance side and inspects defects on the glass sheet G.
Specifically, the first defect inspection apparatus 12 transmits the first linear light source 20 that projects light from the drive roller 18 side (lower side) to the surface of the glass plate G and the glass plate G that has passed through. A first camera 22 that collects light and captures a bright-field image, and a knife-edge optical path provided at a position in front of the first camera 22 in the optical path of the transmitted light of the first linear light source 20 And a shielding member 24.

第1の線状光源20は、略平行光を出射するLED光源であり、第1の線状光源20の出射口は、ガラス板Gの幅方向(図1中の紙面垂直方向)に沿って線状に延びている。第1の線状光源20の出射口は、ガラス板Gの面から、例えば100〜900mm離れた位置に設けられ、光源の搬送方向に沿った幅L(図2参照)は、例えば1〜20mmに設定される。なお、第1の線状光源20は、ガラス板Gの面から離れて設けられていることが、高い位置精度を必要としない点で好ましい。LED光源における光の種類は特に制限されず、白色が好適に用いられるが、赤色、青色、緑色等であってもよい。LED光源は、具体的には、発光する発光源(不図示)と、発光された光を略平行光とするフレネルレンズ(不図示)と、光強度を略均一にする拡散板(不図示)と、光の出射を絞るスリット板(不図示)とを有する。これにより、第1の線状光源20は、略均一な光強度を持った略平行光を発する。なお、上述のようにフレネルレンズ、拡散板及びスリット板を用いても、必ずしも光強度を均一にし、かつ光を平行光にすることはできず、光強度は指向特性を持ち、光は拡がる。このときの光強度の指向特性を考慮して、指向特性を表す値をαとする。   The first linear light source 20 is an LED light source that emits substantially parallel light, and the exit of the first linear light source 20 is along the width direction of the glass plate G (the direction perpendicular to the paper surface in FIG. 1). It extends linearly. The exit of the first linear light source 20 is provided, for example, at a position 100 to 900 mm away from the surface of the glass plate G, and the width L (see FIG. 2) along the light source transport direction is, for example, 1 to 20 mm. Set to In addition, it is preferable that the 1st linear light source 20 is provided away from the surface of the glass plate G at the point which does not require high position accuracy. The type of light in the LED light source is not particularly limited, and white is preferably used, but may be red, blue, green, or the like. Specifically, the LED light source includes a light emitting source (not shown) that emits light, a Fresnel lens (not shown) that makes emitted light substantially parallel light, and a diffusion plate (not shown) that makes light intensity substantially uniform. And a slit plate (not shown) for narrowing the emission of light. Thereby, the first linear light source 20 emits substantially parallel light having substantially uniform light intensity. In addition, even if a Fresnel lens, a diffuser plate, and a slit plate are used as described above, the light intensity is not necessarily uniform and the light cannot be made parallel, the light intensity has directional characteristics, and the light spreads. In consideration of the directivity of the light intensity at this time, a value representing the directivity is α.

第1のカメラ22は、第1の線状光源20と、ガラス板Gを挟んで対向する位置に設けられ、ガラスGを透過した透過光を直接受光面で読み取るラインセンサー型カメラである。第1のカメラ22は、図1中の紙面に垂直方向に複数台設けられ、搬送方向の同じ位置を撮影し、しかも複数台のカメラは、ガラス板Gの幅方向における視野範囲がお互いに部分的に重なるように設定され、ガラス板Gの検査部分において、非検査エリアがないように配置されている。
第1のカメラ22は、ガラス板Gの面から、第1のカメラ22の結像レンズ23(図2参照)のピントが合う位置、例えば200〜400mm離れた位置に受光面が来るように設けられる。第1のカメラ22には、結像レンズ23を備える光学系、及び、図示されないが、開口を調整する絞りを有する。第1のカメラ22で得られた画像データは、ライン状に読み取られる度に逐次処理装置16に送られる。
The first camera 22 is a line sensor type camera that is provided at a position facing the first linear light source 20 with the glass plate G interposed therebetween and reads transmitted light that has passed through the glass G directly on the light receiving surface. A plurality of first cameras 22 are provided in the direction perpendicular to the paper surface in FIG. 1 and photograph the same position in the transport direction. In addition, the plurality of cameras have mutually different viewing ranges in the width direction of the glass plate G. In the inspection part of the glass plate G, it is arranged so that there is no non-inspection area.
The first camera 22 is provided such that the light receiving surface comes to a position where the focusing lens 23 (see FIG. 2) of the first camera 22 is in focus, for example, 200 to 400 mm away from the surface of the glass plate G. It is done. The first camera 22 includes an optical system including an imaging lens 23 and a diaphragm that adjusts an aperture, which is not illustrated. The image data obtained by the first camera 22 is sequentially sent to the processing device 16 every time it is read in a line shape.

光路遮蔽部材24は、ガラスGからの透過光の光路中の、第1のカメラ22の前面の位置で、光路の一部を遮断するナイフエッジ状の部材である。光路中の先端部分は、刃を成すように先鋭化されている。光路遮蔽部材24は、第1のカメラ22の光学系(結像レンズ23)の前面の位置、例えば1〜5mm離れた位置に設けられる。光路遮蔽部材24を保持する部分は、光路遮蔽部材24が、光路中を横断するようにX方向に移動可能な機構が設けられている。その際、光路遮蔽部材24の透過光の通過位置において、第1のカメラ22中の結像レンズ23の光軸に直交する面にできる、受光面からみた視野範囲を表す錯乱円を定めたとき、光路遮蔽部材24により錯乱円が遮断される部分の面積が、錯乱円の面積の43〜57%に該当し、好ましくは略50%に該当する。43%より小さい場合、明視野画像に後述する明部が発生しにくく、57%を超えると暗視野画像になりやすい。
このような光路を遮断する範囲は、例えば、光遮蔽部材24とガラス板Gとの間の距離と、第1のカメラ22の絞り値とを調整することで実現できる。光路を遮断する範囲をこの範囲に設定することにより、後述するように、明視野画像内に存在する泡等の欠陥によってつくられる暗部の領域に近接して、明部の領域を効率よく形成させるためである。
The optical path shielding member 24 is a knife edge-shaped member that blocks a part of the optical path at the position of the front surface of the first camera 22 in the optical path of the transmitted light from the glass G. The tip portion in the optical path is sharpened so as to form a blade. The optical path shielding member 24 is provided at a position on the front surface of the optical system (imaging lens 23) of the first camera 22, for example, at a position 1 to 5 mm away. The part that holds the optical path shielding member 24 is provided with a mechanism that allows the optical path shielding member 24 to move in the X direction so as to cross the optical path. At that time, when a circle of confusion representing the field of view as viewed from the light receiving surface, which can be a surface orthogonal to the optical axis of the imaging lens 23 in the first camera 22 at the passing position of the transmitted light of the optical path shielding member 24, is determined. The area of the portion where the circle of confusion is blocked by the optical path shielding member 24 corresponds to 43 to 57% of the area of the circle of confusion, and preferably corresponds to about 50%. If it is less than 43%, a bright field described later is unlikely to occur in the bright field image, and if it exceeds 57%, a dark field image tends to be formed.
Such a range for blocking the optical path can be realized by adjusting the distance between the light shielding member 24 and the glass plate G and the aperture value of the first camera 22, for example. By setting the range for blocking the optical path to this range, as will be described later, the bright region is efficiently formed in the vicinity of the dark region created by defects such as bubbles existing in the bright field image. Because.

その際、第1の線状光源20の発光指向性を表す値をαとしたとき、図2に示す照明発光有効角θに対する画角φの比率に値αを乗算した値が、2より大きくなっていることが好ましい。照明発光有効角θとは、第1の線状光源20から、結像レンズ23を介して第1のカメラ22の受光素子の受光面に至る、第1の線状光源20の透過光の光束の拡がり角の半分の角度をいう。画角φは、第1のカメラ22の受光素子の受光面の位置から結像レンズ23を介して(レンズの有効口径dを用いて)第1の線状光源20の照射面に至る視野範囲の見込み角の半分の角度である。
ここで、第1の線状光源20の発光指向性を表す値αとは、図3に示すように、横軸に光源の照射面に直交する方向を方位角0度として方位角度をとり、縦軸に最大光強度の値を1としたときの、相対光強度の平均値をいう。
In this case, when the value representing the light emission directivity of the first linear light source 20 is α, the value obtained by multiplying the ratio of the field angle φ to the illumination light emission effective angle θ shown in FIG. It is preferable that The effective illumination emission angle θ is a light flux of transmitted light from the first linear light source 20 that reaches the light receiving surface of the light receiving element of the first camera 22 through the imaging lens 23 from the first linear light source 20. The half of the spread angle. The angle of view φ ranges from the position of the light receiving surface of the light receiving element of the first camera 22 through the imaging lens 23 (using the effective aperture d of the lens) to the irradiation surface of the first linear light source 20. Is half of the prospective angle.
Here, the value α representing the light emission directivity of the first linear light source 20 has an azimuth angle with the direction perpendicular to the irradiation surface of the light source as the azimuth angle of 0 degrees on the horizontal axis, as shown in FIG. The vertical axis represents the average value of relative light intensity when the value of maximum light intensity is 1.

さらに、第1のカメラ22の受光素子は、図2に示すように、ガラス板Gを挟んで、第1の線状光源20と正対するように、第1のカメラ22が配置されることが好ましい。なお、図2中のdは、結像レンズ23の有効口径であり、f/F(fは焦点距離、FはF値である)で表される。このように、本発明において用いる照明発光有効角θおよび画角φは、図2に示すように、各装置の設定や配置に基づいて、幾何学的に定められる。   Furthermore, as shown in FIG. 2, the first camera 22 is disposed so that the light receiving element of the first camera 22 faces the first linear light source 20 with the glass plate G interposed therebetween. preferable. Note that d in FIG. 2 is an effective aperture of the imaging lens 23 and is represented by f / F (f is a focal length, and F is an F value). As described above, the illumination emission effective angle θ and the angle of view φ used in the present invention are geometrically determined based on the setting and arrangement of each device as shown in FIG.

このような第1の欠陥検査装置12により、ガラス板Gに存在する微小な泡等の欠陥を容易に検出することができるようになった。   Such a first defect inspection apparatus 12 can easily detect defects such as minute bubbles present in the glass plate G.

第2の欠陥検査装置14は、第2の光源28と、第2のカメラ30とを有する。第2の欠陥検査装置14は、第1の欠陥検査装置の検査対象として検査されたガラス板Gに対して、一方の側からガラス板を照明し、このときガラス板Gの表面と裏面で反射した照明光を第2のカメラ30で受光して、欠陥を検査する装置である。
上記した第1の欠陥検査装置12による検出結果に加えて、この第2の欠陥検査装置14の検出結果を組み合わせて、総合的に評価することにより、ガラス板Gに存在する欠陥の特定をより的確に行うことができるようになった。
The second defect inspection apparatus 14 includes a second light source 28 and a second camera 30. The 2nd defect inspection apparatus 14 illuminates a glass plate from one side with respect to the glass plate G test | inspected as a test object of a 1st defect inspection apparatus, and reflects on the surface and back surface of the glass plate G at this time It is a device that receives the illuminated light with the second camera 30 and inspects for defects.
In addition to the detection result of the first defect inspection apparatus 12 described above, the detection result of the second defect inspection apparatus 14 is combined and comprehensively evaluated, thereby more accurately identifying defects present in the glass plate G. Now it can be done accurately.

第2の光源28は、ガラス板Gの面に略平行光を出射するLED光源であり、ガラス板Gの面に対して傾斜した方向から光を入射させる。第2の光源28は、図1の紙面に垂直方向に延びている。第2の光源28に用いられるLED光源における光の種類は特に制限されず、白色が好適に用いられるが、赤色、青色、緑色等であってもよい。LED光源は、具体的には、発光する発光源(不図示)と、発光された光を略平行光とするフレネルレンズ(不図示)と、光強度を略均一にする拡散板(不図示)と、光の出射を絞るスリット板(不図示)とを有する。これにより、第2の線状光源28は略均一な光強度を持った略平行光を発する。   The second light source 28 is an LED light source that emits substantially parallel light to the surface of the glass plate G, and makes light incident from a direction inclined with respect to the surface of the glass plate G. The second light source 28 extends in a direction perpendicular to the paper surface of FIG. The type of light in the LED light source used for the second light source 28 is not particularly limited, and white is preferably used, but may be red, blue, green, or the like. Specifically, the LED light source includes a light emitting source (not shown) that emits light, a Fresnel lens (not shown) that makes emitted light substantially parallel light, and a diffusion plate (not shown) that makes light intensity substantially uniform. And a slit plate (not shown) for narrowing the emission of light. As a result, the second linear light source 28 emits substantially parallel light having substantially uniform light intensity.

第2のカメラ30は、ガラスGの表面から出射した反射光を集光し、明視野反射画像を撮影するラインセンサー型カメラである。第2のカメラ30は、ガラス板Gから見て第2の光源28と同じ側に設けられている。   The second camera 30 is a line sensor type camera that collects reflected light emitted from the surface of the glass G and captures a bright-field reflected image. The second camera 30 is provided on the same side as the second light source 28 when viewed from the glass plate G.

第2のカメラ30で撮影される画像は、第2の光源28で照明されてガラスGの裏面で反射した画像であり、ガラス板Gに存在する欠陥の領域が暗部になる画像である。この画像には、ガラス板Gの面に対して傾斜した方向からガラス板Gの表面に入射し、ガラス板Gの裏面で反射した後、この反射光の光路を欠陥の領域が通過することによってできる欠陥の実像と、ガラス板Gの表面に対して傾斜した方向からガラス板Gの表面に入射した入射光が、ガラス板G内の光路中にある欠陥の領域を通過した後、ガラス板Gの裏面で反射してできる欠陥の鏡像とが含まれる。第2のカメラ30で得られた画像データは、ライン状に読み取られる度に処理装置16に送られる。   The image photographed by the second camera 30 is an image that is illuminated by the second light source 28 and reflected by the back surface of the glass G, and is an image in which a defect area existing in the glass plate G becomes a dark part. In this image, after entering the surface of the glass plate G from a direction inclined with respect to the surface of the glass plate G and reflecting on the back surface of the glass plate G, the defect region passes through the optical path of the reflected light. After the actual image of the defect that can be formed and the incident light incident on the surface of the glass plate G from the direction inclined with respect to the surface of the glass plate G pass through the defect region in the optical path in the glass plate G, the glass plate G And a mirror image of defects formed by reflection on the back surface of the film. The image data obtained by the second camera 30 is sent to the processing device 16 every time it is read in a line shape.

処理装置16は、第1の欠陥検査装置12および第2の欠陥検査装置14から送られた画像データを用いて、ガラス板Gの欠陥を検出し、その種類を識別し、また、欠陥のガラス板Gの厚さ方向における位置を特定する装置でもある。処理装置16には、ディスプレイ32が接続され、ディスプレイ32には、第1の欠陥検査装置12および第2の欠陥検査装置14で得られた画像、欠陥の検出結果、識別結果、あるいは欠陥の位置特定結果が画面表示される。
第1の欠陥検査装置12で得られる画像は、上述したように、明視野画像であり、ガラス板Gの欠陥は、欠陥領域の乱反射によって、画像中では暗部となって現れる。また、上述したように、第1のカメラ22の光学系の直前には、光路の一部分を遮断するナイフエッジ状の光路遮蔽部材24が設けられていることにより、この光路遮蔽部材24により、画像中の暗部の領域と近接して向かい合うように、あるいは接して対するように、明部の領域が形成される。この明部は、欠陥の部分の屈折異常により発生し、明視野画像の背景部分に比べて明度が高い。
The processing device 16 uses the image data sent from the first defect inspection device 12 and the second defect inspection device 14 to detect a defect on the glass plate G, identify the type of the defect, and also detect the defect glass. It is also an apparatus for specifying the position of the plate G in the thickness direction. A display 32 is connected to the processing device 16, and the display 32 includes images, defect detection results, identification results, or defect positions obtained by the first defect inspection device 12 and the second defect inspection device 14. The specific result is displayed on the screen.
As described above, the image obtained by the first defect inspection apparatus 12 is a bright field image, and the defect of the glass plate G appears as a dark part in the image due to irregular reflection of the defect region. Further, as described above, a knife-edge-shaped optical path shielding member 24 that blocks a part of the optical path is provided immediately before the optical system of the first camera 22, so that the optical path shielding member 24 allows the image to be displayed. A bright area is formed so as to face the dark area in the vicinity or to face and contact each other. The bright portion is generated due to a refractive error in the defective portion, and has a higher brightness than the background portion of the bright field image.

図4(a)は、光路遮蔽部材24が光路中にあるときの欠陥画像の一例の模式図である。図4(a)に示すように、暗部の領域と近接して向かい合う明部が形成される。これに対して、図4(b)は光路遮蔽部材24が光路中に存在しない(光を遮断しない)ときの欠陥画像の一例の模式図である。図4(b)に示すように、暗部の領域と近接して向かい合う明部は形成されない。明視野画像中において、図4(a)に示すように、明部が暗部の領域に近接して向かい合うように形成されるのは、ガラス板Gの表面や内部に存在する気泡や異物等により、ガラス板Gの表面が凹凸形状となって、ガラス板Gの屈折異常が僅かに変化することによるものと考えられる。実際、ガラス板Gの面に生じるキズや付着した異物では、図4(a)に示すような明部は形成されない。
このため、処理装置16では、明視野画像において、明視野画像における背景部分の画像データの値より高い閾値を設定し、この閾値以上の領域を明部の領域として抽出する。なお、第1のカメラ22から送られてくる画像データは、検査位置を通過してラインセンサー型カメラで読み取られた一次元の画像データであるので、処理装置16では、複数ライン(例えば500ライン)の画像データが蓄積されて一定の面領域の画像が得られると、上記明部の領域の抽出を開始する。この抽出した明部の領域の位置情報は、ガラス板Gに存在する欠陥領域の検出の際に、以下のようにして用いられる。
FIG. 4A is a schematic diagram of an example of a defect image when the optical path shielding member 24 is in the optical path. As shown in FIG. 4 (a), a bright part is formed facing the dark part region in close proximity. On the other hand, FIG. 4B is a schematic diagram of an example of a defect image when the optical path shielding member 24 does not exist in the optical path (does not block light). As shown in FIG. 4B, the bright part facing the dark part region is not formed. In the bright field image, as shown in FIG. 4 (a), the bright part is formed so as to face the dark part region in close proximity to the surface of the glass plate G due to bubbles or foreign matters existing inside. It is considered that the surface of the glass plate G becomes uneven, and the refractive error of the glass plate G slightly changes. In fact, a bright portion as shown in FIG. 4A is not formed by scratches or foreign matter adhering to the surface of the glass plate G.
For this reason, in the bright field image, the processing device 16 sets a threshold value higher than the value of the image data of the background portion in the bright field image, and extracts an area that is equal to or larger than the threshold value as the bright part area. Since the image data sent from the first camera 22 is one-dimensional image data that has passed through the inspection position and is read by the line sensor type camera, the processing device 16 has a plurality of lines (for example, 500 lines). ) Image data is accumulated and an image of a certain surface area is obtained, the extraction of the bright area is started. The position information of the extracted bright area is used as follows when detecting a defective area existing on the glass plate G.

第2の欠陥検査装置14で得られ処理装置16に送られた画像データは、明視野反射画像のデータであり、欠陥の部分が暗部の領域となる画像である。上述したように、欠陥の実像と鏡像が暗部となって現れる。ガラス板Gの欠陥が存在するガラス板Gの厚さ方向の位置に応じて、欠陥の実像と鏡像とに位置ずれが生ずる。例えば、ガラス板Gの裏面近くに欠陥が位置する場合、実像と鏡像との位置ずれ量は小さくなり、表面近くに欠陥が位置する場合、実像と鏡像との位置ずれ量は大きくなる。   The image data obtained by the second defect inspection apparatus 14 and sent to the processing apparatus 16 is bright-field reflection image data, and is an image in which the defect portion is a dark area. As described above, the real image and mirror image of the defect appear as dark portions. Depending on the position in the thickness direction of the glass plate G where the defects of the glass plate G are present, a positional shift occurs between the real image and the mirror image of the defect. For example, when the defect is located near the back surface of the glass plate G, the amount of positional deviation between the real image and the mirror image is small, and when the defect is located near the surface, the amount of positional deviation between the real image and the mirror image is large.

そこで、処理装置16は、上記抽出された明部の領域の情報を用いて、欠陥のガラス板Gの幅方向の位置を特定する。さらに、この幅方向の位置を用いて、第1の欠陥検査装置12で得られる画像と第2の欠陥検査装置14で得られる画像との間の、ガラス板Gの同一箇所の画像が現れる時間ずれ量に基づいて、第2のカメラ30で得られた欠陥の実像および鏡像の暗部の領域を検出する。上記時間ずれ量は、第1の欠陥検査装置12の計測位置と第2の欠陥検査装置14の計測位置との搬送方向の離間距離とガラスGの搬送速度とが既知であるので、これらの情報から求めることができる。
暗部の領域の抽出には、予め設定された閾値を用いて行われる。
次に、この実像の中心位置と鏡像の中心位置との位置ずれ量を求め、この位置ずれ量に基づいて欠陥のガラス板Gにおける厚さ方向の位置を算出する。
また、処理装置16は、第2のカメラ30で得られた欠陥の実像を用いて暗部の領域の大きさを求め、この領域の大きさから、欠陥の大きさを推定する。なお、処理装置16は、上記明部の領域の情報に基づく処理と独立して、上記明部の領域の情報を用いることなく、予め設定された閾値を用いて暗部の領域を抽出する。
Therefore, the processing device 16 specifies the position of the defective glass plate G in the width direction using the information on the extracted bright area. Furthermore, using this position in the width direction, the time at which an image of the same portion of the glass plate G appears between the image obtained by the first defect inspection device 12 and the image obtained by the second defect inspection device 14. Based on the amount of deviation, the real image of the defect obtained by the second camera 30 and the dark area of the mirror image are detected. The time lag amount is known because the distance in the conveyance direction between the measurement position of the first defect inspection apparatus 12 and the measurement position of the second defect inspection apparatus 14 and the conveyance speed of the glass G are known. Can be obtained from
Extraction of the dark area is performed using a preset threshold value.
Next, the amount of positional deviation between the center position of the real image and the center position of the mirror image is obtained, and the position of the defect in the glass plate G in the thickness direction is calculated based on the amount of positional deviation.
Further, the processing device 16 obtains the size of the dark area using the real image of the defect obtained by the second camera 30, and estimates the size of the defect from the size of this area. The processing device 16 extracts a dark area using a preset threshold value without using the information on the bright area independently of the process based on the information on the bright area.

処理装置16は、抽出した暗部の領域と、明部の領域の情報を用いて、明部の領域と暗部の領域が近接して向かい合うか否かと、算出されたガラス板Gに存在する欠陥の厚さ方向の位置と、抽出した暗部の領域から求められる欠陥の大きさや欠陥の特徴量を用いて、欠陥の種類を特定する。好ましくは、欠陥の形状を、明視野透過画像中の明部及び暗部の領域と明視野反射画像中の暗部の領域から識別することにより、欠陥の種類、例えば、泡による欠陥、異物による欠陥、あるいは、キズ等に分けて推定する。
ガラス板Gの面上にある異物やキズ等の欠陥は、第1の欠陥検査装置12から得られる明視野画像中では明部を形成しない。
The processing device 16 uses the information of the extracted dark area and the bright area to determine whether the bright area and the dark area face each other in close proximity, and the calculated defects of the glass plate G. The type of defect is specified using the position in the thickness direction, the size of the defect and the feature amount of the defect obtained from the extracted dark area. Preferably, by identifying the shape of the defect from the bright and dark areas in the bright-field transmission image and the dark area in the bright-field reflection image, the type of defect, for example, a defect due to bubbles, a defect due to foreign matter, Or it estimates by dividing into a crack etc.
Defects such as foreign matter and scratches on the surface of the glass plate G do not form bright portions in the bright field image obtained from the first defect inspection apparatus 12.

なお、第1の欠陥検査装置12において、明視野画像中の、欠陥の暗部の領域と近接して向かい合う明部が効果的に出現するには、以下の条件を満たすことが好ましい。
すなわち、図2に示す各部分の配置において、照明発光有効角θに対する画角φの比率に値αを乗算した値が、2より大きい第1の条件を満たすように、第1のカメラ22とガラス板Gとの間の距離、ガラス板Gと第1の線状光源20との間の距離、第1の線状光源の照射幅Lが設定されている。
また、光路遮蔽部材24の配置位置の、結像レンズ23の光軸に直交する面にできる、受光面からみた視野範囲の縁を定める錯乱円を定めたとき、光路遮蔽部材24により錯乱円が遮断される部分の面積が、錯乱円の面積の43〜57%になる第2の条件を満たすように、第1のカメラ22の絞り値、および第1のカメラ22とガラス板Gとの間の距離が設定されている。
さらに、第1のカメラ22の受光素子が、ガラス板Gを挟んで、第1の線状光源20の最大光強度の方向に位置するように、第1のカメラ22が配置される。
この3つの条件を満たすように各装置を配置することで、明視野画像に上記明部を有効に生じさせることができる。
また、F値を小さくすることにより、撮影における被写体焦点深度は浅くなり、画像のピンボケが生じ易くなるといった不都合が生じる。このため、明部を効率よく抽出するためには、F5.6〜F11が好ましく、第1のカメラ20の発光部分34の幅L1〜20mmの範囲において、上記比率に値αを乗算した値が2より大きいことが好ましい。
In the first defect inspection apparatus 12, it is preferable that the following conditions be satisfied in order for a bright part in the bright-field image that is close to and faces the dark area of the defect to appear effectively.
That is, in the arrangement of each part shown in FIG. 2, the first camera 22 and the first camera 22 are set so that the value obtained by multiplying the ratio of the field angle φ to the illumination light emission effective angle θ by the value α satisfies the first condition larger than 2. The distance between the glass plate G, the distance between the glass plate G and the first linear light source 20, and the irradiation width L of the first linear light source are set.
Further, when the circle of confusion that defines the edge of the field of view as viewed from the light receiving surface, which is formed on the surface orthogonal to the optical axis of the imaging lens 23 at the arrangement position of the optical path shielding member 24, is determined, The aperture value of the first camera 22 and the distance between the first camera 22 and the glass plate G so that the area of the blocked portion satisfies the second condition of 43 to 57% of the area of the circle of confusion. The distance is set.
Further, the first camera 22 is arranged so that the light receiving element of the first camera 22 is positioned in the direction of the maximum light intensity of the first linear light source 20 with the glass plate G interposed therebetween.
By arranging the devices so as to satisfy these three conditions, the bright portion can be effectively generated in the bright field image.
In addition, by reducing the F value, there is a disadvantage that the subject focal depth in photographing becomes shallow and the image is likely to be out of focus. For this reason, in order to extract a bright part efficiently, F5.6-F11 are preferable, and the value which multiplied the value (alpha) in the range of the width L 1-20 mm of the light emission part 34 of the 1st camera 20 is the said. Preferably it is greater than 2.

図5(a),(b)に示す表では、第1のカメラ20の発光部分34の幅LがL=1mm、3mm、4mm、5mm、7mmにより定められる照明発光有効角θの数値と、F値によって定められる画角φの値を示し、各表の対応する欄には、φ/θに第1の光源20のαの値を含めて乗算した値を示している。図5(a),(b)に示す表中の太枠で囲まれる範囲において、値αが略1のとき、図4(a)に示すα・φ/θの値が2より大きい条件で、明部が効果的に出現することが確かめられた。これより、第1の線状光源20の値αが1より小さい(発光指向性を考慮した)とき、α・φ/θが2より大きい条件で、明部が効果的に出現するといえる。
なお、ガラス板Gと第1のカメラ22の結像レンズ23の表面までの距離を380mmとした。第1の線状光源20の照射面からガラス板Gの計測位置までの照明WDは、図5(a)では200mm、図5(b)では400mmである。このときの光路遮蔽部材24により錯乱円が遮断される部分の面積が、錯乱円の面積の50%になるようにした。
In the tables shown in FIGS. 5A and 5B, the numerical value of the effective illumination light emission angle θ in which the width L of the light emitting portion 34 of the first camera 20 is determined by L = 1 mm, 3 mm, 4 mm, 5 mm, and 7 mm; The value of the angle of view φ determined by the F value is shown, and the corresponding column of each table shows the value obtained by multiplying φ / θ including the value of α of the first light source 20. When the value α is approximately 1 in the range surrounded by the thick frame in the tables shown in FIGS. 5A and 5B, the value of α · φ / θ shown in FIG. It was confirmed that the bright part appeared effectively. Thus, it can be said that when the value α of the first linear light source 20 is smaller than 1 (in consideration of the light emission directivity), the bright portion appears effectively under the condition that α · φ / θ is larger than 2.
The distance from the glass plate G to the surface of the imaging lens 23 of the first camera 22 was 380 mm. The illumination WD from the irradiation surface of the first linear light source 20 to the measurement position of the glass plate G is 200 mm in FIG. 5A and 400 mm in FIG. At this time, the area of the part where the circle of confusion is blocked by the optical path shielding member 24 is set to 50% of the area of the circle of confusion.

このような欠陥検査システム10では、平行光をガラス板Gに斜めから照射し、シュリーレン撮影法に似た従来の自動欠陥検査で見逃していた欠陥を、精度良く抽出することができる他、修復できないガラス板Gの欠陥を区別することができる点で、有効である。これにより、修復できない欠陥部分を避けるようにして、所定のサイズにガラス板Gを切り出すことができる。   In such a defect inspection system 10, the glass plate G is irradiated with the parallel light from an oblique direction, and defects that have been missed by the conventional automatic defect inspection similar to the schlieren imaging method can be extracted with high accuracy and cannot be repaired. This is effective in that the defects of the glass plate G can be distinguished. Thereby, the glass plate G can be cut out to a predetermined size so as to avoid a defective portion that cannot be repaired.

以上、本発明の欠陥検査システムおよび欠陥検査方法について詳細に説明したが、本発明は上記実施形態や実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As described above, the defect inspection system and the defect inspection method of the present invention have been described in detail. However, the present invention is not limited to the above-described embodiments and examples, and various improvements and modifications can be made without departing from the gist of the present invention. Of course.

本発明の欠陥検査システムおよび欠陥検査方法の一実施形態の概略の構成を説明する図である。It is a figure explaining the schematic structure of one Embodiment of the defect inspection system and defect inspection method of this invention. 本発明の欠陥検査システムにおける照明発光有効角θと画角φを説明する図である。It is a figure explaining illumination light emission effective angle (theta) and field angle (phi) in the defect inspection system of this invention. 本発明の欠陥検査システムに用いるαを説明する図である。It is a figure explaining (alpha) used for the defect inspection system of this invention. (a)は、本発明の第1の欠陥検査装置で得られる画像の一例を模式的に示す図であり、(b)は、通常の透過光による明視野画像で得られる画像の一例を模式的に示す図である。(A) is a figure which shows typically an example of the image obtained with the 1st defect inspection apparatus of this invention, (b) is an example of an image obtained with the bright field image by normal transmitted light typically FIG. (a),(b)は、図1に示す欠陥システムの第1の欠陥検査装置において明部を生成するための好ましい範囲を説明する図である。(A), (b) is a figure explaining the preferable range for producing | generating a bright part in the 1st defect inspection apparatus of the defect system shown in FIG. 従来の欠陥検査装置の概略の構成を説明する図である。It is a figure explaining the schematic structure of the conventional defect inspection apparatus.

符号の説明Explanation of symbols

10 欠陥検査システム
12 第1の欠陥検査装置
14 第2の欠陥検査装置
16 処理装置
18 駆動ローラ
20 第1の線状光源
22 第1のカメラ
23 結像レンズ
24 光路遮蔽部材
28 第2の光源
30 第2のカメラ
32 ディスプレイ
34 発光部分
DESCRIPTION OF SYMBOLS 10 Defect inspection system 12 1st defect inspection apparatus 14 2nd defect inspection apparatus 16 Processing apparatus 18 Drive roller 20 1st linear light source 22 1st camera 23 Imaging lens 24 Optical path shielding member 28 2nd light source 30 Second camera 32 Display 34 Light emitting portion

Claims (6)

透明性を有する板状体に存在する欠陥を検出する欠陥検査システムであって、
前記板状体の面に投光する第1の光源と、
前記板状体を通過した透過光を集光して明視野画像を撮影する第1のカメラと、
前記第1のカメラの透過光の光路中の前記第1のカメラの前面の位置に設けられるナイフエッジ状の光路遮蔽部材と、を有する第1の欠陥検査装置と、
前記第1のカメラで撮影された明視野画像の中から、明視野画像の背景成分の信号値に比べて高い信号値を閾値として、明視野画像の中から明部の領域を探索し、探索の結果、明部の領域を抽出したとき、この明部の領域を用いて、前記板状体に欠陥領域が存在するか否かを判別する処理装置と、を備えることを特徴とする欠陥検査システム。
A defect inspection system for detecting defects present in a plate having transparency,
A first light source that projects the surface of the plate-like body;
A first camera that collects the transmitted light that has passed through the plate-like body to capture a bright-field image;
A first defect inspection apparatus comprising: a knife edge-shaped optical path shielding member provided at a position in front of the first camera in an optical path of transmitted light of the first camera;
A bright area is searched from the bright field image by using a signal value higher than the signal value of the background component of the bright field image as a threshold from the bright field image captured by the first camera. As a result, when a bright area is extracted, a defect inspection apparatus comprising: a processing device that determines whether or not a defective area exists in the plate-like body using the bright area. system.
前記第1の光源は、線状光源であり、
前記第1のカメラの受光面の前面には、板状体の像を結像するための結像レンズが設けられ、
前記第1の光源から、前記結像レンズを介して前記第1のカメラの受光面に至る前記第1の光源の透過光の光束の拡がり角の半分の角度を照明発光有効角とし、前記第1のカメラの受光面の位置から前記結像レンズを介して前記第1の光源の照射面に至る視野範囲の見込み角の半分の角度を画角とし、前記第1の光源の発光指向性を表す値をαとしたとき、前記照明発光有効角に対する前記画角の比率に前記第1の光源の発光指向性を表す値αを乗算した値が、2より大きい第1の条件と、
前記光路遮蔽部材の前記透過光の通過位置において、前記結像レンズの光軸に直交する面にできる前記受光面からみた視野範囲である錯乱円を定めたとき、前記光路遮蔽部材により前記錯乱円が遮断される部分の面積が、前記錯乱円の面積の43〜57%になる第2の条件と、を満たすように、前記第1の光源、前記結像レンズおよび前記第1のカメラが設定されている請求項1に記載の欠陥検査システム。
The first light source is a linear light source;
An imaging lens for forming an image of a plate-like body is provided on the front surface of the light receiving surface of the first camera.
A half of the divergence angle of the light beam transmitted through the first light source from the first light source through the imaging lens to the light receiving surface of the first camera is set as an effective illumination light emission angle. The angle of view is a half of the expected angle of the visual field range from the position of the light receiving surface of one camera to the irradiation surface of the first light source through the imaging lens, and the light emission directivity of the first light source is When the value to be represented is α, a value obtained by multiplying the ratio of the angle of view to the illumination light emission effective angle by the value α representing the light emission directivity of the first light source is greater than 2,
When a circle of confusion, which is a visual field range viewed from the light receiving surface formed on a surface orthogonal to the optical axis of the imaging lens, is determined at the passing position of the transmitted light of the optical path shielding member, the confusion circle is formed by the optical path shielding member. The first light source, the imaging lens, and the first camera are set so as to satisfy the second condition that the area of the portion where the light is blocked is 43 to 57% of the area of the circle of confusion The defect inspection system according to claim 1.
前記第1の欠陥検査装置の他に、前記第1の欠陥検査装置の検査対象とする板状体に対して、板状体から反射した照明光を受光して、欠陥を検査する第2の欠陥検査装置を有し、
前記第2の欠陥検査装置は、
板状体の面に照明光を照射する第2の光源と、
照射され板状体の面で反射して得られる反射光を集光し、明視野反射画像を撮影する、板状体から見て前記第2の光源と同じ側に設けられる第2のカメラと、を有し、
前記処理装置は、前記第2のカメラで撮影された明視野反射画像から、板状体で反射した画像中の暗部の領域を抽出し、この暗部の領域が前記明部の領域と近接して向かい合う場合、板状体に欠陥が存在すると判別する請求項1または2項に記載の欠陥検査システム。
In addition to the first defect inspection apparatus, a second object for inspecting a defect by receiving illumination light reflected from the plate-like body with respect to a plate-like object to be inspected by the first defect inspection apparatus. Have defect inspection equipment,
The second defect inspection apparatus includes:
A second light source for illuminating the surface of the plate-like body with illumination light;
A second camera provided on the same side as the second light source as viewed from the plate-like body, which collects reflected light obtained by irradiation and reflected by the surface of the plate-like body and shoots a bright-field reflection image; Have
The processing device extracts a dark area in the image reflected by the plate-like body from a bright-field reflected image captured by the second camera, and the dark area is close to the bright area. The defect inspection system according to claim 1, wherein when facing each other, it is determined that a defect exists in the plate-like body.
前記処理装置は、前記明視野反射画像に欠陥の像として形成される欠陥の実像と欠陥の鏡像との位置ずれに基づいて、板状体に位置する欠陥の厚さ方向の位置情報を求める請求項3に記載の欠陥検査システム。   The processing device obtains position information in a thickness direction of a defect located on a plate-like body based on a positional deviation between a real image of a defect formed as a defect image and a mirror image of the defect in the bright field reflection image. Item 4. The defect inspection system according to Item 3. 前記板状体は、一方向に搬送されて移動し、
前記第1の欠陥検査装置と前記第2の欠陥検査装置は、前記第1の欠陥検査装置が、前記第2の欠陥検査装置の上流側に設けられている請求項1〜4のいずれか1項に記載の欠陥検査システム。
The plate-like body moves in one direction and moves,
The first defect inspection apparatus and the second defect inspection apparatus, wherein the first defect inspection apparatus is provided on the upstream side of the second defect inspection apparatus. The defect inspection system according to item.
透明性を有する板状体に存在する欠陥を検出する欠陥検査方法であって、
第1の線状光源から前記板状体の面に投光し、前記板状体を通過した透過光を集光して第1のカメラで明視野画像を撮影するとき、
前記第1のカメラの透過光の光路中の前記第1のカメラの前面の位置にナイフエッジ状の光路遮蔽部材を設けて撮影し、
前記第1のカメラで撮影された明視野画像の中から、明視野画像の背景成分の信号値に比べて高い信号値を閾値として、明視野画像の中から明部の領域を探索し、探索の結果、明部の領域を抽出したとき、この明部の領域を用いて、前記板状体に欠陥領域が存在するか否かを判別することを特徴とする欠陥検査方法。
A defect inspection method for detecting defects present in a plate having transparency,
When projecting a bright-field image with a first camera by projecting light from the first linear light source onto the surface of the plate-like body, collecting the transmitted light that has passed through the plate-like body,
Shooting by providing a knife edge-shaped optical path shielding member at a position in front of the first camera in the optical path of the transmitted light of the first camera,
A bright area is searched from the bright field image by using a signal value higher than the signal value of the background component of the bright field image as a threshold from the bright field image captured by the first camera. As a result, when a bright area is extracted, it is determined whether or not a defective area exists in the plate-like body using the bright area.
JP2008215091A 2008-08-25 2008-08-25 Defect inspection system and defect inspection method Withdrawn JP2010048745A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008215091A JP2010048745A (en) 2008-08-25 2008-08-25 Defect inspection system and defect inspection method
PCT/JP2009/063445 WO2010024082A1 (en) 2008-08-25 2009-07-28 Defect inspecting system, and defect inspecting method
CN2009801335442A CN102132148B (en) 2008-08-25 2009-07-28 Defect inspecting system, and defect inspecting method
KR1020117004448A KR20110058784A (en) 2008-08-25 2009-07-28 Defect inspecting system, and defect inspecting method
TW098125949A TW201009324A (en) 2008-08-25 2009-07-31 Defect inspecting system, and defect inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215091A JP2010048745A (en) 2008-08-25 2008-08-25 Defect inspection system and defect inspection method

Publications (1)

Publication Number Publication Date
JP2010048745A true JP2010048745A (en) 2010-03-04

Family

ID=41721254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215091A Withdrawn JP2010048745A (en) 2008-08-25 2008-08-25 Defect inspection system and defect inspection method

Country Status (5)

Country Link
JP (1) JP2010048745A (en)
KR (1) KR20110058784A (en)
CN (1) CN102132148B (en)
TW (1) TW201009324A (en)
WO (1) WO2010024082A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198406B1 (en) 2010-04-21 2012-11-07 (주)에이앤아이 Pattern inspection device
JP2013053860A (en) * 2011-09-01 2013-03-21 Toray Ind Inc Flaw defect inspection device and method
CN103630544A (en) * 2013-11-07 2014-03-12 江苏大学 Online visual detection system
KR101389502B1 (en) * 2010-05-20 2014-04-28 가부시키가이샤 퓨렉스 Cloth inspection device and inspection method
KR101409217B1 (en) * 2012-02-27 2014-06-20 엘아이지에이디피 주식회사 Inspection apparatus and inspection method of attached substrate
CN105091764A (en) * 2015-09-06 2015-11-25 苏州南光电子科技有限公司 Measurement method of laser and CCD-based glass thickness measurement system
KR101745883B1 (en) 2011-03-16 2017-06-12 해성디에스 주식회사 Apparatus and method for inspecting printed circuit boards
CN107247059A (en) * 2017-06-09 2017-10-13 华北电力大学(保定) Insulator breakdown detection means and its method based on the hot schlieren distribution of air
WO2018128059A1 (en) * 2017-01-06 2018-07-12 日本電気硝子株式会社 Method for inspecting glass plate, method for manufacturing same, and device for inspecting glass plate
CN111351795A (en) * 2020-02-27 2020-06-30 杨孝兰 Mirror surface object and transparent object detection method based on special structured light
JP2021004769A (en) * 2019-06-25 2021-01-14 住友金属鉱山株式会社 Inspection apparatus of substrate and inspection method of substrate

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093633A1 (en) * 2011-01-06 2012-07-12 日本電気硝子株式会社 Method for inspecting glass substrate for flat panel display, and glass substrate for flat panel display
KR101683065B1 (en) * 2011-11-09 2016-12-07 가부시끼 가이샤 구보다 Granule inspection device
CN103175569B (en) * 2011-12-21 2015-07-15 北京兆维电子(集团)有限责任公司 Acquiring device for single-light-source dual cameras
JP5966704B2 (en) * 2012-07-11 2016-08-10 株式会社島津製作所 Substrate inspection device and transmission illumination device for substrate inspection device
KR101387090B1 (en) * 2012-10-24 2014-04-21 길기재 Detection apparatus and method for surface of transparent body
JP2014157086A (en) * 2013-02-15 2014-08-28 Dainippon Screen Mfg Co Ltd Pattern inspection device
JP6296499B2 (en) * 2014-08-11 2018-03-20 株式会社 東京ウエルズ Appearance inspection apparatus and appearance inspection method for transparent substrate
DE102015006765A1 (en) * 2015-06-01 2016-12-01 Herbert Kannegiesser Gmbh Method for testing washed or cleaned items of laundry
CN106248684B (en) * 2015-06-03 2019-12-17 法国圣戈班玻璃公司 Optical device and method for detecting internal defects of transparent substrate
CN105241891A (en) * 2015-08-27 2016-01-13 任红霞 Glass defect detection method based on WIFI network
JP6642223B2 (en) * 2016-04-13 2020-02-05 Agc株式会社 Transparent plate surface inspection device, transparent plate surface inspection method, and glass plate manufacturing method
FR3053792B1 (en) * 2016-07-06 2023-07-14 Tiama METHOD, DEVICE AND INSPECTION LINE FOR DETERMINING A BURR AT THE LOCATION OF AN INTERNAL EDGE OF A RING SURFACE
WO2018047405A1 (en) * 2016-09-07 2018-03-15 株式会社Subaru Damage detection system and damage detection method
US10289930B2 (en) * 2017-02-09 2019-05-14 Glasstech, Inc. System and associated for online measurement of the optical characteristics of a glass sheet
CN107014826A (en) * 2017-04-12 2017-08-04 武汉华星光电技术有限公司 CF substrate micro examination machines
CN106932406A (en) * 2017-04-28 2017-07-07 许迪 A kind of device for detecting transparent substance defect
EP3477248B1 (en) * 2017-10-26 2023-06-07 Heinrich Georg GmbH Maschinenfabrik Inspection system and method of analyzing faults
US11060980B2 (en) * 2017-11-29 2021-07-13 Taiwan Semiconductor Manufacturing Co., Ltd. Broadband wafer defect detection
CN108169240A (en) * 2017-12-28 2018-06-15 湖南文理学院 Nickel foam surface defect detection apparatus
FR3076619B1 (en) 2018-01-05 2020-01-24 Tiama METHOD, DEVICE AND INSPECTION LINE FOR DETERMINING THREE-DIMENSIONAL GEOMETRY OF A CONTAINER RING SURFACE
CN108267460A (en) * 2018-02-26 2018-07-10 湖南科创信息技术股份有限公司 For the matrix form vision detection system and method for transparent material defects detection
KR102030014B1 (en) * 2018-03-26 2019-11-08 제이티웨이 주식회사 Inspection system for lens product and method for inspecting lens product
KR102181637B1 (en) * 2018-05-24 2020-11-23 (주)쎄미시스코 Target edge defect inspection system and method
CN108872246A (en) * 2018-05-29 2018-11-23 湖南科创信息技术股份有限公司 Face sheet material regards planar defect detection system entirely
JP2020085587A (en) * 2018-11-21 2020-06-04 日本電気硝子株式会社 Glass plate manufacturing method and glass plate manufacturing device
CN112888531B (en) * 2018-12-11 2023-04-14 本田技研工业株式会社 Workpiece inspection device and workpiece inspection method
CN109682836A (en) * 2019-01-29 2019-04-26 安徽利珀科技有限公司 A kind of defect detecting device
TWI699465B (en) * 2019-05-16 2020-07-21 亞亞科技股份有限公司 Wafer inner and outer layer imaging device
KR102622753B1 (en) 2020-02-17 2024-01-10 삼성에스디아이 주식회사 Laser welding method and monitoring method for secondary battery
KR20230034023A (en) 2021-09-02 2023-03-09 박노진 Optical image extraction device and diagonal optical instrument for image extraction device and straight optical instrument for optical image extraction device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258197A (en) * 1996-03-18 1997-10-03 Hitachi Electron Eng Co Ltd Method for discriminating front and rear defects of glass substrate
JPH11316195A (en) * 1998-04-30 1999-11-16 Asahi Glass Co Ltd Surface defect detecting device of transparent plate
JP2001141662A (en) * 1999-11-18 2001-05-25 Central Glass Co Ltd Method and apparatus for detecting flaw of transparent plate-shaped object
JP2005049291A (en) * 2003-07-31 2005-02-24 Nippon Sheet Glass Co Ltd Device and method for detecting micro-defect having light converging action for transparent plate
JP2005069989A (en) * 2003-08-27 2005-03-17 Apollo Mec:Kk Inspection apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930772B2 (en) * 2001-07-05 2005-08-16 Nippon Sheet Glass Company, Limited Method and device for inspecting defect of sheet-shaped transparent body
JP4793266B2 (en) * 2004-11-24 2011-10-12 旭硝子株式会社 Defect inspection method and apparatus for transparent plate
EP1866625A4 (en) * 2005-04-06 2010-12-29 Corning Inc Glass inspection systems and methods for using same
JP4679282B2 (en) * 2005-07-19 2011-04-27 株式会社日立ハイテクノロジーズ Substrate inspection apparatus and substrate inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258197A (en) * 1996-03-18 1997-10-03 Hitachi Electron Eng Co Ltd Method for discriminating front and rear defects of glass substrate
JPH11316195A (en) * 1998-04-30 1999-11-16 Asahi Glass Co Ltd Surface defect detecting device of transparent plate
JP2001141662A (en) * 1999-11-18 2001-05-25 Central Glass Co Ltd Method and apparatus for detecting flaw of transparent plate-shaped object
JP2005049291A (en) * 2003-07-31 2005-02-24 Nippon Sheet Glass Co Ltd Device and method for detecting micro-defect having light converging action for transparent plate
JP2005069989A (en) * 2003-08-27 2005-03-17 Apollo Mec:Kk Inspection apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198406B1 (en) 2010-04-21 2012-11-07 (주)에이앤아이 Pattern inspection device
KR101389502B1 (en) * 2010-05-20 2014-04-28 가부시키가이샤 퓨렉스 Cloth inspection device and inspection method
US8749776B2 (en) 2010-05-20 2014-06-10 Purex Co., Ltd. Apparatus and method for inspecting cloth piece
KR101745883B1 (en) 2011-03-16 2017-06-12 해성디에스 주식회사 Apparatus and method for inspecting printed circuit boards
JP2013053860A (en) * 2011-09-01 2013-03-21 Toray Ind Inc Flaw defect inspection device and method
KR101409217B1 (en) * 2012-02-27 2014-06-20 엘아이지에이디피 주식회사 Inspection apparatus and inspection method of attached substrate
CN103630544A (en) * 2013-11-07 2014-03-12 江苏大学 Online visual detection system
CN105091764A (en) * 2015-09-06 2015-11-25 苏州南光电子科技有限公司 Measurement method of laser and CCD-based glass thickness measurement system
KR102388575B1 (en) * 2017-01-06 2022-04-20 니폰 덴키 가라스 가부시키가이샤 Inspection method for glass plate, manufacturing method thereof, and inspection apparatus for glass plate
WO2018128059A1 (en) * 2017-01-06 2018-07-12 日本電気硝子株式会社 Method for inspecting glass plate, method for manufacturing same, and device for inspecting glass plate
JP2018112411A (en) * 2017-01-06 2018-07-19 日本電気硝子株式会社 Inspection method and production method of glass plate, and inspection equipment of glass plate
KR20190104324A (en) * 2017-01-06 2019-09-09 니폰 덴키 가라스 가부시키가이샤 Inspection method of glass plate, manufacturing method and inspection apparatus of glass plate
CN107247059A (en) * 2017-06-09 2017-10-13 华北电力大学(保定) Insulator breakdown detection means and its method based on the hot schlieren distribution of air
CN107247059B (en) * 2017-06-09 2020-05-01 华北电力大学(保定) Insulator fault detection device and method based on air thermal schlieren distribution
JP2021004769A (en) * 2019-06-25 2021-01-14 住友金属鉱山株式会社 Inspection apparatus of substrate and inspection method of substrate
CN111351795A (en) * 2020-02-27 2020-06-30 杨孝兰 Mirror surface object and transparent object detection method based on special structured light

Also Published As

Publication number Publication date
KR20110058784A (en) 2011-06-01
TW201009324A (en) 2010-03-01
CN102132148A (en) 2011-07-20
WO2010024082A1 (en) 2010-03-04
CN102132148B (en) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2010024082A1 (en) Defect inspecting system, and defect inspecting method
KR101324015B1 (en) Apparatus and method for detecting the surface defect of the glass substrate
JP5909751B2 (en) Flat glass foreign matter inspection apparatus and inspection method
EP1816466B1 (en) Method and device for inspecting defect of transparent plate body
JP5348765B2 (en) Method and apparatus for inspecting fine irregularities of flat transparent body
TWI412736B (en) A apparatus and method for inspecting inner defect of substrate
TW201502498A (en) Inspection system
KR20130109365A (en) Surface defect detecting apparatus and control method thereof
KR101203210B1 (en) Apparatus for inspecting defects
JP4362335B2 (en) Inspection device
CN111654242B (en) Method and system for detecting notch on solar wafer
US11249032B2 (en) Methods and apparatus for detecting surface defects on glass sheets
JP2006071284A (en) Inside and outside discrimination method of flaw of glass substrate
KR101860733B1 (en) Film inspection device and film inspection method
JP2012083125A (en) End face inspection device
JP2010223598A (en) Flaw inspection device for sheet-like article
JP2008070272A (en) Sheet inspection device
JP2013044635A (en) Defect detecting device
JP2009174918A (en) Defect inspecting device and method, and manufacturing method of plate-like body
JP2016125817A (en) Inspection system, and inspection method
JP5647716B2 (en) A simple telecentric lens device for micro unevenness inspection machine
WO2022123858A1 (en) Method for detecting edge part of optical film
KR101103347B1 (en) Detection apparatus for particle on the glass
JP2016099314A (en) Inspection system and inspection method
KR20220112567A (en) Defect inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130424