JP2006071284A - Inside and outside discrimination method of flaw of glass substrate - Google Patents

Inside and outside discrimination method of flaw of glass substrate Download PDF

Info

Publication number
JP2006071284A
JP2006071284A JP2004251196A JP2004251196A JP2006071284A JP 2006071284 A JP2006071284 A JP 2006071284A JP 2004251196 A JP2004251196 A JP 2004251196A JP 2004251196 A JP2004251196 A JP 2004251196A JP 2006071284 A JP2006071284 A JP 2006071284A
Authority
JP
Japan
Prior art keywords
glass substrate
defect
inspection light
detection camera
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004251196A
Other languages
Japanese (ja)
Inventor
Shinichi Okamura
真一 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2004251196A priority Critical patent/JP2006071284A/en
Publication of JP2006071284A publication Critical patent/JP2006071284A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple inside and outside discrimination method of the flaw of a glass substrate for making the inside and outside discrimination of the flaw simultaneously with the detection of the flaw. <P>SOLUTION: In the inside and outside discrimination method of the flaw of the glass substrate for discriminating whether the flaw is present on an either one of the inside and outside of the glass substrate, the glass substrate is irradiated with the inspection light emitted from an inspection light source, which is provided so as to leave an interval from the bed glass substrate, at a constant incident angle, and the surface flaw of the glass substrate is detected by a detection camera, which detects the scattering of inspection light due to the surface flaw when the scattering of the inspection light due to the flaw is detected by the detection camera provided so as to leave an interval from the glass substrate, and the scattered light propagated through the glass substrate to be reflected by the back of the glass substrate is twice detected by the detection camera while the back flaw of the glass substrate is only once detected by the detection camera for detecting the scattering of the inspection light entering inside of the glass substrate due to the back flaw, thereby discriminating the inside and outside of the flaw of the glass substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガラス基板の表裏のいずれかに欠陥が存在するかを識別するガラス基板欠陥の表裏識別方法であって、欠陥の検出と同時に欠陥の表裏式別を行う簡便なガラス基板欠陥の表裏識別方法に関する。更に、本発明はガラス基板欠陥の表裏識別に加えて、内部欠陥を検出するガラス基板欠陥の識別方法に関する。   The present invention is a glass substrate defect front-and-back identification method for identifying whether a defect exists on either the front or back side of a glass substrate, and is a simple glass substrate defect front-and-back type that simultaneously detects a defect and identifies the front and back of the defect. It relates to an identification method. Furthermore, the present invention relates to a glass substrate defect identification method for detecting internal defects in addition to front and back identification of glass substrate defects.

FPD用等のガラス基板欠陥の位置の表裏識別をする方法として、例えば、特許文献1、特許文献2、特許文献3、および特許文献4等が知られている。   For example, Patent Literature 1, Patent Literature 2, Patent Literature 3, and Patent Literature 4 are known as methods for identifying the front and back of the position of a glass substrate defect for an FPD or the like.

特許文献1は、欠陥を検出するための検出カメラの焦点深度を浅くし合焦位置をガラス基板の表面に合せ、結像の状態で欠陥の位置の表裏識別を行う方法である。しかしながら、焦点深度を浅くするためには画角の狭い長焦点レンズを使用し、開放絞り付近で使用しなければならず、検査域が狭くなる。   Japanese Patent Application Laid-Open No. 2004-133620 is a method of identifying the front and back of a defect position in an imaged state by reducing the depth of focus of a detection camera for detecting a defect and aligning the in-focus position with the surface of a glass substrate. However, in order to reduce the depth of focus, a long focus lens with a narrow angle of view must be used and used near the wide aperture, resulting in a narrow inspection area.

特許文献2は、レーザー光をスリット状に照射して、正反射の位置に配した検出カメラで基板を撮像し、検出カメラによる欠陥の検出位置のズレから欠陥の位置の表裏識別を行う方法である。しかしながら、この方法を用いた欠陥の表裏判別装置は高価となり、光軸調整等の光学調整が難しい。   Patent Document 2 is a method of irradiating a laser beam in a slit shape, picking up an image of a substrate with a detection camera arranged at a specular reflection position, and identifying the front and back of the position of the defect from the deviation of the detection position of the defect by the detection camera. is there. However, a defect front / back discrimination apparatus using this method is expensive, and optical adjustment such as optical axis adjustment is difficult.

特許文献3は、検出カメラをガラス基板に対する検出角度を変えて2セット配置し、欠陥の検出タイミングのズレ量から、欠陥の位置の表裏識別を行うものである。しかしながら、検出カメラや、ズレ量を計測するための演算処理装置が2セット必要なため装置が高価となり、演算処理が複雑となる。   In Patent Document 3, two sets of detection cameras are arranged at different detection angles with respect to the glass substrate, and the front and back of the position of the defect are identified from the amount of deviation of the detection timing of the defect. However, since two sets of detection cameras and arithmetic processing devices for measuring the amount of deviation are required, the devices become expensive and the arithmetic processing becomes complicated.

特許文献4は、被検査物の表面に、2種類の光ビームをそれぞれ異なる角度2となるように斜め方向から照射し、その被検査物からのそれぞれの散乱光を集光レンズを介して受光素子で検出し、検出された信号を信号処理回路で処理し、処理された信号を演算処理回路で演算処理して、異物が被検査物の表面及び裏面のどちらに付着したものであるかを判断する装置であるが、検出カメラや、ズレ量を計測するための演算処理装置が2セット必要なため装置が高価となり、演算処理が複雑となる。
特開2002−139454号公報 特開平8−82602号公報 特開平7−113757号公報 特許3480176号号公報
Patent Document 4 irradiates the surface of an inspection object with two kinds of light beams obliquely at different angles 2, and receives each scattered light from the inspection object via a condenser lens. Detecting with an element, processing the detected signal with a signal processing circuit, and processing the processed signal with an arithmetic processing circuit to determine whether the foreign matter has adhered to the front surface or the back surface of the inspection object Although it is a device for determination, since two sets of detection cameras and arithmetic processing devices for measuring the amount of deviation are required, the device becomes expensive and the arithmetic processing becomes complicated.
JP 2002-139454 A JP-A-8-82602 JP-A-7-113757 Japanese Patent No. 3480176

フラットパネルディスプレイ(以下、FPDと略称する)用ガラス基板は、その用途に応じ、表面側と裏面側で要求品質が異なる。ガラス基板の欠陥には、擦りキズ、突起物、汚れ、付着物等の表面欠陥、にはアワ、クラック等の内部欠陥がある。プラズマディスプレイパネル(以下、PDPと略称する)において透明導電膜を形成する、液晶ディスプレイ(以下、LCDと略称する)において透明導電膜または遮光膜を形成する加工面としてのガラス基板の表面側は、前記加工を行わない裏面側より要求品質が厳しいことが通常である。   The required quality of a glass substrate for a flat panel display (hereinafter abbreviated as FPD) differs between the front surface side and the back surface side depending on the application. Defects in the glass substrate include surface defects such as scratches, protrusions, dirt, and deposits, and internal defects such as millet and cracks. A transparent conductive film is formed in a plasma display panel (hereinafter abbreviated as PDP), and a glass substrate surface side as a processed surface for forming a transparent conductive film or a light shielding film in a liquid crystal display (hereinafter abbreviated as LCD) Usually, the required quality is stricter than the back side where the processing is not performed.

通常、PDP用には、板厚、3.0mm以下、例えば、板厚、2.8mmのガラス基板が一般的に用いられ、要求品質における異物付着等の表面欠陥の許容径は、厳しくは、径50μm以上なきこと、緩くは、径300μm以上なきことである。チィンフィルムトランジスタ(以下、TFTと略称する)で駆動されるLCD用には、板厚、0.5mm以上、例えば、板厚、0.7mm、1.1mmの無アルカリガラス基板が一般的に用いられ、通常、表面欠陥の許容径は、厳しくは、径20μm以上なきこと、緩くは、径100μm以上なきことである。   Usually, for PDP, a glass substrate having a plate thickness of 3.0 mm or less, for example, a plate thickness of 2.8 mm is generally used, and the allowable diameter of surface defects such as adhesion of foreign substances in the required quality is strictly When the diameter is not more than 50 μm, loosely means that the diameter is not more than 300 μm. For LCDs driven by a thin film transistor (hereinafter abbreviated as TFT), a non-alkali glass substrate having a thickness of 0.5 mm or more, for example, a thickness of 0.7 mm or 1.1 mm is generally used. In general, the allowable diameter of the surface defect is strictly that the diameter is not more than 20 μm, and loosely, the diameter is not more than 100 μm.

以前は、検査員がガラス基板を手に持っての目視検査にて欠陥の有無を判断し、その際、欠陥が表裏いずれに存在するかをも識別してきた。しかしながら、現在、PDP、LCDにおける掲示用、テレビジョン用ディスプレイの大型化、LCDにおけるパソコン用小型ディスプレイに対するブラックマトリックスを形成した後の多面取等で、FPD用ガラス基板がメーター角以上に大型化し、検査官が手持で検査することは不可能で自動検査機が使用されるようになった。   In the past, inspectors have judged the presence or absence of defects by visual inspection with a glass substrate in their hands, and at that time, have identified whether the defects are present on the front or back. However, at present, the size of FPD glass substrates has become larger than the meter angle due to the increase in the size of displays for PDP and LCD, the increase in the size of television displays, and the multi-face layout after forming the black matrix for the small display for personal computers in LCD. It is impossible for inspectors to inspect on hand, and automatic inspection machines have been used.

自動検査機において、欠陥を検出すると同時に欠陥が表裏いずれに存在するかまたは内部に存在するかを識別することは難しく、要求品質が厳しい面の検査基準に合わせて検査した後、その欠陥位置が表裏いずれであるかを再度識別してきた。   In an automatic inspection machine, it is difficult to detect whether a defect is present on the front or back or at the same time as it is detected in the automatic inspection machine. It has been identified again whether it is front or back.

本発明は、ガラス基板の表裏いずれかに欠陥が存在するかを識別するガラス基板欠陥の表裏識別方法であって、欠陥の検出と同時に欠陥の表裏判別を行う簡便なガラス基板欠陥の表裏識別方法を提供することを目的とする。   The present invention is a glass substrate defect front-and-back identification method for identifying whether a glass substrate has a defect on either side, and a simple glass substrate defect front-and-back identification method for performing defect detection simultaneously with defect detection. The purpose is to provide.

本発明のガラス基板欠陥の表裏識別方法は、欠陥の光散乱を検出カメラが検知することによるガラス基板欠陥の表裏識別方法であり、検査光を入射角度一定にしてガラス基板へ照射しつつ、検出カメラにて前記検査光によるガラス基板の反射像を撮像した際、表面欠陥は、表面欠陥による検査光の散乱を検出カメラが検知し、次いで前記散乱による散乱光がガラス基板内部を伝播し裏面反射したものを検出カメラが検知することで2回検出され、裏面欠陥は、ガラス基板内部に入射した検査光の裏面欠陥による散乱を検出カメラが捕え検知し1回のみ検出されることを利用してガラス基板欠陥の表裏識別を行うことを特徴とする。   The glass substrate defect front / back identification method of the present invention is a glass substrate defect front / back identification method by detecting light scattering of the defect by a detection camera, and detecting while irradiating the glass substrate with a constant incident angle. When the reflected image of the glass substrate by the inspection light is captured by the camera, the surface defect is detected by the camera to detect the scattering of the inspection light by the surface defect, and then the scattered light from the scattering propagates inside the glass substrate and is reflected back. The detection camera detects the detected two times, and the back surface defect is detected by the detection camera detecting and detecting the scattering caused by the back surface defect of the inspection light incident on the inside of the glass substrate. It is characterized by identifying the front and back of a glass substrate defect.

即ち、本発明は、ガラス基板の表裏いずれかに欠陥が存在するかを識別するガラス基板欠陥の表裏識別方法であって、搬送されるガラス基板より間隔を空けて設けた検査光源より照射された検査光をガラス基板に対する入射角度を一定にして照射し、表面欠陥は、ガラス基板より間隔を空けて設けた検出カメラが欠陥による前記検査光の散乱を検知する際に、表面欠陥による検査光の散乱を検出カメラが検知し、次いで前記散乱による散乱光がガラス基板内部を伝播し裏面反射したものを検出カメラが検知することで2回検出され、裏面欠陥は、ガラス基板内部に入射した検査光の裏面欠陥による散乱を検出カメラが検知し1回のみ検出されることによりガラス基板欠陥の表裏識別を行うことを特徴とするガラス基板欠陥の表裏識別方法である。   That is, the present invention is a glass substrate defect front / back identification method for identifying whether a defect exists on either the front or back of a glass substrate, and is irradiated from an inspection light source provided at a distance from the glass substrate being conveyed. The inspection light is irradiated at a constant incident angle with respect to the glass substrate, and surface defects are detected when the detection camera provided at a distance from the glass substrate detects the scattering of the inspection light due to the defects. The detection camera detects the scattering, and then the detection camera detects the scattered light caused by the scattering that has propagated through the glass substrate and reflected from the back surface. The back surface defect is detected by the inspection light incident on the glass substrate. A glass substrate defect front and back identification method characterized in that the front and back of a glass substrate defect is discriminated by detecting a scattering caused by a back surface defect of the glass substrate and detecting only once. .

更に、本発明は、表面欠陥による検査光の散乱を検出カメラが検知し、更に前記散乱による散乱光がガラス基板内部を伝播し裏面反射したものを検出カメラが検知し、表面欠陥が2回検知される際、検出カメラが検知した検査光の散乱による表面欠陥の実像位置と、前記散乱による散乱光がガラス基板内部を伝播し裏面反射したことによる表面欠陥の虚像位置との差Sを表した数1の式における差Sに対して、搬送される基板の搬送方向に直交する検査光の照射幅が2倍以上、10倍以下であることを特徴とする上記のガラス基板欠陥の表裏識別方法である。   Further, according to the present invention, the detection camera detects the scattering of the inspection light due to the surface defect, and further, the detection camera detects that the scattered light due to the scattering propagates through the glass substrate and is reflected from the back surface, and the surface defect is detected twice. The difference S between the real image position of the surface defect due to scattering of the inspection light detected by the detection camera and the virtual image position of the surface defect due to the scattered light due to the scattering propagating through the inside of the glass substrate and reflecting the back surface is expressed. The above-described glass substrate defect front / back identification method, wherein the irradiation width of the inspection light orthogonal to the transport direction of the substrate to be transported is 2 times or more and 10 times or less with respect to the difference S in Equation (1) It is.

Figure 2006071284
Figure 2006071284

数1の式において、検出カメラのガラス基板面の法線に対する角度をθで表し、ガラス基板の屈折率をnで表し、ガラス基板の厚みをtとする。 In Equation 1, the angle with respect to the normal of the glass substrate surface of the detection camera is represented by θ, the refractive index of the glass substrate is represented by n, and the thickness of the glass substrate is represented by t.

また、本発明のガラス基板欠陥の内部識別方法において、内部欠陥を識別するには、前記数1の式に表される表面欠陥の実像位置と虚像位置の差Sを、TFT−LCD用またはPDP用の板厚、0.5mm以上、3.0mm以下のガラス基板を用いた際に、欠陥検査において表面欠陥が許容される要求品質としての許容径、厳しくは、径20μm以上なきこと、緩くは、径300μm以上なきことにおける、20μm、300μm等の表面欠陥の許容径に対して、検査光の入射角度を0度以上、10度以下、検出カメラの角度を15度以上、45度以下に調整することにより、前記表面欠陥の実像位置と虚像位置との差Sを許容径の8倍以上となるように設定して、内部欠陥の検知および識別を行う。尚、本発明における欠陥の径とは、1個の欠陥の最大径であり、要求品質としての欠陥許容径の検査スペックとして普通に用いられ、光学顕微鏡、レーザー顕微鏡等で実測される。   Further, in the internal identification method for glass substrate defects according to the present invention, in order to identify the internal defects, the difference S between the real image position and the virtual image position of the surface defect represented by the formula 1 is calculated for TFT-LCD or PDP. When a glass substrate having a thickness of 0.5 mm or more and 3.0 mm or less is used, an allowable diameter as a required quality in which surface defects are allowed in defect inspection, strictly, a diameter not exceeding 20 μm, The inspection light incident angle is adjusted to 0 degrees or more and 10 degrees or less, and the detection camera angle is adjusted to 15 degrees or more and 45 degrees or less with respect to the allowable diameter of surface defects such as 20 μm and 300 μm without the diameter of 300 μm or more. Thus, the difference S between the real image position and the virtual image position of the surface defect is set to be 8 times or more of the allowable diameter, and the internal defect is detected and identified. The defect diameter in the present invention is the maximum diameter of one defect, and is normally used as an inspection specification for an allowable defect diameter as required quality, and is measured with an optical microscope, a laser microscope, or the like.

更に、本発明は、板厚、0.5mm以上、3.0mm以下のガラス基板に対しての、表面欠陥の許容径が20μm以上、300μm以下の間で設定された欠陥検査における上記のガラス基板欠陥の表裏識別方法において、ガラス基板の法線に対する検査光の入射角度を0度以上、10度以下に、ガラス基板の法線に対する検出カメラの角度を15度以上、45度以下に調整し、上記の数1の式に表される表面欠陥の実像位置と虚像位置の差Sが、前記許容径の8倍以上となるようにすることで、内部欠陥を識別することを特徴とするガラス基板欠陥の識別方法である。   Furthermore, the present invention provides the above glass substrate in a defect inspection in which the allowable diameter of surface defects is set between 20 μm and 300 μm for a glass substrate having a plate thickness of 0.5 mm or more and 3.0 mm or less. In the defect front / back identification method, the incident angle of the inspection light with respect to the normal of the glass substrate is adjusted to 0 degree or more and 10 degrees or less, and the angle of the detection camera with respect to the normal of the glass substrate is adjusted to 15 degrees or more and 45 degrees or less, A glass substrate characterized in that an internal defect is identified by making a difference S between a real image position and a virtual image position of a surface defect represented by the above formula 1 equal to or more than eight times the allowable diameter. This is a defect identification method.

自動検査機において、欠陥を検出すると同時に欠陥が表裏いずれに存在するかまたは内部に存在するかを識別することは難しく、要求品質が厳しい面の検査基準に合わせて検査した後、その欠陥位置が表裏いずれであるかを再度識別してきた。本発明のガラス基板の表裏いずれかに欠陥が存在するかを識別するガラス基板欠陥の表裏識別方法により、欠陥の検出と同時に欠陥の表裏判別を行う簡便なガラス基板欠陥の表裏識別方法が提供され、更に、ガラス基板面に対する検査光の入射角度、ガラス基板面に対するカメラの角度を調整することで、ガラス基板内部欠陥の識別をも行えるので、要求品質が厳しい面の検査基準に合わせて検査した後、その欠陥位置が表裏いずれであるかを再度識別する必要はなくなり、内部欠陥をも検出される。   In an automatic inspection machine, it is difficult to detect whether a defect is present on the front or back or at the same time as it is detected in the automatic inspection machine. It has been identified again whether it is front or back. According to the glass substrate defect front / back identification method for identifying whether a defect exists on either the front or back of the glass substrate according to the present invention, a simple glass substrate defect front / back identification method for performing defect front / back discrimination simultaneously with the detection of a defect is provided. Furthermore, by adjusting the incident angle of the inspection light with respect to the glass substrate surface and the camera angle with respect to the glass substrate surface, it is also possible to identify internal defects in the glass substrate, so that inspection was performed in accordance with inspection standards for surfaces with strict requirements. Thereafter, it is not necessary to identify again whether the defect position is front or back, and an internal defect is also detected.

最初に本発明のガラス基板欠陥の表裏識別方法に使用する欠陥検査装置の構成の一形態について説明する。   First, an embodiment of the configuration of a defect inspection apparatus used for the glass substrate defect front / back identification method of the present invention will be described.

図1は、ガラス基板の欠陥検査装置の一形態の概略側面図である。   FIG. 1 is a schematic side view of one embodiment of a glass substrate defect inspection apparatus.

図1に示すように、本発明のガラス基板欠陥の表裏識別方法に使用する装置は、検査光源1と検出カメラ2から構成され、欠陥による検査光の散乱を検出カメラ2が検知し、ガラス基板Gの表面に付着している表面欠陥か、裏面に付着している裏面欠陥か、および/またはガラス基板Gの内部に存在する内部欠陥かを識別する。図1中の矢印は、ガラス基板Gの搬送方向である。尚、本発明において、検査光源1および検出カメラ2のある側がガラス基板表面であり、逆側が裏面である。   As shown in FIG. 1, the apparatus used for the glass substrate defect front / back identification method of the present invention comprises an inspection light source 1 and a detection camera 2, and the detection camera 2 detects scattering of inspection light due to the defect, and the glass substrate. A surface defect attached to the surface of G, a back surface defect attached to the back surface, and / or an internal defect existing inside the glass substrate G are identified. The arrow in FIG. 1 is the conveyance direction of the glass substrate G. In the present invention, the side where the inspection light source 1 and the detection camera 2 are located is the glass substrate surface, and the opposite side is the back surface.

ガラス基板Gの搬送は、基板を水平に寝かせて搬送する横型搬送または縦型搬送が行われ、欠陥検査は縦型搬送または横型搬送しつつ行われる。本発明のガラス基板欠陥の表裏識別方法において、寝かせた状態あるいは立てた状態で搬送されるガラス基板Gに対して、図1に示すように、検査光源1を検査光の入射角度8が斜め且つ一定となるようにガラス基板Gから間隔を空けて、言い換えれば、ガラス基板Gと接触することなきように離して設置する。次いで、検出カメラ2を、ガラス基板Gに対してカメラレンズの光軸が斜めになるように間隔を空けて、言い変えれば、検出カメラ2の角度θが斜めになるようにガラス基板Gよりガラス基板Gと接触することなきように離して設置する。   The conveyance of the glass substrate G is performed by horizontal conveyance or vertical conveyance in which the substrate is laid horizontally, and defect inspection is performed while performing vertical conveyance or horizontal conveyance. In the front / back identification method for a glass substrate defect according to the present invention, as shown in FIG. 1, the inspection light source 1 is obliquely incident on the inspection light source 1 with respect to the glass substrate G transported in a laid state or standing state. The glass substrate G is spaced from the glass substrate G so as to be constant. In other words, the glass substrate G is placed away from the glass substrate G so as not to come into contact therewith. Subsequently, the detection camera 2 is spaced from the glass substrate G so that the optical axis of the camera lens is inclined with respect to the glass substrate G, in other words, the angle θ of the detection camera 2 is inclined. Install so as not to contact the substrate G.

検査光源1はガラス基板Gを、細い帯状に照らすことが好ましい。搬送されるガラス基板Gの搬送方向に対し直角方向に、検査光が細い帯状となるように照射すると、本発明のガラス基板欠陥の表裏識別方法において、搬送されるガラス基板Gの欠陥が効率よく検査され、ガラス基板Gの欠陥の検知および欠陥の表裏識別が行える。例えば、ガラス基板Gの搬送方向に対して直交するように、LED(発光ダイオード)、光ファイバーを直線的に並べ集光レンズにより適当な照射幅に調節する、または複数の光源を並べ光源ボックスにスリットを設け、スリットから検査光をガラス基板G上に細い帯状となるように照射する、詳しくは、縦長の光源ボックス内に高周波蛍光灯を入れ、光源ボックスにスリットを設け、スリット幅で検査光のガラス基板Gの進行方向に対する検査光の照射幅を調整可能とすること等が挙げられる。尚、搬送されるガラス基板Gの搬送方向に対し直交する方向に検査光源1からの検査光をビームとし、ガラス基板Gに対し角度一定に保ちつつ走査しつつ、検出カメラ2でガラス基板Gを撮像しても良いが、装置が複雑になる。   The inspection light source 1 preferably illuminates the glass substrate G in a thin strip shape. When the inspection light is irradiated in a direction perpendicular to the transport direction of the glass substrate G to be transported so as to form a thin strip, the defect of the glass substrate G to be transported is efficiently performed in the front and back identification method of the glass substrate defect of the present invention. Inspected, it is possible to detect a defect of the glass substrate G and identify the front and back of the defect. For example, LEDs (light emitting diodes) and optical fibers are linearly arranged so as to be orthogonal to the conveyance direction of the glass substrate G and adjusted to an appropriate irradiation width by a condensing lens, or a plurality of light sources are arranged and slit in a light source box And irradiate the inspection light from the slit so as to form a thin strip on the glass substrate G. Specifically, a high-frequency fluorescent lamp is placed in a vertically long light source box, a slit is provided in the light source box, and the inspection light has a slit width. For example, it is possible to adjust the irradiation width of the inspection light with respect to the traveling direction of the glass substrate G. The inspection camera 2 scans the glass substrate G while keeping the angle constant with respect to the glass substrate G while using the inspection light from the inspection light source 1 as a beam in a direction orthogonal to the conveyance direction of the glass substrate G to be conveyed. Although imaging may be performed, the apparatus becomes complicated.

検出カメラ2は、各欠陥による散乱光を検知する。検出カメラ2には、分解能に優れるCCD(Charge Coupled Device、即ち、電化結合素子)によるCCDカメラを使用することが好ましく、CCDからの信号を用いて演算処理しつつガラス基板を撮像するのに便利である。本発明のガラス基板欠陥の表裏識別方法を使用したガラス基板Gの欠陥の検査において、CCDカメラを複数使用すると検査が効率的となり好ましい。   The detection camera 2 detects light scattered by each defect. The detection camera 2 is preferably a CCD camera using a charge coupled device (CCD) having excellent resolution, and is convenient for imaging a glass substrate while performing arithmetic processing using signals from the CCD. It is. In the inspection of the defects on the glass substrate G using the glass substrate defect front / back identification method of the present invention, it is preferable to use a plurality of CCD cameras because the inspection is efficient.

次いで、本発明のガラス基板欠陥の表裏識別方法について説明する。   Next, the front / back identification method for glass substrate defects according to the present invention will be described.

図2は、本発明のガラス基板欠陥の表裏識別方法におけるガラス基板の表面欠陥の検出を説明するための拡大概略側面図である。点線が検査光の照射範囲を示す。図2に示すように、表面欠陥3は、検出カメラ2(図示しない)により2回検知される。即ち、検出カメラ2に検知される散乱光は、図2の(A)に示すように検査光が表面欠陥3によって散乱し直接、検出カメラ2が捕え検知するものと、図2の(B)に示すように、前記散乱光がガラス基板Gの内部を伝播した後、ガラス基板Gの内部で裏面反射した散乱光を検出カメラ2が捕え検知するものとがあり、これら二つの散乱光は光路が異なる。   FIG. 2 is an enlarged schematic side view for explaining the detection of the surface defect of the glass substrate in the glass substrate defect front / back identification method of the present invention. A dotted line indicates the irradiation range of the inspection light. As shown in FIG. 2, the surface defect 3 is detected twice by a detection camera 2 (not shown). That is, the scattered light detected by the detection camera 2 is directly detected and detected by the detection camera 2 as the inspection light is scattered by the surface defect 3 as shown in FIG. As shown in FIG. 4, after the scattered light propagates through the glass substrate G, the detection camera 2 captures and detects the scattered light reflected from the back surface inside the glass substrate G. These two scattered lights are in the optical path. Is different.

図3は本発明のガラス基板欠陥の表裏識別方法におけるガラス基板の裏面欠陥を検出を説明するための拡大概略側面図である。図3に示すように、裏面欠陥4は、ガラス基板Gの内部に入射した検査光の裏面欠陥4による散乱を検出カメラ2(図示しない)が検知し1回のみ検出される。検出カメラ2に検知される裏面欠陥4による散乱光は、検査光が裏面欠陥4によって散乱され、ガラス基板Gの内部を伝播しガラス基板Gの表面で屈折して検出カメラ2に到達する散乱光のみである。   FIG. 3 is an enlarged schematic side view for explaining detection of a back surface defect of a glass substrate in the front and back identification method for a glass substrate defect of the present invention. As shown in FIG. 3, the back surface defect 4 is detected only once by the detection camera 2 (not shown) detecting the scattering of the inspection light incident on the inside of the glass substrate G by the back surface defect 4. The scattered light from the back surface defect 4 detected by the detection camera 2 is scattered light that is scattered by the back surface defect 4, propagates through the inside of the glass substrate G, is refracted at the surface of the glass substrate G, and reaches the detection camera 2. Only.

尚、本発明のガラス基板欠陥の表裏識別方法において、検出カメラ2はガラス基板Gの欠陥による散乱光を検知するので、検出カメラ2のレンズ光軸とガラス基板Gとがなす角度θと、前記検査光とガラス基板Gとがなす入射角度8が一致すると正反射となり、検査光がガラス基板Gで反射した反射光の影響を受け、検出カメラ2が露光オーバーとなって欠陥の検知が困難となるので、正反射とならないように検査光源1と検出カメラ2を配設することが好ましい。   In the front and back identification method for a glass substrate defect according to the present invention, the detection camera 2 detects scattered light due to a defect in the glass substrate G. Therefore, the angle θ formed by the lens optical axis of the detection camera 2 and the glass substrate G, and When the incident angle 8 formed by the inspection light and the glass substrate G coincides, regular reflection occurs, and the inspection light is affected by the reflected light reflected by the glass substrate G, so that the detection camera 2 is overexposed and it is difficult to detect a defect. Therefore, it is preferable to arrange the inspection light source 1 and the detection camera 2 so as not to cause regular reflection.

検査光源1よりの検査光をガラス基板G面に対して入射角度を一定にして照射しつつ、ガラス基板Gの上方に設けた前記検出カメラ2にてガラス基板G面を撮影し、表面欠陥3、裏面欠陥4および/または内部欠陥を検知する。図2に示すように、表面欠陥3は、ガラス基板Gより間隔を空けて設けた検出カメラ2が欠陥による前記検査光の散乱を検知する際に、図2の(A)に示すように、表面欠陥3による検査光の散乱を検出カメラ2が検知し、次いで、図2の(B)に示すように、前記散乱による散乱光がガラス基板G内部を伝播し裏面反射したものを検出カメラ2が検知することで2回検知される。図3に示すように、裏面欠陥4は、ガラス基板内部Gに入射した検査光の裏面欠陥による散乱を検出カメラ2が検知し1回のみ検出される。   While irradiating the inspection light from the inspection light source 1 with a constant incident angle with respect to the glass substrate G surface, the surface of the glass substrate G is photographed by the detection camera 2 provided above the glass substrate G. , Detecting a back surface defect 4 and / or an internal defect. As shown in FIG. 2, when the detection camera 2 provided at a distance from the glass substrate G detects the scattering of the inspection light due to the defect, as shown in FIG. The detection camera 2 detects the scattering of the inspection light due to the surface defect 3, and then, as shown in FIG. 2 (B), the detection camera 2 detects the scattered light propagated through the glass substrate G and reflected from the back surface. Is detected twice. As shown in FIG. 3, the back surface defect 4 is detected only once by the detection camera 2 detecting scattering due to the back surface defect of the inspection light incident on the inside G of the glass substrate.

図2の(B)に示すように、表面欠陥3が2回検知される際、検出カメラ2が検知した検査光の散乱による表面欠陥3の実像位置5と、前記散乱による散乱光がガラス基板Gの内部を伝播し裏面反射したことによる表面欠陥3の虚像位置6とのズレで表される距離、言い換えれば、差Sを数1の式に表した。   As shown in FIG. 2B, when the surface defect 3 is detected twice, the real image position 5 of the surface defect 3 due to the scattering of the inspection light detected by the detection camera 2 and the scattered light due to the scattering are the glass substrate. The distance represented by the deviation from the virtual image position 6 of the surface defect 3 due to propagation through the inside of G and reflection from the back surface, in other words, the difference S is expressed by the equation (1).

Figure 2006071284
Figure 2006071284

数1の式において、検出カメラ2のガラス基板Gの法線に対する角度をθで表し、ガラス基板Gの屈折率をnで表し、ガラス基板Gの厚みをtとした。数1の式は、ガラス基板の厚みtにsinθをかけたものを2倍して求めたものを、ガラス基板の屈折率nを用い補正して、表面欠陥3の実像位置5と、前記散乱による散乱光がガラス基板Gの内部を伝播し裏面反射したことによる表面欠陥3の虚像位置6とのズレで表される距離である差Sを求める式である。例えば、θ=30度の時には、差S=板厚t/1.4142となる。尚、tの単位をμmにすれば、表面欠陥の実像位置5と虚像位置6の差Sは、μmの単位で算出される。   In Equation 1, the angle of the detection camera 2 with respect to the normal line of the glass substrate G is represented by θ, the refractive index of the glass substrate G is represented by n, and the thickness of the glass substrate G is represented by t. Equation 1 is obtained by multiplying the glass substrate thickness t multiplied by sin θ by using the refractive index n of the glass substrate to correct the real image position 5 of the surface defect 3 and the scattering. Is a formula for obtaining a difference S which is a distance represented by a deviation from the virtual image position 6 of the surface defect 3 due to the scattered light propagated through the glass substrate G and reflected from the back surface. For example, when θ = 30 degrees, the difference S = plate thickness t / 1.4142. If the unit of t is μm, the difference S between the real image position 5 and the virtual image position 6 of the surface defect is calculated in units of μm.

本発明のガラス基板欠陥の表裏識別方法において、図2に示す検査光の照射幅7が、実像位置5と虚像位置6のズレとしての距離、即ち、差Sより小さいと表面欠陥3を2回検出することは困難であり、光の照射幅7は少なくとも、差Sの2倍以上が好ましい。また、表面欠陥3を検出するためには、光の照射幅7が少なくとも、差Sの10倍以下が好ましい。それ以上大きくする必要はないし、検出感度の低下に繋がる。   In the glass substrate defect front / back identification method of the present invention, if the irradiation width 7 of the inspection light shown in FIG. 2 is smaller than the distance between the real image position 5 and the virtual image position 6, that is, the difference S, the surface defect 3 is detected twice. It is difficult to detect, and the light irradiation width 7 is preferably at least twice the difference S. Further, in order to detect the surface defect 3, the light irradiation width 7 is preferably at least 10 times the difference S or less. It is not necessary to increase it further, leading to a decrease in detection sensitivity.

尚、本発明のガラス基板欠陥の表裏識別方法を用いたガラス基板の欠陥検査において、前記差Sは、表面欠陥3の実像と虚像の検出カメラによる検知時期の時間差にガラス基板Gの搬送速度をかけて算出した距離として実測される。   In the glass substrate defect inspection using the glass substrate defect front / back identification method according to the present invention, the difference S is the time difference between the detection timing of the real image and the virtual image of the surface defect 3 by the detection time of the glass substrate G. It is actually measured as the calculated distance.

次いで、本発明のガラス基板欠陥の表裏識別方法における内部欠陥の検出について説明する。本発明のガラス基板欠陥の表裏識別方法をもちいることで、検査光の入射角度8、検出カメラ2の角度θを調整することで、内部欠陥もが検出される。   Next, detection of internal defects in the front / back identification method for glass substrate defects of the present invention will be described. By using the glass substrate defect front / back identification method of the present invention, the internal defect is also detected by adjusting the incident angle 8 of the inspection light and the angle θ of the detection camera 2.

図4は、本発明のガラス基板欠陥の表裏識別方法におけるガラス基板の内部欠陥の検出を説明するための拡大概略側面図である。   FIG. 4 is an enlarged schematic side view for explaining detection of internal defects of the glass substrate in the glass substrate defect front / back identification method of the present invention.

本発明のガラス基板欠陥の表裏識別方法において、ガラス基板Gの法線に対する検査光の入射角度8を大きくすることによって、表面欠陥3の実像位置5と虚像位置6のズレとしての距離である差Sは大きくなり、ガラス基板Gの法線に対する検出カメラ2の角度θを調整することで測定される。   In the glass substrate defect front / back identification method of the present invention, by increasing the incident angle 8 of the inspection light with respect to the normal line of the glass substrate G, a difference that is a distance as a deviation between the real image position 5 and the virtual image position 6 of the surface defect 3 S increases and is measured by adjusting the angle θ of the detection camera 2 with respect to the normal of the glass substrate G.

本発明のガラス基板欠陥の表裏識別方法において、板厚、0.5mm以上、3.0mm以下のガラス基板Gにおける、表面欠陥3の許容径は、20μm以上、300μm以下の間で設定される。本発明のガラス基板欠陥の表裏識別方法において、欠陥検査する際に、検査光の入射角度8、即ち、ガラス基板Gの法線に対する検査光の入射角度8を0度以上、10度以下に設定し、数1の式におけるsinθおよびsinθを変化させて、ガラス基板Gの法線に対する検出カメラ2の角度θを15度以上、45度以下に設定し、前記数1の式に示される表面欠陥3の実像位置5と虚像位置6のズレで表される差Sを表面欠陥3の許容径の8倍以上になるようにすれば、図4に示すように、内部欠陥9による検査光の散乱による実像位置10とガラス基板G内部に入射した検査光の裏面反射による内部欠陥9の虚像位置11とのズレで表される距離である差S´は、表面欠陥3の実像位置5と虚像位置6とのズレで表される距離である差Sよりも小さくなることにより、内部欠陥9をも識別可能となる。ガラス基板Gに対する検出カメラ2の角度θが15度より小さい、または45度より大きいと検出カメラ2の感度が下がり内部欠陥9を検出し難くなる。 In the front and back identification method of the glass substrate defect of the present invention, the allowable diameter of the surface defect 3 in the glass substrate G having a plate thickness of 0.5 mm to 3.0 mm is set between 20 μm and 300 μm. In the glass substrate defect front / back identification method of the present invention, when performing defect inspection, the inspection light incident angle 8, that is, the inspection light incident angle 8 with respect to the normal of the glass substrate G is set to 0 degree or more and 10 degrees or less. Then, the angle θ of the detection camera 2 with respect to the normal line of the glass substrate G is set to 15 degrees or more and 45 degrees or less by changing sin θ and sin 2 θ in the expression 1 and is expressed by the expression 1 above. If the difference S represented by the deviation between the real image position 5 and the virtual image position 6 of the surface defect 3 is set to be 8 times or more of the allowable diameter of the surface defect 3, as shown in FIG. The difference S ′, which is the distance represented by the deviation between the real image position 10 due to the scattering of light and the virtual image position 11 of the internal defect 9 due to the back surface reflection of the inspection light incident inside the glass substrate G, is different from the real image position 5 of the surface defect 3. The difference S, which is the distance represented by the deviation from the virtual image position 6 By making it smaller, the internal defect 9 can be identified. If the angle θ of the detection camera 2 with respect to the glass substrate G is smaller than 15 degrees or larger than 45 degrees, the sensitivity of the detection camera 2 is lowered and it becomes difficult to detect the internal defect 9.

また、FPD用ガラス基板の板厚は、通常、TFT−LCD用ガラス基板において0.5mm以上であり3.0mmより厚くなることはなく、PDP用ガラス基板において、3.0mm以下であり、0.5mmより薄くなることはなく、0.5mm以上、3.0mm以下である。本発明のガラス基板欠陥の表裏識別方法において、ガラス基板欠陥の内部識別を行うために、ガラス基板Gの板厚を0.5mm以上、3.0mm以下とした理由は、LCD用ガラス基板Gの板厚が、通常、0.5mm以上、3.0mm以下であることに加え、板厚、0.5mm以下では、表面欠陥3の実像位置5と虚像位置6とのズレで表される距離である差Sが小さく、内部欠陥9が識別し難いことによる。また、3.0mmより厚いガラス基板GはFPD用には使用されず、建築用ガラス板が主であるが、建築用ガラス板の欠陥の許容径は、FPD用ガラス基板に比べはるかに大きい他、表裏によって要求品質が異なることは通常ないことによる。   Further, the thickness of the glass substrate for FPD is usually 0.5 mm or more in the glass substrate for TFT-LCD and never thicker than 3.0 mm, and is 3.0 mm or less in the glass substrate for PDP. It is not thinner than 5 mm, and is 0.5 mm or more and 3.0 mm or less. In the glass substrate defect front and back identification method of the present invention, the reason why the thickness of the glass substrate G is 0.5 mm or more and 3.0 mm or less in order to identify the inside of the glass substrate defect is that of the glass substrate G for LCD. In addition to the plate thickness being usually 0.5 mm or more and 3.0 mm or less, the plate thickness is 0.5 mm or less, which is a distance represented by the deviation between the real image position 5 and the virtual image position 6 of the surface defect 3. This is because a certain difference S is small and the internal defect 9 is difficult to identify. In addition, the glass substrate G thicker than 3.0 mm is not used for FPD and is mainly a glass plate for construction, but the allowable diameter of defects of the glass plate for construction is much larger than the glass substrate for FPD. This is because the required quality does not usually differ between the front and back sides.

また、通常、PDP用ガラス基板において、異物付着等の表面欠陥の要求品質における許容径は、厳しくは50μm以上なきこと、緩くは300μm以上なきことである。TFT−LCDガラス基板においては、厳しくは20μm以上なきこと、緩くは100μm以上なきことである。本発明のガラス基板欠陥の表裏識別方法をもちいた際、内部欠陥9を表面欠陥3および裏面欠陥4と識別して検知するために、前記数1の式に表される表面欠陥3の実像位置5と虚像位置6とズレで表される距離である差Sを、TFT−LCD用ガラス基板またはPDP用ガラス基板等のFPD用ガラス基板の表面欠陥が許容される要求品質としての許容径、厳しくは、径20μm以上なきこと、緩くは径300μm以上なきことにおける、20μm、300μm等の許容径の8倍以上とする。8倍以上に設定しないと、図4に示すように、内部欠陥9による検査光の散乱による実像位置10とガラス基板内部を伝播した散乱光の裏面反射による内部欠陥9の虚像位置11とのズレで表される距離である差S´と表面欠陥の実像位置5と虚像位置6のズレで表される距離である差Sとを比較して大差なくなり、内部欠陥9を識別し難い。   In general, in a glass substrate for PDP, the allowable diameter in the required quality of surface defects such as adhesion of foreign matters is strictly not more than 50 μm and loosely not more than 300 μm. In the TFT-LCD glass substrate, strictly speaking, it should be 20 μm or more, and loosely, it should be 100 μm or more. In order to distinguish and detect the internal defect 9 from the surface defect 3 and the back surface defect 4 when using the glass substrate defect front / back identification method of the present invention, the real image position of the surface defect 3 represented by the formula 1 above is detected. 5 and the virtual image position 6 and the difference S, which is the distance represented by the displacement, is an allowable diameter as a required quality that allows surface defects of an FPD glass substrate such as a TFT-LCD glass substrate or a PDP glass substrate. Is 8 times or more of the allowable diameter of 20 μm, 300 μm, etc. when there is no diameter of 20 μm or more, or loosely without the diameter of 300 μm or more. Otherwise, as shown in FIG. 4, the deviation between the real image position 10 due to the scattering of the inspection light by the internal defect 9 and the virtual image position 11 of the internal defect 9 due to the back surface reflection of the scattered light propagating through the glass substrate, as shown in FIG. And the difference S ′, which is the distance represented by the deviation between the real image position 5 and the virtual image position 6 of the surface defect, are not greatly different, and the internal defect 9 is difficult to identify.

尚、内部欠陥9は、本発明のガラス基板欠陥の表裏識別方法を用いた際に付随して検出されるものである。   The internal defect 9 is detected accompanying the use of the glass substrate defect front / back identification method of the present invention.

図1に示すように、立てた状態で縦型搬送される板厚、2.8mmのガラス基板Gに対して、検査光の入射角度8が、5度となるように、ガラス基板Gから間隔を空けて検査光源1を設置した。次いで、検出カメラ2を、ガラス基板Gの法線に対するカメラレンズの光軸の角度θが30度となるように、即ち、検出カメラ2の角度θが30度になるようにガラス基板Gより間隔を空けて設置した。検査光源1よりの検査光をガラス基板Gに対して入射角度8を、5度で一定にして照射しつつ、ガラス基板Gの上方に設けた前記検出カメラ2でガラス基板Gを撮像した。   As shown in FIG. 1, with respect to a glass substrate G having a thickness of 2.8 mm that is vertically conveyed in an upright state, the inspection light is spaced from the glass substrate G so that the incident angle 8 is 5 degrees. And the inspection light source 1 was installed. Next, the detection camera 2 is spaced from the glass substrate G so that the angle θ of the optical axis of the camera lens with respect to the normal line of the glass substrate G is 30 degrees, that is, the angle θ of the detection camera 2 is 30 degrees. Installed. The glass substrate G was imaged by the detection camera 2 provided above the glass substrate G while irradiating the inspection light from the inspection light source 1 with the incident angle 8 kept constant at 5 degrees with respect to the glass substrate G.

ガラス基板Gより間隔を空けて設けた検出カメラ2には、搬送されるガラス基板Gの欠陥の表裏識別を効率よく行うために、複数のCCDカメラを用いた。該CCDの分解能、即ち、1画素の大きさは、ガラス基板G中に存在する最小の欠陥のサイズによって決定され、1画素、20μm×20μmのものを使用した。   For the detection camera 2 provided at a distance from the glass substrate G, a plurality of CCD cameras were used in order to efficiently identify the front and back of the defect of the glass substrate G being conveyed. The resolution of the CCD, that is, the size of one pixel was determined by the size of the smallest defect existing in the glass substrate G, and one pixel having a size of 20 μm × 20 μm was used.

また、検査光源1には、搬送されるガラス基板Gの欠陥の表裏識別を効率よく行うために、ガラス基板Gを細い帯状に照射する検査光源1を用いた。検査光源1は、照射幅を調整するために集光レンズを設けた光源ボックス内に光ファイバーを一直線に並べ、ハロゲン光源からの光を伝播させ、ガラス基板G上を細長い帯状に照らして検査光とした。   The inspection light source 1 used was an inspection light source 1 that irradiates the glass substrate G in a thin band shape in order to efficiently identify the front and back of the defect of the glass substrate G being conveyed. In order to adjust the irradiation width, the inspection light source 1 has optical fibers arranged in a straight line in a light source box provided with a condensing lens, propagates light from the halogen light source, and illuminates the inspection light by illuminating the glass substrate G in an elongated band shape. did.

図2に示す検査光の照射幅7が、表面欠陥3による検査光の散乱による実像位置5とガラス基板G内部に伝播した散乱光の裏面反射による表面欠陥3の虚像位置6とのズレで表される距離である差S、2.0mmの5倍となるように、光源ボックスに設けた集光レンズをスライドさせ照射幅を10.0mmに調整した。   The irradiation width 7 of the inspection light shown in FIG. 2 is represented by a deviation between the real image position 5 due to the scattering of the inspection light by the surface defect 3 and the virtual image position 6 of the surface defect 3 due to the back surface reflection of the scattered light propagated inside the glass substrate G. The condensing lens provided in the light source box was slid to adjust the irradiation width to 10.0 mm so that the difference S, which is the distance to be measured, was 5 times 2.0 mm.

このようにして作製したガラス基板欠陥の表裏識別装置を用い、搬送速度、50.0mm/secで搬送されるガラス基板Gを前記複数のCCDカメラを用いて撮像したところ、表面欠陥3は、表面欠陥3による検査光の散乱による実像位置5とガラス基板G内部に伝播した散乱光の裏面反射による表面欠陥3の虚像位置6とが、実像位置5と虚像位置6のズレで表される距離である差S、2.0mmをもって2回検出され、裏面欠陥4は、ガラス基板G内部に入射した検査光の裏面欠陥4による散乱1回のみ検出され、表面欠陥3と裏面欠陥4の識別が行えた。尚、前記、差S、2.0mmは、表面欠陥3の前記2回の、検出時期の時間差、0.04secにガラス基板Gの搬送速度、50.0mm/secをかけて距離として算出した。   When the glass substrate G transported at a transport speed of 50.0 mm / sec was imaged using the plurality of CCD cameras using the front and back identification device for the glass substrate defect thus produced, the surface defect 3 The real image position 5 due to the scattering of the inspection light by the defect 3 and the virtual image position 6 of the surface defect 3 due to the back surface reflection of the scattered light propagated inside the glass substrate G are represented by a distance represented by the deviation between the real image position 5 and the virtual image position 6. The back surface defect 4 is detected twice with a certain difference S of 2.0 mm, and the back surface defect 4 is detected only once by the back surface defect 4 of the inspection light incident on the inside of the glass substrate G, so that the front surface defect 3 and the back surface defect 4 can be identified. It was. The difference S, 2.0 mm was calculated as a distance by multiplying the time difference between the detection times of the surface defects 3 twice, 0.04 sec, by the conveyance speed of the glass substrate G, 50.0 mm / sec.

また、内部欠陥9は、板厚、1.5mmのガラス基板Gにおける、表面欠陥3の許容径が100μmであるガラス基板Gの欠陥検査において、ガラス基板Gに対する検査光の入射角度8を5度に、ガラス基板Gの法線に対する検出カメラ2の角度θを30度にし、表面欠陥の実像位置5と虚像位置6のズレで表される距離でである差Sが、前記許容径の11倍、即ち、1.1mmとなるようにすると、図4に示すように、内部欠陥9による検査光の散乱による実像位置10とガラス基板G内部を伝播した前記散乱光の裏面反射による内部欠陥9の虚像位置11とのズレで表される距離である差S´、0.5mmが、表面欠陥3の実像位置5と虚像位置6のズレで表される距離である差S、1.1mmより小さくなり、内部欠陥9が識別された。   Further, the internal defect 9 has an inspection light incident angle 8 on the glass substrate G of 5 degrees in the defect inspection of the glass substrate G having a plate thickness of 1.5 mm and the allowable diameter of the surface defect 3 of 100 μm. Further, an angle θ of the detection camera 2 with respect to the normal line of the glass substrate G is set to 30 degrees, and a difference S that is a distance represented by a deviation between the real image position 5 and the virtual image position 6 of the surface defect is 11 times the allowable diameter. That is, when the thickness is 1.1 mm, as shown in FIG. 4, the real image position 10 due to the scattering of the inspection light by the internal defect 9 and the internal defect 9 due to the back reflection of the scattered light propagating through the glass substrate G. The difference S ′, which is a distance represented by a deviation from the virtual image position 11, is 0.5 mm smaller than the difference S, 1.1 mm, which is a distance represented by a deviation between the real image position 5 of the surface defect 3 and the virtual image position 6. Thus, the internal defect 9 was identified.

本発明は、薄板ガラス基板、時に要求品質の厳しいプラズマディスプレイパネル用および液晶ディスプレイ用等のフラットパネルディスプレイ用ガラス基板の欠陥自動検査におけるガラス基板欠陥の表裏のおよび内部識別方法として有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as a front and back and internal identification method of glass substrate defects in automatic inspection of thin glass substrates, and glass substrates for flat panel displays such as plasma display panels and liquid crystal displays, which are sometimes required to have strict quality requirements.

ガラス基板の欠陥検査装置の一形態の概略側面図である。It is a schematic side view of one form of the glass substrate defect inspection apparatus. 本発明のガラス基板欠陥の表裏識別方法におけるガラス基板の表面欠陥の検出を説明するための拡大概略側面図である。It is an expansion schematic side view for demonstrating the detection of the surface defect of the glass substrate in the front and back identification method of the glass substrate defect of this invention. 本発明のガラス基板欠陥の表裏識別方法におけるガラス基板の裏面欠陥の検出を説明するための拡大概略側面図である。It is an expansion schematic side view for demonstrating the detection of the back surface defect of the glass substrate in the front and back identification method of the glass substrate defect of this invention. 本発明のガラス基板欠陥の表裏識別方法におけるガラス基板の内部欠陥の検出を説明するための拡大概略側面図である。It is an expansion schematic side view for demonstrating the detection of the internal defect of the glass substrate in the front and back identification method of the glass substrate defect of this invention.

符号の説明Explanation of symbols

G ガラス基板
1 検査光源
2 検出カメラ
3 表面欠陥
4 裏面欠陥
5 (表面欠陥の)実像位置
6 (表面欠陥の)虚像位置
7 照射幅
8 入射角度
9 内部欠陥
10 (内部欠陥の)実像位置
11 (内部欠陥の)虚像位置
G glass substrate 1 inspection light source 2 detection camera 3 surface defect 4 back surface defect 5 (surface defect) real image position 6 (surface defect) virtual image position 7 irradiation width 8 incident angle 9 internal defect 10 (internal defect) real image position 11 ( Virtual image position (internal defect)

Claims (3)

ガラス基板の表裏いずれかに欠陥が存在するかを識別するガラス基板欠陥の表裏識別方法であって、搬送されるガラス基板より間隔を空けて設けた検査光源より照射された検査光をガラス基板に対する入射角度を一定にして照射し、表面欠陥は、ガラス基板より間隔を空けて設けた検出カメラが欠陥による前記検査光の散乱を検知する際に、表面欠陥による検査光の散乱を検出カメラが検知し、次いで前記散乱による散乱光がガラス基板内部を伝播し裏面反射したものを検出カメラが検知することで2回検出され、裏面欠陥は、ガラス基板内部に入射した検査光の裏面欠陥による散乱を検出カメラが検知し1回のみ検出されることによりガラス基板欠陥の表裏識別を行うことを特徴とするガラス基板欠陥の表裏識別方法。 A glass substrate defect front / back identification method for identifying whether a defect exists on either the front or back side of a glass substrate, the inspection light emitted from an inspection light source provided at a distance from the glass substrate being conveyed to the glass substrate Irradiation is performed at a constant incident angle, and the surface camera detects the scattering of the inspection light due to the surface defect when the detection camera provided at a distance from the glass substrate detects the scattering of the inspection light due to the defect. Then, the scattered light caused by the scattering propagates through the inside of the glass substrate and is reflected twice by the detection camera, so that the back surface defect is detected by the back surface defect of the inspection light incident on the inside of the glass substrate. A front and back identification method for a glass substrate defect, wherein the front and back identification of the glass substrate defect is performed by detection by the detection camera and detection only once. 表面欠陥による検査光の散乱を検出カメラが検知し、更に前記散乱による散乱光がガラス基板内部を伝播し裏面反射したものを検出カメラが検知し、表面欠陥が2回検知される際、検出カメラが検知した検査光の散乱による表面欠陥の実像位置と、前記散乱による散乱光がガラス基板内部を伝播し裏面反射したことによる表面欠陥の虚像位置との差Sを表した数1の式における差Sに対して、搬送される基板の搬送方向に直交する検査光の照射幅が2倍以上、10倍以下であることを特徴とする請求項1に記載のガラス基板欠陥の表裏識別方法。
Figure 2006071284
数1の式において、検出カメラのガラス基板面の法線に対する角度をθで表し、ガラス基板の屈折率をnで表し、ガラス基板の厚みをtとする。
When the detection camera detects the scattering of the inspection light due to the surface defect, the detection camera detects that the scattered light due to the scattering propagates through the glass substrate and is reflected from the back surface, and the detection camera detects the surface defect twice. The difference in the equation (1) that represents the difference S between the real image position of the surface defect due to the scattering of the inspection light detected by and the virtual image position of the surface defect due to the scattered light propagated through the glass substrate and reflected from the back surface. 2. The method for identifying the front and back of a glass substrate defect according to claim 1, wherein the irradiation width of the inspection light orthogonal to the transport direction of the substrate to be transported is 2 to 10 times.
Figure 2006071284
In Equation 1, the angle with respect to the normal of the glass substrate surface of the detection camera is represented by θ, the refractive index of the glass substrate is represented by n, and the thickness of the glass substrate is represented by t.
板厚、0.5mm以上、3.0mm以下のガラス基板に対しての、表面欠陥の許容径が20μm以上、300μm以下の間で設定された欠陥検査における請求項1または請求項2に記載のガラス基板欠陥の表裏識別方法において、ガラス基板の法線に対する検査光の入射角度を0度以上、10度以下に、ガラス基板の法線に対する検出カメラの角度を15度以上、45度以下に調整し、請求項2に記載の数1の式に表される表面欠陥の実像位置と虚像位置の差Sが前記許容径の8倍以上となるようにすることで内部欠陥を識別することを特徴とするガラス基板欠陥の識別方法。 3. The defect inspection according to claim 1 or 2 in a defect inspection in which an allowable diameter of a surface defect is set between 20 μm and 300 μm for a glass substrate having a thickness of 0.5 mm or more and 3.0 mm or less. In the front and back identification method for glass substrate defects, the incident angle of inspection light with respect to the normal of the glass substrate is adjusted to 0 ° to 10 °, and the angle of the detection camera with respect to the normal of the glass substrate is adjusted to 15 ° to 45 °. Then, the internal defect is identified by making the difference S between the real image position and the virtual image position of the surface defect represented by the equation (1) of claim 2 equal to or more than eight times the allowable diameter. And a method for identifying a glass substrate defect.
JP2004251196A 2004-08-31 2004-08-31 Inside and outside discrimination method of flaw of glass substrate Pending JP2006071284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251196A JP2006071284A (en) 2004-08-31 2004-08-31 Inside and outside discrimination method of flaw of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251196A JP2006071284A (en) 2004-08-31 2004-08-31 Inside and outside discrimination method of flaw of glass substrate

Publications (1)

Publication Number Publication Date
JP2006071284A true JP2006071284A (en) 2006-03-16

Family

ID=36152097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251196A Pending JP2006071284A (en) 2004-08-31 2004-08-31 Inside and outside discrimination method of flaw of glass substrate

Country Status (1)

Country Link
JP (1) JP2006071284A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191020A (en) * 2007-02-06 2008-08-21 Hitachi High-Technologies Corp Substrate inspection apparatus and substrate inspection method
WO2009031420A1 (en) * 2007-09-04 2009-03-12 Asahi Glass Company, Limited Method and device for detecting micro foreign matter within transparent plate
JP2010162880A (en) * 2008-12-16 2010-07-29 Fujifilm Corp Method for manufacturing laminate
US7796248B2 (en) * 2004-11-24 2010-09-14 Asahi Glass Company, Limited Defect inspection method and apparatus for transparent plate-like members
JP2011203081A (en) * 2010-03-25 2011-10-13 Fujifilm Corp Defect inspection device
JP2013040915A (en) * 2011-08-18 2013-02-28 Samsung Corning Precision Materials Co Ltd Surface defect inspection device and inspection method for glass substrate
JP2013053860A (en) * 2011-09-01 2013-03-21 Toray Ind Inc Flaw defect inspection device and method
WO2015159419A1 (en) * 2014-04-18 2015-10-22 AvanStrate株式会社 Flat panel display glass substrate, method for manufacturing same, and liquid crystal display
CN105572137A (en) * 2015-12-15 2016-05-11 重庆瑞阳科技股份有限公司 Appearance defect test method
WO2019041087A1 (en) * 2017-08-28 2019-03-07 深圳市兴华炜科技有限公司 Transparent object testing method and related product
CN111487191A (en) * 2020-04-26 2020-08-04 山东创策电气科技有限公司 Toughened glass spontaneous explosion hidden danger detection method and device based on image processing
CN111912860A (en) * 2020-08-17 2020-11-10 华辉玻璃(中国)有限公司 Rapid detection system for glass flaws
CN116678895A (en) * 2023-06-13 2023-09-01 深圳市圆周检测技术有限公司 Screen scratch detection method, system and storage medium
CN116978809A (en) * 2023-09-18 2023-10-31 无锡卓海科技股份有限公司 Wafer detection device and detection method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796248B2 (en) * 2004-11-24 2010-09-14 Asahi Glass Company, Limited Defect inspection method and apparatus for transparent plate-like members
JP2008191020A (en) * 2007-02-06 2008-08-21 Hitachi High-Technologies Corp Substrate inspection apparatus and substrate inspection method
WO2009031420A1 (en) * 2007-09-04 2009-03-12 Asahi Glass Company, Limited Method and device for detecting micro foreign matter within transparent plate
JPWO2009031420A1 (en) * 2007-09-04 2010-12-09 旭硝子株式会社 Method and apparatus for detecting minute foreign matter inside transparent plate
JP2010162880A (en) * 2008-12-16 2010-07-29 Fujifilm Corp Method for manufacturing laminate
JP2011203081A (en) * 2010-03-25 2011-10-13 Fujifilm Corp Defect inspection device
JP2013040915A (en) * 2011-08-18 2013-02-28 Samsung Corning Precision Materials Co Ltd Surface defect inspection device and inspection method for glass substrate
JP2013053860A (en) * 2011-09-01 2013-03-21 Toray Ind Inc Flaw defect inspection device and method
WO2015159419A1 (en) * 2014-04-18 2015-10-22 AvanStrate株式会社 Flat panel display glass substrate, method for manufacturing same, and liquid crystal display
CN105572137A (en) * 2015-12-15 2016-05-11 重庆瑞阳科技股份有限公司 Appearance defect test method
WO2019041087A1 (en) * 2017-08-28 2019-03-07 深圳市兴华炜科技有限公司 Transparent object testing method and related product
CN111487191A (en) * 2020-04-26 2020-08-04 山东创策电气科技有限公司 Toughened glass spontaneous explosion hidden danger detection method and device based on image processing
CN111912860A (en) * 2020-08-17 2020-11-10 华辉玻璃(中国)有限公司 Rapid detection system for glass flaws
CN111912860B (en) * 2020-08-17 2023-05-09 华辉玻璃(中国)有限公司 Rapid detection system for glass flaws
CN116678895A (en) * 2023-06-13 2023-09-01 深圳市圆周检测技术有限公司 Screen scratch detection method, system and storage medium
CN116678895B (en) * 2023-06-13 2024-03-08 深圳市圆周检测技术有限公司 Screen scratch detection method, system and storage medium
CN116978809A (en) * 2023-09-18 2023-10-31 无锡卓海科技股份有限公司 Wafer detection device and detection method
CN116978809B (en) * 2023-09-18 2023-12-19 无锡卓海科技股份有限公司 Wafer detection device and detection method

Similar Documents

Publication Publication Date Title
US7420671B2 (en) Defect inspection method and apparatus for transparent plate-like members
WO2010024082A1 (en) Defect inspecting system, and defect inspecting method
JP5583102B2 (en) Glass substrate surface defect inspection apparatus and inspection method
JP5521377B2 (en) Glass plate defect identification method and apparatus
JP5909751B2 (en) Flat glass foreign matter inspection apparatus and inspection method
JP2006071284A (en) Inside and outside discrimination method of flaw of glass substrate
JP2015040835A (en) Defect inspection device and defect inspection method for transparent tabular body
KR20150085224A (en) Apparatus for inspecting a edge of substrate
JP4615532B2 (en) Defect inspection equipment, lighting equipment
JP2005181070A (en) Flaw detecting method of transparent plate-shaped body and flaw detector therefor
JP2013246059A (en) Defect inspection apparatus and defect inspection method
TW201224443A (en) Device and method for detecting bubble in transparent tube
JP2004309287A (en) Defect detection device and defect detection method
JP2008039444A (en) Method and apparatus for inspecting foreign matter
JP2001124538A (en) Method and device for detecting defect in surface of object
JP2007278784A (en) Defect detection method and device of transparent body
TWI819285B (en) Inspection device of transmission optical system
JP2002014058A (en) Method and apparatus for checking
CN111007077A (en) Device for detecting foreign matters on upper surface of ultrathin transparent substrate
KR101854686B1 (en) Apparatus and method of testing pattern in light guide plate
KR101103347B1 (en) Detection apparatus for particle on the glass
JP2011043415A (en) Detection method and device of deposit on glass plate surface
JP2008122130A (en) Flaw detector of film and flaw detection method of film
JP2001188048A (en) Inspection method for pinhole
JPH0989793A (en) Foreign matter inspection apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060510