JPWO2009031420A1 - Method and apparatus for detecting minute foreign matter inside transparent plate - Google Patents

Method and apparatus for detecting minute foreign matter inside transparent plate Download PDF

Info

Publication number
JPWO2009031420A1
JPWO2009031420A1 JP2009531186A JP2009531186A JPWO2009031420A1 JP WO2009031420 A1 JPWO2009031420 A1 JP WO2009031420A1 JP 2009531186 A JP2009531186 A JP 2009531186A JP 2009531186 A JP2009531186 A JP 2009531186A JP WO2009031420 A1 JPWO2009031420 A1 JP WO2009031420A1
Authority
JP
Japan
Prior art keywords
light beam
plate glass
foreign matter
minute foreign
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009531186A
Other languages
Japanese (ja)
Inventor
仁昭 大音
仁昭 大音
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2009031420A1 publication Critical patent/JPWO2009031420A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N2021/8905Directional selective optics, e.g. slits, spatial filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • G01N2021/8967Discriminating defects on opposite sides or at different depths of sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

透明板体内部の遮光性の微小異物を安定的に検出し、かつ微小異物の深さの情報を得る。均一な屈折率を有する一定厚さの透明板体1の内部に存在する微小異物4を照射した光ビーム2の散乱等により生じる輝点E、Fの測定により検出する方法であって、光ビーム2を透明板体の厚さ方向に対して所定の傾斜角度で透明板体内部に進入させて、進入した内部光ビームIと該内部光ビームIが透明板体の表面で反射した内部光ビームIIとを透明板体内部に形成し、前記光ビームの進入角度を変えることなく透明板体と光ビーム2とを相対的に移動(G方向)させて、同一微小異物4が前記内部光ビームIにより照射されて生じた輝点Eと前記内部光ビームIIにより照射されて生じた輝点Fを透明板体の厚さ方向からそれぞれ測定して前記微小異物の透明板体中における位置を判定することを特徴とする透明板体内部の微小異物を検出する。Light-blocking minute foreign matter inside the transparent plate is stably detected, and information on the depth of the fine foreign matter is obtained. A method of detecting by measuring bright spots E and F caused by scattering of a light beam 2 irradiated with a minute foreign substance 4 existing inside a transparent plate 1 having a uniform refractive index and a constant thickness. 2 is made to enter the inside of the transparent plate at a predetermined inclination angle with respect to the thickness direction of the transparent plate, and the internal light beam I that has entered and the internal light beam reflected by the surface of the transparent plate are reflected. II is formed inside the transparent plate, and the transparent plate and the light beam 2 are relatively moved (in the G direction) without changing the light beam entrance angle, so that the same minute foreign matter 4 is moved into the internal light beam. A bright spot E generated by irradiation with I and a bright spot F generated by irradiation with the internal light beam II are respectively measured from the thickness direction of the transparent plate to determine the position of the minute foreign matter in the transparent plate. Detects minute foreign matter inside the transparent plate To do.

Description

本発明は、板ガラス等の透明板体の内部の微小異物を検出する方法及びその装置に関し、より詳細には板ガラス内部の硫化ニッケル等の微小異物を検出する方法及びその装置に関する。また、本発明は、板ガラス内部の微小異物を検出する方法に基づく工程を含む板ガラスの製造方法に関する。   The present invention relates to a method and apparatus for detecting minute foreign matter inside a transparent plate such as plate glass, and more particularly to a method and apparatus for detecting minute foreign matter such as nickel sulfide inside a plate glass. Moreover, this invention relates to the manufacturing method of plate glass including the process based on the method of detecting the micro foreign material inside plate glass.

ガラス製品内部の微小異物は、主に光を透過する透光性の泡と光を遮光する未溶解の原料やガラス中に混入した粒子等であり、ガラス製品の欠点となって歩留まりを低下させる。ガラスを加熱後に急令することによって表面に圧縮応力を導入する、いわゆる物理強化法による強化ガラス製品にあっては、ニッケルと硫黄が結合した硫化ニッケル(以下「NiS」と呼ぶ)がある場合に、特に問題となる。   Fine foreign substances inside glass products are mainly translucent bubbles that transmit light, undissolved raw materials that block light, particles mixed in glass, etc., which become defects of glass products and reduce yield. . In a tempered glass product by so-called physical strengthening method that introduces compressive stress to the surface by prompting after heating the glass, there is nickel sulfide (hereinafter referred to as “NiS”) in which nickel and sulfur are combined. Especially problematic.

強化ガラス製品のNiSの問題については、1960年代からの研究も散見され、例えば特許文献1に開示がある。NiSは、ガラス中で受ける温度履歴によってα−NiSからβ−NiSに構造相転移する。このときβ−NiSの体積が大きくなるため、ガラス内部のようにNiS周辺が拘束されている場合に、その部分で引っ張り応力を発生する原因となる。他方、物理強化法による強化ガラス製品内部には、ガラス製品全体での残留応力が釣り合うために、表面に残留する圧縮応力に対して、内部では引っ張り応力が残留している。この内部の引っ張り応力層に、大きさが0.05mm程度のNiSが存在し、強化ガラス製品を建物等に設置後に比較的長い年月を経てα−NiSからβ−NiSに構造相転移して引っ張り性の内部応力が発生すると、そこから亀裂が進展して強化ガラス製品が突然破壊する。これがいわゆる自然破損と呼ばれる現象である。このことは逆に、自然破損は、NiSが引っ張り応力層ではなく表面の圧縮応力層にある場合には発生しないことを意味する。   Regarding the problem of NiS in tempered glass products, research from the 1960s has been scattered, for example, disclosed in Patent Document 1. NiS undergoes a structural phase transition from α-NiS to β-NiS depending on the temperature history received in the glass. At this time, since the volume of β-NiS becomes large, when the periphery of NiS is constrained as in the inside of glass, it becomes a cause of generating tensile stress in that portion. On the other hand, since the residual stress in the entire glass product is balanced inside the tempered glass product obtained by the physical strengthening method, a tensile stress remains inside the compressive stress remaining on the surface. NiS having a size of about 0.05 mm exists in the internal tensile stress layer, and a structural phase transition has occurred from α-NiS to β-NiS after a relatively long period of time after the tempered glass product is installed in a building or the like. When tensile internal stress occurs, cracks develop from there and the tempered glass product breaks suddenly. This is a phenomenon called so-called natural damage. This conversely means that spontaneous failure does not occur when NiS is in the surface compressive stress layer rather than the tensile stress layer.

この強化ガラス製品の自然破損を防止するために、強化ガラス製品をバッチ炉に入れて280℃程度に加熱することによって、炉内でα−NiSからβ−NiSに強制的に構造相転移させてNiSが混入したガラスを除く、いわゆるヒートソーク処理(Heat Soak Test、あるいはHSTと呼ばれている)が採用されている。   In order to prevent natural breakage of the tempered glass product, the tempered glass product is placed in a batch furnace and heated to about 280 ° C., thereby forcibly causing a structural phase transition from α-NiS to β-NiS in the furnace. A so-called heat soak process (referred to as heat soak test or HST) excluding glass mixed with NiS is employed.

しかしながら、このヒートソーク処理によると、強化ガラス製品製造後に再度ガラス製品を加熱する必要があり、製造コストが増加する問題がある。   However, according to this heat soak treatment, it is necessary to heat the glass product again after manufacturing the tempered glass product, which increases the manufacturing cost.

このような状況において、物理強化処理前のガラス製品の段階で、ガラス内部のNiSやその他の微小異物の存在を検知できる方法や装置が、特許文献2及び3等に提案されている。特許文献2には、特にNiSが対象ではないがレーザー光をガラス面に対して垂直な方向に入射させ、ガラスの上面及び下面、場合によってガラス内部から斜め方向に出射する反射光を、カメラにより撮像することによって微小異物を検出し、その深さを測定する方法が開示されている。特許文献3は、レーザー光をガラス製品の表面に対して一定の角度で入射させ、表面と裏面の反射光をレーザー光の正反射光の位置のカメラにより撮像することによって、NiS等の微小異物を検出し、その深さを測定する方法が開示されている。   In such a situation, Patent Documents 2 and 3 propose a method and an apparatus that can detect the presence of NiS and other fine foreign matters inside the glass at the stage of the glass product before the physical strengthening treatment. In Patent Document 2, although NiS is not a target, laser light is incident in a direction perpendicular to the glass surface, and reflected light emitted in an oblique direction from the upper and lower surfaces of the glass, and sometimes inside the glass, is obtained by a camera. A method of detecting a minute foreign object by imaging and measuring its depth is disclosed. In Patent Document 3, a laser beam is incident on the surface of a glass product at a certain angle, and reflected light on the front and back surfaces is imaged by a camera at the position of the regular reflection light of the laser beam, whereby a fine foreign matter such as NiS is obtained. Is disclosed, and a method for measuring the depth thereof is disclosed.

特公昭47−002113号公報Japanese Patent Publication No. 47-002113 特表平06−510856号公報Japanese National Patent Publication No. 06-510856 特開平08−082602号公報Japanese Patent Laid-Open No. 08-082602

特許文献2及び3は、カメラによる反射像の撮像を斜めから行うので、カメラの視野が広くなり、撮像するガラス表面の透過光及び反射光の映り込みが起こり、検出を不安定にする問題がある。また、斜めから撮像するので、正方画素が歪んで解像度が劣化する問題がある。さらに、これによって、楕円形の微小異物等縦横比の異なる微小異物に対しては照射方向によって検出感度が変化する問題がある。   In Patent Documents 2 and 3, since the reflected image is captured by the camera from an oblique direction, the field of view of the camera is widened, reflection of reflected light and reflected light on the glass surface to be captured occurs, and the detection becomes unstable. is there. Further, since imaging is performed from an oblique direction, there is a problem that the square pixels are distorted and the resolution is deteriorated. In addition, this causes a problem that the detection sensitivity varies depending on the irradiation direction for minute foreign matters having different aspect ratios, such as elliptical fine foreign matters.

特許文献3は、レーザー光の正反射光の位置にカメラを設置する必要があるため、ガラス製品のそりや表面性状の違いにより、正反射光の方向に大きな変化がある場合には、微小異物を見逃したり、微小異物が存在する深さを正確に測定できない問題がある。また、レーザー光の正反射光を直接カメラで取り込むのはカメラの損傷のおそれ等の面であまり好ましくない。   In Patent Document 3, since it is necessary to install a camera at the position of the specularly reflected light of the laser beam, if there is a large change in the direction of the specularly reflected light due to the difference in warpage or surface properties of the glass product, There is a problem in that it is difficult to accurately measure the depth at which a minute foreign object is present. In addition, it is not preferable to capture the specularly reflected light of the laser beam directly with the camera in terms of the possibility of damage to the camera.

また、微小異物の検出にあたっては、微小異物が透光性の泡等か、遮光性のNiSを含むものかを区別する必要がある。しかしながら、特許文献2及び3では、遮光性と透光性の微小異物の区別ができない問題がある。   Further, when detecting a minute foreign matter, it is necessary to distinguish whether the minute foreign matter contains a light-transmitting bubble or the like or contains light-shielding NiS. However, Patent Documents 2 and 3 have a problem that it is impossible to distinguish between a light-shielding property and a light-transmitting minute foreign matter.

さらに、前述のように自然破損はNiSが強化ガラス製品の引っ張り応力層にある場合に発生するものであり、ガラス製品表面近くの圧縮応力層にある場合には微小異物として検出する必要はない。このため、NiSの検出にあたって、存在する深さの情報が重要である。   Furthermore, as described above, the natural breakage occurs when NiS is in the tensile stress layer of the tempered glass product, and when it is in the compressive stress layer near the surface of the glass product, it is not necessary to detect it as a fine foreign substance. For this reason, the existing depth information is important in detecting NiS.

さらにまた、微小異物の検出にあたって、微小異物の形状や色の情報を得るために利用するカメラの解像度は高い程よいが、高解像度のカメラは高価で、利用する画像データの容量が大きくなり、これによって対象物を走査する速度も遅くなる問題がある。   Furthermore, when detecting a minute foreign object, the higher the resolution of the camera used to obtain information on the shape and color of the minute foreign object, the better. However, a high-resolution camera is expensive and uses a large amount of image data. Therefore, there is a problem that the scanning speed of the object is also slowed down.

本発明は、以上の問題点に鑑みてなされたもので、板ガラス等の透明板体の内部の微小異物を検出するにあたって、外乱に左右されず安定的に遮光性と透光性の微小異物を識別することが可能な微小異物を検出する方法及びその装置の提供を目的とする。また、NiSを含む遮光性の微小異物が存在する深さの情報を得ることが可能な微小異物を検出する方法及びその装置の提供を目的とする。さらに、以上の方法及びその装置を、微小異物の形状認識が困難な低い解像度のカメラであっても実現可能とする。さらにまた、強化ガラス製品を製造するための物理強化処理前の素板ガラスとして、NiSを含む遮光性の微小異物のない板ガラスを製造する方法の提供も目的とする。   The present invention has been made in view of the above problems, and in detecting minute foreign matter inside a transparent plate such as plate glass, the light-shielding and translucent minute foreign matter can be stably detected regardless of disturbance. It is an object of the present invention to provide a method and an apparatus for detecting minute foreign matters that can be identified. It is another object of the present invention to provide a method and an apparatus for detecting a minute foreign substance capable of obtaining information on the depth at which the light-shielding minute foreign substance containing NiS is present. Furthermore, the above method and apparatus can be realized even with a low-resolution camera in which it is difficult to recognize the shape of a minute foreign object. Furthermore, another object of the present invention is to provide a method for producing a plate glass containing NiS and having no light-shielding minute foreign matter as a raw plate glass before physical strengthening treatment for producing a tempered glass product.

本発明は、板ガラス等の透明板体の内部の微小異物、特に板ガラス内部のNiS等の微小異物、を検出し、その微小異物が存在する深さの情報を得る、微小異物の検出方法及びその装置にかかる主に下記発明である。さらに、本発明は、検出された微小異物が存在する板ガラスを除去することにより、そのような微小異物を含まない板ガラスを製造する方法にかかる主に下記発明である。   The present invention detects a minute foreign matter inside a transparent plate body such as a plate glass, particularly a minute foreign matter such as NiS inside a plate glass, and obtains information on the depth at which the minute foreign matter exists, and a method for detecting the minute foreign matter The invention is mainly related to the following invention. Furthermore, the present invention is mainly the following invention relating to a method for producing a plate glass that does not contain such a fine foreign material by removing the plate glass on which the detected fine foreign material exists.

(1)均一な屈折率を有する一定厚さの透明板体の内部に存在する微小異物を照射した光ビームの散乱等により生じる輝点の検知により検出する方法であって、光ビームを透明板体の厚さ方向に対して所定の傾斜角度で透明板体内部に進入させて、進入した内部光ビームIと該内部光ビームIが透明板体の表面で反射した内部光ビームIIとを透明板体内部に形成し、前記光ビームの進入角度を変えることなく透明板体と光ビームとを相対的に移動させて、同一微小異物が前記内部光ビームIにより照射されて生じた輝点と前記内部光ビームIIにより照射されて生じた輝点とを透明板体の厚さ方向からそれぞれ検知して前記微小異物の透明板体中における位置を判定することを特徴とする透明板体内部の微小異物を検出する方法。   (1) A method of detecting by detecting a bright spot caused by scattering of a light beam irradiated with a minute foreign substance existing inside a transparent plate having a uniform refractive index and having a constant thickness, wherein the light beam is transparent A transparent plate body is made to enter the transparent plate body at a predetermined inclination angle with respect to the thickness direction of the body, and the internal light beam I and the internal light beam II reflected by the surface of the transparent plate body are transparent. A bright spot formed by irradiating the same minute foreign matter with the internal light beam I, formed inside the plate body, relatively moving the transparent plate body and the light beam without changing the light beam entrance angle; A bright spot generated by irradiation with the internal light beam II is detected from the thickness direction of the transparent plate, and the position of the minute foreign matter in the transparent plate is determined. A method to detect minute foreign matter.

(2)板ガラスの内部に存在する微小異物を照射した光ビームの散乱等により生じる輝点の測定により検出する方法であって、光ビームを板ガラスの厚さ方向に対して所定の傾斜角度で板ガラス内部に進入させて、進入した内部光ビームIと該内部光ビームIが板ガラス表面で反射した内部光ビームIIとを板ガラス内部に形成する照射手段と、板ガラス表面から該表面に対して垂直方向に出射された光を、板ガラスの光ビーム照射表面側または非照射表面側において撮像する撮像手段と、前記撮像手段で撮像した画像に基づいて板ガラス内部の微小異物の位置を判定する画像処理手段と、を備えた検出装置を用い、光ビームの進入角度を変えることなく板ガラスの光ビーム照射位置を移動させて、同一微小異物が前記内部光ビームIにより照射されて生じた輝点と前記内部光ビームIIにより照射されて生じた輝点とを撮像手段で撮像し、前記撮像手段で撮像された画像に基づいて画像処理手段により前記微小異物の板ガラス中における位置を判定する、ことを特徴とする板ガラス内部の微小異物を検出する方法。   (2) A method of detecting by measuring a bright spot caused by scattering of a light beam irradiated with a minute foreign substance existing inside the plate glass, wherein the light beam is at a predetermined inclination angle with respect to the thickness direction of the plate glass. An irradiating means for forming an internal light beam I that has entered the interior and an internal light beam II reflected by the surface of the plate glass inside the plate glass; and a vertical direction from the plate glass surface to the surface. An imaging unit that images the emitted light on the light beam irradiation surface side or the non-irradiation surface side of the plate glass, an image processing unit that determines a position of a minute foreign substance inside the plate glass based on an image captured by the imaging unit, The same minute foreign matter is illuminated by the internal light beam I by moving the light beam irradiation position of the plate glass without changing the light beam entrance angle. The bright spot generated and the bright spot generated by irradiating with the internal light beam II are imaged by the imaging means, and the image processing means based on the image taken by the imaging means in the glass plate of the minute foreign matter A method for detecting a minute foreign substance inside a plate glass, wherein the position is determined.

(3)板ガラスの内部に存在する微小異物を照射した光ビームの散乱等により生じる輝点の検知により検出する方法であって、第1の光ビームを板ガラスの厚さ方向に対して所定の傾斜角度で板ガラス内部に進入させて、進入した内部光ビームIと該内部光ビームIが板ガラス表面で反射した内部光ビームIIとを板ガラス内部に形成する第1の照射手段と、第2の光ビームを板ガラスの厚さ方向に対して前記第1の光ビームの傾斜角度と反対方向から板ガラス内部に進入させて、進入した内部光ビームI’と該内部光ビームI’が板ガラス表面で反射した内部光ビームII’とを板ガラス内部に形成する第2の照射手段と、板ガラス表面から該表面に対して垂直方向に出射された光を、板ガラスの光ビーム照射表面側または非照射表面側において撮像する撮像手段と、前記撮像手段で撮像した画像に基づいて、板ガラス内部の微小異物と板ガラス表面の埃等の異物とを判別し、板ガラス内部の微小異物の位置を判定する画像処理手段と、を備えた検出装置を用い、前記第1と第2の光ビームの進入角度を変えることなく板ガラスの光ビーム照射位置を移動させて、同一異物が前記内部光ビームIとI’により照射されて生じた輝点と前記内部光ビームIIとII’により照射されて生じた輝点とを撮像手段で撮像し、前記撮像手段で撮像された画像に基づいて画像処理手段により、前記第1の光ビームと第2の光ビームとによって生じた同一異物による輝点の画像の対称性によって板ガラス表面の埃等の異物を判別し、前記微小異物の板ガラス中における位置を判定する、ことを特徴とする板ガラス内部の微小異物を検出する方法。   (3) A method of detecting by detecting a bright spot generated by scattering of a light beam irradiated with a minute foreign substance existing inside a plate glass, wherein the first light beam is inclined at a predetermined inclination with respect to the thickness direction of the plate glass. A first irradiating means for entering the inside of the plate glass at an angle, and forming an internal light beam I that has entered and an internal light beam II reflected by the surface of the plate glass inside the plate glass; and a second light beam To the inside of the glass sheet from the direction opposite to the inclination angle of the first light beam with respect to the thickness direction of the glass sheet, and the entered internal light beam I ′ and the internal light beam I ′ reflected by the surface of the glass sheet A second irradiation means for forming a light beam II ′ inside the plate glass, and light emitted from the plate glass surface in a direction perpendicular to the surface, on the light beam irradiation surface side or non-irradiation surface side of the plate glass Based on the imaging means for imaging, and based on the image taken by the imaging means, the image processing means for discriminating between the minute foreign matter inside the plate glass and the foreign matter such as dust on the surface of the plate glass, and determining the position of the minute foreign matter inside the plate glass; The same foreign matter is irradiated by the internal light beams I and I ′ by moving the light beam irradiation position of the plate glass without changing the entrance angles of the first and second light beams. The generated bright spot and the bright spot generated by irradiation with the internal light beams II and II ′ are imaged by the imaging means, and the first light is obtained by the image processing means based on the image captured by the imaging means. A foreign matter such as dust on the surface of the glass plate is discriminated based on the symmetry of the image of the bright spot by the same foreign material generated by the beam and the second light beam, and the position of the minute foreign material in the glass plate is determined. Board A method to detect minute foreign matter inside glass.

(4)板ガラス内部の微小異物を検出する装置であって、光ビームを板ガラスの厚さ方向に対して所定の傾斜角度で板ガラス内部に進入させて、進入した内部光ビームIと該内部光ビームIが板ガラス表面で反射した内部光ビームIIとを板ガラス内部に形成する照射装置と、前記光ビーム照射装置を板ガラスに対して板ガラスの平面に平行な方向に相対的に移動させる移動手段と、板ガラス表面から該表面に対して垂直方向に出射された光を、板ガラスの光ビーム照射表面側または非照射表面側において撮像する撮像装置であって、同一微小異物が前記内部光ビームIにより照射されて生じた輝点と前記内部光ビームIIにより照射されて生じた輝点とを撮像する撮像装置と、前記撮像装置に接続され、撮像された画像に基づいて微小異物を判定する画像処理手段と、を有する装置。
(5)板ガラス内部の微小異物を検出する装置であって、第1の光ビームを板ガラスの厚さ方向に対して所定の傾斜角度で板ガラス内部に進入させて、進入した内部光ビームIと該内部光ビームIが板ガラス表面で反射した内部光ビームIIとを板ガラス内部に形成する第1の照射装置と、第2の光ビームを板ガラスの厚さ方向に対して前記第1の光ビームの傾斜角度と反対方向から板ガラス内部に進入させて、進入した内部光ビームI’と該内部光ビームI’が板ガラス表面で反射した内部光ビームII’とを板ガラス内部に形成する第2の照射装置と、前記第1と第2の照射装置を板ガラスに対して板ガラスの平面に平行な方向に相対的に移動させる移動手段と、板ガラス表面から該表面に対して垂直方向に出射された光を、板ガラスの光ビーム照射表面側または非照射表面側において撮像する撮像装置であって、同一異物が前記内部光ビームIとI’により照射されて生じた輝点と前記内部光ビームIIとII’により照射されて生じた輝点とを撮像する撮像装置と、前記撮像装置に接続され、撮像された画像に基づいて微小異物を判定する画像処理手段と、を有する装置。
(4) A device for detecting minute foreign matter inside the plate glass, which makes the light beam enter the plate glass at a predetermined inclination angle with respect to the thickness direction of the plate glass, and enters the internal light beam I and the internal light beam. An irradiation device for forming an internal light beam II reflected on the surface of the plate glass inside the plate glass, a moving means for moving the light beam irradiation device relative to the plate glass in a direction parallel to the plane of the plate glass, and a plate glass An imaging apparatus for imaging light emitted from a surface in a direction perpendicular to the surface on a light beam irradiation surface side or a non-irradiation surface side of a plate glass, and the same minute foreign matter is irradiated by the internal light beam I An imaging device that captures the generated bright spot and the bright spot generated by irradiation with the internal light beam II, and a minute foreign object is determined based on the captured image connected to the imaging device An image processing means.
(5) A device for detecting minute foreign matter inside the glass sheet, the first light beam entering the inside of the glass sheet at a predetermined inclination angle with respect to the thickness direction of the glass sheet, and the entering internal light beam I and the A first irradiating device that forms an internal light beam II reflected by the surface of the glass sheet on the surface of the glass sheet, and a tilt of the first light beam with respect to the thickness direction of the glass sheet. A second irradiating device that enters the inside of the glass sheet from a direction opposite to the angle, and forms an internal light beam I ′ that has entered and an internal light beam II ′ that is reflected by the surface of the glass sheet inside the glass sheet; A moving means for moving the first and second irradiation devices relative to the plate glass in a direction parallel to the plane of the plate glass, and light emitted from the plate glass surface in a direction perpendicular to the surface. Light beam illumination An imaging device for imaging on a light emitting surface side or a non-irradiated surface side, wherein the same foreign matter is irradiated by the internal light beams I and I ′ and is generated by being irradiated by the internal light beams II and II ′ An image capturing apparatus that captures a bright spot, and an image processing unit that is connected to the image capturing apparatus and that determines a minute foreign object based on the captured image.

(6)上記に記載の板ガラス内部の微小異物を検出する方法に基づく微小異物の検出工程と、該検出工程によって検出された微小異物を含む板ガラスを除去すべきか否かを判別する判別工程と、該判別工程の判別結果に基づき微小異物を含む板ガラスを除去する除去工程と、を含む板ガラスの製造方法。   (6) a step of detecting a minute foreign matter based on the method for detecting minute foreign matter inside the plate glass described above, and a step of determining whether or not to remove the plate glass containing the minute foreign matter detected by the detection step; And a removing step of removing the plate glass containing minute foreign substances based on the discrimination result of the discrimination step.

(7)連続した板ガラスを製造する工程と、上記に記載の板ガラス内部の微小異物を検出する方法に基づき連続した板ガラス中の微小異物を検出する検出工程と、該検出工程によって検出された微小異物を含む板ガラスを除去すべきか否かを判別する判別工程と、連続した板ガラスを所定の大きさに切断する切断工程と、前記判別工程の判別結果に基づき除去すべきとされた微小異物含有切断板ガラスを除去する除去工程と、を含む板ガラスの製造方法。   (7) A step of manufacturing a continuous plate glass, a detection step of detecting a minute foreign matter in the continuous plate glass based on the method for detecting a minute foreign matter inside the plate glass described above, and a minute foreign matter detected by the detection step Discriminating step for discriminating whether or not to remove the plate glass containing, a cutting step for cutting the continuous plate glass into a predetermined size, and a cut plate glass containing minute foreign matter that should be removed based on the discrimination result of the discriminating step And a removing step for removing the glass.

本発明によれば、透明板体内部の微小異物の位置を外乱に左右されず安定的に検出することができる。また、その微小異物が遮光性であっても透光性であっても検出でき、またそれらの種類の判定も可能である。特に、板ガラス内部のNiSを含む遮光性微小異物が存在する深さの情報を得ることが可能であり、また、それを泡等の他の種類の微小異物と区別することも可能である。これにより、板ガラス表面から問題を生じるおそれのある深さに存在するNiSを含む微小異物を識別し、そのような微小異物を含む板ガラスを強化板ガラス製造工程から除去して、将来自然破損が生じるおそれのある強化板ガラスの製造を抑制することができる。さらに、以上の微小異物の検出を、微小異物の形状認識を必要としない低解像度のカメラを利用して実現することも可能となる。   According to the present invention, the position of the minute foreign matter inside the transparent plate can be detected stably without being influenced by disturbance. Moreover, even if the minute foreign matter is light-shielding or translucent, it can be detected, and the type of these can be determined. In particular, it is possible to obtain information on the depth at which the light-shielding minute foreign matter containing NiS inside the plate glass is present, and it is also possible to distinguish it from other kinds of fine foreign matters such as bubbles. As a result, fine foreign matter containing NiS existing at a depth that may cause a problem from the surface of the plate glass is identified, and the plate glass containing such fine foreign matter is removed from the tempered plate glass manufacturing process, and natural damage may occur in the future. It is possible to suppress the production of tempered flat glass. Further, the detection of the above-mentioned minute foreign matter can be realized using a low-resolution camera that does not require shape recognition of the fine foreign matter.

本発明に係る板ガラス内部の微小異物を検出する方法の基本的な考え方を説明する図。[1−1]と[1−2]は、板ガラスの模式的な断面図であり、[1−1]は微小異物が内部光ビームIに接した時点、[1−2]は微小異物が内部光ビームIIに接した時点の断面図。[1−3]と[1−4]は、板ガラスの模式的な平面図であり、[1−3]は[1−1]に示した時点、[1−4]は[1−2]に示した時点の平面図。The figure explaining the basic view of the method of detecting the micro foreign material inside the plate glass concerning the present invention. [1-1] and [1-2] are schematic cross-sectional views of the plate glass, [1-1] is when the minute foreign matter comes into contact with the internal light beam I, and [1-2] is the minute foreign matter. Sectional drawing at the time of contact with the internal light beam II. [1-3] and [1-4] are schematic plan views of the plate glass, [1-3] is the time indicated in [1-1], and [1-4] is [1-2]. FIG. 微小異物が遮光性の球である場合の図1における輝点(E、F)の詳細を示す模式図。The schematic diagram which shows the detail of the luminescent point (E, F) in FIG. 1 in case a micro foreign material is a light-shielding sphere. 本発明に係る板ガラスの製造方法を説明する図。The figure explaining the manufacturing method of the plate glass which concerns on this invention. 本発明に係る搬送中の板ガラス内部の微小異物を検出する方法および装置を説明する図。The figure explaining the method and apparatus which detect the micro foreign material inside the plate glass in conveyance which concerns on this invention. 本発明に係る搬送中の板ガラス内部の微小異物を検出する別の方法および装置を説明する図。The figure explaining another method and apparatus which detect the micro foreign material inside the plate glass in conveyance which concerns on this invention. 本発明に係る搬送中の板ガラス内部の微小異物を検出する別の方法および装置を説明する図。The figure explaining another method and apparatus which detect the micro foreign material inside the plate glass in conveyance which concerns on this invention. 本発明に係る搬送中の板ガラス内部の微小異物を検出する別の方法および装置を説明する図。The figure explaining another method and apparatus which detect the micro foreign material inside the plate glass in conveyance which concerns on this invention. 本発明に係る板ガラスの別の製造方法を説明する図。The figure explaining another manufacturing method of the plate glass which concerns on this invention. 本発明に係る板ガラス内部の微小異物を検出する別の装置の実施形態を説明する図。The figure explaining embodiment of another apparatus which detects the micro foreign material inside the plate glass which concerns on this invention. 本発明に係る搬送中の板ガラス内部の微小異物を検出する別の方法および装置を説明する図。The figure explaining another method and apparatus which detect the micro foreign material inside the plate glass in conveyance which concerns on this invention. 本発明に係る板ガラス内部の微小異物を検出する方法によって撮像した画像を示す図(微小異物がNiSで内部光ビームI上にある場合)。The figure which shows the image imaged by the method of detecting the micro foreign material inside the plate glass concerning this invention (when the micro foreign material exists on the internal light beam I with NiS). 本発明に係る板ガラス内部の微小異物を検出する方法によって撮像した画像を示す図(微小異物がNiSで内部光ビームII上にある場合)。The figure which shows the image imaged by the method which detects the micro foreign material inside the plate glass concerning this invention (when a micro foreign material exists on the internal light beam II with NiS). 本発明に係る板ガラス内部の微小異物を検出する方法によって撮像した画像を示す図(微小異物が泡で内部光ビームI上にある場合)。The figure which shows the image imaged by the method of detecting the micro foreign material inside the plate glass concerning the present invention (when the micro foreign material is a bubble on the internal light beam I). 本発明に係る板ガラス内部の微小異物を検出する方法によって撮像した画像を示す図(微小異物が泡で内部光ビームII上にある場合)。The figure which shows the image imaged by the method of detecting the micro foreign material inside the plate glass which concerns on this invention (when a micro foreign material exists on the internal light beam II with a bubble).

符号の説明Explanation of symbols

1: 板ガラス
2: 線状レーザービーム
3: 撮像手段
4: 微小異物
5: 照射手段
6: 画像処理手段
7: 第2の線状レーザービーム
8: 第2の照射手段
10: 照射表面
11: 非照射表面
12: 板ガラスの移動手段(ローラー)
13: 移動手段
14: テーブル
: 図1の[1−1]におけるA−B’間の距離、または[1−2]におけるB’−C間の距離
: 図1の[1−1]におけるA−E’間の距離、または[1−2]におけるF’−C間の距離
: 板ガラスの厚さ
: 微小異物の照射表面からの距離
x: 板ガラスの表面に平行な面の2方向の内の一つ(矩形の場合には直交する2辺のそれぞれに平行な方向で、連続する板ガラスでは長さ方向)
y: 板ガラスの表面に平行な面の2方向の内の一つ(矩形の場合には直交する2辺のそれぞれに平行な方向で、連続する板ガラスでは幅方向)
z: 板ガラスの板厚方向
A: 照射表面上に形成された照射域からの散乱光で、y方向に延びた輝線
B: 非照射表面を内部側から照射して形成された照射域からの散乱光で、y方向に延びた輝線
B’: 輝線(B)のz方向の光が照射表面と交わる線
C: 照射表面を内部側から照射して形成された照射域からの散乱光で、y方向に延びた輝線
E: 微小異物が内部光ビームIで照射されて生じる散乱光等による輝点
E’: 輝点(E)のz方向の光が照射表面と交わる点
F: 微小異物が内部光ビームIIで照射されて生じる散乱光等による輝点
F’: 輝点(F)のz方向の光が照射表面と交わる点
G: 板ガラスの移動(搬送)方向
H: 移動手段による移動方向
I: 内部光ビームI
II: 内部光ビームII
1: plate glass 2: linear laser beam 3: imaging means 4: minute foreign matter 5: irradiation means 6: image processing means 7: second linear laser beam 8: second irradiation means 10: irradiation surface 11: non-irradiation Surface 12: Plate glass moving means (roller)
13: Moving means 14: Table a 1 : Distance between AB ′ in [1-1] in FIG. 1 or Distance between B ′ and C in [1-2] a 2 : [1- in FIG. 1], the distance between A and E 'in [1], or the distance between F' and C in [1-2], d 1 : the thickness d 2 of the plate glass, and the distance x from the irradiation surface of the minute foreign matter, x: parallel to the surface of the plate glass One of the two directions of the flat surface (in the case of a rectangle, the direction is parallel to each of two orthogonal sides, and in the case of a continuous plate glass, the length direction)
y: One of the two directions parallel to the surface of the plate glass (in the case of a rectangle, the direction is parallel to each of two orthogonal sides, and in the case of a continuous plate glass, the width direction)
z: Plate glass thickness direction A: Scattered light from the irradiated area formed on the irradiated surface, bright line extending in the y direction B: Scattered from the irradiated area formed by irradiating the non-irradiated surface from the inside side Bright line B ′ extending in the y direction with light: Line in which the z-direction light of the bright line (B) intersects the irradiation surface C: Scattered light from the irradiation region formed by irradiating the irradiation surface from the inside, y Bright line E extending in the direction: Bright spot E ′ due to scattered light or the like generated when the minute foreign matter is irradiated with the internal light beam I: Point F where the z-direction light of the bright spot (E) intersects the irradiated surface F: The minute foreign matter is inside Bright point F ′ due to scattered light or the like generated by irradiation with the light beam II: Point where the light in the z direction of the bright point (F) intersects the irradiation surface G: Movement (conveyance) direction of the plate glass H: Movement direction I by the moving means : Internal light beam I
II: Internal light beam II

本発明における透明板体は、均一な屈折率を有する透明材料からなり、所定厚さを有する板状のものである限り、板ガラスに限定されない。透明である限り、金属酸化物やセラミックス等の無機質材料や有機高分子材料等のプラスチック材料からなる透明板体であってもよい。   The transparent plate in the present invention is not limited to plate glass as long as it is made of a transparent material having a uniform refractive index and is a plate having a predetermined thickness. As long as it is transparent, it may be a transparent plate made of an inorganic material such as a metal oxide or ceramics or a plastic material such as an organic polymer material.

透明板体内部の微小異物は遮光性固体物質や透明板体の材料とは屈折率の異なる透光性固体物質からなっていてもよく、気体状物質や液体状物質からなる透明板体の材料とは屈折率の異なる透光性物質からなっていてもよい。さらに、物質が存在しない部分であってもよい。要するに、微小異物は透明板体の材料とは光学的に異質なものからなり、透明板体内部で光を散乱、反射、屈折するものであればよい。微小異物の大きさは1mm以下、特に0.5〜0.01mmのものであればよい。光学的に散乱光等によるその輝点を測定できる限りさらに微小なものであってもよい。また、1mmを超える大きさのものも検出できる。しかし、通常透明板体中の異物として検出対象となるものは通常1mm以下の大きさの異物である。   The minute foreign matter inside the transparent plate may be made of a light-blocking solid material or a light-transmitting solid material having a refractive index different from that of the material of the transparent plate, and the material of the transparent plate made of a gaseous substance or a liquid substance And may be made of translucent materials having different refractive indexes. Further, it may be a portion where no substance exists. In short, the minute foreign material is optically different from the material of the transparent plate, and may be any material that scatters, reflects, or refracts light inside the transparent plate. The size of the minute foreign matter may be 1 mm or less, particularly 0.5 to 0.01 mm. It may be even smaller as long as its bright spot by optically scattered light or the like can be measured. Also, a size exceeding 1 mm can be detected. However, the foreign object in the transparent plate is usually a foreign object having a size of 1 mm or less.

光ビームとしては、指向性の高い光のビーム(束)であればどのようなものであってもよいが、レーザー光のビーム(以下、レーザービームともいう)が好ましい。光としては可視光が好ましい。しかし、撮像手段等で測定しうる限り、可視光以外の光であってもよい。光ビームの断面形状は線状であっても点(スポット)状であってもよい。検出可能な深さを広げるためにはその線の幅は狭いことが好ましく、その点(スポット)の大きさは小さいほうが好ましい。線状のレーザービームは、たとえば、レーザー発振器先端にレンズを設けて線状のレーザービームを放出する、いわゆるラインレーザーにより得ることができる。点状光ビームの場合は、点状光ビームを高速に移動させて実質的に線状ビームと同じようなビームを形成することが好ましい。点状光ビームを実質的な線状ビームとする手段としては、たとえばポリゴンミラーを使用する手段がある。   The light beam may be any light beam (bundle) with high directivity, but a laser light beam (hereinafter also referred to as a laser beam) is preferable. Visible light is preferred as the light. However, light other than visible light may be used as long as it can be measured by an imaging means or the like. The cross-sectional shape of the light beam may be linear or point (spot). In order to widen the detectable depth, the width of the line is preferably narrow, and the size of the point (spot) is preferably small. The linear laser beam can be obtained by, for example, a so-called line laser that emits a linear laser beam by providing a lens at the tip of a laser oscillator. In the case of a point light beam, it is preferable to form a beam that is substantially similar to a linear beam by moving the point light beam at high speed. As a means for converting the point light beam into a substantially linear beam, for example, there is a means using a polygon mirror.

透明板体を照射する光ビームは、その軸に対して垂直方向に延びた線状の照射域を透明板体表面に形成することが好ましい。ラインレーザー等のレンズを用いた線状ビームの場合、これにより線状の照射域の幅を一定に保ち長さ方向の光強度の変化を少なくすることができる。線状の照射域の幅が一定でない場合は線方向の位置による輝点の光強度の変化が大きくなり、輝点間の光強度の対比による微小異物の種類の判定が困難となるおそれを生じる。   The light beam that irradiates the transparent plate preferably forms a linear irradiation area on the surface of the transparent plate that extends in a direction perpendicular to the axis of the light beam. In the case of a linear beam using a lens such as a line laser, it is possible to keep the width of the linear irradiation area constant and reduce the change in light intensity in the length direction. When the width of the linear irradiation area is not constant, the change in the light intensity of the bright spot due to the position in the line direction becomes large, and it may be difficult to determine the type of minute foreign matter by comparing the light intensity between the bright spots. .

光ビーム照射手段は、上記のような光ビームを生成して所定の入射角で透明板体表面を照射する手段であり、レーザービームを発振し線状の光ビームまたは実質的な線状ビームとして透明板対表面を照射するものが好ましい。光ビーム照射装置もまた同様である。光ビームを所定の入射角で透明板体表面を照射することにより、透明板体内部に光ビームが進入し、後述の内部光ビームI、IIが形成される。   The light beam irradiation means is a means for generating the light beam as described above and irradiating the surface of the transparent plate at a predetermined incident angle, and oscillates the laser beam as a linear light beam or a substantially linear beam. What irradiates a transparent plate pair surface is preferable. The same applies to the light beam irradiation apparatus. By irradiating the surface of the transparent plate with a light beam at a predetermined incident angle, the light beam enters the transparent plate, and internal light beams I and II described later are formed.

透明板体の表面の走査にあたっては、線状光ビームの場合はその線に略垂直な方向に線状光ビームを相対的に移動することが好ましい。線状光ビームの長さが表面の幅に満たない場合は、複数の線状光ビームで走査するか、線状ビームを線状光ビームの長さ方向に高速に(すなわち、上記線状光ビームの相対的な移動速度に比較して高速に)移動させて走査を行うことが好ましい。点状光ビームの場合は、上記のように実質的に線状ビームと同じようなビームを形成し、その実質的な線状ビームを用いて上記線状ビームと同様に透明体の表面の走査を行うことが好ましい。透明板体と線状光ビームの相対的な移動方向は上記に限られるものではない。移動方向が上記略垂直方向以外であっても2つの輝点が1つの微小異物から形成されたものであるか否かの区別が可能であり、1つの微小異物から形成されたものである場合にはその光強度の対比によりその種類の判定が可能である(なお、微小異物の位置は1つの輝点から判定できる)。   When scanning the surface of the transparent plate, in the case of a linear light beam, it is preferable to relatively move the linear light beam in a direction substantially perpendicular to the line. If the length of the linear light beam is less than the width of the surface, scan with a plurality of linear light beams, or scan the linear beam at high speed in the length direction of the linear light beam (that is, the linear light beam). It is preferable to scan by moving the beam at a higher speed than the relative moving speed of the beam. In the case of a point light beam, a beam substantially similar to a linear beam is formed as described above, and the surface of the transparent body is scanned using the substantial linear beam in the same manner as the linear beam. It is preferable to carry out. The relative moving direction of the transparent plate and the linear light beam is not limited to the above. Even when the moving direction is other than the substantially vertical direction, it is possible to distinguish whether or not two bright spots are formed from one minute foreign matter, and when the two bright spots are formed from one minute foreign matter. The type can be determined by comparing the light intensity (the position of the minute foreign matter can be determined from one bright spot).

以下、透明板体として板ガラスを、微小異物として上記通常の検出対象となる大きさの非透明性固体物質(NiS微粒子等)と気体状物質(泡)を、光ビームとして線状レーザービームを、例にして、本発明を説明する。   Hereinafter, a plate glass as a transparent plate, a non-transparent solid substance (NiS fine particles, etc.) and a gaseous substance (bubbles) of a size to be detected as a fine foreign substance, a linear laser beam as a light beam, The present invention will be described by way of example.

図1は、板ガラス内部の微小異物を検出する本発明の方法の基本的な考え方を説明する模式図である。図1の[1−1]と[1−2]は、板ガラス(1)の模式的な断面図であり、[1−1]は微小異物(4)が内部光ビームI(I)に接した時点、[1−2]は微小異物(4)が内部光ビームII(II)に接した時点の断面図である。図1の[1−3]と[1−4]は、板ガラス(1)の模式的な平面図であり、[1−3]は[1−1]に示した時点、[1−4]は[1−2]に示した時点の平面図である。   FIG. 1 is a schematic diagram for explaining the basic concept of the method of the present invention for detecting minute foreign matter inside a plate glass. [1-1] and [1-2] in FIG. 1 are schematic cross-sectional views of the plate glass (1), and [1-1] shows a minute foreign matter (4) in contact with the internal light beam I (I). [1-2] is a cross-sectional view when the minute foreign matter (4) is in contact with the internal light beam II (II). [1-3] and [1-4] in FIG. 1 are schematic plan views of the plate glass (1), and [1-3] is the time indicated in [1-1], [1-4] These are top views at the time shown in [1-2].

図1において、直交する3方向の内、板ガラスの厚さ方向を以下z方向という。板ガラスの表面に平行な面の2方向を以下x方向とy方向という。矩形の板ガラスの場合、直交する2辺のそれぞれに平行な方向をx方向とy方向とすることが好ましい。後述するガラスリボン(連続した板ガラス)においては、ガラスリボンの長さ方向をx方向、幅方向をy方向とすることが好ましい。また、板ガラス(1)の2表面の内、線状レーザービーム(2)で照射される表面(10)を照射表面といい、他方の表面(11)を非照射表面という。線状レーザービーム(2)はx方向から照射表面(10)を照射し、図1では微小異物を照射したビーム部分を1本の線で示す。図1において、線状レーザービーム(2)は、その軸に対して垂直方向に延びた線状の照射域を形成しているものとする。すなわち、図1の[1−3]と[1−4]に示すように線状レーザービーム(2)のx方向からの照射により照射表面(10)に形成される線状の照射域は、その線の長さ方向がy方向である。   In FIG. 1, the thickness direction of the plate glass among the three orthogonal directions is hereinafter referred to as the z direction. Two directions of a plane parallel to the surface of the plate glass are hereinafter referred to as an x direction and a y direction. In the case of a rectangular plate glass, it is preferable that the directions parallel to the two orthogonal sides are the x direction and the y direction. In the glass ribbon (continuous plate glass) described later, it is preferable that the length direction of the glass ribbon is the x direction and the width direction is the y direction. Of the two surfaces of the plate glass (1), the surface (10) irradiated with the linear laser beam (2) is referred to as an irradiated surface, and the other surface (11) is referred to as a non-irradiated surface. The linear laser beam (2) irradiates the irradiation surface (10) from the x direction, and in FIG. 1, the beam portion irradiated with the minute foreign matter is indicated by a single line. In FIG. 1, it is assumed that the linear laser beam (2) forms a linear irradiation region extending in a direction perpendicular to the axis. That is, as shown in [1-3] and [1-4] in FIG. 1, the linear irradiation area formed on the irradiation surface (10) by irradiation of the linear laser beam (2) from the x direction is: The length direction of the line is the y direction.

図1の[1−1]と[1−2]に示すように、z方向に対して傾斜した方向から板ガラスを照射する線状レーザービーム(2)は照射表面(10)を照射し、そのレーザービームは反射、屈折、散乱する。散乱は板ガラス表面の微細な凹凸等により生じる。屈折したレーザービームは板ガラス(1)の内部に進入し、この進入したレーザービームを内部光ビームIという。内部光ビームI(I)は、次いで非照射表面(11)の内部側に達して、そこで反射、屈折、散乱する(屈折光は図示省略)。この内部光ビームI(I)の非照射表面(11)の内側における反射により板ガラス(1)の内部を進むレーザービームを内部光ビームIIという。したがって、内部光ビーム1(I)が板ガラス表面で反射した内部光IIとは、この非照射表面の内側で反射した内部光IIをいう。内部光ビームII(II)は、次いで照射表面(10)の内部側に達して、そこで反射、屈折、散乱する(反射光は図示省略)。   As shown in [1-1] and [1-2] in FIG. 1, the linear laser beam (2) that irradiates the plate glass from the direction inclined with respect to the z direction irradiates the irradiation surface (10). Laser beams are reflected, refracted and scattered. Scattering is caused by fine irregularities on the surface of the plate glass. The refracted laser beam enters the inside of the plate glass (1), and this laser beam that has entered is referred to as an internal light beam I. The internal light beam I (I) then reaches the inside of the non-irradiated surface (11) where it is reflected, refracted and scattered (refracted light is not shown). A laser beam that travels inside the plate glass (1) due to reflection of the internal light beam I (I) on the inside of the non-irradiated surface (11) is referred to as an internal light beam II. Accordingly, the internal light II reflected from the surface of the glass sheet by the internal light beam 1 (I) refers to the internal light II reflected from the inside of the non-irradiated surface. The internal light beam II (II) then reaches the inside of the irradiated surface (10), where it is reflected, refracted and scattered (the reflected light is not shown).

照射表面(10)上に形成された照射域からの散乱光で、y方向に延びた輝線が生成し、以下この輝線を輝線(A)という。同様に、内部光ビームI(I)は非照射表面(11)を内部側から照射して線状の照射域を形成し、以下この照射域からの散乱光で生成する輝線を輝線(B)という。さらに、内部ビームII(II)は照射表面(10)を内部側から照射して線状の照射域を形成し、以下この照射域からの散乱光で生成する輝線を輝線(C)という。図1の[1−3]と[1−4]に表されるA、B、Cの各輝線は、各照射域からz方向に出射された光からなる。レーザービームは各表面における反射、屈折、散乱により、また板ガラス内部の吸収により、減衰するため、各輝線の光強度は、輝線(A)>輝線(B)>輝線(C)の順に低下する。   A bright line extending in the y direction is generated by the scattered light from the irradiated region formed on the irradiated surface (10), and this bright line is hereinafter referred to as a bright line (A). Similarly, the internal light beam I (I) irradiates the non-irradiated surface (11) from the inner side to form a linear irradiation region. Hereinafter, the bright line generated by the scattered light from this irradiation region is the bright line (B). That's it. Further, the internal beam II (II) irradiates the irradiation surface (10) from the inside to form a linear irradiation region, and the bright line generated by the scattered light from this irradiation region is hereinafter referred to as a bright line (C). The bright lines A, B, and C shown in [1-3] and [1-4] in FIG. 1 are made of light emitted in the z direction from each irradiation region. Since the laser beam is attenuated by reflection, refraction, and scattering on each surface and absorption inside the plate glass, the light intensity of each emission line decreases in the order of emission line (A)> emission line (B)> emission line (C).

図1の[1−1]と[1−3]において、微小異物(4)が内部光ビームI(I)で照射されて生じる散乱光等による輝点を輝点(E)という。同様に、[1−2]と[1−4]において、微小異物(4)が内部光ビームII(II)で照射されて生じる散乱光等による輝点を輝点(F)という。[1−1]において輝点(E)のz方向の光が照射表面(10)と交わる点をE’とし、[1−2]において輝点(F)のz方向の光が照射表面(10)と交わる点をF’とする。[1−1]と[1−2]において輝線(B)のz方向の光が照射表面(10)と交わる線をB’とする。微小異物(4)からz方向に出射された光は、散乱光の内z方向に反射された光、z方向に出射された反射光、z方向に出射された屈折光等から構成される。   In [1-1] and [1-3] in FIG. 1, a bright spot due to scattered light or the like generated by irradiating the minute foreign matter (4) with the internal light beam I (I) is referred to as a bright spot (E). Similarly, in [1-2] and [1-4], a bright spot due to scattered light or the like generated by irradiating the minute foreign matter (4) with the internal light beam II (II) is referred to as a bright spot (F). In [1-1], the point where the light in the z direction of the bright spot (E) intersects the irradiated surface (10) is defined as E ′. In [1-2], the light in the z direction of the bright spot (F) is irradiated on the irradiated surface ( Let F ′ be the point that intersects 10). In [1-1] and [1-2], B ′ is a line where the light in the z direction of the bright line (B) intersects the irradiated surface (10). The light emitted from the minute foreign matter (4) in the z direction includes light reflected in the z direction among scattered light, reflected light emitted in the z direction, refracted light emitted in the z direction, and the like.

本発明における測定は以下のようにして行う。板ガラス(1)をx方向に図右から左へ相対的に移動させ(図1の[1−1]のG方向)、z方向から輝線や輝点をカメラ等の撮像手段で測定を行う。微小異物(4)が内部光ビームI(I)に照射された時点で撮像する。図1の[1−3]は、その測定時点の画像の模式図である。微小異物(4)が内部光ビームI(I)に照射された時点前に撮像した画像では輝線(A)、(B)、(C)は存在するが輝点(E)は存在しない。[1−3]の模式図の画像では輝線(A)、(B)、(C)と輝点(E)が存在し、輝点(E)と輝線(A)間の距離(輝点(E)と輝線(B)間の距離でもよい)を測定できる。なお、輝線(A)、(B)間の距離は変化しないので、この時点またはそれ以外の時点で輝線(A)、(B)間の距離を測定できる。また、輝線(A)、(C)は、輝線(B)に対して対称の位置に存在する。後述のように、この時点で[1−3]の模式図で示した画像から輝点(E)と輝線(A)間の距離と輝線(A)、(B)間の距離とを測定すれば、板ガラスの厚さに対する微小異物(4)の深さ(照射表面(10)からの距離)の比が判明し、板ガラスの厚さが既知である場合は深さの絶対距離が判明する。   The measurement in the present invention is performed as follows. The plate glass (1) is relatively moved in the x direction from the right to the left (G direction in [1-1] in FIG. 1), and the bright line and the bright spot are measured from the z direction by an imaging means such as a camera. Imaging is performed when the minute foreign matter (4) is irradiated to the internal light beam I (I). [1-3] in FIG. 1 is a schematic diagram of an image at the time of the measurement. In the image captured before the time when the minute foreign matter (4) was irradiated to the internal light beam I (I), the bright lines (A), (B), and (C) exist, but the bright spot (E) does not exist. In the image of the schematic diagram of [1-3], bright lines (A), (B), (C) and a bright spot (E) exist, and the distance between the bright spot (E) and the bright line (A) (the bright spot ( E) and the bright line (B) may be measured). Since the distance between the bright lines (A) and (B) does not change, the distance between the bright lines (A) and (B) can be measured at this time or other time. Further, the bright lines (A) and (C) exist at positions symmetrical to the bright line (B). As described later, at this time, the distance between the bright spot (E) and the bright line (A) and the distance between the bright lines (A) and (B) are measured from the image shown in the schematic diagram of [1-3]. For example, the ratio of the depth (the distance from the irradiated surface (10)) of the minute foreign matter (4) to the thickness of the plate glass is found, and when the thickness of the plate glass is known, the absolute distance of the depth is found.

次に、板ガラスがさらに移動して微小異物(4)が内部光ビームI(I)から外れると輝点(E)は消え、さらに微小異物(4)が内部光ビームII(II)に照射される位置に来ると、輝点(F)が生じる。図1の[1−4]は、その輝点(F)が生じた時点の画像の模式図である。[1−4]の模式図の画像では輝線(A)、(B)、(C)と輝点(F)が存在し、輝点(F)と輝線(C)間の距離(輝点(F)と輝線(B)間の距離でもよい)を測定できる。輝線(A)、(B)、(C)間の各距離は[1−3]の模式図の画像と等しく、また、輝点(F)と輝線(C)間の距離は[1−3]の模式図の輝点(E)と輝線(A)間の距離に等しい。すなわち、両模式図において輝点(E)、(F)は輝線(B)に対して対称の位置に存在する。   Next, when the plate glass further moves and the minute foreign matter (4) is separated from the internal light beam I (I), the bright spot (E) disappears, and further the fine foreign matter (4) is irradiated to the internal light beam II (II). A bright spot (F) is generated at the position. [1-4] in FIG. 1 is a schematic diagram of an image at the time when the bright spot (F) occurs. In the image of the schematic diagram of [1-4], bright lines (A), (B), (C) and a bright spot (F) exist, and the distance between the bright spot (F) and the bright line (C) (the bright spot ( F) and bright line (B) may be measured). Each distance between the bright lines (A), (B), and (C) is equal to the image in the schematic diagram of [1-3], and the distance between the bright spot (F) and the bright line (C) is [1-3. ] Is equal to the distance between the bright spot (E) and the bright line (A) in the schematic diagram. That is, in both schematic diagrams, the bright spots (E) and (F) exist at positions symmetrical with respect to the bright line (B).

図1の[1−3]に示す画像から測定される輝線(A)、(B)間の距離は、図1の[1−1]におけるA−B’間の距離aであり、同様に輝線(A)、輝点(E)間の距離は、A−E’間の距離aである。板ガラスの厚さをdとし、微小異物(4)の照射表面(10)からの距離をdとすると、a/a=d/dであることより、dが既知であれば図1の[1−3]に示す画像から測定されるaとaよりdが求まる。同様に、図1の[1−4]に示す画像から測定されるB’−C間の距離aと輝線(C)、輝点(F)間の距離F’−C間の距離aよりdが求まる。輝線(C)の光強度は輝線(A)に比較して弱く輝線(C)の位置の測定が困難な場合があることより、また、輝点(F)の光強度は輝点(E)に比較して弱く輝点(F)の位置の測定が困難な場合があることより、微小異物(4)の深さは[1−3]に示した画像から求めることが好ましい。なお、板ガラスの厚さdが未知であっても、内部光ビームI(I)の進入角度(線状レーザービーム(2)の照射表面(10)に対する照射角度とガラスの屈折率から計算できる)が既知であれば、aとこの進入角度からdを計算できることより、dが求まる。The distance between the bright lines (A), (B) measured from the image shown in [1-3] in FIG. 1 is the distance a 1 between A-B 'in [1-1] in FIG. 1, similar Further, the distance between the bright line (A) and the bright spot (E) is a distance a 2 between AE ′. Assuming that the thickness of the plate glass is d 1 and the distance of the minute foreign matter (4) from the irradiation surface (10) is d 2 , d 1 is known because a 2 / a 1 = d 2 / d 1 If there is, d 2 is obtained from a 1 and a 2 measured from the image shown in [1-3] in FIG. Similarly, the distance a 1 between B′-C measured from the image shown in [1-4] of FIG. 1 and the distance a 2 between the distance F′-C between the bright line (C) and the bright spot (F). From this, d 2 is obtained. The light intensity of the bright line (C) is weaker than that of the bright line (A), and it may be difficult to measure the position of the bright line (C), and the light intensity of the bright spot (F) is bright spot (E). The depth of the minute foreign matter (4) is preferably obtained from the image shown in [1-3] because the measurement of the position of the bright spot (F) may be difficult. Even if the thickness d 1 of the plate glass is unknown, it can be calculated from the angle of incidence of the internal light beam I (I) (the irradiation angle of the linear laser beam (2) with respect to the irradiation surface (10) and the refractive index of the glass. ) Is known, d 2 can be obtained by calculating d 1 from a 1 and this approach angle.

図2は、微小異物(4)が遮光性の球である場合の、図1における輝点(E)、(F)の詳細を示す模式図であり、図2の[2−1]の微小異物(4)は図1の[1−1]に対応し、図2の[2−2]の微小異物(4)は図1の[1−2]に対応し、図2の[2−3]の微小異物(4)は図1の[1−3]に対応し、図2の[2−4]の微小異物(4)は図1の[1−4]に対応する。これら図に示すように、内部光ビームI、IIがz方向に対し傾斜しかつ逆方向から微小異物(4)を照射することにより、x方向の照射表面(10)側に出射する光の発光面積は、輝点(E)で広く、輝点(F)で狭くなる。したがって、内部光ビームI、IIの光強度が異なることが加わって、輝点(F)の光強度は輝点(E)に比較して相当に弱くなる。なお、非照射表面(11)側に垂直に出射する光の面積は上記と逆の関係になることより、微小異物(4)による2つの輝点の光強度の差は上記の場合よりも少なくなる。   FIG. 2 is a schematic diagram showing details of the bright spots (E) and (F) in FIG. 1 when the minute foreign matter (4) is a light-shielding sphere. The foreign object (4) corresponds to [1-1] in FIG. 1, the minute object (4) in [2-2] in FIG. 2 corresponds to [1-2] in FIG. 3] corresponds to [1-3] in FIG. 1, and the minute foreign substance (4) in [2-4] in FIG. 2 corresponds to [1-4] in FIG. As shown in these figures, when the internal light beams I and II are inclined with respect to the z direction and irradiate the minute foreign matter (4) from the opposite direction, light emission emitted to the irradiation surface (10) side in the x direction. The area is wide at the bright spot (E) and narrow at the bright spot (F). Therefore, the light intensity of the internal light beams I and II is different, and the light intensity of the bright spot (F) is considerably weaker than that of the bright spot (E). In addition, since the area of the light emitted perpendicularly to the non-irradiated surface (11) is opposite to the above, the difference in light intensity between the two bright spots due to the minute foreign matter (4) is smaller than in the above case. Become.

微小異物(4)が泡等の透光性の球であるとすると、輝点(E)、(F)は微小異物表面からの散乱光以外に微小異物内部から出射した光が加わって形成されると考えられる。微小異物内部から出射した光とは、微小異物内部に進入した光やそれが微小異物内面で反射した光が微小異物内部表面から屈折や散乱で微小異物外に出た光をいう。このため、通常は透光性の微小異物(4)による輝点(E)、(F)は遮光性の微小異物によるものと比較して光強度が高くなる。特に、輝点(F)では、図2の[2−4]で示した微小異物(4)の影の部分からも光が出射することより遮光性の微小異物による輝点(F)に比較して光強度が高くなると考えられる。したがって、輝点(E)に対する輝点(F)の光強度の比([輝点(F)の光強度]/[輝点(E)の光強度])を測定すると、通常、透光性の微小異物では遮光性の微小異物に比較してその比が1に近くなり、また1を超える場合もある。よって、輝点(E)、(F)の光強度を対比することにより、微小異物が遮光性か透光性かの区別が可能となる。測定は、遮光性の微小異物の場合に輝点(E)、(F)の光強度差が大きいことより、照射表面(10)側から行うことが通常好ましい。なお、場合によっては照射表面(10)側と非照射表面(11)側とから同時に測定を行い、輝点(E)、(F)の対比を両者で行って比較することもできる。   If the minute foreign matter (4) is a translucent sphere such as a bubble, the bright spots (E) and (F) are formed by adding light emitted from the inside of the minute foreign matter in addition to the scattered light from the surface of the minute foreign matter. It is thought. The light emitted from the inside of the minute foreign matter refers to light that has entered the inside of the minute foreign matter or light reflected from the inner surface of the minute foreign matter has exited from the inside of the minute foreign matter due to refraction or scattering. For this reason, normally, the bright spots (E) and (F) due to the light-transmitting minute foreign matter (4) have higher light intensity than those due to the light-shielding minute foreign matter. In particular, in the bright spot (F), light is emitted also from the shadow portion of the minute foreign matter (4) shown in [2-4] in FIG. Thus, the light intensity is considered to increase. Therefore, when the ratio of the light intensity of the bright spot (F) to the bright spot (E) ([light intensity of the bright spot (F)] / [light intensity of the bright spot (E)]) is measured, it is usually translucent. In comparison with the light-shielding minute foreign matter, the ratio is close to 1, and sometimes exceeds 1. Therefore, by comparing the light intensity of the bright spots (E) and (F), it is possible to distinguish whether the minute foreign matter is light-shielding or translucent. The measurement is usually preferably performed from the irradiation surface (10) side because the difference in light intensity between the bright spots (E) and (F) is large in the case of a light-shielding minute foreign matter. In some cases, measurement can be performed simultaneously from the irradiated surface (10) side and the non-irradiated surface (11) side, and the bright spots (E) and (F) can be compared and compared.

線状レーザービーム(2)の入射角は、微小異物の深さを検出する分解能、レーザービームの幅、及び微小異物の検出が必要な深さの範囲によって決定される。図1の[1−1]、[1−2]において、入射角をz方向に対する角度とすると、この入射角が大きいほど撮像した画像における輝線(A)と輝線(B)との距離とが大きくなり、微小異物の深さの情報の検出分解能が向上する。ただし、入射角は線状レーザービーム(2)の幅と微小異物の検出が必要な深さの範囲によって制限される。   The incident angle of the linear laser beam (2) is determined by the resolution for detecting the depth of the minute foreign matter, the width of the laser beam, and the depth range where the detection of the fine foreign matter is necessary. In [1-1] and [1-2] in FIG. 1, when the incident angle is an angle with respect to the z direction, the distance between the bright line (A) and the bright line (B) in the captured image increases as the incident angle increases. The detection resolution of the depth information of the minute foreign matter is improved. However, the incident angle is limited by the range of the width of the linear laser beam (2) and the depth that requires detection of minute foreign matter.

輝線(A)、(B)、(C)の幅は有限であるため、z方向から撮像した場合に、微小異物(4)の位置が照射表面(10)に近いほど輝線(A)と輝点(E)の距離が短くなり、画像の分解能以下に両者が近づくとその距離が測定できなくなる。微小異物(4)の位置が非照射表面(11)に近い場合も同様に輝線(B)と輝点(E)の距離の測定が困難になる。   Since the widths of the bright lines (A), (B), and (C) are finite, when the image is taken from the z direction, the bright line (A) and the bright line become brighter as the position of the minute foreign matter (4) is closer to the irradiated surface (10). When the distance of the point (E) becomes short and the two approach below the resolution of the image, the distance cannot be measured. Similarly, when the position of the minute foreign matter (4) is close to the non-irradiated surface (11), it is difficult to measure the distance between the bright line (B) and the bright spot (E).

線状レーザービーム(2)の幅をW、照射表面での照射域の幅をW、入射角をθとすると、WはW/cosθで表される。これより微小異物を検出できない深さTは、照射表面での屈折により変化した入射角をθとすると、0.5・W/tanθで表される。微小異物(4)を検出できない深さTは、板ガラスの板厚には依存しない。When the width of the linear laser beam (2) is W, the width of the irradiation area on the irradiation surface is W S , and the incident angle is θ, W S is expressed by W / cos θ. Thus, the depth T at which the minute foreign matter cannot be detected is expressed by 0.5 · W S / tan θ S, where θ S is an incident angle changed by refraction on the irradiation surface. The depth T at which the minute foreign matter (4) cannot be detected does not depend on the plate thickness of the plate glass.

一方で、前述のように強化ガラスにおいて、照射表面及び非照射表面付近の圧縮応力層が残留する領域のNiSが自然破損に影響しないことから、検出対象深さをX、板ガラスの板厚をtとすると、WとθがT<(t−X)/2を満足する必要がある。板ガラスの屈折率として一般的な値である1.5とした場合には、入射角が49度でW/Tが最大となり、任意のWに対して微小異物を検出できない深さTが最小であることを意味する。仮にWを無限に小さくできて入射角θを無限に大きくできたとしても、スネルの法則からθの変化率が急激に小さくなるため微小異物の深さの検出分解能が劇的に向上することはない。On the other hand, in the tempered glass as described above, since NiS in the region where the compression stress layer near the irradiated surface and the non-irradiated surface remains does not affect the natural breakage, the detection target depth is X, and the plate glass thickness is t. Then, W and θ need to satisfy T <(t−X) / 2. When the refractive index of the plate glass is 1.5, which is a general value, the incident angle is 49 degrees, the W / T is maximum, and the depth T at which a minute foreign matter cannot be detected for any W is minimum. It means that there is. It even if were possible to infinitely infinitely large incident angle theta made small W, the detection resolution of the depth of the fine foreign matter for percent change from Snell's law theta S is rapidly reduced to dramatically improve There is no.

よって、入射角としては、44度から54度が好ましく、検出できない深さがより浅い46度から52度がよりこの好ましい。線状レーザービーム(2)の幅としては、板ガラスの板厚を4mmとすると、0.25mm程度でよい。ガラス板の厚さが大きくなると、検出しなくてよい領域が大きくなるため、線状レーザービーム(2)の幅は相対的に広くてもよい。   Therefore, the incident angle is preferably 44 to 54 degrees, and more preferably 46 to 52 degrees where the undetectable depth is shallower. The width of the linear laser beam (2) may be about 0.25 mm when the plate glass is 4 mm thick. As the thickness of the glass plate increases, the area that need not be detected increases, so the width of the linear laser beam (2) may be relatively wide.

輝点や輝線の測定はカメラ等の撮像手段(撮像装置)で行うことが好ましい。2次元像を撮像し、その光学像を電気信号に変換して出力するエリアスキャンカメラ(CCDカメラ等)が好ましい。画素数の多いものほどより小さい微小異物の検出が可能である。本発明では、微小異物の形状や色の識別は必須ではない。また、暗室の設置等で外光を遮断することにより、レーザービームが透過する領域以外に光信号がなくなり、板ガラス表面の埃等の外乱となるノイズを、全て板ガラスの照射表面及び非照射表面上の光信号のみとすることが可能である。このため、微小異物が存在する板ガラス内部の領域に対応する画像でのS/N比(有効な入力信号/ノイズ信号)が顕著に高くなる。
したがって、輝点や輝線の信号が十分であれば、微小異物による輝点の大きさが1画素未満でも微小異物の検出が可能になる。即ち、本発明では、従来技術に比べて微小異物からの情報が少なくてもよいので、低解像度のエリアスキャンカメラでも検出ができることになる。
The measurement of the bright spot and the bright line is preferably performed by an imaging means (imaging device) such as a camera. An area scan camera (such as a CCD camera) that captures a two-dimensional image, converts the optical image into an electrical signal, and outputs the signal is preferable. Smaller foreign objects can be detected as the number of pixels increases. In the present invention, identification of the shape and color of the minute foreign matter is not essential. In addition, by blocking outside light by installing a dark room, etc., there is no optical signal outside the area where the laser beam is transmitted, and all noise that causes disturbance such as dust on the surface of the glass sheet is all on the irradiated and non-irradiated surfaces of the glass sheet. It is possible to use only the optical signal of For this reason, the S / N ratio (effective input signal / noise signal) in the image corresponding to the region inside the plate glass where the minute foreign matter is present is remarkably increased.
Therefore, if the signal of the bright spot or the bright line is sufficient, even if the size of the bright spot due to the minute foreign matter is less than one pixel, the minute foreign matter can be detected. That is, in the present invention, information from a minute foreign matter may be less than that in the prior art, so that even a low-resolution area scan camera can detect the information.

輝点や輝線の撮像は、撮像のタイミングを制御するよりも、短い間隔で連続的に撮像を行い、画像データを取り込むことが好ましい。取り込まれた画像データは画像処理手段に送られる。画像処理手段において、数値演算装置内のメモリーに貯蔵した画像データと取り込んだ画像データの対比に基づいて、各取込み画像における輝点のz方向の位置(深さ)、y方向の位置(基準位置に対する平面方向の位置)、及び輝点が出現するタイミングの3つの情報のいずれかまたはいくつかを組み合わせることによって、同一微小異物による2種類の画像をセットにできる。輝線は常に検出しているので、z方向の位置(深さ)の情報については比較的安定して得られる。y方向の位置の情報については、前述の板ガラスの相対的な移動方向や移動速度から得られる。この移動方向や移動速度のずれ等が予想される場合は、それを防ぐかずれ分を補正する対策を講じる。輝点が出現するタイミングの情報については、それだけで同一微小異物による2種類の画像をセットにすることは不十分であり、少なくとも輝点のz方向の位置(深さ)か、y方向の位置の情報を組み合わせる必要がある。板ガラスの相対的な移動方向や移動速度が一定であれば、セットにすべき2つの画像を安定的に選択できる。しかし、そうでない場合にはx、y、z方向の位置の誤差も累積される。このため、エリアスキャンカメラから送られた板ガラスの相対的な移動方向や移動速度のデータを考慮して、セットにすべき2つの画像を選択する等の対策を講じることが好ましい。   It is preferable that images of bright spots and bright lines are captured continuously at short intervals and image data is captured rather than controlling the timing of imaging. The captured image data is sent to the image processing means. In the image processing means, the z-direction position (depth) and y-direction position (reference position) of the bright spot in each captured image based on the comparison between the image data stored in the memory in the numerical arithmetic unit and the captured image data. By combining any one or some of the three pieces of information of the position in the plane direction with respect to and the timing at which the bright spot appears, two types of images of the same minute foreign matter can be set. Since bright lines are always detected, information on the position (depth) in the z direction can be obtained relatively stably. Information on the position in the y direction can be obtained from the relative movement direction and movement speed of the plate glass. If a deviation in the movement direction or movement speed is expected, measures to prevent it or correct the deviation are taken. As for information on the timing at which a bright spot appears, it is not sufficient to set two types of images of the same minute foreign object alone, and at least the position (depth) of the bright spot in the z direction or the position in the y direction. It is necessary to combine the information. If the relative moving direction and moving speed of the plate glass are constant, two images to be set can be selected stably. However, if this is not the case, errors in the positions in the x, y and z directions are also accumulated. For this reason, it is preferable to take measures such as selecting two images to be set in consideration of data on the relative moving direction and moving speed of the plate glass sent from the area scan camera.

上記の撮像した画像のデータに基づき画像処理手段の後段で微小異物の位置や種類を判定する。画像データは、通常デジタルデータとして取り込まれるので、このデータを利用し、輝点や輝線の位置等の特徴を考慮した抽出ルーチンで測定対象の輝点や輝線を抽出し、微小異物の位置や種類を判定してその判定データを出力する。z方向の位置(深さ)は前記のように輝線と輝点の距離と板ガラスの厚さより計算される。x、y方向の位置はx、y方向の基準位置からの輝点の距離より計算される。この際、2つの輝点間の距離(板ガラスの相対的な移動距離)、2つの輝点が出現する時間間隔、2つの輝点を結ぶ線と輝線のなす角度(板ガラスの相対的な移動方向)等が考慮される。微小異物の種類は、前記のように同一微小異物に由来する2つの輝点の光強度比から判定される。光強度を画像階調値で数値化する際にはノイズ処理等を行うことが好ましい。   Based on the data of the captured image, the position and type of the minute foreign matter are determined in the subsequent stage of the image processing means. Since image data is usually captured as digital data, this data is used to extract the bright spots and bright lines to be measured using an extraction routine that takes into account features such as bright spot and bright line positions. And the determination data is output. The position (depth) in the z direction is calculated from the distance between the bright line and the bright spot and the thickness of the plate glass as described above. The position in the x and y directions is calculated from the distance of the bright spot from the reference position in the x and y directions. At this time, the distance between the two bright spots (relative movement distance of the glass sheet), the time interval at which the two bright spots appear, the angle between the line connecting the two bright spots and the bright line (the relative movement direction of the glass sheet) ) Etc. are considered. The kind of minute foreign matter is determined from the light intensity ratio of two bright spots derived from the same minute foreign matter as described above. When the light intensity is digitized by the image gradation value, it is preferable to perform noise processing or the like.

画像処理手段は、数値演算装置、例えばパーソナルコンピュータと、メモリーと、前述のような画像の識別を行うための画像処理ソフトからなる。または、これらの機能を組み込んだ数値演算素子であってもよい。この画像処理手段によって、撮像した画像の記憶、取り出し、判定等を自動で連続的に行うことが可能となる。   The image processing means comprises a numerical operation device such as a personal computer, a memory, and image processing software for identifying the image as described above. Alternatively, a numerical operation element incorporating these functions may be used. By this image processing means, it is possible to automatically and continuously perform the storage, extraction, determination and the like of the captured image.

本発明は、板ガラスの製造において、微小異物の有無や微小異物の位置や種類に応じて、製品とすべきでない微小異物含有板ガラスを判別し、その結果に基づいて製品とすべきでない微小異物含有板ガラスを製造工程から除去することができる。製品とすべきか否かの判別は、予め判別手段に格納している判別データと前記画像処理手段において判定された微小異物の判定データとを対比して行うことができる。判別手段は画像処理手段に組み込み、判別結果を画像処理手段の出力データとすることもできる。判別する板ガラスが所定の形状に切断された後の板ガラスの場合、製品とすべきでないと判別した板ガラスを製造工程から除去すればよい。   According to the present invention, in the production of a glass sheet, according to the presence / absence of a micro foreign material and the position and type of the micro foreign material, a micro foreign material containing plate glass that should not be a product is determined, and based on the result, a micro foreign material containing material that should not be a product is contained. The plate glass can be removed from the manufacturing process. The determination as to whether or not to be a product can be performed by comparing the determination data stored in the determination means in advance with the determination data of the minute foreign matter determined by the image processing means. The discrimination means can be incorporated in the image processing means, and the discrimination result can be used as output data of the image processing means. In the case of the plate glass after the plate glass to be discriminated is cut into a predetermined shape, the plate glass that is discriminated to be a product may be removed from the manufacturing process.

図3に、本発明に係る板ガラスの製造方法の一つの実施形態を説明する図を示す。なお、この図において、連続した板ガラス(以下、ガラスリボンという)を製造する工程と採板工程は、公知技術でも、その他どのような技術でもよい。フロート法等により溶融ガラスからガラスリボンを製造した後、所定の大きさに切断して製品とする場合には、微小異物をガラスリボンの段階で検出し、製品に含まれてはならない微小異物が検出された場合にはその微小異物を含む切断後の板ガラスを製造工程から除去する。この際、製品に含まれてはならない微小異物を含む切断板ガラスの面積をできるだけ狭くするようにガラスリボンを切断して、廃棄される板ガラスの面積を少なくすることにより、歩留まりを上げることが好ましい。ガラスリボン中の微小異物を判別する場合、検出された微小異物が前記判別手段により製品に含まれてはならない微小異物か否かを判別し、製品に含まれてはならないと判別された微小異物のガラスリボンにおける位置(判別後は深さ方向の位置は無視できる)を前記画像処理手段の出力データから切断制御手段に取り込んで切断し、その微小異物を含む切断板ガラスを製造工程から除去する。微小異物を含む切断板ガラスの面積をできるだけ狭くするプログラムを切断制御手段に組み込むことにより、歩留まりを上げることができる。   The figure explaining one embodiment of the manufacturing method of the plate glass which concerns on FIG. 3 at this invention is shown. In addition, in this figure, the process which manufactures a continuous plate glass (henceforth a glass ribbon) and the plate-drawing process may be a well-known technique or any other technique. After manufacturing a glass ribbon from molten glass by the float method, etc., when cutting into a predetermined size to make a product, minute foreign objects are detected at the stage of the glass ribbon, and there are fine foreign objects that should not be included in the product. If detected, the cut plate glass containing the minute foreign matter is removed from the manufacturing process. At this time, it is preferable to increase the yield by cutting the glass ribbon so as to reduce the area of the cut glass sheet containing minute foreign matters that should not be included in the product as much as possible to reduce the area of the discarded glass sheet. When discriminating minute foreign matter in the glass ribbon, it is determined whether the detected minute foreign matter is a minute foreign matter that should not be included in the product by the determining means, and the minute foreign matter determined not to be included in the product The position in the glass ribbon (the position in the depth direction is negligible after the determination) is taken into the cutting control means from the output data of the image processing means and cut, and the cut plate glass containing the minute foreign matter is removed from the manufacturing process. The yield can be increased by incorporating in the cutting control means a program for reducing the area of the cutting plate glass containing minute foreign substances as much as possible.

なお、ガラスリボン中の微小異物を検出する場合は、ガラスリボンがその長さ方向に連続して(通常は等速で)移動していることより、前記板ガラスと光ビーム(または照射域)との相対的な移動は光ビーム(または照射域)を固定して行うことができる。また、ガラスリボンの移動手段は、微小異物検出装置とは離れた、ガラスリボン本来の移動手段が使用される。   In addition, when detecting the micro foreign material in a glass ribbon, since the glass ribbon is moving continuously in the length direction (usually at constant speed), the plate glass and the light beam (or irradiation area) The relative movement can be performed with the light beam (or irradiation area) fixed. Further, as the moving means of the glass ribbon, the original moving means of the glass ribbon that is separated from the minute foreign matter detecting device is used.

本発明の方法では、微小異物の検出にあたって、従来技術のように形状や色の認識が必要なく、前述のような光の信号のみに基づいているので、微小異物の形状認識が困難な低解像度のエリアスキャンカメラ等を利用できる。1つの光ビームに由来する2つの経路の光(内部光ビームI、II)を利用することによって、単一の光ビームによって微小異物を検出する従来の場合に比べて、微小異物が遮光性か透光性かによらず、外乱に左右されず安定して、遮光性と透光性の微小異物の区別も含めて検出ができる。特に、遮光性と透光性の微小異物を簡単かつ正確に区別することは、前述の特許文献2及び3では難しい。また、照射表面及び非照射表面の2面からの光も利用できるので、微小異物の深さの測定を外乱に左右されず安定的かつ精度良く実施できる。このため、透明板体が濃色の場合も測定できる。光ビームの照射方向とエリアスキャンカメラ等の撮像手段の撮像方向によって、撮像する照射表面での周りからの映り込みが少なくなり、外乱に左右されず安定した微小異物の検出が可能になる。光ビームの照射位置と撮像手段の位置は、特許文献2及び3のように同じ板ガラス面側になくてもよいので、設置の自由度が高い。   The method of the present invention does not require recognition of the shape and color as in the prior art in detecting the minute foreign matter, and is based only on the light signal as described above, so it is difficult to recognize the shape of the fine foreign matter. The area scan camera can be used. Compared to the conventional case where a minute foreign object is detected by a single light beam by using light of two paths (internal light beams I and II) derived from one light beam, the minute foreign object is light-shielding. Regardless of translucency, it is possible to detect stably including light-shielding and translucent minute foreign matter regardless of disturbance. In particular, it is difficult in Patent Documents 2 and 3 described above to easily and accurately distinguish between light-shielding and translucent minute foreign matters. In addition, since light from two surfaces, the irradiated surface and the non-irradiated surface, can be used, the measurement of the depth of the minute foreign matter can be performed stably and accurately without being influenced by disturbance. For this reason, it can be measured even when the transparent plate is dark. Depending on the irradiation direction of the light beam and the imaging direction of an imaging means such as an area scan camera, reflection from the surroundings on the irradiation surface to be imaged is reduced, and stable detection of minute foreign objects is possible regardless of disturbance. Since the irradiation position of the light beam and the position of the imaging means do not have to be on the same sheet glass surface side as in Patent Documents 2 and 3, the degree of freedom of installation is high.

この他、本発明の方法では、特許文献2及び3と異なり板ガラスの厚さ方向から撮像するので、照射方向による微小異物に対する解像度の変化が少ない。また、外乱としてのガラス表面への写り込みが問題となる場合であっても対策が容易である。さらにまた、レーザーを使用した光ビームであっても、板ガラス表面での正反射光が撮像手段に取り込まれることがなく、レーザービームによる撮像手段の損傷のおそれが少ない。   In addition, in the method of the present invention, unlike in Patent Documents 2 and 3, since the image is taken from the thickness direction of the plate glass, there is little change in resolution with respect to minute foreign matters depending on the irradiation direction. Even when reflection on the glass surface as a disturbance becomes a problem, it is easy to take measures. Furthermore, even with a light beam using a laser, specular reflection light on the surface of the plate glass is not taken into the imaging means, and there is little risk of damage to the imaging means by the laser beam.

以下、本発明について実施形態の例を挙げて説明する。   Hereinafter, the present invention will be described with examples.

図4から図7に、照射手段及び撮像手段の移動速度をゼロとして、板ガラスのみを板ガラス平面に水平にして移動させて、板ガラス内部の微小異物を検出する方法および装置の実施形態を説明する図を示す。この実施形態によって、前述したガラスリボンの微小異物の検出を連続的に実施してもよいし、強化工程前に貯蔵した切断後の板ガラス製品の微小異物の検出を必要なときに実施してもよい。   FIG. 4 to FIG. 7 are diagrams for explaining an embodiment of a method and apparatus for detecting minute foreign substances inside a plate glass by moving only the plate glass horizontally on the plate glass plane with the moving speed of the irradiation means and the imaging means being zero. Indicates. According to this embodiment, the above-described detection of minute foreign matters on the glass ribbon may be performed continuously, or even if necessary, detection of minute foreign matters on the sheet glass product after cutting stored before the strengthening step may be performed. Good.

板ガラス(1)は、公知である移動手段であるローラー(12)の上に載せて搬送方向(G)に移動する。この移動により、照射手段(5)による板ガラス(1)の照射表面(10)から板ガラス内部の想定した検出箇所に直接到達する内部光ビームI(I)と、同一の検出箇所に板ガラス下面である非照射表面(11)での反射により到達する内部光ビームII(II)とが、板ガラスを走査する。これによって、板ガラス(1)の平面に渡って微小異物の検出ができる。   The plate glass (1) is placed on a roller (12), which is a known moving means, and moves in the transport direction (G). By this movement, the inner light beam I (I) that directly reaches the assumed detection location inside the plate glass from the irradiation surface (10) of the plate glass (1) by the irradiation means (5) is the lower surface of the plate glass at the same detection location. An internal light beam II (II) that arrives by reflection at the non-irradiated surface (11) scans the glass sheet. As a result, it is possible to detect minute foreign matter over the plane of the plate glass (1).

線状レーザービーム(2)は、照射表面(10)で線状となりかつ照射方向が移動方向成分(G)または逆成分を有するように照射する。図4のように照射表面(10)で線状の光ビームが移動方向(G)に垂直になってもよいし、図5のように移動方向(G)に垂直な方向に対して角度を有していてもよいし、図6のように光ビームの照射方向が逆方向からでもよい。即ち、光ビームの照射方向の照射表面(10)での成分が、移動方向(G)に対して垂直でなければよい。照射手段(5)は、板ガラス(1)の幅に応じて、板ガラス上面の斜めから光ビームが入射するように1台または図7のように複数台設置することが好ましい。撮像手段(3)は、各照射手段(5)による光を板ガラス(1)の照射表面(10)から撮像するように、板ガラス(1)の幅に応じて1台または複数台設置することが好ましい。これによって、撮像手段(3)は線状の照射手段(5)の光が板ガラス(1)の移動によって、走査する板ガラス(1)の照射表面(10)を連続的に撮像し、板ガラス内部の微小異物を検出できる。   The linear laser beam (2) is irradiated so that it is linear on the irradiation surface (10) and the irradiation direction has a moving direction component (G) or an inverse component. The linear light beam may be perpendicular to the moving direction (G) on the irradiation surface (10) as shown in FIG. 4, or the angle with respect to the direction perpendicular to the moving direction (G) as shown in FIG. The irradiation direction of the light beam may be from the opposite direction as shown in FIG. That is, the component on the irradiation surface (10) in the irradiation direction of the light beam may not be perpendicular to the movement direction (G). According to the width of the plate glass (1), it is preferable to install one or a plurality of irradiation means (5) as shown in FIG. One or a plurality of imaging means (3) may be installed according to the width of the glass sheet (1) so that the light from each irradiation means (5) is imaged from the irradiation surface (10) of the glass sheet (1). preferable. Thereby, the imaging means (3) continuously images the irradiation surface (10) of the plate glass (1) to be scanned by the movement of the plate glass (1) by the light of the linear irradiation means (5). Minute foreign matter can be detected.

また、本実施形態において撮像手段(3)を、板ガラス(1)の非照射表面(11)側に設置する場合も、本発明の実施の範囲である。さらに、板ガラス上面を非照射表面(11)とし、板ガラス下面を照射表面(10)として、照射手段(5)及び撮像手段(3)を板ガラス下面側に設ける場合も、本発明の実施の範囲である。この実施形態の場合には、周辺からの映りこみの影響が比較的少ない。ただし、板ガラス(1)の搬送中の割れによって、照射手段(5)及び撮像手段(3)に支障がないように注意する。   In the present embodiment, the case where the imaging means (3) is installed on the non-irradiated surface (11) side of the plate glass (1) is also within the scope of the present invention. Furthermore, the case where the illuminating means (5) and the imaging means (3) are provided on the lower surface side of the glass sheet with the upper surface of the glass sheet as the non-irradiated surface (11) and the lower surface of the glass sheet as the irradiated surface (10) are also within the scope of the present invention. is there. In the case of this embodiment, the influence of the reflection from the periphery is relatively small. However, care should be taken so that the irradiation means (5) and the imaging means (3) are not hindered by cracks during conveyance of the plate glass (1).

以上の実施形態によって、板ガラスの移動に公知の搬送手段を利用し、照射手段及び撮像手段を固定して、内部光ビームI及び内部光ビームIIを発生できるので、より簡単な方法で微小異物の検出ができる。また、本発明の方法によれば、板ガラスの上面または下面(照射表面、非照射表面)の光によりガラス表裏面の距離の情報を得ることができるため、板ガラスの高さが、搬送やそりによって変化しても内部の微小異物の深さ情報をガラス表面からの相対位置として変わらぬ精度で安定して得ることができる。また、微小異物の形状が認識できない程度の低い解像度の撮像手段での検出が可能なので、画像データの容量が小さくなり、照射手段の走査速度を早くでき、板ガラスが高速に搬送される場合にも対応できる。   According to the above embodiment, a known conveying means is used for moving the plate glass, the irradiation means and the imaging means are fixed, and the internal light beam I and the internal light beam II can be generated. Can be detected. In addition, according to the method of the present invention, the information on the distance between the front and back surfaces of the glass sheet can be obtained by the light on the upper or lower surface (irradiated surface, non-irradiated surface) of the plate glass. Even if it changes, the depth information of the internal minute foreign matter can be stably obtained with the same accuracy as the relative position from the glass surface. In addition, since it can be detected by a low-resolution imaging means that cannot recognize the shape of minute foreign matter, the image data capacity can be reduced, the scanning speed of the irradiation means can be increased, and the plate glass is conveyed at high speed. Yes.

図8に、本発明に係る板ガラスの製造方法の別の実施形態を説明する図を示す。なお、この図において、連続した板ガラス(ガラスリボン)を製造する工程と採板工程は、公知技術でも、その他どのような技術でもよい。図9に、この実施形態に対する装置の別の実施形態について説明する図を示す。これらの実施形態は、図4から図7の実施形態に対して、板ガラスの製造工程での採板工程後に板ガラスの微小異物の検出をすること等を想定した方法および装置である。このため、照射手段及び撮像手段の移動手段を有する。この装置は、線状レーザービーム(2)を板ガラス(1)の厚さ方向に対して所定の傾斜角度で板ガラス内部に進入させて、進入した内部光ビームI(I)と該内部光ビームIが板ガラス表面で反射した内部光ビームII(II)とを板ガラス内部に形成する照射手段(5)と、照射手段(5)を板ガラスに対して板ガラスの平面に平行な方向に相対的に移動させる移動手段(13)と、板ガラス表面から該表面に対して垂直方向に出射された光を、板ガラスの光ビーム照射表面(10)側または非照射表面(11)側において撮像する撮像装置であって、同一微小異物が前記内部光ビームI(I)により照射されて生じた輝点と前記内部光ビームII(II)により照射されて生じた輝点とを撮像する撮像装置(3)と、撮像装置(3)に接続され、撮像された画像に基づいて微小異物を判定する画像処理手段6と、を有する装置である。板ガラス(1)は、テーブル(14)上に支持すればよい。移動手段(13)は、図示していないがテーブル(14)等の構造体に固定され、照射手段(5)と撮像手段(3)とが移動可能に設置される。照射は、照射方向が移動方向成分(H)またはその逆成分を有するようにすればよい。図9では、1方向(H)の往復のみ可能な装置を示しているが、検出をしない際には、板ガラス(1)平面に対して平行等の方向にも移動できることが好ましい。また、照射手段(5)と撮像手段(3)は、板ガラス(1)の幅の大きさに応じて、幅方向に渡って一度に捜査できるように、移動手段(13)に複数台を板ガラス(1)の幅方向に設けることが好ましい。   In FIG. 8, the figure explaining another embodiment of the manufacturing method of the plate glass which concerns on this invention is shown. In addition, in this figure, the process which manufactures a continuous plate glass (glass ribbon), and a plate-drawing process may be a well-known technique and any other technique. FIG. 9 shows a diagram illustrating another embodiment of the apparatus for this embodiment. These embodiments are a method and an apparatus that are assumed to detect minute foreign substances on a plate glass after the plate-making process in the plate glass manufacturing process, as compared with the embodiments of FIGS. 4 to 7. For this reason, it has a moving means of an irradiation means and an imaging means. In this apparatus, a linear laser beam (2) is caused to enter the inside of the glass sheet at a predetermined inclination angle with respect to the thickness direction of the glass sheet (1), and the entered internal light beam I (I) and the internal light beam I Irradiating means (5) for forming the internal light beam II (II) reflected by the surface of the glass sheet inside the glass sheet, and moving the irradiation means (5) relative to the glass sheet in a direction parallel to the plane of the glass sheet. A moving means (13) and an imaging device for imaging light emitted from a surface of a plate glass in a direction perpendicular to the surface on a light beam irradiation surface (10) side or a non-irradiation surface (11) side of the plate glass. An image pickup device (3) for picking up an image of a bright spot generated by irradiating the same minute foreign matter with the internal light beam I (I) and a bright spot generated by the internal light beam II (II); Connected to the device (3), An image processing unit 6 determines the fine foreign matter on the basis of the image image, an apparatus having a. The plate glass (1) may be supported on the table (14). Although not shown, the moving means (13) is fixed to a structure such as a table (14), and the irradiation means (5) and the imaging means (3) are movably installed. Irradiation may be performed such that the irradiation direction has a movement direction component (H) or its inverse component. Although FIG. 9 shows an apparatus that can only reciprocate in one direction (H), it is preferable that the apparatus can also move in a direction parallel to the plane of the glass sheet (1) when detection is not performed. In addition, the irradiation means (5) and the imaging means (3) are provided with a plurality of plate glasses on the moving means (13) so that they can be searched at once in the width direction according to the width of the plate glass (1). It is preferable to provide in the width direction of (1).

以上の本発明の実施形態によって、特に、採板後に板ガラスを貯蔵しておき、所望の時期に微小異物の検出ができる。このため、物理強化処理前で検出を行うことが望ましいが、物理強化処理後においても検出が可能である。また、微小異物の形状が認識できない程度の低い解像度の撮像手段での検出が可能なので、画像データの容量が小さくなり、照射手段の走査速度、即ち移動手段による移動の速度を早くでき、大面積の板ガラスに対して早い検出ができる。さらに、移動手段によって照射手段及び撮像手段の移動を高精度に制御できるので、微小異物の位置座標を精度良く測定できる。   According to the embodiment of the present invention described above, in particular, a plate glass can be stored after sampling, and minute foreign matters can be detected at a desired time. For this reason, it is desirable to perform detection before physical enhancement processing, but detection is possible even after physical enhancement processing. In addition, since it can be detected by a low-resolution imaging means that cannot recognize the shape of minute foreign matter, the image data capacity can be reduced, the scanning speed of the irradiation means, that is, the speed of movement by the moving means can be increased, and the large area Can be detected quickly with respect to flat glass. Furthermore, since the movement of the irradiation unit and the imaging unit can be controlled with high accuracy by the moving unit, the position coordinates of the minute foreign matter can be measured with high accuracy.

その他、本発明に係る微小異物を検出する方法及びその装置並びにその方法に基づく板ガラスの製造方法において、照射手段としてレーザービームを用いる場合にその個数をなるべく減らすためには、図4から図6のようにレーザーの線状のビームの長さを長くすることが好ましい。このために、板ガラス(1)の照射表面(10)からレーザーまでの距離を遠くしたり、レーザーに付いているレンズで調整をする必要がある。ただし、レーザーによる照射表面(10)上での単位長さにおけるレーザービームの強度が不足することになる。これに対しては、レーザーの出力を増加することによって対応ができるが、使い方によっては人体への影響も懸念され、しかも高価なレーザーとなる。また、線状のレーザービームの強度は端部程弱くなり、強度むらを有する。レーザーの出力の不足と強度むらを補うためには、図7のように複数のレーザーによって入射角度を同じにして、照射領域を重ねるようにして照射するとよい。レーザービームを重ねる精度については、線が二重にならなければ微小異物の識別や深さの測定に影響は少ない。レーザービームの線幅が太くなると、板ガラスの表裏面近傍の検出できない領域が増える。また、本実施形態は、レーザーの簡単な配線でレーザー強度を調整できる効果もある。さらに、本実施形態は、透過率の低い濃色ガラスで、レーザービームによる微小異物からの光が弱くなる場合にも適用できる。   In addition, in the method and apparatus for detecting minute foreign matter according to the present invention, and the method for producing a plate glass based on the method, in order to reduce the number of laser beams as the irradiation means, the number of them can be reduced as shown in FIGS. Thus, it is preferable to increase the length of the linear beam of the laser. For this purpose, it is necessary to increase the distance from the irradiation surface (10) of the plate glass (1) to the laser, or to adjust with a lens attached to the laser. However, the intensity of the laser beam in the unit length on the irradiation surface (10) by the laser is insufficient. This can be dealt with by increasing the output of the laser, but depending on how it is used, there are concerns about the effects on the human body, and the laser becomes expensive. Further, the intensity of the linear laser beam becomes weaker toward the end, and the intensity is uneven. In order to compensate for the shortage of laser output and unevenness in the intensity of the laser, it is preferable to irradiate with a plurality of lasers having the same incident angle and overlapping irradiation regions as shown in FIG. The accuracy with which the laser beam is superimposed has little effect on the identification of minute foreign objects and the measurement of depth unless the line is doubled. When the line width of the laser beam is increased, the undetectable areas near the front and back surfaces of the plate glass increase. In addition, this embodiment has an effect that the laser intensity can be adjusted with a simple wiring of the laser. Furthermore, the present embodiment can be applied to dark glass with low transmittance and also when light from a minute foreign matter by a laser beam becomes weak.

また、本発明に係る板ガラスの内部の微小異物を検出する方法および装置の別の実施形態として、図10に示すように板ガラス1の照射手段5(第1の照射手段)に加えて、照射手段5による線状レーザービーム2(第1の光ビーム)の進入角度と反対方向から第2の線状レーザービーム7(第2の光ビーム)を照射する第2の照射手段8を設け、撮像手段3で撮像された画像に基づいて画像処理手段6により、線状レーザービーム2(第1の光ビーム)と線状レーザービーム7(第2の光ビーム)とによって生じた同一異物による輝点の画像の板ガラス1の移動方向に直交する軸に対する対称性によって板ガラス表面の埃等の異物を判別し、微小異物の板ガラス中における位置を判定し、微小異物を検出する。これによって、板ガラス表面の埃等の異物を誤検出として、微小異物の検出対象から除外できる。板ガラス表面の埃等の異物は、大半の場合にはレーザービームの幅内に入るため板ガラス内部の微小異物との区別はつくが、少数の場合として以下のような場合に内部の微小異物とみなす誤検出を起こすおそれがある。例えば、比較的大きな糸くず等は、光ビームが板ガラス表面から入射した際に、一部の光ビームが糸くず等の内部を通って板ガラス外部に出射して輝点(信号)となるおそれがある。また、埃等の高さが比較的高い場合は、光ビームの反射光の一部が埃等に当たり、そこで輝点(信号)となるおそれがある。さらに、大きな埃等の場合は、光ビームの入射光や反射光により2次散乱して輝点(信号)となるおそれがある。なお、板ガラス表面の埃等の異物は、検出前の板ガラスに空気を吹き付けるなどによって簡単に取り除くことができるが、これが出来ない場合には、板ガラス内部の微小異物として誤検出するおそれがある。このような場合に、本実施形態は、板ガラス表面に付着した比較的大きい埃等の異物の誤検出を防止できる効果がある。   Further, as another embodiment of the method and apparatus for detecting minute foreign matters inside the plate glass according to the present invention, as shown in FIG. 10, in addition to the irradiation unit 5 (first irradiation unit) of the plate glass 1, the irradiation unit The second irradiating means 8 for irradiating the second linear laser beam 7 (second light beam) from the direction opposite to the entry angle of the linear laser beam 2 (first light beam) by 5 is provided, and imaging means The image processing means 6 based on the image picked up in 3 causes the bright spot due to the same foreign matter generated by the linear laser beam 2 (first light beam) and the linear laser beam 7 (second light beam). Foreign matter such as dust on the surface of the plate glass is determined based on the symmetry of the image with respect to the axis orthogonal to the moving direction of the plate glass 1, the position of the minute foreign matter in the plate glass is determined, and the minute foreign matter is detected. As a result, foreign matter such as dust on the surface of the plate glass can be excluded from the detection target of minute foreign matter as erroneous detection. Foreign matter such as dust on the surface of the glass sheet is within the width of the laser beam in most cases, so it can be distinguished from the microscopic foreign material inside the glass sheet. There is a risk of false detection. For example, when a light beam is incident from the surface of a sheet glass, a relatively large amount of lint may be emitted to the outside of the sheet glass through the inside of the lint and become a bright spot (signal). is there. In addition, when the height of dust or the like is relatively high, part of the reflected light of the light beam may hit the dust or the like, and may become a bright spot (signal) there. Further, in the case of large dust or the like, there is a possibility that secondary scattering is caused by incident light or reflected light of a light beam to become a bright spot (signal). Foreign matter such as dust on the surface of the plate glass can be easily removed by blowing air on the plate glass before detection, but if this is not possible, there is a risk of erroneous detection as minute foreign matter inside the plate glass. In such a case, the present embodiment is effective in preventing erroneous detection of foreign matters such as relatively large dust attached to the surface of the plate glass.

本実施形態では、板ガラス表面の埃等の異物が、板ガラスの表面上で対称性を有しない形状である場合が多いため、照射方向が違う光ビームに対する輝点(信号)の画像は前記軸に対して非対称となることが多いことを利用する。すなわち、本実施形態では、この埃等の異物の輝点(信号)の特長を考慮して、2つの光ビームによって信号を発生させ、それらの前記軸に対する対称性を判別することによって、板ガラス表面に付着する埃等の異物と、板ガラス内部の微小異物とを判別し、それらの信号に非対称性が認められた場合に板ガラス表面に付着する埃等の異物を誤検出として、検出対象から除外することができる。   In this embodiment, foreign matter such as dust on the surface of the glass sheet is often in a shape that does not have symmetry on the surface of the glass sheet, so that an image of a bright spot (signal) for a light beam with a different irradiation direction is on the axis. Use the fact that they are often asymmetric. That is, in the present embodiment, in consideration of the feature of the bright spot (signal) of foreign matter such as dust, a signal is generated by two light beams, and the symmetry with respect to the axis is discriminated, whereby the surface of the plate glass Foreign matter such as dust adhering to the glass plate and minute foreign matter inside the glass plate, and if there is an asymmetry in the signal, the foreign material such as dust adhering to the glass plate surface is excluded as a false detection. be able to.

この2つの光ビームによる信号の対称性を判別するにあたっては、第2の光ビームを、第1の光ビームの角度と反対方向から進入させるだけでなく、その角度が略同一になるように進入させることが好ましい。この構成によって、第1の光ビームによる輝点と輝線を撮像した画像と、第2の光ビームによる輝点と輝線を撮像した画像とを、補正処理をすることなく、直接比較して埃等の異物による輝点(信号)の対称性を判別できる。特に、第1の照射手段と第2の照射手段のセッティングにあたっては、両者による光ビームで発生する輝線が平行になるようにすることがより好ましい。なお、第1の光ビームと第2の光ビームの進入角度が異なる場合でも、両者の画像を比較できるように、角度の違いに基づいて画像を補正すれば、板ガラス外部の埃等の異物をより簡単に誤検出として判別できる。なお、この実施形態での光ビームの形態、照射手段、撮像手段、画像処理手段での微小異物の位置の判定については、前述の基本的な実施形態と同様である。   In determining the symmetry of the signal by the two light beams, the second light beam is not only entered from the opposite direction to the angle of the first light beam, but also entered so that the angles are substantially the same. It is preferable to make it. With this configuration, the image obtained by capturing the bright spot and the bright line by the first light beam and the image obtained by capturing the bright spot and the bright line by the second light beam can be directly compared without performing correction processing. The symmetry of the bright spot (signal) due to the foreign matter can be determined. In particular, in setting the first irradiation means and the second irradiation means, it is more preferable that the bright lines generated by the light beams generated by the both are made parallel. Even if the first light beam and the second light beam have different entrance angles, foreign matter such as dust outside the plate glass can be obtained by correcting the image based on the difference in angle so that the two images can be compared. It can be determined as a false detection more easily. Note that the determination of the position of the minute foreign matter in the form of the light beam, irradiation means, imaging means, and image processing means in this embodiment is the same as in the basic embodiment described above.

以上のように本発明に係る微小異物を検出する方法及びその装置並びにその方法に基づく板ガラスの製造方法によって、遮光性と透光性の微小異物の区別が可能となる。さらに、遮光性のNiSとそれ以外の遮光性の微小異物とを区別するには、次に示すように各微小異物から得られる光信号の特徴を利用することによって可能となる。ガラス内部のNiSは滑らかな球形か球に近い楕円形で、しかも金属光沢が強い特徴とを有しており、他の遮光性の主な微小異物である鉄の化合物、例えば硫化鉄(FeS)等は滑らかな球形ではなく、偏平の形をしている。この形状及び光沢の違いによって各微小異物からの光信号の強度が異なるので、撮像した画像に基づいて識別すれば区別ができる。特に、本発明では、撮像手段による撮像を透明板体の板厚方向から行うので、前述したように光ビームの照射方向により微小異物に対する解像度が変化しないため有利である。また、本発明に係る装置でNiSを含む遮光性の微小異物を検出後、検査員の目視による判断か、他の高い解像度の別の装置との併用により、NiSとその他の遮光性の微小異物との区別ができる。   As described above, it is possible to distinguish between light-shielding and translucent minute foreign substances by the method and apparatus for detecting fine foreign substances according to the present invention and the method for manufacturing a plate glass based on the method. Furthermore, it is possible to distinguish between light-shielding NiS and other light-shielding minute foreign matters by utilizing the characteristics of the optical signal obtained from each minute foreign matter as described below. The NiS inside the glass is a smooth sphere or an ellipse close to a sphere, and has a strong metallic luster, and other light-shielding iron compounds, such as iron sulfide (FeS). Is not a smooth sphere, but a flat shape. Since the intensity of the optical signal from each minute foreign matter varies depending on the difference in shape and gloss, it can be distinguished by identifying based on the captured image. In particular, in the present invention, since the imaging by the imaging unit is performed from the thickness direction of the transparent plate, the resolution with respect to the minute foreign matter does not change depending on the irradiation direction of the light beam as described above. In addition, after detecting a light-shielding minute foreign matter containing NiS with the apparatus according to the present invention, NiS and other light-shielding minute foreign substances can be determined by visual inspection by an inspector or in combination with another apparatus having another high resolution. And can be distinguished.

なお、本発明の一連の実施形態では、照射手段と撮像手段とを遮光カーテンで覆って簡易な暗室をつくることが、より周辺の影響を受けにくくするので望ましい。   In a series of embodiments of the present invention, it is desirable to create a simple dark room by covering the irradiating means and the imaging means with a light-shielding curtain because it is less susceptible to the influence of the surroundings.

本発明に係る微小異物の検出方法及びその装置の有効性を確認するために、本発明に係る装置を製作し、板ガラス中のNiS及び泡の検出を行った。ただし、本発明は、以下の実施例に限定されるものではない。光ビームの照射手段としてのレーザーは、波長635nm、エネルギ1mW、広がり角78度、焦点及びレーザービームの線の幅の調整が可能なクラス2レーザーを用いた。撮像手段としてのエリアスキャンカメラは、1/3型IT方式PSのCCDで、VGAクラス(640×480画素)の画像出力を60fps(frame per second)で可能な白黒カメラモジュールに、焦点距離50mm、明るさを示すF値が2.8のレンズを付けた。レーザービームの入射方向と板ガラスの法線との角度は50度、レーザービームの幅は0.25mm、レーザーからガラス上面までの照射距離は20cm、ガラス上面からその板厚方向の上方に設置したエリアラインカメラまでの距離は50cmとした。この条件でのエリアスキャンカメラの撮像視野は38mm×28mmとなる。本検出にあたっては、1画素50μmに設定した。この解像度では、今回対象とした微小異物は2画素×2画素程度の大きさであり形状自体の認識は難しい。従来の技術によって、同程度の大きさの微小異物の形状及び色を安定的に認識する場合には、10画素×10画素以上必要である。   In order to confirm the effectiveness of the method and apparatus for detecting fine foreign matter according to the present invention, an apparatus according to the present invention was manufactured, and NiS and bubbles in the plate glass were detected. However, the present invention is not limited to the following examples. As the laser as the light beam irradiation means, a class 2 laser having a wavelength of 635 nm, an energy of 1 mW, a divergence angle of 78 degrees, a focus, and a line width of the laser beam can be adjusted. The area scan camera as an imaging means is a CCD of 1/3 type IT system PS, a monochrome camera module capable of outputting an image of VGA class (640 × 480 pixels) at 60 fps (frame per second), a focal length of 50 mm, A lens having an F value of 2.8 indicating brightness was attached. The angle between the incident direction of the laser beam and the normal of the plate glass is 50 degrees, the width of the laser beam is 0.25 mm, the irradiation distance from the laser to the upper surface of the glass is 20 cm, and the area installed above the upper surface of the glass from the upper surface of the glass The distance to the line camera was 50 cm. Under this condition, the field of view of the area scan camera is 38 mm × 28 mm. In this detection, one pixel was set to 50 μm. At this resolution, the minute foreign matter targeted this time is about 2 × 2 pixels, and it is difficult to recognize the shape itself. In the case of stably recognizing the shape and color of a minute foreign substance having the same size by the conventional technique, 10 pixels × 10 pixels or more are required.

内部光ビームIと内部光ビームIIは、透明板体としての板ガラスをテーブル上に置いて動かすことによって、板ガラスとレーザービームとを相対的に移動させて形成した。撮像した画像に基づく画像処理手段としては、数値演算装置としてパーソナルコンピュータにメモリーを搭載したものを用いた。さらに、数値演算装置に画像入力ボートを取り付け、画像を取り込んだ。画像の解析は、数値演算装置にインストールした市販の画像処理ソフトにより画像の各部の階調値を求めて行った。   The internal light beam I and the internal light beam II were formed by moving a plate glass and a laser beam relatively by placing and moving a plate glass as a transparent plate on a table. As the image processing means based on the captured image, a numerical computer having a memory mounted on a personal computer was used. Furthermore, an image input boat was attached to the numerical arithmetic unit, and images were captured. The analysis of the image was performed by obtaining the gradation value of each part of the image using commercially available image processing software installed in the numerical arithmetic unit.

[例1]
図11及び図12に、NiSを内部光ビームIと内部光ビームIIによって検出した画像を示す。板ガラスとして、大きさが300mm×300mm、板厚が6.8mm、長径が120μm、短径が100μmの楕円状のNiSを非照射表面からの深さ2.3mmに含むものを用意した。深さは、顕微鏡によるNiSの焦点深度に基づく値である。
図11は、内部光ビームIによる輝点及び輝線を撮像した画像である。画像内の最も上の線が照射表面であるガラス表面での輝線A、その下の点がNiSの輝点E、その下の線がガラス裏面での輝線B、その下の線が見難いがガラス裏面からの反射によるガラス表面での輝線Cである。この画像から、NiSの深さが、照射表面から2.3mmであることを確認した。
図12は、内部光ビームIIによる輝点及び輝線を撮像した画像である。画像内の最も上の線が照射表面であるガラス表面での輝線A、その下の線がガラス裏面での輝線B、その下の点がNiSの輝点F、その下の線が見難いがガラス裏面からの反射によるガラス表面での輝線Cである。この画像からも、NiSの深さが、照射表面から2.3mmであることを確認した。
[Example 1]
11 and 12 show images in which NiS is detected by the internal light beam I and the internal light beam II. As the plate glass, one containing ellipsoidal NiS having a size of 300 mm × 300 mm, a plate thickness of 6.8 mm, a major axis of 120 μm and a minor axis of 100 μm at a depth of 2.3 mm from the non-irradiated surface was prepared. The depth is a value based on the focal depth of NiS by a microscope.
FIG. 11 is an image obtained by capturing bright spots and bright lines by the internal light beam I. The uppermost line in the image is the bright line A on the glass surface that is the irradiated surface, the lower point is the bright point E of NiS, the lower line is the bright line B on the back of the glass, and the lower line is difficult to see It is a bright line C on the glass surface due to reflection from the back surface of the glass. From this image, it was confirmed that the NiS depth was 2.3 mm from the irradiated surface.
FIG. 12 is an image obtained by capturing bright spots and bright lines by the internal light beam II. The uppermost line in the image is the bright line A on the glass surface that is the irradiation surface, the lower line is the bright line B on the back side of the glass, the lower point is the bright point F of NiS, and the lower line is difficult to see It is a bright line C on the glass surface due to reflection from the back surface of the glass. Also from this image, it was confirmed that the NiS depth was 2.3 mm from the irradiated surface.

図11及び図12から、遮光性のNiSの場合には、内部光ビームIIによる微小異物からの輝点が内部光ビームIによる微小異物からの輝点に比べて、顕著に弱いことがわかる。
この他、大きさが300mm×300mm、板厚が6.8mm、長径が70μm、短径が60μmの楕円状の比較的小さいNiSを内部に含むものを用意して撮像した結果でも、NiSからの輝点の検出及び深さの測定ができることを確認した。
11 and 12, in the case of light-shielding NiS, it can be seen that the bright spot from the minute foreign matter by the internal light beam II is significantly weaker than the bright spot from the minute foreign matter by the internal light beam I.
In addition to this, even when the image was prepared by taking an image containing relatively small NiS having an ellipse size of 300 mm × 300 mm, plate thickness of 6.8 mm, major axis of 70 μm, minor axis of 60 μm, the NiS It was confirmed that bright spot detection and depth measurement were possible.

[例2]
図13及び図14に、泡を内部光ビームIと内部光ビームIIによって検出した画像を示す。板ガラスとして、大きさが50mm×50mm、板厚3mm、直径200μmの泡を非照射表面からの深さ1.0mmに含むものを用意した。深さは、顕微鏡による泡の焦点深度に基づく値である。
図13は、内部光ビームIによる輝点及び輝線を撮像した画像である。画像内の最も上の線が照射表面であるガラス表面での輝線A、その下の点が泡の輝点E、その下の線がガラス裏面での輝線B、その下の線が見難いがガラス裏面からの反射によるガラス表面での輝線Cである。この画像から、泡の深さが、照射表面から1.0mmであることを確認した。
図14は、内部光ビームIIによる輝点及び輝線を撮像した画像である。画像内の最も上の線が照射表面であるガラス表面での輝線A、その下の線がガラス裏面での輝線B、その下の点が泡の及び輝点F、その下の線が見難いがガラス裏面からの反射によるガラス表面での及び輝線Cである。この画像からも、泡の深さが、照射表面から1.0mmであることを確認した。
[Example 2]
13 and 14 show images in which bubbles are detected by the internal light beam I and the internal light beam II. As the plate glass, one containing a bubble having a size of 50 mm × 50 mm, a plate thickness of 3 mm, and a diameter of 200 μm at a depth of 1.0 mm from the non-irradiated surface was prepared. The depth is a value based on the depth of focus of the bubble by a microscope.
FIG. 13 is an image obtained by capturing bright spots and bright lines by the internal light beam I. The uppermost line in the image is the bright line A on the glass surface that is the irradiated surface, the lower point is the bright point E of the bubble, the lower line is the bright line B on the back of the glass, and the line below it is difficult to see It is a bright line C on the glass surface due to reflection from the back surface of the glass. From this image, it was confirmed that the bubble depth was 1.0 mm from the irradiated surface.
FIG. 14 is an image obtained by capturing bright spots and bright lines by the internal light beam II. The uppermost line in the image is the bright line A on the glass surface that is the irradiation surface, the lower line is the bright line B on the back surface of the glass, the lower point is the bubble and bright point F, and the lower line is difficult to see Is the bright line C on the glass surface due to reflection from the back surface of the glass. Also from this image, it was confirmed that the bubble depth was 1.0 mm from the irradiated surface.

図13及び図14から、透光性の泡の場合には、内部光ビームIと内部光ビームIIによる微小異物からの輝点の強度は、内部光ビームIIによる方が強いことがわかる。   From FIG. 13 and FIG. 14, in the case of translucent bubbles, it can be seen that the intensity of the bright spot from the minute foreign matter by the internal light beam I and the internal light beam II is stronger by the internal light beam II.

[例3]
NiSを含むサンプルと泡を含むサンプルについて微小異物の検出を、それぞれについて内部光ビームIと内部光ビームIIによる各画像の撮像を行い、遮光性と透光性の微小異物の区別ができるかの確認を行った。板ガラスとして、大きさが50mm×50mm、板厚3mm、直径80から200μmの球形のNiS、直径100から400μmの泡を内部に含むものを、それぞれ3枚と17枚準備した。識別にあたっては、微小異物以外の部分を背景信号とした。信号強度は、取得画像の8ビット階調値で表し、256以上の階調値はレンジオーバーとして255とした。その結果、NiSを含むサンプル3枚においては、内部光ビームIによる微小異物の輝点の階調値がノイズレベルで認識不能でレンジオーバーの255となり、内部光ビームIIによる微小異物の輝点の階調値はほとんどゼロで、一部66となった。泡を含むサンプル17枚においては、内部光ビームIによる微小異物の輝点の階調値は平均値で123となり、内部光ビームIIによる微小異物の輝点の階調値はほとんどでレンジオーバーで225となった。今回、NiSの場合に、内部光ビームIによる微小異物の輝点の階調値がレンジオーバーとなったが、これはNiSの大きさによって変化し、NiSが小さい場合には、泡と同様に内部光ビームIによる微小異物の輝点の階調値もレンジに収まる。即ち、遮光性と透光性の微小異物を区別するにあたって、単に各微小異物の輝点の階調値だけでは不十分である。
[Example 3]
Whether the sample containing NiS and the sample containing bubbles can detect minute foreign matter, and each image can be captured with the internal light beam I and the internal light beam II to distinguish between light-shielding and translucent minute foreign matter. Confirmed. As the plate glass, 3 and 17 plates each having a size of 50 mm × 50 mm, a plate thickness of 3 mm, spherical NiS having a diameter of 80 to 200 μm, and bubbles having a diameter of 100 to 400 μm were prepared. In the identification, the part other than the minute foreign matter was used as the background signal. The signal intensity is represented by an 8-bit gradation value of the acquired image, and a gradation value of 256 or more is set to 255 as a range over. As a result, in the three samples containing NiS, the gradation value of the bright spot of the minute foreign matter by the internal light beam I is not recognizable by the noise level and becomes 255 over the range. The gradation value was almost zero, and partly 66. In 17 samples containing bubbles, the gradation value of the bright spot of the minute foreign matter by the internal light beam I is 123 on average, and the gradation value of the bright spot of the fine foreign object by the internal light beam II is almost over the range. 225. In this case, in the case of NiS, the gradation value of the bright spot of the minute foreign matter by the internal light beam I is over the range, but this changes depending on the size of NiS. The gradation value of the bright spot of the minute foreign matter by the internal light beam I is also within the range. That is, in distinguishing between light-shielding and translucent minute foreign matters, it is not sufficient to simply use the gradation value of the bright spot of each fine foreign matter.

このため、識別指標としての内部光ビームIによる微小異物からの光強度に対する内部光ビームIIによる同一の微小異物からの輝点の光強度の比率を計算した。その結果、NiSの場合に0.26以下、泡の場合に1.4以上となり、2つの光路による微小異物の輝点の光強度の比の違いによって両者を区別できた。   For this reason, the ratio of the light intensity of the bright spot from the same minute foreign matter by the internal light beam II to the light intensity from the fine foreign matter by the internal light beam I as an identification index was calculated. As a result, it was 0.26 or less in the case of NiS, and 1.4 or more in the case of bubbles, and the two could be distinguished by the difference in the ratio of the light intensity of the bright spots of the minute foreign matters by the two optical paths.

以上のように、本発明によって、遮光性のNiSと透光性の泡について検出及び深さの測定ができること、並びに前述の識別指標を設けることによって、遮光性と透光性の微小異物を識別できることを実証した。   As described above, according to the present invention, it is possible to detect and measure the depth of light-shielding NiS and translucent bubbles, and to identify light-shielding and translucent minute foreign objects by providing the above-described identification index. We have demonstrated that we can do it.

本発明は、板ガラス内部のNiSのみならず、その他の大きさが比較的小さい泡や粒子状の内部の微小異物の識別に対しても有効となる。

なお、2007年9月4日に出願された日本特許出願2007−229468号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The present invention is effective not only for discriminating not only NiS inside a glass plate but also other relatively small bubbles or particulate foreign matter inside.

The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2007-229468 filed on Sep. 4, 2007 are cited here as disclosure of the specification of the present invention. Incorporated.

Claims (21)

均一な屈折率を有する一定厚さの透明板体の内部に存在する微小異物を照射した光ビームの散乱等により生じる輝点の検知により検出する方法であって、光ビームを透明板体の厚さ方向に対して所定の傾斜角度で透明板体内部に進入させて、進入した内部光ビームIと該内部光ビームIが透明板体の表面で反射した内部光ビームIIとを透明板体内部に形成し、前記光ビームの進入角度を変えることなく透明板体と光ビームとを相対的に移動させて、同一微小異物が前記内部光ビームIにより照射されて生じた輝点と前記内部光ビームIIにより照射されて生じた輝点とを透明板体の厚さ方向からそれぞれ検知して前記微小異物の透明板体中における位置を判定することを特徴とする透明板体内部の微小異物を検出する方法。   A method of detecting by detecting a bright spot caused by scattering of a light beam irradiated with a minute foreign substance existing inside a transparent plate having a uniform refractive index and having a constant thickness, and the thickness of the transparent plate The internal light beam I that has entered the transparent plate body at a predetermined inclination angle with respect to the vertical direction and the internal light beam II that is reflected by the surface of the transparent plate body are reflected inside the transparent plate body. The transparent plate and the light beam are relatively moved without changing the entrance angle of the light beam, and the bright spot generated by the same minute foreign matter being irradiated by the internal light beam I and the internal light Detecting the bright spot generated by the beam II from the thickness direction of the transparent plate and determining the position of the minute foreign matter in the transparent plate, How to detect. 光ビームが、該光ビームの軸に対して垂直方向に延びた線状の照射域を透明板体表面に形成する光ビームである、請求項1に記載の方法。   The method according to claim 1, wherein the light beam is a light beam that forms a linear irradiation area extending in a direction perpendicular to the axis of the light beam on the surface of the transparent plate. 進入角度を変えることなく透明板体と光ビームとを相対的に移動させる方向が、透明板体表面に平行な方向である、請求項1または2に記載の方法。   The method according to claim 1, wherein the direction in which the transparent plate and the light beam are relatively moved without changing the approach angle is a direction parallel to the surface of the transparent plate. 光ビームが該光ビームの軸に対して垂直方向に延びた線状の照射域を透明板体表面に形成する光ビームであり、前記移動方向が、前記線状の照射域の該線の方向に対し略垂直方向である、請求項3に記載の方法。   The light beam is a light beam that forms a linear irradiation area on the surface of the transparent plate extending in a direction perpendicular to the axis of the light beam, and the moving direction is the direction of the line of the linear irradiation area The method according to claim 3, wherein the method is substantially perpendicular to. さらに、前記2つの輝点の光強度の対比により微小異物の種類を判定する、請求項1〜4のいずれか一項に記載の方法。   Furthermore, the method as described in any one of Claims 1-4 which determines the kind of minute foreign material by contrast of the light intensity of the said two luminescent spots. 均一な屈折率を有する所定厚さの透明板体が板ガラスである、請求項1〜5のいずれか一項に記載の方法。   The method according to any one of claims 1 to 5, wherein the transparent plate having a uniform refractive index and having a predetermined thickness is a plate glass. 板ガラスの内部に存在する微小異物を照射した光ビームの散乱等により生じる輝点の検知により検出する方法であって、
光ビームを板ガラスの厚さ方向に対して所定の傾斜角度で板ガラス内部に進入させて、進入した内部光ビームIと該内部光ビームIが板ガラス表面で反射した内部光ビームIIとを板ガラス内部に形成する照射手段と、
板ガラス表面から該表面に対して垂直方向に出射された光を、板ガラスの光ビーム照射表面側または非照射表面側において撮像する撮像手段と、
前記撮像手段で撮像した画像に基づいて板ガラス内部の微小異物の位置を判定する画像処理手段と、を備えた検出装置を用い、
光ビームの進入角度を変えることなく板ガラスの光ビーム照射位置を移動させて、同一微小異物が前記内部光ビームIにより照射されて生じた輝点と前記内部光ビームIIにより照射されて生じた輝点とを撮像手段で撮像し、
前記撮像手段で撮像された画像に基づいて画像処理手段により前記微小異物の板ガラス中における位置を判定する、
ことを特徴とする板ガラス内部の微小異物を検出する方法。
A method of detecting by detecting a bright spot caused by scattering of a light beam irradiated with a minute foreign substance existing inside a plate glass,
The light beam is allowed to enter the inside of the glass sheet at a predetermined inclination angle with respect to the thickness direction of the glass sheet, and the internal light beam I that has entered and the internal light beam II reflected by the surface of the glass sheet are reflected inside the glass sheet. Irradiation means to form;
Imaging means for imaging light emitted from the surface of the plate glass in a direction perpendicular to the surface on the light beam irradiation surface side or non-irradiation surface side of the plate glass;
An image processing means for determining the position of a minute foreign substance inside the plate glass based on an image picked up by the image pickup means, and using a detection device comprising:
The light beam irradiation position of the plate glass is moved without changing the light beam entrance angle, and the bright spot generated when the same minute foreign matter is irradiated with the internal light beam I and the internal light beam II are generated. The point is imaged by the imaging means,
The position of the minute foreign matter in the plate glass is determined by the image processing unit based on the image captured by the imaging unit.
A method for detecting minute foreign matter inside a plate glass.
板ガラスの内部に存在する微小異物を照射した光ビームの散乱等により生じる輝点の検知により検出する方法であって、
第1の光ビームを板ガラスの厚さ方向に対して所定の傾斜角度で板ガラス内部に進入させて、進入した内部光ビームIと該内部光ビームIが板ガラス表面で反射した内部光ビームIIとを板ガラス内部に形成する第1の照射手段と、
第2の光ビームを板ガラスの厚さ方向に対して前記第1の光ビームの傾斜角度と反対方向から板ガラス内部に進入させて、進入した内部光ビームI’と該内部光ビームI’が板ガラス表面で反射した内部光ビームII’とを板ガラス内部に形成する第2の照射手段と、
板ガラス表面から該表面に対して垂直方向に出射された光を、板ガラスの光ビーム照射表面側または非照射表面側において撮像する撮像手段と、
前記撮像手段で撮像した画像に基づいて、板ガラス内部の微小異物と板ガラス表面の埃等の異物とを判別し、板ガラス内部の微小異物の位置を判定する画像処理手段と、を備えた検出装置を用い、
前記第1と第2の光ビームの進入角度を変えることなく板ガラスの光ビーム照射位置を移動させて、同一異物が前記内部光ビームIとI’により照射されて生じた輝点と前記内部光ビームIIとII’により照射されて生じた輝点とを撮像手段で撮像し、
前記撮像手段で撮像された画像に基づいて画像処理手段により、前記第1の光ビームと第2の光ビームとによって生じた同一異物による輝点の画像の対称性によって板ガラス表面の埃等の異物を判別し、前記微小異物の板ガラス中における位置を判定する、
ことを特徴とする板ガラス内部の微小異物を検出する方法。
A method of detecting by detecting a bright spot caused by scattering of a light beam irradiated with a minute foreign substance existing inside a plate glass,
The first light beam is caused to enter the inside of the glass sheet at a predetermined inclination angle with respect to the thickness direction of the glass sheet, and the internal light beam I that has entered and the internal light beam II that is reflected from the surface of the glass sheet by the internal light beam I are obtained. A first irradiating means formed inside the plate glass;
The second light beam enters the plate glass from the direction opposite to the inclination angle of the first light beam with respect to the thickness direction of the plate glass, and the entered internal light beam I ′ and the internal light beam I ′ are converted into the plate glass. A second irradiation means for forming an internal light beam II ′ reflected on the surface inside the plate glass;
Imaging means for imaging light emitted from the surface of the plate glass in a direction perpendicular to the surface on the light beam irradiation surface side or non-irradiation surface side of the plate glass;
An image processing means for discriminating between minute foreign matters inside the plate glass and foreign matters such as dust on the surface of the plate glass based on an image picked up by the image pickup means, and an image processing means for judging the position of the fine foreign matter inside the plate glass Use
The light beam irradiation position of the plate glass is moved without changing the entrance angles of the first and second light beams, and the bright spot and the internal light generated when the same foreign matter is irradiated by the internal light beams I and I ′. The bright spots generated by irradiation with the beams II and II ′ are imaged by an imaging means,
Foreign matter such as dust on the surface of the glass plate due to the symmetry of the bright spot image by the same foreign matter generated by the first light beam and the second light beam by the image processing means based on the image picked up by the image pickup means And determining the position of the minute foreign matter in the plate glass,
A method for detecting minute foreign matter inside a plate glass.
前記光ビームの進入角度を変えることなく板ガラスの光ビーム照射位置を移動させる方法が、板ガラスと光ビーム照射手段とを板ガラス表面に平行な方向に相対的に移動させる方法である、請求項7または8に記載の方法。   The method of moving the light beam irradiation position of the plate glass without changing the approach angle of the light beam is a method of relatively moving the plate glass and the light beam irradiation means in a direction parallel to the surface of the plate glass. 9. The method according to 8. 光ビームが該光ビームの軸に対して垂直方向に延びた線状の照射域を板ガラス表面に形成する光ビームであり、前記移動方向が、前記線状の照射域の該線の方向に対し略垂直方向である、請求項9に記載の方法。   The light beam is a light beam that forms a linear irradiation area on the surface of the plate glass extending in a direction perpendicular to the axis of the light beam, and the moving direction is relative to the direction of the line of the linear irradiation area. The method of claim 9, wherein the method is in a substantially vertical direction. 前記照射手段と前記撮像手段の位置が相対的に固定されている、請求項7〜10のいずれか一項に記載の方法。   The method according to claim 7, wherein positions of the irradiation unit and the imaging unit are relatively fixed. 前記撮像手段で撮像された画像に基づいて、さらに、画像処理手段により前記微小異物の種類を判定する、請求項7〜11のいずれか一項に記載の方法。   The method according to any one of claims 7 to 11, wherein a type of the minute foreign matter is further determined by an image processing unit based on an image captured by the imaging unit. 板ガラス内部の微小異物を検出する装置であって、
光ビームを板ガラスの厚さ方向に対して所定の傾斜角度で板ガラス内部に進入させて、進入した内部光ビームIと該内部光ビームIが板ガラス表面で反射した内部光ビームIIとを板ガラス内部に形成する照射装置と、
前記光ビーム照射装置を板ガラスに対して板ガラスの平面に平行な方向に相対的に移動させる移動手段と、
板ガラス表面から該表面に対して垂直方向に出射された光を、板ガラスの光ビーム照射表面側または非照射表面側において撮像する撮像装置であって、同一微小異物が前記内部光ビームIにより照射されて生じた輝点と前記内部光ビームIIにより照射されて生じた輝点とを撮像する撮像装置と、
前記撮像装置に接続され、撮像された画像に基づいて微小異物を判定する画像処理手段と、
を有する装置。
An apparatus for detecting minute foreign matter inside a plate glass,
The light beam is allowed to enter the inside of the glass sheet at a predetermined inclination angle with respect to the thickness direction of the glass sheet, and the internal light beam I that has entered and the internal light beam II reflected by the surface of the glass sheet are reflected inside the glass sheet. An irradiation device to be formed;
Moving means for moving the light beam irradiation device relative to the plate glass in a direction parallel to the plane of the plate glass;
An imaging apparatus for imaging light emitted from a surface of a plate glass in a direction perpendicular to the surface on the light beam irradiation surface side or non-irradiation surface side of the plate glass, and the same minute foreign matter is irradiated by the internal light beam I An imaging device for imaging a bright spot generated by the internal light beam II and a bright spot generated by irradiation with the internal light beam II;
Image processing means connected to the imaging device for determining minute foreign matter based on the captured image;
Having a device.
板ガラス内部の微小異物を検出する装置であって、
第1の光ビームを板ガラスの厚さ方向に対して所定の傾斜角度で板ガラス内部に進入させて、進入した内部光ビームIと該内部光ビームIが板ガラス表面で反射した内部光ビームIIとを板ガラス内部に形成する第1の照射装置と、
第2の光ビームを板ガラスの厚さ方向に対して前記第1の光ビームの傾斜角度と反対方向から板ガラス内部に進入させて、進入した内部光ビームI’と該内部光ビームI’が板ガラス表面で反射した内部光ビームII’とを板ガラス内部に形成する第2の照射装置と、
前記第1と第2の照射装置を板ガラスに対して板ガラスの平面に平行な方向に相対的に移動させる移動手段と、
板ガラス表面から該表面に対して垂直方向に出射された光を、板ガラスの光ビーム照射表面側または非照射表面側において撮像する撮像装置であって、同一異物が前記内部光ビームIとI’により照射されて生じた輝点と前記内部光ビームIIとII’により照射されて生じた輝点とを撮像する撮像装置と、
前記撮像装置に接続され、撮像された画像に基づいて微小異物を判定する画像処理手段と、
を有する装置。
An apparatus for detecting minute foreign matter inside a plate glass,
The first light beam is caused to enter the inside of the glass sheet at a predetermined inclination angle with respect to the thickness direction of the glass sheet, and the internal light beam I that has entered and the internal light beam II that is reflected from the surface of the glass sheet by the internal light beam I are obtained. A first irradiation device formed inside the plate glass;
The second light beam enters the plate glass from the direction opposite to the inclination angle of the first light beam with respect to the thickness direction of the plate glass, and the entered internal light beam I ′ and the internal light beam I ′ are converted into the plate glass. A second irradiation device for forming an internal light beam II ′ reflected from the surface inside the plate glass;
Moving means for moving the first and second irradiation devices relative to the plate glass in a direction parallel to the plane of the plate glass;
An imaging device that images light emitted from a surface of a plate glass in a direction perpendicular to the surface on the light beam irradiation surface side or non-irradiation surface side of the plate glass, and the same foreign matter is caused by the internal light beams I and I ′ An imaging device that images the bright spots generated by irradiation and the bright spots generated by irradiation with the internal light beams II and II ′;
Image processing means connected to the imaging device for determining minute foreign matter based on the captured image;
Having a device.
画像処理手段が、前記撮像装置で撮像された輝点の画像に基づいて、前記微小異物の板ガラス内部における位置を判定する画像処理手段である、請求項13に記載の装置。   The apparatus according to claim 13, wherein the image processing means is image processing means for determining a position of the minute foreign matter inside the plate glass based on an image of a bright spot imaged by the imaging device. 画像処理手段が、前記撮像装置で撮像された輝点の画像に基づいて、前記第1の光ビームと第2の光ビームとによって生じた同一異物による輝点の画像の対称性によって板ガラス表面の埃等の異物を判別し、前記微小異物の板ガラス中における位置を判定する画像処理手段である、請求項14に記載の装置。   The image processing means is configured to detect the image of the surface of the glass plate based on the symmetry of the image of the bright spot caused by the same foreign matter generated by the first light beam and the second light beam based on the bright spot image captured by the imaging device. The apparatus according to claim 14, wherein the apparatus is an image processing unit that determines foreign matter such as dust and determines a position of the minute foreign matter in a plate glass. 照射装置が、光ビームの軸に対して垂直方向に延びかつ前記移動手段による移動方向に対し略垂直方向に延びた線状の照射域を板ガラス表面に形成する照射装置である、請求項13〜16のいずれか一項に記載の装置。   The irradiation apparatus is an irradiation apparatus that forms a linear irradiation area on the surface of the plate glass that extends in a direction perpendicular to the axis of the light beam and extends in a direction substantially perpendicular to the moving direction of the moving means. The apparatus according to any one of 16. 前記照射装置と前記撮像装置の位置が相対的に固定されている、請求項13〜17のいずれか一項に記載の装置。   The apparatus as described in any one of Claims 13-17 with which the position of the said irradiation apparatus and the said imaging device is fixed relatively. 画像処理手段が、前記撮像装置で撮像された輝点の画像に基づいて、さらに、前記微小異物の種類を判定する画像処理手段である、請求項13〜18のいずれか一項に記載の装置。   The apparatus according to any one of claims 13 to 18, wherein the image processing means is an image processing means for further determining a type of the minute foreign matter based on an image of a bright spot imaged by the imaging device. . 請求項6〜12のいずれか一項に記載の板ガラス内部の微小異物を検出する方法に基づく微小異物の検出工程と、該検出工程によって検出された微小異物を含む板ガラスを除去すべきか否かを判別する判別工程と、該判別工程の判別結果に基づき微小異物を含む板ガラスを除去する除去工程と、を含む板ガラスの製造方法。   A method for detecting minute foreign matter based on the method for detecting minute foreign matter inside a plate glass according to any one of claims 6 to 12, and whether or not the plate glass containing the minute foreign matter detected by the detection step should be removed. A method for manufacturing a plate glass, comprising: a determining step for determining; and a removing step for removing the plate glass containing minute foreign matters based on the determination result of the determining step. 連続した板ガラスを製造する工程と、請求項6〜12のいずれか一項に記載の板ガラス内部の微小異物を検出する方法に基づき連続した板ガラス中の微小異物を検出する検出工程と、該検出工程によって検出された微小異物を含む板ガラスを除去すべきか否かを判別する判別工程と、連続した板ガラスを所定の大きさに切断する切断工程と、前記判別工程の判別結果に基づき除去すべきとされた微小異物含有切断板ガラスを除去する除去工程と、を含む板ガラスの製造方法。   A step of manufacturing a continuous plate glass, a detection step of detecting a minute foreign matter in the continuous plate glass based on the method of detecting a minute foreign matter inside the plate glass according to any one of claims 6 to 12, and the detection step The discriminating step for discriminating whether or not the plate glass containing the minute foreign matter detected by the step should be removed, the cutting step for cutting the continuous plate glass into a predetermined size, and the discriminating result of the discrimination step should be removed. And a removing step of removing the cut foreign glass containing minute foreign matter.
JP2009531186A 2007-09-04 2008-08-22 Method and apparatus for detecting minute foreign matter inside transparent plate Pending JPWO2009031420A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007229468 2007-09-04
JP2007229468 2007-09-04
PCT/JP2008/065041 WO2009031420A1 (en) 2007-09-04 2008-08-22 Method and device for detecting micro foreign matter within transparent plate

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2013217159A Division JP2014044209A (en) 2007-09-04 2013-10-18 Method and device for detecting micro foreign matter within transparent plate body
JP2013217158A Division JP5696984B2 (en) 2007-09-04 2013-10-18 Method and apparatus for detecting minute foreign matter inside transparent plate

Publications (1)

Publication Number Publication Date
JPWO2009031420A1 true JPWO2009031420A1 (en) 2010-12-09

Family

ID=40428740

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2009531186A Pending JPWO2009031420A1 (en) 2007-09-04 2008-08-22 Method and apparatus for detecting minute foreign matter inside transparent plate
JP2013217159A Pending JP2014044209A (en) 2007-09-04 2013-10-18 Method and device for detecting micro foreign matter within transparent plate body
JP2013217158A Expired - Fee Related JP5696984B2 (en) 2007-09-04 2013-10-18 Method and apparatus for detecting minute foreign matter inside transparent plate

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2013217159A Pending JP2014044209A (en) 2007-09-04 2013-10-18 Method and device for detecting micro foreign matter within transparent plate body
JP2013217158A Expired - Fee Related JP5696984B2 (en) 2007-09-04 2013-10-18 Method and apparatus for detecting minute foreign matter inside transparent plate

Country Status (3)

Country Link
JP (3) JPWO2009031420A1 (en)
CN (1) CN101790679B (en)
WO (1) WO2009031420A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521377B2 (en) * 2009-04-13 2014-06-11 セントラル硝子株式会社 Glass plate defect identification method and apparatus
WO2012077542A1 (en) * 2010-12-09 2012-06-14 旭硝子株式会社 Glass substrate
WO2012077683A1 (en) * 2010-12-09 2012-06-14 旭硝子株式会社 Method and system for measuring defect in glass ribbon
JP5791101B2 (en) * 2011-05-16 2015-10-07 芝浦メカトロニクス株式会社 Bonded plate inspection apparatus and method
CN102818538B (en) * 2012-09-14 2014-09-10 洛阳兰迪玻璃机器股份有限公司 Detection system based on modulated glass thread structure laser image
JP2015135266A (en) * 2014-01-17 2015-07-27 旭硝子株式会社 Method of stably detecting minute foreign matter within glass plate, and apparatus for implementing the same
CN104634789A (en) * 2014-04-24 2015-05-20 东旭集团有限公司 System and method for performing foreign matter inspection on upper surface of ultrathin glass substrate
DE102014005932A1 (en) * 2014-04-25 2015-10-29 Boraident Gmbh Method and apparatus for the selection and detection of nickel sulfide inclusions in glass
CN105699400A (en) * 2014-11-28 2016-06-22 中电电气(上海)太阳能科技有限公司 Visual inspection device of toughened glass
CN106770315A (en) * 2016-11-30 2017-05-31 浙江宜佳新材料股份有限公司 A kind of adhesive film laser monitoring device of bond paper
CN106932406A (en) * 2017-04-28 2017-07-07 许迪 A kind of device for detecting transparent substance defect
WO2019041087A1 (en) * 2017-08-28 2019-03-07 深圳市兴华炜科技有限公司 Transparent object testing method and related product
CA3088778A1 (en) * 2018-03-07 2019-09-12 Guardian Glass, LLC Method and system for detecting inclusions in float glass based on wavelength(s) analysis
CN109632828B (en) * 2018-10-29 2021-11-09 彩虹显示器件股份有限公司 Sheet glass defect rechecking system and rechecking method
CN110082361B (en) * 2019-05-27 2024-04-30 成都领益科技有限公司 Object appearance and crack detection device and detection method
CN111451188A (en) * 2020-04-13 2020-07-28 徐洪 Dust removal device for lens and using method thereof
CN111487191A (en) * 2020-04-26 2020-08-04 山东创策电气科技有限公司 Toughened glass spontaneous explosion hidden danger detection method and device based on image processing
JP7077523B2 (en) * 2020-06-03 2022-05-31 株式会社東京精密 Crack detection device and crack detection method
CN111721774A (en) * 2020-06-23 2020-09-29 湖南正中制药机械有限公司 Lamp inspection detection method for automatic lamp inspection machine
CN113310993A (en) * 2021-06-24 2021-08-27 宗子凯 Transparent plate point defect detection system and method
CN116282869B (en) * 2023-03-24 2023-09-29 南京我乐家居股份有限公司 Intelligent production control method and system for toughened glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242001A (en) * 1997-07-17 1999-09-07 Hoya Corp Method and device for inspecting an unevenness of light-transmission material, and method for selecting light-transmission substrate
JPH11316197A (en) * 1998-05-06 1999-11-16 Matsushita Electric Works Ltd Method and device for internal inspection of flat plate material
JP2005300275A (en) * 2004-04-08 2005-10-27 Central Glass Co Ltd Method for detecting defect in transparent plate and its apparatus
JP2006071284A (en) * 2004-08-31 2006-03-16 Central Glass Co Ltd Inside and outside discrimination method of flaw of glass substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106289A (en) * 1978-02-07 1979-08-21 Nippon Sheet Glass Co Ltd Defect detector for glass sheet
FR2681429B1 (en) * 1991-09-13 1995-05-24 Thomson Csf METHOD AND DEVICE FOR INSPECTING GLASS.
JPH0882602A (en) * 1994-09-13 1996-03-26 Nippon Electric Glass Co Ltd Method and apparatus for inspecting fault of plate glass
JP2769797B2 (en) * 1995-03-15 1998-06-25 東洋ガラス株式会社 Method for detecting minute defects in transparent objects
AUPQ262299A0 (en) * 1999-09-02 1999-09-23 Resolve Engineering Pty Ltd Detection of inclusions in glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242001A (en) * 1997-07-17 1999-09-07 Hoya Corp Method and device for inspecting an unevenness of light-transmission material, and method for selecting light-transmission substrate
JPH11316197A (en) * 1998-05-06 1999-11-16 Matsushita Electric Works Ltd Method and device for internal inspection of flat plate material
JP2005300275A (en) * 2004-04-08 2005-10-27 Central Glass Co Ltd Method for detecting defect in transparent plate and its apparatus
JP2006071284A (en) * 2004-08-31 2006-03-16 Central Glass Co Ltd Inside and outside discrimination method of flaw of glass substrate

Also Published As

Publication number Publication date
CN101790679B (en) 2012-05-09
JP2014044209A (en) 2014-03-13
WO2009031420A1 (en) 2009-03-12
JP5696984B2 (en) 2015-04-08
CN101790679A (en) 2010-07-28
JP2014006271A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5696984B2 (en) Method and apparatus for detecting minute foreign matter inside transparent plate
JP5521377B2 (en) Glass plate defect identification method and apparatus
KR101326455B1 (en) Apparatus and method for characterizing defects in a transparent substrate
JP5583102B2 (en) Glass substrate surface defect inspection apparatus and inspection method
US20110310244A1 (en) System and method for detecting a defect of a substrate
US8396281B2 (en) Apparatus and method for inspecting substrate internal defects
US20120044346A1 (en) Apparatus and method for inspecting internal defect of substrate
JP2002062267A (en) Device for inspecting defect
JP2015135266A (en) Method of stably detecting minute foreign matter within glass plate, and apparatus for implementing the same
KR102162693B1 (en) System and method for defect detection
JPWO2012153718A1 (en) Glass sheet end face inspection method and glass sheet end face inspection apparatus
JP7063839B2 (en) Inspection method and inspection system
JP6032696B2 (en) Bonded plate inspection apparatus and method
US20090201368A1 (en) Glazing inspection
JP5787668B2 (en) Defect detection device
JP2016114602A (en) Surface shape measurement device, and defect determination device
JP5738628B2 (en) Internal defect inspection apparatus and internal defect inspection method
JP2014186030A (en) Defect inspection device
KR101185076B1 (en) Reflective type optical sensor for reflector
KR20160032576A (en) System and Method for Analyzing Image Using High-Speed Camera and Infrared Optical System
JP2013130489A (en) Illumination device and inspection device of glass bottle
JP2005241587A (en) Inspection device and method for optical film
KR20220069630A (en) Vision Inspecting Apparatus
JP2010054273A (en) Defect detector and method of detecting defect
CN116917720A (en) glass inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130823