JP2011203081A - Defect inspection device - Google Patents

Defect inspection device Download PDF

Info

Publication number
JP2011203081A
JP2011203081A JP2010070059A JP2010070059A JP2011203081A JP 2011203081 A JP2011203081 A JP 2011203081A JP 2010070059 A JP2010070059 A JP 2010070059A JP 2010070059 A JP2010070059 A JP 2010070059A JP 2011203081 A JP2011203081 A JP 2011203081A
Authority
JP
Japan
Prior art keywords
light
inspection
defect
range
shielding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010070059A
Other languages
Japanese (ja)
Other versions
JP5538018B2 (en
Inventor
Ippei Takahashi
一平 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010070059A priority Critical patent/JP5538018B2/en
Publication of JP2011203081A publication Critical patent/JP2011203081A/en
Application granted granted Critical
Publication of JP5538018B2 publication Critical patent/JP5538018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To detect a defect in the front surface of a specimen (glass plate) more accurately than that inside or in the rear surface of the specimen.SOLUTION: Diffraction light 19 is generated by inserting a shield member 20 into a part of an inspection light 17 projected from a projector. Inspection light 17 passing through the outside of the shield member 20 illuminates an inspection range 14 on the front surface 11a of the glass plate 11, and the diffraction light 19 illuminates an inspection range 22 of the rear surface 11c of the glass plate 11 and an internal inspection range 23. The light intensity of the diffraction light 19 is weaker than that of the inspection light 17, and becomes weaker as it becomes close to the rear surface 11c. When defects exist in the inspection ranges 14, 22 and 23, a CCD line sensor camera 15 receives the scattered light from each defect. The scattered light from the defect in the inspection range 14 is strong, so that even a fine defect can be detected. The scattered light from the defect in the inspection range 23 is weak, so that only a large defect can be detected. The scattered light from the defect in the inspection range 22 is weaker than the scattered light from the defect in the inspection range 23, so that only a further large defect can be detected.

Description

本発明は、光を透過する板状の被検体の表面等にある欠陥を検出する欠陥検査装置に関するものである。   The present invention relates to a defect inspection apparatus that detects defects on the surface of a plate-like subject that transmits light.

液晶表示装置やプラズマ表示装置等のフラットパネルディスプレイに用いる透明なガラス基板やフォトファブリケーション用のガラス板(プリント基板作成用等のフォトマスク)では、薄膜や透明電極などを形成する上で支障があるため、表面や裏面の破れ泡や内部の泡の他、表面に付着した異物や異物跡などの欠陥を検査する必要がある。   Transparent glass substrates used for flat panel displays such as liquid crystal display devices and plasma display devices, and glass plates for photofabrication (photomasks for making printed circuit boards, etc.) have problems in forming thin films and transparent electrodes. Therefore, it is necessary to inspect for defects such as foreign matter and foreign matter traces adhering to the surface in addition to the tear bubbles on the front and back surfaces and the internal bubbles.

このようなガラス板の欠陥を検査する欠陥検査装置としては、特許文献1,2に記載されたものが知られている。特許文献1記載の装置では、被検体であるガラス板に対して光束を投射し、ガラス板の表面または裏面に存在する欠陥での散乱光をCCDイメージセンサ(エリア(2次元)センサ)が受光する。そして、欠陥の映像をCCDイメージセンサの複数の素子に結像しその映像出力に基づいて、各欠陥の信号強度と面積とを求め、信号強度及び面積が各閾値以上か否かによって、透明電極などの形成に影響しない無害な欠陥(良欠陥)か、影響する有害な欠陥(不良欠陥)かを判別する。   As a defect inspection apparatus for inspecting defects of such glass plates, those described in Patent Documents 1 and 2 are known. In the apparatus described in Patent Document 1, a light beam is projected onto a glass plate that is a subject, and a CCD image sensor (area (two-dimensional) sensor) receives scattered light from defects existing on the front or back surface of the glass plate. To do. Then, an image of the defect is imaged on a plurality of elements of the CCD image sensor, and based on the image output, the signal intensity and area of each defect are obtained. Depending on whether the signal intensity and area are equal to or greater than each threshold, the transparent electrode It is determined whether the defect is a harmless defect (good defect) that does not affect the formation or the like, or a harmful defect that affects the defect (defective defect).

特許文献2記載の装置では、ガラス板の表面に検査光を照射し、検出カメラが続けて2回の散乱光を検出した場合、表面にある欠陥で散乱光が発生し、この散乱光がガラス板の内部を伝搬して裏面で反射したと見做して、ガラス板の表面に欠陥があると判断し、検出カメラが1回のみの散乱光を検出した場合、ガラス板の表面では散乱せずに内部に入射した検査光が裏面の欠陥で散乱したと見做して、裏面に欠陥があると判断する。   In the apparatus described in Patent Document 2, when the surface of the glass plate is irradiated with inspection light, and the detection camera detects the scattered light twice, the scattered light is generated by a defect on the surface, and this scattered light is converted into glass. When it is assumed that the surface of the glass plate has a defect because it propagates through the inside of the plate and is reflected by the back surface, and the detection camera detects only one scattered light, it is scattered on the surface of the glass plate. Without considering that the inspection light incident on the inside is scattered by the defects on the back surface, it is determined that there is a defect on the back surface.

特開平10−267858号公報Japanese Patent Laid-Open No. 10-267858 特開2006−71284号公報JP 2006-71284 A

上記特許文献1記載の装置では、CCDイメージセンサを用いて欠陥の信号強度と面積とを求めるので、欠陥の検出に要する時間が長くなるとともに、CCDイメージセンサを用いるので、製造コストが高くなる。また、上記特許文献2記載の装置では、ガラス板の表面での欠陥が大きい場合は問題ないが、小さい場合には、表面の欠陥での散乱光がガラス板の内部を伝搬する間に減衰し、裏面での反射光が非常に弱くなる。このため、表面の欠陥であるにも係わらず、2度目の散乱光が検出されずに、裏面の欠陥であると誤判断される場合がある。   In the apparatus described in Patent Document 1, since the signal intensity and area of the defect are obtained using the CCD image sensor, the time required for detecting the defect becomes long, and the CCD image sensor is used, which increases the manufacturing cost. Further, in the apparatus described in Patent Document 2, there is no problem when the defect on the surface of the glass plate is large, but when the defect is small, the scattered light at the surface defect is attenuated while propagating inside the glass plate. The reflected light on the back side becomes very weak. For this reason, although it is a surface defect, the second scattered light may not be detected and may be erroneously determined as a back surface defect.

また、液晶表示装置などに用いられるガラス板の場合、ガラス板の表面の方が裏面よりも重要であるため、表面の欠陥を確実に検出したいという要望が強いが、上記特許文献1,2記載のいずれの装置でも、裏面の欠陥も表面の欠陥と同じレベルで検出するため、過剰品質となり、得率低下となるという問題点がある。   Further, in the case of a glass plate used for a liquid crystal display device or the like, since the surface of the glass plate is more important than the back surface, there is a strong demand for reliably detecting defects on the surface. In any of these apparatuses, since defects on the back surface are detected at the same level as defects on the front surface, there is a problem in that the quality becomes excessive and the yield decreases.

本発明は、上記課題を鑑みてなされたものであり、光透過性を有する板状の被検体(ガラス板や樹脂板など)の表面については微細な欠陥をも検出できるとともに被検体の内部や裏面については大きな欠陥のみを検出する比較的簡単な構成でローコストな欠陥検査装置を提供することを目的とする。   The present invention has been made in view of the above problems, and can detect fine defects on the surface of a light-transmitting plate-like object (such as a glass plate or a resin plate) and An object of the present invention is to provide a low-cost defect inspection apparatus with a relatively simple configuration that detects only large defects on the back surface.

本発明の欠陥検査装置は、光透過性を有する板状の被検体の表面に対して斜めの方向から検査光を投光し、この検査光により前記被検体の表面上に設定された細長い第1検査範囲を照明する投光手段と、前記検査光内に挿入して検査光の一部を遮ることにより回折光を生成し、この回折光により、前記第1検査範囲に対峙する被検体の裏面側の第2検査範囲と、前記第1検査範囲と第2検査範囲との間の被検体の内部である第3検査範囲とを照明する遮蔽部材と、前記検査光が第1検査範囲にある欠陥にて散乱することにより生じる散乱光、前記回折光が第2,3検査範囲にある欠陥にて散乱することにより生じる散乱光をそれぞれ前記被検体の表面に対して前記投光手段よりも垂直に近い方向から受光する受光手段とを備えたことを特徴とする。   The defect inspection apparatus according to the present invention projects inspection light from an oblique direction onto the surface of a plate-like subject having optical transparency, and the elongated second set on the surface of the subject by the inspection light. A light projecting means for illuminating one examination range; and diffracted light is generated by inserting into the examination light and blocking a part of the examination light; and by the diffracted light, a subject facing the first examination range is generated. A shielding member that illuminates a second examination range on the back side and a third examination range that is inside the subject between the first examination range and the second examination range, and the examination light is in the first examination range. Scattered light generated by scattering at a certain defect, and scattered light generated by scattering of the diffracted light at a defect in the second and third inspection ranges, respectively, with respect to the surface of the subject than the light projecting means. And a light receiving means for receiving light from a direction close to vertical. That.

前記被検体は、第1検査範囲の長手方向に対して直交する方向に搬送されることが好ましい。また、前記受光手段は、その受光視野の長手方向が第1検査範囲の長手方向と平行になるように配置されたラインセンサカメラであることが好ましい。   The subject is preferably transported in a direction perpendicular to the longitudinal direction of the first examination range. The light receiving means is preferably a line sensor camera arranged such that the longitudinal direction of the light receiving field is parallel to the longitudinal direction of the first inspection range.

前記遮蔽部材は、前記検査光の照射方向に沿って移動自在に設置され、前記被検体との距離が変更可能であることが好ましい。   It is preferable that the shielding member is movably installed along the irradiation direction of the inspection light, and the distance from the subject can be changed.

前記遮蔽部材は、その長手方向が第1検査範囲の長手方向に平行に長いほぼ長方形をしており、前記検査光内に挿入される長手方向の一方の端部は、先端の厚み方向に尖った形状をしていることが好ましい。   The shielding member has a substantially rectangular shape whose longitudinal direction is long in parallel with the longitudinal direction of the first inspection range, and one end portion in the longitudinal direction inserted into the inspection light is pointed in the thickness direction of the distal end. It is preferable that the shape is different.

前記遮蔽部材の前記検査光内に挿入される端部は、前記検査光の中心線に近接するように検査光内に挿入されることが好ましい。   It is preferable that the end portion of the shielding member inserted into the inspection light is inserted into the inspection light so as to be close to the center line of the inspection light.

本発明によれば、光透過性を有する板状の被検体に向けて投光手段から投光された検査光の一部に遮蔽部材を挿入することにより回折光を生成し、遮蔽部材の外側を通過した検査光で被検体の表面上に設定された細長い第1検査範囲を照明し、回折光で被検体の裏面側の第2検査範囲と内部の第3検査範囲を照明し、第1〜第3検査範囲に欠陥が存在する場合、欠陥からの散乱光を受光手段が受光するようにしたので、比較的簡単な構成でローコストでありながら、被検体の表面については微細な欠陥をも検出するとともに被検体の内部や裏面については大きな欠陥のみを検出することができる。   According to the present invention, the diffracted light is generated by inserting the shielding member into a part of the inspection light projected from the light projecting unit toward the plate-shaped subject having optical transparency, and the outside of the shielding member. The elongated first examination range set on the surface of the subject is illuminated with the examination light that has passed through, the second examination range on the back side of the subject and the third examination range inside are illuminated with the diffracted light, and the first When the defect exists in the third inspection range, since the light receiving means receives scattered light from the defect, the surface of the subject has a minute defect while being relatively simple and low cost. In addition to detection, only large defects can be detected on the inside and back of the subject.

被検体を第1検査範囲の長手方向に対して直交する方向に搬送するので、被検体の搬送に伴って被検体の全体にわたって検査を実施することができる。また、受光手段としてラインセンサカメラを用いるので、ローコスト化に寄与できる。   Since the subject is transported in the direction orthogonal to the longitudinal direction of the first examination range, the examination can be performed over the entire subject as the subject is transported. In addition, since a line sensor camera is used as the light receiving means, it can contribute to cost reduction.

遮蔽部材の被検体との距離を変更可能としたので、第2,3検査範囲に照射される回折光の光強度を調整することができる。   Since the distance between the shielding member and the subject can be changed, the light intensity of the diffracted light applied to the second and third inspection ranges can be adjusted.

遮蔽部材の端部は、先端の厚み方向に尖った形状をしているので、回折光を効率よく生成することができる。   Since the end of the shielding member has a sharp shape in the thickness direction of the tip, diffracted light can be generated efficiently.

遮蔽部材の端部を検査光の中心線に近接するように配置したので、最も光強度が強い検査光の中心線は遮蔽されずに第1検査範囲を照明するとともに、中心線から離れるにつれてなだらかに光強度が弱くなる回折光を生成することができる。この回折光により第2検査範囲から第3検査範囲にかけて徐々に光強度が弱くなる光を照射することになるので、第2,第3検査範囲については小さな欠陥は検出せず、大きな欠陥のみを検出することができる。   Since the end of the shielding member is arranged so as to be close to the center line of the inspection light, the center line of the inspection light having the strongest light intensity is not shielded and illuminates the first inspection range, and gradually increases as the distance from the center line increases. It is possible to generate diffracted light having a weak light intensity. Since this diffracted light irradiates light whose light intensity gradually decreases from the second inspection range to the third inspection range, small defects are not detected in the second and third inspection ranges, and only large defects are detected. Can be detected.

本発明に係る欠陥検査装置の主な構成を概略的に示す外観斜視図である。It is an external appearance perspective view which shows roughly the main structures of the defect inspection apparatus which concerns on this invention. 遮蔽部材により回折光が生成される様子を示すとともにガラス板の表面,裏面,内部の各検査範囲を示す説明図である。It is explanatory drawing which shows a mode that diffracted light is produced | generated by a shielding member, and shows each test | inspection range of the surface of a glass plate, a back surface, and an inside. 回折光の回折縞(光強度分布)ついての説明図である。It is explanatory drawing about the diffraction fringe (light intensity distribution) of a diffracted light. ガラス板に照射される検査光及び回折光の光強度分布についての説明図である。It is explanatory drawing about the light intensity distribution of the test | inspection light and diffracted light with which a glass plate is irradiated. ガラス板の表面の検査範囲に存在する欠陥を検出する様子を示す説明図である。It is explanatory drawing which shows a mode that the defect which exists in the test | inspection range of the surface of a glass plate is detected. ガラス板の内部の検査範囲に存在する欠陥を検出する様子を示す説明図である。It is explanatory drawing which shows a mode that the defect which exists in the test | inspection range inside a glass plate is detected. ガラス板の裏面の検査範囲に存在する欠陥を検出する様子を示す説明図である。It is explanatory drawing which shows a mode that the defect which exists in the test | inspection range of the back surface of a glass plate is detected.

本発明の欠陥検査装置10の外観を示す図1において、欠陥検査装置10は、投光器、遮蔽部材、CCDラインセンサカメラという比較的簡単な構成でローコストでありながら、光透過性を有する板状の被検体である透明なガラス板11の表面11aについては微細な欠陥をも検出するとともに、ガラス板11の内部11bや裏面11cについては微細な欠陥は検出せず、大きな欠陥のみを検出する。これにより、表面11aにある欠陥と同じレベルで内部11bや裏面11cにある欠陥を検出する過剰品質が防止される。   In FIG. 1 which shows the external appearance of the defect inspection apparatus 10 of the present invention, the defect inspection apparatus 10 is a plate-like material having a light transmission property while having a relatively simple configuration such as a projector, a shielding member, and a CCD line sensor camera at a low cost. A minute defect is detected on the front surface 11a of the transparent glass plate 11 as an object, and only a large defect is detected on the inside 11b and the back surface 11c of the glass plate 11 without detecting a minute defect. This prevents excessive quality detecting defects in the interior 11b and the back surface 11c at the same level as the defects in the front surface 11a.

ガラス板11は、例えば1mm以上の一定の厚みを有する。ガラス板11の欠陥とは、ガラス板11の表面や裏面の破れ泡や内部の泡の他、表面や裏面に付着した異物や異物跡をいう。   The glass plate 11 has a certain thickness of 1 mm or more, for example. The defect of the glass plate 11 refers to a foreign matter or a foreign matter trace attached to the front or back surface, in addition to a tear bubble or internal bubble on the front or back surface of the glass plate 11.

ガラス板11は、ベルトコンベア等の搬送手段により、表面11aを上向きにした状態で矢印12にて示す一定の方向に等速度で搬送される。ガラス板11の搬送ラインの上方には、ガラス板11の搬送方向と直交する方向に長い受光視野を持つCCDラインセンサカメラ15(受光手段)が設けられている。   The glass plate 11 is conveyed at a constant speed in a certain direction indicated by an arrow 12 with the surface 11a facing upward by a conveying means such as a belt conveyor. A CCD line sensor camera 15 (light receiving means) having a long light receiving field in a direction orthogonal to the conveying direction of the glass plate 11 is provided above the conveying line of the glass plate 11.

CCDラインセンサカメラ15は、表面11aに対して例えばガラス面に対して垂直な方向から、ガラス板11の搬送方向と直交する方向に長いライン状の検査範囲14(第1検査範囲)に存在する欠陥を検出する。検査範囲14は、CCDラインセンサカメラ15による表面11a上の検査範囲を表わす。CCDラインセンサカメラ15は、表面11a上の検査範囲14にフォーカスしており、検査範囲14に存在する欠陥からの散乱光を最も効率よく受光する。欠陥からの散乱光とは、後述する検査光が欠陥に照射された際に、欠陥によって検査光が乱反射することによって生じる。   The CCD line sensor camera 15 exists in a line-shaped inspection range 14 (first inspection range) that is long in a direction perpendicular to the conveying direction of the glass plate 11 from a direction perpendicular to the glass surface with respect to the surface 11a. Detect defects. The inspection range 14 represents an inspection range on the surface 11 a by the CCD line sensor camera 15. The CCD line sensor camera 15 is focused on the inspection range 14 on the surface 11a, and receives scattered light from defects present in the inspection range 14 most efficiently. The scattered light from the defect is generated when the inspection light is irregularly reflected by the defect when the inspection light described later is irradiated onto the defect.

CCDラインセンサカメラ15は、図示しないパーソナルコンピュータに接続されている。パーソナルコンピュータは、CCDラインセンサカメラ15からの出力信号の強弱に基づいて、欠陥の有無を判定する。   The CCD line sensor camera 15 is connected to a personal computer (not shown). The personal computer determines the presence or absence of a defect based on the strength of the output signal from the CCD line sensor camera 15.

ガラス板11の搬送方向と直交する方向に細長く、前記検査範囲14を含む照明範囲16(ハッチングを施した部分)に向けて検査光17を投光する投光器18(投光手段)が設けられている。この投光器18は、例えば、ライン状に並べられた多数のLED(図示せず)と、その前方に配置されたシリンドリカルレンズ(図示せず)とからなり、幅はガラス板11の幅より僅かに広く厚みが薄いほぼ平行な検査光17を照明範囲16へ向かって放射する。なお、照明範囲16は、検査光17だけでなく、後述する回折光による照明範囲をも含む。   A light projector 18 (light projecting means) is provided which is elongated in a direction orthogonal to the conveyance direction of the glass plate 11 and projects the inspection light 17 toward the illumination range 16 (hatched portion) including the inspection range 14. Yes. The projector 18 includes, for example, a large number of LEDs (not shown) arranged in a line and a cylindrical lens (not shown) arranged in front of the LEDs, and the width is slightly smaller than the width of the glass plate 11. Widely thin and almost parallel inspection light 17 is emitted toward the illumination range 16. The illumination range 16 includes not only the inspection light 17 but also an illumination range by diffracted light described later.

投光器18から放射された検査光17の途中に、先が尖った形状をした端部20aが挿入され、検査光17の一部を遮蔽して回折光19を生成する遮蔽部材20が設けられている。この遮蔽部材20は、詳しくは後述するように検査光17の幅方向の中心線17aに沿って移動自在に設けられており、ガラス板11との距離を変更することができる。   An end 20a having a pointed shape is inserted in the middle of the inspection light 17 radiated from the projector 18, and a shielding member 20 that shields a part of the inspection light 17 and generates the diffracted light 19 is provided. Yes. As will be described later in detail, the shielding member 20 is provided so as to be movable along the center line 17a in the width direction of the inspection light 17, and the distance from the glass plate 11 can be changed.

図2に示すように、検査光17は、ガラス板11の表面11aに対して角度θ(例えばθ=45°)をなしており、検査光17の厚み方向で最も光強度が強い中心線17aが検査範囲14の中心線14aに一致し、検査範囲14が検査光17の最も光強度が強い部分で照明されるように構成されている。   As shown in FIG. 2, the inspection light 17 forms an angle θ (for example, θ = 45 °) with respect to the surface 11 a of the glass plate 11, and the center line 17 a having the strongest light intensity in the thickness direction of the inspection light 17. Coincides with the center line 14 a of the inspection range 14, and the inspection range 14 is configured to be illuminated by a portion having the highest light intensity of the inspection light 17.

遮蔽部材20の端部20aは、検査光17の中心線17aに近接した位置、例えば中心線17aまで2mmの距離まで検査光17内に挿入されている。遮蔽部材20の端部20aの外を通過した検査光17は、最も光強度が強いままガラス板11の表面11aに到達し、検査範囲14を含むガラス板11の幅方向に細長い領域を照明する。   The end 20a of the shielding member 20 is inserted into the inspection light 17 at a position close to the center line 17a of the inspection light 17, for example, a distance of 2 mm to the center line 17a. The inspection light 17 that has passed through the outside of the end portion 20a of the shielding member 20 reaches the surface 11a of the glass plate 11 with the strongest light intensity, and illuminates an elongated region in the width direction of the glass plate 11 including the inspection range 14. .

遮蔽部材20の端部20aにより生成される回折光19は、ハッチングで示すように、表面11aの検査範囲14に対峙する裏面11cの検査範囲22(第2検査範囲)と、検査範囲14と検査範囲22とに挟まれたガラス板11の内部11bの検査範囲23とを照明する。   As shown by hatching, the diffracted light 19 generated by the end portion 20a of the shielding member 20 has an inspection range 22 (second inspection range) on the back surface 11c facing the inspection range 14 on the front surface 11a, an inspection range 14, and an inspection range. The inspection range 23 inside the glass plate 11 sandwiched between the range 22 is illuminated.

回折光19の光強度は、中心線17aから離れるにつれてなだらかに低下し、内部11bの検査範囲23よりも裏面11cの検査範囲22を照明する光の方が弱くなる。この点について、図3及び図4を参照して説明する。   The light intensity of the diffracted light 19 gradually decreases with distance from the center line 17a, and the light that illuminates the inspection range 22 on the back surface 11c is weaker than the inspection range 23 on the inside 11b. This point will be described with reference to FIGS.

図3(A)に示すように、光を波動として扱う際、媒質中を伝わる波動に対し障害物(遮蔽部材25)が存在すると、波がその障害物の背景など、一見すると幾何学的には到達できない領域に回り込んで伝わっていく。ホイヘンスの原理では、伝搬する波動の次の瞬間の波面を、その波面それぞれの点から球面状の二次波が出ていると考える。この二次波の包絡面が次の瞬間の新たな波面を形成する。遮蔽部材25によって波動が回り込む。その際、伝搬距離によって同図(B)に示すような回折縞26が生じる。この回折縞26が、遮蔽部材25による回折光の光強度分布に該当する。回折縞26のピークから遮蔽部材25の端部までの幅X0は、次の数式1で表わされる。   As shown in FIG. 3A, when light is handled as a wave, if there is an obstacle (shielding member 25) against the wave propagating in the medium, the background of the obstacle, such as the background of the obstacle, geometrically appears at first glance. Goes around in areas that cannot be reached. According to Huygens' principle, the wavefront of the next moment of the propagating wave is considered to be a spherical secondary wave from each point of the wavefront. The envelope surface of this secondary wave forms a new wavefront at the next moment. Waves wrap around by the shielding member 25. At that time, diffraction fringes 26 as shown in FIG. The diffraction fringes 26 correspond to the light intensity distribution of the diffracted light by the shielding member 25. The width X0 from the peak of the diffraction fringe 26 to the end of the shielding member 25 is expressed by the following formula 1.

〔数1〕
X0=√(λz/π)
[Equation 1]
X0 = √ (λz / π)

例えば、z(遮蔽部材の端部からガラス板の表面までの距離)=50mm、平均的な波長λ=600nmとすると、X0の値は次のようになる。
X0≒0.1mm
For example, if z (distance from the end of the shielding member to the surface of the glass plate) = 50 mm and the average wavelength λ = 600 nm, the value of X0 is as follows.
X0 ≒ 0.1mm

光強度が回折縞26のピークからなだらかに減衰してゆき、光強度がほぼゼロになる幅は、X0の約2倍の幅αと考えると、約0.2mmになる。しかしながら、これは遮蔽部材25の端部の形状が理想的なナイフエッジ形状である場合を仮定した理論値であって、実際には遮蔽部材25の端部のシャープネスが甘く、この端部での散乱光も生じるため、理論値の約10倍とし、約2mmと見做す。したがって、本実施形態に係る遮蔽部材20の端部とガラス板11との距離zが50mmの場合、ガラス板11の表面11a上で約2.8mmの幅となる(検査光の入射角が45°なので√2倍)。   The width at which the light intensity gradually attenuates from the peak of the diffraction fringe 26 and the light intensity becomes almost zero is about 0.2 mm when the width α is about twice as large as X0. However, this is a theoretical value assuming that the shape of the end portion of the shielding member 25 is an ideal knife edge shape, and the sharpness of the end portion of the shielding member 25 is actually poor, and this end portion Since scattered light is also generated, it is assumed to be about 10 mm of the theoretical value and about 2 mm. Therefore, when the distance z between the end of the shielding member 20 according to the present embodiment and the glass plate 11 is 50 mm, the width is about 2.8 mm on the surface 11a of the glass plate 11 (the incident angle of the inspection light is 45). √2 times because it is °).

図4に示すように、回折光がガラス板11の内部に入り、CCDラインセンサカメラ15の受光光軸27を横切っていく。図中に仮想線にて示すように、回折光の光強度分布28はなだらかに光強度が低下していく形状なので、受光光軸27上において、ガラス板11の表面11aで光強度が最も強く、裏面11cに近づくにつれて光強度が低下する。この結果、内部11bの欠陥(異物等)が存在する位置が裏面11cに近づくほど、回折光による欠陥からの散乱光の強度が弱くなるから、CCDラインセンサカメラ15による欠陥の検出力が弱くなり、裏面11c上に存在する欠陥の検出力が最も弱くなる。また、裏面11c上に存在する欠陥の検出力が最も弱くなるように、回折光の端が受光光軸27が裏面11cと交差する近傍になるようにしている。   As shown in FIG. 4, the diffracted light enters the inside of the glass plate 11 and crosses the light receiving optical axis 27 of the CCD line sensor camera 15. As indicated by phantom lines in the figure, the light intensity distribution 28 of the diffracted light has a shape in which the light intensity gradually decreases, so that the light intensity is strongest on the surface 11 a of the glass plate 11 on the light receiving optical axis 27. The light intensity decreases as the back surface 11c is approached. As a result, the closer the position where the defect (foreign matter or the like) in the inside 11b exists to the back surface 11c, the weaker the intensity of the scattered light from the defect caused by the diffracted light, and the weaker the defect detection power by the CCD line sensor camera 15 becomes. The detection power of defects existing on the back surface 11c is the weakest. Further, the end of the diffracted light is arranged in the vicinity where the light receiving optical axis 27 intersects the back surface 11c so that the detection power of the defect existing on the back surface 11c becomes the weakest.

遮蔽部材20は、破線で示す遮蔽部材24のように、検査光17の中心線17aに沿って移動自在に構成されており、ガラス板11の表面11aとの距離zを所定の範囲内で変更することができる。距離zを変更することにより、回折光19が検査範囲22,23を照明する光強度を調整することができ、距離zが小さいほど、検査範囲22,23に照射される回折光19の光強度は弱くなる。   The shielding member 20 is configured to be movable along the center line 17a of the inspection light 17 like the shielding member 24 indicated by a broken line, and the distance z with the surface 11a of the glass plate 11 is changed within a predetermined range. can do. By changing the distance z, the light intensity with which the diffracted light 19 illuminates the inspection ranges 22 and 23 can be adjusted. The smaller the distance z, the light intensity of the diffracted light 19 irradiated on the inspection ranges 22 and 23. Becomes weaker.

遮蔽部材20の移動機構は、どのような構成でもよく、例えば、中心線17aに平行に設置された細長いネジで遮蔽部材20を保持し、このネジを回転させることにより、遮蔽部材20をは中心線17aに平行に移動させるようにしてもよい。ネジの回転は、手動でもモータ駆動でもよい。   The moving mechanism of the shielding member 20 may have any configuration. For example, the shielding member 20 is held by an elongated screw installed in parallel to the center line 17a, and the shielding member 20 is centered by rotating the screw. You may make it move in parallel with the line 17a. The rotation of the screw may be manual or motor driven.

このように構成された欠陥検査装置10の作用について説明する。検査範囲14,22,23のいずれにも欠陥が無い場合、図2に示すように、検査光17及び回折光19は、ガラス板11の表面11a及び裏面11cで正反射し、CCDラインセンサカメラ15に入射することが無い。したがって、CCDラインセンサカメラ15から検出信号は出力されない。   The operation of the defect inspection apparatus 10 configured as described above will be described. When there is no defect in any of the inspection ranges 14, 22 and 23, as shown in FIG. 2, the inspection light 17 and the diffracted light 19 are specularly reflected by the front surface 11a and the back surface 11c of the glass plate 11, and the CCD line sensor camera. 15 is not incident. Therefore, no detection signal is output from the CCD line sensor camera 15.

図5に示すように、ガラス板11の表面11aの検査範囲14に破れ泡,異物,汚れ、傷などの欠陥30があれば、光強度が強い検査光17が欠陥30に当たり、欠陥30での散乱光がCCDラインセンサカメラ15に入射するから、CCDラインセンサカメラ15から高出力の検出信号が出力される。したがって、欠陥30が検査範囲14に存在する場合、欠陥30が微細であっても検出される。   As shown in FIG. 5, if there is a defect 30 such as a broken bubble, a foreign object, a dirt, a scratch or the like in the inspection range 14 of the surface 11 a of the glass plate 11, the inspection light 17 having a high light intensity hits the defect 30. Since the scattered light is incident on the CCD line sensor camera 15, a high output detection signal is output from the CCD line sensor camera 15. Therefore, when the defect 30 exists in the inspection range 14, even if the defect 30 is fine, it is detected.

図6に示すように、内部11bの検査範囲23に気泡や異物等の欠陥31がある場合、検査光17よりも光強度が非常に弱い回折光19が欠陥31に当たるため、欠陥31での散乱光はかなり弱いものとなる。したがって、欠陥31は、かなり大きなサイズのものでない限り、CCDラインセンサカメラ15によって検出されることがなく、検査範囲23の欠陥が過剰検出されることがない。   As shown in FIG. 6, when there is a defect 31 such as a bubble or a foreign substance in the inspection range 23 of the inside 11 b, the diffracted light 19 whose light intensity is much weaker than the inspection light 17 strikes the defect 31. The light is quite weak. Therefore, the defect 31 is not detected by the CCD line sensor camera 15 unless it is of a considerably large size, and the defect in the inspection range 23 is not excessively detected.

図7に示すように、裏面11cの検査範囲22に破れ泡,異物,汚れ、傷などの欠陥32がある場合、内部11bの検査範囲23に照射される回折光19よりも更に光強度が弱い回折光19が欠陥32に当たるため、欠陥32での散乱光は欠陥31での散乱光よりも更に弱いものとなる。したがって、欠陥32は、かなり大きなサイズのものでない限り、CCDラインセンサカメラ15によって検出されることがなく、検査範囲22の欠陥が過剰検出されることがない。   As shown in FIG. 7, when the inspection range 22 on the back surface 11c has a defect 32 such as a broken bubble, a foreign object, a dirt, or a scratch, the light intensity is weaker than the diffracted light 19 applied to the inspection range 23 in the inside 11b. Since the diffracted light 19 strikes the defect 32, the scattered light at the defect 32 is much weaker than the scattered light at the defect 31. Therefore, the defect 32 is not detected by the CCD line sensor camera 15 unless it is of a considerably large size, and the defect in the inspection range 22 is not excessively detected.

検査範囲22,23での欠陥検出感度は、遮蔽部材20を検査光17の中心線17aに沿って移動させ、ガラス板11の表面11aからの距離zを変更することにより所定の範囲内で調整可能である。   The defect detection sensitivity in the inspection ranges 22 and 23 is adjusted within a predetermined range by moving the shielding member 20 along the center line 17a of the inspection light 17 and changing the distance z from the surface 11a of the glass plate 11. Is possible.

遮蔽部材20を設けない場合〔条件1〕、距離zを50mmとした場合〔条件2〕、距離zを20mmとした場合〔条件3〕のそれぞれについて実験を行なった結果を下記の表1〜3に示す。遮蔽部材20の検査光17に挿入される端部20aは、先端の厚み方向の角度が80度以下に尖った形状とした。投光器18から検査範囲14の中心までの距離を100mmとし、投光器18から放出された検査光17が遮蔽部材20によって遮光される遮光量が30%〜50%となるようにした。また、CCDラインセンサカメラ15の分解能を検査範囲14の中心で約20μm/画素に設定した。また、ガラス板11としては、厚み5mm、屈折率1.5のものを使用した。   When the shielding member 20 is not provided [Condition 1], when the distance z is 50 mm [Condition 2], and when the distance z is 20 mm [Condition 3], the results of experiments are shown in Tables 1 to 3 below. Shown in The end 20a inserted into the inspection light 17 of the shielding member 20 has a shape in which the angle in the thickness direction of the tip is sharpened to 80 degrees or less. The distance from the projector 18 to the center of the inspection range 14 was set to 100 mm, and the light shielding amount by which the inspection light 17 emitted from the projector 18 was shielded by the shielding member 20 was 30% to 50%. Further, the resolution of the CCD line sensor camera 15 was set to about 20 μm / pixel at the center of the inspection range 14. Moreover, as the glass plate 11, the thing of thickness 5mm and refractive index 1.5 was used.

欠陥(異物)の存在部位として、表面,内部(ガラス板厚みのほぼ中央部),裏面の各々について、検出能力を評価した。評価結果指標は、下記のとおりである。
○:散乱光の受光信号が十分で欠陥を安定検出
△:散乱光の受光信号が確認できるも十ではなく欠陥を検出するかしないかの限界
×:散乱光の受光信号が確認できず欠陥を検出しない
The detection ability was evaluated for each of the front surface, the inside (approximately the center of the thickness of the glass plate), and the back surface as the presence site of the defect (foreign material). The evaluation result index is as follows.
○: The scattered light reception signal is sufficient and the defect is detected stably. Not detect

〔条件1〕による結果(遮蔽部材なし)

Figure 2011203081
Result of [Condition 1] (no shielding member)
Figure 2011203081

〔条件2〕による結果(距離z=50mm)

Figure 2011203081
Result by [Condition 2] (distance z = 50 mm)
Figure 2011203081

〔条件3〕による結果(距離z=20mm)

Figure 2011203081
Result according to [Condition 3] (distance z = 20 mm)
Figure 2011203081

このように距離zを調整することにより、表面11aに存在する欠陥30の検出精度に影響を与えることなく、内部11bや裏面11cに存在する欠陥31,27の検出精度を変化させることができる。これにより、検査対象である被検体の用途に応じて、内部や裏面に存在する欠陥を過剰に検出することを防止したり、逆にできるだけ検出するようにできる。なお、本発明は、本実験での数値に限定されないのは勿論である。   By adjusting the distance z in this way, the detection accuracy of the defects 31 and 27 existing on the inside 11b and the back surface 11c can be changed without affecting the detection accuracy of the defect 30 existing on the front surface 11a. Thereby, it is possible to prevent excessive detection of defects existing in the inside and the back surface or to detect as much as possible according to the use of the subject to be inspected. Of course, the present invention is not limited to the numerical values in this experiment.

以上説明した実施形態では、回折光を生成するために端部を尖った形状に形成した遮蔽部材を用いたが、本発明はこれに限定されることなく、例えばスリットを形成した遮蔽部材を用いることもできる。   In the embodiment described above, the shielding member formed with a sharp end is used to generate diffracted light. However, the present invention is not limited to this, and for example, a shielding member having a slit is used. You can also

上記実施形態では、被検体として透明なガラス板を検査する場合について説明したが、本発明はこれに限定されることなく、例えばある程度の光透過性を有する樹脂製の板など、完全には透明でない板状の被検体も検査することができる。   In the above-described embodiment, a case where a transparent glass plate is inspected as a subject has been described. However, the present invention is not limited to this, and is completely transparent, for example, a resin plate having a certain degree of light transmittance. Non-plate-like subjects can also be examined.

10 欠陥検査装置
11 ガラス板
14,22,23 検査範囲
15 CCDラインセンサカメラ
16 照明範囲
17 検査光
18 投光器
19 回折光
20,25 遮蔽部材
28 光強度分布
27 受光光軸
30〜32 欠陥
DESCRIPTION OF SYMBOLS 10 Defect inspection apparatus 11 Glass plate 14,22,23 Inspection range 15 CCD line sensor camera 16 Illumination range 17 Inspection light 18 Projector 19 Diffracted light 20,25 Shielding member 28 Light intensity distribution 27 Light-receiving optical axis 30-32 Defect

Claims (6)

光透過性を有する板状の被検体の表面に対して斜めの方向から検査光を投光し、この検査光により前記被検体の表面上に設定された細長い第1検査範囲を照明する投光手段と、
前記検査光内に挿入して検査光の一部を遮ることにより回折光を生成し、この回折光により、前記第1検査範囲に対峙する被検体の裏面側の第2検査範囲と、前記第1検査範囲と第2検査範囲との間の被検体の内部である第3検査範囲とを照明する遮蔽部材と、
前記検査光が第1検査範囲にある欠陥にて散乱することにより生じる散乱光、前記回折光が第2,3検査範囲にある欠陥にて散乱することにより生じる散乱光をそれぞれ前記被検体の表面に対して前記投光手段よりも垂直に近い方向から受光する受光手段と
を備えたことを特徴とする欠陥検査装置。
The projection light is projected from an oblique direction to the surface of the plate-like subject having light transmittance, and the first elongated examination range set on the surface of the subject is illuminated by the examination light. Means,
A diffracted light is generated by inserting into the inspection light and blocking a part of the inspection light, and by this diffracted light, a second inspection range on the back side of the subject facing the first inspection range, and the first A shielding member that illuminates a third examination range that is inside the subject between the first examination range and the second examination range;
Scattered light generated when the inspection light is scattered by a defect in the first inspection range, and scattered light generated when the diffracted light is scattered by a defect in the second and third inspection ranges, respectively. And a light receiving means for receiving light from a direction closer to the vertical than the light projecting means.
前記被検体は、第1検査範囲の長手方向に対して直交する方向に搬送されることを特徴とする請求項1記載の欠陥検査装置。   The defect inspection apparatus according to claim 1, wherein the object is transported in a direction orthogonal to a longitudinal direction of the first inspection range. 前記受光手段は、その受光視野の長手方向が第1検査範囲の長手方向と平行になるように配置されたラインセンサカメラであることを特徴とする請求項1または2記載の欠陥検査装置。   3. The defect inspection apparatus according to claim 1, wherein the light receiving means is a line sensor camera arranged so that the longitudinal direction of the light receiving field is parallel to the longitudinal direction of the first inspection range. 前記遮蔽部材は、前記検査光の照射方向に沿って移動自在に設置され、前記被検体との距離が変更可能であることを特徴とする請求項1ないし3いずれか1項記載の欠陥検査装置。   The defect inspection apparatus according to claim 1, wherein the shielding member is movably installed along an irradiation direction of the inspection light, and a distance from the subject can be changed. . 前記遮蔽部材は、その長手方向が第1検査範囲の長手方向に平行に長いほぼ長方形をしており、前記検査光内に挿入される長手方向の一方の端部は、先端の厚み方向に尖った形状をしていることを特徴とする請求項1ないし4いずれか1項記載の欠陥検査装置。   The shielding member has a substantially rectangular shape whose longitudinal direction is long in parallel with the longitudinal direction of the first inspection range, and one end portion in the longitudinal direction inserted into the inspection light is pointed in the thickness direction of the distal end. The defect inspection apparatus according to claim 1, wherein the defect inspection apparatus has a curved shape. 前記遮蔽部材の前記検査光内に挿入される端部は、前記検査光の中心線に近接するように検査光内に挿入されることを特徴とする請求項1ないし5いずれか1項記載の欠陥検査装置。   6. The end of the shielding member inserted into the inspection light is inserted into the inspection light so as to be close to a center line of the inspection light. Defect inspection equipment.
JP2010070059A 2010-03-25 2010-03-25 Defect inspection equipment Active JP5538018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070059A JP5538018B2 (en) 2010-03-25 2010-03-25 Defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070059A JP5538018B2 (en) 2010-03-25 2010-03-25 Defect inspection equipment

Publications (2)

Publication Number Publication Date
JP2011203081A true JP2011203081A (en) 2011-10-13
JP5538018B2 JP5538018B2 (en) 2014-07-02

Family

ID=44879891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070059A Active JP5538018B2 (en) 2010-03-25 2010-03-25 Defect inspection equipment

Country Status (1)

Country Link
JP (1) JP5538018B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125968A (en) * 2015-01-07 2016-07-11 旭硝子株式会社 Check device and method for checking
CN105842885A (en) * 2016-03-21 2016-08-10 凌云光技术集团有限责任公司 Liquid crystal screen defect layered positioning method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019041087A1 (en) * 2017-08-28 2019-03-07 深圳市兴华炜科技有限公司 Transparent object testing method and related product

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186806A (en) * 1985-02-14 1986-08-20 Nec Corp Fault detecting device for transparent body
JPH041507A (en) * 1990-01-23 1992-01-07 Datsuku Eng Kk Measuring method for thickness and surface strain of object and detecting method for mixed foreign matter
JPH04178545A (en) * 1990-11-14 1992-06-25 Fuji Photo Film Co Ltd Method and apparatus for inspecting transparent band-like body
JPH08254505A (en) * 1995-03-15 1996-10-01 Toyo Glass Co Ltd Detection method of minute flaw in transparent object
JPH10267858A (en) * 1997-03-25 1998-10-09 Hitachi Electron Eng Co Ltd Method for judging defect of glass substrate
JP3490792B2 (en) * 1995-03-27 2004-01-26 富士写真フイルム株式会社 Surface inspection equipment
JP2004069432A (en) * 2002-08-05 2004-03-04 Nippon Electric Glass Co Ltd Method and apparatus for inspecting transparent body
JP2006071284A (en) * 2004-08-31 2006-03-16 Central Glass Co Ltd Inside and outside discrimination method of flaw of glass substrate
JP4072466B2 (en) * 2002-12-27 2008-04-09 日本板硝子株式会社 Apparatus and method for evaluating optical distortion of plate-like body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186806A (en) * 1985-02-14 1986-08-20 Nec Corp Fault detecting device for transparent body
JPH041507A (en) * 1990-01-23 1992-01-07 Datsuku Eng Kk Measuring method for thickness and surface strain of object and detecting method for mixed foreign matter
JPH04178545A (en) * 1990-11-14 1992-06-25 Fuji Photo Film Co Ltd Method and apparatus for inspecting transparent band-like body
JPH08254505A (en) * 1995-03-15 1996-10-01 Toyo Glass Co Ltd Detection method of minute flaw in transparent object
JP3490792B2 (en) * 1995-03-27 2004-01-26 富士写真フイルム株式会社 Surface inspection equipment
JPH10267858A (en) * 1997-03-25 1998-10-09 Hitachi Electron Eng Co Ltd Method for judging defect of glass substrate
JP2004069432A (en) * 2002-08-05 2004-03-04 Nippon Electric Glass Co Ltd Method and apparatus for inspecting transparent body
JP4072466B2 (en) * 2002-12-27 2008-04-09 日本板硝子株式会社 Apparatus and method for evaluating optical distortion of plate-like body
JP2006071284A (en) * 2004-08-31 2006-03-16 Central Glass Co Ltd Inside and outside discrimination method of flaw of glass substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013031141; (社)日本鉄鋼協会計測・制御・システム工学部会: 「計測・制御・システム工学部会シンポジウム 鉄鋼プロセス応用のために学ぶ他業種における計測・検査技術 , 200109, p.33-40, (社)日本鉄鋼協会 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125968A (en) * 2015-01-07 2016-07-11 旭硝子株式会社 Check device and method for checking
CN105842885A (en) * 2016-03-21 2016-08-10 凌云光技术集团有限责任公司 Liquid crystal screen defect layered positioning method and device
CN105842885B (en) * 2016-03-21 2018-11-27 凌云光技术集团有限责任公司 A kind of liquid crystal display defect Hierarchical Location method and device

Also Published As

Publication number Publication date
JP5538018B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
KR101136804B1 (en) Method And Apparatus For Detecting Faults In Transparent Material
CA1052885A (en) Process and apparatus for detecting occlusions
WO2010024082A1 (en) Defect inspecting system, and defect inspecting method
CN106896113B (en) Defect detection system and method
TWI660166B (en) Method for particle detection on flexible substrates
JP5090147B2 (en) Defect inspection method, defect inspection apparatus, and line-shaped light source device used therefor
JP5538018B2 (en) Defect inspection equipment
JP6038434B2 (en) Defect inspection equipment
TW201200865A (en) Defect inspection apparatus of plate-like transparent body and defect inspection method
JP2008076113A (en) Surface flaw detection method and surface flaw inspection device
JP2010169453A (en) Device and method for inspecting foreign matter
KR20070105854A (en) Optical sensor and method for optically inspecting surfaces
JP2006071284A (en) Inside and outside discrimination method of flaw of glass substrate
JP2007333563A (en) Inspection device and inspection method for light transmitting sheet
EP3413037B1 (en) Inspection device for sheet-like objects, and inspection method for sheet-like objects
CN107917918A (en) A kind of detection method of the discriminating ultrathin transparent plate surface flaw based on mirror-reflection
KR102045818B1 (en) Transmissive optical inspection device and method of detecting defect using the same
JP2013246059A (en) Defect inspection apparatus and defect inspection method
JP2008216150A (en) Inspection device and method of transparent object
EP3044538B1 (en) Optical surface roughness measurement
TWM548268U (en) Light box structure and optical inspection equipment using the same
JP2000314707A (en) Device and method for inspecting surface
TW201326788A (en) Method for adjusting optical visual field
KR101854686B1 (en) Apparatus and method of testing pattern in light guide plate
JP2008122130A (en) Flaw detector of film and flaw detection method of film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5538018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250