JP4679282B2 - Substrate inspection apparatus and substrate inspection method - Google Patents

Substrate inspection apparatus and substrate inspection method Download PDF

Info

Publication number
JP4679282B2
JP4679282B2 JP2005209218A JP2005209218A JP4679282B2 JP 4679282 B2 JP4679282 B2 JP 4679282B2 JP 2005209218 A JP2005209218 A JP 2005209218A JP 2005209218 A JP2005209218 A JP 2005209218A JP 4679282 B2 JP4679282 B2 JP 4679282B2
Authority
JP
Japan
Prior art keywords
substrate
light
light receiving
receiving system
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005209218A
Other languages
Japanese (ja)
Other versions
JP2007024733A (en
Inventor
進 岩井
昇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005209218A priority Critical patent/JP4679282B2/en
Publication of JP2007024733A publication Critical patent/JP2007024733A/en
Application granted granted Critical
Publication of JP4679282B2 publication Critical patent/JP4679282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、表示用パネルの製造に用いられるガラス基板やプラスチック基板等の欠陥を検出する基板検査装置及び基板検査方法に係り、特に透明な基板の表及び内部の欠陥を検出するのに好適な基板検査装置及び基板検査方法に関する。 The present invention relates to a substrate inspection device and substrate inspection method for detecting defects in a glass substrate or a plastic substrate or the like used in the manufacture of display panels, to detect the front surface and internal defects, particularly a transparent substrate The present invention relates to a suitable substrate inspection apparatus and substrate inspection method.

表示用パネルとして用いられる液晶ディスプレイ装置のTFT(Thin Film Transistor)基板やカラーフィルタ基板、プラズマディスプレイパネル用基板、有機EL(Electroluminescence)表示パネル用基板等の製造は、フォトリソグラフィー技術により、ガラス基板やプラスチック基板等の基板上にパターンを形成して行われる。その際、基板に傷や異物等の欠陥が存在すると、パターンが良好に形成されず、不良の原因となる。このため、欠陥検査装置を用いて、基板の傷や異物等の欠陥の検査が行われている。   Manufacture of TFT (Thin Film Transistor) substrates, color filter substrates, plasma display panel substrates, organic EL (Electroluminescence) display panel substrates, etc. for liquid crystal display devices used as display panels is made by photolithography technology using glass substrates, This is performed by forming a pattern on a substrate such as a plastic substrate. At that time, if a defect such as a scratch or a foreign substance exists on the substrate, the pattern is not formed well, which causes a defect. For this reason, a defect inspection apparatus is used to inspect defects such as scratches and foreign matter on the substrate.

欠陥検査装置は、レーザービーム等の検査光を基板へ照射し、基板からの反射光又は散乱光を受光して、基板の傷や異物等の欠陥を検出するものである。欠陥検査装置を用いたガラス基板の検査において、検出された欠陥が傷や異物等のいずれであるかを判定する方法として、特許文献1に記載の技術が知られている。また、検出された欠陥がガラス基板の表面と裏面のいずれに存在するかを識別する方法として、特許文献2に記載の技術が知られている。
特開平9−257642号公報 特開平9−258197号公報
The defect inspection apparatus irradiates a substrate with inspection light such as a laser beam and receives reflected light or scattered light from the substrate to detect defects such as scratches or foreign matter on the substrate. As a method for determining whether a detected defect is a scratch or a foreign substance in an inspection of a glass substrate using a defect inspection apparatus, a technique described in Patent Document 1 is known. Moreover, the technique of patent document 2 is known as a method of identifying whether the detected defect exists in the front surface or the back surface of a glass substrate.
Japanese Patent Laid-Open No. 9-257642 JP-A-9-258197

ガラス基板の製造工程では、ガラス基板の内部に異物が混入したり気泡が発生したりすることがある。欠陥検査装置による検査では、この様なガラス基板の内部の欠陥が、ガラス基板の表面の欠陥と合わせて検出される。検出された欠陥について、従来、特許文献1に記載の技術を用いて気泡を判定することは可能であったが、ガラス基板の表面の異物と内部の異物とを弁別することはできなかった。   In the manufacturing process of a glass substrate, foreign substances may be mixed inside the glass substrate or bubbles may be generated. In the inspection by the defect inspection apparatus, such defects inside the glass substrate are detected together with defects on the surface of the glass substrate. Conventionally, it has been possible to determine air bubbles using the technique described in Patent Document 1 for the detected defects, but it has not been possible to discriminate foreign substances on the surface of the glass substrate from internal foreign substances.

これに対し、本出願人により、特願2004−171605号において、光学系の焦点位置をガラス基板の表面に合わせて散乱光を受光する第1の検査工程と、光学系の焦点位置をガラス基板の内部に合わせて散乱光を受光する第2の検査工程とを含み、第1の検査工程で受光した散乱光と第2の検査工程で受光した散乱光との強度の違いから、ガラス基板の表面の異物と内部の異物とを弁別するガラス基板の検査方法が提案されている。この検査方法では複数回の検査工程が必要となり、基板の表面及び内部の欠陥をより効率良く検査することのできる装置及び方法が望まれていた。   On the other hand, in Japanese Patent Application No. 2004-171605 by the present applicant, a first inspection step for receiving scattered light by adjusting the focal position of the optical system to the surface of the glass substrate, and the focal position of the optical system as the glass substrate. A second inspection step for receiving scattered light in accordance with the inside of the glass substrate, and from the difference in intensity between the scattered light received in the first inspection step and the scattered light received in the second inspection step, A glass substrate inspection method for discriminating between surface foreign substances and internal foreign substances has been proposed. This inspection method requires a plurality of inspection steps, and there has been a demand for an apparatus and method that can inspect defects on the surface and inside of the substrate more efficiently.

本発明の課題は、基板の表面の欠陥と内部の欠陥とを、1回の検査工程で効率良く弁別することである。   An object of the present invention is to efficiently discriminate between defects on the surface of a substrate and internal defects in a single inspection process.

本発明の基板検査装置は、表示用パネルの製造に用いられる透明な基板の表面及び内部の欠陥を検出する基板検査装置であって、基板の下方に配置され、検査光を基板の裏面斜めに照射する検査光投光系と、基板の上方に配置され、基板の裏面から基板の内部へ透過し、基板の表面へ達した検査光が基板の表面の欠陥により散乱された散乱光、及び基板の裏面から基板の内部へ透過した検査光が基板の内部の欠陥により散乱された散乱光を、基板の表面に焦点を合わせて受光する第1の受光系と、基板の上方に配置され、基板の裏面から基板の内部へ透過し、基板の表面へ達した検査光が基板の表面の欠陥により散乱された散乱光、及び基板の裏面から基板の内部へ透過した検査光が基板の内部の欠陥により散乱された散乱光を、基板の内部に焦点を合わせて受光する第2の受光系と、第1の受光系及び第2の受光系の検出信号を処理して、基板の表面又は内部の欠陥を検出し、第1の受光系が受光した散乱光と第2の受光系が受光した散乱光との強度の違いから、第1の受光系で受光した散乱光の強度が第2の受光系で受光した散乱光の強度より大きい場合は、検出した欠陥を基板の表面の欠陥と判定し、第1の受光系で受光した散乱光の強度が第2の受光系で受光した散乱光の強度より小さい場合は、検出した欠陥を基板の内部の欠陥と判定して、基板の表面の欠陥と内部の欠陥とを弁別する処理手段とを備えたものである。 The substrate inspection apparatus of the present invention is a substrate inspection apparatus for detecting defects on the surface and inside of a transparent substrate used for manufacturing a display panel, and is disposed below the substrate, and the inspection light is obliquely directed to the back surface of the substrate. An inspection light projecting system that irradiates the substrate, scattered light that is disposed above the substrate, transmitted from the back surface of the substrate to the inside of the substrate, and reached the surface of the substrate is scattered by defects on the surface of the substrate ; and the scattered light inspection light transmitted into the interior of the substrate from the rear surface is disturbed lithium by the defects within the substrate of the substrate, a first light receiving system that receives focus on the surface of the substrate, above the substrate Arranged and transmitted from the back surface of the substrate to the inside of the substrate, the inspection light that has reached the surface of the substrate is scattered by defects on the surface of the substrate, and the inspection light that has been transmitted from the back surface of the substrate to the inside of the substrate internal lithium disturbed scattered light by the defect of the substrate A second light receiving system that receives focus on, to process the detection signals of the first light-receiving system and the second light receiving system to detect the surface or internal defects of the substrate, the first light receiving system the difference in strength between the scattered light received by the scattered light and the second light receiving system has received, if the intensity of the scattered light received by the first light receiving system is greater than the intensity of the scattered light received by the second light receiving system Determines that the detected defect is a defect on the surface of the substrate, and if the intensity of the scattered light received by the first light receiving system is smaller than the intensity of the scattered light received by the second light receiving system, the detected defect is the substrate. And a processing means for discriminating between the defects on the surface of the substrate and the internal defects.

また、本発明の基板検査方法は、表示用パネルの製造に用いられる透明な基板の表面及び内部の欠陥を検出する基板検査方法であって、基板の下方に配置された検査光投光系から、検査光を基板の裏面斜めに照射し、基板の裏面から基板の内部へ透過し、基板の表面へ達した検査光が基板の表面の欠陥により散乱された散乱光、及び基板の裏面から基板の内部へ透過した検査光が基板の内部の欠陥により散乱された散乱光を、基板の上方に配置された第1の受光系により基板の表面に焦点を合わせて受光すると同時に、基板の上方に配置された第2の受光系により基板の内部に焦点を合わせて受光し、第1の受光系及び第2の受光系の検出信号を処理して、基板の表面又は内部の欠陥を検出し、第1の受光系が受光した散乱光と第2の受光系が受光した散乱光との強度の違いから、第1の受光系で受光した散乱光の強度が第2の受光系で受光した散乱光の強度より大きい場合は、検出した欠陥を基板の表面の欠陥と判定し、第1の受光系で受光した散乱光の強度が第2の受光系で受光した散乱光の強度より小さい場合は、検出した欠陥を基板の内部の欠陥と判定して、基板の表面の欠陥と内部の欠陥とを弁別するものである。 The substrate inspection method of the present invention is a substrate inspection method for detecting defects on the surface and inside of a transparent substrate used for manufacturing a display panel, from an inspection light projection system disposed below the substrate. the inspection light is irradiated obliquely to the rear surface of the substrate, transmitted through the back surface of the substrate into the interior of the substrate, scattered light inspection light that has reached the surface of the substrate is scattered by defects on the surface of the substrate, and the back surface of the substrate the scattered light inspection light transmitted into the interior of the substrate is disturbed lithium by the internal defects of the substrate, the first when receiving focus on the surface of the substrate by the light receiving system arranged above the substrate at the same time, The second light receiving system disposed above the substrate receives light focused on the inside of the substrate, processes the detection signals of the first light receiving system and the second light receiving system, and detects defects on the surface or inside of the substrate. detecting the scattered light and the second light receiving by the first light receiving system has received From There difference in strength between the scattered light received, the intensity of the scattered light received by the first light receiving system is greater than the intensity of the scattered light received in the second light receiving system, the detected defects on the surface of the substrate If the intensity of the scattered light received by the first light receiving system is smaller than the intensity of the scattered light received by the second light receiving system, it is determined that the detected defect is a defect inside the substrate. It distinguishes between surface defects and internal defects.

第1の受光系では、基板の表面の欠陥については、焦点が合っているため、散乱光の受光効率が高く、受光される散乱光の強度が大きい。基板の内部の欠陥については、焦点が合っていないため、散乱光の受光効率が低く、受光される散乱光の強度が小さい。一方、第2の受光系では、基板の表面の欠陥については、焦点が合っていないため、散乱光の受光効率が低く、受光される散乱光の強度が小さい。基板の内部の欠陥については、焦点が合っているため、散乱光の受光効率が高く、受光される散乱光の強度が大きい。第1の受光系が受光した散乱光と第2の受光系が受光した散乱光との強度の違いから、基板の表面の欠陥と内部の欠陥とを弁別するので、基板の表面の欠陥と内部の欠陥とが、1回の検査工程で効率良く弁別される。 In the first light receiving system, since the defects on the surface of the substrate are in focus, the light receiving efficiency of the scattered light is high, and the intensity of the scattered light received is large. Since the defects inside the substrate are not in focus, the light receiving efficiency of scattered light is low, and the intensity of the scattered light received is low. On the other hand, in the second light receiving system, since the defects on the surface of the substrate are not focused, the light receiving efficiency of the scattered light is low, and the intensity of the scattered light received is small. Since defects in the substrate are in focus, the light receiving efficiency of scattered light is high and the intensity of scattered light received is large. From the intensity differences between the first light receiving system is scattered light scattered light and the second light receiving system receiving has received, since the discrimination between defects and internal defects of the surface of the substrate, defects and internal surface of the substrate Are efficiently discriminated in a single inspection process.

さらに、本発明の基板検査装置は、第1の受光系が、検査光が基板の表面又は内部の欠陥により散乱された散乱光を集光し及び結像させるレンズ群と、レンズ群を通過した光を分割する分割手段と、分割手段で分割された光の一方を基板の表面に焦点を合わせて受光する第1の受光素子とを有し、第2の受光系が、前記レンズ群と、前記分割手段と、前記分割手段で分割された光の他方を基板の内部に焦点を合わせて受光する第2の受光素子とを有するものである。 Further, a substrate inspection device of the present invention, the first light receiving system is a lens group for inspection light focuses the scattered light disturbed lithium by the surface or internal defects of the substrate and the imaging lens group And a first light receiving element that receives one of the lights divided by the dividing means while focusing on the surface of the substrate, and the second light receiving system includes the lens. A group, the dividing unit, and a second light receiving element that receives the other of the lights divided by the dividing unit while focusing on the inside of the substrate.

また、本発明の基板検査方法は、検査光が基板の表面又は内部の欠陥により散乱された散乱光を集光し及び結像させるレンズ群と、レンズ群を通過した光を分割する分割手段とを、第1の受光系及び第2の受光系に共通に設け、第1の受光系では、第1の受光素子により分割手段で分割された光の一方を基板の表面に焦点を合わせて受光し、第2の受光系では、第2の受光素子により分割手段で分割された光の他方を基板の内部に焦点を合わせて受光するものである。 The substrate inspection method of the present invention, the inspection light is to divide the light passing through the lens group to be condensed and imaging the scattered light disturbed lithium by the surface or internal defects of the substrate, a lens unit The dividing means is provided in common to the first light receiving system and the second light receiving system, and in the first light receiving system, one of the lights divided by the dividing means by the first light receiving element is focused on the surface of the substrate. The second light receiving system receives the other light divided by the dividing means by the second light receiving element while focusing on the inside of the substrate.

検査光が基板の表面又は内部の欠陥により散乱された散乱光を集光し及び結像させるレンズ群と、レンズ群を通過した光を分割する分割手段とを、第1の受光系及び第2の受光系に共通に設けることにより、高価なレンズ群を第1の受光系と第2の受光系とで共用することができ、装置構成が簡単となる。 And inspection light focuses the lithium disturbed scattered light by the surface or internal defects of the substrate and the lens group for focusing, and a dividing means for dividing light passing through the lens group, the first light receiving system By providing them in common to the second light receiving system, an expensive lens group can be shared by the first light receiving system and the second light receiving system, and the apparatus configuration is simplified.

本発明によれば、基板の表面の欠陥と内部の欠陥とを、1回の検査工程で効率良く弁別することができる。   According to the present invention, defects on the surface of a substrate and internal defects can be efficiently distinguished in a single inspection process.

さらに、本発明によれば、検査光が基板の表面又は内部の欠陥により散乱された散乱光を集光し及び結像させるレンズ群と、レンズ群を通過した光を分割する分割手段とを、第1の受光系及び第2の受光系に共通に設けることにより、高価なレンズ群を第1の受光系と第2の受光系とで共用することができ、装置構成を簡単にすることができる。 Furthermore, according to the present invention, dividing means for inspection light to divide the light passing through the lens group to be condensed and imaging the scattered light disturbed lithium by the surface or internal defects of the substrate, a lens unit Are shared by the first light receiving system and the second light receiving system, so that the expensive lens group can be shared by the first light receiving system and the second light receiving system, and the device configuration can be simplified. can do.

図1は、本発明の一実施の形態による基板検査装置の概略構成を示す図である。本実施の形態は、検査光が基板の欠陥により散乱された散乱光から、基板の表面又は内部の欠陥を検出する基板検査装置の例を示している。基板検査装置は、光学系10、XY移動機構30、XY移動制御回路31、焦点調節機構40、焦点調節制御回路41、信号変換回路50、信号処理回路60、CPU70、及び出力装置80を含んで構成されている。   FIG. 1 is a diagram showing a schematic configuration of a substrate inspection apparatus according to an embodiment of the present invention. The present embodiment shows an example of a substrate inspection apparatus that detects defects on the surface or inside of a substrate from scattered light in which the inspection light is scattered by defects on the substrate. The substrate inspection apparatus includes an optical system 10, an XY movement mechanism 30, an XY movement control circuit 31, a focus adjustment mechanism 40, a focus adjustment control circuit 41, a signal conversion circuit 50, a signal processing circuit 60, a CPU 70, and an output device 80. It is configured.

図示しない検査ステージに搭載された基板1の上下に、光学系10が配置されている。光学系10は、焦点調整用の焦点調節用投光系、検査光を基板1へ照射する検査光投光系、焦点調整用の反射光検出系、及び基板1からの散乱光を受光する受光系を含んで構成されている。焦点調節用投光系、焦点調整用の反射光検出系及び受光系は基板1の上方に配置され、検査光投光系は基板1の下方に配置されている。   Optical systems 10 are arranged above and below a substrate 1 mounted on an inspection stage (not shown). The optical system 10 includes a focus adjustment light projection system for focus adjustment, an inspection light projection system that irradiates the substrate 1 with inspection light, a reflected light detection system for focus adjustment, and a light reception that receives scattered light from the substrate 1. It is configured to include the system. The focus adjusting light projecting system, the focus adjusting reflected light detecting system, and the light receiving system are disposed above the substrate 1, and the inspection light projecting system is disposed below the substrate 1.

焦点調節用投光系は、レーザー光源11a、レンズ12a,13a、及びミラー14を含んで構成されている。レーザー光源11aは、レーザー光を発生する。レンズ12aは、レーザー光源11aから発生されたレーザー光を集光する。レンズ13aは、レンズ12aで集光されたレーザー光を集束させ、ミラー14を介して基板1の表面へ斜めに照射する。焦点調節用投光系から基板1の表面へ照射されたレーザー光源は、入射角度が大きいため、そのほとんどが基板1の表面で反射する。   The focus adjustment light projecting system includes a laser light source 11 a, lenses 12 a and 13 a, and a mirror 14. The laser light source 11a generates laser light. The lens 12a condenses the laser light generated from the laser light source 11a. The lens 13 a focuses the laser light collected by the lens 12 a and irradiates the surface of the substrate 1 obliquely through the mirror 14. Since the laser light source irradiated to the surface of the substrate 1 from the focus adjustment light projecting system has a large incident angle, most of the light is reflected on the surface of the substrate 1.

一方、検査光投光系は、レーザー光源11b、及びレンズ12b,13bを含んで構成されている。レーザー光源11bは、検査光となるレーザー光を発生する。レンズ12bは、レーザー光源11bから発生された検査光を集光する。レンズ13bは、レンズ12bで集光された検査光を集束させ、基板1の裏面へ斜めに照射する。本実施の形態では、一例として、検査光の基板1に対する入射角θを約10度とする。   On the other hand, the inspection light projection system includes a laser light source 11b and lenses 12b and 13b. The laser light source 11b generates laser light serving as inspection light. The lens 12b condenses the inspection light generated from the laser light source 11b. The lens 13 b focuses the inspection light collected by the lens 12 b and irradiates the back surface of the substrate 1 obliquely. In the present embodiment, as an example, the incident angle θ of the inspection light with respect to the substrate 1 is about 10 degrees.

XY移動機構30は、XY移動制御回路31の制御により、光学系10をXY方向へ移動する。XY移動制御回路31は、CPU70からの指令に従って、XY移動機構30を駆動する。光学系10をXY方向へ移動することにより、光学系10の検査光投光系から照射された検査光が基板1の表面を走査し、基板1全体の検査が行われる。   The XY movement mechanism 30 moves the optical system 10 in the XY direction under the control of the XY movement control circuit 31. The XY movement control circuit 31 drives the XY movement mechanism 30 in accordance with a command from the CPU 70. By moving the optical system 10 in the X and Y directions, the inspection light irradiated from the inspection light projection system of the optical system 10 scans the surface of the substrate 1 and the entire substrate 1 is inspected.

なお、光学系10を移動する代わりに、基板1を搭載する検査ステージをXY方向へ移動することにより、基板1と光学系10とを相対的に移動してもよい。   Instead of moving the optical system 10, the substrate 1 and the optical system 10 may be moved relatively by moving the inspection stage on which the substrate 1 is mounted in the XY directions.

焦点調節用の反射光検出系は、ミラー14、レンズ15、及びCCDラインセンサー16を含んで構成されている。基板1からの反射光は、ミラー14を介してレンズ15に入射する。レンズ15は、基板1からの反射光を集束させ、CCDラインセンサー16の受光面に結像させる。   The reflected light detection system for focus adjustment includes a mirror 14, a lens 15, and a CCD line sensor 16. The reflected light from the substrate 1 enters the lens 15 via the mirror 14. The lens 15 focuses the reflected light from the substrate 1 and forms an image on the light receiving surface of the CCD line sensor 16.

このとき、CCDラインセンサー16の受光面における反射光の受光位置は、基板1の表面の高さによって変化する。図1に示す基板1の表面の高さを基準としたとき、基板1の表面の高さが基準より低い場合、基板1の表面で焦点調節用投光系からのレーザー光が照射及び反射される位置が図面の右側へ移動し、CCDラインセンサー16の受光面における反射光の受光位置が図面の左側へ移動する。逆に、基板1の表面の高さが基準より高い場合、基板1の表面で焦点調節用投光系からのレーザー光が照射及び反射される位置が図面の左側へ移動し、CCDラインセンサー16の受光面における反射光の受光位置が図面の右側へ移動する。 At this time, the light receiving position of the reflected light on the light receiving surface of the CCD line sensor 16 varies depending on the height of the surface of the substrate 1. When the height of the surface of the substrate 1 shown in FIG. 1 is used as a reference and the height of the surface of the substrate 1 is lower than the reference , the laser light from the focus adjustment light projecting system is irradiated and reflected on the surface of the substrate 1. The position of the reflected light on the light receiving surface of the CCD line sensor 16 moves to the left side of the drawing. Conversely, when the height of the surface of the substrate 1 is higher than the reference, the position at which the laser light from the focus adjustment light projecting system is irradiated and reflected on the surface of the substrate 1 moves to the left side of the drawing, and the CCD line sensor 16 The light receiving position of the reflected light on the light receiving surface moves to the right side of the drawing.

CCDラインセンサー16は、受光面で受光した反射光の強度に応じた検出信号を焦点調節制御回路41へ出力する。焦点調節制御回路41は、CPU70からの指令に従って、CCDラインセンサー16の検出信号から、基板1の表面からの反射光がCCDラインセンサー16の受光面の中心位置で受光される様に、焦点調節機構40を駆動して光学系10を移動する。焦点調節機構40は、例えばパルスモータで構成され、焦点調節制御回路41からの駆動パルスに応じて光学系10を上下に移動して焦点位置を調節する。   The CCD line sensor 16 outputs a detection signal corresponding to the intensity of the reflected light received by the light receiving surface to the focus adjustment control circuit 41. The focus adjustment control circuit 41 adjusts the focus so that the reflected light from the surface of the substrate 1 is received at the center position of the light receiving surface of the CCD line sensor 16 from the detection signal of the CCD line sensor 16 in accordance with a command from the CPU 70. The mechanism 40 is driven to move the optical system 10. The focus adjustment mechanism 40 is configured by, for example, a pulse motor, and adjusts the focus position by moving the optical system 10 up and down in accordance with the drive pulse from the focus adjustment control circuit 41.

図2は、基板の表面又は内部の欠陥による散乱光を説明する図である。検査光投光系から基板1の裏面へ照射された検査光は、入射角が小さいため、そのほとんどが実線で示す様に基板1の裏面から基板1の内部へ透過し、基板1の表面へ達して、基板1の表面から射出される。基板1の内部に欠陥が存在する場合、基板1の内部へ透過した検査光の一部が欠陥により散乱され、二点鎖線で示す散乱光が発生する。基板1の表面に欠陥が存在する場合、基板1の内部を透過して基板1の表面に達した検査光の一部が欠陥により散乱され、破線で示す散乱光が発生する。   FIG. 2 is a diagram for explaining scattered light due to defects on the surface or inside of the substrate. Since the inspection light irradiated from the inspection light projection system to the back surface of the substrate 1 has a small incident angle, most of the inspection light is transmitted from the back surface of the substrate 1 to the inside of the substrate 1 as indicated by a solid line, and to the surface of the substrate 1. It reaches and is ejected from the surface of the substrate 1. When a defect exists in the substrate 1, a part of the inspection light transmitted into the substrate 1 is scattered by the defect, and scattered light indicated by a two-dot chain line is generated. When a defect exists on the surface of the substrate 1, part of the inspection light that has passed through the inside of the substrate 1 and reached the surface of the substrate 1 is scattered by the defect, and scattered light indicated by a broken line is generated.

図1において、光学系10の受光系は、第1の受光系と第2の受光系とを含んで構成されている。第1の受光系は、集光レンズ17、結像レンズ18、遮光板19、プリズム20、及びCCDラインセンサー21を含んで構成されている。一方、第2の受光系は、集光レンズ17、結像レンズ18、遮光板19、プリズム20、及びCCDラインセンサー22を含んで構成されている。即ち、本実施の形態では、集光レンズ17、結像レンズ18、遮光板19及びプリズム20が、第1の受光系及び第2の受光系に共通に設けられている。   In FIG. 1, the light receiving system of the optical system 10 includes a first light receiving system and a second light receiving system. The first light receiving system includes a condenser lens 17, an imaging lens 18, a light shielding plate 19, a prism 20, and a CCD line sensor 21. On the other hand, the second light receiving system includes a condenser lens 17, an imaging lens 18, a light shielding plate 19, a prism 20, and a CCD line sensor 22. That is, in the present embodiment, the condenser lens 17, the imaging lens 18, the light shielding plate 19, and the prism 20 are provided in common for the first light receiving system and the second light receiving system.

集光レンズ17は、基板1の表面又は内部からの散乱光を集光する。このとき、遮光板19は、基板1を透過した検査光を、レンズ17へ入射しない様に遮断する。結像レンズ18は、集光レンズ17で集光された散乱光をCCDラインセンサー21の受光面の位置に結像させる。プリズム20は、結像レンズ18を通過した光を2つに分割し、分割した光の一方をCCDラインセンサー21へ照射し、他方をCCDラインセンサー22へ照射する。なお、プリズム20の代わりに、ハーフミラーを用いてもよい。   The condensing lens 17 condenses scattered light from the surface or the inside of the substrate 1. At this time, the light shielding plate 19 blocks the inspection light transmitted through the substrate 1 so as not to enter the lens 17. The imaging lens 18 images the scattered light collected by the condenser lens 17 on the position of the light receiving surface of the CCD line sensor 21. The prism 20 divides the light that has passed through the imaging lens 18 into two, irradiates one of the divided light to the CCD line sensor 21, and the other to the CCD line sensor 22. A half mirror may be used instead of the prism 20.

第1の受光系のCCDラインセンサー21は、プリズム20で分割された光の一方を受光し、受光した散乱光の強度に応じた検出信号を信号変換回路50へ出力する。ここで、CCDラインセンサー21は、その受光面が基板1の表面に対して像面となる位置に配置されている。即ち、第1の受光系は、基板1の表面に焦点が合っている。   The CCD line sensor 21 of the first light receiving system receives one of the lights divided by the prism 20 and outputs a detection signal corresponding to the intensity of the received scattered light to the signal conversion circuit 50. Here, the CCD line sensor 21 is disposed at a position where the light receiving surface is an image plane with respect to the surface of the substrate 1. That is, the first light receiving system is focused on the surface of the substrate 1.

一方、第2の受光系のCCDラインセンサー22は、プリズム20で分割された光の他方を受光し、受光した散乱光の強度に応じた検出信号を信号変換回路50へ出力する。ここで、CCDラインセンサー22は、プリズム20からの距離がCCDラインセンサー21とは異なる様に構成されている。これにより、CCDラインセンサー22の受光面は、基板1の表面ではなく、基板1の内部の所定の深さの面に対して像面となっている。即ち、第2の受光系は、基板1の内部に焦点が合っている。   On the other hand, the CCD line sensor 22 of the second light receiving system receives the other of the lights divided by the prism 20 and outputs a detection signal corresponding to the intensity of the received scattered light to the signal conversion circuit 50. Here, the CCD line sensor 22 is configured such that the distance from the prism 20 is different from that of the CCD line sensor 21. Thereby, the light receiving surface of the CCD line sensor 22 is not the surface of the substrate 1 but an image surface with respect to a surface of a predetermined depth inside the substrate 1. That is, the second light receiving system is focused inside the substrate 1.

信号変換回路50は、CCDラインセンサー21,22の検出信号をディジタル信号に変換して、信号処理回路60へ出力する。信号処理回路60は、内部メモリを備え、信号変換回路50から入力したディジタル信号をディジタルデータとして内部メモリに記憶する。そして、信号処理回路60は、CPU70の制御により、内部メモリに記憶したディジタルデータを処理して、基板1の表面又は内部の欠陥を検出する。   The signal conversion circuit 50 converts the detection signals of the CCD line sensors 21 and 22 into digital signals and outputs them to the signal processing circuit 60. The signal processing circuit 60 includes an internal memory, and stores the digital signal input from the signal conversion circuit 50 in the internal memory as digital data. Then, the signal processing circuit 60 processes the digital data stored in the internal memory under the control of the CPU 70 to detect defects on the surface of the substrate 1 or inside.

続いて、信号処理回路60は、検出した基板1の表面又は内部の欠陥について、内部メモリに記憶されたディジタルデータから、表面/内部の判定を行う。これについて、図3を用いて説明する。図3は、本発明の一実施の形態による基板検査装置の動作を説明する図である。図3(a)は第1の受光系が散乱光を検出している状態を示し、図3(b)は第2の受光系が散乱光を検出している状態を示している。なお、図3(a),(b)では、図1の集光レンズ17、結像レンズ18及びプリズム20をまとめてレンズ23で表わしている。また、図3(b)では、図3(a)と対比するために、散乱光の光路をプリズム20による屈折なしに表わしている。   Subsequently, the signal processing circuit 60 performs surface / internal determination on the detected surface or internal defect of the substrate 1 from the digital data stored in the internal memory. This will be described with reference to FIG. FIG. 3 is a diagram for explaining the operation of the substrate inspection apparatus according to the embodiment of the present invention. FIG. 3A shows a state in which the first light receiving system detects scattered light, and FIG. 3B shows a state in which the second light receiving system detects scattered light. 3A and 3B, the condenser lens 17, the imaging lens 18, and the prism 20 of FIG. 3B shows the optical path of the scattered light without refraction by the prism 20 for comparison with FIG.

図3(a)に示す様に、第1の光学系では、基板1の表面の欠陥については、焦点が合っているため、破線で示す散乱光の受光効率が高く、CCDラインセンサー21の受光面で受光される散乱光の強度が大きい。基板1の内部の欠陥については、焦点が合っていないため、二点鎖線で示す散乱光の受光効率が低く、CCDラインセンサー21の受光面で受光される散乱光の強度が小さい。   As shown in FIG. 3A, in the first optical system, the defect on the surface of the substrate 1 is in focus, so the light receiving efficiency of the scattered light shown by the broken line is high, and the light received by the CCD line sensor 21 is received. The intensity of scattered light received by the surface is large. Since the defects inside the substrate 1 are not in focus, the light receiving efficiency of the scattered light indicated by the two-dot chain line is low, and the intensity of the scattered light received by the light receiving surface of the CCD line sensor 21 is low.

一方、図3(b)に示す様に、第2の光学系では、基板1の表面の欠陥については、焦点が合っていないため、破線で示す散乱光の受光効率が低く、CCDラインセンサー22の受光面で受光される散乱光の強度が小さい。基板1の内部の欠陥については、焦点が合っているため、二点鎖線で示す散乱光の受光効率が高く、CCDラインセンサー22の受光面で受光される散乱光の強度が大きい。   On the other hand, as shown in FIG. 3B, in the second optical system, the defect on the surface of the substrate 1 is not focused, so the light receiving efficiency of scattered light indicated by the broken line is low, and the CCD line sensor 22 The intensity of scattered light received by the light receiving surface is small. Since the defect inside the substrate 1 is in focus, the light receiving efficiency of the scattered light indicated by the two-dot chain line is high, and the intensity of the scattered light received by the light receiving surface of the CCD line sensor 22 is high.

従って、第1の光学系で受光した散乱光の強度をF1、第2の光学系で受光した散乱光の強度をF2としたとき、基板1の表面の欠陥についてはF1>F2となり、基板1の内部の欠陥についてはF1<F2となる。本実施の形態では、F1>F2の場合は検出された欠陥を基板1の表面の欠陥と判定し、F1<F2の場合は検出された欠陥を基板1の内部の欠陥と判定する。信号処理回路60は、表面/内部の判定結果のデータを、既に記憶されている検出結果のデータと関連付けて、内部メモリに記憶する。   Therefore, when the intensity of the scattered light received by the first optical system is F1, and the intensity of the scattered light received by the second optical system is F2, the surface defect of the substrate 1 is F1> F2, and the substrate 1 F1 <F2 for the internal defects. In the present embodiment, when F1> F2, the detected defect is determined as a defect on the surface of the substrate 1, and when F1 <F2, the detected defect is determined as a defect inside the substrate 1. The signal processing circuit 60 stores the surface / internal determination result data in the internal memory in association with the already stored detection result data.

最後に、CPU70は、信号処理回路60の内部メモリに記憶されている検出結果のデータ及び表面/内部の判定結果のデータに基づき、検査結果をディスプレイやプリンタ等から成る出力装置80へ出力する。検査結果の出力としては、例えば表面の欠陥の位置と内部の欠陥の位置とを別々のマップで表示してもよく、また表面の欠陥だけ検査したい場合には表面の欠陥のみを表示し、内部の欠陥だけ検査したい場合には内部の欠陥のみを表示してもよい。   Finally, the CPU 70 outputs the inspection result to the output device 80 including a display, a printer, and the like based on the detection result data and the surface / internal determination result data stored in the internal memory of the signal processing circuit 60. As the output of the inspection result, for example, the position of the surface defect and the position of the internal defect may be displayed on separate maps. When only the surface defect is to be inspected, only the surface defect is displayed, and the internal defect position is displayed. If it is desired to inspect only the defects, only the internal defects may be displayed.

以上説明した実施の形態によれば、散乱光を基板の表面に焦点を合わせて受光する第1の受光系と、散乱光を基板の内部に焦点を合わせて受光する第2の受光系とを設け、第1の受光系が受光した散乱光と第2の受光系が受光した散乱光との強度の違いから、基板の表面の欠陥と内部の欠陥とを弁別することにより、基板の表面の欠陥と内部の欠陥とを、1回の検査工程で効率良く弁別することができる。   According to the embodiment described above, the first light receiving system that receives the scattered light focused on the surface of the substrate, and the second light receiving system that receives the scattered light focused on the inside of the substrate. The difference between the intensity of the scattered light received by the first light receiving system and the scattered light received by the second light receiving system is used to discriminate defects on the surface of the substrate from internal defects, thereby Defects and internal defects can be distinguished efficiently in a single inspection process.

さらに、以上説明した本発明によれば、散乱光を集光し及び結像させるレンズ群と、レンズ群を通過した光を分割するプリズムやハーフミラー等を、第1の受光系及び第2の受光系に共通に設けることにより、高価なレンズ群を第1の受光系と第2の受光系とで共用することができ、装置構成を簡単にすることができる。   Furthermore, according to the present invention described above, the lens group for condensing and forming the image of the scattered light, and the prism and the half mirror for dividing the light that has passed through the lens group, the first light receiving system and the second light receiving system. By providing the light receiving system in common, an expensive lens group can be shared by the first light receiving system and the second light receiving system, and the apparatus configuration can be simplified.

本発明の一実施の形態による基板検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the board | substrate inspection apparatus by one embodiment of this invention. 基板の表面又は内部の欠陥による散乱光を説明する図である。It is a figure explaining the scattered light by the surface or internal defect of a board | substrate. 本発明の一実施の形態による基板検査装置の動作を説明する図である。It is a figure explaining operation | movement of the board | substrate inspection apparatus by one embodiment of this invention.

符号の説明Explanation of symbols

1 基板
10 光学系
11a,11b レーザー光源
12a,12b,13a,13b レンズ
14 ミラー
15 レンズ
16 CCDラインセンサー
17 集光レンズ
18 結像レンズ
19 遮光板
20 プリズム
21,22 CCDラインセンサー
30 XY移動機構
31 XY移動制御回路
40 焦点調節機構
41 焦点調節制御回路
50 信号変換回路
60 信号処理回路
70 CPU
80 出力装置
DESCRIPTION OF SYMBOLS 1 Substrate 10 Optical system 11a, 11b Laser light source 12a, 12b, 13a, 13b Lens 14 Mirror 15 Lens 16 CCD line sensor 17 Condensing lens 18 Imaging lens 19 Light-shielding plate 20 Prism 21, 22 CCD line sensor 30 XY moving mechanism 31 XY movement control circuit 40 focus adjustment mechanism 41 focus adjustment control circuit 50 signal conversion circuit 60 signal processing circuit 70 CPU
80 output device

Claims (6)

表示用パネルの製造に用いられる透明な基板の表面及び内部の欠陥を検出する基板検査装置であって、
基板の下方に配置され、検査光を基板の裏面斜めに照射する検査光投光系と、
基板の上方に配置され、基板の裏面から基板の内部へ透過し、基板の表面へ達した検査光が基板の表面の欠陥により散乱された散乱光、及び基板の裏面から基板の内部へ透過した検査光が基板の内部の欠陥により散乱された散乱光を、基板の表面に焦点を合わせて受光する第1の受光系と、
基板の上方に配置され、基板の裏面から基板の内部へ透過し、基板の表面へ達した検査光が基板の表面の欠陥により散乱された散乱光、及び基板の裏面から基板の内部へ透過した検査光が基板の内部の欠陥により散乱された散乱光を、基板の内部に焦点を合わせて受光する第2の受光系と、
前記第1の受光系及び前記第2の受光系の検出信号を処理して、基板の表面又は内部の欠陥を検出し、前記第1の受光系が受光した散乱光と前記第2の受光系が受光した散乱光との強度の違いから、前記第1の受光系で受光した散乱光の強度が前記第2の受光系で受光した散乱光の強度より大きい場合は、検出した欠陥を基板の表面の欠陥と判定し、前記第1の受光系で受光した散乱光の強度が前記第2の受光系で受光した散乱光の強度より小さい場合は、検出した欠陥を基板の内部の欠陥と判定して、基板の表面の欠陥と内部の欠陥とを弁別する処理手段とを備えたことを特徴とする基板検査装置。
A substrate inspection apparatus for detecting defects on the surface and inside of a transparent substrate used for manufacturing a display panel,
An inspection light projection system that is disposed below the substrate and irradiates the inspection light obliquely to the back surface of the substrate;
Arranged above the substrate and transmitted from the back surface of the substrate to the inside of the substrate, the inspection light reaching the surface of the substrate was scattered by the defects on the surface of the substrate and transmitted from the back surface of the substrate to the inside of the substrate. the inspection light is scattered light disturbed lithium by the defects within the substrate, a first light receiving system that receives focus on the surface of the substrate,
Arranged above the substrate and transmitted from the back surface of the substrate to the inside of the substrate, the inspection light reaching the surface of the substrate was scattered by the defects on the surface of the substrate and transmitted from the back surface of the substrate to the inside of the substrate. the inspection light is disturbed lithium by the internal defects of the substrate scattered light, a second light receiving system that receives focus in the substrate,
The detection signals of the first light receiving system and the second light receiving system are processed to detect defects on the surface or inside of the substrate, and the scattered light received by the first light receiving system and the second light receiving system. If the intensity of the scattered light received by the first light receiving system is greater than the intensity of the scattered light received by the second light receiving system, the detected defect is detected on the substrate. If the intensity of the scattered light received by the first light receiving system is smaller than the intensity of the scattered light received by the second light receiving system, it is determined that the detected defect is a defect inside the substrate. And a processing means for discriminating defects on the surface of the substrate from internal defects.
基板の上方に配置され、レーザー光を基板の表面へ斜めに照射する焦点調節用投光系と、A focusing light projecting system that is disposed above the substrate and irradiates the surface of the substrate obliquely with a laser beam;
基板の上方に配置され、前記焦点調節用投光系から照射されたレーザー光が基板の表面で反射された反射光を受光する焦点調節用の反射光検出系と、A reflected light detection system for focus adjustment, which is disposed above the substrate and receives the reflected light reflected from the surface of the substrate by the laser light emitted from the focus adjustment light projecting system;
前記反射光検出系が受光した反射光の受光位置に応じて、前記第1の受光系及び前記第2の受光系を上下に移動して、前記第1の受光系の焦点を基板の表面に合わせ、前記第2の受光系の焦点を基板の内部に合わせる焦点調節手段とを備えたことを特徴とする請求項1に記載の基板検査装置。The first light receiving system and the second light receiving system are moved up and down according to the light receiving position of the reflected light received by the reflected light detection system, and the focal point of the first light receiving system is set on the surface of the substrate. The substrate inspection apparatus according to claim 1, further comprising: a focus adjustment unit that adjusts a focus of the second light receiving system to the inside of the substrate.
前記第1の受光系は、検査光が基板の表面又は内部の欠陥により散乱された散乱光を集光し及び結像させるレンズ群と、該レンズ群を通過した光を分割する分割手段と、該分割手段で分割された光の一方を基板の表面に焦点を合わせて受光する第1の受光素子とを有し、
前記第2の受光系は、前記レンズ群と、前記分割手段と、前記分割手段で分割された光の他方を基板の内部に焦点を合わせて受光する第2の受光素子とを有することを特徴とする請求項1又は請求項2に記載の基板検査装置。
The first light receiving system is split inspection light is divided into a lens group to be condensed and imaging the scattered light disturbed lithium by the surface or internal defects of the substrate, the light passing through the lens And a first light receiving element that receives one of the lights divided by the dividing means while focusing on the surface of the substrate,
The second light receiving system includes the lens group, the dividing unit, and a second light receiving element that receives the other light divided by the dividing unit while focusing on the inside of the substrate. The substrate inspection apparatus according to claim 1 or 2 .
表示用パネルの製造に用いられる透明な基板の表面及び内部の欠陥を検出する基板検査方法であって、
基板の下方に配置された検査光投光系から、検査光を基板の裏面斜めに照射し、
基板の裏面から基板の内部へ透過し、基板の表面へ達した検査光が基板の表面の欠陥により散乱された散乱光、及び基板の裏面から基板の内部へ透過した検査光が基板の内部の欠陥により散乱された散乱光を、基板の上方に配置された第1の受光系により基板の表面に焦点を合わせて受光すると同時に、基板の上方に配置された第2の受光系により基板の内部に焦点を合わせて受光し、
第1の受光系及び第2の受光系の検出信号を処理して、基板の表面又は内部の欠陥を検出し、
第1の受光系が受光した散乱光と第2の受光系が受光した散乱光との強度の違いから、第1の受光系で受光した散乱光の強度が第2の受光系で受光した散乱光の強度より大きい場合は、検出した欠陥を基板の表面の欠陥と判定し、第1の受光系で受光した散乱光の強度が第2の受光系で受光した散乱光の強度より小さい場合は、検出した欠陥を基板の内部の欠陥と判定して、基板の表面の欠陥と内部の欠陥とを弁別することを特徴とする基板検査方法。
A substrate inspection method for detecting defects and internal defects on a transparent substrate used for manufacturing a display panel,
From the inspection light projection system located below the substrate , irradiate the back of the substrate obliquely with the inspection light,
The inspection light transmitted from the back surface of the substrate to the inside of the substrate and reaching the surface of the substrate is scattered by defects on the surface of the substrate, and the inspection light transmitted from the back surface of the substrate to the inside of the substrate is inside the substrate . the scattered light is disturbed lithium by the defects, and simultaneously receiving focus on the first surface of the substrate by the light receiving system arranged above the substrate, the second light receiving system arranged above the substrate Receive light focused on the inside of the board,
Processing detection signals of the first light receiving system and the second light receiving system to detect defects on the surface or inside of the substrate;
The difference in strength between the first scattered light scattered light and the second light receiving system having received the light receiving system has received, scattering intensity of the scattered light received by the first light receiving system has received the second light receiving system If the intensity is greater than the intensity of the light, the detected defect is determined as a defect on the surface of the substrate, and if the intensity of the scattered light received by the first light receiving system is less than the intensity of the scattered light received by the second light receiving system A substrate inspection method characterized by discriminating a detected surface defect from an internal defect by determining the detected defect as a defect inside the substrate.
基板の上方に配置された焦点調節用投光系から、レーザー光を基板の表面へ斜めに照射し、From the focus adjustment light projecting system located above the substrate, irradiate the surface of the substrate obliquely with laser light,
レーザー光が基板の表面で反射された反射光を、基板の上方に配置された焦点調節用の反射光検出系により受光し、The reflected light reflected by the surface of the substrate is received by the reflected light detection system for focus adjustment arranged above the substrate,
反射光検出系が受光した反射光の受光位置に応じて、第1の受光系及び第2の受光系を上下に移動して、第1の受光系の焦点を基板の表面に合わせ、第2の受光系の焦点を基板の内部に合わせることを特徴とする請求項4に記載の基板検査方法。The first light receiving system and the second light receiving system are moved up and down according to the light receiving position of the reflected light received by the reflected light detection system, the first light receiving system is focused on the surface of the substrate, and the second 5. The substrate inspection method according to claim 4, wherein the light receiving system is focused on the inside of the substrate.
検査光が基板の表面又は内部の欠陥により散乱された散乱光を集光し及び結像させるレンズ群と、レンズ群を通過した光を分割する分割手段とを、第1の受光系及び第2の受光系に共通に設け、
第1の受光系では、第1の受光素子により分割手段で分割された光の一方を基板の表面に焦点を合わせて受光し、
第2の受光系では、第2の受光素子により分割手段で分割された光の他方を基板の内部に焦点を合わせて受光することを特徴とする請求項4又は請求項5に記載の基板検査方法。
And inspection light focuses the lithium disturbed scattered light by the surface or internal defects of the substrate and the lens group for focusing, and a dividing means for dividing light passing through the lens group, the first light receiving system And common to the second light receiving system,
In the first light receiving system, one of the lights divided by the dividing means by the first light receiving element is focused on the surface of the substrate and received.
6. The substrate inspection according to claim 4 , wherein the second light receiving system receives the other light divided by the dividing means by the second light receiving element while focusing on the inside of the substrate. Method.
JP2005209218A 2005-07-19 2005-07-19 Substrate inspection apparatus and substrate inspection method Expired - Fee Related JP4679282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209218A JP4679282B2 (en) 2005-07-19 2005-07-19 Substrate inspection apparatus and substrate inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209218A JP4679282B2 (en) 2005-07-19 2005-07-19 Substrate inspection apparatus and substrate inspection method

Publications (2)

Publication Number Publication Date
JP2007024733A JP2007024733A (en) 2007-02-01
JP4679282B2 true JP4679282B2 (en) 2011-04-27

Family

ID=37785688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209218A Expired - Fee Related JP4679282B2 (en) 2005-07-19 2005-07-19 Substrate inspection apparatus and substrate inspection method

Country Status (1)

Country Link
JP (1) JP4679282B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708292B2 (en) * 2006-09-19 2011-06-22 株式会社日立ハイテクノロジーズ Substrate inspection apparatus and substrate inspection method
JP4808162B2 (en) * 2007-01-17 2011-11-02 株式会社日立ハイテクノロジーズ Substrate inspection apparatus and substrate inspection method
JP2010048745A (en) * 2008-08-25 2010-03-04 Asahi Glass Co Ltd Defect inspection system and defect inspection method
KR101829889B1 (en) 2011-05-31 2018-02-20 삼성디스플레이 주식회사 Device and method for inspecting sealing state
CN114136243B (en) * 2021-10-18 2024-08-02 广州国显科技有限公司 Device applied to measuring flatness of display panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745778B2 (en) * 1990-05-25 1998-04-28 松下電器産業株式会社 Wiring pattern inspection equipment
JPH09257642A (en) * 1996-03-18 1997-10-03 Hitachi Electron Eng Co Ltd Glass substrate defect type determination method
JP4523310B2 (en) * 2003-08-25 2010-08-11 株式会社日立国際電気 Foreign matter identification method and foreign matter identification device

Also Published As

Publication number Publication date
JP2007024733A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US20110310244A1 (en) System and method for detecting a defect of a substrate
EP2482058B1 (en) Apparatus for detecting particles in flat glass and detecting method using same
US8294890B2 (en) Method and device for inspecting defects on both surfaces of magnetic disk
JP5268061B2 (en) Board inspection equipment
JP2009531701A (en) Sheet glass inspection
KR20190077491A (en) Method and apparatus for defect inspection on transparent substrate
JP2000009591A (en) Inspection equipment
JP2002062267A (en) Defect inspection device
JP5322543B2 (en) Substrate inspection apparatus and substrate inspection method
JP4362335B2 (en) Inspection device
CN107782732B (en) Autofocus system, method and image detection apparatus
JP2010169453A (en) Device and method for inspecting foreign matter
JP3480176B2 (en) Glass substrate front / back defect identification method
JP4679282B2 (en) Substrate inspection apparatus and substrate inspection method
US11249032B2 (en) Methods and apparatus for detecting surface defects on glass sheets
JP4662424B2 (en) Glass substrate inspection method and inspection apparatus, and display panel manufacturing method
JP5178281B2 (en) Substrate inspection apparatus and substrate inspection method
KR100758198B1 (en) Autofocusing device
JP4822103B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP4708292B2 (en) Substrate inspection apparatus and substrate inspection method
JP4654408B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
KR20190059411A (en) a multi-functional optical inspecting device
JP2008292221A (en) Defect inspection method and defect inspection device
KR20160032576A (en) System and Method for Analyzing Image Using High-Speed Camera and Infrared Optical System
JP2000074849A (en) Foreign matter detecting method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees