JP4362335B2 - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
JP4362335B2
JP4362335B2 JP2003303435A JP2003303435A JP4362335B2 JP 4362335 B2 JP4362335 B2 JP 4362335B2 JP 2003303435 A JP2003303435 A JP 2003303435A JP 2003303435 A JP2003303435 A JP 2003303435A JP 4362335 B2 JP4362335 B2 JP 4362335B2
Authority
JP
Japan
Prior art keywords
defect
light
image
transparent body
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003303435A
Other languages
Japanese (ja)
Other versions
JP2005069989A (en
Inventor
博志 税所
Original Assignee
エスペックテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスペックテクノ株式会社 filed Critical エスペックテクノ株式会社
Priority to JP2003303435A priority Critical patent/JP4362335B2/en
Publication of JP2005069989A publication Critical patent/JP2005069989A/en
Application granted granted Critical
Publication of JP4362335B2 publication Critical patent/JP4362335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、板状透明体の不良部を検査するための検査装置に関する。   The present invention relates to an inspection apparatus for inspecting a defective portion of a plate-like transparent body.

板状透明体としての液晶パネル用のガラス基板の欠陥を検査する検査装置としては、投光系からガラス基板にレーザービームを投射し、基板の表面及び裏面に当たって正反射する正反射光をフィルタで除去し、基板の表面又は裏面に欠陥があってこれにレーザービームが当たったときに欠陥から乱反射する表面散乱光及び裏面散乱光を受光系で受光し、CCDイメージセンサの間隔を隔てた2位置に結像させ、その位置によって表面又は裏面の欠陥の何れであったかを判断するガラス基板の表裏欠陥識別方法を用いた装置が提案されている。(特許文献1参照)。
特開平9−258197号公報(特許請求の範囲の記載、図1、2及び関連説明)
As an inspection device for inspecting defects in a glass substrate for a liquid crystal panel as a plate-like transparent body, a laser beam is projected from the light projecting system onto the glass substrate, and regular reflection light that is regularly reflected by hitting the front and back surfaces of the substrate is filtered. Two positions separated by the CCD image sensor, receiving the surface scattered light and back scattered light that are diffusely reflected from the defect when the surface or back surface of the substrate is removed and a laser beam hits it. An apparatus using a method for discriminating between front and back defects on a glass substrate that determines whether the defect is on the front surface or the back surface depending on the position is proposed. (See Patent Document 1).
JP-A-9-258197 (Description of Claims, FIGS. 1 and 2 and Related Description)

しかしながら、このような方法を用いた検査装置では、ガラスの表面及び裏面から直接反射する正反射光を使用することなく、この光よりも相当程度に光量の低下した乱反射光を使用しているため、レーザー光を強く当てるようにスポット光で照射する必要があり、基板をX−Yの二次元移動ステージによって移動させることによって基板全面を検査しているため、検査装置が複雑で高価になること、検査面が移動したときに表面から透過し裏面から反射した正反射光の影響が出て確実な表裏判定ができないこと、即ち、裏面には欠陥がなく表面欠陥又は表面と裏面との中間に内部欠陥があり、この欠陥が移動して裏面からの直接反射光を遮る位置に到達すると、その散乱光が結像するため、表面及び裏面の欠陥が正確に判定されず、又内部欠陥については初めから判定されないという問題がある。   However, the inspection apparatus using such a method uses irregularly reflected light having a considerably reduced amount of light without using regular reflected light directly reflected from the front and back surfaces of the glass. Because it is necessary to irradiate with spot light so that the laser beam is strongly applied, and the entire surface of the substrate is inspected by moving the substrate by an XY two-dimensional moving stage, the inspection apparatus becomes complicated and expensive. When the inspection surface moves, the effect of regular reflection light transmitted from the front surface and reflected from the rear surface is inevitable, so that reliable front / back determination cannot be performed, that is, there is no defect on the back surface, or a surface defect or between the front and back surfaces. If there is an internal defect and this defect moves to reach a position where it directly blocks the reflected light from the back surface, the scattered light forms an image, so the front and back surface defects cannot be accurately determined, There is a problem that is not determined from the beginning for Recessed.

一方、近年の液晶パネルの普及によってその品質基準が高くなっていて、回路パターンの形成される検査時の表面に加えて、人が画像を見るときの画像のゆがみや色ずれ等に関係する内部や検査時の裏面の欠陥も重要視されるようになり、例えば、テレビ画面等に使用される大型のプラズマディスプレーパネルでは、表面、内部及び裏面の欠陥サイズをそれぞれ50〜100μ、200〜300μ及び300〜500μ以下にするように規制することがある。   On the other hand, the quality standards have become higher due to the recent spread of liquid crystal panels, and in addition to the surface at the time of inspection on which circuit patterns are formed, internals related to image distortion and color misregistration when people view images In addition, defects on the back surface at the time of inspection are also regarded as important. For example, in a large plasma display panel used for a television screen or the like, the defect size on the front surface, inside, and back surface is set to 50 to 100 μ, 200 to 300 μ, and It may be regulated to be 300 to 500 μm or less.

そこで本発明は、従来技術における上記問題を解決し、簡単な構成で低コストの下に液晶ディスプレーパネル等の板状透明体の表面、内部及び裏面の不良部分を確実に検査することができる検査装置を提供することを課題とする。   Therefore, the present invention solves the above-mentioned problems in the prior art, and can inspect defective portions on the front, inside and back surfaces of a plate-like transparent body such as a liquid crystal display panel at a low cost with a simple configuration. It is an object to provide an apparatus.

本発明は上記課題を解決するために、請求項1の発明は、板状透明体の不良部を検査するための検査装置において、
一定の関係位置に配置されている投光部と受光部とで構成された光学系と、前記板状透明体と前記光学系とが一定の方向に相対的に移動可能なように前記板状透明体又は前記光学系のうちの何れか一方を移動可能にする移動機構と、判断部と、を有し、前記投光部は前記板状透明体にレーザー光を投光可能なように構成されていて、前記受光部は前記レーザー光のうち前記板状透明体の表面から正反射した表面正反射光と裏面から正反射した裏面正反射光とを受光して画像を形成可能なように構成されていて、前記判断部は、前記受光部が形成した前記画像を取り入れて該画像が異常画像として前記不良部を含んでいるときに前記異常画像が一ヶ所又は所定の短時間内に前記一定の方向に二カ所もしくは三ヶ所にあるとそれぞれ前記裏面又は前記表面と前記裏面との中間もしくは前記表面に前記不良部があったものと判断することを特徴とする。
In order to solve the above-mentioned problems, the invention of claim 1 is an inspection apparatus for inspecting a defective portion of a plate-like transparent body.
An optical system composed of a light projecting unit and a light receiving unit arranged at a fixed relationship position, and the plate-shaped transparent body and the optical system so as to be relatively movable in a certain direction. A moving mechanism that enables movement of either the transparent body or the optical system, and a determination unit; and the light projecting unit configured to project laser light on the plate-shaped transparent body The light receiving unit is configured to receive the front surface regular reflection light regularly reflected from the surface of the plate-like transparent body and the back regular reflection light regularly reflected from the back surface of the laser light so that an image can be formed. The determination unit takes in the image formed by the light receiving unit, and the abnormal image is included in one place or within a predetermined short time when the image includes the defective portion as an abnormal image. If there are two or three places in a certain direction, It determines that there is the defect portion in the middle or the surface of the a serial Front Back characterized.

以上の如く本発明によれば、請求項1の発明においては、板状透明体の不良部を検査するための検査装置が、一定の関係位置に配置されている投光部と受光部とで構成された光学系を有し、投光部が板状透明体にレーザー光を投光可能なように構成されていて、受光部が投光されたレーザー光のうち板状透明体の表面から正反射した表面正反射光と裏面から正反射した裏面正反射光とを受光して画像を形成可能なように構成されているので、表面に不良部があったときには、不良部に当たったレーザー光が乱反射し、正反射光する方向には極めて弱い光しか到達しないので、その周囲の正反射光との間で光量に大幅な差が生じ、受光部に不良部の撮影された異常画像が形成される。又、不良部の周辺から板状透明体中にレーザー光の大部分が進入し、板状透明体の裏面で反射した裏面正反射光も受光部に異常画像を形成する。従って、表面に不良部があるときには、板状透明体の一定の位置で同時に受光部の異なった二カ所の位置に二回異常画像が形成される。   As described above, according to the present invention, in the first aspect of the present invention, an inspection apparatus for inspecting a defective portion of a plate-like transparent body includes a light projecting portion and a light receiving portion that are arranged at fixed positions. It has a configured optical system, the light projecting unit is configured to project laser light onto the plate-shaped transparent body, and the light receiving unit from the surface of the plate-shaped transparent body among the laser light projected It is configured so that it can receive the regular reflected light from the front surface and the back reflected light from the back surface to form an image, so when there is a defective part on the surface, the laser that hits the defective part Since light is diffusely reflected and only extremely weak light reaches in the direction of specular reflection, there is a large difference in the amount of light from the surrounding regular reflection light, and an abnormal image in which a defective part is photographed is detected on the light receiving part. It is formed. Further, most of the laser light enters the plate-like transparent body from the periphery of the defective portion, and the back-side regular reflection light reflected by the back surface of the plate-like transparent body also forms an abnormal image on the light receiving portion. Therefore, when there is a defective portion on the surface, an abnormal image is formed twice at two different positions of the light receiving portion at the same time at a certain position of the plate-like transparent body.

一方、不良部が板状透明体の中の中間位置又は裏面に存在するときには、表面に不良部がないので表面正反射光では異常画像が形成されず、中間位置の不良部の周囲から又は直接に裏面に到達して裏面から正反射した裏面正反射光に異常画像が形成される。即ち、板状透明体の一定の位置では、裏面又は内部の不良部については受光部の裏面画像形成位置に一回だけ一ヶ所に異常画像が形成される。   On the other hand, when the defective portion is present at the intermediate position or the back surface in the plate-like transparent body, since there is no defective portion on the surface, an abnormal image is not formed by the front regular reflection light, or directly from the periphery of the defective portion at the intermediate position. An abnormal image is formed in the backside regular reflection light that reaches the backside and is regularly reflected from the backside. That is, at a certain position of the plate-like transparent body, an abnormal image is formed only once at the back surface image forming position of the light receiving portion for the back surface or the defective portion inside.

この場合、このような画像は正反射光によって形成されるので、散乱光を使用する場合に較べると格段に光量があるため、レーザー光をスポット光にすることなく長さのあるライン状の光にして、検査可能な範囲を十分長くすることができる。   In this case, since such an image is formed by specularly reflected light, the amount of light is much higher than when scattered light is used. Therefore, a long line-shaped light without using laser light as spot light. Thus, the inspectable range can be made sufficiently long.

又、板状透明体と光学系とが一定の方向に相対的に移動可能なように板状透明体又は光学系のうちの何れか一方を移動可能にする移動機構を有するので、投光して受光する板状透明体の位置を移動させ、ライン状のレーザー光によって板状透明体の一定幅を二次元に検査して行くことができる。従って、板状透明体が大きい場合には、移動方向に直角な方向に必要な台数だけ光学系を並設することにより、板状透明体の面積の全体を検査することができる。   In addition, since the plate-like transparent body and the optical system have a moving mechanism that makes it possible to move either the plate-like transparent body or the optical system so that they can move relative to each other in a fixed direction. The position of the plate-like transparent body that receives light can be moved, and a certain width of the plate-like transparent body can be inspected two-dimensionally with a line-shaped laser beam. Therefore, when the plate-like transparent body is large, the entire area of the plate-like transparent body can be inspected by arranging as many optical systems as necessary in the direction perpendicular to the moving direction.

そしてこの場合、板状透明体の表面又は中間位置に不良部があったときには、上記の如く同時に表面及び裏面正反射光により又は表面正反射光によって異常画像を検出できると共に、不良部が板状透明体の厚み程度の小距離を移動すると、表面の不良部の影響がなくなっても、不良部自体が移動することにより、裏面正反射光のライン上に不良部が来て、裏面正反射光によって再び異常画像が形成される。即ち、小距離従って小時間内にこの異常画像が追加され、結局、小距離、小時間内に、表面の不良部又は中間の不良部に対して異常画像が三ヶ所に三回又は二カ所に二回形成されることになる。一方、裏面に不良部があるときには、一度これを含む画像が形成されれば、板状透明体が移動しても再び表面又は裏面正反射光の位置に不良部が来ることがないため、結局、裏面の不良部では一ヶ所に一回だけ異常画像が形成されることになる。   In this case, when there is a defective portion on the surface or intermediate position of the plate-like transparent body, an abnormal image can be detected simultaneously by the front and back regular reflection light or the front regular reflection light as described above, and the defective portion is plate-shaped. If you move a small distance about the thickness of the transparent body, even if the influence of the defective part on the surface disappears, the defective part itself moves, so that the defective part comes on the back regular reflected light line, and the back regular reflected light As a result, an abnormal image is formed again. In other words, this abnormal image is added within a short distance and therefore within a short time, and eventually, within a short distance and within a short time, the abnormal image is detected three times or twice in three locations for a defective portion on the surface or an intermediate defective portion. It will be formed twice. On the other hand, when there is a defective part on the back side, once an image including this is formed, the defective part does not come again at the position of the front or back regular reflection light even if the plate-like transparent body moves. An abnormal image is formed only once at a defective portion on the back surface.

そして、画像メモリや画像処理プログラム等としてマイコン等で構成可能な判断部を設けて、これにより、上記のように受光部で形成された画像を取り入れ、その画像が異常画像として不良部を含んでいるときに、異常画像が一ヶ所又は板状透明体がその厚み程度の距離を移動するくらいの所定の短時間内に移動する一定の方向に二カ所もしくは三ヶ所にあると、それぞれ裏面又は表面と裏面との中間もしくは表面に不良部があったものと判断するので、表面だけでなく裏面及び内部の位置を含めて、確実に不良部の存在及びその位置を判断することができる。   Then, a determination unit that can be configured by a microcomputer or the like is provided as an image memory, an image processing program, or the like, thereby taking in the image formed by the light receiving unit as described above, and the image includes a defective part as an abnormal image. If there are two or three abnormal images in a certain direction where the abnormal image moves within a predetermined short time enough to move the distance of the thickness of the plate-like transparent body, the back side or the surface respectively. Since it is determined that there is a defective portion in the middle or on the front surface, the presence and position of the defective portion can be reliably determined including not only the front surface but also the back surface and the internal position.

そして、このような検査装置は、板状透明体を一次元方向に移動させればよいので、装置構成を簡単にして、低コストで確実に作動するものにすることができる。   In such an inspection apparatus, the plate-like transparent body only needs to be moved in a one-dimensional direction, so that the apparatus configuration can be simplified and reliably operated at low cost.

図1は本発明を適用した検査装置の全体構成の一例を示す。
検査装置は、板状透明体としてのプラズマディスプレイや液晶ディスプレイ用のガラス基板等からなるガラス板Wのきずや歪みや異物や気泡等の不良部である欠陥Dを検査するための装置であり、投光部としてのレーザーマーカー1と受光部としてのCCDカメラ2とで構成された光学系3、移動機構としてのライン搬送装置4、判断部としての画像処理装置5、等で構成されている。
FIG. 1 shows an example of the entire configuration of an inspection apparatus to which the present invention is applied.
The inspection apparatus is an apparatus for inspecting a defect D which is a defective portion such as a flaw, a distortion, a foreign matter or a bubble of a glass plate W made of a glass substrate for a plasma display or a liquid crystal display as a plate-like transparent body, The optical system 3 includes a laser marker 1 as a light projecting unit and a CCD camera 2 as a light receiving unit, a line transport device 4 as a moving mechanism, an image processing device 5 as a determination unit, and the like.

レーザーマーカー1は、ガラス板Wにレーザー光Lを投光可能なうように構成されていて、レーザー光を発射させるレーザーダイオード11、発射されたレーザー光を収束させる集光レンズ12、収束されたレーザー光をガラス板Wに向けて図において紙面に直角な方向であり図2等に示す横X方向に広げてある程度の長さを持つライン状の光線にするシリンドリカルレンズ13、等を備えている。   The laser marker 1 is configured to be capable of projecting a laser beam L onto a glass plate W, and has a laser diode 11 that emits laser beam, a condensing lens 12 that converges the emitted laser beam, and is converged. Cylindrical lenses 13 and the like are provided in which a laser beam is directed toward the glass plate W in a direction perpendicular to the paper surface in the drawing and spreads in the horizontal X direction shown in FIG. .

CCDカメラ2は、レーザー光Lのうちガラス板Wの表面H及び裏面Rからそれぞれ正反射した表面正反射光M及び裏面正反射光Nからなる正反射光を受光して画像を形成可能なように構成されていて、撮像レンズ21及びCCD受光素子22を備えている。表面及び裏面正反射光M及びNはそれぞれCCD受光素子22の異なった位置P1 及びP2 に結像する。 The CCD camera 2 is capable of forming an image by receiving specularly reflected light composed of the front surface regular reflection light M and the back surface regular reflection light N that are specularly reflected from the front surface H and the rear surface R of the glass plate W in the laser light L, respectively. The imaging lens 21 and the CCD light receiving element 22 are provided. The front and back regular reflection lights M and N are imaged at different positions P 1 and P 2 of the CCD light receiving element 22, respectively.

CCD受光素子22は、ガラス板Wの微小な欠陥Dの位置が正確に分かるように多数の微小区画で構成されている。レーザーマーカー1とCCDカメラ2とは以上のように投光及び受光が可能なように一定の関係位置に配置されて前記光学系3を形成している。投光及び受光の入射角及び反射角は本例では45°である。レーザー光Lはガラス板Wに一定角度屈折して入射及び反射をする。   The CCD light receiving element 22 is constituted by a large number of minute sections so that the position of the minute defect D on the glass plate W can be accurately understood. As described above, the laser marker 1 and the CCD camera 2 are arranged at fixed positions so as to be able to project and receive light to form the optical system 3. In this example, the incident angle and reflection angle of light projection and light reception are 45 °. The laser light L is refracted by a certain angle to the glass plate W and is incident and reflected.

ライン搬送装置4は、ガラス板Wと光学系3とが一定の方向として縦Y方向に一定の速度で相対的に移動可能なようにガラス板W又は光学系3のうちの何れか一方を移動可能にするが、本例ではガラス板Wを矢印のように移動可能にしている。このようなライン搬送装置4としては、通常ローラコンベア装置が使用される。符号41は、搬送されるガラス板Wの移動量に対応したパルス信号を画像処理装置5に送信するロータリーエンコーダーである。   The line transfer device 4 moves either the glass plate W or the optical system 3 so that the glass plate W and the optical system 3 can move relative to each other at a constant speed in the vertical Y direction. In this example, the glass plate W is movable as shown by an arrow. As such a line conveying device 4, a roller conveyor device is usually used. Reference numeral 41 denotes a rotary encoder that transmits a pulse signal corresponding to the amount of movement of the glass plate W being conveyed to the image processing apparatus 5.

なお、本例では搬送機構を連続的にガラス板Wを搬送するローラコンベアからなるライン搬送装置4にしているが、製造工程の都合等によっては、ガラス板Wを順次一定位置に停止させ、光学系3をガラス板上で往復移動させるような機構にしてもよい。   In this example, the conveyance mechanism is a line conveyance device 4 composed of a roller conveyor that continuously conveys the glass plate W. However, depending on the convenience of the manufacturing process, the glass plate W is sequentially stopped at a fixed position, and the optical A mechanism for reciprocating the system 3 on a glass plate may be used.

画像処理装置5は画像メモリ51及び欠陥判断部52を備えている。画像メモリ51は、CCDカメラ2が形成した画像を取り入れ、欠陥判断部52は、この画像が異常画像として欠陥Dを含んでいるときに、この異常画像が一ヶ所又は一定の短時間t内に縦Y方向に二カ所もしくは三ヶ所あると、それぞれ裏面R又は表面Hと裏面Rとの中間Iもしくは表面Hに欠陥Dがそれぞれ欠陥Db、Di又はDfとして存在していると判断する。   The image processing apparatus 5 includes an image memory 51 and a defect determination unit 52. The image memory 51 takes in the image formed by the CCD camera 2, and the defect determination unit 52, when this image includes a defect D as an abnormal image, the abnormal image is in one place or within a certain short time t. If there are two or three in the longitudinal Y direction, it is determined that the defect D exists as a defect Db, Di, or Df, respectively, on the rear surface R or the intermediate I between the front surface H and the rear surface R or on the front surface H.

図2乃至図4によって上記の欠陥判断手段について詳細に説明する。
図2(a)は、表面側のレーザー光のみを対象とし、ガラス板Wが縦Y方向に移動して来て図1に示すA位置にあった表面の欠陥Dfがレーザーマーカー1の表面照射位置Qに到達したときのレーザー光の状態を示していると共に、ガラス板Wの縦Y方向において欠陥Dfの前後で欠陥Dfのない位置A1 及びA2 が位置Qを通過してそこでレーザー光を照射されたときのレーザー光の状態を位置Qの前後に仮想的に示している。そして、CCDカメラ2で撮影した欠陥Df及びその前後の画像データを画像処理装置5の画像メモリ部51に取り込んだときのX−Y平面状態を同図(d)の上の図の画像f1 として示している。
The above defect determination means will be described in detail with reference to FIGS.
FIG. 2 (a) targets only the laser beam on the surface side, and the surface defect Df at the position A shown in FIG. It shows the state of the laser beam when it reaches the position Q, and the positions A 1 and A 2 without the defect Df before and after the defect Df in the longitudinal Y direction of the glass plate W pass through the position Q, and the laser beam there. The state of the laser beam when irradiated with is shown virtually before and after the position Q. The XY plane state when the defect Df photographed by the CCD camera 2 and the image data before and after the defect Df are taken into the image memory unit 51 of the image processing device 5 is shown in the image f 1 in the upper diagram of FIG. As shown.

図示の如く、欠陥DfがQ位置に到達したときには、レーザー光LのうちX−Y方向の一部分で欠陥Dfに当たった部分は乱反射し、光強度の極めて弱い散乱光mになり、CCDカメラ2のCCD受光素子22にはこれを点灯させるだけの光が到達せず、一方、欠陥Dfに当たらないレーザー光L並びにQ位置で欠陥Dfの前後のA1 及びA2 位置を照射したレーザー光L1 、L2 は、ガラス面から通常5%程度が正反射をして散乱光よりも格段に光量の多い正反射光Lm及びM1 、M2 になり、CCDカメラ2のCCD受光素子22のうちのP1 位置の一定範囲のものを点灯させる。その結果、同図(d)に示す如く、欠陥Dfが撮像されてその状態が画像メモリ51に記憶されることになる。なお、レーザー光LはX方向に長さlでY方向に例えば0.1mm程度の幅を持つものであり、欠陥Dfの大きさによりLm等は1本以下から10本程度までの本数になる。 As shown in the figure, when the defect Df reaches the Q position, a part of the laser beam L that hits the defect Df in the X-Y direction is irregularly reflected to become scattered light m having a very low light intensity. On the other hand, the light for illuminating the CCD light receiving element 22 does not reach the CCD light receiving element 22, while the laser light L that does not strike the defect Df and the laser light L that irradiates the A 1 and A 2 positions before and after the defect Df at the Q position. 1 and L 2 are specularly reflected by about 5% from the glass surface and become specularly reflected light Lm, M 1 , and M 2 that are much lighter than the scattered light. turning on those a range of P 1 position of the house. As a result, the defect Df is imaged and its state is stored in the image memory 51 as shown in FIG. The laser beam L has a length 1 in the X direction and a width of, for example, about 0.1 mm in the Y direction, and the number of Lm and the like is from 1 or less to about 10 depending on the size of the defect Df. .

同図(b)及び(e)の上の図の画像r1 は、(a)及び画像f1 と同じ欠陥位置における裏面反射光の状態を示している。レーザー光LのうちX−Y方向の一部分で欠陥Dfに当たった部分は反射及び透過した散乱光mになり、裏面Rで反射してもCCD受光素子22を点灯させず、一方、欠陥Dfに当たらないレーザー光L並びにQ位置で欠陥Dfの前後のA1 及びA2 位置を照射したレーザー光L1 、L2 は、その大部分が表面Hを透過して裏面Rから通常5%程度が正反射をして散乱光よりも格段に光量の多い正反射光Ln及びN1 、N2 になり、CCDカメラ2のCCD受光素子22のうちの表面とは異なったP2 位置の一定範囲のものを点灯させる。その結果、同図(e)のr1 画像に示す如く、欠陥Dfが撮像されてその状態が画像メモリ51に記憶されることになる。 Image r 1 in the upper diagram of FIG. (B) and (e) shows the state of the back reflected light at the same defect position as (a) and the image f 1. The portion of the laser beam L that hits the defect Df in the part in the XY direction becomes the reflected and transmitted scattered light m, and does not turn on the CCD light receiving element 22 even when reflected by the back surface R, but on the defect Df. Most of the laser light L 1 and L 2 irradiated to the laser light L that does not hit and the A 1 and A 2 positions before and after the defect Df at the Q position pass through the front surface H and are usually about 5% from the rear surface R. The regular reflection light Ln, N 1 , and N 2, which are specularly reflected and have much more light than the scattered light, have a certain range of P 2 position different from the surface of the CCD light receiving element 22 of the CCD camera 2. Light things up. As a result, the defect Df is picked up and the state thereof is stored in the image memory 51 as shown in the r 1 image of FIG.

以上の如く、A位置の欠陥DfがQ位置に到達したときには、f1 及びr1 画像として同時に2回形成される。画像メモリ51は、数値で画像データを取り入れるが、通常、ガラス板Wに対応した仮想画面にこのような画像データを書き込むことができる。その場合、欠陥Dfの判定の後工程等のために、通常、表面画像f1 と裏面画像r1 とは別画面にされる。(d)及び(e)の画面を重ね合わせると、欠陥Dfの位置が実際の位置と一致し、その位置に両方の欠陥が重なって表示される。即ち、両画像f1 とr1 とはX方向に同じ位置で且つY方向にも同じ位置に表示される。 As described above, when the defect Df at the A position reaches the Q position, the f 1 and r 1 images are simultaneously formed twice. The image memory 51 takes in the image data as numerical values, but normally, such image data can be written on a virtual screen corresponding to the glass plate W. In this case, the front image f 1 and the back image r 1 are usually displayed on different screens for the subsequent process of determining the defect Df. When the screens of (d) and (e) are overlaid, the position of the defect Df coincides with the actual position, and both defects are displayed overlapping each other at that position. That is, both images f 1 and r 1 are displayed at the same position in the X direction and at the same position in the Y direction.

図2(c)と(e)及び(d)の下の図の画像r2 及びf2 とは、ガラス板Wが更にY方向に進行して欠陥DfのA位置がQ位置からQ1 位置まで移動したときの状態を示す。このときには、図示の如くQ位置におけるL、L1 、L2 のレーザー光の表面正反射光は欠陥Dfの影響を受けなくなっていて完全な正反射光M、M1 、M2 になるが,表面Hから透過した裏面正反射光NのX方向の一部分が丁度欠陥Dfに妨げられることになり、Nは欠陥Dfを透過したのち欠陥Dfによって曲げられて散乱光nになり、同図(b)と同様に裏面正反射光Ln、N1 及びN2 がCCD素子を点灯させ、(e)の下の図に示す画像r2 が形成される。 Images r 2 and f 2 in the lower diagrams of FIGS. 2C, 2E, and 2D show that the glass plate W further advances in the Y direction, and the A position of the defect Df is shifted from the Q position to the Q 1 position. It shows the state when moving to. At this time, as shown in the drawing, the surface regular reflection light of the laser light of L, L 1 , L 2 at the Q position is not affected by the defect Df and becomes completely regular reflection light M, M 1 , M 2 . A part of the back surface regular reflection light N transmitted from the front surface H in the X direction is just blocked by the defect Df, and after passing through the defect Df, the N is bent by the defect Df to become scattered light n. ), The back surface regular reflection lights Ln, N 1 and N 2 light the CCD element, and the image r 2 shown in the lower figure of (e) is formed.

この画像r2 は、欠陥Dfが移動したQ−Q1 間の距離sだけX方向の同じ位置でY方向にQから離れた位置に形成されていると共に、所定の短時間としてr1 の画像が形成されてからt=s/vだけ遅れた時間に形成されている。vはガラス板Wの搬送速度である。sはガラス板Wの厚みaに対応していて光が屈折する分だけaより少し短い距離である。なおこのときには、レーザー光照射位置のQ点でも表面正反射光による画像は形成されるが、Q位置に欠陥Dfがないので、(d)の下の図に示す欠陥の写っていない画像f2 として表される。 This image r 2 is formed at the same position in the X direction and away from Q in the Y direction by the distance s between Q and Q 1 where the defect Df has moved, and the image of r 1 as a predetermined short time. Is formed at a time delayed by t = s / v from the formation of. v is the conveyance speed of the glass plate W. s corresponds to the thickness a of the glass plate W and is a distance slightly shorter than a by the amount of light refracted. At this time, an image by surface regular reflection light is also formed at the Q point of the laser beam irradiation position, but since there is no defect Df at the Q position, an image f 2 in which no defect is shown as shown in the lower figure of (d). Represented as:

以上から、表面Hに生じた欠陥Dfでは、ガラス板Wの移動方向であるY方向に、この方向に直角な横X方向の一定位置で、ガラス板Wの厚みaに近い程度の小距離及びこれに対応した欠陥移動の小時間内に、画像メモリ51に欠陥Dfを含む異常画像が合計3回形成されることになる。   From the above, in the defect Df generated on the surface H, a small distance close to the thickness a of the glass plate W at a certain position in the transverse X direction perpendicular to the Y direction, which is the moving direction of the glass plate W, and An abnormal image including the defect Df is formed three times in total in the image memory 51 within a short time of defect movement corresponding to this.

図3は、ガラス板WがY方向に移動して図1のB位置にあった裏面Rの欠陥Drがレーザー光照射位置Qから少し移動してレーザーマーカー1の裏面照射位置Q2 に到達したときの状態を示す。裏面Rに欠陥Drがあるときには、表面照射位置Qには欠陥Drがないため、表面照射光LはL1 、L2 と共に正反射するので、同図(c)の上の図に示す如く、表面の画像f1 には欠陥Drが現れないが、同図(d)の上の図に示す如く、裏面の画像r1 に欠陥Drが現れる。そして、ガラス板WがY方向に更に移動して欠陥DrがQ2 位置を離れると、それ以後はQ及びQ2 位置に欠陥Dが来ないので、(c)及び(d)の下の図の画像f2 及びr2 のように欠陥の映像は生じない。従って、裏面Rに生じた欠陥Drでは、前記小距離及びこれに対応した小時間内に、画像メモリ51に欠陥Drを含む画像が1回だけ形成されることになる。 3, the glass plate W has moved in the Y direction, and the defect Dr on the back surface R that was at the B position in FIG. 1 has slightly moved from the laser light irradiation position Q to reach the back surface irradiation position Q 2 of the laser marker 1. The state of time is shown. When there is a defect Dr on the back surface R, there is no defect Dr at the front surface irradiation position Q. Therefore, the front surface irradiation light L is regularly reflected together with L 1 and L 2 , and as shown in the upper diagram of FIG. The defect Dr does not appear in the front image f 1, but the defect Dr appears in the back image r 1 as shown in the upper diagram of FIG. When the defect glass plate W is further moved in the Y direction Dr leaves the Q 2 position, the subsequent will not come defect D to Q and Q 2 position, under (c) and (d) FIG. It does not occur image defects like the image f 2 and r 2 of the. Therefore, in the case of the defect Dr occurring on the back surface R, an image including the defect Dr is formed only once in the image memory 51 within the small distance and a small time corresponding to the small distance.

図4は、ガラス板WがY方向に移動して図1のC位置にあった中間Iの欠陥Diがレーザー光照射位置Qから少し移動してレーザーマーカー1の中間照射位置Q3 に到達したときの状態を示す。中間Iに欠陥Diがあるときには、表面照射位置Qには欠陥Diがないため、表面照射光LはL1 、L2 と共に正反射するので、同図(c)の上の図に示す如く、表面の画像f1 には欠陥Diが現れないが、同図(d)の上の図に示す如く、レーザー光Lの一部分が欠陥Diに遮られて裏面の画像r1 に欠陥Diが現れる。 4, the glass plate W moves in the Y direction, and the intermediate Di defect Di at the position C in FIG. 1 slightly moves from the laser light irradiation position Q to reach the intermediate irradiation position Q 3 of the laser marker 1. The state of time is shown. When there is a defect Di in the middle I, since there is no defect Di at the surface irradiation position Q, the surface irradiation light L is regularly reflected together with L 1 and L 2 , and as shown in the upper diagram of FIG. Although the defect Di does not appear in the front image f 1 , as shown in the upper diagram of FIG. 4D, a part of the laser beam L is blocked by the defect Di, and the defect Di appears in the back image r 1 .

そして、ガラス板WがY方向に更に距離s2 だけ移動して欠陥DiがQ3 位置からQ4 位置に来ると、レーザー光Lが裏面Rで反射してその一部分が欠陥Diに遮られて裏面正反射光Lnになり、裏面の画像r2 に再び欠陥Diが現れる。従って、中間Iに生じた欠陥Diでは、前記小距離及びこれに対応した小時間内に、画像メモリ51に欠陥Diを含む画像が2回形成されることになる。距離s2 もガラス板Wの厚みに対応した小距離であり、例えば欠陥Diがガラス板の厚みの中心位置にあるときには、s2 はs1 の1/2である。 Then, when the glass plate W further moves in the Y direction by the distance s 2 and the defect Di comes from the Q 3 position to the Q 4 position, the laser light L is reflected by the back surface R and a part thereof is blocked by the defect Di. The back surface regular reflection light Ln is generated, and the defect Di appears again in the image r 2 on the back surface. Therefore, in the defect Di generated in the intermediate I, an image including the defect Di is formed twice in the image memory 51 within the small distance and the small time corresponding thereto. The distance s 2 is also a small distance corresponding to the thickness of the glass plate W. For example, when the defect Di is at the center position of the thickness of the glass plate, s 2 is ½ of s 1 .

以上図2乃至図4により詳しく説明したように、欠陥が表面、裏面又は中間にあるときには、画像メモリ51にそれぞれの欠陥を含む画像データが3回、1回又は2回現れる。画像処理装置5の欠陥判断部52は、取り入れた画像データから、CCDカメラ2のCCD受光素子22を点灯させなかった欠陥Dを含む画像データの有無を検出し、このように欠陥画像が検出されると、横X方向の一定位置でガラス板Wの移動方向であるY方向にガラス板Wの厚みaに近い程度の小距離及びこれに対応した欠陥移動の小時間内に、更に欠陥画像があったかどうかを検出し、異常画像が一ヶ所だけ又は二カ所もしくは三ヶ所にあることを検出すると、それぞれ裏面又は中間もしくは表面にそれぞれ欠陥Dr又はDiもしくはDfがあったものと判断する。欠陥のY方向位置は、本例ではロータリーエンコーダー41によるガラス板Wの移動量の検出によって与えられている。   As described above in detail with reference to FIGS. 2 to 4, when the defect is on the front surface, the back surface, or the middle, the image data including each defect appears three times, once or twice in the image memory 51. The defect determination unit 52 of the image processing device 5 detects the presence / absence of image data including the defect D in which the CCD light receiving element 22 of the CCD camera 2 is not turned on from the taken image data, and thus the defect image is detected. Then, a defect image is further obtained within a small distance close to the thickness a of the glass plate W in the Y direction, which is the moving direction of the glass plate W, at a certain position in the lateral X direction and within a short time of defect movement corresponding thereto. When it is detected whether or not there is an abnormal image at only one place, or at two or three places, it is determined that there is a defect Dr or Di or Df on the back, middle or front, respectively. In this example, the position of the defect in the Y direction is given by detecting the amount of movement of the glass plate W by the rotary encoder 41.

なお、欠陥があってこのように判断されると、それ以後は、通常の検査手段により、欠陥の大きさや輝度等が測定され、表面、裏面又は中間の欠陥種類に対応して一定の検査基準に従って欠陥部分の製品としての使用の可否が判断され、欠陥を含む製品部分を排除したり、製品全体の合否を定めるような処理がされる。   If there is a defect and it is determined in this way, then the size and brightness of the defect are measured by a normal inspection means, and a certain inspection standard corresponding to the front, back or intermediate defect type. Accordingly, whether or not the defective part can be used as a product is determined, and a process for eliminating the product part including the defect or determining whether or not the whole product is acceptable is performed.

図5及び図6は、図1に示す光学系3により、ガラス板Wの欠陥を含む画像をCCDカメラ2のCCD受光素子22上に撮影した結果を示す。
図5(a)は、図2の(a)及び(b)のP2 及びP1 位置の画像である。図において黒地の中の白く厚みのある部分は正反射光の当たった部分を示し、その中の小さい黒い部分は正反射光が散乱して光が殆ど当たっていない表面欠陥Dfを示し、これを含む画像が二カ所の位置に現れている。なお、上下の映像はそれぞれP2 及びP1 位置のものである。白い部分は欠陥Dfを中心としてX方向に約10mmの長さになっている。従って、レーザー光を、スポット光でなく10mmの長さを持つライン状の光にしても、欠陥Dfが確実に撮像されることが確認された。図5(b)は、ガラス板Wを少し移動させた図2の(c)のP2 及びP1 位置の画像である。欠陥Dfは裏面正反射光側の一ヶ所だけに現れている。従って、表面欠陥Dfでは、同時に二カ所に二回撮像されると共に小時間遅れて一ヶ所に1回、合計三ヶ所に三回撮像されることも明らかになった。
FIGS. 5 and 6 show the results of photographing an image including defects on the glass plate W on the CCD light receiving element 22 of the CCD camera 2 by the optical system 3 shown in FIG.
FIG. 5A is an image at positions P 2 and P 1 in FIGS. 2A and 2B. In the figure, the white and thick part in the black background shows the part hit by the specular reflection light, and the small black part in it shows the surface defect Df where the specular reflection light is scattered and hardly hits the light. The included image appears at two locations. Note that the upper and lower images are at the P 2 and P 1 positions, respectively. The white portion has a length of about 10 mm in the X direction centering on the defect Df. Therefore, it was confirmed that the defect Df was reliably imaged even when the laser beam was not a spot beam but a line beam having a length of 10 mm. FIG. 5B is an image at the P 2 and P 1 positions in FIG. 2C where the glass plate W is slightly moved. The defect Df appears only at one place on the back regular reflection light side. Therefore, it was also clarified that the surface defect Df is imaged twice at two locations at the same time, and once at one location with a short time delay, three times at a total of three locations.

図6(a)及び(b)は、それぞれ図4(a)及び(b)のP2 とP1 位置の画像である。それぞれの上及び下の裏面及び表面正反射光の白い部分は、図4の(d)及び(c)の図に対応する。図示の如く、中間の欠陥Diでは、同じライン状のレーザー光の裏面正反射光により、ガラス板Wの搬送方向の二カ所の位置に、二回欠陥Diの映像が現れることが確認された。 FIGS. 6A and 6B are images at positions P 2 and P 1 in FIGS. 4A and 4B, respectively. The white portions of the upper and lower back surfaces and the regular specular reflection light respectively correspond to the diagrams of (d) and (c) of FIG. As shown in the figure, it was confirmed that at the intermediate defect Di, the image of the defect Di appears twice at two positions in the conveyance direction of the glass plate W by the backside regular reflection light of the same line-shaped laser beam.

以上のような欠陥の検査装置によれば、欠陥Dを含む画像を一定の光強度も持つ正反射光だけで形成させるので、ガラス板Wを一定の方向に直線状に移動させるだけの簡単な構成により、確実に表面又は中間又は裏面にある欠陥を判別することができる。なお、例えばガラス板Wの裏面Rに近接して2以上の欠陥があるような場合には、これを表面又は中間の欠陥と誤判断する可能性がないではないが、一般に、このような欠陥は例えば検査されるべき多数枚の1.2m角のガラス板で一ヶ所に生ずる程度の頻度のものであるため、同じ1枚のガラス板のX方向の同位置で且つごく近距離中に二カ所以上の欠陥が生ずることは皆無と言えるくらいであるため、本発明の検査装置によれば実質的に確実に欠陥位置を判別することができる。   According to the defect inspection apparatus as described above, since an image including the defect D is formed only by specular reflection light having a constant light intensity, the glass plate W can be simply moved linearly in a fixed direction. According to the configuration, it is possible to reliably determine defects on the front surface, the middle, or the back surface. For example, when there are two or more defects in the vicinity of the back surface R of the glass plate W, there is no possibility of misjudging this as a surface or intermediate defect. Since, for example, a large number of 1.2 m square glass plates to be inspected have a frequency that occurs at one place, the same one glass plate is placed at the same position in the X direction and within a very short distance. Since it can be said that there are no defects of more than one location, the inspection apparatus of the present invention can determine the defect position substantially reliably.

図7は本発明を適用した検査装置の光学系の一例を示す。
本例の検査装置は、寸法Ws=1200mm角のガラス板Wを対象とした装置であり、34台のレーザーマーカー1及び24台のCCDカメラ2で光学系3を構成している。なお、図ではこれらの相当部分の数を省略している。又、レーザー光Lと表面及び裏面正反射光M及びNのガラス板Wへの入射角及び反射角を45°にしているが、図では平面状態を示している。光路長S1 及びS2 はそれぞれ1064mm及び152mm である。
FIG. 7 shows an example of an optical system of an inspection apparatus to which the present invention is applied.
The inspection apparatus of this example is an apparatus for a glass plate W having a dimension Ws = 1200 mm square, and an optical system 3 is constituted by 34 laser markers 1 and 24 CCD cameras 2. In the figure, the number of these corresponding portions is omitted. Further, the incident angle and the reflection angle of the laser beam L and the front and back regular reflection lights M and N with respect to the glass plate W are set to 45 °, but the plan view is shown in the figure. The optical path lengths S 1 and S 2 are 1064 mm and 152 mm, respectively.

1台のCCDカメラ2の視野lcは50mmになっていて,この範囲にレーザーマーカー9台分の発射したレーザー光を受光する。従って、1台のレーザーマーカーから発射されるライン状のレーザー光の有効長さは6.25mmである。図5、6に示す実験結果では、長さ約10mmのレーザー光によってガラス板の欠陥Dを撮影することができたので、6.25mmは十分な余裕のある値であり、また、ガラス板からの正反射光を一旦スクリーンに投影し、スクリーンに映ったレーザーラインを撮影することにより、レーザーマーカーの台数は更に削減可能である。そして、光学系又はガラス板Wの何れか一方だけを移動させることにより、ガラス板Wの1200mm幅を一度に撮影して行くことができる。なお、画像処理装置5の部分は、これまで説明したような処理の可能な装置として、マイコン等で構成される。このような検査装置によれば、一次元動作をする簡単な機構によって確実な作動の下に、ガラス板Wの欠陥の存在及びそのガラス厚み方向の位置を判断することができる。   The field of view lc of one CCD camera 2 is 50 mm, and laser light emitted from nine laser markers is received within this range. Therefore, the effective length of the line-shaped laser light emitted from one laser marker is 6.25 mm. In the experimental results shown in FIGS. 5 and 6, since the defect D of the glass plate could be photographed with a laser beam having a length of about 10 mm, 6.25 mm is a value with a sufficient margin. The number of laser markers can be further reduced by projecting the regular reflection light once onto the screen and photographing the laser line reflected on the screen. Then, by moving only one of the optical system and the glass plate W, the 1200 mm width of the glass plate W can be photographed at a time. The part of the image processing device 5 is constituted by a microcomputer or the like as a device capable of processing as described above. According to such an inspection apparatus, the presence of a defect in the glass plate W and its position in the glass thickness direction can be determined under a reliable operation by a simple mechanism that performs a one-dimensional operation.

本発明は、液晶パネルや大型のプラズマディスプレーパネル等に使用するガラス板の検査装置として特に好都合に利用される。   The present invention is particularly advantageously used as a glass plate inspection apparatus used for liquid crystal panels, large-sized plasma display panels, and the like.

本発明を適用した検査装置の全体構成の一例を示す説明図である。It is explanatory drawing which shows an example of the whole structure of the test | inspection apparatus to which this invention is applied. (a)乃至(e)は上記装置によるガラス板の表面欠陥の画像形成状態の説明図である。(A) thru | or (e) is explanatory drawing of the image formation state of the surface defect of the glass plate by the said apparatus. (a)乃至(d)は裏面欠陥の画像形成状態の説明図である。(A) thru | or (d) is explanatory drawing of the image formation state of a back surface defect. (a)乃至(d)は中間位置の欠陥の画像形成状態の説明図である。(A) thru | or (d) are explanatory drawings of the image formation state of the defect of an intermediate position. (a)及び(b)は実際のカメラで表面欠陥を撮影した状態を示す説明図である。(A) And (b) is explanatory drawing which shows the state which image | photographed the surface defect with the actual camera. (a)及び(b)は実際のカメラで中間位置の欠陥を撮影した状態を示す説明図である。(A) And (b) is explanatory drawing which shows the state which image | photographed the defect of the intermediate position with the actual camera. 本発明を適用した実施例の検査装置の光学系の平面図である。It is a top view of the optical system of the inspection apparatus of the Example to which this invention is applied.

符号の説明Explanation of symbols

1 レーザーマーカー(投光部)
2 CCDカメラ(受光部)
3 光学系
4 ライン搬送装置(移動機構)
5 画像処理装置(判断部)
D,Df,Dr,Di 欠陥,表面,裏面及び中間の欠陥(不良部)
F 表面
1 ,f2 ,r1 ,r2 画像
H 表面
I 中間
L,L1 ,L2 レーザー光
M,Lm,M1 ,M2 表面正反射光
N,Ln,N1 ,N2 裏面正反射光
R 裏面
W ガラス板(板状透明体)
Y 縦方向(一定の方向)
t 所定の短時間
1 Laser marker (light projecting part)
2 CCD camera (light receiving unit)
3 Optical system 4 Line conveyor (moving mechanism)
5 Image processing device (determination unit)
D, Df, Dr, Di Defects, front, back and intermediate defects (defective part)
F surface f 1 , f 2 , r 1 , r 2 image H surface I intermediate L, L 1 , L 2 laser light M, Lm, M 1 , M 2 surface regular reflection light N, Ln, N 1 , N 2 back surface Regular reflection light R Back surface W Glass plate (plate-like transparent body)
Y Longitudinal direction (constant direction)
t Predetermined short time

Claims (1)

板状透明体の不良部を検査するための検査装置において、
一定の関係位置に配置されている投光部と受光部とで構成された光学系と、前記板状透明体と前記光学系とが一定の方向に相対的に移動可能なように前記板状透明体又は前記光学系のうちの何れか一方を移動可能にする移動機構と、判断部と、を有し、前記投光部は前記板状透明体にレーザー光を投光可能なように構成されていて、前記受光部は前記レーザー光のうち前記板状透明体の表面から正反射した表面正反射光と裏面から正反射した裏面正反射光とを受光して画像を形成可能なように構成されていて、前記判断部は、前記受光部が形成した前記画像を取り入れて該画像が異常画像として前記不良部を含んでいるときに前記異常画像が一ヶ所又は所定の短時間内に前記一定の方向に二カ所もしくは三ヶ所にあるとそれぞれ前記裏面又は前記表面と前記裏面との中間もしくは前記表面に前記不良部があったものと判断することを特徴とする検査装置。
In the inspection device for inspecting the defective part of the plate-like transparent body,
An optical system composed of a light projecting unit and a light receiving unit arranged at a fixed relationship position, and the plate-shaped transparent body and the optical system so as to be relatively movable in a certain direction. A moving mechanism that enables movement of either the transparent body or the optical system, and a determination unit; and the light projecting unit configured to project laser light on the plate-shaped transparent body The light receiving unit is configured to receive the front surface regular reflection light regularly reflected from the surface of the plate-like transparent body and the back regular reflection light regularly reflected from the back surface of the laser light so that an image can be formed. The determination unit takes in the image formed by the light receiving unit, and the abnormal image is included in one place or within a predetermined short time when the image includes the defective portion as an abnormal image. If there are two or three places in a certain direction, Serial surface inspection apparatus characterized by determines that the there is a defective portion in the middle or the surface of said back face.
JP2003303435A 2003-08-27 2003-08-27 Inspection device Expired - Lifetime JP4362335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303435A JP4362335B2 (en) 2003-08-27 2003-08-27 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303435A JP4362335B2 (en) 2003-08-27 2003-08-27 Inspection device

Publications (2)

Publication Number Publication Date
JP2005069989A JP2005069989A (en) 2005-03-17
JP4362335B2 true JP4362335B2 (en) 2009-11-11

Family

ID=34407434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303435A Expired - Lifetime JP4362335B2 (en) 2003-08-27 2003-08-27 Inspection device

Country Status (1)

Country Link
JP (1) JP4362335B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040486A1 (en) * 2012-09-14 2014-03-20 Luoyang Landglass Technology Co., Ltd. Detection system based on modulation of line structured laser image of glass
WO2021257362A1 (en) * 2020-06-17 2021-12-23 Corning Incorporated Methods and apparatus for measuring a feature of glass-based substrate

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618426B2 (en) * 2004-06-11 2011-01-26 日本電気硝子株式会社 Flat glass plate sorting method and manufacturing method
US7548317B2 (en) * 2006-05-05 2009-06-16 Agc Flat Glass North America, Inc. Apparatus and method for angular colorimetry
JP2010048745A (en) * 2008-08-25 2010-03-04 Asahi Glass Co Ltd Defect inspection system and defect inspection method
JP2010107471A (en) * 2008-10-31 2010-05-13 Mitsubishi Heavy Ind Ltd Inspection device and inspection method of defect
JP2010175283A (en) * 2009-01-27 2010-08-12 Kokusai Gijutsu Kaihatsu Co Ltd Device for producing plane image
JP5212724B2 (en) * 2009-01-27 2013-06-19 国際技術開発株式会社 Height measuring device
KR101249758B1 (en) * 2010-11-25 2013-04-02 (주)쎄미시스코 System and method of measuring irregullarity of a glass plate
JP5796430B2 (en) * 2011-09-15 2015-10-21 日本電気硝子株式会社 Sheet glass inspection apparatus, sheet glass inspection method, sheet glass manufacturing apparatus, and sheet glass manufacturing method
KR101435621B1 (en) * 2012-11-09 2014-08-29 와이즈플래닛(주) Inspection-Object Location estimation device using multi camera.
TWI470210B (en) * 2012-12-17 2015-01-21 Taiwan Power Testing Technology Co Ltd Defect inspection method of optical layer part of display device
KR102200691B1 (en) 2014-06-02 2021-01-13 삼성디스플레이 주식회사 Inspecting apparatus
KR102486442B1 (en) * 2019-06-07 2023-01-09 주식회사 엘지화학 Device for testing liquid crystal stain of polarizing plate and method for testing liquid crystal stain of polarizing plate
KR20220110291A (en) * 2019-12-13 2022-08-05 코닝 인코포레이티드 Laser-based inclusion detection system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040486A1 (en) * 2012-09-14 2014-03-20 Luoyang Landglass Technology Co., Ltd. Detection system based on modulation of line structured laser image of glass
US9909997B2 (en) 2012-09-14 2018-03-06 Luoyang Landglass Technology Co., Ltd Detection system based on modulation of line structured laser image of glass
WO2021257362A1 (en) * 2020-06-17 2021-12-23 Corning Incorporated Methods and apparatus for measuring a feature of glass-based substrate

Also Published As

Publication number Publication date
JP2005069989A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
KR101177299B1 (en) Detection apparatus for particle on the glass
JP4362335B2 (en) Inspection device
JP5583102B2 (en) Glass substrate surface defect inspection apparatus and inspection method
TW389840B (en) Apparatus for inspecting printed circuit boards
US8027036B2 (en) Apparatus for detecting particles on a glass surface and a method thereof
KR101300132B1 (en) Apparatus for detecting particle in flat glass and detecting method using same
WO2010024082A1 (en) Defect inspecting system, and defect inspecting method
JP3101290B2 (en) Surface condition inspection device, exposure apparatus, and surface condition inspection method
JP2002062267A (en) Device for inspecting defect
KR101203210B1 (en) Apparatus for inspecting defects
JP2009216628A (en) Defect detector and defect detection method
JP2005181070A (en) Flaw detecting method of transparent plate-shaped body and flaw detector therefor
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP3480176B2 (en) Glass substrate front / back defect identification method
JP4679282B2 (en) Substrate inspection apparatus and substrate inspection method
JP3568482B2 (en) Plate-like scratch detection method and device
JP2008039444A (en) Method and apparatus for inspecting foreign matter
JP2017150992A (en) Inspection device and inspection method
CN110945347B (en) Damage inspection method for optical display panel
JPH0511573B2 (en)
KR20160032576A (en) System and Method for Analyzing Image Using High-Speed Camera and Infrared Optical System
JP2005351825A (en) Defect inspection device
JP2020139942A (en) Device and method for inspecting surface
JP2008076071A (en) Substrate inspecting device and substrate inspection method
JP2004246171A (en) Defect detection method and device of transparent plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4362335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250