JP2003083902A - Method and device for inspecting specimen - Google Patents

Method and device for inspecting specimen

Info

Publication number
JP2003083902A
JP2003083902A JP2001275269A JP2001275269A JP2003083902A JP 2003083902 A JP2003083902 A JP 2003083902A JP 2001275269 A JP2001275269 A JP 2001275269A JP 2001275269 A JP2001275269 A JP 2001275269A JP 2003083902 A JP2003083902 A JP 2003083902A
Authority
JP
Japan
Prior art keywords
light
inspection
inspected
light receiving
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001275269A
Other languages
Japanese (ja)
Inventor
Ippei Takahashi
一平 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001275269A priority Critical patent/JP2003083902A/en
Publication of JP2003083902A publication Critical patent/JP2003083902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for inspecting specimen by which a defective part can be inspected with accuracy without requiring any complicated scanning mechanism, expensive camera, etc., in other words, inexpensively with a simple structure and, in addition, which are favorable even to a specimen having a relatively narrow inspection width. SOLUTION: The device is provided with a light source 1 which emits inspecting light α upon a specimen 6, a first beam shaping means 11 which shapes the inspecting light α emitted from the light source 1 into a linear beam, and a second beam converging means which narrows the size of the inspecting light shaped into the linear beam in the lengthwise direction of the specimen 6. The device is also provided with a third beam converging means 3 which narrows the projected width W of the beam, a light receiving section 4 provided with a light shielding member 41 in a shielded section where the inspecting light transmitted through the normal part of the specimen 6 is made incident and received, and a signal processing section 5 which detects the defective part D of the specimen 6 by inputting the output signal of the light receiving section 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、連続的に移送さ
れる透明または半透明なフィルムや反射性を有するシー
トなどの被検物に形成された擦り傷などの欠陥部分を光
学的に検出することができる被検物の検査方法および装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optically detecting a defective portion such as a scratch formed on a test object such as a transparent or translucent film or a reflective sheet which is continuously transferred. The present invention relates to a method and an apparatus for inspecting a test object.

【0002】[0002]

【従来の技術】例えば、ラインによって移送されてくる
(インライン中の)透明または半透明なフィルムなどの
被検物に対して、その表面に擦り傷などの欠陥があるか
否かを検査する検査装置が各種知られている。
2. Description of the Related Art For example, an inspection apparatus for inspecting an object such as a transparent or translucent film (in-line) transferred by a line for defects such as scratches on its surface. Are known.

【0003】この種の検査装置として、例えば、特開平
4−178545号公報や特開平2-83438号公報
などに記載のように、外部から被検物に検査光を投光す
るとともに、その被検物を透過した検査光をスクリーン
上に投影し、そのスクリーン上の投影像をビデオカメラ
などの受光器に入射・受光するように構成したものが知
られている。例えば、特開平4−178545号公報に
は、光源と共に凹面鏡を用いた平行光発生器と、CCD
ラインセンサを用いたカメラとを組合わせたものが開示
されており、特開平2-83438号公報には、ピンホ
ール光源と、TVカメラや高解像度カメラなどの2次元
カメラとを組合わせたものが開示されている。
As an inspection device of this type, for example, as described in JP-A-4-178545 and JP-A-2-83438, an inspection light is externally projected onto an object to be inspected and the object to be inspected. It is known that an inspection light transmitted through an inspection object is projected on a screen, and a projected image on the screen is made incident on and received by a light receiver such as a video camera. For example, Japanese Patent Laid-Open No. 4-178545 discloses a parallel light generator using a concave mirror together with a light source and a CCD.
A combination of a camera using a line sensor is disclosed, and JP-A-2-83438 discloses a combination of a pinhole light source and a two-dimensional camera such as a TV camera or a high resolution camera. Is disclosed.

【0004】また、この種の検査装置として、例えば特
開平6−207910号公報及び特開昭51−1261
91号公報に記載のように、レーザスポットを走査して
受光器に受光させる構成のものも知られている。特に、
特開平6−207910号公報にはレーザビームスポッ
トよりも受光器の有効窓幅を小さくしたものが開示され
ており、特開昭51−126191号公報には被検物の
同一箇所を2回(複数回)通過させることで、欠陥信号
を強調・増幅させるように構成されている。
As an inspection device of this type, for example, Japanese Patent Laid-Open No. 6-207910 and Japanese Patent Laid-Open No. 51-1261.
As described in Japanese Patent Publication No. 91, there is known a structure in which a laser spot is scanned and a light receiver receives the light. In particular,
Japanese Unexamined Patent Publication (Kokai) No. 6-207910 discloses a device in which the effective window width of a light receiver is smaller than that of a laser beam spot. The defective signal is configured to be emphasized / amplified by passing it a plurality of times.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
たこれらの検査装置は、レーザ走査により広範囲の領域
に亙って検査するために複雑な走査機構を光源側に備え
ていたり、受光器としてCCDカメラなどを用いている
ので高価となってしまう、といった欠点を有している。
また、これらの検査装置の中には、検出精度を高めるた
めに、走査機構に特殊な機構を付与したりカメラ側に特
別な工夫を施したものも見られるが、その分コストが増
大する、といった欠点を有している。さらに、これらの
検査装置では、被検物が特に幅の狭い形状を有するもの
であっても、特に検査装置を構成する部品点数を削減で
きるわけではないから、検査幅に対してどうしても割高
になってしまう、といった欠点を有している。
However, these inspection devices described above are provided with a complicated scanning mechanism on the light source side for inspecting a wide area by laser scanning, or a CCD camera as a light receiver. However, it has the drawback of being expensive because it uses
In addition, among these inspection devices, there are those in which a special mechanism is added to the scanning mechanism or a special device is added to the camera side in order to improve the detection accuracy, but the cost increases accordingly. It has the drawback. Further, in these inspection devices, even if the object to be inspected has a particularly narrow shape, the number of parts constituting the inspection device cannot be particularly reduced, so that the inspection width is inevitably high. It has the drawback that it will end up.

【0006】このような事情については、透明または半
透明な被検物の欠陥部分を検出するための検査装置に限
らず、例えば入射(反射)面での欠陥部分を検出するた
めの検査装置についても同様であり、同様の不都合を生
じている。
This situation is not limited to an inspection apparatus for detecting a defective portion of a transparent or semi-transparent test object, and for example, for an inspection apparatus for detecting a defective portion on an incident (reflection) surface. Is also the same and causes the same inconvenience.

【0007】そこで、この発明は、上記した事情に鑑
み、複雑な走査機構や高価なカメラなどを必要とせず
に、換言すれば、簡単な構造でしかも低コストで欠陥部
分の精度良い検査を行うことができ、また検査幅が比較
的狭い被検物に対する検査にも都合のよい被検物の検査
方法および装置を提供することを目的とするものであ
る。
In view of the above-mentioned circumstances, the present invention does not require a complicated scanning mechanism or an expensive camera, in other words, has a simple structure and a low cost to perform an accurate inspection of a defective portion. It is an object of the present invention to provide an inspection method and device for an object which can be inspected and which is convenient for inspecting an object having a relatively narrow inspection width.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明の被検物の検査方法は、被検物に向けて出
射する光源からの検査光を被検物の幅方向と直交する長
さ方向が細いライン状のビームに成形し、このライン状
に成形されたビームを検査光として被検物に投光し、前
記被検物に入射する前記検査光のうち、前記被検物の正
常部分を透過若しくは正反射する検査光のみを遮光部材
で遮光された受光部の遮光領域に入射・受光させるとと
もに、前記被検物に入射する前記検査光のうち、前記被
検物の欠陥部分で屈折若しくは散乱する検査光のみを前
記受光部の遮光部材が設けられていない受光領域に入射
・受光させ、前記受光部の受光領域に受光する前記検査
光の光量又は光強度に応じた出力信号から被検物の欠陥
部分を検出することを特徴としている。
In order to achieve the above object, the method of inspecting an object of the present invention is such that the inspection light from a light source emitted toward the object is orthogonal to the width direction of the object. Forming a linear beam having a narrow length direction, projecting this linear beam onto a test object as inspection light, and selecting the test light from among the test lights incident on the test object. Only the inspection light that transmits or specularly reflects the normal part of the object is made to enter and receive the light-shielding region of the light-receiving portion that is shielded by the light-shielding member, and the inspection light out of the inspection light that is incident on the object is detected. Only the inspection light that is refracted or scattered at the defective portion is made to enter and receive light in the light receiving region of the light receiving portion where the light shielding member is not provided, and the light intensity or the light intensity of the inspection light received in the light receiving region of the light receiving portion is determined. It is possible to detect defective parts of the test object from the output signal. It is characterized in.

【0009】また、この発明の透明体の検査方法では、
前記被検物にライン状のビームを投光するのに先立ち、
前記被検物の照射幅方向でのビームの投光領域が狭まる
ように、このビームを波形成形することができる。
Further, according to the transparent body inspection method of the present invention,
Prior to projecting a linear beam onto the test object,
This beam can be waveform-shaped so that the projection area of the beam in the irradiation width direction of the object is narrowed.

【0010】また、上記目的を達成するために、被検物
に向けて検査光を出射する光源と、この光源からの検査
光を、被検物に投光する際に被検物の幅方向と直交する
長さ方向が細いライン状のビームに成形する第1ビーム
成形手段と、前記被検物に入射する検査光のうち、前記
被検物の正常部分を透過若しくは正反射する検査光が入
射・受光する遮光部材で遮光された遮光領域と、前記被
検物の欠陥部分で屈折または散乱した検査光が入射・受
光しこの入射・受光する検査光の光量若しくは光強度に
応じた信号を出力する遮光領域を除いて設けた受光領域
とを有する受光部と、この受光部からの出力信号を入力
して前記被検物の欠陥部分を検出する信号処理部とを備
えたことを特徴としている。
In order to achieve the above object, a light source that emits inspection light toward an object to be inspected, and an inspection light from the light source is projected onto the object to be inspected in the width direction of the object to be inspected. A first beam shaping means for shaping a linear beam having a narrow length direction orthogonal to and an inspection light that is transmitted or specularly reflected from a normal portion of the inspection object among the inspection light incident on the object. A light-shielding area shielded by a light-shielding member for incidence / light reception, and inspection light refracted or scattered at the defect portion of the test object are incident / received, and a signal corresponding to the amount or intensity of the inspection light incident / received is generated. A light receiving portion having a light receiving area provided excluding a light shielding area for outputting, and a signal processing portion for inputting an output signal from the light receiving portion and detecting a defective portion of the test object. There is.

【0011】また、上記構成において、前記被検物の幅
方向と直交する長さ方向が細いライン状のビームに成形
された前記検査光を、前記被検物の長さ方向でのビーム
の投光領域が狭まるように収束させる第2ビーム成形手
段と、前記被検物の長さ方向と直交する幅方向でのビー
ムの投光領域が狭まるように前記検査光を収束させる第
3ビーム成形手段とを備えてもよい。
In the above structure, the inspection light formed into a linear beam having a narrow length direction orthogonal to the width direction of the test object is projected by the beam in the length direction of the test object. Second beam shaping means for converging the light so as to narrow the light area, and third beam shaping means for converging the inspection light so as to narrow the light projection area of the beam in the width direction orthogonal to the length direction of the test object. And may be provided.

【0012】また、上記構成において、光源と前記第1
ビーム成形手段とを、レーザダイオードとレンズとを一
体に組合わせたレーザダイオードモジュールで構成して
もよい。このような構成によれば、部品の修理、交換、
点検などを容易に行うことができる。
In the above structure, the light source and the first
The beam shaping means may be composed of a laser diode module in which a laser diode and a lens are integrally combined. According to such a configuration, repair, replacement of parts,
Inspections can be easily performed.

【0013】また、上記構成において、前記波形成形手
段は、ライン状のビームが投光される被検物の照射幅方
向での投光領域が狭まるように、このビームを収束する
ように構成することができる。また、前記受光部は、半
導体光検出器で構成してもよい。
Further, in the above-mentioned structure, the waveform shaping means is configured to converge the beam so that the light projection area in the irradiation width direction of the object on which the linear beam is projected is narrowed. be able to. Further, the light receiving section may be composed of a semiconductor photodetector.

【0014】また、上記構成において、前記第1ビーム
成形手段、前記第2ビーム成形手段及び前記第3ビーム
成形手段に、それぞれシリンドリカルレンズを用いると
ともに、前記第3ビーム成形手段側のシリンドリカルレ
ンズ両端部に遮光部材を設けるのが好ましい。このよう
に構成することで、前記ビームの出射幅を規制するのと
同時にレンズ内反射によるゴースト光の生成を抑えるこ
とができる。
Further, in the above arrangement, cylindrical lenses are used for the first beam shaping means, the second beam shaping means and the third beam shaping means, respectively, and both end portions of the cylindrical lens on the side of the third beam shaping means are used. It is preferable to provide a light-shielding member. With this configuration, the emission width of the beam can be regulated, and at the same time, generation of ghost light due to reflection inside the lens can be suppressed.

【0015】[0015]

【発明の実施の形態】以下、この発明の一実施の形態に
ついて、添付図面を参照しながら詳細に説明する。図1
はこの発明に係る被検物の検査装置を示すものであり、
この被検物の検査装置は、光源1と、第1ビーム成形手
段である第1レンズ11、第2ビーム成形手段である第
2レンズ2及び第3ビーム成形手段である第3レンズ3
と、受光部4と、信号処理部5とを備えており、この実
施形態では、連続的に移送される透明又は半透明なフィ
ルムなどの被検物6に対して欠陥部分を光学的に検出す
るように構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the accompanying drawings. Figure 1
Shows an inspection device for a test object according to the present invention,
This inspection device for an inspection object includes a light source 1, a first lens 11 which is a first beam shaping unit, a second lens 2 which is a second beam shaping unit, and a third lens 3 which is a third beam shaping unit.
The light receiving unit 4 and the signal processing unit 5 are provided, and in this embodiment, a defective portion is optically detected with respect to a continuously transferred transparent or semitransparent film 6 or the like. Is configured to.

【0016】光源1は、被検物6の欠陥部分を検出する
ための検査光を出射するものであり、この実施形態では
半導体レーザ(LD)を用いており、例えば波長680
nm程度の可視光を拡散ビーム状に出射する。この光源
1は、光軸が被検物6の検査(X−Z)面に垂直なY方
向に平行となるような状態で配置されており、この実施
形態では、寿命、コストなどの点から半導体レーザを用
いたが、これ以外に、例えばHe−Neレーザなどを用
いても良い。
The light source 1 emits inspection light for detecting a defective portion of the object 6 to be inspected. In this embodiment, a semiconductor laser (LD) is used, for example, a wavelength of 680.
Visible light of about nm is emitted as a diffused beam. The light source 1 is arranged such that the optical axis thereof is parallel to the Y direction perpendicular to the inspection (XZ) plane of the object 6 to be inspected. In this embodiment, from the viewpoint of life, cost, etc. Although the semiconductor laser is used, other than this, for example, a He-Ne laser or the like may be used.

【0017】また、この光源1から出射される検査光の
投光幅(W)を狭めたレーザビームとして波形成形する
ため、光源1、第1レンズ11の2点の光学素子を一体
にまとめた、例えばネオアーク社製のLDM−6820
Hなどを用いれば、安価で長寿命のものが実現できる。
Further, in order to perform waveform shaping as a laser beam with a narrow projection width (W) of the inspection light emitted from the light source 1, the two optical elements of the light source 1 and the first lens 11 are integrated. , LDM-6820 manufactured by Neoarc Co., Ltd.
If H or the like is used, it can be realized at a low cost and with a long life.

【0018】第2レンズ2は、第1レンズ11から拡散
状態で出射するビーム状の検査光αを、被検物6の幅
(X)方向と直交する長さ(Z)方向が細いライン状の
ビームに波形成形して被検物6の検査領域Sに向けて投
光させるものであり、走査範囲をライン状に大幅に狭め
ることで(例えば、走査幅の比較的広いスリット光など
よりも)検査精度を高めることができるように構成され
ている。この実施形態の第2レンズ2には、検査光のう
ち被検物6の長さ(Z)方向に拡散しようとする光成分
(縦成分)をほぼライン状に成形・収束するため、略半
円柱状に形成されたシリンドリカルレンズを用いてお
り、円周面の母線がX軸と平行になるような状態で配置
されている
The second lens 2 emits a beam-like inspection light α emitted from the first lens 11 in a diffused state in a linear shape having a length (Z) direction orthogonal to the width (X) direction of the object 6 to be inspected. The beam is shaped into a beam and is projected toward the inspection region S of the object 6 to be inspected. By significantly narrowing the scanning range in a line shape (for example, as compared with slit light having a relatively wide scanning width). ) It is configured so that inspection accuracy can be improved. In the second lens 2 of this embodiment, a light component (longitudinal component) of the inspection light that is going to diffuse in the length (Z) direction of the test object 6 is shaped and converged into a substantially linear shape, and thus is approximately half. A cylindrical lens formed in a cylindrical shape is used, and the cylindrical lens is arranged so that the generatrix of the circumferential surface is parallel to the X axis.

【0019】第3レンズ3には、シリンドリカルレンズ
を用いており、円周面の母線(Z)方向が第2レンズ2
の円周面を形成する母線(X)方向とは直交するように
配置されている。特に、この第3レンズ3では、検査光
αのうち被検物6の幅(X)方向に拡散しようとする光
成分(横成分)の検査光を適宜の投光角度(θ)に収束
させることにより、被検物6の検査領域である被検査部
Sへの投光幅(W)を所望の幅に狭め(この実施形態で
は100mm)、例えば欠陥部分が発生し易い特定の狭
い幅での被検査部Sに対しても、効率的に欠陥部分の検
査を行うことができるようになっている。
A cylindrical lens is used as the third lens 3, and the second lens 2 has a generatrix (Z) direction on the circumferential surface.
Are arranged so as to be orthogonal to the generatrix (X) direction forming the circumferential surface of the. Particularly, in the third lens 3, the inspection light of the light component (lateral component) of the inspection light α which is to be diffused in the width (X) direction of the object 6 is converged to an appropriate projection angle (θ). Thereby, the light projection width (W) to the inspection portion S which is the inspection region of the inspection object 6 is narrowed to a desired width (100 mm in this embodiment), for example, with a specific narrow width where a defective portion is likely to occur. It is also possible to efficiently inspect the defective portion of the inspected portion S.

【0020】特に、この第3レンズ3には、図1に示す
ように、曲面で構成され検査光αが入射する入射面3A
の左右(X)両端部側に、図2(A)に示すように、曲
面3Aに沿って所要の長さ(L)の遮光部材31が取り
付けられている。この遮光部材31は、検査光α1が出
射面3Bから出射する際の出射幅(図1参照)を規制す
ると共に、出射面3Bから出射して被検物6の正常部分
を透過した検査光α1が受光部4の後述する遮光領域
(遮光部材41に相当する)以外に入射するのを防止す
るものであり、例えば入射する検査光α1を吸収させる
黒色のテープや誘電体多層膜を成膜した構成の反射防止
膜などで構成してもよい。
In particular, as shown in FIG. 1, the third lens 3 has an incident surface 3A having a curved surface on which the inspection light α is incident.
As shown in FIG. 2 (A), light shielding members 31 having a required length (L) are attached to the left and right (X) end portions of the same along the curved surface 3A. The light blocking member 31 regulates the emission width (see FIG. 1) when the inspection light α1 is emitted from the emission surface 3B, and the inspection light α1 emitted from the emission surface 3B and transmitted through the normal portion of the test object 6. To prevent the incident light from entering a portion other than a light-shielding region (corresponding to the light-shielding member 41) described later of the light-receiving portion 4. For example, a black tape or a dielectric multilayer film that absorbs the incident inspection light α1 is formed. You may comprise by the antireflection film of a structure.

【0021】即ち、この遮光部材31は、図2(B)に
示すように、この第2レンズ3内部の左右両端部側で少
なくとも2回以上の多重散乱を起こした検査光α2が出
射面3Bから外部へ所定の出射角β1で別の出射角β2
方向に出射するのを防止する。これにより、検査光α
が、例えば被検物6の正常部分に入射したにも拘わら
ず、条件によっては、検査光α2として別方向に出射
し、受光部4の後述する検出面41(遮光領域)以外の
受光領域に入射して欠陥部分Dとして誤検出を起こす、
といったトラブルが発生するのを防止できるようになっ
ている。
That is, as shown in FIG. 2B, the light shielding member 31 emits the inspection light α2 which has undergone multiple scattering at least twice at the left and right end portions inside the second lens 3 and is on the emitting surface 3B. From the outside to a predetermined exit angle β1 and another exit angle β2
To prevent directional emission. As a result, the inspection light α
However, depending on the conditions, for example, even though the light enters the normal portion of the object 6 to be inspected, it is emitted in another direction as the inspection light α2, and is emitted to a light receiving area other than the detection surface 41 (light shielding area) of the light receiving unit 4 described later. When it is incident, it causes false detection as a defect portion D,
It is possible to prevent such troubles from occurring.

【0022】受光部4は、光源1から出射し第1レンズ
11、第2レンズ2及び第3レンズ3を透過してライン
ビーム状(又はスリットビーム状)にビーム成形され被
検物6の被検査部S(図1参照)を透過した検査光が入
射・受光するようになっており、図3(A)に示すよう
に、被検物6の正常部分を透過する検査光が入射・受光
する遮光領域4Aと、被検物6の皺などの欠陥部分D
(図1参照)で屈折または散乱した検査光が入射・受光
する受光領域4Bとを備えている。このため、この実施
形態の受光部4には、中央部の遮光領域4Aに、その検
査光αの縦(Z)方向の大きさよりも若干広い、或いは
多少の揺らぎの大きさをカバーできる程度の大きさ
(H)を有する遮光部材41を設けている。
The light receiving section 4 is emitted from the light source 1, passes through the first lens 11, the second lens 2 and the third lens 3 and is beam-formed into a line beam shape (or a slit beam shape). The inspection light transmitted through the inspection unit S (see FIG. 1) is incident and received. As shown in FIG. 3A, the inspection light transmitted through the normal portion of the inspection object 6 is incident and received. Light-shielding area 4A and defective portion D such as wrinkles of the inspection object 6
(See FIG. 1) and a light receiving region 4B on which the inspection light refracted or scattered is incident and received. Therefore, in the light receiving section 4 of this embodiment, the light shielding area 4A in the central portion is slightly wider than the size of the inspection light α in the vertical (Z) direction, or can cover a size of some fluctuation. A light blocking member 41 having a size (H) is provided.

【0023】そして、この受光部4では、ここに受光す
る入射光量(又は入射強度)の変化に応じた電圧レベル
(または電流値)の信号を出力することにより、被検物
6の欠陥部分Dを検出するように構成されている。この
実施形態の受光部4には、半導体光検出器、例えば適宜
の光電変化素子などが用いられているが、欠陥部分Dで
屈折したり散乱したりする検査光を受光させるため、受
光面のできるだけ大きいものが必要である。その点から
は受光部4として光電子倍増管でもよいが、この光電子
倍増管は高価で寿命も短いので、大面積のフォトダイオ
ード、例えば浜松ホトニクス社製のPINフォトダイオ
ード(S3584−08)などが好ましい。
Then, the light receiving section 4 outputs a signal of a voltage level (or current value) corresponding to a change in the amount of incident light (or incident intensity) received by the light receiving section 4, whereby the defective portion D of the test object 6 is output. Is configured to detect. A semiconductor photodetector, for example, an appropriate photoelectric conversion element or the like is used for the light receiving unit 4 of this embodiment, but in order to receive the inspection light that is refracted or scattered at the defect portion D, You need something as large as possible. From this point of view, a photomultiplier tube may be used as the light receiving section 4, but since this photomultiplier tube is expensive and has a short life, a large area photodiode, for example, a PIN photodiode (S3584-08) manufactured by Hamamatsu Photonics KK is preferable. .

【0024】従って、被検物6に例えば皺などの欠陥部
分Dが存在する場合には、その欠陥部分Dが被検査部S
に達した瞬間に、検査光であるライン状(又はスリット
状)のビームは屈折したり散乱して光路が変化し、図3
(B)に示すように、遮光部材41が設けられた遮光域
からはみ出して受光領域4Bに受光するわけである。な
お、この遮光部材41としては、検査光α1を吸収する
黒色テープや適宜の吸収膜などを用いることができる。
Therefore, when the inspection object 6 has a defective portion D such as wrinkles, the defective portion D is the inspection portion S.
At the moment of reaching, the line-shaped (or slit-shaped) beam that is the inspection light is refracted or scattered and the optical path is changed.
As shown in (B), the light-shielding member 41 protrudes from the light-shielding region to receive light in the light-receiving region 4B. As the light blocking member 41, a black tape that absorbs the inspection light α1 or an appropriate absorption film can be used.

【0025】信号処理部5は、受光部4から出力される
信号に基づき被検物6の欠陥部分を検出するものであ
り、この実施形態では、2値化回路51と、出力回路5
2とを備えている。2値化回路51は、受光部4からの
出力(受光)信号レベルが予め設定された電圧値(閾
値)以上になると欠陥部分があると判断するものであ
り、入力が受光部4の出力に接続されている。即ち、こ
れは、欠陥部分Dが存在すると、受光部4の遮光部材4
1からはみ出した受光領域4Bに検査光α1が入射・受
光するので、欠陥部分Dのない正常部分を透過した場合
に比べて受光部4の出力電圧レベルが上昇し、閾値を越
えるために欠陥部分Dがあると判断されるわけである。
The signal processing section 5 detects a defective portion of the test object 6 based on the signal output from the light receiving section 4. In this embodiment, the binarization circuit 51 and the output circuit 5 are used.
2 and. The binarization circuit 51 determines that there is a defective portion when the output (light receiving) signal level from the light receiving unit 4 becomes equal to or higher than a preset voltage value (threshold value), and the input is the output of the light receiving unit 4. It is connected. That is, when the defective portion D exists, this means that the light shielding member 4 of the light receiving portion 4 is
Since the inspection light α1 is incident on and received by the light receiving region 4B that extends out of the area 1, the output voltage level of the light receiving unit 4 rises as compared with the case where the normal portion without the defect portion D is transmitted, and the defect portion exceeds the threshold value. It is judged that there is D.

【0026】出力回路52は、2値化回路51によって
処理されて得られた情報を信号処理部5の外部に取り出
すためのものであり、必要に応じて、例えば被検物6の
全長に亙り欠陥部分Dの検査結果をプリンタで印字した
り、デスプレイに欠陥部分Dを連続的に表示できるよう
になっており、入力が2値化回路51の出力に接続され
ている。
The output circuit 52 is for taking out the information obtained by processing by the binarization circuit 51 to the outside of the signal processing unit 5, and if necessary, for example, over the entire length of the test object 6. The inspection result of the defective portion D can be printed by a printer or the defective portion D can be continuously displayed on the display, and the input is connected to the output of the binarizing circuit 51.

【0027】次に、この実施形態の作用について説明す
る。光源1から出射する検査光は、第1レンズ11によ
りX方向に広がるビームとなり、次に第2レンズ2で被
検物6の幅(X)方向に略平行で長さ(Z)方向を細く
絞ったライン状に波形成形される。さらに、第3レンズ
3では、被検物の幅(X)方向の拡がりが狭まる(この
実施形態では、被検物6の幅の半分)ように成形され、
先をすぼめたライン状ビームとなって被検物6及び受光
部4へ投光される。
Next, the operation of this embodiment will be described. The inspection light emitted from the light source 1 becomes a beam that spreads in the X direction by the first lens 11, and is then substantially parallel to the width (X) direction of the test object 6 and narrows in the length (Z) direction by the second lens 2. It is formed into a wavy line. Further, the third lens 3 is shaped so that the spread in the width (X) direction of the test object is narrowed (in this embodiment, half the width of the test object 6),
It becomes a linear beam with a narrowed tip and is projected onto the object 6 and the light receiving section 4.

【0028】一方、被検物6は、第3レンズ3と受光部
4との間の検査光α1の光路上を横切るような状態で
(検査光α1の波面に対して垂直方向に)連続的に移送
されており、この被検物6の検査(X−Z)面へ検査光
α1が常時投光されていく。このため、この実施形態で
は、走査機構を持たない構造でありながら、被検査部S
に相当する被検物6のごく細い領域を検査光で連続的に
走査できる。つまり、欠陥部分Dの精度高い検出を連続
して行うことができるわけである。
On the other hand, the object 6 is continuously (in the direction perpendicular to the wavefront of the inspection light α1) so as to cross the optical path of the inspection light α1 between the third lens 3 and the light receiving portion 4. The inspection light α1 is constantly projected onto the inspection (XZ) surface of the object 6 to be inspected. For this reason, in this embodiment, the structure to be inspected S
It is possible to continuously scan a very thin region of the object 6 to be inspected by the inspection light. That is, it is possible to continuously detect the defective portion D with high accuracy.

【0029】このように、検査光α1が投光される被検
査部Sで被検物6が正常部分である場合には、遮光部材
41からはみ出すことなく受光部4の遮光領域4Aへ入
射する。その結果、この遮光領域4Aへ入射・受光する
検査光α1は、受光量が少ないので、この受光部4から
の出力信号、つまり電圧レベルも低い。従って、信号処
理部5の2値化回路51では、受光部4から閾値以下の
電圧を入力することとなり、欠陥部分Dがないと判定さ
れて出力信号が出力回路52へ出力される。これによ
り、例えば出力回路52にプリンタを接続させてある場
合には、この部分では欠陥部分がないものとして検査デ
ータが印刷される。
As described above, when the inspection object α is the normal portion of the inspection object S to which the inspection light α1 is projected, the inspection light α1 is incident on the light shielding area 4A of the light receiving portion 4 without protruding from the light shielding member 41. . As a result, the inspection light α1 that enters and receives the light-shielding region 4A has a small amount of received light, and thus the output signal from the light-receiving unit 4, that is, the voltage level is also low. Therefore, in the binarization circuit 51 of the signal processing unit 5, a voltage equal to or lower than the threshold is input from the light receiving unit 4, it is determined that there is no defective portion D, and the output signal is output to the output circuit 52. Thus, for example, when a printer is connected to the output circuit 52, the inspection data is printed as if there is no defective portion in this portion.

【0030】一方、被検物6が欠陥部分Dを有している
場合には、被検査部Sにその欠陥部分Dが達すると、そ
の欠陥部分Dでは検査光α1が屈折若しくは散乱し、検
査光の進行する光路が変化する。このため、検査光α1
は、受光部4での受光位置が遮光部材41の設けられた
遮光領域4Aからずれ、受光部4の受光領域4Bに入射
・受光する。このため、受光部2での受光量は正常部分
での場合に比べて増大し、その分受光部4からの出力信
号、つまり電圧レベルなども高くなるわけである。従っ
て、2値化回路51では、閾値を上回る電圧を受光部4
から入力することとなり、欠陥部分Dがあると判定され
て出力信号が出力回路52へ出力される。これにより、
この部分には欠陥部分Dがあるとして検査データが印刷
される。
On the other hand, when the inspection object 6 has a defective portion D, when the defective portion D reaches the inspection portion S, the inspection light α1 is refracted or scattered at the defective portion D, and the inspection light α1 is inspected. The optical path through which light travels changes. Therefore, the inspection light α1
The light-receiving position of the light-receiving unit 4 is shifted from the light-shielding region 4A provided with the light-shielding member 41, and the light is received and received by the light-receiving region 4B of the light-receiving unit 4. For this reason, the amount of light received by the light receiving unit 2 is larger than that in the normal portion, and the output signal from the light receiving unit 4, that is, the voltage level and the like is correspondingly increased. Therefore, in the binarization circuit 51, a voltage exceeding the threshold is applied to the light receiving unit 4
Is input, and it is determined that there is a defective portion D, and an output signal is output to the output circuit 52. This allows
The inspection data is printed assuming that there is a defective portion D in this portion.

【0031】なお、この実施形態では、第3レンズ3に
よってライン状のビームの広がりを抑えるように収束さ
せているが、そのビーム投光幅(W)に比べて被検物6
の幅が狭い場合には、被検物6の全幅に亙って検査する
ように構成してもよい。逆に、そのビーム投光幅(W)
に比べて被検物6の幅が広い場合には、専ら欠陥部分が
頻発する領域のみに検査光を投光させてもよいし、同一
構成の検査装置を並列配置させることで、被検物6の全
幅での検査も可能である。
In this embodiment, the line-shaped beam is converged by the third lens 3 so as to suppress the spread of the line-shaped beam.
If the width is small, the inspection may be performed over the entire width of the inspection object 6. Conversely, the beam projection width (W)
When the width of the inspection object 6 is wider than that of the inspection object, the inspection light may be projected only to the region where the defective portion frequently occurs, or the inspection devices having the same configuration are arranged in parallel to each other. Inspection over the entire width of 6 is also possible.

【0032】従って、この実施形態によれば、被検物6
を製造ラインなどで連続的に移送させるように構成して
おり、被検物6への照射の際に専用の走査機構を特に必
要としないので、単純な構成で、しかも低コストで製造
することができるようになる。また、この実施形態によ
れば、受光部に撮像用のカメラのような複雑で高価な部
品を必要とせず、単なるフォトダイオードや受光センサ
などで構成が可能であるから、さらにコストの削減を図
ることができる。更に、この実施形態では、第2レンズ
3に遮光部材31を設けており、この第2レンズ3内部
での散乱によるゴースト光の生成を抑えることができる
ので、検出感度を向上させることができる。なお、この
発明の被検物としては、連続移送される長尺シート物を
用いているが、これ以外に例えば枚葉シート物(カット
シート)などでもよい。
Therefore, according to this embodiment, the test object 6
Is configured to be continuously transferred on a production line or the like, and a dedicated scanning mechanism is not particularly required when irradiating the object 6 to be inspected. Therefore, it is possible to manufacture with a simple configuration and at low cost. Will be able to. Further, according to this embodiment, the light receiving unit does not need a complicated and expensive component such as an image pickup camera, and can be configured by a simple photodiode, a light receiving sensor, or the like, so that the cost can be further reduced. be able to. Further, in this embodiment, since the light shielding member 31 is provided on the second lens 3 and the generation of ghost light due to the scattering inside the second lens 3 can be suppressed, the detection sensitivity can be improved. Although the long sheet material that is continuously transferred is used as the test object of the present invention, a sheet material (cut sheet) or the like may be used instead.

【0033】また、この実施形態の検査装置は、透明ま
たは反透明な被検物の欠陥部分を検出するように構成し
ているが、例えば表面部分に皺や擦り傷などの欠陥部分
を有する反射率の高いシート状などの被検物に対してそ
の欠陥部分を検出する検査装置としても適用可能であ
る。即ち、この場合には、光源及び第1ビーム成形手段
(必要に応じて、第2ビーム成形手段〜第3ビーム成形
手段)を、被検物の表面に対して検査光が一定の入射角
(例えばδ)で入射するように傾斜して配置する。一
方、光源からの検査光が被検物の正常部分で反射する場
合に、その反射点で正反射して戻る位置に受光領域が配
置されるように、受光部を、被検物の反射面側の空間
(先の実施形態とは異なり、光源側と同一空間)内で同
一角度(δ)に傾斜して配置すればよい。
Further, the inspection apparatus of this embodiment is configured to detect a defective portion of a transparent or anti-transparent test object. For example, the reflectance having a defective portion such as a wrinkle or a scratch on the surface portion. It is also applicable as an inspection device for detecting a defective portion of a high-sheet-like object to be inspected. That is, in this case, the light source and the first beam forming unit (the second beam forming unit to the third beam forming unit, if necessary) are used to cause the inspection light to enter the surface at a constant incident angle ( For example, it is arranged so as to be incident at δ). On the other hand, when the inspection light from the light source is reflected by the normal part of the test object, the light receiving part is arranged so that the light receiving area is arranged at the position where the light is specularly reflected at the reflection point and returns. It may be arranged so as to be inclined at the same angle (δ) in the space on the side (in the same space as the light source side unlike the previous embodiment).

【0034】[0034]

【発明の効果】以上説明してきたように、この発明で
は、被検物の長さ方向についての走査幅をライン(線)
状に細く狭めている一方、受光部も正常部分を透過した
そのライン状のビームが入射する領域をそのビームの幅
に合わせて遮光させており、被検物に対して欠陥の検出
を細かく行うことができるようになる。従って、複雑な
走査機構や高価なカメラなどを必要とせずに、換言すれ
ば、簡単な構造で、しかも低コストで欠陥部分の精度良
い検出を行うことができるので便宜である。
As described above, according to the present invention, the scanning width in the longitudinal direction of the test object is set to a line.
On the other hand, the light receiving part also shields the area where the linear beam that has passed through the normal part is incident according to the width of the beam, and finely detects defects in the test object. Will be able to. Therefore, it is convenient because it does not require a complicated scanning mechanism, an expensive camera, or the like, in other words, the defect structure can be accurately detected with a simple structure and at low cost.

【0035】また、この発明によれば、特に、検査光は
第3ビーム収束手段で被検物へ投光・照射するビームの
投光幅を狭めることができるように構成しており、検査
幅が比較的狭い被検物に対しては、これに合わせて狭め
た投光幅でビームを投光させることができるから、特に
検査幅が比較的狭い被検物に対して、合理的に欠陥部分
の検査を行うことができるようになる。
Further, according to the present invention, in particular, the inspection light is configured so that the projection width of the beam for projecting / irradiating the object by the third beam converging means can be narrowed, and the inspection width The beam can be projected with a narrower projection width for an object with a relatively narrower width, so it is reasonably defective, especially for an object with a relatively narrow inspection width. You will be able to inspect parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の被検物の検査装置の構成を示す斜視
図である。
FIG. 1 is a perspective view showing a configuration of an inspection device for a test object according to the present invention.

【図2】(A)はこの発明の被検物の検査装置における
第3レンズの要部を示す拡大光路図であり、(B)は遮
光部材を設けない場合の欠点を示す光路図である。
FIG. 2A is an enlarged optical path diagram showing a main part of a third lens in the inspection device for an object of the present invention, and FIG. 2B is an optical path diagram showing a defect in the case where a light shielding member is not provided. .

【図3】この発明の被検物の検査装置の受光部を示すも
のであり、(A)は被検物の正常面を照射したときの受
光状態を示す説明図、(B)は欠陥部分に照射したとき
の受光状態を示す説明図である。
3A and 3B show a light receiving portion of the inspection apparatus for an object to be inspected according to the present invention, FIG. 3A is an explanatory view showing a light receiving state when a normal surface of the object to be inspected is irradiated, and FIG. It is explanatory drawing which shows the light receiving state at the time of irradiating to.

【符号の説明】[Explanation of symbols]

1 光源 11 第1レンズ(シリンドリカルレンズ;第1ビー
ム成形手段) 2 第2レンズ(シリンドリカルレンズ;第2ビー
ム成形手段) 3 第3レンズ(シリンドリカルレンズ;第3ビー
ム成形手段) 31 遮光部材 4 受光部 4A 遮光領域 4B 受光領域 41 遮光部材 5 信号処理部 51 2値化回路 52 出力回路 α 検査光 θ 投光角度 D 欠陥部分 S 被検査部 W 投光幅 X 被検物の幅方向 Z 被検物の長さ方向(移送方向)
Reference Signs List 1 light source 11 first lens (cylindrical lens; first beam shaping means) 2 second lens (cylindrical lens; second beam shaping means) 3 third lens (cylindrical lens; third beam shaping means) 31 light blocking member 4 light receiving section 4A Light-shielding area 4B Light-receiving area 41 Light-shielding member 5 Signal processing unit 51 Binarization circuit 52 Output circuit α Inspection light θ Projection angle D Defective portion S Inspected portion W Projected width X Width direction of inspection object Z Inspection object Length direction (transfer direction)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被検物に向けて出射する光源からの検査
光を被検物の幅方向と直交する長さ方向が細いライン状
のビームに成形し、 このライン状に成形されたビームを検査光として被検物
に投光し、 前記被検物に入射する前記検査光のうち、前記被検物の
正常部分を透過若しくは正反射する検査光のみを遮光部
材で遮光された受光部の遮光領域に入射・受光させると
ともに、 前記被検物に入射する前記検査光のうち、前記被検物の
欠陥部分で屈折若しくは散乱する検査光のみを前記受光
部の遮光部材が設けられていない受光領域に入射・受光
させ、 前記受光部の受光領域に受光する前記検査光の光量又は
光強度に応じた出力信号から被検物の欠陥部分を検出す
ることを特徴とする被検物の検査方法。
1. An inspection light from a light source that is emitted toward an object to be inspected is shaped into a linear beam having a narrow length direction orthogonal to the width direction of the object to be inspected. Of the inspection light that is projected onto the inspection object as inspection light and is incident on the inspection object, only the inspection light that transmits or specularly reflects the normal portion of the inspection object is blocked by the light-shielding member. Of the inspection light incident on the object to be inspected and received, only the inspection light refracted or scattered at the defective portion of the object to be inspected is received without the light-shielding member of the light receiving section. A method for inspecting a test object, which is characterized by detecting a defective portion of the test object from an output signal according to a light amount or a light intensity of the test light received in the light receiving area of the light receiving unit. .
【請求項2】 前記被検物にライン状のビームを投光す
るのに先立ち、前記被検物の長さ方向と直交する幅方向
でのビームの投光領域が狭まるようにこのビームを収束
・調整することを特徴とする請求項1に記載の被検物の
検査方法。
2. Prior to projecting a linear beam onto the test object, the beam is converged so as to narrow the projecting area of the beam in the width direction orthogonal to the length direction of the test object. The method for inspecting an object according to claim 1, wherein the inspection is performed.
【請求項3】 被検物に向けて検査光を出射する光源
と、 この光源からの検査光を、被検物に投光する際に被検物
の幅方向と直交する長さ方向が細いライン状のビームに
成形する第1ビーム成形手段と、 前記被検物に入射する検査光のうち、前記被検物の正常
部分を透過若しくは正反射する検査光が入射・受光する
遮光部材で遮光された遮光領域と、前記被検物の欠陥部
分で屈折または散乱した検査光が入射・受光しこの入射
・受光する検査光の光量若しくは光強度に応じた信号を
出力する遮光領域を除いて設けた受光領域とを有する受
光部と、 この受光部からの出力信号を入力して前記被検物の欠陥
部分を検出する信号処理部とを備えたことを特徴とする
被検物の検査装置。
3. A light source for emitting inspection light toward an object to be inspected, and a length direction orthogonal to a width direction of the object to be inspected when the inspection light from the light source is projected onto the object to be inspected. The first beam shaping means for shaping into a linear beam, and the light shielding member for injecting and receiving the inspection light that is transmitted or specularly reflected from the normal portion of the inspection object among the inspection light incident on the inspection object Provided except the shaded area and the shaded area where the inspection light refracted or scattered at the defect portion of the test object enters and receives and outputs a signal according to the light amount or the light intensity of the incident and received inspection light. An inspection apparatus for an object to be inspected, comprising: a light receiving section having a light receiving area; and a signal processing section for inputting an output signal from the light receiving section to detect a defective portion of the object to be inspected.
【請求項4】 前記被検物の幅方向と直交する長さ方向
が細いライン状のビームに成形された前記検査光を、前
記被検物の長さ方向でのビームの投光領域が狭まるよう
に収束させる第2ビーム成形手段と、 前記被検物の長さ方向と直交する幅方向でのビームの投
光領域が狭まるように前記検査光を収束させる第3ビー
ム成形手段とを備えたことを特徴とする請求項3に記載
の被検物の検査装置。
4. The light projection area of the beam in the length direction of the test object is narrowed by the inspection light shaped into a linear beam having a narrow length direction orthogonal to the width direction of the test object. And a third beam shaping unit that converges the inspection light so that the beam projection area of the beam in the width direction orthogonal to the length direction of the object is narrowed. The inspection device for an object according to claim 3, wherein
【請求項5】 前記光源と少なくとも前記第1ビーム成
形手段とを、レーザダイオードとレンズとを一体に組合
わせたレーザダイオードモジュールで構成したことを特
徴とする請求項3に記載の被検物の検査装置。
5. The object to be inspected according to claim 3, wherein the light source and at least the first beam shaping unit are constituted by a laser diode module in which a laser diode and a lens are integrally combined. Inspection device.
【請求項6】 前記受光部は、半導体光検出器で構成し
たことを特徴とする請求項3に記載の被検物の検査装
置。
6. The inspection apparatus for an object to be inspected according to claim 3, wherein the light receiving section is composed of a semiconductor photodetector.
【請求項7】 前記第1ビーム成形手段、前記第2ビー
ム成形手段及び前記第3ビーム成形手段に、それぞれシ
リンドリカルレンズを用いるとともに、 前記第3ビーム成形手段のシリンドリカルレンズ両端部
に遮光部材を設けたことを特徴とする請求項3または4
に記載の被検物の検査装置。
7. A cylindrical lens is used for each of the first beam shaping unit, the second beam shaping unit and the third beam shaping unit, and a light blocking member is provided at both ends of the cylindrical lens of the third beam shaping unit. Claim 3 or 4 characterized by the above.
The inspection device for the inspection object according to 1.
JP2001275269A 2001-09-11 2001-09-11 Method and device for inspecting specimen Pending JP2003083902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275269A JP2003083902A (en) 2001-09-11 2001-09-11 Method and device for inspecting specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001275269A JP2003083902A (en) 2001-09-11 2001-09-11 Method and device for inspecting specimen

Publications (1)

Publication Number Publication Date
JP2003083902A true JP2003083902A (en) 2003-03-19

Family

ID=19100160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275269A Pending JP2003083902A (en) 2001-09-11 2001-09-11 Method and device for inspecting specimen

Country Status (1)

Country Link
JP (1) JP2003083902A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513742A (en) * 2004-09-17 2008-05-01 ディー.バイス サイエンティフィック インコーポレーテッド Optical inspection of planar media using direct image techniques.
JP2008536127A (en) * 2005-04-06 2008-09-04 コーニング インコーポレイテッド Glass inspection apparatus and method of use thereof
JP2009216623A (en) * 2008-03-12 2009-09-24 Futec Inc Defect inspection apparatus
JP2009270909A (en) * 2008-05-07 2009-11-19 Mitsutech Kk Device and method for inspection of sheet body
KR20190088919A (en) * 2018-01-19 2019-07-29 코그넥스코오포레이션 Forming a homogenized illumination line which can be imaged as a low-speckle line

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513742A (en) * 2004-09-17 2008-05-01 ディー.バイス サイエンティフィック インコーポレーテッド Optical inspection of planar media using direct image techniques.
JP2008536127A (en) * 2005-04-06 2008-09-04 コーニング インコーポレイテッド Glass inspection apparatus and method of use thereof
JP2009216623A (en) * 2008-03-12 2009-09-24 Futec Inc Defect inspection apparatus
JP4496257B2 (en) * 2008-03-12 2010-07-07 株式会社ヒューテック Defect inspection equipment
JP2009270909A (en) * 2008-05-07 2009-11-19 Mitsutech Kk Device and method for inspection of sheet body
KR20190088919A (en) * 2018-01-19 2019-07-29 코그넥스코오포레이션 Forming a homogenized illumination line which can be imaged as a low-speckle line
KR102246353B1 (en) 2018-01-19 2021-04-29 코그넥스코오포레이션 System for forming a homogenized illumination line which can be imaged as a low-speckle line
KR20210049067A (en) * 2018-01-19 2021-05-04 코그넥스코오포레이션 System for forming a homogenized illumination line which can be imaged as a low-speckle line
KR102426317B1 (en) 2018-01-19 2022-07-29 코그넥스코오포레이션 System for forming a homogenized illumination line which can be imaged as a low-speckle line
US11598973B2 (en) 2018-01-19 2023-03-07 Cognex Corporation Forming a homogenized illumination line which can be imaged as a low-speckle line

Similar Documents

Publication Publication Date Title
EP1049925B1 (en) Optical inspection method and apparatus
US7382457B2 (en) Illumination system for material inspection
JP5388543B2 (en) Appearance inspection device
US9885673B2 (en) Method and apparatus for detecting defect in transparent body
JP2001507803A (en) Lighting method and apparatus for machine vision of objects
JP5976750B2 (en) Transparent substrate surface pattern defect measuring device
JPH09257720A (en) Flaw inspecting method and apparatus therefor
JP2000505906A (en) Optical inspection apparatus and lithography apparatus provided with this inspection apparatus
JP2003083902A (en) Method and device for inspecting specimen
JP2008003650A (en) Pointing device
JP2006242814A (en) Surface inspection device
US20040252295A1 (en) Surface inspection method and surface inspection apparatus
JPH11304724A (en) Device and method for inspecting hole of light-transmission sheet
CA1269739A (en) Inspection apparatus including photodetection and scanning apparatus
US3370176A (en) Radiation-sensitive means for detecting flaws in radiation-transmissive materials
JP2677351B2 (en) 3D object external inspection system
KR20230021745A (en) Foreign material/defect inspection apparatus, image generating apparatus in foreign material/defect inspection, and foreign material/defect inspection method
CN115917299A (en) Foreign matter/defect inspection device, image generation device in foreign matter/defect inspection, and foreign matter/defect inspection method
JP2005043229A (en) Device for inspecting defect of transparent plate
JP3256383B2 (en) Surface inspection equipment
JP2001083098A (en) Optical surface inspection mechanism and device
US11415528B2 (en) Method and apparatus for automated in-line inspection of optically transparent materials
JPH11183151A (en) Transparent sheet inspecting equipment
JP6146717B2 (en) Inspection apparatus and inspection method
JPH05188004A (en) Foreign matter detecting device