JP3256383B2 - Surface inspection equipment - Google Patents

Surface inspection equipment

Info

Publication number
JP3256383B2
JP3256383B2 JP22779394A JP22779394A JP3256383B2 JP 3256383 B2 JP3256383 B2 JP 3256383B2 JP 22779394 A JP22779394 A JP 22779394A JP 22779394 A JP22779394 A JP 22779394A JP 3256383 B2 JP3256383 B2 JP 3256383B2
Authority
JP
Japan
Prior art keywords
light
inspection
path adjusting
optical path
adjusting lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22779394A
Other languages
Japanese (ja)
Other versions
JPH0894540A (en
Inventor
雅彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP22779394A priority Critical patent/JP3256383B2/en
Publication of JPH0894540A publication Critical patent/JPH0894540A/en
Application granted granted Critical
Publication of JP3256383B2 publication Critical patent/JP3256383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、スポット光を走査させ
て被検査体の表面に存在する欠陥を検出するための表面
検査装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection apparatus for detecting a defect existing on the surface of an inspection object by scanning a spot light.

【0002】[0002]

【従来の技術】連続走行するシート状物の表面に存在す
る欠陥を検出するために、一般にフライングスポット方
式の表面検査装置が用いられている。この表面検査装置
は、正常部分と欠陥部分とで光の反射性や透過性が異な
ることを利用したもので、被検査体の表面にレーザーに
よるスポット光を走査させ、その反射光もしくは透過光
を受光器により光電検出し、この検出出力に基づいて各
種欠陥の有無を評価するものである。この表面検査装置
は、検出した反射光や透過光の強度の変化から、異物の
付着や凹凸の存在等の表面形状の欠陥の他、表面色の濃
度や光沢の異常など様々な欠陥の有無を検査することが
できる(例えば特開昭59−220636号公報)。
2. Description of the Related Art Generally, a flying spot type surface inspection apparatus is used to detect a defect present on the surface of a continuously running sheet. This surface inspection device utilizes the difference in light reflectivity and transmittance between a normal part and a defective part, and scans the surface of an object to be inspected with a spot light by a laser, and reflects the reflected light or transmitted light. Photodetection is performed by a light receiver, and the presence or absence of various defects is evaluated based on the detection output. This surface inspection device detects the presence or absence of various defects such as surface color defects such as adhesion of foreign substances and the presence of irregularities, as well as abnormalities in surface color density and gloss, based on changes in the intensity of the detected reflected light and transmitted light. It can be inspected (for example, JP-A-59-220636).

【0003】この表面検査装置における反射光あるいは
透過光の受光方式には、被検査体の種類や検出しようと
する欠陥の種類に応じて様々な方式がある。プラスチッ
クフイルム等の透明体を検査対象とし、光を散乱させる
欠陥、例えば表面のキズや内部の気泡等を検出すること
を目的とする場合には、透過マスク受光方式を用いるの
が一般的である。この透過マスク受光方式は、被検査体
を正透過した検査光の光軸近傍の光束を遮光し、被検査
体の表面あるいは内部に存在する欠陥によって散乱した
光のみを受光器に入射させるものである。この受光方式
によれば、欠陥が存在する時にのみ受光器から信号が出
力されるので、この出力信号の有無によって即座に欠陥
の有無を識別することができるという利点がある。
There are various methods for receiving reflected light or transmitted light in this surface inspection apparatus, depending on the type of the object to be inspected and the type of defect to be detected. When a transparent object such as a plastic film is to be inspected and a defect that scatters light, such as a flaw on the surface or an air bubble inside, is to be detected, a transmission mask light receiving method is generally used. . In this transmission mask light receiving method, the light flux near the optical axis of the inspection light that has passed through the device under inspection is shielded, and only light scattered by a defect existing on the surface or inside of the device under inspection is incident on the light receiver. is there. According to this light receiving method, since a signal is output from the light receiver only when a defect exists, there is an advantage that the presence or absence of the defect can be immediately identified based on the presence or absence of the output signal.

【0004】検査光が散乱する角度は欠陥の種類や程度
によってまちまちで、例えば、被検査体の表面に存在す
るキズ欠陥は比較的小さな角度で光を散乱させ、内部に
存在する気泡欠陥は大きな角度で光を散乱させる。この
ため、被検査体に存在する欠陥を確実に検出するために
は、様々な角度に散乱した光を全て検出する必要があ
る。
The angle at which the inspection light is scattered varies depending on the type and degree of the defect. For example, a flaw defect existing on the surface of an object to be inspected scatters light at a relatively small angle, and a bubble defect existing inside is large. Scatters light at an angle. For this reason, it is necessary to detect all the light scattered at various angles in order to reliably detect the defect existing in the inspection object.

【0005】[0005]

【発明が解決しようとする課題】受光器の受光角を大き
くするためには、受光器の受光面を広げるか、あるいは
受光器を被検査体に近づけて配置することが考えられ
る。ところが、受光面を広げると受光器全体が大きくな
り、価格が高くなるばかりか、受光器の設置時の調節が
格段に難しくなってしまう。一方、受光器を被検査体に
近づけるためには、光軸近傍の光束を遮光するためのマ
スクの幅を狭くする必要があるが、検査光を走査させる
時の直線性のバラツキや、周囲温度の変化による受光器
の熱膨張等により、検査光の光軸とマスク位置とは誤差
を有するので、マスク幅は少なくとも検査光のスポット
径の数倍程度としておかざるをえない。このため、被検
査体と受光器との距離も自ずと制約され、受光角を充分
に広げるまで受光器を被検査体に近づけることはできな
い。
In order to increase the light receiving angle of the light receiver, it is conceivable to widen the light receiving surface of the light receiver or to arrange the light receiver close to the object to be inspected. However, if the light-receiving surface is widened, the entire light-receiving device becomes large and the price becomes high, and the adjustment at the time of installing the light-receiving device becomes extremely difficult. On the other hand, in order to bring the light receiver closer to the object to be inspected, it is necessary to narrow the width of the mask for shielding the light flux near the optical axis. However, the linearity when scanning the inspection light and the ambient temperature Since the optical axis of the inspection light and the mask position have an error due to the thermal expansion of the light receiver due to the change of the mask, the mask width must be at least several times the spot diameter of the inspection light. For this reason, the distance between the object and the light receiving device is naturally limited, and the light receiving device cannot be brought closer to the object until the light receiving angle is sufficiently widened.

【0006】上記の問題を解決するために、最近では、
複数の受光器を配置し、検査光の光軸に近い角度範囲内
に散乱した光と、大きな角度で散乱した光とを分けて検
出するようにした表面検査装置がある。ところが、この
表面検査装置では高価な受光器を多数用いるため、装置
全体の価格の上昇を招くばかりか、部材数が増加した分
だけ設置時の調節も難しくなってしまう。
In order to solve the above problem, recently,
There is a surface inspection apparatus in which a plurality of light receivers are arranged so that light scattered within an angle range close to the optical axis of inspection light and light scattered at a large angle are separately detected. However, since this surface inspection apparatus uses a large number of expensive light receivers, not only does the price of the entire apparatus increase, but also the adjustment at the time of installation becomes difficult due to the increase in the number of members.

【0007】本発明は上記の事情を考慮してなされたも
ので、低価格で、光の散乱性の異なる欠陥を同時に、か
つ確実に検出することができる表面検査装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a low-cost surface inspection apparatus capable of simultaneously and reliably detecting defects having different light scattering properties. I do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1ないし請求項3に記載の表面検査装置は、
検査光の光軸上で、かつ被検査体の検査部と受光器との
間に、検査光の走査方向に延びたシリンドリカルレンズ
からなり、検査光の光軸の近傍に検査光を直進して通過
させる光通過部が形成され、この光通過部外に入射した
光を受光器に向けて収束させる光路調節レンズを設ける
ものである。なお、光路調節レンズの光通過部は、中空
に形成しておくか、あるいは光の入射面及び射出面の両
面を平坦面に形成しておくのがよい。
In order to achieve the above object, a surface inspection apparatus according to any one of claims 1 to 3 is provided.
On the optical axis of the inspection light, and between the inspection part of the device to be inspected and the light receiver, a cylindrical lens extending in the scanning direction of the inspection light is provided, and the inspection light travels straight near the optical axis of the inspection light. An optical path adjusting lens is provided, which has a light transmitting portion for passing the light, and converges light incident outside the light transmitting portion toward the light receiver. It is preferable that the light passing portion of the optical path adjusting lens is formed in a hollow shape, or both the light incident surface and the light emitting surface are formed as flat surfaces.

【0009】また、請求項4に記載の表面検査装置は、
光路調節レンズを受光器の前面側に一体的に連設するも
のである。
Further, the surface inspection apparatus according to claim 4 is
The optical path adjusting lens is integrally connected to the front side of the light receiver.

【0010】さらに、請求項5に記載の表面検査装置
は、光路調節レンズの光通過部の幅をW1 、受光器の受
光幅をW2 、検査部から光路調節レンズまでの距離をL
1 、検査部から受光器までの距離をL2 としたとき、 W1 = W2 (L1 /L2 ) の条件式を満たすようにするものである。
Further, in the surface inspection apparatus according to the present invention, the width of the light passing portion of the optical path adjusting lens is W 1 , the light receiving width of the light receiver is W 2 , and the distance from the inspection section to the optical path adjusting lens is L.
1, and the distance from the inspection unit to the light receiver and the L 2, is intended to satisfy the condition of W 1 = W 2 (L 1 / L 2).

【0011】[0011]

【実施例】図1は、本発明の表面検査装置の基本構造を
概略的に表したものである。表面検査装置10は、投光
器11,受光器12,光路調節レンズ13,光センサ1
4,及び信号処理回路15により構成されている。被検
査物であるシート状のフイルム17は、投光器11と受
光器12との間を図中矢印方向に一定速度で走行され
る。
FIG. 1 schematically shows the basic structure of a surface inspection apparatus according to the present invention. The surface inspection device 10 includes a light emitter 11, a light receiver 12, an optical path adjusting lens 13, and an optical sensor 1.
4 and a signal processing circuit 15. A sheet-like film 17 to be inspected runs between the light projector 11 and the light receiver 12 at a constant speed in the direction of the arrow in the figure.

【0012】投光器11は、レーザー発振器20,レン
ズ群21,回転多面鏡22,及び光路折り曲げ用の2枚
のミラー23,24により構成されている。レーザー発
振器20から放射されたレーザー光20aは、ミラー2
3を介してレンズ群21に入射し、そのスポット径が調
節された後に、ミラー24を介して高速回転する回転多
面鏡22に入射する。そして、このレーザー光20a
は、回転多面鏡22の回転によってフイルム17の走行
方向と略直交してフイルム17上を幅方向に高速走査す
る検査光25となる。この検査光25は、フイルム17
の検査部17aに向けて投光器11から放出され、検査
部17aを透過した後に、光路調節レンズ13を経て走
査方向に延びた受光器12に入射する。
The projector 11 comprises a laser oscillator 20, a lens group 21, a rotating polygon mirror 22, and two mirrors 23 and 24 for bending the optical path. The laser beam 20a emitted from the laser oscillator 20 is
The light enters the lens group 21 via the lens 3, and after its spot diameter is adjusted, enters the rotating polygon mirror 22 rotating at a high speed via the mirror 24. And this laser beam 20a
Is inspection light 25 that scans the film 17 in the width direction at a high speed substantially orthogonal to the running direction of the film 17 by the rotation of the rotating polygon mirror 22. This inspection light 25 is applied to the film 17.
The light is emitted from the light projecting unit 11 toward the inspection unit 17a, passes through the inspection unit 17a, and then enters the light receiver 12 extending in the scanning direction via the optical path adjusting lens 13.

【0013】図2に示すように、受光器12は検査光2
5の光軸25a上に配置され、その受光レンズ12aの
中央部には、検査光25の光軸25a近傍の光束を遮光
するためのマスク26が設けられている。この受光器1
2は、フイルム17の検査部17aを透過して受光レン
ズ12aに入射した検査光25を光電検出し、その強度
に比例した光電変換信号を信号処理回路15に送出す
る。
As shown in FIG.
5, a mask 26 is provided at the center of the light receiving lens 12a for blocking the light flux of the inspection light 25 near the optical axis 25a. This light receiver 1
2 photoelectrically detects the inspection light 25 transmitted through the inspection unit 17a of the film 17 and incident on the light receiving lens 12a, and sends out a photoelectric conversion signal proportional to the intensity to the signal processing circuit 15.

【0014】光路調節レンズ13は、走査方向に延びた
シリンドリカルレンズからなり、検査光25の光軸25
a上で、かつ検査部17aと受光器12との間に配置さ
れている。光路調節レンズ13の中央部には、中空の光
通過部13aが形成されている。この光通過部13aの
幅W1 は、検査部17aから光路調節レンズ13までの
距離をL1 、検査部17aから受光器12までの距離を
2 、受光器12の受光窓12bの幅をW2 としたとき
に、関係式 W1 = W2 ( L1 /L2 ) を満たすように設定される。したがって、光通過部13
aは、検査部17aを透過した検査光25のうち受光器
12の受光角θ2 の範囲内に散乱した光をまっすぐに通
過させる大きさに形成される。また光路調節レンズ13
のレンズ面13bは、全体的にフイルム17側の入射面
が凸面、受光器12側の射出面が平坦面となるように形
成され、入射した光を検査光25の光軸25aと略平行
な向きに屈折させ、受光器12の受光レンズ12a部に
向けて収束する。
The optical path adjusting lens 13 is composed of a cylindrical lens extending in the scanning direction.
a, and between the inspection unit 17a and the light receiver 12. At the center of the optical path adjusting lens 13, a hollow light passing portion 13a is formed. The width W 1 of the light passing portion 13 a is L 1 , the distance from the inspection portion 17 a to the optical path adjusting lens 13, the distance L 2 from the inspection portion 17 a to the light receiver 12, and the width of the light receiving window 12 b of the light receiver 12. When W 2 is set, it is set so as to satisfy the relational expression W 1 = W 2 (L 1 / L 2 ). Therefore, the light passing portion 13
a has a size to pass straight through the light scattered within the acceptance angle theta 2 of the light receiver 12 of the inspection light 25 transmitted through the inspection section 17a. Also, the optical path adjusting lens 13
The lens surface 13b is formed such that the entire incident surface on the film 17 side is convex and the exit surface on the light receiver 12 side is flat, and the incident light is substantially parallel to the optical axis 25a of the inspection light 25. The light is refracted in the direction and converges toward the light receiving lens 12a of the light receiver 12.

【0015】ここで、図3に示すように、光路調節レン
ズ13は、検査部17aに近づくほど、すなわち距離L
1 が短くなるほど、その受光角θ1 が大きくなる。光路
調節レンズ13の受光角θ1 は可能な限り大きくするの
が好ましいので、光路調節レンズ13を検査部17aに
近づけて配置するようにし、この時の距離L1 と検査部
17aから受光器12までの距離L2 との比、及び受光
窓12bの幅W2 の値に基づいて、光通過部13aの幅
1 を決定すればよい。なお本実施例では、受光器12
の検査部17aからの距離L2 及び受光窓12bの幅W
2 を、それぞれ従来の表面検査装置と同じく600mm
及び30mmとし、光路調節レンズ13の検査部17a
からの距離L1 を100mm、光通過部13aの幅W1
を5mmに設定した。また、光路調節レンズ13の全体
の幅を受光窓12bの幅W2 とほぼ同幅にした。これに
より、光路調節レンズ13の受光角θ1 は、受光器12
の受光角θ2 の「6倍」となる。
Here, as shown in FIG. 3, the closer the optical path adjusting lens 13 is to the inspection unit 17a, that is, the distance L
About 1 becomes shorter, the acceptance angle θ 1 increases. Since it is preferable that the light receiving angle θ 1 of the optical path adjusting lens 13 is as large as possible, the optical path adjusting lens 13 is arranged close to the inspection unit 17a, and the distance L 1 at this time and the inspection unit 17 the ratio of the distance L 2 to, and based on the value of the width W 2 of the light receiving window 12b, may be determined width W 1 of the light passing portion 13a. In this embodiment, the light receiver 12
Width W of the distance L 2 and the light receiving window 12b from the test portion 17a of the
2 is 600mm each as with the conventional surface inspection device
And the inspection unit 17a of the optical path adjusting lens 13
Width W 1 of the distance L 1 100 mm, the light passing portion 13a from
Was set to 5 mm. In addition, the entire width of the light path adjusting lens 13 in substantially the same width as the width W 2 of the light receiving window 12b. Thus, the light receiving angle θ 1 of the optical path adjusting lens 13 is
Is “6 times” the light receiving angle θ 2 of

【0016】光センサ14は、検査光25によるフイル
ム17上の走査領域Xから走査上流側に外れた位置に設
けられており、検査光25を受光した瞬間にパルス状の
受光信号を発生して信号処理回路15に送出する。
The optical sensor 14 is provided at a position deviated from the scanning area X on the film 17 by the inspection light 25 to the scanning upstream side, and generates a pulse-like light receiving signal at the moment when the inspection light 25 is received. The signal is sent to the signal processing circuit 15.

【0017】図4は、信号処理回路15の構成を概略的
に示すものである。信号処理回路15は、検査幅設定回
路31,フィルター回路32,二値化回路33,および
アンド回路34により構成されている。光センサ14の
受光信号S1は、検査幅設定回路31に入力される。検
査幅設定回路31は、受光信号S1が入力されてから時
間Ta が経過した時にローレベルからハイレベルにな
り、時間Tb が経過した時に再びローレベルに戻る検査
幅信号S2をアンド回路34に出力する。なお、時間T
a ,Tb は、走査スピードとフイルム17の幅寸法に応
じて予め設定されており、時間Ta は検査光25が光セ
ンサ14を通過してから検査部17a上の検査開始位置
に達するまでの時間、時間Tb は光センサ14を通過し
てから検査部17a上の検査終了位置に達するまでの時
間に設定されている。
FIG. 4 schematically shows the structure of the signal processing circuit 15. The signal processing circuit 15 includes an inspection width setting circuit 31, a filter circuit 32, a binarization circuit 33, and an AND circuit 34. The light receiving signal S1 of the optical sensor 14 is input to the inspection width setting circuit 31. The inspection width setting circuit 31 converts the inspection width signal S2 from a low level to a high level when the time Ta has elapsed since the input of the light receiving signal S1 and returns to a low level again after the time Tb has elapsed, and an AND circuit 34. Output to Note that time T
a, T b is preset in accordance with the width dimension of the scanning speed and the film 17, until the time T a reach inspection start position on the inspection portion 17a from the inspection light 25 passes through the optical sensor 14 time, time T b is set to a time from when passing through the optical sensor 14 to reach the inspection end position on the test section 17a.

【0018】受光器12からの光電変換信号S3は、フ
ィルター回路32に入力される。フィルター回路32
は、光電変換信号S3に含まれている低周波及び高周波
のノイズ成分を除去し、その出力信号S4を二値化回路
33に送出する。二値化回路33は、フィルター回路3
2からの出力信号S4の信号レベルが予め設定されてい
るしきい値LTHLD以上になった時にハイレベルとなる光
量増加信号S5を発生させてアンド回路34に送出す
る。アンド回路34は、検査幅設定回路31からの検査
幅信号S2がハイレベルとなっている間に二値化回路3
3から光量増加信号S5を入力すると、このタイミング
で欠陥信号S6を送出する。
The photoelectric conversion signal S3 from the light receiver 12 is input to a filter circuit 32. Filter circuit 32
Removes the low-frequency and high-frequency noise components contained in the photoelectric conversion signal S3 and sends the output signal S4 to the binarization circuit 33. The binarization circuit 33 includes the filter circuit 3
When the signal level of the output signal S4 from the second unit 2 exceeds a preset threshold value L THLD , a light quantity increase signal S5 which becomes a high level is generated and sent to the AND circuit 34. The AND circuit 34 performs the binarization circuit 3 while the inspection width signal S2 from the inspection width setting circuit 31 is at the high level.
When the light amount increase signal S5 is input from No. 3, a defect signal S6 is transmitted at this timing.

【0019】次に、表面検査装置10の各出力信号の概
略波形を表す図5を参照し、本実施例の作用について説
明する。フイルム17が一定速度で走行され、同時に投
光器11から検査光25の照射が開始される。検査光2
5が光センサ14を通過すると、このセンサ14がパル
ス状の受光信号S1を発生し、検査幅設定回路31に送
出する。検査幅設定回路31は、受光信号S1が入力さ
れてから時間Ta が経過し、検査光25がフイルム17
の検査開始位置に達した時に、その信号レベルをローレ
ベルからハイレベルに変化させる。また時間Tb が経過
し、検査光25がフイルム17の検査終了位置に達した
時に、検査幅設定回路31は、信号レベルを再びローレ
ベルに戻す。したがって、この検査幅設定回路31から
出力される検査幅信号S2は、検査光25がフイルム1
7の検査部17a上を走査している間だけハイレベルと
なっている。
Next, the operation of the present embodiment will be described with reference to FIG. 5 showing a schematic waveform of each output signal of the surface inspection apparatus 10. The film 17 runs at a constant speed, and at the same time, the irradiation of the inspection light 25 from the light projector 11 is started. Inspection light 2
When 5 passes through the optical sensor 14, the sensor 14 generates a pulsed light receiving signal S 1 and sends it to the inspection width setting circuit 31. The inspection width setting circuit 31 outputs the inspection light 25 to the film 17 after a lapse of time Ta since the light receiving signal S1 is input.
, The signal level is changed from low level to high level. When the time Tb has elapsed and the inspection light 25 has reached the inspection end position of the film 17, the inspection width setting circuit 31 returns the signal level to the low level again. Therefore, the inspection width signal S2 output from the inspection width setting circuit 31 is such that the inspection light 25 is
7 is at a high level only during scanning on the inspection section 17a.

【0020】フイルム17の検査部17aを透過した検
査光25は、光路調節レンズ13を経て受光器12に入
射する。受光器12は検査光25を光電検出し、その強
度に比例した光電変換信号S3を出力する。この際、検
査部17a上に欠陥が存在しない時には、検査部17a
を透過した検査光25の全光束が光路調節レンズ13の
中央部に形成された光通過部13aを通過してまっすぐ
マスク26上に入射するので、受光器12の光電変換信
号S3はローレベルのままとなる。ただし、フイルム1
7の端部では、一般に光を散乱させることが多いので、
この散乱光が受光窓12b内に入射して光電変換信号S
3の信号レベルが増加する。
The inspection light 25 transmitted through the inspection unit 17 a of the film 17 enters the light receiver 12 via the optical path adjusting lens 13. The light receiver 12 photoelectrically detects the inspection light 25 and outputs a photoelectric conversion signal S3 proportional to the intensity of the inspection light 25. At this time, when no defect exists on the inspection unit 17a, the inspection unit 17a
Of the inspection light 25 that has passed through the optical path adjusting lens 13 passes through the light passing portion 13a formed in the center of the optical path adjusting lens 13 and directly enters the mask 26. Therefore, the photoelectric conversion signal S3 of the light receiver 12 has a low level. Will remain. However, film 1
At the end of 7, light is generally scattered, so
This scattered light enters the light receiving window 12b, and the photoelectric conversion signal S
3, the signal level increases.

【0021】一方、検査部17a上に欠陥が存在する場
合には、検査光25は検査部17aから様々な角度に散
乱透過する。そして、受光器12の受光角θ2 の範囲内
に散乱した光は、光路調節レンズ13の光通過部13a
を通過して受光器12の受光レンズ12aに入射する。
この際、光通過部13aが中空に形成されているので、
光通過部13aに入射した光は受光レンズ12aに向け
てまっすぐ通過し、光軸25aの近傍に微小角で散乱し
た光が再び光軸25a方向に屈折されてマスク26上に
入射することはない。
On the other hand, when a defect exists on the inspection unit 17a, the inspection light 25 is scattered and transmitted from the inspection unit 17a at various angles. The light scattered within the range of the light receiving angle θ 2 of the light receiver 12 is transmitted to the light passage portion 13 a of the optical path adjusting lens 13.
, And enters the light receiving lens 12a of the light receiver 12.
At this time, since the light passage portion 13a is formed hollow,
The light incident on the light passing portion 13a passes straight toward the light receiving lens 12a, and the light scattered at a small angle near the optical axis 25a is refracted in the direction of the optical axis 25a again and does not enter the mask 26. .

【0022】また、受光器12の受光角θ2 の範囲外に
散乱した光は、光路調節レンズ13のレンズ面13bに
入射し、その光路が屈折されて受光レンズ12aに収束
される。この際、光路調節レンズ13の受光角θ1 が、
受光器12の受光角θ2 の約6倍の角度に設定されてい
るので、検査部17aで散乱した光のほとんどをレンズ
面13bに入射させて受光レンズ12aに収束させるこ
とができる。これによって、受光器12の光電変換信号
S3には、欠陥と対応した位置に、確実に信号レベルが
増加した異常信号SE が発生する
The light scattered out of the range of the light receiving angle θ 2 of the light receiver 12 is incident on the lens surface 13b of the optical path adjusting lens 13, and its light path is refracted and converged on the light receiving lens 12a. At this time, the light receiving angle θ 1 of the optical path adjusting lens 13 is
Since the angle is set to approximately six times the light receiving angle θ 2 of the light receiver 12, most of the light scattered by the inspection unit 17a can be made incident on the lens surface 13b and converged on the light receiving lens 12a. Thus, the photoelectric conversion signal S3 of the light receiver 12, a position corresponding to the defect, reliably signal level is abnormal signal S E is generated increases.

【0023】受光器12の光電変換信号S3は、フィル
ター回路32で低周波及び高周波のノイズ成分が除去さ
れた後に二値化回路33に送られる。二値化回路33
は、フィルター回路32からの出力信号S4の信号レベ
ルが予め設定されているしきい値LTHLD以上になった時
に、光量増加信号S5を発生させてアンド回路34に送
出する。この際、フィルター回路32からの出力信号S
4の信号レベルが、異常信号SE の発生位置とフイルム
17の端部位置とで上昇するので、二値化回路33から
は、異常信号SE の発生位置とフイルム端部位置とで光
量増加信号S5が発生される。アンド回路34は、検査
幅信号S2がハイレベルとなっている間に二値化回路3
3から光量増加信号S5を入力した時に、欠陥信号S6
を送出する。したがって、異常信号SE に対応した位置
でのみ欠陥信号S6が発生される。そして、欠陥信号S
6がCPU(図示せず)に送られると、CPUは、例え
ば表示パネル(図示せず)に「欠陥あり」を表示する。
The photoelectric conversion signal S3 of the light receiver 12 is sent to a binarization circuit 33 after low-frequency and high-frequency noise components are removed by a filter circuit 32. Binarization circuit 33
When the signal level of the output signal S4 from the filter circuit 32 becomes equal to or greater than a preset threshold value L THLD , a light amount increase signal S5 is generated and sent to the AND circuit 34. At this time, the output signal S from the filter circuit 32
4 rises at the position where the abnormal signal SE is generated and at the end of the film 17, the binarization circuit 33 increases the light amount at the position where the abnormal signal SE is generated and at the end of the film. A signal S5 is generated. The AND circuit 34 performs the binarization circuit 3 while the inspection width signal S2 is at the high level.
3, when the light amount increase signal S5 is input, the defect signal S6
Is sent. Accordingly, the abnormality signal only defect signal S6 at the position corresponding to the S E is generated. Then, the defect signal S
When 6 is sent to a CPU (not shown), the CPU displays "defective" on, for example, a display panel (not shown).

【0024】なお、上記実施例では、光路調節レンズの
光通過部を中空にした例について説明したが、光通過部
は、入射光をまっすぐに通過させればよいので、図6に
示した光路調節レンズ40のように、光通過部41の入
射面41a及び射出面41bの両面を平坦面となるよう
に形成してもよい。この実施例によれば、既存のシリン
ドリカルレンズの凸面の中央部を平坦に減摩することで
容易に製作することができる。
In the above embodiment, an example was described in which the light-passing portion of the optical-path adjusting lens was hollow, but the light-passing portion only has to pass incident light straight. Like the adjusting lens 40, both the entrance surface 41a and the exit surface 41b of the light passing portion 41 may be formed to be flat surfaces. According to this embodiment, it is possible to easily manufacture the existing cylindrical lens by flattening the central part of the convex surface of the cylindrical lens.

【0025】また、上記実施例では光路調節レンズと受
光器とを個別に設けているが、図7に示すように、例え
ば収納筒45によって光路調節レンズ46と受光器47
とを同軸となるように一体化してもよい。この実施例に
よれば部材数が減少するので、その取り扱いが簡便にな
るとともに、設置時にはフイルム48と光路調節レンズ
46との距離を調節するだけでよい。
In the above embodiment, the optical path adjusting lens and the light receiver are separately provided. However, as shown in FIG.
May be integrated so as to be coaxial. According to this embodiment, since the number of members is reduced, the handling is simplified, and at the time of installation, only the distance between the film 48 and the optical path adjusting lens 46 needs to be adjusted.

【0026】また上記実施例では、検査部を透過した光
を光電検出する透過方式の表面検査装置に本発明を用い
た例について説明したが、本発明は、検査部で反射した
光を検出する反射方式の表面検査装置にも、もちろん適
用することができる。
In the above embodiment, an example was described in which the present invention was applied to a transmission type surface inspection apparatus for photoelectrically detecting light transmitted through an inspection section. However, the present invention detects light reflected by the inspection section. Of course, the present invention can also be applied to a reflection type surface inspection apparatus.

【0027】[0027]

【発明の効果】以上のように、本発明の表面検査装置に
よれば、検査部と受光器との間に、入射光を受光器に向
けて収束させる光路調節レンズを設けるので、受光器の
受光角が大幅に広がり、様々な散乱角をもつ欠陥の検出
に対応することができるようになる。しかも、ただ1つ
の受光器を備えるだけなので、部材数の増加を抑え、装
置全体の低価格化を図ることができる。また、光路調節
レンズの中央部に光を直進して通過させる光通過部を形
成し、受光器の受光範囲内に散乱した光はまっすぐに受
光器に入射させるので、検査光の光軸の近傍に微小角で
散乱した光を再び光軸方向に屈折させて欠陥の検出モレ
を生じることが防止される。また、光路調節レンズを検
査部と受光器との間に配置するだけで広い角度範囲に散
乱した光を受光器に収束することができるから、従来の
表面検査装置と組み合わせて簡単に検出力の向上を図る
ことができる。
As described above, according to the surface inspection apparatus of the present invention, an optical path adjusting lens for converging incident light toward the light receiver is provided between the inspection unit and the light receiver. The light receiving angle is greatly expanded, and it becomes possible to cope with the detection of defects having various scattering angles. Moreover, since only one light receiver is provided, an increase in the number of members can be suppressed, and the cost of the entire apparatus can be reduced. In addition, a light passing portion is formed at the center of the optical path adjusting lens to allow light to travel straight and pass therethrough, and light scattered within the light receiving range of the light receiving device is directly incident on the light receiving device. The light scattered at a very small angle is refracted again in the optical axis direction, thereby preventing a defect from being detected. In addition, simply arranging the optical path adjusting lens between the inspection unit and the light receiver allows the light scattered over a wide angle range to converge on the light receiver. Improvement can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表面検査装置を示す概略図である。FIG. 1 is a schematic view showing a surface inspection apparatus of the present invention.

【図2】光路調節レンズ及び受光器と検査光との位置関
係を示す説明図である。
FIG. 2 is an explanatory diagram showing a positional relationship between an optical path adjusting lens, a light receiver, and inspection light.

【図3】光路調節レンズの検査部からの距離と受光角と
の関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a distance from an inspection unit of the optical path adjusting lens and a light receiving angle.

【図4】信号処理回路の構成を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration of a signal processing circuit.

【図5】図4に表した信号処理回路の各部における信号
波形の概略を示すチャート図である。
5 is a chart showing an outline of a signal waveform in each section of the signal processing circuit shown in FIG. 4;

【図6】光路調節レンズの別の構成例を示す概略図であ
る。
FIG. 6 is a schematic diagram showing another configuration example of the optical path adjusting lens.

【図7】光路調節レンズの別の配置例を示す概略図であ
る。
FIG. 7 is a schematic diagram showing another example of the arrangement of the optical path adjusting lens.

【符号の説明】[Explanation of symbols]

10 表面検査装置 11 投光器 12,47 受光器 13,40,46 光路調節レンズ 13a,41 光通過部 15 信号処理回路 17 フイルム 17a 検査部 25 検査光 25a 光軸 26 マスク REFERENCE SIGNS LIST 10 surface inspection device 11 light emitter 12, 47 light receiver 13, 40, 46 optical path adjusting lens 13 a, 41 light passing unit 15 signal processing circuit 17 film 17 a inspection unit 25 inspection light 25 a optical axis 26 mask

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/84 - 21/958 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 21/84-21/958

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続走行する透明な被検査体に検査光を
照射し、この検査光を被検査体の走行方向に対して交叉
する方向に走査させるとともに、被検査体の背面側に検
査光の走査方向に沿って配置され、被検査体を正透過し
てきた検査光の入射を阻止された受光器で、被検査体の
検査部からの散乱透過光を光電検出して欠陥の有無を識
別する表面検査装置において、 前記検査光の光軸上で、かつ前記検査部と受光器との間
に、検査光の走査方向に延びたシリンドリカルレンズか
らなり、検査光の光軸の近傍に検査光を直進して通過さ
せる光通過部が形成されているとともに、この光通過部
外に入射した光を受光器に向けて収束させる光路調節レ
ンズを設けたことを特徴とする表面検査装置。
An inspection light is applied to a continuously running transparent inspection object, and the inspection light is scanned in a direction crossing the traveling direction of the inspection object. The detector is arranged along the scanning direction of, and the incidence of inspection light that has transmitted specularly through the device under inspection is blocked. By photoelectrically detecting the scattered transmitted light from the inspection section of the device under inspection, the presence or absence of a defect is identified. A surface inspection apparatus, comprising: a cylindrical lens extending in the scanning direction of the inspection light on the optical axis of the inspection light and between the inspection unit and the light receiver; A surface inspection apparatus, wherein a light passage portion is formed for allowing the light to pass straight through and a light path adjusting lens for converging light incident outside the light passage portion toward the light receiver is provided.
【請求項2】 前記光路調節レンズの光通過部は、中空
に形成されていることを特徴とする請求項1記載の表面
検査装置。
2. The surface inspection apparatus according to claim 1, wherein the light passage portion of the optical path adjusting lens is formed in a hollow.
【請求項3】 前記光路調節レンズの光通過部は、その
入射面及び射出面の両面が平坦面であることを特徴とす
る請求項1記載の表面検査装置。
3. The surface inspection apparatus according to claim 1, wherein the light passing portion of the optical path adjusting lens has flat surfaces on both the entrance surface and the exit surface.
【請求項4】 前記光路調節レンズは、前記受光器の前
面側に一体的に連結されていることを特徴とする請求項
2又は請求項3記載の表面検査装置。
4. The surface inspection apparatus according to claim 2, wherein the optical path adjusting lens is integrally connected to a front side of the light receiver.
【請求項5】 前記光路調節レンズの光通過部の幅をW
1 、前記受光器の受光幅をW2 、検査部から光路調節レ
ンズまでの距離をL1 、検査部から受光器までの距離を
2 としたとき、 W1 = W2 (L1 /L2 ) なる条件を満足することを特徴とする請求項2ないし請
求項4記載の表面検査装置。
5. The width of a light passing portion of the optical path adjusting lens is W
1 , when the light receiving width of the light receiver is W 2 , the distance from the inspection unit to the optical path adjusting lens is L 1 , and the distance from the inspection unit to the light receiver is L 2 , W 1 = W 2 (L 1 / L 2 ) The surface inspection apparatus according to claim 2, wherein the following condition is satisfied.
JP22779394A 1994-09-22 1994-09-22 Surface inspection equipment Expired - Fee Related JP3256383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22779394A JP3256383B2 (en) 1994-09-22 1994-09-22 Surface inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22779394A JP3256383B2 (en) 1994-09-22 1994-09-22 Surface inspection equipment

Publications (2)

Publication Number Publication Date
JPH0894540A JPH0894540A (en) 1996-04-12
JP3256383B2 true JP3256383B2 (en) 2002-02-12

Family

ID=16866482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22779394A Expired - Fee Related JP3256383B2 (en) 1994-09-22 1994-09-22 Surface inspection equipment

Country Status (1)

Country Link
JP (1) JP3256383B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4038364A1 (en) * 2019-09-30 2022-08-10 Sony Group Corporation Microchip for bioparticle analysis, bioparticle analyzer, microchip for microparticle analysis, and microparticle analyzer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215886A (en) * 2007-02-28 2008-09-18 Univ Of Fukui Surface displacement measuring system and surface displacement measuring method
JP2008292171A (en) * 2007-05-22 2008-12-04 Toray Ind Inc Device and method for inspecting surface, and method for inspecting polymer film surface
JP5399002B2 (en) * 2008-05-07 2014-01-29 ミツテック株式会社 Sheet body inspection apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4038364A1 (en) * 2019-09-30 2022-08-10 Sony Group Corporation Microchip for bioparticle analysis, bioparticle analyzer, microchip for microparticle analysis, and microparticle analyzer

Also Published As

Publication number Publication date
JPH0894540A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
JP3036733B2 (en) Defect detection device for transparent objects
US4737650A (en) Inspection apparatus
JPH0820371B2 (en) Defect inspection device and defect inspection method
US4522497A (en) Web scanning apparatus
JP3256383B2 (en) Surface inspection equipment
US5724140A (en) Method and apparatus for determining the quality of flat glass sheet
US5157266A (en) Method and device for testing transparent sheets
JP3380321B2 (en) Surface inspection equipment
JPH03150451A (en) Sheet inspection method and apparatus
JP3280742B2 (en) Defect inspection equipment for glass substrates
JP2503919B2 (en) Foreign matter inspection device
JP2003083902A (en) Method and device for inspecting specimen
JP3490792B2 (en) Surface inspection equipment
JPH0894532A (en) Surface inspection device
JPS59220635A (en) Detection of defect for sheet-shaped product
EP0606849A2 (en) Surface inspecting apparatus
JP3174615B2 (en) Projection optical system in defect inspection equipment
JP3406951B2 (en) Surface condition inspection device
JP2594969B2 (en) Defect detection device
JPH03226661A (en) Flaw detector
JP2003240726A (en) Defect detector for sheet
JPS6315143A (en) Method for detecting flaw of planar body
JPH05215690A (en) Foreign matter inspection device
JPS5918656B2 (en) Surface inspection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees