JP3036733B2 - Defect detection device for transparent objects - Google Patents

Defect detection device for transparent objects

Info

Publication number
JP3036733B2
JP3036733B2 JP7066205A JP6620595A JP3036733B2 JP 3036733 B2 JP3036733 B2 JP 3036733B2 JP 7066205 A JP7066205 A JP 7066205A JP 6620595 A JP6620595 A JP 6620595A JP 3036733 B2 JP3036733 B2 JP 3036733B2
Authority
JP
Japan
Prior art keywords
glass plate
transparent body
light
inspection
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7066205A
Other languages
Japanese (ja)
Other versions
JPH08261953A (en
Inventor
貴廣 中村
一平 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP7066205A priority Critical patent/JP3036733B2/en
Publication of JPH08261953A publication Critical patent/JPH08261953A/en
Application granted granted Critical
Publication of JP3036733B2 publication Critical patent/JP3036733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガラス板等の板状透明
体の内部に存在する気泡や異物等を検出する方法及び装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting air bubbles, foreign matter and the like existing inside a transparent plate such as a glass plate.

【0002】[0002]

【従来の技術】例えば写真乾板の支持体には透明なガラ
ス板が用いられている。このような目的で用いられるガ
ラス板には、透明であることの他に、表面に傷がないこ
と、内部に泡や異物が入っていないことが要求される。
このため従来より、100μm程度の微小欠陥でも検出
できるように様々な検査装置が工夫されている。
2. Description of the Related Art For example, a transparent glass plate is used as a support for a photographic dry plate. The glass plate used for such a purpose is required to be transparent, be free of scratches on its surface, and be free of bubbles and foreign substances inside.
For this reason, conventionally, various inspection devices have been devised so as to be able to detect even a minute defect of about 100 μm.

【0003】特公昭57−37023号公報記載の検査
装置では、正常部分と欠陥部分とで光の反射率や透過率
が異なることを利用しており、走行するガラス板の幅方
向にスポット光を走査してその反射光あるいは透過光を
受光器で光電検出し、この検出出力に基づいて各種欠陥
の有無を評価している。
[0003] The inspection apparatus described in Japanese Patent Publication No. 57-37023 utilizes the fact that the reflectance and transmittance of light are different between a normal portion and a defective portion. Scanning is performed, and the reflected light or transmitted light is photoelectrically detected by a light receiver, and the presence or absence of various defects is evaluated based on the detected output.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記検
査装置では、ガラス板の表面に付着した汚れやほこりの
影響を受けやすく、ガラス板の内部の40μm程度の大
きさの欠陥を検出しようとした場合には、汚れであるの
か欠陥であるのかの識別が難しくなり実用化しにくいと
いう問題がある。また、装置が大型になり高価になると
いう問題もある。
However, the above inspection apparatus is susceptible to dirt and dust adhering to the surface of the glass plate, and attempts to detect a defect of about 40 μm inside the glass plate. However, there is a problem in that it is difficult to distinguish whether it is a dirt or a defect, and it is difficult to put it to practical use. There is also a problem that the device becomes large and expensive.

【0005】本発明は、上記問題点に鑑みてなされたも
ので、ガラス板等の板状の透明体内部の微小な欠陥を表
裏面に付着した汚れやほこり等の影響を受けずに検出す
るとともに、その装置を安価に提供することを目的とす
る。
The present invention has been made in view of the above problems, and detects minute defects inside a plate-shaped transparent body such as a glass plate without being affected by dirt or dust attached to the front and back surfaces. It is another object of the present invention to provide the device at low cost.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の透明体の欠陥検出装置は、連続走行する透
明体の両端面から入射する検査レーザ光を、透明体の厚
み方向で発散させ、該透明体の厚みと直交する方向では
幅方向の中央部近傍で収束させるようにしたものであ
る。
To achieve the above object, according to the Invention The defect detection device of the transparent body of the present invention is permeable to a continuously running
Inspection laser light incident from both ends of the clear body is
In the direction perpendicular to the thickness of the transparent body.
Is obtained by the so that converges in the vicinity of the central portion of the width direction.

【0007】また、請求項2記載の透明体の欠陥検出装
置は、表裏面を平滑にした連続走行される板状の透明体
に、その幅方向の両端面から、透明体の表裏面で全反射
を繰り返しながら他方の端面に向かう検査光を入射する
投光器と、検査光の入射方向に沿った検査視野をもち、
透明体の表裏いずれかの面を通して透明体内部で散乱し
た散乱光を光電検出する受光器と、この受光器からの出
力に基づいて透明体に存在する欠陥を識別する処理手段
とから構成されたものである。
Further, according to a second aspect of the present invention, there is provided a transparent body defect detecting apparatus in which a continuously running plate-shaped transparent body having a smooth front and back surfaces is provided on both front and back surfaces of the transparent body from both end surfaces in the width direction. It has a projector that enters the inspection light toward the other end face while repeating reflection, and an inspection field of view along the incident direction of the inspection light,
The photodetector is configured to photoelectrically detect scattered light scattered inside the transparent body through one of the front and back surfaces of the transparent body, and processing means for identifying a defect existing in the transparent body based on an output from the photodetector. Things.

【0008】更に、請求項3記載の透明体の欠陥検出装
置は、投光器は、検査光としてレーザ光を放射するとと
もに、このレーザ光は透明体の厚み方向では発散するレ
ーザビームとして透明体に入射されるようにしたもので
ある。
In a third aspect of the present invention, the projector emits a laser beam as inspection light, and the laser beam enters the transparent body as a laser beam diverging in the thickness direction of the transparent body. It is made to be done.

【0009】また、請求項4記載の透明体の欠陥検出装
置は、レーザビームを透明体の厚みと直交する方向では
収束するビームとして透明体に入射するようにしたもの
である。
According to a fourth aspect of the present invention, there is provided a transparent body defect detecting apparatus wherein a laser beam is incident on the transparent body as a beam converging in a direction perpendicular to the thickness of the transparent body.

【0010】[0010]

【作用】表裏面が平滑にされた板状の透明体を連続走行
させ、その幅方向の両端面から、透明体の表裏面で全反
射を繰り返しながら他方の端面に向かう検査光を入射す
る。この検査光としてはレーザ光を用い、透明体の厚み
方向で発散するレーザビームとする。これにより、透明
体の厚み方向における検査光のパワー密度を一定にで
き、厚み方向における検出感度を一定にできる。また、
透明体の厚みと直交する方向ではレーザビームを収束さ
せたので、表裏面での全反射によって減衰する検査光の
パワー密度を補正し、均一にできるので、該方向におい
ても検出感度を一定にできる。
The plate-shaped transparent body whose front and back surfaces are smoothed continuously travels, and inspection light is incident from both end surfaces in the width direction toward the other end surface while repeating total reflection on the front and back surfaces of the transparent body. As the inspection light, a laser beam is used, which is a laser beam diverging in the thickness direction of the transparent body. Thereby, the power density of the inspection light in the thickness direction of the transparent body can be made constant, and the detection sensitivity in the thickness direction can be made constant. Also,
Since the laser beam is converged in the direction orthogonal to the thickness of the transparent body, the power density of the inspection light attenuated by total reflection on the front and back surfaces can be corrected and made uniform, so that the detection sensitivity can be kept constant in the direction. .

【0011】[0011]

【実施例】図1は、本発明の透明体の欠陥検出装置の基
本構造を概略的に表したものである。検査装置は、投光
器である投光ユニット2と、受光器であるラインセンサ
カメラ3と、このラインセンサカメラ3の検出信号を処
理する処理手段である処理部4とから構成されている。
本実施例では、板状の透明体として表裏面が平滑に研磨
されたガラス板5を用い、内部の泡や異物等の欠陥及び
表裏面の傷等の欠陥の検出を行う。ガラス板5は、図示
しないが搬送ローラや搬送ベルト等に載置されて矢印X
方向に連続的に搬送される。
FIG. 1 schematically shows a basic structure of a transparent body defect detecting apparatus according to the present invention. The inspection apparatus includes a light emitting unit 2 as a light emitter, a line sensor camera 3 as a light receiver, and a processing unit 4 as processing means for processing a detection signal of the line sensor camera 3.
In this embodiment, a glass plate 5 whose front and back surfaces are polished smoothly as a plate-shaped transparent body is used to detect defects such as bubbles and foreign matter inside and defects such as scratches on the front and back surfaces. The glass plate 5 is placed on a transport roller or a transport belt (not shown) and
Conveyed continuously in the direction.

【0012】投光ユニット2は、ユニットボックス7内
部に、白色光を放射するランプ等からなる光源8と、光
路折曲げ用の反射ミラー9,10と、ビームエキスパン
ダ用の2枚のレンズ11,12とが組み込まれており、
搬送されるガラス板5の側方に配置されている。光源8
から放射された白色光は、2枚の反射ミラー9,10を
介してレンズ11,12に入射される。レンズ11,1
2は、白色光をガラス板5の厚み方向で絞り、検査光1
3としてユニットボックス7の側面に形成された開口7
aからガラス板5の端面5aに向かって照射する。
The light projecting unit 2 includes a light source 8 such as a lamp for emitting white light, reflection mirrors 9 and 10 for bending the optical path, and two lenses 11 for a beam expander inside a unit box 7. , 12 are incorporated,
It is arranged on the side of the glass plate 5 to be conveyed. Light source 8
The white light radiated from is incident on the lenses 11 and 12 via the two reflecting mirrors 9 and 10. Lens 11, 1
2 is an inspection light 1 which squeezes white light in the thickness direction of the glass plate 5.
An opening 7 formed on the side surface of the unit box 7 as 3
a to the end face 5 a of the glass plate 5.

【0013】ガラス板5の端面5aに入射された検査光
13は、図2に示すように、ガラス板5の内部を直進す
る。そして、ガラス板5の内部に気泡や異物等の欠陥1
5が存在すると、検査光13は欠陥15によって散乱さ
れ、ガラス板5の表裏面に放射される。また、検査光1
3は、ガラス板5が矢印X方向に移動している間に端面
5aに入射されるので、ガラス板5の内部を全域に渡っ
て走査することになる。このように、検査光13はガラ
ス板5の内部を進んで行って内部欠陥15を検出するの
で、ガラス板5の表裏面に汚れやほこりが付着していて
も何ら検査に支障はなく、汚れやほこりの誤検出は発生
しない。
The inspection light 13 incident on the end face 5a of the glass plate 5 travels straight inside the glass plate 5, as shown in FIG. Then, defects 1 such as air bubbles and foreign matter are found inside the glass plate 5.
When 5 exists, the inspection light 13 is scattered by the defect 15 and emitted to the front and back surfaces of the glass plate 5. In addition, inspection light 1
3 is incident on the end face 5a while the glass plate 5 is moving in the direction of the arrow X, so that the inside of the glass plate 5 is scanned over the entire area. As described above, since the inspection light 13 travels inside the glass plate 5 to detect the internal defect 15, even if dirt or dust adheres to the front and back surfaces of the glass plate 5, there is no problem in the inspection. False detection of dust and dust does not occur.

【0014】ラインセンサカメラ3はガラス板5の上方
に配置されており、ガラス板5内部の欠陥15によって
散乱された検査光13を検出する。ラインセンサカメラ
3は、CCD素子とこのCCD素子の検出範囲を広げる
ためのレンズとから構成されており、ガラス板5の内部
を通過する検査光13の上部で、ガラス板5の幅方向の
全域に渡って散乱光を検出する検出視野16を有してい
る。
The line sensor camera 3 is disposed above the glass plate 5 and detects inspection light 13 scattered by a defect 15 inside the glass plate 5. The line sensor camera 3 includes a CCD element and a lens for expanding the detection range of the CCD element. The line sensor camera 3 covers the entire area in the width direction of the glass plate 5 above the inspection light 13 passing through the inside of the glass plate 5. And has a detection field of view 16 for detecting scattered light.

【0015】処理部4は、ラインセンサカメラ3から入
力された検出信号を予め設定されているスレッシュホー
ルドレベルと比較し、検出信号がこのレベルを越えたと
きにガラス板5内部に欠陥15があると評価する。そし
て、表示パネル等に欠陥があることを表示するととも
に、欠陥のあるガラス板5をライン上から取り除くよう
に指示する。このように、本検査装置は、投光ユニット
2とラインセンサカメラ3と処理部4とだけで構成され
ているので安価であり、また装置の小型化も可能とな
る。
The processing section 4 compares the detection signal input from the line sensor camera 3 with a preset threshold level, and when the detection signal exceeds this level, there is a defect 15 inside the glass plate 5. Evaluate. Then, the fact that the display panel or the like has a defect is displayed, and an instruction is given to remove the defective glass plate 5 from the line. As described above, the present inspection apparatus includes only the light projecting unit 2, the line sensor camera 3, and the processing unit 4, so that it is inexpensive, and the apparatus can be downsized.

【0016】上記実施例の検査装置は、光源として白色
光を用いているため、ガラス板の幅が広い場合にはガラ
ス板の幅方向の全域に検査光を届かせることができな
い。このような場合には、ガラス板の幅方向の両側方に
投光ユニットを設置し、両端面から検査光をガラス板の
内部に入射させるとよい。
Since the inspection apparatus of the above embodiment uses white light as a light source, if the width of the glass plate is large, the inspection light cannot reach the entire region in the width direction of the glass plate. In such a case, it is preferable to install the light projecting units on both sides in the width direction of the glass plate, and to make the inspection light enter the inside of the glass plate from both end surfaces.

【0017】また、さらに幅の広いガラス板の内部欠陥
を検出する場合には、検査光にレーザ光を用いるとよ
い。レーザ光は、パワー密度を高くできるので微小な欠
陥の検出が可能になるとともに、指向性がよいので後述
するように容易に好ましいビーム形状を得ることができ
る。レーザ光を検査光として用いた透明体の欠陥検出装
置の概略を図3に示す。
Further, when detecting an internal defect of a glass plate having a wider width, it is preferable to use a laser beam as the inspection light. Since the power density of the laser beam can be increased, it is possible to detect minute defects, and the laser beam has good directivity, so that a preferable beam shape can be easily obtained as described later. FIG. 3 schematically shows a defect detection apparatus for a transparent body using laser light as inspection light.

【0018】本実施例の検査装置は、矢印X方向に搬送
されるガラス板18を挟むように側方に設置された投光
ユニット19,20と、前記実施例のものよりも検出視
野21aが幅方向で広げられたラインセンサカメラ21
と、このラインセンサカメラ21の検出信号が入力され
る処理部22とから構成されている。ガラス板18は、
図4及び図5に示すように、例えば厚みtが5mmであ
り幅Wが800mmとなっている。
The inspection apparatus according to the present embodiment has light-emitting units 19 and 20 which are installed laterally so as to sandwich the glass plate 18 conveyed in the direction of the arrow X, and has a detection field of view 21a larger than that of the above-described embodiment. Line sensor camera 21 expanded in width direction
And a processing unit 22 to which a detection signal of the line sensor camera 21 is input. The glass plate 18
As shown in FIGS. 4 and 5, for example, the thickness t is 5 mm and the width W is 800 mm.

【0019】投光ユニット19は、ユニットボックス2
4の内部に、レーザ光を放射するレーザ発振器25と、
光路折曲げ用の反射ミラー26,27と、第1ビーム形
状設定レンズ28,第2ビーム形状設定レンズ29,第
3ビーム形状設定レンズ30,第4ビーム形状設定レン
ズ31からなるレンズ群32とが組み込まれており、ユ
ニットボックス24の側面に形成された開口24aから
レーザ光を検査光33としてガラス板18の端面18a
に向かって放射する。前記レーザ発振器25としては、
例えばHe−Neレーザを用いている。投光ユニット2
0は、投光ユニット19と同様の構成であり、ガラス板
18の内部に開口20aから検査光34を入射する。
The light projecting unit 19 includes the unit box 2
4, a laser oscillator 25 for emitting laser light,
Reflection mirrors 26 and 27 for bending the optical path, and a lens group 32 including a first beam shape setting lens 28, a second beam shape setting lens 29, a third beam shape setting lens 30, and a fourth beam shape setting lens 31 are provided. The laser light is used as inspection light 33 from an opening 24a formed on the side surface of the unit box 24 and the end surface 18a of the glass plate 18
Radiates towards. As the laser oscillator 25,
For example, a He-Ne laser is used. Floodlight unit 2
Reference numeral 0 denotes a configuration similar to that of the light projecting unit 19, and the inspection light 34 enters the inside of the glass plate 18 from the opening 20a.

【0020】前記レンズ群32を構成する第2ビーム形
状設定レンズ29及び第4ビーム形状設定レンズ31
は、ガラス板18の厚み方向のレーザ光のビーム形状を
設定するためのものであり、例えば2個のシリンドリカ
ルレンズや、凸レンズとシリンドリカルレンズとの組み
合わせが用いられる。そして、図4に示すように、第2
ビーム形状設定レンズ29及び第4ビーム形状設定レン
ズ31を通過したレーザビームは、ガラス板18の端面
18aの付近でビームウエスト35が形成され、約4度
の角度で発散されて端面18aに入射される。このガラ
ス板18の厚み方向で発散された検査光33は、ガラス
板18の内部を表裏面18b,18cで全反射を繰り返
しながら進んでいく。これにより、厚み方向の欠陥の位
置による検出感度のバラツキを軽減できる。また、厚み
方向にパワー密度が一定なので、厚み方向の中央部にあ
る欠陥だけでなく、表裏面の近くに存在する欠陥も検出
できる。
The second beam shape setting lens 29 and the fourth beam shape setting lens 31 constituting the lens group 32
Is for setting the beam shape of the laser light in the thickness direction of the glass plate 18, and for example, two cylindrical lenses or a combination of a convex lens and a cylindrical lens is used. Then, as shown in FIG.
The laser beam that has passed through the beam shape setting lens 29 and the fourth beam shape setting lens 31 forms a beam waist 35 near the end face 18a of the glass plate 18, diverges at an angle of about 4 degrees, and enters the end face 18a. You. The inspection light 33 diverged in the thickness direction of the glass plate 18 travels inside the glass plate 18 while repeating total reflection on the front and back surfaces 18b and 18c. Thereby, it is possible to reduce the variation in the detection sensitivity due to the position of the defect in the thickness direction. Further, since the power density is constant in the thickness direction, it is possible to detect not only a defect at the center in the thickness direction but also a defect near the front and back surfaces.

【0021】また、第1ビーム形状設定レンズ28及び
第3ビーム形状設定レンズ30は、ガラス板18の厚み
と直交する方向のレーザビーム形状を設定するためのも
のであり、やはり2個のシリンドリカルレンズや、凸レ
ンズとシリンドリカルレンズとの組み合わせが用いられ
る。この第1ビーム形状設定レンズ28と第3ビーム形
状設定レンズ30とを通過したレーザビームは、図5に
示すように、ガラス板18の中央に向かって収束されて
いき、ガラス板18の側端面18aからW/2の距離の
中央部18d付近にレーザウエスト38が形成される。
The first beam shape setting lens 28 and the third beam shape setting lens 30 are for setting a laser beam shape in a direction orthogonal to the thickness of the glass plate 18, and also have two cylindrical lenses. Alternatively, a combination of a convex lens and a cylindrical lens is used. The laser beam passing through the first beam shape setting lens 28 and the third beam shape setting lens 30 is converged toward the center of the glass plate 18 as shown in FIG. A laser waist 38 is formed near a central portion 18d at a distance of W / 2 from 18a.

【0022】このようにレーザビームを収束させるの
は、ガラス板18内部での検査光33のパワー密度を一
定にして、ガラス板18の幅方向のどの位置でも変わら
ない検出レベルで欠陥36を検出するためである。レー
ザ光は、ガラス板18内部を通過する間にそのパワー密
度が減衰していく。この減衰により、ガラス板18の端
面18a付近の欠陥による検査光33の散乱と、中央部
18d付近の欠陥による検査光33の散乱とでは散乱光
の光量が異なり、ラインセンサカメラ21からの検出信
号のレベルが変化してしまう。そのため、処理部22で
設定されるスレッシュホールドレベルも一定ではなく、
検査光33の減衰に合わせなくてはならず、その制御が
複雑になってしまう。
In order to converge the laser beam in this manner, the power density of the inspection light 33 inside the glass plate 18 is kept constant, and the defect 36 is detected at a detection level which does not change at any position in the width direction of the glass plate 18. To do that. The power density of the laser light is attenuated while passing through the inside of the glass plate 18. Due to this attenuation, the amount of the scattered light differs between the scattering of the inspection light 33 due to the defect near the end face 18a of the glass plate 18 and the scattering of the inspection light 33 due to the defect near the center 18d. Level changes. Therefore, the threshold level set by the processing unit 22 is not constant,
It is necessary to adjust to the attenuation of the inspection light 33, which complicates the control.

【0023】また、端面18a付近では検査感度が高く
なり過ぎて欠陥として評価されるレベル以下の微小な気
泡や異物をも検出してしまい、結果として誤検出となっ
て、本来合格品であるガラス板18が不具合品として評
価されるという問題が発生する。
In the vicinity of the end face 18a, the inspection sensitivity becomes too high, and even minute bubbles and foreign matters below the level evaluated as a defect are detected. There is a problem that the plate 18 is evaluated as a defective product.

【0024】図6は、ガラス板18の端面18aから、
約150mm,300mm,400mm(中央部18
d)の位置にそれぞれ配置した約60μmの大きさの欠
陥を検出し、そのときのラインセンサカメラ21の検出
信号のS/N比を調べた実験結果を示すグラフである。
破線40は、端面18a付近のレーザ出力を約6mWと
し、ガラス板18の厚みと直交する方向の検査光の幅を
約3mm一定としてガラス板18に入射させたときのも
のである。また実線41は、端面18a付近のレーザ出
力を破線40と同様に約6mWとし、ガラス板18の厚
みと直交する方向の検査光の幅LW1 を端面18a付近
で約9mm,中央部18d付近での幅LW 2 を約3mm
となるように収束させたものである。なお、両者ともに
ガラス板18の厚み方向では、図4に示すように検査光
を発散させている。
FIG. 6 shows a state in which the end surface 18a of the glass plate 18 is
About 150mm, 300mm, 400mm (Central part 18
A chip having a size of about 60 μm arranged at the position of d)
Detecting a defect and detecting the line sensor camera 21 at that time
9 is a graph showing an experimental result of examining the S / N ratio of a signal.
The broken line 40 indicates that the laser output near the end face 18a is about 6 mW.
And the width of the inspection light in the direction orthogonal to the thickness of the glass plate 18
When the light is made to enter the glass plate 18 with a constant value of about 3 mm,
It is. The solid line 41 indicates the laser output near the end face 18a.
The force is set to about 6 mW similarly to the broken line 40, and the thickness of the glass plate 18 is
The width LW of the inspection light in the direction perpendicular to the direction1Near the end face 18a
About 9mm, width LW near the center 18d TwoAbout 3mm
Are converged so that In addition, both
In the thickness direction of the glass plate 18, as shown in FIG.
Is diverging.

【0025】このグラフによると、破線40は端面18
aからの距離が遠くなるほどS/N比が減衰していくこ
とがわかる。また実線41は、端面18aから中央部1
8dにかけてほぼ一定のS/N比となっている。これに
よれば、実線41での検査光は破線40に比べて全体的
にパワー密度が弱くなっていることが分かるが、このパ
ワー密度のレベルでも実用に不足がなく、実験では全域
において約40μmの大きさの欠陥でも正確に検出でき
た。これに対し破線41では、端面18a付近の検査光
が強く過ぎて誤検出が発生した。
According to this graph, the broken line 40 indicates the end face 18
It can be seen that the S / N ratio decreases as the distance from a increases. Also, the solid line 41 represents the center 1 from the end face 18a.
The S / N ratio is almost constant up to 8d. According to this, it can be seen that the power density of the inspection light indicated by the solid line 41 is lower than that of the broken line 40 as a whole, but there is no shortage in practical use even at this power density level. Defects of size were correctly detected. On the other hand, in the case of the broken line 41, the inspection light near the end face 18a was too strong, and erroneous detection occurred.

【0026】なお、S/N比をほぼ一定にするための収
束率の求め方としては、被検査物、例えばガラス板やプ
ラスチック板等によって検査光の減衰する割合が異なる
ため、予め被検査物に一定な検査光を入射して端面から
の距離に対するS/N比の減衰量を求めておく。そし
て、被検査物の両端面から検査光を入射する場合には、
中央部付近でのS/N比を基準に端面付近の検査光の幅
を決定する。また、片側端面のみから検査光を入射する
場合には、反対側端面付近のS/N比を基準に端面付近
の検査光の幅を決定する。また、レンズ群32として
は、トーリックレンズを1個用いるようにしてもよい。
The convergence rate for making the S / N ratio substantially constant is determined in advance because the rate of attenuation of the inspection light varies depending on the object to be inspected, for example, a glass plate or a plastic plate. , A constant inspection light is incident on the sample, and the attenuation of the S / N ratio with respect to the distance from the end surface is obtained. Then, when the inspection light enters from both end surfaces of the inspection object,
The width of the inspection light near the end face is determined based on the S / N ratio near the center. When the inspection light is incident only from one end face, the width of the inspection light near the end face is determined based on the S / N ratio near the opposite end face. Further, as the lens group 32, one toric lens may be used.

【0027】次に上記検査装置の作用について説明す
る。ガラス板18は、搬送ローラや搬送ベルト等に載置
されて矢印X方向に連続的に搬送される。投光ユニット
19からは、レーザ発振器25から放射されたレーザ光
が、反射ミラー26,第1ビーム形状設定レンズ28,
反射ミラー27,第2ビーム形状設定レンズ29,第3
ビーム形状設定レンズ30,第1ビーム形状設定レンズ
31を介して、ユニットボックス24の開口24aから
ガラス板18の端面18aに検査光33が入射される。
また、投光ユニット20からも同様に検査光34がガラ
ス板18の端面に入射される。
Next, the operation of the above inspection apparatus will be described. The glass plate 18 is placed on a transport roller, a transport belt, or the like, and is continuously transported in the arrow X direction. From the light projecting unit 19, the laser light emitted from the laser oscillator 25 is reflected by the reflection mirror 26, the first beam shape setting lens 28,
Reflection mirror 27, second beam shape setting lens 29, third
Inspection light 33 is incident on the end face 18a of the glass plate 18 from the opening 24a of the unit box 24 via the beam shape setting lens 30 and the first beam shape setting lens 31.
In addition, the inspection light 34 similarly enters the end surface of the glass plate 18 from the light emitting unit 20.

【0028】ガラス板18の内部に入射される検査光3
3,34は、ガラス板18の厚み方向で図4に示すよう
に発散され、ガラス板18の厚みと直交する方向では、
中央部18dに向かって収束されていく。これにより、
検査光33,34はガラス板18の内部を表裏面18
b,18cで全反射を繰り返しながら進んでいくので、
厚み方向の検出感度が一定する。また、端面18aから
中央部18dにかけての検査光33,34のパワー密度
がほぼ一定とされているので、誤検出は少ない。更に、
ガラス板18の表裏面18b,18cに付着した汚れや
ほこりに影響されることはない。
Inspection light 3 incident inside glass plate 18
3, 34 are diverged in the thickness direction of the glass plate 18 as shown in FIG. 4, and in the direction orthogonal to the thickness of the glass plate 18,
It converges toward the central part 18d. This allows
The inspection lights 33 and 34 illuminate the inside of the glass plate 18 with the front and back surfaces 18.
As we proceed while repeating total reflection at b and 18c,
The detection sensitivity in the thickness direction is constant. Further, since the power densities of the inspection light beams 33 and 34 from the end face 18a to the central portion 18d are substantially constant, erroneous detection is small. Furthermore,
It is not affected by dirt or dust attached to the front and back surfaces 18b and 18c of the glass plate 18.

【0029】検査光33,34は、ガラス板18が搬送
されている間に入射されるので、ガラス板18の全域に
おいて内部及び表裏面の欠陥を検出することができる。
そして、ガラス板18の内部に欠陥36があった場合に
は、検査光33,34が欠陥36で散乱されて、ガラス
板18の表裏面18b,18cから放射される。この散
乱光は、ラインセンサカメラ21によって光電検出さ
れ、検出信号が処理部22に入力される。
Since the inspection light beams 33 and 34 are incident while the glass plate 18 is being conveyed, it is possible to detect defects inside and on the front and back surfaces of the entire glass plate 18.
When the defect 36 exists inside the glass plate 18, the inspection lights 33 and 34 are scattered by the defect 36 and radiated from the front and back surfaces 18 b and 18 c of the glass plate 18. The scattered light is photoelectrically detected by the line sensor camera 21, and a detection signal is input to the processing unit 22.

【0030】処理部22では、検出信号が予め設定され
たスレッシュホールドレベルと比較される。検査光3
3,34のパワー密度はほぼ一定とされているので、検
出信号のS/N比もほぼ一定となり、ガラス板18の幅
方向の何処の位置の欠陥を検出した検出信号でも同一の
スレッシュホールドレベルと比較することができる。処
理部22は、検出信号がこのスレッシュホールドレベル
を越えたときにガラス板18内部に欠陥36があると評
価し、表示パネル等に欠陥があることを表示するととも
に、欠陥のあるガラス板18をライン上から取り除くよ
うに指示する。
The processing unit 22 compares the detection signal with a preset threshold level. Inspection light 3
Since the power densities of the signals 3 and 34 are substantially constant, the S / N ratio of the detection signal is also substantially constant, and the same threshold level is used for the detection signal which detects a defect at any position in the width direction of the glass plate 18. Can be compared to When the detection signal exceeds the threshold level, the processing unit 22 evaluates that there is a defect 36 inside the glass plate 18, displays that the display panel or the like has a defect, and removes the defective glass plate 18. Tell them to remove them from the line.

【0031】なお、上記各実施例の検査装置ではライン
センサを用いたが、代わりにエリアセンサを用いてもよ
い。また、ガラス板を固定して投光ユニットとラインセ
ンサとを移動させるようにしてもよい。更に、投光ユニ
ットを縦に配置し、検査光を反射ミラーで反射させてガ
ラス板に入射するようにしてもよい。また、ガラス板の
検査について説明したが、透明なプラスチック板等の検
査に用いてもよく、その他の透明な板状の検査物を表裏
面に付着した汚れやほこりの影響を受けずに検査する場
合に用いることができる。
Although the line sensors are used in the inspection apparatuses of the above embodiments, an area sensor may be used instead. Further, the light projection unit and the line sensor may be moved with the glass plate fixed. Further, the light projecting unit may be arranged vertically, and the inspection light may be reflected by the reflection mirror and incident on the glass plate. In addition, although the inspection of the glass plate has been described, the inspection may be performed on a transparent plastic plate or the like, and other transparent plate-like inspection objects may be inspected without being affected by dirt or dust attached to the front and back surfaces. Can be used in some cases.

【0032】以上説明したように、本発明の透明体の欠
陥検出方法は、表裏面を平滑にした板状の透明体を連続
走行させ、その幅方向の両端面から検査光を入射し、こ
の検査光が透明体の表裏面で全反射を繰り返しながら透
明体内部を伝播する過程で、透明体に存在する欠陥部に
よって散乱された散乱光を透明体の表裏いずれかの面を
通して光電検出するようにしたので、透明体の表裏面に
付着した汚れやほこりの影響を受けずに、内部及び表裏
面の欠陥を正確に検出することができる。
As described above, in the method for detecting a defect in a transparent body according to the present invention, a plate-shaped transparent body having a smooth front and back surface is continuously run, and inspection light is incident from both end surfaces in the width direction. In the process of inspection light propagating inside the transparent body while repeating total reflection on the front and back surfaces of the transparent body, scattered light scattered by a defect existing in the transparent body is photoelectrically detected through one of the front and back surfaces of the transparent body Therefore, the inside and the front and back surface defects can be accurately detected without being affected by dirt and dust attached to the front and back surfaces of the transparent body.

【0033】また、透明体の欠陥検出装置は、検査光と
してレーザ光を用い、このレーザ光を透明体の厚み方向
で発散するように入射させたので、厚み方向の検出感度
のバラツキが軽減できる。また、レーザ光の透明体の厚
みと直交する方向では、レーザビームを収束させて入射
するようにしたので、全域において検査光の強度がほぼ
一定となり誤検出が減少するとともに、検出信号の処理
が容易になる。また、装置を小型化できコストも低減で
きる。
Further, the apparatus for detecting a defect in a transparent body uses laser light as inspection light and irradiates the laser light so as to diverge in the thickness direction of the transparent body, so that variations in detection sensitivity in the thickness direction can be reduced. . Also, in the direction perpendicular to the thickness of the transparent body of the laser beam, the laser beam is converged and incident, so that the intensity of the inspection light is almost constant over the entire area, erroneous detection is reduced, and processing of the detection signal is reduced. It will be easier. Further, the size of the apparatus can be reduced and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の透明体の欠陥検出装置の構成を示す概
略図である。
FIG. 1 is a schematic view showing a configuration of a transparent body defect detection device of the present invention.

【図2】検査光による欠陥の検出状態を示すガラス板の
側面図である。
FIG. 2 is a side view of a glass plate showing a state of detection of a defect by inspection light.

【図3】本発明の別の実施例の透明体の欠陥検出装置の
構成を示す概略図である。
FIG. 3 is a schematic diagram showing a configuration of a transparent body defect detection apparatus according to another embodiment of the present invention.

【図4】別の実施例の検査光による欠陥の検出状態を示
すガラス板の側面図である。
FIG. 4 is a side view of a glass plate showing a state of detecting a defect by inspection light according to another embodiment.

【図5】ガラス板搬送方向の検査光の収束状態を示す説
明図である。
FIG. 5 is an explanatory diagram showing a convergence state of inspection light in a glass plate conveyance direction.

【図6】ガラス板端面からの距離における検出信号のS
/N比を表すグラフである。
FIG. 6 shows S of the detection signal at a distance from the end surface of the glass plate.
4 is a graph showing the / N ratio.

【符号の説明】 2,19,20 投光ユニット 3,21 ラインセンサカメラ 4,22 処理部 5,18 ガラス板 13,33,34 検査光[Description of Signs] 2,19,20 Projection Unit 3,21 Line Sensor Camera 4,22 Processing Unit 5,18 Glass Plate 13,33,34 Inspection Light

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−284648(JP,A) 特開 昭63−165738(JP,A) 特開 平7−72092(JP,A) 特開 昭56−17014(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/84 - 21/958 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-284648 (JP, A) JP-A-63-165738 (JP, A) JP-A-7-72092 (JP, A) JP-A Sho 56-284 17014 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G01N 21/84-21/958

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表裏面を平滑にした板状の透明体を連続
走行させ、この透明体の幅方向の両端面から、該透明体
の表裏面で全反射を繰り返しながら他方の端面に向かう
検査レーザ光を入射する投光器と、検査レーザ光の入射
方向に沿った検査視野をもち、透明体の表裏いずれかの
面を通して透明体内部で散乱した散乱光を光電検出する
受光器と、この受光器からの出力に基づいて透明体に存
在する欠陥を識別する処理手段とを備えた透明体の欠陥
検出装置において、 前記投光器は、検査レーザ光を透明体の厚み方向で発散
させ、該透明体の厚みと直交する方向では幅方向の中央
部近傍で収束させることを特徴とする透明体の欠陥検出
装置。
1. A front and rear surfaces is continuously run smooth in the plate-shaped transparent body, from both end faces in the width direction of the transparent body, toward the other end surface while repeating total reflection at the front and back surfaces of the transparent body
Projector for entering inspection laser beam and incidence of inspection laser beam
The inspection field of view along the direction
Photoelectrically detects the scattered light scattered inside the transparent body through the surface
A receiver and a transparent object based on the output from the receiver.
Processing means for identifying existing defects
In the detection device, the projector emits the inspection laser light in a thickness direction of the transparent body.
And in the direction perpendicular to the thickness of the transparent body, the center in the width direction.
Defect detection of transparent material characterized by converging near the part
apparatus.
JP7066205A 1995-03-24 1995-03-24 Defect detection device for transparent objects Expired - Fee Related JP3036733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7066205A JP3036733B2 (en) 1995-03-24 1995-03-24 Defect detection device for transparent objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7066205A JP3036733B2 (en) 1995-03-24 1995-03-24 Defect detection device for transparent objects

Publications (2)

Publication Number Publication Date
JPH08261953A JPH08261953A (en) 1996-10-11
JP3036733B2 true JP3036733B2 (en) 2000-04-24

Family

ID=13309110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7066205A Expired - Fee Related JP3036733B2 (en) 1995-03-24 1995-03-24 Defect detection device for transparent objects

Country Status (1)

Country Link
JP (1) JP3036733B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3910616A1 (en) * 2020-05-15 2021-11-17 LG Electronics Inc. Display apparatus
KR20220147427A (en) * 2021-04-27 2022-11-03 주식회사 나인 Particle detector

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69833580T2 (en) * 1997-07-17 2006-12-07 Hoya Corp. Device for inspecting a transparent material with regard to irregularities
US6392683B1 (en) * 1997-09-26 2002-05-21 Sumitomo Heavy Industries, Ltd. Method for making marks in a transparent material by using a laser
JP3673631B2 (en) * 1997-12-26 2005-07-20 Hoya株式会社 Non-uniformity inspection method and apparatus for translucent material
KR100485029B1 (en) * 1997-12-26 2005-06-16 호야 가부시키가이샤 Glass substrate for an electron device, photomask blank and photomask using the same
JPH11352070A (en) * 1998-06-11 1999-12-24 Masami Nishiko Surface inspection system
JP2000028340A (en) * 1998-07-11 2000-01-28 Masami Nishiko Alignment layer inspection system
JP2002340804A (en) * 2002-02-15 2002-11-27 Sumitomo Heavy Ind Ltd Observation method and observation device of mark
JP2004150971A (en) * 2002-10-31 2004-05-27 Nitto Denko Corp Inspection method and inspection apparatus of film
DE10316707B4 (en) 2003-04-04 2006-04-27 Schott Ag Method and device for detecting defects in transparent material
JP4683409B2 (en) * 2005-02-10 2011-05-18 Hoya株式会社 Mask blank glass substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
US7898650B2 (en) 2005-02-18 2011-03-01 Hoya Corporation Inspection method for transparent article
DE102005022271B3 (en) 2005-05-10 2006-08-17 Schott Ag Method for detecting bubbles or trapped matter in a glass body such as a glass tube during a continuous manufacturing process whereby images are detected of a surface of the glass body
JP4683416B2 (en) * 2005-06-10 2011-05-18 Hoya株式会社 Mask blank glass substrate defect inspection method, mask blank glass substrate, mask blank, exposure mask, mask blank glass substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
JP4688150B2 (en) * 2005-08-03 2011-05-25 Hoya株式会社 Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and defect inspection apparatus
JP4575460B2 (en) * 2005-11-30 2010-11-04 セイコーインスツル株式会社 Bonding method and display device manufacturing method
JP5332122B2 (en) * 2006-03-23 2013-11-06 日産自動車株式会社 Work position detection system and work position detection method
JP4956584B2 (en) * 2009-07-01 2012-06-20 アトム興産株式会社 Lighting equipment for fine dust observation
KR101409217B1 (en) * 2012-02-27 2014-06-20 엘아이지에이디피 주식회사 Inspection apparatus and inspection method of attached substrate
CN103105400B (en) * 2013-01-29 2015-08-26 合肥知常光电科技有限公司 The detection sorting technique of optical elements of large caliber surface imperfection
DE102013108308A1 (en) 2013-08-01 2015-02-19 Schott Ag Method and device for detecting tape rolls made of brittle-hard or brittle-breaking, at least partially transparent material, and their use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3910616A1 (en) * 2020-05-15 2021-11-17 LG Electronics Inc. Display apparatus
US11546500B2 (en) 2020-05-15 2023-01-03 Lg Electronics Inc. Display apparatus capable of detecting damage to a housing accommodating a display
KR20220147427A (en) * 2021-04-27 2022-11-03 주식회사 나인 Particle detector
KR102498339B1 (en) 2021-04-27 2023-02-10 주식회사 나인 Particle detector

Also Published As

Publication number Publication date
JPH08261953A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
JP3036733B2 (en) Defect detection device for transparent objects
KR101326455B1 (en) Apparatus and method for characterizing defects in a transparent substrate
US4555635A (en) Surface flaw inspection apparatus for a convex body
US7511807B2 (en) Method and apparatus for detection of inclusion in glass
JP3436326B2 (en) Defect inspection method and apparatus for transparent plate
JP2015040835A (en) Defect inspection device and defect inspection method for transparent tabular body
JP2002062267A (en) Device for inspecting defect
JP3329233B2 (en) Defect inspection method and apparatus for plate-shaped transparent body
JP2009216628A (en) Defect detector and defect detection method
JP2001208702A (en) Method and apparatus for inspecting defects
JPH102868A (en) Method and apparatus for optical inspection of defect in translucent sheet-like material
JP2002039952A (en) Apparatus and method for inspecting defect
JP2895773B2 (en) Inspection equipment for transparent articles
KR100829501B1 (en) The testing equipment for detecting alien substance sticked on surface of display panel and the testing methode of the same
JP3256383B2 (en) Surface inspection equipment
JP2009025269A (en) Defect inspection apparatus and defect inspection method of optically-transparent sheet
JP2017125805A (en) Flaw defect checking device for sheet
JP2002005845A (en) Defect inspecting apparatus
JPH10185828A (en) Method and device for inspecting defect of transparent flat body surface
JPS59220636A (en) Detector for defect of sheet-shaped product
JPH05322780A (en) Inspecting method for light transmitting molding
JPH07229850A (en) Method and device for inspection of surface
JP2004317426A (en) Apparatus for inspecting bottom of container for foreign substances
JPH0989793A (en) Foreign matter inspection apparatus
JPH044207Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees