RU2615662C2 - Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров - Google Patents
Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров Download PDFInfo
- Publication number
- RU2615662C2 RU2615662C2 RU2015132851A RU2015132851A RU2615662C2 RU 2615662 C2 RU2615662 C2 RU 2615662C2 RU 2015132851 A RU2015132851 A RU 2015132851A RU 2015132851 A RU2015132851 A RU 2015132851A RU 2615662 C2 RU2615662 C2 RU 2615662C2
- Authority
- RU
- Russia
- Prior art keywords
- refractive index
- sample
- optical device
- transparent
- plane
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/4133—Refractometers, e.g. differential
- G01N2021/4153—Measuring the deflection of light in refractometers
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Изобретение относится к рефрактометрам. Оптическое устройство для измерения показателя преломления прозрачных твердых веществ образцов с толщиной 0,2-1 мм. и размером 5-12 мм, содержит: блок со сменными лазерными диодами, излучающими в диапазоне длин волн 400-1100 нм, устройство для формирования узкого пучка лучей шириной от 60-120 мкм, образец в виде плоскопараллельной пластины, дополнительный прозрачный оптический элемент, установленный с исследуемым образцом под одним и тем же углом падения, систему регистрации величины смещения светового луча, представляющую собой ПЗС-матрицу с разрешением 2592х1944 пикселей и больше. Технический результат заключается в сокращении времени и увеличении точности измерений показателя преломления света. 3 ил.
Description
Изобретение относится к оптике и может быть использовано в качестве рефрактометра для измерения показателя преломления различных прозрачных и полупрозрачных твердых веществ, в частности - оптической керамики.
Экспериментальные образцы оптической керамики из новых наноматериалов после механической обработки обычно имеют толщину 0.5-1 мм с большими значениями показателя преломления (порядка 2) и малыми поперечными размерами 8-12 мм [1], что накладывает ограничения при выборе методов измерения дисперсии.
В нашей стране и за рубежом рефрактометры для измерения показателя преломления веществ (n) с n~2.0 в диапазоне длин волн 400-1100 нм ввиду их специфики и ограниченного применения серийно не выпускаются. Аналогами данного изобретения являются рефрактометры ИРФ-456, ИРФ-454 Б2М и DR-M4 для измерения показателя преломления на фиксированных длинах волн.
Рефрактометр ИРФ-456, устройство и принцип действия которого описаны в работе [2], предназначен для непосредственного измерения показателей преломления жидких и твердых тел. Рефрактометр может быть применен в медицине, в химической, фармацевтической, пищевой промышленности и других областях. Измеряемые показатели преломления должны находиться в диапазоне 1.3-1.5.
Рефрактометр ИРФ-454 Б2М с подсветкой, производства Казанского оптико-механического завода, имеет диапазон измеряемых показателей преломления только от 1.2 до 1.7 [3].
Для многоволновых Аббе-рефрактометров DR-M4 японской фирмы ATAGO [4] диапазон измерения показателя преломления значительно выше и составляет 1.5164-1.9164 (для λ=450 нм), 1.4700-1.8700 (для λ=589 нм), 1.4558-1.8557 (для λ=680 нм), 1.4304-1.8303 (для λ=1.100 нм).
Как можно заметить, с помощью известных приборов невозможно определить показатели преломления веществ с n≥1.83 в ближней ИК-области, а длины волн можно установить только дискретно.
Хотя метод смещения луча плоскопараллельной пластиной и рассматривается наряду с другими в числе прочих методик для определения показателя преломления, но к настоящему моменту описание серийных приборов и патентов для определения показателя преломления методом смещения луча от плоскопараллельной пластины авторами не обнаружено, за исключением [5]. Также можно отметить работу Смирновой Л.С. [6], где представлен аналогичный способ регистрации лучей при определении показателя преломления, но для клиновидных, толстых образцов и при нормальном падении луча на образец.
Таким образом, за прототип к настоящему изобретению можно принять оптическое устройство, описанное в [5], где показатель преломления твердого материала определяется методом смещения лазерного луча при его наклонном падении на поверхности плоскопараллельной пластины.
Сущность изобретения по [5] состоит в следующем. Узкий пучок лучей света от источника излучения под определенным углом направляется на плоскопараллельную пластину и, преломляясь на ней, смещается на некоторое расстояние параллельно самому себе относительно своего первоначального направления; измерению подлежит величина смещения пучка лучей. Для повышения точности измерений используются дополнительный прозрачный оптический элемент (эталон) с известными показателем преломления и геометрическими размерами, а также точная система с шаговым двигателем с дискретностью шага менее 0,05 мкм, используемая для формирования и сканирования узких пучков лучей. Для непрерывного изменения длины волны используется монохроматор, работающий в диапазоне длин волн от 200 до 1200 нм. Размер измерительного пучка в поперечном сечении s<1 мм. Таким образом, изобретение-прототип позволяет измерять показатель преломления оптической керамики из Nd:Y2O3 с точностью Δn=±0.004.
Недостатками установки по [5] являются: длительность времени измерений (около одного часа), необходимость использования высокоточного электрического привода и монохроматора, усложняющих устройство и существенно увеличивающих его геометрические размеры.
Задачей настоящего изобретения является создание оптического устройства для определения показателя преломления прозрачных твердых материалов с оптической плотностью выше 1.83 при λ=1100 нм на образцах малой толщины (0.3-1.0 мм) и небольших поперечных размеров (5-8 мм) на фиксированных длинах волн в диапазоне от 400 до 1100 нм, позволяющее сократить время измерений до 2-3 мин и обеспечить точность определения показателя преломления Δn=±0.004.
Поставленная задача достигается с помощью оптического устройства, в состав которого входят следующие основные части: блок диодных лазеров с фиксированными длинами волн в диапазоне спектра 400-1100 нм; механическое устройство, формирующее узкий световой пучок шириной 80-90 мкм; высокочувствительная ПЗС-матрица с высоким разрешением, например, 2592×1944 пикселей; специализированная программа, производящая обработку снимка узких пучков в цифровом формате и оптимизирующая полученные данные; дополнительная прозрачная плоскопараллельная пластина (эталон) с известными показателем преломления и геометрическими размерами. Описанное устройство основано на методе смещения луча плоскопараллельной пластиной.
Отличительными особенностями настоящего изобретения от прототипа являются: использование в качестве источника излучения вместо монохроматора с лампой накаливания - лазерных диодов, вместо детекторов излучения типа ФЭУ - ПЗС-матрицы высокого разрешения, а вместо механического сканирования узких пучков лучей - программная обработка зафиксированных снимков в цифровом формате.
Устройство для формирования узкого (60-120 мкм) измерительного светового пучка лучей и дополнительный прозрачный оптический элемент (эталон) с известными показателем преломления и геометрическими размерами для определения точного угла падения луча на плоскопараллельную пластину используются в предлагаемой заявке без каких-либо изменений.
Одновременная регистрация на ПЗС-матрице трех сигналов (опорного, эталонного и измеряемого) делают совершенно излишней точную систему сканирования оптического сигнала щелью шириной 10-30 мкм посредством шагового двигателя с величиной дискретного шага порядка 0,05 мкм.
Для смены длины волны излучения поочередно устанавливаются разные диодные лазеры, излучающие на длинах волн в диапазоне от 400 до 1100 нм; для регистрации световых пучков применена ПЗС-матрица, чувствительная в видимой и ближней ИК-области спектра. Спектральный диапазон измерений определяется спектральным диапазоном чувствительности ПЗС-матрицы.
Указанные отличия в предлагаемом оптическом устройстве позволяют измерять показатели преломления n≥1.83 (при 1100 нм) прозрачных твердых веществ малой толщины (0,2-1 мм) и небольших размеров (5-12 мм), в широком диапазоне длин волн (400-1100 нм) за 2-3 мин вместо 60.
Сущность заявляемого изобретения поясняется блок-схемой усовершенствованной измерительной установки (фиг. 1), схемой расположения пучков лучей на ПЗС-матрице (фиг. 2) и оптической схемой преломления луча на плоскопараллельной пластине (фиг. 3).
На фиг. 1 представлена блок-схема установки: 1 - блок со сменными лазерными диодами, излучающими на разных длинах волн; 2 - блок с образцом и/или эталоном; 3 - ПЗС-матрица; 4 - преобразователь сигналов; 5 - компьютер. На фиг. 2 - схема расположения на изображении следов от пучков лучей, где 6 - опорный пучок, 7 - пучок, отклоненный эталонным образцом, 8 - пучок, отклоненный исследуемым образцом. На фиг. 3 изображена оптическая схема распространения лазерного луча через плоскопараллельную пластину.
Для определения показателя преломления n образца на основе блока с лазерными диодами и ПЗС-матрицы был собран комплексный прибор, блок-схема которого показана на фиг. 1. Лазерное излучение, сформированное в виде узкого пучка лучей, под определенным углом (см. фиг. 1 и 3) направляется на исследуемый образец и дополнительный прозрачный оптический элемент (эталон - 2). Далее пучок лучей преломляется исследуемым и эталонным образцами, смещается ими на разные расстояния (см. фиг. 2) и попадает на ПЗС-матрицу высокого разрешения, изображения с которой через преобразователь сигналов (4) поступают через USB-разъем на компьютер, где фиксируются в виде цифровых снимков.
Полученные с ПЗС-матрицы данные на экране компьютера (5) представляются в виде изображения четырех линий (см. фиг. 2). Высота падающего пучка лучей выбирается так, чтобы его верхняя и нижняя части, проходя мимо плоскопараллельных пластин образца и эталона, распространялись далее без преломления и формировали на ПЗС-матрице два следа опорного пучка (6).
При падении луча на образец под углом i (см. фиг. 3) происходит преломление луча до угла j. Выходя из образца, луч вновь преломляется и принимает направление, параллельное первоначальному. При этом преломленный луч смещается вдоль нижней плоскости образца на расстояние X.
Измерив по исследуемому образцу смещение X (расстояние между линиями 6 и 8 на фиг. 2), можно определить показатель преломления по следующей формуле
где n - показатель преломления материала, i - угол между падающим лучом и нормалью к поверхности образца, X - смещение луча от первоначального положения, d - толщина образца.
Из формулы (1) следует, что показатель преломления n можно вычислить, экспериментально, измерив угол падения i, толщину образца d и величину смещения X.
Точность определения показателя преломления исследуемого образца сильно зависит от точности нахождения угла падения i. Непосредственное измерение угла падения является отдельной сложной задачей и требует использования точных дорогостоящих оптических приборов, например, типа гониометр. Однако для этой цели применен дополнительный простой оптический элемент, эталон - плоскопараллельная прозрачная пластина из стекла марки К8 с известным показателем преломления и толщиной 1 мм. В качестве эталона можно использовать любое другое твердое прозрачное вещество с показателем преломления n больше 1,5, так как меньшее значение не обеспечивает заявленную точность при определении показателей преломления порядка 2. Зная показатель преломления n, толщину d эталона и экспериментально определив на нем величину смещения X луча (расстояние между линиями 6 и 7 на фиг. 2) посредством численного решения уравнения (1) можно найти угол падения i, по которому затем вычислить искомое значение показателя преломления исследуемого образца.
Исследуемый образец и дополнительная прозрачная плоскопараллельная пластина устанавливаются под одним и тем же углом падения i либо поочередно в держатель образцов, либо вместе параллельно друг к другу. Во втором случае процедура измерений значительно упрощается и ускоряется.
С помощью специальной программы производится попиксельное сканирование зарегистрированного изображения пучков лучей (их следов) и анализируется распределение интенсивности в поперечных сечениях пучков отклоненных лучей. Затем методом усреднения находят для эталонного и измеряемого пучков лучей положение координат X, входящих в расчетную формулу (1), и посредством численного решения уравнения (1) по известному значению показателя преломления n эталона определяется угол i падения пучка лучей на эталон и образец. По найденному углу i и координате X смещения луча, преломленного образцом, по формуле (1) вычисляется показатель преломления n исследуемого материала.
Определенный таким образом показатель преломления для образца из оксида иттрия с неодимом при использовании полупроводникового лазера (650 нм) составил 1.934, что соответствует в пределах ошибок измерений значению в работе [5]. Таким образом, заявляемое оптическое устройство позволило определить показатель преломления оптической керамики из Nd:Y2O3 с точностью не ниже Δn=±0.004, упростить конструкцию и ускорить измерения в 30 раз.
Заявляемое оптическое устройство может быть применено и для других целей, например, для определения клиновидности плоскопараллельных пластин при известном их показателе преломления.
Источники информации
1. Багаев С.П., Осипов В.В., Иванов М.Г., Соломонов В.И. и др. Высокопрозрачная керамика на основе Nd3+:Y2O3. // Фотоника. - 2007. -№5. - с. 24-29.
2. Иоффе Б.В. / Рефрактометрические методы химии, 3 изд., перераб., Л., Химия, 1983.
3. http://kazan-omz.ru/list/Laboratornye-pribory-1891/Refraktometr-laboratornyi-IRF-454B2M.html.
4. Многоволновые Аббе рефрактометры DR-M4. /http://www.atago.ru/stationary/abbe.html.
5. Осипов B.B., Орлов A.H., Каширин В.И., Лисенков В.В. / Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча. Патент №2492449.
6. Смирнова Л.А. / Способ определения показателя преломления клиновидных образцов. Патент №2032166,
Claims (1)
- Оптическое устройство для определения показателя преломления прозрачных твердых веществ образцов с толщиной от 0,2 до 1 мм и размером от 5 до 12 мм, содержащее источник излучения, устройство для формирования узкого пучка лучей шириной 60-120 мкм, образец в виде плоскопараллельной пластины и дополнительный прозрачный оптический элемент с известными показателем преломления и геометрическими размерами, установленный с исследуемым образцом под одним и тем же углом падения либо поочередно в держатель образцов, либо вместе параллельно друг к другу, систему регистрации величины смещения светового луча, отличающееся тем, что в качестве источника излучения используется блок со сменными лазерными диодами, излучающими в диапазоне длин волн 400-1100 нм, а в системе регистрации и обработки данных применяется ПЗС-матрица с разрешением 2592х1944 пикселей и больше.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015132851A RU2615662C2 (ru) | 2015-08-06 | 2015-08-06 | Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015132851A RU2615662C2 (ru) | 2015-08-06 | 2015-08-06 | Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015132851A RU2015132851A (ru) | 2017-02-09 |
RU2615662C2 true RU2615662C2 (ru) | 2017-04-06 |
Family
ID=58453688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015132851A RU2615662C2 (ru) | 2015-08-06 | 2015-08-06 | Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2615662C2 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7233391B2 (en) * | 2003-11-21 | 2007-06-19 | Perkinelmer Las, Inc. | Optical device integrated with well |
US7903243B2 (en) * | 2008-11-21 | 2011-03-08 | Vose James Arnold | Automatic brewster angle refractometer |
RU121590U1 (ru) * | 2012-03-02 | 2012-10-27 | Федеральное государственное бюджетное учреждение науки Институт проблем лазерных и информационных технологий РАН | Спектроскопический рефрактометр-профилометр для измерения показателя преломления и толщины тонкопленочных структур |
US20130155394A1 (en) * | 2010-08-19 | 2013-06-20 | Citizen Holdings Co., Ltd. | Refractive index measurment apparatus and refractive index measurment method |
WO2015065995A1 (en) * | 2013-10-28 | 2015-05-07 | Trustees Of Boston University | Nanoparticles for self referencing calibration |
-
2015
- 2015-08-06 RU RU2015132851A patent/RU2615662C2/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7233391B2 (en) * | 2003-11-21 | 2007-06-19 | Perkinelmer Las, Inc. | Optical device integrated with well |
US7903243B2 (en) * | 2008-11-21 | 2011-03-08 | Vose James Arnold | Automatic brewster angle refractometer |
US20130155394A1 (en) * | 2010-08-19 | 2013-06-20 | Citizen Holdings Co., Ltd. | Refractive index measurment apparatus and refractive index measurment method |
RU121590U1 (ru) * | 2012-03-02 | 2012-10-27 | Федеральное государственное бюджетное учреждение науки Институт проблем лазерных и информационных технологий РАН | Спектроскопический рефрактометр-профилометр для измерения показателя преломления и толщины тонкопленочных структур |
WO2015065995A1 (en) * | 2013-10-28 | 2015-05-07 | Trustees Of Boston University | Nanoparticles for self referencing calibration |
Also Published As
Publication number | Publication date |
---|---|
RU2015132851A (ru) | 2017-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101815325B1 (ko) | 웨이퍼 상에서 고 종횡비의 에칭된 피처의 깊이를 직접 측정하기 위한 시스템 | |
US7495762B2 (en) | High-density channels detecting device | |
JP2008536127A (ja) | ガラス検査装置及びその使用方法 | |
JP6622646B2 (ja) | 透明体の欠陥検出方法及び装置 | |
CN109632721B (zh) | 一种lrspr-荧光成像并行检测装置及lrspr芯片制作方法 | |
KR101127210B1 (ko) | 표면 플라즈몬 공명 결상 타원 계측기 및 표면 플라즈몬 공명 결상 타원 계측방법 | |
KR101794641B1 (ko) | 파장 분리를 이용한 높이 및 형상측정이 가능한 경사 분광시스템 | |
JP2018098785A (ja) | 撮像装置 | |
RU2500993C1 (ru) | Спектрометр на основе поверхностного плазмонного резонанса | |
WO2017007024A1 (ja) | 分光測定装置 | |
JP2007333409A (ja) | 浮遊粒子測定装置 | |
JP5356804B2 (ja) | ラマン散乱光測定装置 | |
US20190310189A1 (en) | Apparatus and method for determining a refractive index | |
RU2615662C2 (ru) | Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров | |
US8541760B2 (en) | Method for calibrating a deflection unit in a TIRF microscope, TIRF microscope, and method for operating the same | |
KR100860267B1 (ko) | 표면 플라즈몬 공명 센싱 시스템 | |
KR101761980B1 (ko) | 광검사 시스템 | |
RU2492449C2 (ru) | Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча | |
KR102465675B1 (ko) | 면적 스캔 기능을 구비한 복합 영상 분광기 | |
RU2535519C2 (ru) | Способ бесконтактного измерения параметров шероховатости поверхности | |
RU2679605C2 (ru) | Флуориметрический анализатор биологических микрочипов | |
RU2014103423A (ru) | Способ измерения показателя преломления и дисперсии и устройство для его реализации | |
JP7170954B1 (ja) | 微粒子計測センサ | |
CN113272060B (zh) | 紧凑的基于成像的传感器 | |
US8400551B2 (en) | High resolution label free imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200807 |