RU2492449C2 - Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча - Google Patents

Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча Download PDF

Info

Publication number
RU2492449C2
RU2492449C2 RU2011146187/28A RU2011146187A RU2492449C2 RU 2492449 C2 RU2492449 C2 RU 2492449C2 RU 2011146187/28 A RU2011146187/28 A RU 2011146187/28A RU 2011146187 A RU2011146187 A RU 2011146187A RU 2492449 C2 RU2492449 C2 RU 2492449C2
Authority
RU
Russia
Prior art keywords
light beam
refractive index
sample
displacement
measurement
Prior art date
Application number
RU2011146187/28A
Other languages
English (en)
Other versions
RU2011146187A (ru
Inventor
Владимир Васильевич Осипов
Альберт Николаевич Орлов
Василий Викторович Лисенков
Владимир Ильич Каширин
Original Assignee
Учреждение Российской академии наук Институт электрофизики Уральского отделения РАН (ИЭФ УрО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт электрофизики Уральского отделения РАН (ИЭФ УрО РАН) filed Critical Учреждение Российской академии наук Институт электрофизики Уральского отделения РАН (ИЭФ УрО РАН)
Priority to RU2011146187/28A priority Critical patent/RU2492449C2/ru
Publication of RU2011146187A publication Critical patent/RU2011146187A/ru
Application granted granted Critical
Publication of RU2492449C2 publication Critical patent/RU2492449C2/ru

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Изобретение относится к оптике и может быть использовано для измерения показателя преломления твердых веществ. Устройство содержит источник излучения, образец в виде плоскопараллельной пластины, устройство регистрации величины смещения светового луча, а также дополнительный оптический элемент с известными показателем преломления и геометрическими размерами, устанавливаемый с исследуемым образцом под одним и тем же углом падения поочередно в держатель образцов, либо вместе параллельно друг к другу. Изобретение позволяет повысить точность измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров. 4 ил.

Description

Изобретение относится к оптике и может быть использовано в качестве рефрактометра для измерения показателя преломления различных прозрачных и полупрозрачных твердых веществ, в частности - оптической керамики.
Экспериментальные образцы оптической керамики из новых наноматериалов после механической обработки обычно имеют толщину 0.5-1 мм с большими величинами показателя преломления (~2) и поперечными размерами 8-12 мм [Багаев С.П., Осипов В.В., Иванов М.Г., Соломонов В.И. и др. Высокопрозрачная керамика на основе Nd3+:Y2O3. // Фотоника. - 2007. - №5. - с.24-29], что накладывают ограничения при выборе методов измерения дисперсии.
В нашей стране и за рубежом рефрактометры для измерения показателя преломления веществ с n~2.0 в диапазоне длин волн 200-1200 нм ввиду их специфики и ограниченного применения серийно не выпускаются. Аналогами данного изобретения является рефрактометры ИРФ-456, ИРФ-454 Б2М и DR-M4 для измерения n на фиксированных длин волн.
Рефрактометр ИРФ-456, устройство и принцип действия которого описаны в работе [Иоффе Б.В. / Рефрактометрические методы химии, 3 изд., перераб., Л., Химия, 1983], предназначен для непосредственного измерения показателей преломления жидких и твердых тел. Рефрактометр может быть применен в медицине, в химической, фармацевтической, пищевой отраслях промышленности и других областях. Диапазон измерения показателя преломления составляет всего 1.3-1.5.
Рефрактометр ИРФ-454 Б2М с подсветкой, производства Казанского оптико-механического завода, имеет диапазон измерения показателя преломления только от 1.2 до 1.7 [http://kazan-omz.ru/list/Laboratomye-pribory-1891 /Refraktometr-laboratomyi-IRF-454B2M.html].
Для многоволновых Аббе рефрактометров DR-M4 японской фирмы ATAGO [Многоволновые Аббе рефрактометры DR-M4. / http://www.atago.ru/stationarv/abbe.html.1 диапазон измерения показателя преломления значительно выше и составляет 1.5164-1.9164 (λ=450nm), 1.4700-1.8700 (λ=589nm), 1.4558-1.8557 (λ=680nm), 1.4304-1.8303 (λ=1.100nm).
Однако с помощью этих приборов невозможно определить показатели преломления веществ с n≥1.83 в ближней ИК-области и длины волн можно установить только дискретно.
Хотя метод смещения луча плоскопараллельной пластиной и рассматривается наряду с другими в числе прочих методик для определения n, но к настоящему моменту описание серийных приборов и патентов для определения показателя преломления методом смещения луча от плоскопараллельной пластины нами не обнаружено. Но можно отметить работу Смирновой Л.С.[Смирнова Л.А. / Способ определения показателя преломления клиновидных образцов. Патент №2032166,.], где представлен аналогичный способ регистрации лучей при определении показателя преломления, но для клиновидных, толстых образцов и при перпендикулярном падении луча на образец.
Прототипом настоящего изобретения является оптическое устройство, описанное в [Лабораторный практикум по общей физике. Оптика. / Сост. А.В. Карпов, Н.И. Ескин, И.С. Петрухин, под редакцией Г.Р. Лошкина. - Дубна: Международный университет природы, общества и человека "Дубна", 2006. - 84 с.], где показатель преломления стеклянной пластины определяется методом смещения лазерного луча при его наклонном падении на поверхности пластин. Смещение луча фиксируется на экране. Все детали установки смонтированы на одной направляющей. Достоинством описанного устройства является его простота и наглядность процедуры измерения. Недостатками же этой установки являются: апертура луча составляет 5-7 мм с нечеткими краями, измерение показателя преломления осуществляется на одной длине волны, отсчеты величины смещения луча на экране производится штангенциркулем или миллиметровой линейкой и измерение показателя преломления осуществляется только в видимой области. В результате, точность измерения показателя преломления составляет не более±0.1.
Технической задачей заявляемого изобретения является создание оптического устройства для измерения показателя преломления прозрачных твердых веществ малой толщины (0.2-1.0 мм) и небольших поперечных размеров (5-7 мм) в диапазоне длин волн от 200 до 1200 нм при оптических плотностей больше 1.83 (λ=1100 нм) и улучшение точности измерения показателя преломления методом смещения луча от плоскопараллельной пластины до 0.005.
Поставленная задача достигается путем создания оптического устройства, которое состоит из следующих основных частей: механического устройства для формирования узкого светового пучка шириной 80-90 мкм; монохроматора, работающего в диапазоне длин волн 200-1200 нм; высокочувствительных фотоприемников для регистрации излучения в спектральном диапазоне 200-1200 нм; устройства точного позиционирования сканирующей оптической щели шириной 10-30 мкм с помощью шагового двигателя с минимальным шагом до 0.05 мкм и дополнительного прозрачного оптического элемента с известными показателем преломления и геометрическими размерами.
Отличиями настоящего изобретения от прототипа являются: использование устройства для формирования узкого измерительного светового пучка (80-90 мкм), дополнительного прозрачного оптического элемента с известными показателем преломления и геометрическими размерами для точного измерения угла падения луча на плоскопараллельную пластину, точной системы сканирования оптического сигнала с шириной щели 10-30 мкм и с шаговым двигателем минимальной величиной дискретного шага до 0.05 мкм. Для непрерывного изменения длины волны устанавливается монохроматор, работающий в диапазоне от 200 до 1200 нм и для регистрации узких световых пучков малой интенсивности применяются оптические фотоумножители высокой чувствительности в ультрафиолетовой, видимой, ближней инфракрасной областях спектра.
Эти отличия в предлагаемом оптическом устройстве позволяют измерить показатели преломления n≥1.83 (1100 нм) прозрачных твердых веществ малой толщины (0.2-1 мм), небольших размеров (5-12 мм) и в широком диапазоне длин волн (200-1200 нм).
Сущность заявляемого изобретения поясняются блок-схемой (фиг.1,) оптической схемой (фиг.2) и результатами измерений, приведенными на фиг.3 и 4. Для определения показателя преломления n образца на базе спектрального комплекса с монохроматором МДР-23 была собран комплексный прибор, блок-схема которой показана на фиг.1. Излучение лампы накаливания ОПП-33, выделенное монохроматором (1), направляется на исследуемый образец или дополнительный оптический элемент (2) под определенным углом. Далее луч преломляется исследуемым образцом и регистрируется высокочувствительными фотоумножителями (3) ФЭУ-106 и ФЭУ-62, электрические сигналы от которых поступают в блок управления и регистрации к монохроматору МДР (4). Высота луча выбирается так, что часть излучения измерительного пучка, проходя мимо плоскопараллельной пластины, распространяется дальше без преломления и формирует опорный сигнал. Распределение интенсивности в зависимости от расстояния (фиг.3) получается при последовательном сканировании опорного и смещенного лучей с помощью узкой щели шириной 10-30 мкм, которая перемещается высокоточным шаговым двигателем (на рис.1 не показан). Полученные данные обрабатываются на персональном компьютере IBM PC(5).
При наклонном падении луча под углом i происходит преломление луча (см. фиг.2), проходящего через образец, угол к нормали которой равен j. Преломленный луч, выходя из образца, вновь преломляется и принимает направление, параллельное падающему. При этом преломленный луч смещается вдоль нижней поверхности на расстояние Х (см. фиг.3). Измерив смещение луча X, можно определить показатель преломление по формуле
n = sin i sin [ a r c t g ( t g i x d ) ] ,
Figure 00000001
где n - показатель преломления вещества, i - угол между падающим лучом и нормалью к поверхности образца, х - смещение луча от первоначального положения, d - толщина пластины (образца).
Из формулы видно, что показатель преломления n можно вычислить экспериментально, измерив угол падения i, толщину образца d и величину смещения X. Результаты измерения приведены в виде графика на фиг.4.
Точность определения показателя преломления исследуемого образца сильно зависит от точности измерения угла падения i. Непосредственное нахождения угла падения является отдельной сложной задачей и требует использования точных дорогостоящих оптических механизмов типа гониометров. Поэтому для этой цели нами применен дополнительный простой оптический элемент - плоскопараллельная прозрачная пластина из стекла марки К-8 с известным показателем преломления и толщиной 0,2-1 мм. В качестве дополнительного оптического элемента можно использовать любое другое твердое прозрачное вещество с показателем преломления n больше 1.5, так как меньшее значение не обеспечивает заявленную точность при определении n. Зная показатель преломления n, толщину дополнительного оптического элемента d и величину смещения луча Х при прохождении через этот образец из формулы находим угол падения i. Исследуемый образец и дополнительная прозрачная плоскопараллельная пластина устанавливаются под одним и тем же углом падения i либо поочередно в держатель образцов, либо вместе параллельно друг к другу. Во втором случае процедура измерения показателя преломления значительно упрощается.
Таким образом, заявляемое изобретение позволило измерить показатель преломления оптической керамики из 1Nd:Y2O3 с точностью Δn=±0.005. Дальнейшее усовершенствование данного оптического устройства сможет снизить погрешность определения показателя преломления твердых прозрачных веществ до ±0.001.
Заявляемое оптическое устройство может быть применено и для других целей, например для определения клиновидности плоскопараллельных пластин при известном их показателе преломления.

Claims (1)

  1. Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча, содержащее источник излучения, образец в виде плоскопараллельной пластины, систему регистрации величины смещения светового луча, отличающееся тем, что установлены источник излучения, действующий в диапазоне 200-1200 нм и высокочувствительные фотоприемники, работающие в ультрафиолетовой, видимой и ближней инфракрасной областях спектра; для измерения величины смещения светового луча применена высокоточная система позиционирования сканирующей оптической щели шириной 10-30 мкм с помощью шагового двигателя с минимальным дискретным шагом перемещения 0,05 мкм; использованы устройство для формирования тонкого светового луча шириной 60-120 мкм, дополнительный прозрачный оптический элемент с известными показателем преломления и геометрическими размерами, причем установленный с исследуемым образцом под одним и тем же углом падения либо поочередно в держатель образцов, либо вместе параллельно друг к другу.
RU2011146187/28A 2011-11-14 2011-11-14 Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча RU2492449C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011146187/28A RU2492449C2 (ru) 2011-11-14 2011-11-14 Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011146187/28A RU2492449C2 (ru) 2011-11-14 2011-11-14 Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча

Publications (2)

Publication Number Publication Date
RU2011146187A RU2011146187A (ru) 2013-05-20
RU2492449C2 true RU2492449C2 (ru) 2013-09-10

Family

ID=48788914

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011146187/28A RU2492449C2 (ru) 2011-11-14 2011-11-14 Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча

Country Status (1)

Country Link
RU (1) RU2492449C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1017978A1 (ru) * 1981-08-21 1983-05-15 Предприятие П/Я Р-6681 Способ определени показател преломлени твердых сред
SU1345099A1 (ru) * 1986-02-10 1987-10-15 Ленинградский Институт Точной Механики И Оптики Способ определени показател преломлени объекта из оптически прозрачного материала
SU1550378A1 (ru) * 1987-11-17 1990-03-15 Предприятие П/Я Г-4046 Способ определени показател преломлени прозрачных сред
JP2002005631A (ja) * 2000-06-16 2002-01-09 Sumitomo Metal Ind Ltd 板体特性測定方法、及び板体特性測定装置
JP2009294079A (ja) * 2008-06-05 2009-12-17 F K Kogaku Kenkyusho:Kk 試料片の厚さ及び屈折率の計測方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1017978A1 (ru) * 1981-08-21 1983-05-15 Предприятие П/Я Р-6681 Способ определени показател преломлени твердых сред
SU1345099A1 (ru) * 1986-02-10 1987-10-15 Ленинградский Институт Точной Механики И Оптики Способ определени показател преломлени объекта из оптически прозрачного материала
SU1550378A1 (ru) * 1987-11-17 1990-03-15 Предприятие П/Я Г-4046 Способ определени показател преломлени прозрачных сред
JP2002005631A (ja) * 2000-06-16 2002-01-09 Sumitomo Metal Ind Ltd 板体特性測定方法、及び板体特性測定装置
JP2009294079A (ja) * 2008-06-05 2009-12-17 F K Kogaku Kenkyusho:Kk 試料片の厚さ及び屈折率の計測方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Лабораторный практикум по общей физике. Оптика. Сост. Карпов А.В. и др. - Дубна: Международный университет природы, общества и человека "Дубна", 2006, с.17-19. *

Also Published As

Publication number Publication date
RU2011146187A (ru) 2013-05-20

Similar Documents

Publication Publication Date Title
US7864317B2 (en) Compact catadioptric spectrometer
US8508744B2 (en) Surface plasmon resonance sensing method and sensing system
US20100320363A1 (en) Optical sensor for measuring emission light from an analyte
US8330959B2 (en) Multi-channel surface plasmon resonance instrument
JP2002542482A (ja) 高スループット蛍光検出のための新規な走査型分光光度計
JP2006308511A (ja) 化学分析装置及びその分析方法
CN109632721B (zh) 一种lrspr-荧光成像并行检测装置及lrspr芯片制作方法
Everall The influence of out-of-focus sample regions on the surface specificity of confocal Raman microscopy
US20100182606A1 (en) Apparatus and method for multi-parameter optical measurements
KR101127210B1 (ko) 표면 플라즈몬 공명 결상 타원 계측기 및 표면 플라즈몬 공명 결상 타원 계측방법
CN212321444U (zh) 表面增强拉曼散射结合spr传感的检测装置
RU2500993C1 (ru) Спектрометр на основе поверхностного плазмонного резонанса
CN103439294A (zh) 角度调制与波长调制spr共用系统
JP6732339B2 (ja) 分光測定装置
ITAN20070019A1 (it) Rifrattometro spettrofotometrico
WO2011019713A1 (en) Ultra dark field microscope
JP5356804B2 (ja) ラマン散乱光測定装置
US8541760B2 (en) Method for calibrating a deflection unit in a TIRF microscope, TIRF microscope, and method for operating the same
RU2492449C2 (ru) Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча
US20050088657A1 (en) Optical measurment device and spectroscopic device
CN103884684A (zh) 一种高精度数字v棱镜折射仪的光学系统
CN203772739U (zh) 一种高精度数字v棱镜折射仪的光学系统
JP2015007548A (ja) 分光蛍光光度計
RU2615662C2 (ru) Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров
JPH0219897B2 (ru)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181115