JP2007520424A - ヒアルロン酸ナノ粒子 - Google Patents

ヒアルロン酸ナノ粒子 Download PDF

Info

Publication number
JP2007520424A
JP2007520424A JP2006516221A JP2006516221A JP2007520424A JP 2007520424 A JP2007520424 A JP 2007520424A JP 2006516221 A JP2006516221 A JP 2006516221A JP 2006516221 A JP2006516221 A JP 2006516221A JP 2007520424 A JP2007520424 A JP 2007520424A
Authority
JP
Japan
Prior art keywords
nanoparticles
hyaluronic acid
polymer
active ingredient
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006516221A
Other languages
English (en)
Other versions
JP4959326B2 (ja
Inventor
マリア、ホセ、アロンソ、フェルナンデス
マリア、デ、ラ、フエンテ、フレイレ
マリア、ベゴーニャ、セイホ、レイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advancell Advanced In Vitro Cell Technologies SA
Original Assignee
Advancell Advanced In Vitro Cell Technologies SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advancell Advanced In Vitro Cell Technologies SA filed Critical Advancell Advanced In Vitro Cell Technologies SA
Publication of JP2007520424A publication Critical patent/JP2007520424A/ja
Application granted granted Critical
Publication of JP4959326B2 publication Critical patent/JP4959326B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、少くとも1種の活性成分の投与用のヒアルロン酸ナノ粒子に関する。本発明によるナノ粒子は、塩形のヒアルロン酸、正荷電ポリマー、ポリアニオン塩および少くとも1種の活性成分を含んでなる。上記ナノ粒子を得る方法は、ヒアルロン酸塩の水溶液を調製し、カチオン性ポリマーの水溶液を調製し、ポリアニオン塩をヒアルロン酸塩の溶液に加え、これら溶液を攪拌混合し、ナノ粒子を生成することからなり、活性成分は、初期溶液の一方にまたは得られたナノ粒子の懸濁液に溶解させ、ナノ粒子に吸収させる。本発明はまた、上記ナノ粒子を含んでなる医薬および化粧品組成物に関する。

Description

発明の背景
発明の分野
本発明は、親水性および疎水性双方の活性高分子の投与用のナノ微粒子系、それを含んでなる組成物、およびそれらの製造方法の開発に関する。これらのナノ粒子は、塩形のヒアルロン酸、好ましくは該ポリマーのナトリウム塩と、正荷電ポリマー、好ましくはキトサンとを含んでなる。好ましくはリン酸塩類から選択されるポリアニオン塩が、上記処方物に配合される。これらのナノ粒子は、様々な経路による生物への活性成分の投与に用いられる。活性成分としては、治療性を有する分子、予防接種および化粧用の成分がある。
背景技術
用いられる投与経路および分子の物理化学的および形態学的特徴の双方に応じて、活性成分の投与は多くの困難を伴う。親水性で大きなサイズの不安定な活性分子を投与するときに、主な欠点が生じることが知られている。さらに、親水性高分子の生体内部への到達は、生体バリアの低い透過性によって制限される。また、ヒトおよび動物双方が有する様々な防御機構のため、それらは分解されやすい。これらの困難は、活性分子の治療標的への到達、ひいては有効な治療を達成するため、解決されねばならない。
ナノメーターサイズ系で高分子を配合すると、それらは上皮バリアから通り抜けやすくなり、分解から保護されることが、明らかにされている。そこで、該バリアと相互作用しうるナノ微粒子系をデザインすることが、粘膜を介して活性成分を透過させるために有望な戦略として提案された。
これら系の、外部バリアを抜けて生体の内部へ到達する能力は、それらのサイズおよび組成の双方に依存することもまた知られている。小さなサイズの粒子は大きなサイズの粒子と比較して輸送度を増す;直径1μm未満のナノ粒子であればこの基準に答えられる。それらが天然、生体適合性および生物分解性のポリマーから製造されるならば、上皮生理機能を変えることなく、既知の輸送メカニズムにより、それらが生体粘膜を通り抜けて自然に輸送される可能性が増すのである。ナノ微粒子系の別な特徴は、それらが封入する活性分子の放出制御と標的組織へのその指向とを可能にすることである。
ヒアルロン酸は天然源のポリマーである。より詳しくは、それは皮下組織および軟骨のような結合組織の細胞外マトリックス、並びに眼球の硝子体および関節窩の滑液に存在するグリコサミノグリカンである。これは、レセプターが存するポリマーであり、そのレセプターとしては、赤血球を除く事実上すべての生物細胞の表面に位置する、CD44およびRHAMMが主要である。ヒアルロン酸とこれらレセプターとの相互作用から、移動性および細胞増殖性などの一定の生理学プロセスを調節しうる。これら性質のゆえに、形態形成および胚発生、癌および炎症のようなプロセスにおいて重要な役割を果たすため、ヒアルロン酸は治療用途を有している。さらに、上記性質のゆえに、ヒアルロン酸は上皮治癒を促進するために用いられている。この生物活性の証拠として、活性生体分子としてヒアルロン酸を用いた多くの研究が存在し、例えば、ヒアルロン酸が乾性角結膜炎の治療に適用されているというSand et al.,Acta Ophthalmol.,67,1989,181-183の報告、およびヒアルロン酸が角膜で創傷治癒剤として適用されているというNishida et al.,Exp.Eye Res.,53,1991,753-758の報告がある。
ヒアルロン酸およびその誘導体は、様々な形で用いられ、多くの特許の目的となっていた。これら文献の一部においては、ヒアルロン酸は活性分子として用いられ、他方においては、薬物放出系の製造における生体材料‐賦形剤として用いられている。かかる分野における利点は、それが、免疫原性がなくて粘膜付着性を有する、生物分解性、生体適合性のポリマーであることに起因している。
ヒアルロン酸が活性分子の一例として挙げられた特許の中で、我々は以下に注目しなければならない。
文献WO9606622は、単独のまたは他の治療剤と組み合わせた、ヒアルロン酸および誘導体の使用であって、表面にヒアルロン酸用のレセプターを発現する組織およびその細胞の細胞活性を調節し、炎症プロセス、線維症または発癌を治療または防止する使用について特許請求している。
特許US6383478は、マイクロ粒子、ナノ粒子またはフィルムからなる放出系であって、血管形成を促進させる活性分子としてヒアルロン酸を配合した放出系に関する。ポリマーフィルムまたは微粒子ビークルは、少くとも2種のアニオン性ポリマー(その中にヒアルロン酸は含まれない)、カチオン性ポリマー(その中にキトサン、ゼラチンおよびコラーゲンは含まれない)および低分子量カチオンにより形成されている。
文献WO0101964は、イオン錯体を後に沈降させ、サイズ範囲5nm〜1mmの粒子を形成させる、反対電荷の親水性ポリマー間におけるイオン錯体の形成に関する。カチオン性ポリマーは、例えばキトサンのような、正電荷を有するポリマーである。デキストラン硫酸塩その他がアニオン性ポリマーとして挙げられている。脱溶媒剤、この場合には硫酸亜鉛の添加により錯体が脱溶媒されたときに、沈降が生じる。これらの微粒子錯体は、生体分子を配合してなり、生体分子はビークルの一部を形成する親水性ポリマーの1種と予めキレート化されている。その記載には多糖類の使用も含んでいるため、ヒアルロン酸も配合される生体分子の1種となりうる。したがって、それは活性分子(ヒアルロン酸)がカチオン性ポリマー(例えば、キトサン)とキレート化された系であり、この錯体を他のアニオン性ポリマー(デキストラン硫酸塩)と相互作用させ、硫酸亜鉛を加えることによりユニットを沈降させる。
文献WO9704747は主に疎水性ポリマーからのナノ粒子の製造を開示しており、該ナノ粒子は付着剤で被覆されている。活性ポリマーの例としてそこでは多糖を挙げており、それはヒアルロン酸でもよいが、明確には挙げられていない。上記特許はナノ粒子を形成しうる物質としてキトサンを示しているが、すべての例が疎水性ポリマーの使用に関するものであり、ナノ粒子を形成するために有機溶媒が必要とされる。
ヒアルロン酸が活性成分放出系製造用の賦形剤として用いられている特許のグループも非常に多い。該系は、単純な錯体、ヒドロゲル、マイクロ小球およびナノ粒子の形で提供されている。
ヒアルロン酸またはその誘導体を組成物中に配合した多くの系の中で、我々は以下の文献に注目すべきである。
文献EP0544259は、キトサンであってもよいアミノ基を有する高分子量物質と、ヒアルロン酸との錯体の製造に関する。この錯体は様々な形で提供され、それが得られるレシピエントのものを選んでいる。
文献WO018274は、キトサンであってもよい正荷電アミノ多糖と、ヒアルロン酸を含む負荷電多糖とから形成される、単純な微粒子錯体である組成物について特許請求している。この微粒子錯体は未制御な沈降方法に従って形成される。換言すると、粒子の形成を制御しうる架橋剤が用いられていないため、得られる粒子は通常不規則で、極めて分散されている。
さらに、異なる方法および組成によるヒドロゲルの製造に関する一連の特許がある。これらの中で、我々は以下を注目すべきである。
US4582865は、ヒアルロン酸ヒドロゲルまたは誘導体の製造であって、単独で、またはセルロース、コラーゲン、キサンタン、カルボキシメチルセルロースなどのような他の親水性ポリマーと組み合わせて、ジビニルスルホンと反応させたときに得られる、ヒアルロン酸ヒドロゲルまたは誘導体の製造に関する。
WO0128602は、ヒアルロン酸のベンジルエステル誘導体、骨形成タンパク質および無機成分として三リン酸カルシウムを含んでなる、ゲルまたはペースト形の、骨形成タンパク質を放出するための注射用処方物の製造について開示している。
文献WO9009401は、リン酸誘導体と反応させてリン酸エステル架橋が形成された後、ポリマー架橋によって得られる、ヒアルロン酸ヒドロゲルまたは誘導体に関する。これらのヒドロゲルは、フィルム、チューブなどの形の、活性成分含有インプラントとして適用上有用である。
文献WO0230990は、2以上のアミノ基を有するカチオン性ポリマー(キトサンを含む)との反応に基づく、ヒアルロン酸の架橋アミド誘導体の製造について開示している。カルボジイミドを用いてこの化学反応を行うためにカルボキシル基活性化剤が必要である。ヒアルロン酸のこのアミド誘導体は、ゲル、膜、ビーズ…の形で存在しうる。
同様に、組成にヒアルロン酸を含む粒子(マイクロ粒子またはナノ粒子)の製造について言及した、一連の文献が存在している。我々は、粒径が1〜100μmであるマイクロ小球またはマイクロ粒子と、サイズが1ミクロン未満であるナノ小球またはナノ粒子とを区別しなければならない。非常に広い粒径範囲(ナノ〜マイクロ)について請求した特許が存在しているが、マイクロ粒子の製造に適用しうる技術の多くはナノ粒子を形成できない。
そこで、特許WO89/03207およびBenedetti et al.,Journal of Controlled Release,13,33-41(1990)の論文では、溶媒蒸発法によるヒアルロン酸マイクロ小球の製造について示している。さらに最近では、文献US6066340は溶媒抽出技術を利用して上記マイクロ小球を得る可能性に関する。それにもかかわらず、そこで言及された技術でナノ粒子の形成を行うことはできないため、上記の文献がナノ粒子の製造について言及しているとはいえないのである。
さらに、ヒアルロン酸の粘膜付着効果とキトサンの吸収促進効果とを組み合わせる目的で、マイクロ微粒子系におけるヒアルロン酸とキトサンとの組合せが提案された。このマイクロ微粒子組合せの価値は、Lim et al.,J.Controll.Rel.,66,2000,281-292およびLim et al.,Int.J.Pharm.,23,2002,73-82の研究で明らかにされている。以前の文献のように、これらのマイクロ粒子は溶媒エマルジョン蒸発技術で製造されていた。
文献US2001053359は、抗ウイルスおよび生体付着物質の鼻内投与のための組合せであって、異なる物質、特にゼラチン、キトサンまたはヒアルロン酸からなり、それらの混合物ではなく、溶液またはマイクロ小球の形で提供される組合わせについて提案している。マイクロ粒子は、噴霧および溶媒エマルジョン/蒸発のような古典的技術によって取得される。取得されると、マイクロ粒子は常用の化学的架橋法(ジアルデヒドおよびジセトン)で硬化される。
文献US2002197328もまた、噴霧によりヒアルロン酸から製造されたマイクロ粒子に関する。上記との差異は、高分子量ヒアルロン酸マイクロ粒子(1,000,000ドルトン以上)に関する点である。請求の範囲では1ミクロン未満の粒子の製造を記載しているが、上記粒子が取得される噴霧プロセスではナノ粒子を得ることはできない。
さらに最近では、US20030026844が、表面にイオン官能基を有する、サイズ10nm〜500μmの孔質粒子に関するものである。これらの粒子は1種以上の生体ポリマー(ヒアルロン酸およびキトサンのような既定の多糖類を含む)から形成されている。この文献によると、イオン化しうる界面活性剤の本質的要素として配合するおかげで、イオン基が形成されている。溶媒抽出または蒸発、噴霧、コアセルベーションおよび超臨界流体の使用のような様々な方法が、これら粒子の形成のために開示されている。請求の範囲では1ミクロンより小さなサイズの粒子の製造を記載しているにもかかわらず、上記文献で開示された方法ではナノ粒子を得ることはできない。
文献WO‐A‐99/47130は、ポリカチオン(キトサンであってもよい)およびポリアニオンからの高分子電解質錯体と、少くとも1種の生物活性成分とを有するナノ粒子に関するものであり、該ナノ粒子は、形成中および後において、高分子電解質錯体を少くとも1種の架橋剤(グリオキサール、TSTUまたはEDAP)でさらに処理することによって得られる。硫酸ポリシランがポリアニオンとして記載されている。
文献US6132750は、表面に少くとも1種のタンパク質(コラーゲン、ゼラチン)および多糖(特にキトサンまたはグリコサミノグリカン)を含有した、サイズの小さな粒子(マイクロおよびナノ粒子)の製造に関する。それらは、アミドまたはエステル結合、および場合により無水物結合を形成する多官能性アシル化剤を用いて、界面架橋により形成されている。金属イオンと反応しうる遊離基がその表面上に留めることがその目的である。
文献WO9918934は、正または負荷電ポリマーから形成される核と、双方の組合せのコーティング物質とからなるナノ粒子に関する。超音波がその製法に適用されねばならない。粒子は、架橋剤(デキストランポリアルデヒド、光架橋ポリマーまたはグルタミルトランスフェラーゼ)との反応により安定化されている。
発明の概要
本発明は、塩形のヒアルロン酸、好ましくは該ポリマーのナトリウム塩と、天然源の正荷電ポリマー、好ましくはキトサンとを含んでなり、それが脱プロトン形のヒアルロン酸と静電気的に相互作用している、ナノ粒子に関する。処方物中には、カチオン分子とイオン的に架橋してゲル化を引き起こしうる、好ましくはリン酸塩類から選択されるポリアニオン塩が配合されている。
ナノ微粒子形中における、ヒアルロン酸とキトサンとの組合せから、治療分野において高ポテンシャルな系が得られる。さらに両ポリマーは反対電荷を有しているため、それらからイオン錯体を生ずる可能性が知られている。錯体とナノ粒子との差異も知られており、錯体と比較したナノ粒子の利点はそれらの組成およびサイズに関する優れた制御性および大きな安定性である。系に安定性を付与するため、それらは化合物間で化学結合を形成する物質を加えることにより架橋されていた。
上記のことから、本発明は、2種のポリマー、ヒアルロン酸およびキトサンの組合せに関し、ナノ微粒子系を得るために、コラーゲンおよびゼラチンのような天然源の他の正荷電ポリマーの代わりにキトサンを用いることができる。同様に、制御された形でナノ粒子の形成を行い、有機溶媒および極端な条件の使用なしで済ませられる、ナノ粒子の製造方法が見出された。したがって、これにより、系中に配合された分解しやすい高分子の完全性は保たれる。望ましいサイズ範囲でナノ粒子の形成を行うためにはそこへ、ヒアルロン酸とのイオン相互作用とともに、正荷電ポリマーのゲル化をもたらす、ポリアニオン塩の添加を行う。したがって、それは、成分間で共有結合を形成させる必要性なく、制御的に生じて系に安定性を付与する、イオンゲル化/相互作用法(ionic gelling/interaction)である。これらナノ粒子は、それらの生体適用に際して、他の大きなサイズの系(マイクロ粒子、ペレット、ヴェーダ(veda)、フィルム、スポンジ…)よりも利点を有する。実際に、薬物放出系と生体表面との相互作用がそのサイズにより大きく左右されることが知られている。即ち、ナノ粒子は上皮および粘膜を通過して薬物輸送系として働くことができるが、マイクロ粒子はその能力を有しない。これら系の生体分布もまた、サイズにより大きく左右される。薬物放出コロイド系において近年得られた知見から、コロイド系(1ミクロン未満)とマイクロ微粒子系には明確な境界を設けられた。
発明の具体的説明
本発明は、ヒアルロン酸塩と、該グリコサミノグリカンと相互作用しうる他の親水性ポリマーとから形成されるナノ粒子の製造について開示しており、上記相互作用は、静電気相互作用によって系を架橋しうるポリアニオン塩により媒介されている。この粒子を得る方法は、有機溶媒および過酷な条件の使用を避けられる簡易な方法である。さらに、上述の通り、架橋プロセスはイオン性であるため、粒子を得る上でいかなるタイプの化学反応も行う必要がない。
第一の態様によれば、本発明は、疎水性または親水性にかかわらず活性成分を配合した、直径1μm未満のヒアルロン酸ナノ粒子を得る方法に関する。この方法は下記の工程からなる:
a)好ましくは0.50〜5mg/mLの濃度で、ヒアルロン酸塩の水溶液を調製し、
b)好ましくは0.50〜5mg/mLの濃度で、カチオン性ポリマーの水溶液を調製し、
c)好ましくは0.25〜1.00mg/mLの濃度で、ポリアニオン塩をヒアルロン酸塩の溶液に加え、
d)b)およびc)において得られた溶液を攪拌混合し、自然発生的(spontaneously)にナノ粒子を得ること。
1種または数種の活性成分は、溶液a)、b)またはc)のうち1つに、あるいはd)において得られたナノ粒子の懸濁液に溶解させ、ナノ粒子に吸着させる。
第二の態様によれば、本発明は、上記方法により得られる、組成、性質および形態に関して特定の特徴を有したナノ粒子であって、ヒアルロン酸、正荷電ポリマー、ポリアニオン塩および高分子を含んでなるナノ粒子に関する。
さらなる態様によれば、本発明は、各々1種以上の医薬または化粧品上許容される賦形剤とともに、上記ナノ粒子を含んでなる医薬または化粧品組成物に関する。
好ましい態様によれば、ヒアルロン酸塩はそのナトリウム塩である。好ましくは、正荷電ポリマーはキトサンであるが、コラーゲンまたはゼラチンを用いることも可能である。
さらに、好ましくは、ポリアニオン塩はリン酸塩類から選択され、そのモデルとしては、構造上多数の負電荷を有するため、トリポリリン酸ナトリウムが挙げられる。
粒子は、様々な割合で上記溶液を混合することにより形成される。したがって、ナノ粒子は、1:0.5:0.1〜1:10:2、好ましくは1:1:0.15〜1:10:1.5の範囲で変動しうる、様々なヒアルロン酸:正荷電ポリマー:アニオン塩成分の割合を有するものである。
ヒアルロン酸粒子を製造する方法には、それらの保管に際してそれらを保存し、それらの初期の特徴を保つことを目的として、追加の凍結乾燥工程を含めてもよい。凍結乾燥形では、ナノ粒子は長期間にわたり保存でき、必要時に、最適量の水を単に加えることで、容易に再生される。ポリマー鎖間で接近が生じて、それがポリマー交差の増加を促し、しかも架橋剤としてのポリアニオンの効果を増強することから、この方法を用いると、ナノ粒子の架橋度は増加する。
粒子凍結乾燥のためには、ヒアルロン酸が凍結保護効果を発揮するため、必要とされるのは、少量の糖を加えることのみである。
この追加工程によれば、本発明はまた、凍結乾燥形の、ヒアルロン酸ナノ粒子および正荷電ポリマー、およびそれらを少くとも1種の医薬または化粧品上許容される賦形剤とともに含有する医薬または化粧品組成物に関する。
ここで開示されたナノ粒子は懸濁および凍結乾燥形の双方で適切な安定性を有し、かかる理由からそれらは長期間にわたり保存しうる。さらに、特定の生体液中のそれらの安定性についても研究したところ、それらがヒトまたは動物への投与後もナノ微粒子形で留まることが保証された。
さらに、組成中にヒアルロン酸を含んでなるナノ粒子は、ムチン(粘膜に存在するタンパク質)と相互作用しうる能力のため、優れた粘膜付着性を有することが証明されており、それらを医薬または化粧品系として非常に有用な系にする。それらは様々な経路で投与され、中でも粘膜投与および関節内注射による投与が非常に重要である。
ヒアルロン酸を含んでなるナノ粒子に配合される活性成分は、処方の意図する治療用途に適した薬物療法性を有している。配合される高分子のヒトまたは動物に対する効果は、投与後に病気を治癒、軽減または予防する目的を有するものである。
本発明によれば、ヒアルロン酸ナノ粒子およびキトサンのようなカチオン性ポリマーはその溶解特徴にかかわらず、高分子を配合する上で適している。会合能力は配合される高分子に依存するが、一般的には親水性高分子および顕著な疎水性のもの双方で高い。活性成分には、薬物、ビタミン、ワクチンなど、または化粧剤が挙げられる。
ナノ粒子に配合すべき高分子は、その製造に用いられる2水溶液のうち一方に予め溶解される。親油性の高分子の場合には、製造技術に変更が加えられたが、それによると、好ましくは約1:1の割合の水および水混和性有機溶媒(好ましくはアセトニトリル)の混合液の少量に、活性成分が溶解され、次いで、これを前記水溶液のうち一方に加え、最終溶液中における有機溶媒の重量濃度は必ず10%未満とする。
本発明で開示されたナノ粒子には2種以上の高分子を配合する可能性があり、これら高分子は同一溶液にまたは双方別々に溶解されるが、この点は、化学的または物理的いずれのタイプの相互作用も生ずることを避ける上で、配合される高分子に依存する。
ヒアルロン酸ナノ粒子は1μm未満の平均直径を有し、したがって、ナノ粒子の定義、ポリマーから形成された1μm未満のサイズを有するコロイド系に該当する。そのサイズは、それらを構成するヒアルロン酸の量、および架橋させる系で用いられるポリアニオン塩の量、およびそれらが含有する活性成分の性質に応じて変わる。
その表面電荷は、それらを構成するポリマーの様々な割合に応じて変わる。さらに詳しくは、ナノ粒子の表面電荷は、それらを構成するヒアルロン酸の量および架橋ポリアニオン塩に応じて、程度が異なる。多くの場合、生物の生体表面、特に粘膜は負に荷電しているため、表面電荷は正の値を有することが有利である。したがって、ナノ粒子の正電荷は相互作用に有利であり、結果的に、それは標的組織で作用するナノ微粒子系に高分子を加えておく上で都合がよい。
ナノ粒子はヒトまたは動物への活性物質の放出制御用または遅延型放出用の手段であることから、これらナノ粒子の形成に際して含有されるヒアルロン酸の量は、さらに配合される高分子の放出を調節すると思われる。
次いで、本発明の特徴および利点のさらなる理解のために、決して制限を加えることなく、上記の説明を補完する一連の実施例について言及する。
下記例の説明に際して、一連の略記が用いられている:
HANa:ヒアルロン酸ナトリウム塩
CS:キトサン
TPP:トリポリリン酸ナトリウム
FITC‐BSA:蛍光で標識されたアルブミン
CsA:シクロスポリンA
SLF:擬似涙液
例1
ナトリウム塩形で、カチオン性ポリマーがキトサンでありかつ架橋剤がトリポリリン酸ナトリウムであるヒアルロン酸ナノ粒子を、前記方法に従い製造した。ヒアルロン酸塩およびトリポリリン酸ナトリウムの溶液をキトサン溶液へ磁気攪拌しながら加え、それを半時間維持し、安定なナノ微粒子形に向けて系の完全な生成を行う。製造した時点でそれらの平均直径を測定し、それらの表面電荷(ゼータ電位)および生産収率(パーセンテージで表示され、配合ポリマーの重量に対するナノ粒子の重量を考慮する)を計算する。表1並びに図1、2および3は、HA‐Na、CsおよびTPPの割合に従いパラメーターとして得られた値を示している。
Figure 2007520424
例2
ナトリウム塩形で、カチオン性ポリマーがキトサンでありかつ架橋剤がトリポリリン酸ナトリウムであるヒアルロン酸ナノ粒子を、前記方法に従い製造した。次いで、親水性分子をその組成物中に配合したが、上述の目的からFITC‐BSAを選択した。それはpH(キトサン溶液の場合には3、およびヒアルロン酸塩およびトリポリリン酸ナトリウム溶液の場合には8〜8.5)のため、両溶液中で負荷電の高分子であり、この理由から、粒子形成に際して妨害の出現を避けるためにヒアルロン酸とともに配合した。
ポリマー重量に対して30%の理論荷電を確立し、本発明による方法に従い製造した後に、封入効率を決定した(λ=494nmで、可視分光法により遊離タンパク質を評価する)。その平均直径も測定した。生産収率は、配合されたポリマーおよびタンパク質の重量を考慮して調べた。この最後の情報を考慮して、粒子の真の荷電容量を決定することができた。
Figure 2007520424
例3
ナトリウム塩形で、カチオン性ポリマーがキトサンでありかつ架橋剤がトリポリリン酸ナトリウムであるヒアルロン酸ナノ粒子を、前記方法に従い製造した。次いで、疎水性分子をその組成物中に配合したが、そのために、特に適度な温度において水に事実上不溶性の免疫調節剤、ポリペプチド シクロスポリンAを選択した。製造方法は本発明で既に開示されたものであって、1つの修正を加えたものであり、高分子を10mg/mLの濃度で50%(V/V)アセトニトリル/水溶液に溶解させる。次いで、少量のこの溶液約200μLをキトサン溶液へ加え、その後直ちに、ヒアルロン酸塩および架橋剤を含有した溶液を加える。薬物封入体はナノ結晶の形をとり、そのため第二溶液の添加工程は速やかであり、高分子を沈降させずに、ナノ粒子の配合を促進させる。
ポリマー重量に対するCsAの理論荷電が25%と確立し、本発明の方法に従い製造された時点で、封入効率を決定した(λ=200nmで、紫外線分光法により遊離ポリペプチドを評価する)。その平均直径も測定した。生産収率は、配合されたポリマーおよびポリペプチドの重量を考慮して決定した。この最後の情報を考慮して、粒子の真の荷電容量を決定することができた。
Figure 2007520424
例4
ナトリウム塩形で、カチオン性ポリマーがキトサンでありかつ架橋剤かつトリポリリン酸ナトリウムであるヒアルロン酸ナノ粒子を、前記方法に従い製造した。経時的に系生成の情報を得る目的で、1月間にわたり、粒径および表面電荷測定を行った。このために、ヒアルロン酸量の異なる、種々の処方物を選択した。理論的HANa/CS/TPP割合は1/2/0.4(黒ひし形)、1/2.5/0.25(黒丸)、1/3/0.5(黒四角)、1/3/0.66(−)および1/10/1.5(黒三角)であった。図4および5に記載された結果は、保存中に、パラメーター、サイズおよびゼータ電位のわずかな変動を示した。
例5
ヒアルロン酸、キトサンおよびTPPのナノ粒子を本発明に従い製造した。疎水性分子CsAを例3に記載された形で配合した。次いで、経時的な系安定性を調べるために、1週間にわたりナノ粒子の直径を測定した。いかなる結晶成長も観察されなかったことから、薬物は粒子に取り込まれ、ナノ結晶の形で沈降しないことも確認された。ナノ粒子量に対して25%の割合でCsAの荷電量が定められた。粒子形成ポリマーおよび架橋剤の割合、HANa/CS/TPPは、1/2/0.4(黒ひし形)および1/3/0.5(黒四角)であった。
例6
ナトリウム塩形で、カチオン性ポリマーがキトサンでありかつ架橋剤がトリポリリン酸ナトリウムであるヒアルロン酸ナノ粒子を、前記方法に従い製造した。1/2/0.4HANa/CS/TPPの割合を用い、これらの粒子のおいて、凍結乾燥工程で用いられた凍結保護剤のタイプがサイズに及ぼす効果を調べた。凍結乾燥させる懸濁液中のナノ粒子濃度に及ぼす影響もまた評価した。予備アッセイ後、2種の糖、グルコースおよびトレハロースを凍結保護剤として選択し、それらの濃度を一定に保ち、5%(w/V)とした。
例7
本発明の方法で製造され、5%(w/V)グルコースの存在下で凍結乾燥されたナノ粒子を、pH7.4でありかつ高いイオン濃度を有するSLF中でインキュベートした。選択された処方物は前例と同様であった。粒子の平均直径測定を24時間行った。
例8
ナトリウム塩形で、カチオン性ポリマーがキトサンでありかつ架橋剤がトリリン酸ナトリウムであるヒアルロン酸ナノ粒子を、前記方法に従い製造した。製造された処方物は組成HANa/CS/TPP:1/2/0.4のものであり、凍結保護剤として5%グルコースを用い48時間かけて凍結乾燥させた。次いで、これについて、SLFおよび4%ムチン溶液を用いて、粘膜付着試験を行った。
ヒアルロン酸は、ゲル形で粘弾性挙動を有するポリマーである。コロイド懸濁液の場合、レオロジー挙動はより複雑である。粘性は粒子の表面の性質に大きく影響される。
ナノ粒子の粘膜付着性を、50%:ナノ粒子/ムチン、ナノ粒子/SLFおよびムチン/SLFで調製された混合物から調べた。弾性モジュール値(G′)及びビスコースモジュール(G″)を観察すると、他の2種の合計から見て、第一の混合物に関する相乗作用の存在は、系が粘膜付着性を有することを示している。用いられた数学式は以下であった:
G′=G′ ナノ粒子−4%ムチン−(G′ ナノ粒子−SLF+G′ 4%ムチン−SLF
弾性モジュールおよびビスコースモジュールの結果は図10および11に示される。

Claims (24)

  1. 直径1μm未満の、少くとも1種の活性成分の投与用のナノ粒子を得る方法であって、
    a)ヒアルロン酸塩の水溶液を調製し、
    b)カチオン性ポリマーの水溶液を調製し、
    c)ポリアニオン塩を前記ヒアルロン酸塩溶液に加え、
    d)前記b)およびc)において得られた溶液を攪拌混合し、自然発生的にナノ粒子を得ることを含んでなり、
    前記a)、b)またはc)において得られた溶液のうち1つに、あるいは前記d)において得られたナノ粒子の懸濁液に、前記活性成分を溶解させ、ナノ粒子に吸収させる、方法。
  2. 前記ヒアルロン酸塩溶液が0.50〜5mg/mLの濃度で調製される、請求項1に記載の方法。
  3. 前記カチオン性ポリマー溶液が0.5〜5mg/mLの濃度で調製される、請求項1または2に記載の方法。
  4. 前記アニオン塩が0.25〜1.00mg/mLの濃度で加えられる、請求項1〜3のいずれか一項に記載の方法。
  5. 前記活性成分が高分子である、請求項1〜4のいずれか一項に記載の方法。
  6. 前記高分子が親油性を有する場合、該高分子を、溶液a)またはb)のうち一方に配合する前に、水および水混和性有機溶媒の混合液に溶解し、最終溶液中における有機溶媒の濃度を10重量%未満とする、請求項5に記載の方法。
  7. 前記有機溶媒がアセトニトリルである、請求項6に記載の方法。
  8. 前記ヒアルロン酸塩がナトリウム塩である、請求項1〜7のいずれか一項に記載の方法。
  9. 前記カチオン性ポリマーがキトサンである、請求項1〜8のいずれか一項に記載の方法。
  10. 前記カチオン性ポリマーがコラーゲンまたはゼラチンである、請求項1〜9のいずれか一項に記載の方法。
  11. 前記ポリアニオン塩がトリポリリン酸ナトリウムである、請求項1〜10のいずれか一項に記載の方法。
  12. 最終溶液におけるヒアルロン酸:カチオン性ポリマー:ポリアニオン塩の割合が1:0.5:0.1〜1:10:2である、請求項1〜11のいずれか一項に記載の方法。
  13. ヒアルロン酸:カチオン性ポリマー:ポリアニオン塩の割合が1:1:0.15〜1:10:1.5である、請求項1〜11のいずれか一項に記載の方法。
  14. 前記d)の後に、得られたナノ粒子を少量の糖の存在下で凍結乾燥する追加工程e)を含んでなる、請求項1〜13のいずれか一項に記載の方法。
  15. 前記e)の後に、凍結乾燥ナノ粒子を再生する追加工程f)を含んでなる、請求項14に記載の方法。
  16. 請求項1〜15のいずれかにより得られる、活性成分の投与用のナノ粒子。
  17. ヒアルロン酸塩、カチオン性ポリマー、ポリアニオン塩および活性成分を含んでなる、活性成分の投与用のナノ粒子。
  18. 前記活性成分が高分子である、請求項17に記載のナノ粒子。
  19. 前記ヒアルロン酸塩がナトリウム塩である、請求項17または18に記載のナノ粒子。
  20. 前記カチオン性ポリマーがキトサンである、請求項17〜19のいずれか一項に記載のナノ粒子。
  21. 前記カチオン性ポリマーがコラーゲンまたはゼラチンである、請求項17〜19のいずれか一項に記載のナノ粒子。
  22. 前記ポリアニオン塩が三リン酸ナトリウムである、請求項17〜21のいずれか一項に記載のナノ粒子。
  23. 請求項16〜22のいずれか一項に記載されたナノ粒子を含んでなる、医薬または化粧品組成物。
  24. 粘膜における局所または非経口投与用の医薬組成物の製造における、請求項16〜22のいずれか一項に記載されたナノ粒子の使用。
JP2006516221A 2003-06-20 2004-06-17 ヒアルロン酸ナノ粒子 Expired - Fee Related JP4959326B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES200301456A ES2226567B1 (es) 2003-06-20 2003-06-20 Nanoparticulas de acido hialuronico.
ESP200301456 2003-06-20
PCT/ES2004/000284 WO2004112758A1 (es) 2003-06-20 2004-06-17 Nanopartículas de ácido hialurónico

Publications (2)

Publication Number Publication Date
JP2007520424A true JP2007520424A (ja) 2007-07-26
JP4959326B2 JP4959326B2 (ja) 2012-06-20

Family

ID=33522604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006516221A Expired - Fee Related JP4959326B2 (ja) 2003-06-20 2004-06-17 ヒアルロン酸ナノ粒子

Country Status (11)

Country Link
US (1) US20060188578A1 (ja)
EP (1) EP1652517B8 (ja)
JP (1) JP4959326B2 (ja)
KR (1) KR20060065585A (ja)
AT (1) ATE546135T1 (ja)
AU (1) AU2004248936B2 (ja)
BR (1) BRPI0411678A (ja)
CA (1) CA2535364C (ja)
ES (1) ES2226567B1 (ja)
NO (1) NO20056239L (ja)
WO (1) WO2004112758A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509481A (ja) * 2009-12-09 2013-03-14 バイオジェニックス インコーポレイテッド オリゴマー複合体の形成による難溶性/不溶性活性物質の可溶化方法
JP2014076971A (ja) * 2012-10-11 2014-05-01 Pola Chem Ind Inc キトサン及びヒアルロナンを含むナノ粒子の製造方法
JP2014091708A (ja) * 2012-11-02 2014-05-19 Pola Chem Ind Inc ヒアルロナンを含むナノ粒子
JP2017066046A (ja) * 2015-09-28 2017-04-06 嘉寛 徳留 ヒアルロナンを含む複合粒子を含有する乳化組成物
JP2018065756A (ja) * 2016-10-17 2018-04-26 ポーラ化成工業株式会社 アニオン性ポリマー及びペプチドを含む複合粒子及びその製造方法
JP2018065760A (ja) * 2016-10-18 2018-04-26 ポーラ化成工業株式会社 アニオン性ポリマー及びカチオン性ポリマーを含む複合粒子
WO2018074237A1 (ja) * 2016-10-17 2018-04-26 ポーラ化成工業株式会社 アニオン性ポリマー及びカチオン性ポリマー若しくはペプチドを含む複合粒子並びにその製造方法
WO2022172790A1 (ja) * 2021-02-10 2022-08-18 株式会社 資生堂 化粧料

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142208A1 (en) 2002-05-09 2005-06-30 Won Min Yoo Pharmceutical composition for treatment of wounds conntaining blood plasma or serum
US7495052B2 (en) 2004-09-15 2009-02-24 Bausch & Lomb Incorporated Method for the production of polymerized nanoparticles and microparticles by ternary agent concentration and temperature alteration induced immiscibility
US7282194B2 (en) * 2004-10-05 2007-10-16 Gp Medical, Inc. Nanoparticles for protein drug delivery
WO2006113668A1 (en) 2005-04-15 2006-10-26 University Of South Florida A method of transdermal drug delivery using hyaluronic acid nanoparticles
US8467868B1 (en) * 2005-04-26 2013-06-18 University Of South Florida Method of transdermal drug delivery
US7323184B2 (en) * 2005-08-22 2008-01-29 Healagenics, Inc. Compositions and methods for the treatment of wounds and the reduction of scar formation
JP2009537604A (ja) * 2006-05-24 2009-10-29 アドヴァンスド イン ヴィトロ セル テクノロジーズ ソシエダッド アノニマ 活性分子の投与のためのキトサンおよびヒアルロナンのナノ粒子
EP1859792A1 (en) * 2006-05-24 2007-11-28 Advanced in Vitro Cell Technologies, S.L. Nanoparticles of chitosan and hyaluronan for the administration of active molecules
KR100774925B1 (ko) * 2006-12-01 2007-11-08 주식회사유한양행 표적지향을 위한 나노입자 및 그의 제조방법
KR100852944B1 (ko) * 2007-02-15 2008-08-19 (주)아모레퍼시픽 화학적으로 가교된 히알루론산 하이드로겔 나노입자의제조방법
US20090087569A1 (en) * 2007-09-27 2009-04-02 Fenchem Enterprises Ltd. Methods for Preparing Highly Stable Hyaluronic Acid
WO2009091992A1 (en) * 2008-01-16 2009-07-23 Purdue Research Foundation Repairing damaged nervous system tissue with nanoparticles
ITMI20080284A1 (it) * 2008-02-22 2009-08-23 Indena Spa Agenti antitumorali a struttura benzofenantridinica e formulazioni che li contengono
KR101421049B1 (ko) * 2008-02-29 2014-07-21 (주)아모레퍼시픽 립-플럼핑 및 주름 개선 효과를 주는 입술용 화장료 조성물
KR101006755B1 (ko) * 2008-07-07 2011-01-10 한국과학기술원 활성산소를 감지하는 히알루론산 금 나노입자 및 이의제조방법
US20120107229A1 (en) * 2009-04-15 2012-05-03 Xuefei Huang Novel nano-probes for molecular imaging and targeted therapy of diseases
JP5804453B2 (ja) * 2009-05-14 2015-11-04 国立大学法人 東京大学 結晶性ポリオール微粒子及びその調製方法
EP2266546A1 (en) 2009-06-08 2010-12-29 Advancell Advanced in Vitro Cell Technologies,S.A. Process for the preparation of colloidal systems for the delivery of active compounds
GB201017889D0 (en) * 2010-10-22 2010-12-01 Univ Dublin A polymeric nanoparticle
KR101294719B1 (ko) * 2010-12-31 2013-08-08 연세대학교 산학협력단 키토산-트리포스페이트/히알루론산을 이용한 신경손상 치료용 유전자 전달체
ES2385995B2 (es) 2011-01-10 2013-05-21 Universidade De Santiago De Compostela Nanocápsulas con cubierta polimérica
US20160193343A1 (en) * 2013-06-10 2016-07-07 Aihol Corporation Composition for use in treating and preventing inflammation related disorder
US20140005379A1 (en) 2012-06-20 2014-01-02 Frank GU Nanoparticle delivery system and components thereof
US9878000B2 (en) 2012-06-20 2018-01-30 University Of Waterloo Mucoadhesive nanoparticle composition comprising immunosuppresant and methods of use thereof
WO2014064121A2 (en) * 2012-10-25 2014-05-01 Unilever Plc Improvements relating to surface treatment compositions
CZ304654B6 (cs) * 2012-11-27 2014-08-20 Contipro Biotech S.R.O. Nanomicelární kompozice na bázi C6-C18-acylovaného hyaluronanu, způsob přípravy C6-C18-acylovaného hyaluronanu, způsob přípravy nanomicelární kompozice a stabilizované nanomicelární kompozice a použití
CZ2014150A3 (cs) 2014-03-11 2015-05-20 Contipro Biotech S.R.O. Konjugáty oligomeru kyseliny hyaluronové nebo její soli, způsob jejich přípravy a použití
CZ2014451A3 (cs) 2014-06-30 2016-01-13 Contipro Pharma A.S. Protinádorová kompozice na bázi kyseliny hyaluronové a anorganických nanočástic, způsob její přípravy a použití
WO2016066864A1 (es) 2014-10-30 2016-05-06 Innovaciones Fisicas Y Quimicas Sostenibles, S.L. Nanopartículas para la liberación controlada de ingredientes activos
CZ309295B6 (cs) 2015-03-09 2022-08-10 Contipro A.S. Samonosný, biodegradabilní film na bázi hydrofobizované kyseliny hyaluronové, způsob jeho přípravy a použití
CZ2015398A3 (cs) 2015-06-15 2017-02-08 Contipro A.S. Způsob síťování polysacharidů s využitím fotolabilních chránicích skupin
CZ306662B6 (cs) 2015-06-26 2017-04-26 Contipro A.S. Deriváty sulfatovaných polysacharidů, způsob jejich přípravy, způsob jejich modifikace a použití
CZ308106B6 (cs) 2016-06-27 2020-01-08 Contipro A.S. Nenasycené deriváty polysacharidů, způsob jejich přípravy a jejich použití
CN107998103A (zh) * 2018-01-19 2018-05-08 近镒生技股份有限公司 载体结构、药物载体、其制造方法及其用途
CN111334468A (zh) * 2020-03-12 2020-06-26 李鑫荣 一种低分子量透明质酸片段诱发血红细胞钱串状聚集的应用
CN115645377A (zh) * 2022-11-04 2023-01-31 华东理工大学 包载挥发性精油的纳米级天然聚电解质凝聚体的制备方法
CN115814169A (zh) * 2022-12-15 2023-03-21 宁波旸曜医疗科技有限公司 一种鼻窦支架及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018934A1 (en) * 1997-10-09 1999-04-22 Vanderbilt University Micro-particulate and nano-particulate polymeric delivery system
US20010051189A1 (en) * 1996-07-29 2001-12-13 Universidade De Santiago De Compostela Application of nanoparticles based on hydrophilic polymers as pharamaceutical forms
WO2004098564A2 (en) * 2003-05-02 2004-11-18 The Board Of Trustees Of The University Of Illinois Biodegradable nanoparticles comprising an aminoglycoside and a polymer like a polysaccharide

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582865A (en) * 1984-12-06 1986-04-15 Biomatrix, Inc. Cross-linked gels of hyaluronic acid and products containing such gels
GB8601100D0 (en) * 1986-01-17 1986-02-19 Cosmas Damian Ltd Drug delivery system
FR2642329B1 (fr) * 1989-01-31 1991-05-24 Bioetica Sa Utilisation de solutions d'atelocollagene et de glycosaminoglycannes pour la fabrication de microcapsules, microcapsules ainsi realisees, procedes de fabrication de telles microcapsules et compositions cosmetiques ou pharmaceutiques ou alimentaires en contenant
CA2049103C (en) * 1990-09-06 1996-10-01 Royce Lewis Implant assist apparatus
IT1247472B (it) * 1991-05-31 1994-12-17 Fidia Spa Processo per la preparazione di microsfere contenenti componenti biologicamente attivi.
US5565215A (en) * 1993-07-23 1996-10-15 Massachusettes Institute Of Technology Biodegradable injectable particles for imaging
US20010053359A1 (en) * 1994-07-26 2001-12-20 Peter Watts Drug delivery composition for the nasal administration of antiviral agents
ES2098188B1 (es) * 1995-05-11 1997-12-16 Univ Santiago Compostela Desarrollo de nanoparticulas a base de polimeros hidrofilicos.
PT752245E (pt) * 1995-07-05 2002-09-30 Europ Economic Community Nanoparticulas biocompativeis e biodegradaveis destinadas a absorcao e administracao de farmacos proteinaceos
US7276251B2 (en) * 1997-04-01 2007-10-02 Lg Life Sciences, Ltd., Inc. Sustained-release composition of drugs encapsulated in microparticles of hyaluronic acid
ES2114502B1 (es) * 1996-07-29 1999-07-01 Univ Santiago Compostela Aplicacion de nanoparticulas a base de polimeros hidrofilicos como formas farmaceuticas.
US20030170313A1 (en) * 1997-10-09 2003-09-11 Ales Prokop Micro-particulate and nano-particulate polymeric delivery system
FR2777193B1 (fr) * 1998-04-14 2001-06-08 Coletica Particule a groupement hydroxamique chelatante d'ions metalliques et leur utilisation en cosmetique ou en pharmacie
FR2777895A1 (fr) * 1998-04-28 1999-10-29 Debio Rech Pharma Sa Polymere sequence non-reticule,procede pour sa preparation, et ses utilisations
US20030059465A1 (en) * 1998-05-11 2003-03-27 Unger Evan C. Stabilized nanoparticle formulations of camptotheca derivatives
IN191203B (ja) * 1999-02-17 2003-10-04 Amarnath Prof Maitra
WO2000064954A1 (en) * 1999-04-22 2000-11-02 Vanderbilt University Polymeric encapsulation system promoting angiogenesis
US6743446B2 (en) * 1999-12-15 2004-06-01 The Ohio State University Research Foundation Methods for stabilizing biologically active agents encapsulated in biodegradable controlled-release polymers
US6465425B1 (en) * 2000-02-10 2002-10-15 Alkermes Controlled Therapeutics, Inc. Microencapsulation and sustained release of biologically active acid-stable or free sulfhydryl-containing proteins
US6749865B2 (en) * 2000-02-15 2004-06-15 Genzyme Corporation Modification of biopolymers for improved drug delivery
WO2001078687A1 (en) * 2000-04-18 2001-10-25 Peptron Inc. Injectable sustained release pharmaceutical composition and processes for preparing the same
ES2221530B1 (es) * 2002-07-19 2006-02-16 Universidad De Santiago De Compostela Nanoparticulas para la administracion de ingredientes activos,procedimiento para la elaboracion de dichas particulas y composicion que las contienen.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051189A1 (en) * 1996-07-29 2001-12-13 Universidade De Santiago De Compostela Application of nanoparticles based on hydrophilic polymers as pharamaceutical forms
WO1999018934A1 (en) * 1997-10-09 1999-04-22 Vanderbilt University Micro-particulate and nano-particulate polymeric delivery system
WO2004098564A2 (en) * 2003-05-02 2004-11-18 The Board Of Trustees Of The University Of Illinois Biodegradable nanoparticles comprising an aminoglycoside and a polymer like a polysaccharide

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509481A (ja) * 2009-12-09 2013-03-14 バイオジェニックス インコーポレイテッド オリゴマー複合体の形成による難溶性/不溶性活性物質の可溶化方法
JP2014076971A (ja) * 2012-10-11 2014-05-01 Pola Chem Ind Inc キトサン及びヒアルロナンを含むナノ粒子の製造方法
JP2014091708A (ja) * 2012-11-02 2014-05-19 Pola Chem Ind Inc ヒアルロナンを含むナノ粒子
JP2017066046A (ja) * 2015-09-28 2017-04-06 嘉寛 徳留 ヒアルロナンを含む複合粒子を含有する乳化組成物
JP2018065756A (ja) * 2016-10-17 2018-04-26 ポーラ化成工業株式会社 アニオン性ポリマー及びペプチドを含む複合粒子及びその製造方法
WO2018074237A1 (ja) * 2016-10-17 2018-04-26 ポーラ化成工業株式会社 アニオン性ポリマー及びカチオン性ポリマー若しくはペプチドを含む複合粒子並びにその製造方法
EP3527194A4 (en) * 2016-10-17 2020-08-19 Pola Chemical Industries Inc. COMPOSITE PARTICLES COMPRISING AN ANIONIC POLYMER AND A CATIONIC POLYMER OR PEPTIDE, AND PROCESS FOR THE PRODUCTION OF COMPOSITE PARTICLES
EP3799858A1 (en) 2016-10-17 2021-04-07 Pola Chemical Industries Inc. Method for producing composite particles
TWI784978B (zh) * 2016-10-17 2022-12-01 日商寶麗化成工業股份有限公司 包含陰離子性聚合物及陽離子性聚合物或胜肽之複合粒子以及其製造方法
US11707419B2 (en) 2016-10-17 2023-07-25 Pola Chemical Industries, Inc. Composite particles including anionic polymer and cationic polymer or peptide, and method for producing composite particles
JP2018065760A (ja) * 2016-10-18 2018-04-26 ポーラ化成工業株式会社 アニオン性ポリマー及びカチオン性ポリマーを含む複合粒子
WO2022172790A1 (ja) * 2021-02-10 2022-08-18 株式会社 資生堂 化粧料

Also Published As

Publication number Publication date
ES2226567B1 (es) 2006-07-01
NO20056239L (no) 2005-12-29
EP1652517B8 (en) 2012-04-11
AU2004248936B2 (en) 2009-05-07
ATE546135T1 (de) 2012-03-15
WO2004112758A1 (es) 2004-12-29
CA2535364C (en) 2011-11-29
EP1652517A1 (en) 2006-05-03
AU2004248936A1 (en) 2004-12-29
ES2226567A1 (es) 2005-03-16
JP4959326B2 (ja) 2012-06-20
US20060188578A1 (en) 2006-08-24
CA2535364A1 (en) 2004-12-29
KR20060065585A (ko) 2006-06-14
BRPI0411678A (pt) 2006-08-29
EP1652517B1 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4959326B2 (ja) ヒアルロン酸ナノ粒子
Sailaja et al. Different techniques used for the preparation of nanoparticles using natural polymers and their application
JP5191884B2 (ja) キトサンおよびシクロデキストリンを含んでなるナノ粒子
Sinha et al. Chitosan microspheres as a potential carrier for drugs
ES2204837T3 (es) Metodo para la preparacion de microesferas que contienen sistemas coloidales.
Hussain et al. Hyaluronic acid functionalized nanoparticles for simultaneous delivery of curcumin and resveratrol for management of chronic diabetic wounds: Fabrication, characterization, stability and in vitro release kinetics
US20080254078A1 (en) Chitosan-Based Particles
Zheng et al. Biodegradable and redox-responsive chitosan/poly (L-aspartic acid) submicron capsules for transmucosal delivery of proteins and peptides
JP2009537604A (ja) 活性分子の投与のためのキトサンおよびヒアルロナンのナノ粒子
EP0860166B1 (en) Nanoparticles based on hydrophilic polymers as pharmaceutical forms
CN101137700A (zh) 微粒及医药组合物
JP2005505529A (ja) 脂質化グリコサミノグリカン粒子ならびに診断及び処置のための薬物及び遺伝子送達におけるその使用
ES2279172T3 (es) Nanoparticulas para la administracion de ingredientes activos, procedimiento para la elaboracion de dichas particulas y composiciones que las contienen.
Safdar et al. Preparation, characterization and stability evaluation of ionic liquid blended chitosan tripolyphosphate microparticles
Shariatinia Biopolymeric nanocomposites in drug delivery
KR20120084303A (ko) 약물 함유 미립자를 포함하는 의약 조성물 및 그 제조 방법
EP1859792A1 (en) Nanoparticles of chitosan and hyaluronan for the administration of active molecules
Feng et al. Natural Hydrogels Applied in Photodynamic Therapy
MXPA05013920A (en) Hyaluronic acid nanoparticles
El-Houssiny et al. A newly developed transdermal treatment of osteoarthritis using gelatin nanoparticles
Kim Recent trends and notable advances of alginate based nano-particles for effective biomedical materials: Wound healing and drug delivery
Badadare et al. Overview on intranasal mucoadhesive drug delivery
Cui et al. One-step surface modification of poly (lactide-co-glycolide) microparticles with heparin
Mohite et al. Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry
Sahaya Arockiadass Formulation and Evaluation Valsartan Angiotensin Receptor Blocker.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees