JP2007151342A - 回転体駆動制御装置および画像形成装置 - Google Patents

回転体駆動制御装置および画像形成装置 Download PDF

Info

Publication number
JP2007151342A
JP2007151342A JP2005344268A JP2005344268A JP2007151342A JP 2007151342 A JP2007151342 A JP 2007151342A JP 2005344268 A JP2005344268 A JP 2005344268A JP 2005344268 A JP2005344268 A JP 2005344268A JP 2007151342 A JP2007151342 A JP 2007151342A
Authority
JP
Japan
Prior art keywords
rotation
phase
detected
motor
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005344268A
Other languages
English (en)
Inventor
Satoshi Imai
聡 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005344268A priority Critical patent/JP2007151342A/ja
Priority to US11/594,159 priority patent/US7536135B2/en
Priority to EP06255856A priority patent/EP1791031A3/en
Priority to CN200610162859A priority patent/CN100589038C/zh
Publication of JP2007151342A publication Critical patent/JP2007151342A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/75Details relating to xerographic drum, band or plate, e.g. replacing, testing
    • G03G15/757Drive mechanisms for photosensitive medium, e.g. gears
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0142Structure of complete machines
    • G03G15/0178Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image
    • G03G15/0194Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image primary transfer to the final recording medium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5008Driving control for rotary photosensitive medium, e.g. speed control, stop position control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00071Machine control, e.g. regulating different parts of the machine by measuring the photoconductor or its environmental characteristics
    • G03G2215/00075Machine control, e.g. regulating different parts of the machine by measuring the photoconductor or its environmental characteristics the characteristic being its speed
    • G03G2215/0008Machine control, e.g. regulating different parts of the machine by measuring the photoconductor or its environmental characteristics the characteristic being its speed for continuous control of recording starting time
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • G03G2215/0138Linear arrangement adjacent plural transfer points primary transfer to a recording medium carried by a transport belt
    • G03G2215/0141Linear arrangement adjacent plural transfer points primary transfer to a recording medium carried by a transport belt the linear arrangement being horizontal
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2221/00Processes not provided for by group G03G2215/00, e.g. cleaning or residual charge elimination
    • G03G2221/16Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements and complete machine concepts
    • G03G2221/1651Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements and complete machine concepts for connecting the different parts
    • G03G2221/1657Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements and complete machine concepts for connecting the different parts transmitting mechanical drive power

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】回転制御の基準検出と制御開始を高速に実施する回転体駆動制御装置を提供する。
【解決手段】モータの回転力を伝達する伝達機構と、伝達機構に連結されモータの回転力で回転駆動される回転体と、回転体の回転軸12を中心にした円周上に配設されたスリット13a〜13dを検出する検出器14と、スリット13a〜13dのうち隣り合うスリットの区間が検出器14を通過する通過時間を、検出器14からの信号に基づいて検出する通過時間検出手段と、通過時間検出手段で検出された通過時間に基づいて、回転体の所望周期に関する回転周期変動の振幅と位相を生成する振幅位相生成手段と、振幅位相生成手段で生成された振幅と位相に基づき、回転周期変動を低減するようにモータの回転を制御する回転制御手段と、スリット13a〜13dの幅γ1〜γ4が互いに異なっているとき、スリット13aを基点として、モータの回転制御開始時の位相を振幅位相生成手段で生成された位相に基づき変更する制御基準変更手段とを備えた。
【選択図】図3

Description

本発明は、モータ等で回転体を回転駆動させたときに、その回転体の回転周期変動を低減するのに好適な回転体駆動制御装置、およびその回転体駆動制御装置を搭載した画像形成装置に関する。
図1を用いて画像形成装置の説明をする。図1は、4色タンデム型カラープリンタ等のカラー画像形成装置である。まず、図1の構成について説明する。5は制御器で、画像形成装置全体を制御する。1a〜1dは感光体ドラムである。1aはブラック、1bはシアン、1cはマゼンタ、1dはイエローがそれぞれ潜像される。2a〜2dは露光装置で、所望の潜像を感光体ドラム1a〜1d上に形成する。6a〜6dは感光体ドラム1a〜1dを回転駆動するモータである。ベルト3はベルト駆動モータ4で駆動されて、転写紙7を搬送する。
次に、図1の画像形成装置の動作について説明する。画像形成が開始されると、転写紙7が図示しない給紙ユニットからベルト3まで搬送される。そして、ベルト3で受け渡されて、各色の感光体ドラム上に順次搬送される。このとき、露光装置2a〜2dによって真上から感光体ドラム1a〜1d上に潜像される。この部分にトナーが吸着されて、転写紙7の通過とともに感光体ドラムの真下にある転写紙7へトナーは転写される。図1に示したような画像形成装置において、各色の感光ドラム1a〜1dはDCブラシレスモータ等で駆動されるが、以下に示す(i)(ii)により、形成した画像において副走査方向の位置ずれが発生する。
(i) トルクリップル等によるモータ回転周期変動
(ii) 歯車の累積ピッチ誤差、回転軸の偏心等による伝達駆動系誤差
図1においては、たとえば、感光体ドラム1a〜1dの回転軸とモータ6a〜6d間を遊星歯車による伝達機構とする場合である。これらの誤差は、図1の形態に限らず、1つの感光体を用いたリボルバー方式で複数の色を形成し、重ねて出力する形態や、1つの感光体で単色画像を形成する形態においても同様の影響により画像の位置ずれが発生する。
現在、カラー機において画像を高速に出力することが可能である図1の方式が主流となっている。この形態では、特に各色で形成した画像の位置ずれが色の重ね合せのずれ、いわゆる色ずれとなり、画質の劣化が顕著に現れる。
従来の画像形成装置では、画質を向上するために、いくつかの対応策を施していた。DCサーボモータの回転周期変動に対しては、モータ軸回転角速度を検出してフィードバックする制御系を用いていた。また、伝達駆動系の誤差に対しては、感光体ドラム軸にロータリーエンコーダを設け、その検知結果によりモータ6a〜6dの回転を制御する方法を用いていた。さらには、感光体ドラム軸と同一軸上にある歯車の最大偏心位置を製造工程で検出して、4つの感光体ドラム軸にある歯車偏心位置を調節して組み付けていた。そして、偏心による回転周期変動夫々の位相を同期させて、色ずれを軽減していた。
複数の感光体ドラム間の周期的な回転周期変動の位相を同期させて色ずれを軽減する方法として、各色の感光体ドラムに関する回転周期変動の位相が同一となる基準位置を予め設けて、回転周期変動の位相を一致させるように回転駆動させて同一箇所を転写することが提案されている(特許文献1、特許文献2)。また、前述したように、複数の感光体ドラム軸歯車の最大偏心位置を検出して、複数色の色重ね時に色ずれを軽減するように、組み付けで高精度な軸合せを行い、位相を調節する方法もある。
しかし、上記方法によって感光体ドラム回転周期変動による色ずれの影響を軽減するように回転周期変動の位相を合せても、回転周期変動の振幅値は各々の感光体ドラムで異なる。この振幅値の差が影響して、各色の画像を重ね合わせたときに、画素の色ずれが発生する。つまり、感光体ドラムの回転周期変動の位相を互いに合せて相対的な色ずれ量を小さくしても、回転周期変動の振幅の差だけ色ずれが生じてしまう。したがって、色ずれを軽減した高品質の出力画像を得るためには、振幅の絶対量を低減させる必要がある。この場合、ドラム1回転に相当する回転周期変動の振幅値が与える画素の位置ずれへの影響が、他の回転周期変動の振幅値が与える画素の位置ずれへの影響と比較して大きいことが知られている。
回転周期変動の振幅を低減させる公知技術としては、回転周期変動を周波数分析して、補正対象の周波数成分を検出し制御する技術が提案されている(特許文献3)。しかし、この特許文献3の技術では、回転周期変動を検出するエンコーダのスリットあるいは検出部を多数必要とし、構成のコストアップを招いていた。
そこで、この解決策として、画像品質に影響を与える回転周期変動のみを狙って検出し、制御する方法が考えられている。たとえば、モータ軸の回転周期変動を周波数分析し、その周波数成分に減速比を乗算することで、ドラム軸の回転周期変動に相当する周波数成分を計算し、その結果に基づいて回転むらを抑制するようにモータを制御する方法が提案されている(特許文献4)。
また、回転板上のスリット間を通過する時間を計測して、所望の回転周期変動を検出する方式が提案されている(特許文献5)。この方式は、従来のように、回転板上のスリットが一定時間中に通過する個数をカウントして回転周期変動を検出するロータリーエンコーダよりも、スリット間隔や個数を少なくでき、簡易で低コストな構成で実現できる利点がある。
また、第1メモリに記憶されている速度指令値に基づいて駆動装置制御を開始し、引続き順次制御することにより、像担持体の表面移動速度変動の抑制を図ること(特許文献6)や、書き換え可能なメモリを有することで、温度変化やギヤの摩耗等によって感光体の回転変動が発生した場合でも、適当なタイミングで速度の変化を検出し、回転変動を抑制することも提案されている(特許文献7)。
さらに、スリット通過時のタイミングパルスがハイレベルとなるパルスの間隔を変更することで、制御開始の基準位置を検出できるようにすることも提案されている(特許文献8、特許文献9)。
特公平8−10372号公報 特開2000−137424号公報 特開2002−72816号公報 特開2000−356929号公報 特開2005−312262号公報 特開2000−295882号公報 特許第3259440号公報 特開平6−227062号公報 特開平6−234253号公報
しかしながら、特許文献4では、駆動軸の回転周期変動を検出した結果から、従動軸の回転周期変動を検出するとともに、回転周期変動を補正制御しているが、その回転周期変動を補正するタイミングまでは考慮されておらず、補正制御の高速な開始は実現できない。また、特許文献5では、スリット幅を変更することで、基準位置と回転周期変動を同時に検出できるが、検出した回転周期変動に対して基準位置を複数設置し、それぞれの基準位置において如何様にして制御開始をするのかが考慮されておらず、この場合も、補正制御の高速な開始は実現できない。
また、特許文献6や特許文献7では、回転周期変動検出用のセンサに加えて、基準位置検出用のセンサを設けて、回転周期変動の補正タイミングを実施しているため、センサの個数が多くなり、コストアップや検出装置全体の大型化、さらには入出力処理が煩雑になるという問題がある。特に、回転周期変動の補正タイミングを高速に実施する場合、複数の基準検出用スリットを設ける必要があり、回転周期変動検出と兼用することは、実質上、不可能である。
さらに、特許文献8や特許文献9では、基準位置検出用のスリットを他のスリット幅と異ならせることで、制御開始の基準検出を実施しているが、活字部材の基準を検出しているものであり、回転周期変動を補正する基準を検出する構成ではない。つまり、エンコーダ類によって回転体の回転周期変動を予め検出して、その回転周期変動を打ち消すように補正制御するものではない。
本発明は、上記の問題点を解決するためになされたもので、回転周期変動検出用と基準検出用のスリットとを兼用し、かつ、基準検出用スリットを複数設けることで、回転制御の基準検出と制御開始を高速に実施できる回転体駆動制御装置、およびそれを搭載した画像形成装置を提供することを課題とする。
上記過怠を解決するために、請求項1に記載の発明は、モータと、前記モータの回転力を伝達する伝達機構と、前記伝達機構に連結され前記モータの回転力で回転駆動される回転体と、前記回転体の回転軸を中心にした円周上に配設された被検出部を少なくとも3個有し、該被検出部を検出する検出器と、前記被検出部のうち隣り合う被検出部間の区間が前記検出器を通過する通過時間を、前記検出器からの検出信号に基づいて検出する通過時間検出手段と、前記通過時間検出手段で検出された通過時間に基づいて、前記回転体の所望周期に関する回転周期変動の振幅と位相を生成する振幅位相生成手段と、前記振幅位相生成手段で生成された振幅と位相に基づき、前記回転周期変動を低減するように前記モータの回転を制御する回転制御手段と、前記被検出部のうち3個以上の被検出部の幅が互いに異なっているとき、該被検出部を基点として、前記モータの回転制御開始時の位相を前記振幅位相生成手段で生成された位相に基づき変更する制御基準変更手段と、を備えたことを特徴としている。
上記構成によれば、被検出部間の間隔で回転周期変動を検出し、被検出部単独の幅で回転制御の基準を検出することで、基準検出の専用センサを用いずとも回転周期変動に対する回転制御を高速に開始できる。
請求項2に記載の発明は、モータと、前記モータの回転力を伝達する伝達機構と、前記伝達機構に連結され前記モータの回転力で回転駆動される回転体と、前記回転体の回転軸を中心にした円周上に配設された被検出部を少なくとも3個有し、該被検出部を検出する検出器と、前記被検出部のうち隣り合う被検出部間の区間が前記検出器を通過する通過時間を、前記検出器からの検出信号に基づいて検出する通過時間検出手段と、前記通過時間検出手段で検出された通過時間に基づいて、前記回転体の所望周期に関する回転周期変動の振幅と位相を生成する振幅位相生成手段と、前記振幅位相生成手段で生成された振幅と位相に基づき、前記回転周期変動を低減するように前記モータの回転を制御する回転制御手段と、前記被検出部間の間隔のうち3個以上の間隔が互いに異なっているとき、該被検出部を基点として、前記モータの回転制御開始時の位相を前記振幅位相生成手段で生成された位相に基づき変更する制御基準変更手段と、を備えたことを特徴としている。
上記構成によれば、被検出部間の間隔を通過時間で識別可能に設定し、回転周期変動の検出と回転制御基準の検出を分離処理することで、基準検出の専用センサを用いずとも回転周期変動に対する回転制御を高速に開始できる。
請求項3に記載の発明は、モータと、前記モータの回転力を伝達する伝達機構と、前記伝達機構に連結され前記モータの回転力で回転駆動される回転体と、前記回転体の回転軸を中心にした円周上に配設された被検出部を少なくとも3個有し、該被検出部を検出する検出器と、前記被検出部のうち隣り合う被検出部間の区間が前記検出器を通過する通過時間を、前記検出器からの検出信号に基づいて検出する通過時間検出手段と、前記通過時間検出手段で検出された通過時間に基づいて、前記回転体の所望周期に関する回転周期変動の振幅と位相を生成する振幅位相生成手段と、前記振幅位相生成手段で生成された振幅と位相に基づき、前記回転周期変動を低減するように前記モータの回転を制御する回転制御手段と、前記被検出部のうち3個以上の被検出部の幅もしくは前記被検出部間の間隔のうち3個以上の間隔が互いに異なっているとき、該被検出部を基点として、前記モータの回転制御開始時の位相を前記振幅位相生成手段で生成された位相に基づき変更する制御基準変更手段とを備え、前記通過時間検出手段、前記振幅位相生成手段、前記回転制御手段および前記制御基準変更手段により、少なくとも二つ以上の回転周期変動を補正することを繰り返すことを特徴としている。
上記構成によれば、複数の回転周期変動それぞれに対する回転制御それぞれの基準を、被検出部の幅や被検出部間の間隔で検知することで、複数の回転周期変動に対しても、基準検出の専用センサを用いずに回転周期変動に対する回転制御を高速に開始できる。
請求項4に記載の発明は、請求項3において、前記制御基準変更手段は、前記二つ以上の所望周期に関する前記回転制御開始時の各位相を、前記振幅位相生成手段で生成された位相のそれぞれに基づき一括して変更することを特徴としている。このように構成すれば、複数の回転体の回転周期変動それぞれを補正する場合でも、一括して基点ごとの位相情報を更新していくことで、至るところの基点で複数の回転周期変動をまとめた回転制御を開始できる。
請求項5に記載の発明は、請求項1〜4のいずれか一項において、前記通過時間検出手段で検出される通過時間は、前記回転体の所望周期に関する回転周期変動の半周期であり、前記各区間のうち隣り合う各区間の位相差は、前記回転周期変動の4分の1周期ずれるよう設定されていることを特徴としている。このように構成すれば、回転周期変動の検出感度が向上するような回転4半周期間隔に被検出部が設けられた構成であっても、基準検出の専用センサを用いずに実施できることで、検出感度を高くした回転周期変動の検出・補正ができる。
請求項6に記載の発明は、請求項1〜4のいずれか一項において、前記制御基準変更手段は、前記振幅位相生成手段を用いて、前記回転体の所望周期に関する回転周期変動の振幅と位相を逐次的に生成し、前記基点となる複数の被検出部に対応した位相情報に変更することを特徴としている。このように構成すれば、回転周期変動の検出を稼動中に行う方式でも基準検出の専用センサを用いずに実施できることで、回転周期変動の振幅や位相が経時・環境によって変化しても補正できる。
請求項7に記載の発明は、請求項1〜4のいずれか一項において、前記被検出部は、前記回転体の回転軸に設けられた回転板上に取り付けられていることを特徴としている。このように構成すれば、回転体の回転軸に設けられた回転板上での検出でも基準検出の専用センサを用いずに実施できることで、直接回転体の回転周期変動を検出した、高精度な回転制御ができる。
請求項8に記載の発明は、請求項1〜4のいずれか一項において、前記検出器は、前記回転体の回転軸に対して軸対称に2箇所に設けられていることを特徴としている。このようにすれば、検出器を2箇所取り付ける構成でも基準検出の専用センサを用いずに実施できることで、2個の検出器で被検出部の取付偏心の影響を除去した、高精度な回転制御ができる。
請求項9に記載の発明は、請求項1又は3において、前記被検出部は、前記回転体が一回転する範囲内で、前記幅が狭から広へと順次変化していくように配置されていることを特徴としている。このように構成すれば、回転周期変動を容易に検出することができる。
請求項10に記載の発明は、請求項2又は3において、前記被検出部は、前記回転体が一回転する範囲内で、前記間隔が狭から広へと順次変化していくように配置されていることを特徴としている。このように構成すれば、回転周期変動を容易に検出することができる。
請求項11に記載の発明は画像形成装置の発明であり、請求項1〜10のいずれか一項に記載の回転体駆動制御装置が搭載され、且つ前記回転体として感光体ドラムが設けられたことを特徴としている。
上記構成によれば、感光体ドラムの回転制御に基準検出の専用センサを用いずに実施できることで、低コストで小型な構成で、かつ、高速に回転制御を開始可能な画像形成装置が実現できる。
本発明によれば、回転制御の基準検出と制御開始を高速に実施できる回転体駆動制御装置、およびその回転体駆動制御装置を搭載した画像形成装置を実現することができる。
以下、本発明の実施例を図面に従って説明する。
本発明の実施例を、図2の構成を持つ画像形成装置で説明する。図2は、図1に示した感光体ドラム駆動制御機構のうちの単体の駆動制御装置の構成図である。
図2のDCサーボモータ6はカップリング9aを通じて駆動ギヤ10を回転駆動する。駆動ギヤ10は従動ギヤ11に駆動力を伝達し、従動ギヤはカップリング9b,9cを介して、感光体ドラム1を回転させる。感光体ドラム1の回転軸12には、被検出部13を備えた回転板12Aが設けられ、回転軸12とともに回転する。このとき、被検出部13が検出器14を通過すると、検出器14はパルス信号15を制御器8に送信する。制御器8は、感光体ドラム1の回転周期変動を検出して、回転周期変動を抑制するようにモータ速度基準信号16をモータ6に向けて送信する。
感光体ドラム1はモータ6と駆動ギヤ10と感光体ドラム1の回転軸12に固定された従動ギヤ11により駆動される。歯車減速比はたとえば1:20である。ここで、回転駆動機構の歯車列を1段としたのは、部品点数を少なくし低コストにするためと、歯車を2つにして歯形誤差や偏心による伝達誤差の要因を少なくするためである。また、1段減速機構としたことで高い減速比を設定すると、感光体ドラム1の回転軸12上にある従動ギヤ11は感光体ドラム1の径より大きな大口径歯車となる。したがって、感光体ドラム1上に換算した大口径歯車の単一ピッチ誤差は小さくなり、副走査方向の印字位置ずれと濃度むら(バンディング)の影響が少なくなる効果もある。ただし、減速比は、感光体ドラム1の目標回転角速度とDCモータ特性において、高効率が得られる回転角速度領域より決定される。
本実施例では、カップリング9a、駆動ギヤ10、従動ギヤ11及びカップリング9b,9cは伝達機構を、感光体ドラム1は回転体をそれぞれ構成している。また、通過時間検出手段、振幅位相生成手段、回転制御手段及び制御基準変更手段等は、制御器8が構成している。
感光体ドラム回転軸12の大きな回転周期変動は3つある。1つは、歯車噛合い周期で発生している回転周期変動である。これは、歯の単一ピッチ誤差や負荷変動、慣性モーメントとの関係に起因するバックラッシュが主な原因である。しかし、本駆動機構の構成では、前述したように、従動ギヤ11の径は感光体ドラム1の径より大きいので、感光体ドラム1上、つまり画像上に換算すると、歯単一ピッチ分の変動は小さく影響は少ない。
2つ目の変動は、モータ1回転で発生している回転周期変動である。これは、モータ軸の駆動ギヤ10における歯の累積ピッチ誤差や偏心による伝達誤差が主な原因である。ただし、本駆動機構の実施例では、モータ軸の駆動ギヤ10の回転周期は、従動ギヤ11の半回転周期の自然数分の1となっている。つまり、感光体ドラム回転中心から光書き込み位置と転写位置へ向かう線の角度がπの場合は、光書き込み位置の変動と転写位置の変動が同位相となり、転写画像の位置ずれへの影響を軽減できる。
ところが、この構成だけでは、搬送ベルトで搬送される転写紙と感光体ドラム間の速度差により画素の太りは抑圧できない。したがって、本発明のように回転周期変動を抑える方が、より画質がよくなる。なお、この位相合せをしておくと制御誤差があったときの影響が軽減でき、かつ感光体ドラム周期変動を検出するときの計測誤差を軽減できる。また、感光体ドラム回転中心から光書き込み位置と転写位置へ向かう線の角度がπでない場合は、感光体ドラム回転中心から光書き込み位置と転写位置へ向かう線の角度をモータ軸が自然数回分だけ回転する角度となるようにする。さらに、本発明では、感光体ドラム回転周期変動検出のための検出区間を通過する時間が、モータ軸の回転周期の自然数倍となるようにする。
3つ目の変動は、感光体ドラム1回転で発生している回転周期変動である。これは、従動ギヤ11の歯の累積ピッチ誤差や偏心による伝達誤差が主な原因である。また、従動ギヤ11の軸と感光体ドラム回転軸12との連結がカップリング9b,9cで行われているため、両軸の軸心位置誤差や偏角も原因の一つとなる。
そこで、ドラム1回転あるいはモータ1回転で発生している回転周期変動を簡易な機構で検出し、補正制御するように考えられたものが特許文献5の発明である。図2は、ドラム1回転(回転軸12の1回転)に相当する回転周期の変動を検出する構成である。この方式では、被検出部であるスリット13の通過を検出器であるセンサ14が検知し、スリット間の通過時間を計測し、回転周期変動を検出している。スリット通過時のパルス信号は、通過時に0FF(信号が立ち下がる)となるように設定することで、鋭敏なパルス形状を検知することで検出精度を向上している。
このとき、回転周期変動を検出し補正するためにはホーム位置(回転基準)を検出する必要がある。従来においては、モータ回転速度が目標速度に到達した直後に検出したパルス信号に対応する被検出部をホーム位置と設定し、同時にパルスカウンタをリセットする。そして、1回転に設けられた被検出部13の数を予め記録して、被検出部13通過時のパルス数を連続してカウントしていけば、常にホーム位置が分かる。この方式では、電源ON時に毎回ホーム位置の決定とそれに対応した補正データを作成する。このとき、どこをホーム位置にしたかは回路あるいはファームウェアで常に認識しておく。この場合、ホーム位置を検出するために、パルスカウントを常時記録する必要がある。また、回転の状態によってはドラムを1回転近く回転してから、ホーム位置を検出し回転制御を開始する可能性がある。このことは、近年、立ち上がり時間短縮の要求が厳しくなっている画像形成装置にとって問題となっている。
本実施例によって解決される、回転基準専用の検出器を設けずに、かつ、最長でもドラム1回転もせずに回転基準を検出できる構成と処理について、図3を用いて説明する。図3は、ドラム1回転の回転周期変動を検出するための4個のスリット13a〜13dの幅(角度)γ1〜γ4それぞれが相異なるように構成している。γ1〜γ4は、回転周期変動による通過時間の変化が数百マイクロ秒以下であることから、数ミリ秒程度の差がつくように構成する。これは、装置の目標回転速度に数ミリ秒を乗じることで、どれだけの角度差を設ければよいかを計算できる。実際に、スリットを通過したときに検出されるパルス信号を時間軸で表記したグラフを図4上段に示す。
τ1〜τ4は、回転周期変動量に依らず、常に互いに数ミリ秒程度の差があるため、この時間差をもって判別できる。そして、パルス信号の立下ったときの時間間隔をもって回転周期変動を検出する。ただし、本実施例では、スリット通過時にパルス信号を立ち下がる構成にしているが、スリット通過時にパルス信号が立ち上がる構成にしてもよい。このときのパルス信号のタイミングと回転周期変動の位相を対応付けたグラフを図4中段に示す。ここで、ωはドラムの平均回転速度、Aは回転周期変動の振幅、α1〜α4は各パルス信号立下りタイミングでの回転周期変動の位相である。
スリットを90度間隔ごとに配置している場合は、α1=α2−π/2=α3−π=α4−3π/2が成り立つ。このことは、90度間隔のスリット配置ならば、α1〜α4全ての位相を記録している必要はなく、絶対的な基準であるα1の位相だけ記録しておき、残りは90度ずつ足していく処理をすればよく、メモリが節約できる。回転周期変動を検出した後、振幅Aと位相α1を記録する。その後、再びモータを起動して、回転周期変動の回転制御をする場合には、記録されている振幅と位相の情報を用いて、図4の下段に示すグラフのようにモータの目標速度を変更する。ここで、Dは減速比である。
実際には、モータが当初の目標速度に到達した後、図5のように4個のスリットいずれかを検出した時点で、次のスリット検知時における位相を決定する。したがって、目標速度に到達後、初めて検知したスリットから回転制御を開始するのではなく、1/4回転タイムラグをもって回転制御を開始する。なお、図3において、スリット13a〜13dが形成された回転板12Aは矢印A方向に回転する。
本方式の処理フローを図6に示す。簡単のため、回転周期変動は予め検出しており、回転周期変動の振幅Aと位相α1(α2,α3,α4)を記録しているとする。まず、モータを目標速度D×ωに到達するまで回転し(ステップS1)、適宜、モータの回転速度をチェックする(ステップS2)。モータ回転速度が目標速度に到達した後、パルス信号を検出するフローに入る(ステップS3)。
そして、立下りのパルス信号を検出(ステップS3−1)した後、内蔵のタイマカウンタを0に設定してカウントアップを開始する(ステップS3−2)。そして、立ち上がりのパルス信号を検出(ステップS3−3)した後、タイマカウントアップを停止する(ステップS3−4)。そして、計測したタイマ値が、予め定めたη1より大きいかどうかを判断する(ステップS3−5)。η1は、ドラムの平均回転速度とスリット幅で予想できるτ1とτ2の中間値を設定する。η1より小さい場合は、スリットは13aを通過したと判断して、Numを1に設定する。η1より大きい場合は、η2より大きいかどうかを判断する(ステップS3−6)。η2は、ドラムの平均回転速度とスリット幅で予想できるτ2とτ3の中間値を設定する。η2より小さい場合は、スリットは13bを通過したと判断して、Numを2に設定する。η2より大きい場合は、η3より大きいかどうかを判断する(ステップS3−7)。η3はドラムの平均回転速度とスリット幅で予想できるτ3とτ4の中間値を設定する。η3より小さい場合は、スリットは13cを通過したと判断して、Numを3に設定する。また、η3より大きい場合は、スリットは13dを通過したと判断して、Numを4に設定する。そして、Numの数字に対応する位相を決定する(α)。このとき、ステップS3で検出したスリットの次のスリット通過と同時に、回転制御を開始するので、位相はNumに1を加えた位相とする。つまり、スリット13a通過(Num=1)をステップS3で検出した場合、位相αはα2(Num=2に対応)と設定する。
そして、再びパルス信号の立下りを検出すると(ステップS5)、タイマカウンタを0に設定し(ステップS6)、直ちにモータ目標速度を変更して回転制御を開始する(ステップS7)。なお、本特許における実施例では、スリット通過時にパルス信号をOFFで検出した構成で説明しているが、ONで検出してもよい。
また、スリットが形成された回転板12Aの回転軸12に対する取付偏心を除去するために、検出器2個を回転軸12に対して軸対称に配置する構成がある。この構成を図7に示す。この場合は、回転基準を検出するマスターセンサを検出器14aあるいは14bのどちらかに決めておき、上述の処理フローと同様の処理を実施すればよい。
実施例1では、スリット4個の幅をそれぞれ異なる構成にすることで、回転位置の情報を取得していた。しかし、スリット幅を変更するため、幅の広いスリット部分では強度が不足したり、スリット製作時にはスリット幅を変更した加工器具を必要とすることになる。そこで、スリット幅を変更せずとも、回転基準用のスリットを新たに設けることで、回転周期変動と回転基準の検出を同一センサで実施できる構成と処理について説明する。実施例2では、図8の構成を用いて説明する。図8は、回転周期変動を検出するスリット13a〜13dに加えて、前記スリットの回転後に検出されるよう配置されたスリット13e〜13hを有す。
本方式での、スリット検知のパルス信号と回転周期変動との対応関係を図9に示す。実施例1では、パルス信号がOFFとなっている時間τ1〜τ4を区別して、回転基準位置を検出していた。それに対して、本実施例では、隣接するパルス信号の立下り区間の時間を計測して、回転基準位置を検出する。
この場合の処理フローを図10に示す。図6と比較して、ステップS3−3とステップS3−4が異なる。本実施例では、この部分について詳しく説明する。立下りパルス信号を検出し(ステップS3−1)、タイマカウントアップを開始した後(ステップS3−2)、タイマ値がη4を超えないかどうか判断する(ステップS3−3)。η4は、ドラムの平均回転速度とスリット幅で予想できるτ4を設定する。これは、実施例1と異なり、立下りパルス信号検出のフローステップS3が、たとえば図8の13aと13eの間ではなく、13eと13bの間で行われる可能性を除去している。そして、1回目の立下りパルス信号検出からη4より短い間に2回目の立下りパルス信号を検出(ステップS3−4)した後、タイマカウントアップを停止する(ステップS3−5)。このような構成と処理を行うことで、一定幅のスリットだけを有する回転板を製作しても、回転基準の検出を高速に行うことができる。
本実施例の場合も、図7に示したように、2個の検出器14a,14bを回転軸12に対して軸対称に配置することができる。
実施例2では、スリット8個の構成でドラム1回転の回転周期変動を検出し、最長でも1/4回転のタイムラグで回転制御を開始することができる。本実施例では、さらにタイムラグを短縮できる構成について説明する。この構成を図11に示す。図11は、図8と異なり、回転周期変動を検出するスリットは13e〜13hであり、前記スリットの回転前に検出されるよう配置されたスリット13a〜13dを有す。
本方式での、スリット検知のパルス信号と回転周期変動との対応関係を図12に示す。実施例2では、隣接するパルス信号の立下り区間の時間を計測して、次にパルス信号を検知したときの回転基準の位相αを決定する。それに対して、本実施例では、最初に立下りパルス信号を検出した時点で、時間の経過に連れて回転基準の位相αを順次、変更していく。そして、2回目の立下りパルス信号を検出したと同時に、そのときの位相αでモータ回転目標速度を変更して回転制御を開始する。
この場合の処理フローを図13に示す。簡単のため、回転周期変動は予め検出しており、回転周期変動の振幅Aと位相α1(α2,α3,α4)を記録しているとする。まず、モータを目標速度D×ωに到達するまで回転し(ステップS1)、適宜、モータの回転速度をチェックする(ステップS2)。モータ回転速度が目標速度に到達した後、パルス信号を検出するフローに入る(ステップS3)。そして、立下りのパルス信号を検出(ステップS3−1)した後、内蔵のタイマカウンタを0に設定してカウントアップを開始する(ステップS3−2)。続いて、回転基準の位相をα=α1と設定する(ステップS3−3)。ただし、α1は、図11において回転基準の位相として設定しているスリット間隔の中で最も小さいξ1に対応している。これは図12のタイミングチャートでは、τ1の時間幅をもつパルス信号間隔に相当する。そして、再び、立下りのパルス信号を検出(ステップS3−4)すると、タイマカウンタを0に設定し(ステップS4)、直ちにモータ目標速度を変更して回転制御を開始する(ステップS5)。
ここで、立下りパルス信号を検出せず、かつ、タイマ値がη1より大きいと判断(ステップS3−5)されたとき、回転基準の位相をα=α2と設定する(ステップS3−6)。ただし、α2は、図11において回転基準の位相として設定しているスリット間隔の中でξ1の次に小さいξ2に対応している。これは図12のタイミングチャートでは、τ2の時間幅をもつパルス信号間隔に相当する。そして、再び、立下りのパルス信号を検出(ステップS3−7)すると、タイマカウンタを0に設定し(ステップS4)、直ちにモータ目標速度を変更して回転制御を開始する(ステップS5)。
さらに、立下りパルス信号を検出せず、かつ、タイマ値がη2より大きいと判断(ステップS3−8)されたとき、回転基準の位相をα=α3と設定する(ステップS3−9)。ただし、α3は、図11において回転基準の位相として設定しているスリット間隔の中でξ2の次に大きいξ3に対応している。これは図12のタイミングチャートでは、τ3の時間幅をもつパルス信号間隔に相当する。そして、再び、立下りのパルス信号を検出(ステップS3−10)すると、タイマカウンタを0に設定し(ステップS4)、直ちにモータ目標速度を変更して回転制御を開始する(ステップS5)。
そして、立下りパルス信号を検出せず、かつ、タイマ値がη3より大きいと判断(ステップS3−11)されたとき、回転基準の位相をα=α4と設定する(ステップS3−12)。ただし、α4は、図11において回転基準の位相として設定しているスリット間隔の中で最も大きいξ4に対応している。これは図12のタイミングチャートでは、τ4の時間幅をもつパルス信号間隔に相当する。そして、再び、立下りのパルス信号を検出(ステップS3−13)すると、タイマカウンタを0に設定し(ステップS4)、直ちにモータ目標速度を変更して回転制御を開始する(ステップS5)。
もしも、立下りのパルス信号を検出せずに、タイマ値がη4より大きいと判断(ステップS3−14)したときは、(ステップS3−1)に返っていく。これは、実施例2でも説明したが、立下りパルス信号検出のフローステップS3が、たとえば図11の13aと13eの間ではなく、13eと13bの間で行われる可能性を除去している。
ここで、ξ1〜ξ4の間隔は、モータ1回転周期の整数倍と設定することで、モータ1回転周期の回転周期変動が検出に及ぼす影響を除去できる。
こうして、本実施例では、前実施例までのように回転基準の判断をする2回のスリット通過後に訪れる、最初のスリットから回転制御を開始する必要がなく、2回目のスリット通過時に回転制御を開始することができる。
本実施例の場合も、図7に示したように、2個の検出器14a,14bを回転軸12に対して軸対称に配置することができる。
実施例4では、2回目のスリット通過時に回転制御を開始することができる。本実施例では、さらにドラム1回転周期の回転周期変動だけでなく、モータ1回転周期の回転周期変動を補正する回転基準の検出方式について説明する。この構成を図14に示す。図14は、図11に加えて、ドラム1回転周期の回転周期変動を検出するスリット13e〜13hの後に、それぞれスリットが3個ずつ配置されている。これらのスリット間隔は、13e、13f、13g、13hを開始点に等間隔に配置されている。そして、前記スリットの回転前に検出されるよう配置されたスリット13a〜13dを有す。モータ1回転周期の回転周期変動を検出するためには、モータ1回転の平均回転速度を求める必要がある。一般には、スリットを5個等間隔に並べて、両端のスリット間通過時間がモータ1回転の時間と測定できる。しかし、ここでは、回転基準検出用のスリット13a〜13dから13e〜13hまでの間隔を、モータ4半周期の整数倍とすることで、13aから13eの3個後のスリットまでの通過時間、13bから13fの2個後のスリットまでの通過時間、13cから13gの1個後のスリットまでの通過時間、13dから13hまでの通過時間を計測することで、モータ1回転の通過時間を測定することができ、スリット製作の個数を減らすことができる。
本方式での、スリット検知のパルス信号と回転周期変動との対応関係を図15に示す。実際に、スリットを通過したときに検出されるパルス信号を時間軸で表記したグラフを図15上段に示す。τ1〜τ4は、回転周期変動量に依らず、常に互いに数ミリ秒程度の差があるため、この時間差をもって判別できる。そして、パルス信号の立下ったときの時間間隔をもって回転周期変動を検出する。
このときのパルス信号のタイミングと回転周期変動の位相を対応付けたグラフを図15中段に示す。ここで、ωはドラムの平均回転速度、Aはドラム1回転周期の回転周期変動の振幅、α1〜α4は各パルス信号立下りタイミングでのドラム1回転周期の回転周期変動の位相である。また、Bはモータ1回転周期の回転周期変動の振幅、β1〜β4は各パルス信号立下りタイミングでのモータ1回転周期の回転周期変動の位相である。スリット13e〜13hを90度間隔ごとに配置している場合は、α1=α2−π/2=α3−π=α4−3π/2が成り立つ。このことは、90度間隔のスリット配置ならば、α1〜α4全ての位相を記録している必要はなく、絶対的な基準であるα1の位相だけ記録しておき、残りは90度ずつ足していく処理をすればよく、メモリが節約できる。また、13e〜13hそれぞれの後に3個連続するスリット間の間隔がモータ4半周期で配置するならば、β1=β2−D×π/2=β3−D×π=β4−D×3π/2が成り立つ。このことは、スリットが前記構成であるならば、全ての位相を記録している必要はなく、絶対的な基準であるβ1の位相だけ記録しておき、残りはD×π/2ずつ足していく処理をすればよく、モータ1回転周期の回転周期変動の位相を記録することに関しても、メモリが節約できる。
本方式の処理フローを図16に示す。簡単のため、回転周期変動は予め検出しており、ドラム1回転周期の回転周期変動の振幅Aと位相α1(α2,α3,α4)、モータ1回転周期の回転周期変動の振幅Bと位相β1(β2,β3,β4)を記録しているとする。まず、モータを目標速度D×ωに到達するまで回転し(ステップS1)、適宜、モータの回転速度をチェックする(ステップS2)。モータ回転速度が目標速度に到達した後、パルス信号を検出するフローに入る(ステップS3)。そして、立下りのパルス信号を検出(ステップS3−1)した後、内蔵のタイマカウンタを0に設定してカウントアップを開始する(ステップS3−2)。続いて、回転基準の位相をα=α1、β=β1と設定する(ステップS3−3)。ただし、α1は、図11において回転基準の位相として設定しているスリット間隔の中で最も小さいξ1に対応している。β1は、α1に対応している。これは図12のタイミングチャートでは、τ1の時間幅をもつパルス信号間隔に相当する。そして、再び、立下りのパルス信号を検出(ステップS3−4)すると、タイマカウンタを0に設定し(ステップS4)、直ちにモータ目標速度を変更して回転制御を開始する(ステップS5)。
ここで、立下りパルス信号を検出せず、かつ、タイマ値がη1より大きいと判断(ステップS3−5)されたとき、回転基準の位相をα=α2、β=β2と設定する(ステップS3−6)。ただし、α2は、図11において回転基準の位相として設定しているスリット間隔の中でξ1の次に小さいξ2に対応している。β2は、α2に対応している。これは図12のタイミングチャートでは、τ2の時間幅をもつパルス信号間隔に相当する。そして、再び、立下りのパルス信号を検出(ステップS3−7)すると、タイマカウンタを0に設定し(ステップS4)、直ちにモータ目標速度を変更して回転制御を開始する(ステップS5)。
さらに、立下りパルス信号を検出せず、かつ、タイマ値がη2より大きいと判断(ステップS3−8)されたとき、回転基準の位相をα=α3、β=β3と設定する(ステップS3−9)。ただし、α3は、図11において回転基準の位相として設定しているスリット間隔の中でξ2の次に大きいξ3に対応している。β3は、α3に対応している。これは図12のタイミングチャートでは、τ3の時間幅をもつパルス信号間隔に相当する。そして、再び、立下りのパルス信号を検出(ステップS3−10)すると、タイマカウンタを0に設定し(ステップS4)、直ちにモータ目標速度を変更して回転制御を開始する(ステップS5)。
そして、立下りパルス信号を検出せず、かつ、タイマ値がη3より大きいと判断(ステップS3−11)されたとき、回転基準の位相をα=α4、β=β4と設定する(ステップS3−12)。ただし、α4は、図11において回転基準の位相として設定しているスリット間隔の中で最も大きいξ4に対応している。β4は、α4に対応している。これは図12のタイミングチャートでは、τ4の時間幅をもつパルス信号間隔に相当する。そして、再び、立下りのパルス信号を検出(ステップS3−13)すると、タイマカウンタを0に設定し(ステップS4)、直ちにモータ目標速度を変更して回転制御を開始する(ステップS5)。
もしも、立下りのパルス信号を検出せずに、タイマ値がη4より大きいと判断(ステップS3−14)したときは、(ステップS3−1)に返っていく。これは、実施例2でも説明したが、立下りパルス信号検出のフローステップS3が、たとえば図11の13aと13eの間ではなく、13eと13bの間で行われる可能性を除去している。
また、図1のような4色タンデム型カラープリンタで、各色の感光体ドラム1回転周期の回転周期変動の位相を合わせたい場合には、モータ1回転周期の回転周期変動のデータは使わず、ある一色の感光体ドラムの回転周期変動の位相に合せるように、それ以外の三色の感光体ドラムの回転周期変動の回転基準の位相を合せればよい。
本実施例の場合も、図7に示したように、2個の検出器14a,14bを回転軸12に対して軸対称に配置することができる。
画像形成装置の一例を示す図である。 回転体駆動制御装置の一つである感光体ドラム駆動制御機構装置の構成図である。 本発明の実施例1を示しており、回転周期変動の補正基準位置に用いるスリット幅が相異なる場合の構成図である。 回転周期変動と、補正するモータ回転速度目標に対する、補正基準スリットの対応関係図である。 補正基準スリット幅が相異なる構成で、各基準からの目標モータ回転速度の位相関係を示す図である。 補正基準スリット幅が相異なる構成における、補正開始のフローチャートである。 回転周期変動の補正基準位置に用いるスリット幅が相異なり、検出器2個を配置した構成図である。 本発明の実施例2を示しており、補正基準位置に用いるスリット2個組の間隔が相異なり、スリット1個目を補正基準位置とする構成図である。 補正基準スリット2個組で1個目補正基準の構成で、各基準からの目標モータ回転速度の位相関係を示す図である。 補正基準スリット2個組で1個目補正基準の構成における、補正開始のフローチャートである。 本発明の実施例3を示しており、補正基準位置に用いるスリット2個組の間隔が相異なり、スリット2個目を補正基準位置とする構成図である。 補正基準スリット2個組で2個目補正基準の構成で、各基準からの目標モータ回転速度の位相関係を示す図である。 補正基準スリット2個組で2個目補正基準の構成における、補正開始のフローチャートである。 本発明の実施例4を示しており、複数の回転周期変動対応の補正基準スリットの構成図である。 複数の回転周期変動対応の補正基準スリットの構成で、各基準からの目標モータ回転速度の位相関係を示す図である。 複数の回転周期変動対応の補正基準スリットの構成における、補正開始のフローチャートである。
符号の説明
1,1a〜1d 感光体ドラム(回転体)
2a〜2d 露光装置
3 ベルト
4 ベルト駆動用モータ
5 制御器
6,6a〜6d 感光体ドラム駆動用モータ
7 転写紙
8 感光体ドラム駆動制御器(通過時間検出手段、振幅位相生成手段、回転制御手段、 制御基準変更手段)
9a〜9c カップリング
10 駆動ギヤ(伝達機構)
11 従動ギヤ(伝達機構)
12 感光体ドラム回転軸
12A 回転盤
13a〜13h スリット(被検出部)
14,14a,14b 検出器

Claims (11)

  1. モータと、
    前記モータの回転力を伝達する伝達機構と、
    前記伝達機構に連結され前記モータの回転力で回転駆動される回転体と、
    前記回転体の回転軸を中心にした円周上に配設された少なくとも3個の被検出部と、
    前記被検出部を検出する検出器と、
    前記被検出部のうち隣り合う被検出部間の区間が前記検出器を通過する通過時間を、前記検出器からの検出信号に基づいて検出する通過時間検出手段と、
    前記通過時間検出手段で検出された通過時間に基づいて、前記回転体の所望周期に関する回転周期変動の振幅と位相を生成する振幅位相生成手段と、
    前記振幅位相生成手段で生成された振幅と位相に基づき、前記回転周期変動を低減するように前記モータの回転を制御する回転制御手段と、
    前記被検出部のうち3個以上の被検出部の幅が互いに異なっているとき、該被検出部を基点として、前記モータの回転制御開始時の位相を前記振幅位相生成手段で生成された位相に基づき変更する制御基準変更手段と、を備えたことを特徴とする回転体駆動制御装置。
  2. モータと、
    前記モータの回転力を伝達する伝達機構と、
    前記伝達機構に連結され前記モータの回転力で回転駆動される回転体と、
    前記回転体の回転軸を中心にした円周上に配設された少なくとも3個の被検出部と、
    前記被検出部を検出する検出器と、
    前記被検出部のうち隣り合う被検出部間の区間が前記検出器を通過する通過時間を、前記検出器からの検出信号に基づいて検出する通過時間検出手段と、
    前記通過時間検出手段で検出された通過時間に基づいて、前記回転体の所望周期に関する回転周期変動の振幅と位相を生成する振幅位相生成手段と、
    前記振幅位相生成手段で生成された振幅と位相に基づき、前記回転周期変動を低減するように前記モータの回転を制御する回転制御手段と、
    前記被検出部間の間隔のうち3個以上の間隔が互いに異なっているとき、該被検出部を基点として、前記モータの回転制御開始時の位相を前記振幅位相生成手段で生成された位相に基づき変更する制御基準変更手段と、を備えたことを特徴とする回転体駆動制御装置。
  3. モータと、
    前記モータの回転力を伝達する伝達機構と、
    前記伝達機構に連結され前記モータの回転力で回転駆動される回転体と、
    前記回転体の回転軸を中心にした円周上に配設された少なくとも3個の被検出部と、
    前記被検出部を検出する検出器と、
    前記被検出部のうち隣り合う被検出部間の区間が前記検出器を通過する通過時間を、前記検出器からの検出信号に基づいて検出する通過時間検出手段と、
    前記通過時間検出手段で検出された通過時間に基づいて、前記回転体の所望周期に関する回転周期変動の振幅と位相を生成する振幅位相生成手段と、
    前記振幅位相生成手段で生成された振幅と位相に基づき、前記回転周期変動を低減するように前記モータの回転を制御する回転制御手段と、
    前記被検出部のうち3個以上の被検出部の幅もしくは前記被検出部間の間隔のうち3個以上の間隔が互いに異なっているとき、該被検出部を基点として、前記モータの回転制御開始時の位相を前記振幅位相生成手段で生成された位相に基づき変更する制御基準変更手段とを備え、
    前記通過時間検出手段、前記振幅位相生成手段、前記回転制御手段および前記制御基準変更手段により、少なくとも二つ以上の回転周期変動を補正することを繰り返すことを特徴とする回転体駆動制御装置。
  4. 前記制御基準変更手段は、前記二つ以上の所望周期に関する前記回転制御開始時の各位相を、前記振幅位相生成手段で生成された位相のそれぞれに基づき一括して変更することを特徴とする請求項3に記載の回転体駆動制御装置。
  5. 前記通過時間検出手段で検出される通過時間は、前記回転体の所望周期に関する回転周期変動の半周期であり、
    前記各区間のうち隣り合う各区間の位相差は、前記回転周期変動の4分の1周期ずれるよう設定されていることを特徴とする請求項1〜4のいずれか一項に記載の回転体駆動制御装置。
  6. 前記制御基準変更手段は、前記振幅位相生成手段を用いて、前記回転体の所望周期に関する回転周期変動の振幅と位相を逐次的に生成し、前記基点となる複数の被検出部に対応した位相情報に変更することを特徴とする請求項1〜4のいずれか一項に記載の回転体駆動制御装置。
  7. 前記被検出部は、前記回転体の回転軸に設けられた回転板上に取り付けられていることを特徴とする請求項1〜4のいずれか一項に記載の回転体駆動制御装置。
  8. 前記検出器は、前記回転体の回転軸に対して軸対称に2箇所に設けられていることを特徴とする請求項1〜4のいずれか一項に記載の回転体駆動制御装置。
  9. 前記被検出部は、前記回転体が一回転する範囲内で、前記幅が狭から広へと順次変化していくように配置されていることを特徴とする請求項1又は3に記載の回転体駆動制御装置。
  10. 前記被検出部は、前記回転体が一回転する範囲内で、前記間隔が狭から広へと順次変化していくように配置されていることを特徴とする請求項2又は3に記載の回転体駆動制御装置。
  11. 請求項1〜10のいずれか一項に記載の回転体駆動制御装置が搭載され、且つ前記回転体として感光体ドラムが設けられたことを特徴とする画像形成装置。
JP2005344268A 2005-11-29 2005-11-29 回転体駆動制御装置および画像形成装置 Pending JP2007151342A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005344268A JP2007151342A (ja) 2005-11-29 2005-11-29 回転体駆動制御装置および画像形成装置
US11/594,159 US7536135B2 (en) 2005-11-29 2006-11-08 Rotor drive controlling unit and an image formation apparatus
EP06255856A EP1791031A3 (en) 2005-11-29 2006-11-15 A rotor drive controlling unit and an image formation apparatus
CN200610162859A CN100589038C (zh) 2005-11-29 2006-11-24 光导鼓驱动控制单元和成像设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344268A JP2007151342A (ja) 2005-11-29 2005-11-29 回転体駆動制御装置および画像形成装置

Publications (1)

Publication Number Publication Date
JP2007151342A true JP2007151342A (ja) 2007-06-14

Family

ID=37771000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344268A Pending JP2007151342A (ja) 2005-11-29 2005-11-29 回転体駆動制御装置および画像形成装置

Country Status (4)

Country Link
US (1) US7536135B2 (ja)
EP (1) EP1791031A3 (ja)
JP (1) JP2007151342A (ja)
CN (1) CN100589038C (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541024B2 (ja) * 2004-04-26 2010-09-08 株式会社リコー 回転体駆動制御装置および画像形成装置
JP2007256308A (ja) * 2006-03-20 2007-10-04 Ricoh Co Ltd 回転装置、回転制御方法及び画像形成装置
JP5003420B2 (ja) * 2007-11-09 2012-08-15 コニカミノルタビジネステクノロジーズ株式会社 画像形成装置
JP5458714B2 (ja) * 2009-07-21 2014-04-02 富士ゼロックス株式会社 偏心量推定装置、回転速度制御装置、画像形成装置及びプログラム
JP5317878B2 (ja) 2009-07-30 2013-10-16 キヤノン株式会社 画像形成装置
JP2011058941A (ja) * 2009-09-09 2011-03-24 Ricoh Co Ltd 回転速度検出用パルス発生装置、回転体モジュール、回転速度制御装置及び画像形成装置
JP2012181185A (ja) * 2011-02-08 2012-09-20 Ricoh Co Ltd 検知装置、画像形成装置、プログラムおよび検知システム
JP6079047B2 (ja) * 2012-08-23 2017-02-15 株式会社リコー 回転体駆動装置および画像形成装置
CN117379211A (zh) * 2023-10-16 2024-01-12 广州星际悦动股份有限公司 口腔护理设备的控制方法、装置及口腔护理设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810372B2 (ja) 1986-10-30 1996-01-31 キヤノン株式会社 画像形成装置
JPH06234253A (ja) 1993-02-12 1994-08-23 Matsushita Electric Ind Co Ltd 初期位置検出装置及び印字装置
JPH06227062A (ja) 1993-02-04 1994-08-16 Seiko Epson Corp シリアルプリンタ及びシリアルプリンタの制御方法
JP3259440B2 (ja) 1993-05-13 2002-02-25 富士ゼロックス株式会社 感光体の駆動制御装置
JP2000137424A (ja) 1998-11-02 2000-05-16 Sharp Corp 画像形成装置
JP3932715B2 (ja) * 1999-03-02 2007-06-20 松下電器産業株式会社 カラー画像形成装置
JP2000295882A (ja) 1999-04-05 2000-10-20 Minolta Co Ltd 像担持体の駆動制御装置
US6459225B1 (en) * 1999-04-27 2002-10-01 Canon Kabushiki Kaisha Servo-control apparatus for motor
JP2000356929A (ja) 1999-06-16 2000-12-26 Canon Inc 画像形成装置および画像形成装置の制御方法
JP2002072816A (ja) 2000-09-01 2002-03-12 Matsushita Electric Ind Co Ltd 画像形成装置
JP2002108031A (ja) * 2000-10-03 2002-04-10 Fuji Xerox Co Ltd 移動速度変動検知装置および画像形成装置
JP2005227858A (ja) 2004-02-10 2005-08-25 Ricoh Co Ltd 駆動機構設計支援装置と駆動機構設計支援方法及び記憶媒体
JP4541024B2 (ja) * 2004-04-26 2010-09-08 株式会社リコー 回転体駆動制御装置および画像形成装置

Also Published As

Publication number Publication date
EP1791031A2 (en) 2007-05-30
CN1975591A (zh) 2007-06-06
US20070122194A1 (en) 2007-05-31
EP1791031A3 (en) 2009-06-17
US7536135B2 (en) 2009-05-19
CN100589038C (zh) 2010-02-10

Similar Documents

Publication Publication Date Title
JP2007151342A (ja) 回転体駆動制御装置および画像形成装置
US7923959B2 (en) Rotor driving control device and image forming apparatus
US6501930B2 (en) Image forming method and apparatus with controlled image carrier rotation driving based on previous rotation state
CN100458597C (zh) 图像形成装置
JPH10148992A (ja) 画像形成装置
JP2754582B2 (ja) カラー画像形成装置の転写方法及び装置
JP2005094987A (ja) 回転体駆動制御方法及びその装置、画像形成装置、プロセスカートリッジ、プログラム、並びに記録媒体
JP2007052230A (ja) 画像形成装置
JP4787563B2 (ja) 回転速度制御装置、画像形成装置
JP2006189660A (ja) 回転体駆動制御装置並びに画像形成装置
US20050129427A1 (en) Rotary member driving mechanism, and image forming apparatus employing this mechanism
JP3957295B2 (ja) モータ駆動装置とその記憶部に記憶させる誤差量の計測方法および画像形成装置
JP2007259517A (ja) 回転体駆動制御装置、画像形成装置および位置ずれ補正方法
JP4726475B2 (ja) 回転速度検出装置、画像形成装置
JP4841209B2 (ja) 回転検出装置、プロセスカートリッジ、及び画像形成装置
JP5101825B2 (ja) 回転体駆動制御装置および画像形成装置
JP2005309309A (ja) カラー画像形成装置の駆動制御装置
JP4810170B2 (ja) 回転速度調節装置
JP2006084669A (ja) カラー画像形成装置における感光体駆動制御
JP2005091609A (ja) 回転検出装置、回転制御装置、回転同調装置及びそれを用いた画像形成装置
JP2002372903A (ja) 画像形成装置
JP2001075324A (ja) 画像形成装置及び回転制御装置
JP2005033927A (ja) モータ駆動装置及びこれを備えた画像形成装置
JP4602802B2 (ja) 搬送装置およびその制御方法および画像形成装置およびプログラムおよび記録媒体
JP2006227034A (ja) ベルト移動装置および画像形成装置