JP2005537649A - 非コンタクト形態のトンネル分離pウェルを有する不揮発性メモリアレイの構造、製造方法及び操作方法 - Google Patents

非コンタクト形態のトンネル分離pウェルを有する不揮発性メモリアレイの構造、製造方法及び操作方法 Download PDF

Info

Publication number
JP2005537649A
JP2005537649A JP2004531991A JP2004531991A JP2005537649A JP 2005537649 A JP2005537649 A JP 2005537649A JP 2004531991 A JP2004531991 A JP 2004531991A JP 2004531991 A JP2004531991 A JP 2004531991A JP 2005537649 A JP2005537649 A JP 2005537649A
Authority
JP
Japan
Prior art keywords
well
potential
source
conductivity type
memory cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004531991A
Other languages
English (en)
Inventor
チェン、チュン
ミーニア、アンドレイ
プラール、カーク、ディー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of JP2005537649A publication Critical patent/JP2005537649A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Abstract

分離されたウェル内にフローティングゲート電界効果トランジスタ又はメモリセルは、不揮発性メモリアレイ及びデバイスを作製する上で有益である。フローティングゲートメモリセルの1つの列は、当該列における各メモリセルに関するソース/ドレイン領域を含むウェルに対応する。これらウェルは、アレイの他の列におけるソース/ドレイン領域から分離されている。Fowler−Nordheimトンネルは、このようなフローティングゲートセルを個別ベースで、あるいはバルクベースで、あるいはブロックベースでプログラム及び消去する際に使用される。

Description

この発明は、不揮発性メモリセルに関し、具体的にはフラッシュメモリに関する。
メモリ装置は、様々な形態及びサイズを有する。いくつかのメモリ装置は、通常において揮発性であって、電力の供給がないとデータを保持することができない。揮発性メモリの代表例としてDRAMがあり、これは、容量として形成されたメモリセルを含む。これら容量に電荷を有するあるいは電荷を有さないによって、メモリセルに保存されたデータの2値を表すこととなる。ダイナミックメモリ装置は、不揮発性メモリと比して、データを保持するために電力を必要とするが、データの読み出し、プログラミングは速い。
不揮発性メモリ装置は、様々な異なった形態を有する。例えば、フローティングゲートメモリ装置は、データを保存するためのフローティングゲートトランジスタを用いた不揮発性メモリである。データは、トランジスタのしきい値電圧を変更することによってメモリセルにプログラムされ、電力が取り除かれても保持される。トランジスタに保持されたデータは、トランジスタのしきい値電圧を元の状態に戻すことによって消去される。メモリは、例えば複数の消去ブロック内に配置される。1つの消去ブロック内の全てのメモリセルは、同時に消去される。このような不揮発性メモリ装置は、通常、フラッシュメモリと称される。
不揮発性メモリセルは、フローティングゲートメモリセルとして構成され、ソース領域とドレイン領域を有する。ドレイン領域は、ソース領域から横方向に中央のチャネル領域を介して形成されている。ソース領域とドレイン領域は、シリコン基体の共通の水平面に形成されている。フローティングゲートは、一般に、ドープされた多結晶シリコンによって形成され、チャネル領域上に配されており、絶縁体によって他のセルを構成する部位から電気的に絶縁されている。例えば、ゲート絶縁膜は、フローティングゲートとチャネル領域間に形成されている。フローティングゲート上に位置されている制御ゲートは、ドープされた多結晶シリコン形成することができる。制御ゲートは、別の絶縁層によってフローティングゲートから電気的に分離されている。従って、フローティングゲートは、チャネル領域と制御ゲートの両者から絶縁されて、電気的に「浮遊」した状態となっている。
半導体デバイスは小型化傾向にあり、設計者はメモリセルの製造、すなわち、設計基準に合致する表面領域の大きさに対して十分に小さい範囲を占有し、小型であるにも拘わらず十分な機能を維持するメモリセルの製造に関する問題に直面している。
以上の理由、並びに以下に述べる理由は、当業者がこの明細書を読み、理解することによって明らかになるであろう。また、当該技術分野においてメモリデバイスのアーキテクチャに変更が必要であることがわかるであろう。
不揮発性メモリセルに関する上述した問題と他の問題を解決するために本発明によって取り組まれ、それは以下に示す明細書を読み、検討することによって理解されるであろう。
いくつかの実施の形態は、不揮発性の半導体メモリセル、アレイ、それらの製造、構造に関する。このようなメモリセルは、ランダムアクセス能力を維持している間において、プログラム操作期間と消去操作期間に、Fowler−Nordheim(FN)トンネルを使用することができる。FNトンネルの性質によって、メモリセルは、比較的低消費電力で動作する。加えて、ホットエレクトロン処理と比して低消費電力であるFNトンネルによって、たくさんの、例えば数1000のセルは並列にプログラムあるいは消去され得る。並列のプログラム操作及び消去操作は複数のメモリセルを含む大きなブロックに対して適しているが、セルは、個別にプログラムされ、あるいは消去され得、その上、一般的な電気的に消去(書き換え)できる読出し専用メモリ(EEPROM)よりもセルサイズを小さくすることができる。
本発明の1つの実施の形態は、フローティングゲートを有する電界効果トランジスタのアレイを提供する。このアレイは、フローティングゲートを有する電界効果トランジスタの2以上の列を含み、各列の電界効果トランジスタは、第1のソース/ドレイン領域と第2のソース/ドレイン領域が当該列の他の電界効果トランジスタと共有している。1つの列の第1のソース/ドレイン領域は、第1の導電型を有する第1のウェル内に含まれている。各列における第1のウェルは、他の列の第1のウェルから分離されている。
本発明の他の実施の形態は、メモリセルのアレイにおけるメモリセルを消去する方法を提供する。この方法は、メモリセルにつながるワード線に第1の電位を印加すること、メモリセルの第1のソース/ドレイン領域と第2のソース/ドレイン領域に第2の電位を印加すること、並びに第1及び第2のソース/ドレイン領域を含む第1のウェルに前記第2の電位を印加することを含む。前記方法は、さらに、第2のウェルに第3の電位を印加することを含む。第2のウェルは、第1のウェルの下層にあり、第1のウェルとPN接合によって結合されている。
本発明のさらに他の実施の形態は、メモリセルのアレイにおけるメモリセルへのプログラム方法を提供する。この方法は、メモリセルにつながるワード線に第1の電位を印加すること、メモリセルの第1のソース/ドレイン領域と第2のソース/ドレイン領域に第2の電位を印加すること、並びに第1及び第2のソース/ドレイン領域を含む第1のウェルに第3の電位を印加することを含む。前記方法は、さらに、第1のウェルの下層にある第2のウェルに前記第3の電位を印加することを含む。第2のウェルは、第1のウェルとPN接合によって結合されており、前記第3の電位は第2の極性を有する。
本発明のさらに他の実施の形態は、不揮発性メモリデバイスを提供する。このメモリデバイスは、複数の行と複数の列に配列された不揮発性のフローティングゲートメモリセルのアレイと、メモリセルのアレイへのアクセスを制御する制御回路とを有する。メモリセルの各列は、ソースとドレインを共有し、メモリセルの各列のソースとドレインは、メモリセルの当該列に関する第1のウェル内に存在する。メモリセルの各列に関する第1のウェルは、メモリセルの他の列における他の第1のウェルから分離されている。各第1のウェルは、第2のウェル上に、多対一の関係で存在し、各第1のウェルは第1の導電型を有する。第2のウェルは第1の導電型と異なる第2の導電型を有する。
本発明のさらなる実施の形態は、特許請求の範囲に応じた様々の製造方法及び構成を含む。
フローティングゲート電界効果トランジスタ又はメモリセル、及びこれらの製造方法を説明した。フローティングゲートメモリセルを用いた1つの実施例は、不揮発性メモリセルとデバイスである。フローティングゲートメモリセルの列は、該列におけるメモリセルのソース/ドレイン領域を含むウェルにつながっている。これらのウェルは、アレイの他の列のソース/ドレイン領域から分離されている。FNトンネルは、このようなフローティングゲートセルを個別ベースで、あるいはバルクベースで、あるいはブロックベースでプログラム及び消去する際に使用される。
以下に示す本発明の詳細な説明において、図面は、この明細書の一部を構成する添付図面であり、本発明を実現する特定の実施の形態を図示する目的のものである。同じ番号は、いくつかの図面を通じて、実質的に同じ部材を示す。これら実施の形態は、当業者が本発明を実施することができる程度に十分に詳細に説明される。他の実施の形態も利用でき、本発明の要旨から逸脱することなく、構成上の変更、論理的な変更、電気的な変更もできる。
以下の詳細な記述と特許請求の範囲を解釈する上で役立てるために、用語「半導体基体」は、半導体材料を有するいくつかの構成を意味するために定義されるものであって、半導体ウェハ(それ単体あるいはその上の別の材料を含む構造)のようなバルクの半導体材料と、半導体材料層(それ単体あるいは別の材料を含む構造)を含むがこれに限定されるものではない。用語「基体」は、いくつかの支持体を示し、上述した半導体基体を含むが、これに限定されるものではない。また、用語「基体」は、処理中における半導体基体を示すために使用され、半導体基体上に形成される他の層を含む。ウェハと基体は、不純物がドープされた半導体、ドープされていない半導体、ベースとなる半導体あるいは絶縁体によって支持されたエピタキシャルによる半導体層、その他、同様に当業者によって知られた他の半導体を含む。
加えて、本発明に係る実施の形態によって構成される構造がこの明細書において示されるが、共通の半導体の専門用語は、nタイプ、pタイプ、n+及びp+は、いくつかの構造及び領域を説明するために利用される不純物の導電型のタイプを説明するために使用される。ドーピングの特定のレベルが、本発明の実施の形態に密接な関係があるとは思えない。従って、ドーパントの種類と濃度は言及しないが、本発明の目的に適したドーパントの種類と濃度が選ばれることが理解できよう。
また、用語「導体」は、半導体を含むことは当然であり、用語「絶縁体」は、導体として示される材料とりも導電性が低い材料を含む意である。従って、以下に示す詳細な記述は、本発明の方向性を制限するものではなく、また、本発明が添付された特許請求の範囲のみによって定義されるものではなく、権利化された特許請求の範囲の均等の全範囲を含めて定義されるべきである。
最後に、添付図面に描かれた部材の数、相対的なサイズ、配置は、本発明の説明と理解を容易にするために、1つの典型例を示したに過ぎない。つまり、このような描写は、本発明に係る実施の形態に有効な実際の部材の数、相対的なサイズ、配置を示したものではない。
図1Aは、本発明の1つの実施の形態に係るメモリセル101のアレイ100を示す概略図である。メモリセル101は、基体102によって支持されている。各メモリセル101はそれぞれFETであり、FETは、ワード線120によって図1Aに示された制御ゲート、フローティングゲート116、第1のソース/ドレイン領域108及び第2のソース/ドレイン領域110を含む。
メモリセル101の列は、同じソース/ドレイン領域108及び110を共有する複数のメモリセル101によって定義され、例えばメモリセル10111と10112は同一の列に存在する。メモリセル101の行は、同じワード線120を共有する複数のメモリセル101によって定義され、例えばメモリセル10111と10121は同一の行に存在する。図1Aには、2つの列と2つの行が描かれているが、実際のアレイは数100、さらには数1000の列及び行を含む。
メモリセル101の列における各メモリセル101の基体は、第1のノード106に結合されている。メモリセル101の第1の列の第1のノード106は、アレイ100内のメモリセル101の他の列における他の第1のノード106から分離され、第1のノード106と異なる導電型の第2のノード112の一部となっている。第1のノード106は、第2のノード112にPN接合を通じて結合されている。
表1は、本発明の1つの実施の形態に係るメモリセル100の動作例を示す。表1には、特定の電位が表示されているが、他の電位が指定され得ることは当業者によって理解されるであろう。他の電位とは、読出し操作期間に指定メモリセルのしきい値電圧を上回るのに必要な電位差を生成するための電位、あるいは、指定メモリセルのフローティングゲートに電荷を蓄積する、あるいはフローティングゲートから電荷を離脱させるためのFNトンネルを促進させる上で必要な電位差を提供するための電位である。つまり、いくつかの実施の形態は、表1において特定された電位に制限されるものではない。
Figure 2005537649
表1に関し、ノード1202は、指定メモリセル10111を含まない行に関する全てのワード線120を示し、ノード1082は、指定メモリセル10111を含まない列に関する全ての第1のソース/ドレイン領域108を示し、ノード1102は、指定メモリセル10111を含まない列に関する全ての第2のソース/ドレイン領域110を示し、ノード1062は、指定メモリセル10111を含まない列に関する全ての第1のノード106を示す。
表1に示すように、1つの実施の形態において、アレイ100の指定メモリセル10111の読出しは、指定メモリセルのワード線1201に読出し電圧Vwr(例えば4.5v)を印加し、指定メモリセルの第1のソース/ドレイン領域1081にバイアス電圧Vdr(例えば1V)を印加し、第1のソース/ドレイン領域1081に流れる電流、あるいは第2のソース/ドレイン領域1101に流れる電流、あるいは第2のソース/ドレイン領域1101に発生する電圧を検出することによって行われる。読出し電圧は、導通セルのしきい値を上回る電圧であり、例えばセルのデータ値を変更するような読出し不良の原因とならない電圧である。読出し操作期間において、指定メモリセルの第1のノード1061と第2のメモリセル112は、それぞれ接地電位とされている。残りのワード線1202、第1のソース/ドレイン領域1082、第2のソース/ドレイン領域1102、第1のノード1062及び基体102もまた接地電位とされている。
消去は、例えばメモリセルのグループを一様な状態、すなわち、通常、次のプログラム操作に向けた第1の論理状態にすることを示す。表1に示すように、1つの実施の形態において、アレイ100の指定メモリセル10111の消去は、指定メモリセルのワード線1201に第1の極性を有する第1のプログラム電圧(V1)、例えば8Vを印加し、指定メモリセルの第1のソース/ドレイン領域1081に、第2のソース/ドレイン領域1101及び第1のノード1061に第2の極性を有する第2のプログラム電圧(V2)、例えば−8Vを印加することによって行われる。残りのノード、すなわち、第2のノード112、ワード線1202、第1のソース/ドレイン領域1082、第2のソース/ドレイン領域1102、第1のノード1062及び基体102は接地電位とされている。アレイ100の全てのメモリセルを消去するためには、ワード線1202は接地電位に代えて第1のプログラム電圧とされ、第1のソース/ドレイン領域1082、第2のソース/ドレイン領域1102及び第1のノード1062は、接地電位に代えて第2のプログラム電圧とされる。
プログラミングは、例えば処理の最終段階でメモリセル又はメモリセルのグループを物理状態、すなわち、アレイにデータパターンを格納するという第2の論理状態にする。従って、データパターンは、全てのメモリセルを第1の論理状態に設定し、その後、1以上のメモリセルを第2の論理状態に設定することによって、アレイ100内に格納される、表1に示すように、1つの実施の形態において、アレイ100の指定メモリセル10111へのプログラミングは、指定メモリセルのワード線1201に第2の極性を有する第2のプログラム電圧、例えば−8Vを印加し、指定メモリセルの第1のソース/ドレイン領域1081、第2のソース/ドレイン領域1101及び第1のノード1061、並びに第2のノード112に第1の極性を有する第1のプログラム電圧、例えば8Vを印加することによって行われる。残りのノード、すなわち、ワード線1202、第1のソース/ドレイン領域1082、第2のソース/ドレイン領域1102、第1のノード1062及び基体102は接地電位とされる。アレイ110の全てのメモリセルをプログラムするために、ワード線1202が接地電位に代えて第2のプログラム電圧とされ、第1のソース/ドレイン領域1082、第2のソース/ドレイン領域1102及び第1のノード1062が接地電位に代えて第1のプログラム電圧とされる。
表2は、1つの極性の電圧を使用する本発明の他の実施の形態に係るメモリアレイ100の動作例を示す。表1には、特定の電位が表示されているが、他の電位が指定され得ることは当業者によって理解されるであろう。他の電位とは、読出し操作期間に指定メモリセルのしきい値電圧を上回るのに必要な電位差を生成するための電位、あるいは、指定メモリセルのフローティングゲートに電荷を蓄積する、あるいはフローティングゲートから電荷を離脱させるためのFNトンネルを促進させる上で必要な電位差を提供するための電位である。つまり、いくつかの実施の形態は、表2において特定された電位に制限されるものではない。
Figure 2005537649
表2において、ノード1202は、指定メモリセル10111に対応しない行の全てのワード線120を示し、ノード1082は、指定メモリセル10111に対応しない列の全ての第1のソース/ドレイン領域108を示し、ノード1102は、指定メモリセル10111に対応しない列の全ての第2のソース/ドレイン領域110を示し、ノード1062は、指定メモリセル10111に対応しない列の全ての第1のノード106を示す。
表2に示すように、1つの実施の形態において、アレイ100の指定メモリセル10111からの読出しは、指定メモリセルのワード線1201に読出し電圧Vwr、例えば4.5Vを印加し、指定メモリセルの第1のソース/ドレイン領域1081にバイアス電圧Vdr、例えば1Vを印加し、第1のソース/ドレイン領域1081に流れる電流、あるいは第2のソース/ドレイン1101に流れる電流、あるいは第2のソース/ドレイン領域1101において発生する電圧を検出することにより行われる。読出し電圧は、導通セルのしきい値を上回る電圧であり、例えばセルのデータ値を変更するような読出し不良の原因とならない電圧である。読出し操作期間において、指定メモリセルの第1のノード1061と第2のメモリセル112は、それぞれ接地電位とされている。残りのワード線1202、第1のソース/ドレイン領域1082、第2のソース/ドレイン領域1102、第1のノード1062及び基体102もまた接地電位とされている。
表2に示すように、1つの実施の形態において、アレイ100の指定メモリセル1011の消去は、指定メモリセルのワード線1201に第1のプログラム電圧(Vhi)、例えば16Vを印加し、指定メモリセルの第1のソース/ドレイン領域1081、第2のソース/ドレイン領域1101及び第1のノード1061に第2のプログラム電圧(Vlo)、例えば0Vを印加することによって行われる。第2のノード112、第1のソース/ドレイン領域1082、第2のソース/ドレイン領域1102及び第1のノード1062は、第3のプログラム電圧(Vmed)、例えば第1及び第2のプログラム電圧の間の電圧である8Vとされる。ワード線1202は第2のプログラム電圧あるいは第3のプログラム電圧とされる。基体102は接地電位とされる。アレイ100の全てのメモリセルを消去するためには、ワード線1202は第2のプログラム電圧あるいは第3のプログラム電圧の代わりに第1のプログラム電圧とされ、第1のソース/ドレイン領域1082、第2のソース/ドレイン領域1102、第1のノード1062及び第2のノード112は、第3のプログラム電圧の代わりに第2のプログラム電圧とされる。
表2に示すように、1つの実施の形態において、アレイ100の指定メモリセル1011のプログラミングは、指定メモリセルのワード線1201に第2のプログラム電圧(Vlo)を印加し、指定メモリセルの第1のソース/ドレイン領域1081、第2のソース/ドレイン領域1101及び第1のノード1061並びに第2のノード112に第1のプログラム電圧(Vhi)を印加することによって行われる。残りのワード線1202は第3のプログラム電圧(Vmed)とされ、残りの第1のソース/ドレイン1082、第2のソース/ドレイン領域1102及び第2のノード1062は、第2のプログラム電圧(Vlo)又は第3のプログラム電圧(Vmed)とされる。基体102は接地電位とされる。アレイ100の全てのメモリセルをプログラミングするためには、ワード線1202は第3のプログラム電圧に代えて第2のプログラム電圧とされ、第1のソース/ドレイン領域1082、第2のソース/ドレイン領域1102及び第1のノード1062は第2のプログラム電圧あるいは第3のプログラム電圧に代えて第1のプログラム電圧とされる。
上述のように記載したが、プログラミング及び消去の操作は、フローティングゲートから電子をチャネルに注入する操作と、チャネルから電子をフローティングゲートに注入する操作に関連して記述され、これらの操作はそれぞれ交換可能である。従って、高いしきい値Vtあるいは不導通状態のメモリセルはプログラム状態のセルあるいは消去状態のセルを示す。
図1Bは、本発明の実施の形態に係る不揮発性あるいはフラッシュメモリデバイス160を示すブロック図である。メモリデバイス160は、プロセッサ161に結合されて電子システムの一部を構成している。メモリデバイス160は、本発明を容易に理解できるように、メモリデバイスの特徴部分を注目して簡略化して示されている。メモリデバイス160は、不揮発性メモリセルのアレイ100を有する。メモリセル(図1Bにおいて図示せず)は、本発明の実施の形態に係るフローティングゲートメモリセルである。アレイは、複数の行と複数の列に配列されている。複数の行はブロック状に配列され、消去操作は、一般のフラッシュメモリと同様に、全ブロックについて行われる。しかし、この明細書で記述されるメモリセル構造とアレイ構成は、いくつかのブロック構造から独立して選択されたメモリセルに対する個別の消去を容易にする。
行デコーダ168と列デコーダ170は、アドレス線A0〜Ax172に供給されたアドレス信号を解読するために設置されている。アドレスバッファラッチ回路は、アドレス信号を保持するために設置されている。アドレス信号は受け取られてメモリアレイ100をアクセスするために解読される。選択回路176は、列デコーダ170で解読されたアレイの列を選択するために設置されている。センスアンプと比較回路178は、メモリセルに格納されたデータを検知し、データを正確に照合するために使用される。データ入力バッファ回路180とデータ出力バッファ回路182は、複数のデータ(DQ)線181を通じてプロセッサ161と双方向データ通信を行うために備えられている。データラッチ183は、一般に、DQ線181から受け取られたデータ値(メモリセルに書き込まれる)を格納するために、入力バッファ181とメモリアレイ100との間に設置される。
コマンド制御回路174は、プロセッサ161から制御線173に供給された信号を解読する。これらの信号は、データ読出し、データ書込み、消去操作を含むメモリセル100の操作を制御するために使用される。入力/出力制御回路184は、制御信号に応えて、入力バッファ180と出力バッファ182を制御するために使用される。上述したように、メモリデバイス160は、メモリの特徴部分に対する基本的理解を容易にするために簡略化して示してある。一般的なフラッシュメモリについて詳細に理解されている部分は、当業者によって知られている。
不揮発性メモリセルのアレイは、ワード線とビット線にそれぞれ結合されたメモリセルの複数の行と複数の列に配列されている。ワード線は、フローティングゲートメモリセルの制御ゲートに結合されている。ビット線は、フローティングゲートメモリセルのドレインに結合されている。
図2A及び図2Bは、本発明の実施の形態に係る電界効果トランジスタ(FETs)のアレイを平面図及び断面図をそれぞれ示す。図2Bは、図2Aにおける線A−A’上の断面図である。
メモリセル201のアレイ200は、基体202上に形成されている。1つの実施の形態において、基体202は、単結晶シリコンのような単結晶材料である。さらに、実施の形態において、基体202は、導電性、例えばpタイプの導電型あるいはnタイプの導電型を有するためにドープされる。
各メモリセル201は、基体202上に形成されたゲート、基体202内の2つのソース/ドレイン領域208及び210、2つのソース/ドレイン領域208及び210間の領域によって区画されたチャネル領域を有するFETを含む。メモリセル201のゲートは、導電材料220によって形成された制御ゲート、層間絶縁膜218、フローティングゲート216及びトンネル絶縁膜214を含む。
メモリセルの列は、それぞれが一緒に接続された第1のソース/ドレイン領域208と第2のソース/ドレイン領域210を有するメモリセル210のグループである。また、メモリセルの列のメモリセル201は、第1の、すなわち、浅いウェル206を共有する。第1のウェル206は、第1の導電型を有する。1つの実施の形態において、第1の導電型はpタイプの導電型を示す。メモリセルの第1の列の第1のウェル206は、隔離トレンチ204によって他の第1のウェル206から分離されている。各第1のウェル206は、メモリセルの列において、第1のソース/ドレイン領域208と第2のソース/ドレイン領域210を含む。ソース/ドレイン領域208及び210は、それぞれ第1の導電型とは反対の第2の導電型を有する。例えば第1の導電型としてpタイプの導電型とした場合は、第2の導電型はnタイプの導電型である。第1及び第2のソース/ドレイン領域がメモリセルの列において共有されているため、個々のソース/ドレイン領域のための局部的なコンタクトは必要ない。
メモリセル201のアレイ200は、第1のウェルの下層にある深いウェル、すなわち、第2のウェル212を共有する。第2のウェル212は、第2の導電型を有する。第2のウェル212は、隔離トレンチ204の底部よりも上側の位置まで延在して形成された上面と、隔離トレンチ204の底部よりも下側の位置まで延在して形成された底面とを有する。
図3A〜図3Fは、本発明の1つの実施の形態に係る製造方法の各工程におけるメモリセルアレイ200の一部を示す断面図である。
図3Aにおいて、隔離トレンチ204は、基体202内に形成されている。隔離トレンチ204は、種々の浅いトレンチ分離(STI)技術を使用した例えば全体が絶縁体とされたトレンチである。これらの隔離トレンチ204は、基体202に隣接する部分との間の絶縁バリアとして機能する。
第1のウェル206は、離隔トレンチ204間に形成されている。第1のウェル206は、隔離トレンチ204以下の深さを有し、各第1のウェル206は、隣接する第1のウェル206との間に形成された離隔トレンチ204によって該隣接する第1のウェル206から分離されている。しかし、第1のウェルが必要以上の深さを有していたとしても、後述するように、第2のウェル212の形成過程で解決される。
図3Aに描かれているように、第1のウェル206は、隔離トレンチ204間における基体202が露出した部分に第1のドーパント種をドーピングによって形成されている。例えば、第1の導電型がpタイプであれば、第1のドーパント種230はボロン(B)又はその他のpタイプの不純物である。同様に、第1の導電型がnタイプであれば、第1のドーパント種230はアンチモン(Sb)、砒素(As)又はその他のpタイプの不純物である。
隔離トレンチ204を形成した後に、第1のウェル206のためのドーピンをしてもよいし、隔離トレンチ204を形成する前に、第1のウェル206のためのドーピンをしてもよい。ドーピングは、通常、イオン注入技術によって行われる。イオン注入技術のためのドーピング源は、フッ素を基礎とするガスである。例えば、ボロンイオンのイオン注入において、ガス源は、三フッ化ホウ素(BF3)である。イオンの拡散とイオン注入によってダメージを受けた表面を改質するために、イオン注入後に熱処理が行われる。
イオン注入技術に加えて、ガス状、液状又は固体状のドーパント源を用いた拡散技術のような他のドーピング方法が知られている。例えば、ボロンを拡散させるためのドーパント源は、ガス状のジボラン(B26)、液状の三臭化ボロン(BBr3)及び固体状の窒化ボロン(BN)である。他のドーパント源及び具体的な技術については、半導体製造に関する技術者であれば十分に知られた事項である。
図3Bにおいて、第1のソース/ドレイン領域208及び第2のソース/ドレイン領域210が形成される。第1及び第2のソース/ドレイン領域208及び210が隔離トレンチ204に接続された例が示されているが、それは必ずしも必要ではない。
第1及び第2のソース/ドレイン領域208及び210は、第1の導電型とは異なる第2の導電型を有する。例えば第1の導電型としてpタイプの導電型とした場合は、第2の導電型はnタイプの導電型である。隔離トレンチ204間における基体202の表面の各一部は、基体202が露呈した部分に適当な導電型の第2のドーパント種240が注入される前に被覆される。例えば第2の導電型がnタイプであれば、第2のドーパント種240はnタイプの不純物である。あるいは第2の導電型がpタイプであれば、第2のドーパント種240はpタイプの不純物である。さらに、第1及び第2のソース/ドレイン領域208及び210は、第1のウェル206よりも高い不純物濃度を有する。例えば第1のウェル206がpタイプの導電型であれば、第1及び第2のソース/ドレイン領域はn+の不純物濃度を有する。
図3Bにおいて、基体202の表面の各一部は、例えばフォトレジスト材料のパターンマスク232によって被覆される。このパターンマスク232は、基体202の表面と第1のウェルの一部を、第2のドーパント種の注入の衝撃から保護する。これにより、パターンマスクは、その後に形成されるメモリセルのチャネル領域を規定するために、第1及び第2のソース/ドレイン領域を横方向に分離する。防護用の酸化膜234あるいはその他の保護層が基体202の表面とパターンマスク間に形成される。
図3Cにおいて、深いウェル、すなわち、第2のウェル212は、隔離トレンチ204の下方であって、かつ、隔離トレンチ204に接続して形成される。1つの実施の形態において、第2のウェル212は、第3のドーパント種250の深い部分への注入を使用して形成される。第3のドーパント種250は、第2の導電型を有する。第1のウェル206のドーピングが、隔離トレンチ204の下方での電気的結合をもたらしても、第2のウェル212の形成は、ドーピングレベルが第2の導電型を有し、隔離トレンチ204と接続する層を形成する上で十分なレベルであれば、隣接する第1のウェル206間に電気的な分離を与える。
第3のドーパント種250は、第2のドーパント種と同じか、あるいは第2のドーパント種と異なる不純物を有する。例えば、第1及び第2のソース/ドレイン領域208及び210が砒素を基礎とした不純物で形成される一方、第2のウェル212はリンを基礎とした不純物で形成される。同様に、第2のドーパント種240と第3のドーパント種250は、同様の不純物であるが、異なった形態の不純物を有する。例えば、第2のドーパント種240として五フッ化リン(PF5)のドーパント源が使用される一方、第3のドーパント種240は、三フッ化リン(PF3)のドーパント源が使用される。さらに、1つの実施の形態において、ドーピング技術は、第1及び第2のソース/ドレイン領域208及び210を形成する場合と、第2のウェル212を形成する場合とで変えてもよい。例えば、第1及び第2のソース/ドレイン領域208及び210は拡散技術を使用して形成される一方、第2のウェル212は、イオン注入によって形成される。第2のウェル212は、隔離トレンチ204に結合され、さらに、各第1のウェル206を各々分離する。
1つの実施の形態において、第2のウェル212は、パターンマスク232と防護用の酸化膜234を除去した後に形成される。他の実施の形態においては、第2のウェル212は、第1及び第2のソース/ドレイン領域208及び210の形成前に形成される。
第2のウェル212の形成及びパターンマスク232と防護用の酸化膜234の除去後に、図3Dに示すように、トンネル絶縁膜214が少なくとも第1及び第2のソース/ドレイン領域208及び210とこれらの間のチャネル領域上に形成される。トンネル絶縁膜214は、酸化シリコン、窒化シリコンあるいは酸窒化シリコンのような誘電体材料である。1つの実施の形態において、トンネル絶縁膜214は、例えば露出するシリコン領域の熱酸化によって、基体202の表面上に成長形成される。他の実施の形態においては、トンネル絶縁膜214は、基体202の表面上に堆積される。トンネル絶縁膜214は、第1及び第2のソース/ドレイン領域208及び210並びにこれらの間のチャネル領域を被覆するほか、隔離トレンチ204上へも延在する。
図3Eに示すように、フローティングゲート216が形成される。フローティングゲート216は、例えば電荷を蓄積することができる導電性材料である。このようなフローティングゲートのために、一般に、導電化のためのドーピングが施された多結晶シリコン材料が使用される。例えば、フローティングゲート216は、nタイプの多結晶シリコンを含む。1つの実施の形態において、フローティングゲート216は、多結晶シリコン材料のブランケット堆積、堆積中あるいは堆積後の導電化のためのドープ、及び堆積された多結晶シリコンのパターニングによって形成される。フローティングゲート216は、第1及び第2のソース/ドレイン領域208及び210間に形成される少なくともチャネル領域上に延在される。他の実施の形態において、フローティングゲート216は、さらに、第1及び第2のソース/ドレイン領域208及び210上にも延在される。さらなる実施の形態において、図3Eに描かれているように、フローティングゲート216は、さらに、隔離トレンチ204の一部上にも延在される。
図3Fにおいて、層間絶縁膜218は、フローティングゲート216上に形成され、導電材料220は、層間絶縁膜218上に形成される。層間絶縁膜218は、酸化シリコン、窒化シリコンあるいは酸窒化シリコンのような誘電体材料である。1つの実施の形態において、層間絶縁膜218は、フローティングゲート216上に堆積される。層間絶縁膜218はフローティングゲート216のみを被覆すれば十分であるが、隔離トレンチ204上まで延在して形成される。他の実施の形態において、層間絶縁膜218は、例えば露出する多結晶シリコンの熱酸化によって、フローティングゲート216の表面上に成長形成される。導電材料220は、単一の導電材料あるいは導電化合物を含めることができる。1つの実施の形態において、導電化のためのドーピングが施された多結晶シリコンが使用される。しかし、さらに一般的には、少なくとも1つの金属層を含む導電材料の2以上の層が使用される。1つの実施の形態において、導電材料220は、導電化のためのドーピングが施された多結晶シリコン上に例えばタングステンシリサイド(WSi2)のようなメタルシリサイド層を含む。最上層は、ワード線スタックの導電層上に形成された例えば絶縁層であり、絶縁体やバリア層として機能する。導電材料220の形成後、導電材料220、層間絶縁膜218及びフローティングゲート216が、例えば第1のウェル206に向けた垂直方向のエッチングによってパターニングされて、メモリアレイ200のワード線が形成される。
この明細書において、特定の実施の形態が描かれ、説明されているが、同様の目的を実現し得る様々な改良を、示された特定の実施の形態に置き換えることができることは当業者であれば理解できよう。本発明の様々な適用例は、当業者によって理解されるであろう。従って、この出願は、本発明の様々な適用例及びバリエーションをカバーするためになされたものである。この発明は、特許請求の範囲及びその均等の範囲によってのみ制限されることは明らかである。
図1Aは、本発明の1つの実施の形態に係るメモリセルのアレイを示す概略図である。 図1Bは、本発明の1つの実施の形態に係る不揮発性メモリデバイスを示すブロック図である。 図2Aは、本発明の1つの実施の形態に係る電界効果トランジスタ(FETs)のアレイを示す平面図である。 図2Bは、図2AにおけるFETsのアレイの一部を示す断面図である。 図3Aは、本発明の1つの実施の形態に係る製造方法の各工程におけるメモリアレイの一部を示す断面図である。 図3Bは、本発明の1つの実施の形態に係る製造方法の各工程におけるメモリアレイの一部を示す断面図である。 図3Cは、本発明の1つの実施の形態に係る製造方法の各工程におけるメモリアレイの一部を示す断面図である。 図3Dは、本発明の1つの実施の形態に係る製造方法の各工程におけるメモリアレイの一部を示す断面図である。 図3Eは、本発明の1つの実施の形態に係る製造方法の各工程におけるメモリアレイの一部を示す断面図である。 図3Fは、本発明の1つの実施の形態に係る製造方法の各工程におけるメモリアレイの一部を示す断面図である。

Claims (65)

  1. フローティングゲート電界効果トランジスタの2以上の列を有し、
    1つの列の各電界効果トランジスタは、該列における他の電界効果トランジスタと、第1のソース/ドレイン領域及び第2のソース/ドレイン領域を共有し、
    1つの列の前記第1及び第2のソース/ドレイン領域は、第1の導電型を有する第1のウェル内に形成され、
    各列の前記第1のウェルは、他の列の第1のウェルから分離されていることを特徴とするフローティングゲート電界効果トランジスタのアレイ。
  2. 請求項1記載のフローティングゲート電界効果トランジスタのアレイにおいて、
    前記第1のウェルは、前記第1の導電型とは異なる第2の導電型を有する第2のウェルによって部分的に互いに分離されていることを特徴とするフローティングゲート電界効果トランジスタのアレイ。
  3. 請求項2記載の電界効果トランジスタのアレイにおいて、
    前記第2の導電型は、前記第1の導電型と逆であることを特徴とする電界効果トランジスタのアレイ。
  4. 請求項3記載の電界効果トランジスタのアレイにおいて、
    前記第1の導電型はpタイプであり、前記第2の導電型はnタイプであることを特徴とする電界効果トランジスタのアレイ。
  5. メモリセルのアレイにおけるメモリセルの論理状態の設定方法において、
    前記メモリセルにつながるワード線に第1の極性を有する第1の電位を印加し、
    前記メモリセルの第1のソース/ドレイン領域及び第2のソース/ドレイン領域に第2の極性を有する第2の電位を印加し、
    前記第1及び第2のソース/ドレイン領域を含む第1のウェルに前記第2の電位を印加し、
    前記第1のウェル下にあり、前記第1のウェルとPN接合を介して結合された第2のウェルに第3の電位を印加することを特徴とする方法。
  6. 請求項5記載の方法において、
    前記第1の電位は正電圧であり、前記第2の電位は負電圧であることを特徴とする方法。
  7. 請求項6記載の方法において、
    前記第1の電位は、ほぼ5V〜15Vの範囲であり、前記第2の電位は、ほぼ−5V〜−15Vの範囲であることを特徴とする方法。
  8. 請求項6記載の方法において、
    前記第3の電位は、ほぼ0Vであることを特徴とする方法。
  9. 請求項8記載の方法において、
    前記第2のウェル下における基体に接地電位を印加することを特徴とする方法。
  10. メモリセルのアレイにおけるメモリセルの論理状態の設定方法において、
    前記メモリセルにつながるワード線に第1の極性を有する第1の電位を印加し、
    前記メモリセルの第1のソース/ドレイン領域及び第2のソース/ドレイン領域に第2の極性を有する第2の電位を印加し、
    前記第1及び第2のソース/ドレイン領域を含む第1のウェルに前記第2の電位を印加し、
    前記第1のウェル下にあり、前記第1のウェルとPN接合を介して結合された第2のウェルに前記第2の極性を有する第3の電位を印加することを特徴とする方法。
  11. 請求項10記載の方法において、
    前記第1の電位は負電圧であり、前記第2の電位は正電圧であることを特徴とする方法。
  12. 請求項11記載の方法において、
    前記第1の電位は、ほぼ−5V〜−15Vの範囲であり、前記第2の電位は、ほぼ5V〜15Vの範囲であることを特徴とする方法。
  13. 請求項11記載の方法において、
    前記第3の電位は、ほぼ5V〜15Vの範囲であることを特徴とする方法。
  14. 請求項13記載の方法において、
    前記第2のウェル下における基体に接地電位を印加することを特徴とする方法。
  15. 複数の行及び複数の列に配列されたメモリセルのアレイの論理状態の設定方法において、
    メモリセルの1つの列における各メモリセルは、第1及び第2のソース/ドレイン領域を共有し、メモリセルの各列は、第1の導電型を有する分離された第1のウェルに形成され、
    前記アレイの各ワード線に第1の極性を有する第1の電位を印加し、
    前記アレイの各メモリセルにおける前記第1のソース/ドレイン領域及び前記第2のソース/ドレイン領域に第2の極性を有する第2の電位を印加し、
    メモリセルの各列の前記第1のウェルに前記第2の電位を印加し、
    前記第1のウェル下にあり、前記第1の導電型と異なる第2の導電型を有する第2のウェルに第3の電位を印加することを特徴とする方法。
  16. 請求項15記載の方法において、
    前記第1の電位は正電圧であり、前記第2の電位は負電圧であることを特徴とする方法。
  17. 請求項16記載の方法において、
    前記第1の電位は、ほぼ5V〜15Vの範囲であり、前記第2の電位は、ほぼ−5V〜−15Vの範囲であることを特徴とする方法。
  18. 請求項16記載の方法において、
    前記第3の電位は、ほぼ0Vであることを特徴とする方法。
  19. 請求項18記載の方法において、
    前記第2のウェル下における基体に接地電位を印加することを特徴とする方法。
  20. 請求項15記載の方法において、
    前記第1の導電型はpタイプであり、前記第2の導電型はnタイプであることを特徴とする方法。
  21. 複数の行及び複数の列に配列されたメモリセルのアレイの論理状態の設定方法において、
    メモリセルの1つの列における各メモリセルは、第1及び第2のソース/ドレイン領域を共有し、メモリセルの各列は、第1の導電型を有する分離された第1のウェルに形成され、
    前記アレイの各ワード線に第1の極性を有する第1の電位を印加し、
    前記アレイの各メモリセルにおける前記第1のソース/ドレイン領域及び前記第2のソース/ドレイン領域に第2の極性を有する第2の電位を印加し、
    メモリセルの各列の前記第1のウェルに前記第2の電位を印加し、
    前記第1のウェル下にあり、前記第1の導電型と異なる第2の導電型を有する第2のウェルに前記第2の極性を有する第3の電位を印加することを特徴とする方法。
  22. 請求項21記載の方法において、
    前記第1の電位は負電圧であり、前記第2の電位は正電圧であることを特徴とする方法。
  23. 請求項22記載の方法において、
    前記第3の電位は、ほぼ前記第2の電位と同じであることを特徴とする方法。
  24. 請求項22記載の方法において、
    前記第1の電位は、ほぼ−5V〜−15Vの範囲であり、前記第2の電位は、ほぼ5V〜15Vの範囲であることを特徴とする方法。
  25. 請求項22記載の方法において、
    前記第3の電位は、ほぼ5V〜15Vの範囲であることを特徴とする方法。
  26. 請求項25記載の方法において、
    前記第2のウェル下における基体に接地電位を印加することを特徴とする方法。
  27. 請求項21記載の方法において、
    前記第1の導電型はpタイプであり、前記第2の導電型はnタイプであることを特徴とする方法。
  28. 複数の行と複数の列に配列された不揮発性フローティングゲートメモリセルのアレイと、
    メモリセルの前記アレイへのアクセスを制御する制御回路とを有し、
    メモリセルの各列は、ソースとドレインを共有し、
    メモリセルの1つの列における前記ソースとドレインは、メモリセルの当該列に対応する第1のウェル内に形成され、
    メモリセルの各列に対応する前記第1のウェルは、メモリセルの他の列における他の第1のウェルから分離され、
    各第1のウェルは、第2のウェル上に、多対1の関係で存在し、
    各第1のウェルは、第1の導電型を有し、
    前記第2のウェルは、前記第1の導電型と異なる第2の導電型を有することを特徴とする不揮発性メモリデバイス。
  29. 請求項28記載の不揮発性メモリデバイスにおいて、
    各ソースとドレインは、nタイプの導電型を有し、前記第1のウェルは、pタイプの導電型を有し、前記第2のウェルは、nタイプの導電型を有することを特徴とする不揮発性メモリデバイス。
  30. 請求項28記載の不揮発性メモリデバイスにおいて、
    前記第1のウェルは、隣接する第1のウェル間に介在する隔離トレンチと前記第2のウェルによって互いに分離されていることを特徴とする不揮発性メモリデバイス。
  31. 請求項30記載の不揮発性メモリデバイスにおいて、
    前記第2のウェルは、前記隔離トレンチ下に形成され、かつ、前記隔離トレンチと接触していることを特徴とする不揮発性メモリデバイス。
  32. 複数の行と複数の列に配列された不揮発性フローティングゲートメモリセルのアレイと、
    メモリセルの前記アレイへのアクセスを制御する制御回路とを有し、
    メモリセルの前記アレイは、メモリセルの第1の列と、メモリセルの第2の列とを有し、
    メモリセルの第1の列は、該第1の列に対応する第1のウェル内に部分的に横方向に間を置いて形成された第1のソース/ドレイン領域と第2のソース/ドレイン領域とを有し、
    前記第1の列に対応する前記第1のウェルは第1の導電型を有し、前記第1及び第2のソース/ドレイン領域は前記第1の導電型とは逆の第2の導電型を有し、
    メモリセルの第2の列は、該第2の列に対応する第1のウェル内に部分的に横方向に間を置いて形成された第1のソース/ドレイン領域と第2のソース/ドレイン領域とを有し、
    前記第1の列に対応する前記第1のウェルは第1の導電型を有し、前記第1及び第2のソース/ドレイン領域は前記第1の導電型とは逆の第2の導電型を有し、
    メモリセルの前記第1の列及びメモリセルの前記第2の列は、絶縁材料の介在と下方に存する前記第2の導電型を有する第2のウェルによって、互いに分離されていることを特徴とする不揮発性メモリデバイス。
  33. 請求項32記載の不揮発性メモリデバイスにおいて、
    各第1及び第2のソース/ドレイン領域は、介在している絶縁材料に接触していることを特徴とする不揮発性メモリデバイス。
  34. 請求項32記載の不揮発性メモリデバイスにおいて、
    さらに、メモリセルのさらなる列は、絶縁材料の介在と下方に存する前記第2のウェルによって、メモリセルの他の列から分離されていることを特徴とする不揮発性メモリデバイス。
  35. 請求項32記載の不揮発性メモリデバイスにおいて、
    前記第1の導電型はpタイプであり、前記第2の導電型はnタイプであることを特徴とする不揮発性メモリデバイス。
  36. 基体内に少なくとも2つの離隔トレンチを形成し、
    各一対の離隔トレンチ間にそれぞれ第1の導電型を有する第1のウェルを形成し、
    各第1のウェル内に第1のソース/ドレイン領域及び第2のソース/ドレイン領域を形成し、ここにおいて、各第1のソース/ドレイン領域は、該第1のソース/ドレイン領域に対応する第2のソース/ドレイン領域から横方向に分離されて中間のチャネル領域を形成し、各ソース/ドレインは前記第1の導電型と異なる第2の導電型を有し、
    前記隔離トレンチ下であって、該隔離トレンチに接触する前記第2の導電型を有する第2のウェル領域を形成し、
    少なくとも前記チャネル領域上にトンネル絶縁膜を形成し、
    前記トンネル絶縁膜上にフローティングゲートを形成し、
    前記フローティングゲート上に制御ゲートを形成し、
    前記フローティングゲートと前記制御ゲート間に層間絶縁膜を形成することを特徴とする不揮発性メモリセルのアレイの形成方法。
  37. 請求項36記載の方法において、
    前記基体内に少なくとも2つの離隔トレンチを形成することは、前記基体内に少なくとも2つのトレンチを形成すること、及び前記トレンチに絶縁材料を満たすことを含むことを特徴とする方法。
  38. 請求項36記載の方法において、
    前記第1のウェルの形成は、さらに、前記基体に導電化のためのドーピングを含むことを特徴とする方法。
  39. 請求項38記載の方法において、
    前記基体への前記導電化のためのドーピングは、さらに、第1のドーパント種のイオン注入を含むことを特徴とする方法。
  40. 請求項36記載の方法において、
    前記第1及び第2のソース/ドレイン領域の形成は、第2のドーパント種を使用して前記第1のウェルへの部分的な導電化のためのドーピングを行って第2の導電型にすることを特徴とする方法。
  41. 請求項40記載の方法において、
    前記第2のウェルの形成は、第3のドーパント種を深い部分に注入することを含むことを特徴とする方法。
  42. 請求項41記載の方法において、
    前記第3のドーパント種は、前記第2のドーパント種と異なることを特徴とする方法。
  43. 基体内に絶縁材料を含む少なくとも2つの離隔トレンチを形成し、
    基体の露出する表面に導電化のためのドーピングを行って隔離トレンチ間を第1の導電型にし、これにより、各一対の隔離トレンチ間に第1のウェルを形成し、
    各第1のウェルの表面における第1の部分と第2の部分に導電化のためのドーピングを行って、前記第1の導電型とは逆の第2の導電型にし、ここにおいて、前記第1のウェルの各第1の部分は、該第1の部分に対応する第2の部分から横方向に分離され、
    前記基体の下方であって前記隔離トレンチに接触する部分に導電化のためのドーピングを行って第2の導電型にし、
    前記第1のウェル上に第1の絶縁膜を形成し、
    前記第1の絶縁膜上に電荷を蓄積可能な第1の導電膜を形成し、
    前記第1の導電膜上に第2の絶縁膜を形成し、
    前記第2の絶縁膜上に第2の導電膜を形成することを特徴とする不揮発性メモリセルのアレイの形成方法。
  44. 請求項43記載の方法において、
    各絶縁物は、酸化シリコン、窒化シリコン、酸窒化シリコンのグループから選ばれることを特徴とする方法。
  45. 請求項43記載の方法において、
    前記第1の導電膜は、導電化のためのドーピングが施された多結晶シリコン材料を有することを特徴とする方法。
  46. プロセッサと、
    前記プロセッサに結合される不揮発性メモリデバイスとを有し、
    前記不揮発性メモリデバイスは、
    複数の行及び複数の列に配列された不揮発性フローティングゲートメモリセルのアレイと、
    前記メモリセルのアレイとのアクセスを制御する制御回路とを有し、
    メモリセルの各列は、ソースとドレインを共有し、メモリセルの1つの列におけるソース及びドレインは、メモリセルの当該列に対応する第1のウェル内に含まれ、
    メモリセルの各列に対応する前記第1のウェルは、メモリセルの他の列における他の第1のウェルから分離され、
    各第1のウェルは、第2のウェル上に、多対1の関係で存在し、
    各第2のウェルは、第1の導電型を有し、
    前記第2のウェルは、前記第1の導電型とは異なる第2の導電型を有することを特徴とする電子システム。
  47. メモリセルのアレイにおけるメモリセルの論理状態の設定方法において、
    前記メモリセルに対応するワード線に第1の極性を有する第1の電位を印加し、
    前記メモリセルの第1のソース/ドレイン領域及び第2のソース/ドレイン領域に第1の極性を有する第2の電位を印加し、
    前記第1及び第2のソース/ドレイン領域を含む第1のウェルに前記第2の電位を印加し、
    前記第1のウェル下にあり、前記第1のウェルとPN接合を介して結合された第2のウェルに前記第1の極性を有する第3の電位を印加することを特徴とする方法。
  48. 請求項47記載の方法において、
    前記第1の電位、前記第2の電位及び前記第3の電位は、それぞれほぼ0Vよりも大きいか、ほぼ0Vと同じであることを特徴とする方法。
  49. 請求項48記載の方法において、
    前記第3の電位は、前記第1の電位のほぼ1/2であることを特徴とする方法。
  50. 請求項48記載の方法において、
    前記第1の電位は、ほぼ12V〜30Vの範囲であり、前記第2の電位は、ほぼ0V〜1Vの範囲であり、前記第3の電位は、ほぼ6V〜12Vの範囲であることを特徴とする方法。
  51. 請求項50記載の方法において、
    前記第2のウェル下における基体に接地電位を印加することを特徴とする方法。
  52. メモリセルのアレイにおけるメモリセルの論理状態の設定方法において、
    前記メモリセルに対応するワード線に第1の電位を印加し、
    前記メモリセルの第1のソース/ドレイン領域及び第2のソース/ドレイン領域に第2の電位を印加し、
    前記第1及び第2のソース/ドレイン領域を含む第1のウェルに前記第2の電位を印加し、
    前記第1のウェル下にあり、前記第1のウェルとPN接合を介して結合された第2のウェルに第2の電位を印加し、
    前記第2の電位は前記第1の電位よりも大きいことを特徴とする方法。
  53. 請求項52記載の方法において、
    前記第2の電位は正電圧であることを特徴とする方法。
  54. 請求項53記載の方法において、
    前記第2の電位は、ほぼ12V〜30Vの範囲であることを特徴とする方法。
  55. 請求項53記載の方法において、
    前記第2のウェル下における基体に接地電位を印加することを特徴とする方法。
  56. 複数の行及び複数の列に配列されたメモリセルのアレイの論理状態の設定方法において、
    メモリセルの1つの列における各メモリセルは、第1及び第2のソース/ドレイン領域を共有し、メモリセルの各列は、第1の導電型を有する分離された第1のウェルに形成され、
    前記アレイの各ワード線に第1の電位を印加し、
    前記アレイの各メモリセルにおける前記第1のソース/ドレイン領域及び前記第2のソース/ドレイン領域に第2の電位を印加し、
    メモリセルの各列の前記第1のウェルに前記第2の電位を印加し、
    前記第1のウェル下にあり、前記第1の導電型と異なる第2の導電型を有する第2のウェルに第2の電位を印加することを特徴とする方法。
  57. 請求項56記載の方法において、
    前記第1の電位は正電圧であることを特徴とする方法。
  58. 請求項57記載の方法において、
    前記第1の電位は、ほぼ12V〜30Vの範囲であることを特徴とする方法。
  59. 請求項57記載の方法において、
    さらに、前記第2のウェル下における基体に接地電位を印加することを特徴とする方法。
  60. 請求項56記載の方法において、
    前記第1の導電型はpタイプであり、前記第2の導電型はnタイプであることを特徴とする方法。
  61. 複数の行及び複数の列に配列されたメモリセルのアレイの論理状態の設定方法において、
    メモリセルの1つの列における各メモリセルは、第1及び第2のソース/ドレイン領域を共有し、メモリセルの各列は、第1の導電型を有する分離された第1のウェルに形成され、
    前記アレイの各ワード線に第1の電位を印加し、
    前記アレイの各メモリセルにおける前記第1のソース/ドレイン領域及び前記第2のソース/ドレイン領域に第2の電位を印加し、
    メモリセルの各列の前記第1のウェルに前記第2の電位を印加し、
    前記第1のウェル下にあり、前記第1の導電型と異なる第2の導電型を有する第2のウェルに第2の電位を印加することを特徴とする方法。
  62. 請求項61記載の方法において、
    前記第1の電位及び前記第2の電位は、それぞれほぼ0Vよりも大きいか、ほぼ0Vと同じであることを特徴とする方法。
  63. 請求項62記載の方法において、
    前記第1の電位は、ほぼ0V〜1Vの範囲であり、前記第2の電位は、ほぼ12V〜30Vの範囲であることを特徴とする方法。
  64. 請求項62記載の方法において、
    前記第2のウェル下における基体に接地電位を印加することを特徴とする方法。
  65. 請求項61記載の方法において、
    前記第1の導電型はpタイプであり、前記第2の導電型はnタイプであることを特徴とする方法。
JP2004531991A 2002-08-29 2003-08-29 非コンタクト形態のトンネル分離pウェルを有する不揮発性メモリアレイの構造、製造方法及び操作方法 Pending JP2005537649A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/230,597 US6649453B1 (en) 2002-08-29 2002-08-29 Contactless uniform-tunneling separate p-well (CUSP) non-volatile memory array architecture, fabrication and operation
PCT/US2003/027240 WO2004021362A1 (en) 2002-08-29 2003-08-29 Contactless uniform-tunneling separate p-well (cusp) non-volatile memory array architecture, fabrication and operation

Publications (1)

Publication Number Publication Date
JP2005537649A true JP2005537649A (ja) 2005-12-08

Family

ID=29420086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004531991A Pending JP2005537649A (ja) 2002-08-29 2003-08-29 非コンタクト形態のトンネル分離pウェルを有する不揮発性メモリアレイの構造、製造方法及び操作方法

Country Status (9)

Country Link
US (5) US6649453B1 (ja)
EP (1) EP1535286B1 (ja)
JP (1) JP2005537649A (ja)
KR (1) KR100713741B1 (ja)
CN (1) CN1685442A (ja)
AT (1) ATE373861T1 (ja)
AU (1) AU2003265846A1 (ja)
DE (1) DE60316449T2 (ja)
WO (1) WO2004021362A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018992A (ja) * 2014-07-08 2016-02-01 力旺電子股▲ふん▼有限公司eMemory Technology Inc. 高スケーラブルな単一ポリ不揮発性メモリセル

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100535024B1 (ko) * 2002-07-18 2005-12-07 주식회사 하이닉스반도체 반도체 소자의 워드라인 형성 방법
US6649453B1 (en) * 2002-08-29 2003-11-18 Micron Technology, Inc. Contactless uniform-tunneling separate p-well (CUSP) non-volatile memory array architecture, fabrication and operation
US7115479B2 (en) * 2002-11-26 2006-10-03 Intel Corporation Sacrificial annealing layer for a semiconductor device and a method of fabrication
US7196013B2 (en) * 2002-12-12 2007-03-27 Intel Corporation Capping layer for a semiconductor device and a method of fabrication
US20050110083A1 (en) * 2003-11-21 2005-05-26 Gammel Peter L. Metal-oxide-semiconductor device having improved gate arrangement
US7075140B2 (en) * 2003-11-26 2006-07-11 Gregorio Spadea Low voltage EEPROM memory arrays
JP4486434B2 (ja) * 2004-07-29 2010-06-23 富士通株式会社 命令リトライ検証機能付き情報処理装置および命令リトライ検証方法
US7326611B2 (en) * 2005-02-03 2008-02-05 Micron Technology, Inc. DRAM arrays, vertical transistor structures and methods of forming transistor structures and DRAM arrays
US7102188B1 (en) * 2005-04-05 2006-09-05 Ami Semiconductor, Inc. High reliability electrically erasable and programmable read-only memory (EEPROM)
US7638855B2 (en) * 2005-05-06 2009-12-29 Macronix International Co., Ltd. Anti-fuse one-time-programmable nonvolatile memory
US7179717B2 (en) * 2005-05-25 2007-02-20 Micron Technology, Inc. Methods of forming integrated circuit devices
US7269067B2 (en) * 2005-07-06 2007-09-11 Spansion Llc Programming a memory device
US7342833B2 (en) * 2005-08-23 2008-03-11 Freescale Semiconductor, Inc. Nonvolatile memory cell programming
US7495279B2 (en) * 2005-09-09 2009-02-24 Infineon Technologies Ag Embedded flash memory devices on SOI substrates and methods of manufacture thereof
US7439567B2 (en) * 2006-08-09 2008-10-21 Atmel Corporation Contactless nonvolatile memory array
US7898863B2 (en) * 2007-08-01 2011-03-01 Micron Technology, Inc. Method, apparatus, and system for improved read operation in memory
CN102024824B (zh) * 2009-09-21 2012-08-22 上海宏力半导体制造有限公司 阵列式场效应晶体管
KR101128716B1 (ko) * 2009-11-17 2012-03-23 매그나칩 반도체 유한회사 반도체 장치
US8853787B2 (en) 2009-11-17 2014-10-07 Magnachip Semiconductor, Ltd. High voltage semiconductor device
CN104362095B (zh) * 2014-11-05 2017-12-01 北京大学 一种隧穿场效应晶体管的制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215666A (ja) * 1988-07-01 1990-01-19 Nec Ic Microcomput Syst Ltd 半導体集積回路装置
JPH04352362A (ja) * 1991-05-29 1992-12-07 Rohm Co Ltd 半導体装置
JPH08263990A (ja) * 1995-03-24 1996-10-11 Hitachi Ltd 不揮発性半導体記憶装置
JPH08279566A (ja) * 1995-04-06 1996-10-22 Hitachi Ltd 並列型不揮発性半導体記憶装置及び同装置の使用方法
JPH0951043A (ja) * 1995-08-08 1997-02-18 Hitachi Ltd 不揮発性半導体記憶装置及びその駆動方法
JPH11134886A (ja) * 1997-10-30 1999-05-21 Sharp Corp 不揮発性半導体記憶装置
JPH11163173A (ja) * 1997-09-26 1999-06-18 Sony Corp 不揮発性半導体記憶装置と、その読み出し方法、及び書き込み方法
JP2001135729A (ja) * 1999-11-01 2001-05-18 Sony Corp 不揮発性半導体記憶装置及びその製造方法
JP2001168216A (ja) * 1999-12-10 2001-06-22 Sharp Corp 不揮発性半導体記憶装置
JP2001308210A (ja) * 2001-03-12 2001-11-02 Fujitsu Ltd 半導体装置
JP2001319482A (ja) * 2000-05-12 2001-11-16 Toshiba Corp 不揮発性半導体記憶装置
JP2001358237A (ja) * 2000-05-08 2001-12-26 Hynix Semiconductor Inc フラッシュメモリ装置並びにそのデータプログラム方法及びデータ消去方法
WO2002015190A2 (en) * 2000-08-15 2002-02-21 Motorola, Inc., A Corporation Of The State Of Delaware Non-volatile memory, method of manufacture and programming
JP2002124584A (ja) * 2000-10-13 2002-04-26 Hitachi Ltd 半導体集積回路装置および半導体集積回路装置の製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US619144A (en) * 1899-02-07 Wire-rod mill
EP1032034A1 (en) * 1992-01-22 2000-08-30 Macronix International Co., Ltd. Method of making memory device
KR970000870B1 (ko) * 1992-12-02 1997-01-20 마쯔시다덴기산교 가부시기가이샤 반도체메모리장치
US5515319A (en) * 1993-10-12 1996-05-07 Texas Instruments Incorporated Non-volatile memory cell and level shifter
KR960013401B1 (ko) * 1993-11-09 1996-10-04 김광호 스태틱 랜덤 억세스 메모리
US5487033A (en) * 1994-06-28 1996-01-23 Intel Corporation Structure and method for low current programming of flash EEPROMS
JP3183076B2 (ja) * 1994-12-27 2001-07-03 日本電気株式会社 強誘電体メモリ装置
US5597746A (en) 1995-08-09 1997-01-28 Micron Technology, Inc. Method of forming field effect transistors relative to a semiconductor substrate and field effect transistors produced according to the method
US5737260A (en) * 1996-03-27 1998-04-07 Sharp Kabushiki Kaisha Dual mode ferroelectric memory reference scheme
US6160277A (en) 1996-10-28 2000-12-12 Micron Technology, Inc. Field effect transistor assemblies and transistor gate block stacks
US5945726A (en) 1996-12-16 1999-08-31 Micron Technology, Inc. Lateral bipolar transistor
US5973356A (en) 1997-07-08 1999-10-26 Micron Technology, Inc. Ultra high density flash memory
US5973352A (en) 1997-08-20 1999-10-26 Micron Technology, Inc. Ultra high density flash memory having vertically stacked devices
US6080672A (en) 1997-08-20 2000-06-27 Micron Technology, Inc. Self-aligned contact formation for semiconductor devices
US6319774B1 (en) 1998-02-27 2001-11-20 Micron Technology, Inc. Method for forming a memory cell
US6137723A (en) * 1998-04-01 2000-10-24 National Semiconductor Corporation Memory device having erasable Frohmann-Bentchkowsky EPROM cells that use a well-to-floating gate coupled voltage during erasure
US6191444B1 (en) 1998-09-03 2001-02-20 Micron Technology, Inc. Mini flash process and circuit
US6282126B1 (en) 1998-12-16 2001-08-28 Micron Technology, Inc. Flash memory with overerase protection
US6406959B2 (en) 1999-01-04 2002-06-18 Micron Technology, Inc. Method of forming FLASH memory, method of forming FLASH memory and SRAM circuitry, and etching methods
US6181601B1 (en) * 1999-12-02 2001-01-30 Taiwan Semiconductor Manufacturing Corporation Flash memory cell using p+/N-well diode with double poly floating gate
US6272047B1 (en) 1999-12-17 2001-08-07 Micron Technology, Inc. Flash memory cell
US6337244B1 (en) 2000-03-01 2002-01-08 Micron Technology, Inc. Method of forming flash memory
US6563741B2 (en) 2001-01-30 2003-05-13 Micron Technology, Inc. Flash memory device and method of erasing
US6441428B1 (en) 2001-03-19 2002-08-27 Micron Technology, Inc. One-sided floating-gate memory cell
US6545310B2 (en) * 2001-04-30 2003-04-08 Motorola, Inc. Non-volatile memory with a serial transistor structure with isolated well and method of operation
US6649453B1 (en) * 2002-08-29 2003-11-18 Micron Technology, Inc. Contactless uniform-tunneling separate p-well (CUSP) non-volatile memory array architecture, fabrication and operation

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215666A (ja) * 1988-07-01 1990-01-19 Nec Ic Microcomput Syst Ltd 半導体集積回路装置
JPH04352362A (ja) * 1991-05-29 1992-12-07 Rohm Co Ltd 半導体装置
JPH08263990A (ja) * 1995-03-24 1996-10-11 Hitachi Ltd 不揮発性半導体記憶装置
JPH08279566A (ja) * 1995-04-06 1996-10-22 Hitachi Ltd 並列型不揮発性半導体記憶装置及び同装置の使用方法
JPH0951043A (ja) * 1995-08-08 1997-02-18 Hitachi Ltd 不揮発性半導体記憶装置及びその駆動方法
JPH11163173A (ja) * 1997-09-26 1999-06-18 Sony Corp 不揮発性半導体記憶装置と、その読み出し方法、及び書き込み方法
JPH11134886A (ja) * 1997-10-30 1999-05-21 Sharp Corp 不揮発性半導体記憶装置
JP2001135729A (ja) * 1999-11-01 2001-05-18 Sony Corp 不揮発性半導体記憶装置及びその製造方法
JP2001168216A (ja) * 1999-12-10 2001-06-22 Sharp Corp 不揮発性半導体記憶装置
JP2001358237A (ja) * 2000-05-08 2001-12-26 Hynix Semiconductor Inc フラッシュメモリ装置並びにそのデータプログラム方法及びデータ消去方法
JP2001319482A (ja) * 2000-05-12 2001-11-16 Toshiba Corp 不揮発性半導体記憶装置
WO2002015190A2 (en) * 2000-08-15 2002-02-21 Motorola, Inc., A Corporation Of The State Of Delaware Non-volatile memory, method of manufacture and programming
JP2002124584A (ja) * 2000-10-13 2002-04-26 Hitachi Ltd 半導体集積回路装置および半導体集積回路装置の製造方法
JP2001308210A (ja) * 2001-03-12 2001-11-02 Fujitsu Ltd 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018992A (ja) * 2014-07-08 2016-02-01 力旺電子股▲ふん▼有限公司eMemory Technology Inc. 高スケーラブルな単一ポリ不揮発性メモリセル
US9640262B2 (en) 2014-07-08 2017-05-02 Ememory Technology Inc. Highly scalable single-poly non-volatile memory cell

Also Published As

Publication number Publication date
KR20050057073A (ko) 2005-06-16
US6984547B2 (en) 2006-01-10
US6930350B2 (en) 2005-08-16
DE60316449D1 (de) 2007-10-31
US20040071008A1 (en) 2004-04-15
US7696557B2 (en) 2010-04-13
EP1535286B1 (en) 2007-09-19
AU2003265846A1 (en) 2004-03-19
US20050099846A1 (en) 2005-05-12
ATE373861T1 (de) 2007-10-15
US20040072391A1 (en) 2004-04-15
US20070164348A1 (en) 2007-07-19
DE60316449T2 (de) 2008-06-26
US7199422B2 (en) 2007-04-03
KR100713741B1 (ko) 2007-05-02
EP1535286A1 (en) 2005-06-01
CN1685442A (zh) 2005-10-19
US6649453B1 (en) 2003-11-18
WO2004021362A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US7696557B2 (en) Contactless uniform-tunneling separate p-well (CUSP) non-volatile memory array architecture, fabrication and operation
US6825525B2 (en) Semiconductor memory device
JP5241485B2 (ja) Soc用途のための高密度トレンチ・ベース不揮発性ランダム・アクセスsonosメモリ・セルの構造及びこれを製造する方法
US5260593A (en) Semiconductor floating gate device having improved channel-floating gate interaction
US6157575A (en) Nonvolatile memory device and operating method thereof
US7176077B2 (en) Methods of forming memory cells and arrays having underlying source-line connections
TWI555210B (zh) 記憶裝置與其形成方法
JPH0219980B2 (ja)
JP6401974B2 (ja) 半導体装置の製造方法
US11844213B2 (en) Non-volatile memory (NVM) cell structure to increase reliability
US20020055228A1 (en) Sidewall process to improve the flash memory cell performance
US6842372B1 (en) EEPROM cell having a floating-gate transistor within a cell well and a process for fabricating the memory cell
US6693830B1 (en) Single-poly two-transistor EEPROM cell with differentially doped floating gate
JPH07193200A (ja) 不揮発性半導体記憶装置およびその製造方法
JPH06125094A (ja) 不揮発性記憶素子およびこの素子の製造方法ならびにこの素子を利用した不揮発性記憶装置およびその駆動方法
JP3949749B2 (ja) フラッシュメモリ装置及びその製造方法
JP2009135214A (ja) 半導体記憶装置およびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090902

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090909

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091002

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125