JPH0219980B2 - - Google Patents

Info

Publication number
JPH0219980B2
JPH0219980B2 JP54063941A JP6394179A JPH0219980B2 JP H0219980 B2 JPH0219980 B2 JP H0219980B2 JP 54063941 A JP54063941 A JP 54063941A JP 6394179 A JP6394179 A JP 6394179A JP H0219980 B2 JPH0219980 B2 JP H0219980B2
Authority
JP
Japan
Prior art keywords
circuit
misfet
gate
film
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54063941A
Other languages
English (en)
Other versions
JPS55156370A (en
Inventor
Juji Tanida
Takaaki Hagiwara
Ryuji Kondo
Shinichi Minami
Yokichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6394179A priority Critical patent/JPS55156370A/ja
Priority to DE19803019850 priority patent/DE3019850A1/de
Publication of JPS55156370A publication Critical patent/JPS55156370A/ja
Priority to US06/487,085 priority patent/US4586238A/en
Priority to US06/850,037 priority patent/US4851364A/en
Priority to US07/351,847 priority patent/US5114870A/en
Publication of JPH0219980B2 publication Critical patent/JPH0219980B2/ja
Priority to US07/820,933 priority patent/US5252505A/en
Priority to US08/009,061 priority patent/US5348898A/en
Priority to US08/268,569 priority patent/US5519244A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/07Guard rings and cmos
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/117Oxidation, selective
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/141Self-alignment coat gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 この発明は、半導体記憶回路装置、特に記憶情
報の書き込み及び消去が可能な半導体不揮発性記
憶素子を使用した半導体記憶回路装置に関する。
半導体不揮発生記憶素子として、ゲート絶縁膜
中のトラツプを利用する形式またはフローテイン
グゲートを利用する形式とされた絶縁ゲート電界
効果トランジスタが公知である。この種の絶縁ゲ
ート電界効果トランジスタにおいては、トンネル
効果により、またはアバランシエ降伏によつて生
じたホツト・キヤリアにより上記ゲート絶縁膜中
のトラツプ又はフローテイングゲートに電荷が注
入されると、そのしきい値電圧が一方の安定な値
から他方の安定な値に変化する。上記の一方のし
きい値電圧となつている状態が例えば2進信号の
0と対応させられ、他方のしきい値電圧となつて
いる状態が2進信号の1と対応させられる。
上記の電荷は適当な方法により除去することが
可能である。
従つて、上記の種類の絶縁ゲート型電界効果ト
ランジスタは記憶情報の書き込み及び消去が可能
な不揮発性記憶素子として使用できる利点を持つ
ている。
上記の半導体不揮発性記憶素子は、その複数個
が例えば半導体基板上に規則的に配置され、記憶
情報の読み出しもしくは書き込みのために選択さ
れる。
上記の半導体不揮発生記憶素子は、記憶情報の
読み出しに必要とされる信号レベルに対し、書き
込み時に例えば上記信号レベルの数倍にも達する
高電圧の高レベル信号を必要とする。
しかしながら、回路素子の特性によつて信号レ
ベルが制限を受けることが有るので、半導体記憶
回路装置は上記の高レベル信号のために特に考慮
された回路装置を必要とする。
また、半導体記憶回路装置は、上記の高レベル
信号を処理する回路装置の使用によつて全体の構
成が複雑化するので、使用する半導体基板が大型
化しないようにし、かつ動作速度等の性能が害さ
れないように考慮されなければならない。
また、一方、かかる半導体回路装置は絶縁ゲー
ト型電界効果トランジスタを主体として実現され
ることが要求されるが、回路構成及び機能向上の
ために一部バイポーラトランジスタを使用するこ
とも要求され、かかる半導体回路装置を一枚の半
導体基板に形成した所謂半導体集積回路装置とし
て実現することが要求される。そして、かかる半
導体集積回路装置としては製造プロセスの効率化
を図る必要があり、従つてできる丈簡単な製造プ
ロセスで上記電子回路を実現することが要求され
る。
従つて、この発明の1つの目的は、半導体不揮
発性記憶素子を使用した動作速度の速い半導体記
憶回路装置を提供することにある。
この発明の他の目的は、半導体不揮発性記憶素
子を使用した小型化できる半導体記憶回路装置を
提供することにある。
この発明の他の目的は、半導体基板上において
個々の回路装置が望ましい位置に配置された半導
体記憶回路装置を提供することにある。
この発明の他の目的は、ゲート絶縁膜のトラツ
プを利用する絶縁ゲート電界効果トランジスタの
ように電気的に記憶情報の書き込み及び消去がで
きる半導体不揮発性記憶素子を使用した新規な半
導体記憶回路装置を提供することにある。
この発明の他の目的は、電気的に記憶情報の書
き込み及び消去ができる半導体不揮発性記憶素子
に適する構造とされた半導体記憶回路装置を提供
することにある。
この発明の他の目的は、高電圧信号の処理に適
する回路装置を提供することにある。
この発明の他の目的は、破壊の起りにくい回路
装置を提供することにある。
この発明の他の目的は、バイポーラトランジス
タと絶縁ゲート型電界効果トランジスタを含む新
規な回路装置を提供することにある。
以上述べた種々の本発明の目的及び構成は、以
下の詳細な説明及び添付図面より明らかとなるで
あろう。
以下、この発明を実施例に基づいて詳細に説明
する。
特に制限されないが、以下の実施例において
は、半導体不揮発生記憶素子として、極めて薄い
シリコン酸化膜(オキサイド(Oxide))と、こ
の酸化膜の上に形成された比較的厚いシリコン窒
化膜(ナイトライド(Nitride))との2層構造の
ゲート絶縁膜を持つ絶縁ゲート電界効果トランジ
スタ(以下MNOSと称する)を使用する。この
MNOSに対しては、記憶情報の書き込みだけで
なく消去も電気的に行なうことができる。
第12図は、MNOSの断面図を示している。
同図において、p型シリコン領域1の表面に互い
に隔てられてn型ソース領域2及びドレイン領域
3が形成され、上記ソース・ドレイン領域2,3
間のp型シリコン領域1の表面に、例えば厚さ20
Åのシリコン酸化膜4と厚さ500Åのシリコン窒
化膜5とからなるゲート絶縁膜を介してn型多結
晶シリコンからなるゲート電極が形成されてい
る。上記p型シリコン領域1は、MNOSの基体
ゲート領域を構成する。
消去状態もしくは記憶情報が書き込まれていな
い状態では、MNOSのゲート電圧VG対ドレイン
電流ID特性は、例えば第13図の曲線Aのよう
になつており、そのしきい値電圧は4ボルトの負
電圧(以下−4Vのように記する)になつている。
記憶情報の書き込み又は消去のために、ゲート
絶縁膜には、トンネル現象によりキヤリヤの注入
が生ずるような高電界が作用させられる。
書き込み動作において、基体ゲート1には、例
えばほゞ回路の接地電位の0Vが印加され、ゲー
ト6には、例えば+25Vの高電圧が印加される。
ソース領域2及びドレイン領域3には、書き込む
べき情報に応じてほゞ0Vの低電圧又は+20Vの
ような高電圧が印加される。
ソース領域2とドレイン領域3との間のシリコ
ン領域1表面には、上記ゲート6の正の高電圧に
応じてチヤンネル7が誘導される。このチヤンネ
ル7の電位はソース領域2及びドレイン領域3の
電位と等しくなる。
ソース領域2及びドレイン領域3に上記のよう
に0Vの電圧が印加されるとゲート絶縁膜には上
記ゲート6の高電圧に応じた高電界が作用する。
その結果、ゲート絶縁膜にはトンネル現象により
チヤンネル7からキヤリアとしての電子が注入さ
れる。MNOSのVG−ID特性は第13図曲線Aか
らBに変化する。しきい値電圧は前記の−4Vか
ら例えば+1Vに変化する。
ソース領域2及びドレイン領域3に上記のよう
に+20Vが印加された場合、ゲート6とチヤンネ
ル7との間の電位差が数Vに減少する。このよう
な低電位差では、トンネル現象による電子の注入
を起させるには不充分となる。そのため、
MNOSの特性は第13図の曲線Aから変化しな
い。
半導体記憶回路装置においては、1つのデイジ
ツト線に複数のMNOSが結合される。上記の書
き込み動作において、選択されるMNOSには上
記のような電圧が印加される。非選択とされる
MNOSのゲートにはほゞ0Vの電圧が加えられる
かもしくはソース領域及びドレイン領域に前記の
+20Vのような高電圧が印加される。
記憶情報の消去は、ゲート絶縁膜に上記の書き
込みにおける電界に対し逆方向の高電界を作用さ
せることにより行なわれる。この逆方向の高電界
によりトンネル現象が生じ、ゲート絶縁膜にキヤ
リヤとしての正孔が流入される。前記の書き込み
時に注入された電子が上記の正孔によつて中和さ
れ、その結果MNOSの特性は第13図の曲線B
から再び曲線Aにもどされる。
この実施例に従うと、上記の消去のために、例
えば基体ゲート1に0Vを加えながらゲート6に
負の高電圧を加える構成をとる代りに、後述から
より明確になるようにゲート6に0Vを加えなが
ら基体ゲート1に+25Vのような正の高電圧を加
える構成とする。上記のように基体ゲート1に正
の高電圧を加える構成とすることによつて、ゲー
ト6に高電圧を印加するための回路構成を単純に
することができるようになる。また、書き込み及
び消去のために同一極性の高電圧を利用できるよ
うになり、その結果、半導体記憶回路装置の外部
端子数及び半導体記憶回路装置を駆動するための
電源数を少なくできる。
MNOSの特性が上記第13図の曲線A又はB
のいずれか一方になるので、MNOSの記憶情報
の読み出しは、例えばゲート電圧VGが0Vである
ときのソース・ドレイン間の導通状態を検出する
ことにより行なわれる。単一極性の信号により1
つのデイジツト線に結合された複数のMNOSの
1つを選択できるようにするために、単位の記憶
要素(以下メモリセルと称する)は、第14図に
等価回路を示すように、MNOS Q1とこれに直
列接続されたスイツチ用絶縁ゲート電界効果トラ
ンジスタ(以下スイツチ用MISFETと称する)
Q2とから構成される。読み出し時、MNOS Q
1のゲート電圧は0Vに維持され、スイツチ用
MISFETのゲート電圧は、選択信号によつて0V
又は+5Vのような正電圧とされる。
第1図は、実施例の半導体記憶回路装置の回路
を示している。
この実施例の記憶回路は、Xデコーダ、Yデコ
ーダ、制御回路等の比較的低電圧の信号を形成す
る回路と、書き込み回路、消去回路等の比較的高
電圧の信号を形成する回路とを含んでいる。
特に制限されないが、上記の低電圧信号を形成
する回路のために電源端子VCCに、+5Vの低電源
電圧が供給される。上記電源電圧に応じて、低電
圧信号のハイレベルは、ほゞ+5Vとされ、ロウ
レベルはほゞ回路の接地電位の0Vとされる。
上記書き込み回路、消去回路等の回路のため
に、回路装置に高電圧端子VPPが設けられる。
この高電圧端子VPPには、回路装置に書き込み
動作をさせるとき及び消去動作をさせるとき、
ほゞ+25Vのような高電圧が供給される。上記の
高電圧に応じて、高電圧信号のハイレベルはほゞ
+25Vもしくは+20Vとされ、ロウレベルはほゞ
0Vとされる。
第1図において、MAはメモリアレイであり、
マトリクス配置されたメモリセルMS11ないし
MS22を含んでいる。
同一の行に配置されたメモリセルMS11,
MS12のそれぞれのスイツチ用MISFET Q2
のゲートは、第2ワード線W11に共通接続さ
れ、それぞれのMNOS Q1のゲートは、第2ワ
ード線に共通接続されている。同様に、他の同一
の行に配置されたメモリセルMS21,MS22
のスイツチ用MISFET及びMNOSのゲートはそ
れぞれ第1ワード線W21、第2ワード線W22
に共通接続されている。
同一の列に配置されたメモリセルMS11,
MS21のスイツチ用MISFET Q2のドレイン
はデイジツト線D1に共通接続され、MNOSの
ソースは基準電位線ED1に共通接続されている。
同様に他の同一の列に配置されたメモリセルMS
12,MS22のスイツチ用MISFETのドレイン
及びMNOSのソースはそれぞれデイジツト線D
2、基準電位線ED2に共通接続されている。
この実施例に従うと、基体ゲートに正の高電圧
を印加することによつてMNOSの記憶情報を消
去する構成をとるので、メモリセルを形成する半
導体領域は、次に説明するXデコーダ、Yデコー
ダ等の周辺回路を形成する半導体領域と電気的に
分断される。上記の半導体領域は後で説明するよ
うに、例えばn型半導体基板表面に形成されたp
型ウエル領域から構成される。
上記の消去のために、個々のメモリセルをそれ
ぞれ独立のウエル領域に形成したり、同じ行もし
くは列に配置されるメモリセルを共通のウエル領
域に形成したりすることができるが、この実施例
では、メモリセルの全体すなわちメモリアレイ
MAを1つの共通なウエル領域に形成する。
第1図において、線WELLは、メモリアレイ
MAの共通の基体ゲートとしてのウエル領域に接
続される。
上記第1ワード線W11,W21は、それぞれ
XデコーダXD1,XD2の出力端子に接続され、
第2ワード線W12,W22は、書き込み回路
WA1,WA2の出力端子に接続されている。
XデコーダXD1は、図示のように、電源VCC
と出力端子との間に接続されゲート・ソース間が
短絡されたデイプレツシヨン型負荷MISFET Q
3と、出力端子とアース端子間に接続され、それ
ぞれのゲートにアドレスバツフアB0ないしB6
からの非反転出力もしくは反転出力を受けるエン
ハンスメント型MISFET Q4ないしQ6とから
なり、実質的にノア回路を構成している。Xデコ
ーダXD1は、選択されていないときアドレス入
力線a0ないしa6の少なくとも1つにおける信
号のハイレベルにより、ワード線W11にほゞ
0Vのロウレベル信号を出力し、選択されたとき、
アドレス入力線a0ないしa6におけるすべての
信号がロウレベルとなり、ほゞ5Vのハイレベル
信号を出力する。
XデコーダXD2は、接続するアドレス入力線
が異なる点を除いて上記XデコーダXD1と同一
構成にされる。
なお、第1図において、MISFET Q3のよう
なデイプレツシヨン型MISFETは、図示のよう
にエンハンスメント型MISFETと異なつた記号
で標記されている。
書き込み回路WA1は、第1ワード線W11と
出力端子(第2ワード線W12)との間に直列接
続されたMISFET Q15,Q16と、上記出力
端子と書き込み及び消去時に前記の+25Vの電圧
が加えられる電源端子VPPとの間に接続された
MISFET Q19と、上記出力端子と接地端子と
の間に直列接続されたMISFET Q17,Q18
とからなる。上記MISFET Q15のゲートは書
き込み制御線Wlに接続され、MISFET Q18の
ゲートは読み出し及び消去制御線に接続され、
更にMISFET Q16及びQ18のゲートは電源
端子VCCに接続されている。
後で説明する構成の制御回路CRLにより、書
き込み動作以外において、上記書き込み制御線
Wlの信号はほゞ0Vのロウレベルとされ、制御線
vpの信号はほゞ+5Vのハイレベルとされている。
従つてMISFET Q15はオフ状態にあり、これ
に対しMISFET Q18はオン状態にある。出力
端子(第2ワード線W12)は、直列接続の
MISFET Q17とQ18とを介して回路の接地
端子に接続され、そのためほゞ0Vにされる。
書き込み動作において、電源端子VPPに+25V
の高電圧が加えられ、書き込み制御線Wlに、
MISFET Q15をオン状態にさせるようほゞ+
5Vのハイレベル信号が加えられ、制御線に、
MISFET Q18をオフ状態にさせるようほゞ0V
の信号が加えられる。
上記のMISFET Q15のオン状態とMISFET
Q18のオフ状態とによつて、第2ワード線W1
2の信号レベルが第1ワード線W11の信号レベ
ルに応じて決められるようになる。
すなわち、第1ワード線W11を選択するよ
う、XデコーダXD1の駆動用MISFET Q4な
いしQ6がすべてオフ状態にされているなら、
MISFET Q16,Q15及び上記駆動用
MISFET Q4ないしQ6の電流経路は構成され
ない。従つて、第2ワード線W12には
MISFET Q19を介してほゞ電源端子VPPの+
25Vが現われる。すなわち、選択された第1ワー
ド線にほゞ+5Vが加わることに対応して、選択
されたワード線にほゞ+25Vの電圧が加わること
になる。
第1ワード線W11が非選択なら、すなわちX
デコーダXD1の駆動用MISFET Q4ないしQ
6の少なくとも1つがオン状態とされているな
ら、MISFET Q16,Q15及び上記駆動用
MISFET Q4ないしQ6を介して出力端子(第
2ワード線W12)を接地する電流経路が形成さ
れる。その結果、上記出力端子はほゞ0Vにされ
る。
上記書き込み回路WA1において、ゲートに定
常的に電源電圧VCCを受けるMISFET Q16,
Q17は、第2ワード線W12に加わる高電圧信
号がMISFET Q15又はQ18のブレークダウ
ンによつて制限されてしまうことを防ぐために使
用される。
すなわち、例えばMISFET Q17を省略した
場合、MISFET Q18のドレインDに第2ワー
ド線W12の高電圧(+25V)が印加されること
になる。上記MISFET Q18のゲートには、前
記のように制御線vpからほゞ0Vの低電圧が加わ
つているので、このMISFET Q18のドレイン
接合の囲りに広がるべき空乏層が、ゲートの近傍
においてこのゲートの低電圧によつて制限される
ことになる。その結果、MISFET Q18のドレ
イン接合は、比較的低電圧でブレークダウンする
ようになる。
図示のようにMISFET Q17を設けると、
MISFET Q18のドレインに加わる電圧は、電
源電圧VCCからMISFET Q17のしきい値電圧
だけ増加した値の電圧にクランプされる。その結
果、MISFET Q18のブレークダウンが防止さ
れる。MISFET Q17は、そのゲートが電源
VCCに接続されているので比較的高いドレイン
耐圧を持つことになる。
MISFET Q16も上記MISFET Q17と同
様な理由によつて使用される。
この実施例を従うと、前記のようなウエル領域
を使用する構成が有効に利用される。
書き込み回路WA1における負荷MISFET Q
19は、他のMISFET Q15ないしQ18など
のMISFETを形成するウエル領域に対し独立し
たウエル領域に形成される。すなわち、
MISFET Q19の基体ゲートは、他のMISFET
の基体ゲートから電気的に分離される。
上記負荷MISFET Q19は、図示のようにそ
の基体ゲートとソースとが短絡されており、基体
ゲートからソース・ドレイン間のチヤンネルに高
電圧が作用しないようにされている。
図示の接続に対し、基体ゲートが他の
MISFETと同様に接地端子に接続されている場
合、出力端子(第2ワード線W12)で必要とす
る電圧が大きいので、基板バイアス効果による
MISFET Q19のしきい値電圧の増加が他の低
電圧を処理するためのMISFETに比べて著るし
く大きくなる。その結果、上記の出力端子(第2
ワード線W12)で必要とする電圧に対し、高電
圧端子VPPに供給する電圧を大幅に大きくしな
ければならなくなる。
これに対し、図示の接続の場合、基体ゲートの
電圧がソースの電圧と等しくなるので、基板バイ
アス効果によるMISFET Q19のしきい値電圧
の増加を実質的に無視できるようになる。その結
果、高電圧端子VPPに供給する高電圧を比較的
小さくすることができるようになる。
上記のように、高電圧端子VPPに供給する電
圧を低下させても良い構成とすることにより、こ
の高電圧端子VPPが接続される各種のpn接合の
耐圧を異常に高くすることが必要なくなるかもし
くはpn接合における各種の望ましくないリーク
電流を減少させることができる。さらに、高電圧
端子VPPに接続する配線からの電界によつて半
導体表面に望ましくない寄生チヤンネルが誘起さ
れてしまうことを防ぐことができる。
メモリアレイMAの各基準電位線ED1,ED2
は、書き込み禁止回路IHA1に接続されている。
書き込み禁止回路IHA1において、基準電位
線ED1と接地端子との間に直列接続された
MISFET Q20とQ21とが単位スイツチ回路
を構成している。この単位スイツチ回路における
MISFET Q21は制御回路CRLから制御線rを
介して制御信号を受ける。上記制御信号は、記憶
情報の読み出し動作のとき上記MISFET Q21
をオン状態とするよう、+5Vのレベルとされ、書
き込み動作及び消去動作のときオフ状態とするよ
う0Vのレベルとされる。
従つて、上記単位スイツチ回路は、読み出し動
作のとき上記基準電位線ED1をほゞ0Vにする。
上記基準電位線ED1と高電圧信号線IHVとの
間にMISFET Q22が接続されている。上記高
電圧信号線IHVには、後述する書き込み禁止電
圧発生回路IHA2から、書き込み動作及び消去
動作の時ほゞ+20Vの高電圧レベルとされ、読み
出し動作のときほゞ0Vとされる信号が印加され
る。
従つて、書き込み動作及び消去動作において、
上記単位スイツチ回路のMISFET Q21がオフ
状態にされると、基準電位線ED1には、
MISFET Q22を介して上記高電圧信号線IHV
から高電圧が印加される。
基準電位線ED2と接地端子との間には
MISFET Q23とQ24とからなる前記と同様
な単位スイツチ回路が接続され、基準電位線ED
2と高電圧信号線IHVとの間にはMISFET Q2
5が接続される。
上記書き込み禁止回路IHA1において、ゲー
トに+5Vの電源電圧VCCを受けるMISFET Q
20,Q23は、基準電位線ED1,ED2に上記
のような高電圧が加えられるので、前記の書き込
み回路WA1において設けたMISFET Q16,
Q17と同様な理由で使用される。
MISFET Q22,Q25は、前記MISFET
Q19と同様に、基板バイアス効果によるしきい
値電圧の増加を防ぎ、高電圧信号線IHVの高電
圧に対し、基準電位線ED1,ED2の電圧が低下
しないようにするために、独立のウエル領域に形
成される。
メモリアレイMAの各デイジツト線D1,D2
と共通デイジツト線CDとの間にYゲート回路
YGOが接続される。
Yゲート回路YGOにおいて、デイジツト線D
1と共通デイジツト線CDとの間に直列接続され
たMISFET Q11とQ12とは単位ゲート回路
を構成し、YデコーダYD1の出力に応じて上記
デイジツト線D1と共通デイジツト線CDとを結
合する。同様に、MISFET Q13とQ14とが
他の単位ゲート回路を構成し、この単位ゲート回
路はYデコーダYD2の出力に応じてデイジツト
線D2と共通デイジツト線を結合する。
書き込み動作時及び消去動作時に各デイジツト
線D1,D2に高電圧信号が現われるので、上記
Yゲート回路YGOにおける単位スイツチ回路は、
図示のようにゲートに+5Vの電源電圧を受ける
MISFET Q12,Q14を使用する。
YデコーダYD1,YD2は、前記Xデコーダ
XD1,XD2と類似の構成とされ、アドレスバ
ツフアB7ないしB10から出力するアドレス信
号A7ないしA10の非反転信号a7ないしa1
0及び反転信号7ないし10を選択的に受け
ることにより、それぞれの出力線Y1,Y2に、
選択時に+5Vのハイレベルとなり、非選択時に
0Vとなるデコード信号を出力する。
Yゲート回路YGOに接続した共通デイジツト
線CDには、センス回路IOS及びデータ入力回路
IOWが接続される。
センス回路IOSは、図示のようにゲートソース
間が接続された負荷MISFET Q47と、ゲート
に制御線rからの信号を受けるスイツチ
MISFET Q48とからなる。導み出し動作にお
いて、線rにおける信号が+5Vのハイレベルと
されることによつて上記スイツチMISFET Q4
8がオン状態とされる。
上記センス回路IOSの出力が、インバータI1
4,I15、ノア回路NR3,NR4及び
MISFET Q49,Q50からなる出力バツフア
回路IORに供給される。
出力バツフア回路IORにおいて、ノア回路NR
3,NR4のそれぞれの一方の入力端子は制御線
CS1に接続されている。上記制御線1の信号
は、読み出し動作時に0Vのロウレベルとされ、
書き込み及び消去動作時に+5Vのハイレベルと
される。上記ノア回路NR3の他方の入力端子は
インバータIN14の出力端子に接続され、NR4
の他方の入力端子は上記インバータIN14の出
力を受けるインバータIN15の出力端子に接続
されている。
従つて、上記ノア回路NR3とNR4は、読み
出し動作時に、互いに逆相の信号を出力する。直
列接続されたMISFET Q49とQ50とは、上
記ノア回路NR3とNR4とによつてプツシユプ
ル駆動される。
制御線1の信号がハイレベルなら、上記ノ
ア回路NR3とNR4が、いずれも0Vのロウレベ
ル信号を出力し、MISFET Q49及びQ50の
両方がオフ状態にされる。上記出力バツフア回路
IORの出力端子は、入出力端子POに接続されて
いる。上記のMISFET Q49及びQ50の同時
のオフ状態において、出力バツフア回路はその出
力インピーダンスに著るしく高くなり、従つて入
出力端子POに加わる入力信号を制限しない。
上記出力バツフア回路IORにおいて、電源端子
VCCと出力端子との間に接続される上記
MISFET Q49は、他のMISFETのウエル領域
とは独立のウエル領域に形成される。基体ゲート
としてのウエル領域は、そのソースに接続され
る。その結果、基板バイアス効果によるしきい値
電圧の増加が実質的に無くなるので、出力バツフ
ア回路IORは、ほゞ電源電圧VCCのハイレベル
信号を出力できるようになる。
データ入力回路IOWは、図示のように入力バ
ツフア回路IN16と、この入力バツフア回路の
出力によつて制御されるMISFET Q51と、こ
のMISFET Q51のドレインと共通デイジツト
線CDとの間に接続され、ゲートに制御線Wlから
の信号を受けるMISFET Q52とから構成され
ている。
書き込み禁止電圧発生回路IHA2は、図示の
ようにMISFET Q26ないしQ36から構成さ
れている。上記MISFET Q26ないしQ28
は、第1の高電圧インバータを構成し、制御線
Wlからの低電圧系の制御信号を受けることによ
り、出力端子、すなわちMISFET Q27のドレ
インに高電圧系の信号を出力する。図示の接続に
よりその出力信号レベルはほゞ0VからVPPまで
変化する。MISFET Q29ないしQ31は第2
の高電圧インバータを構成し、上記第1の高電圧
インバータと同じ信号を受けることにより
MISFET Q30のドレインに高電圧系の信号を
出力する。その出力信号レベルはほゞ+5V
(VCC)からVPPまで変化する。MISFET Q3
2ないしQ36は、高電圧プツシユプル回路を構
成している。上記第1、第2の高電圧インバータ
及びプツシユプル出力回路において制御信号を受
けるMISFET Q28,Q31,Q36とそれぞ
れの出力端子との間に接続され、ゲートに+5V
の電源電圧を受けるMISFET Q27,Q30,
Q35は、前記のMISFET Q16,Q17等と
同様に、回路の高出力電圧を保証するために使用
される。第1及び第2の高電圧インバータにおけ
る負荷MISFET Q26,Q29は、図示のよう
に、基体ゲートがそれぞれのソースに接続され、
基板バイアス効果による出力電圧の低下を無く
し、プツシユプル出力回路のMISFET Q33及
びQ32,Q34を充分に駆動できるように構成
されている。
上記プツシユプル出力回路において、
MISFET Q32は、第1の高電圧インバータの
出力がほゞ0VであるときにMISFET Q33のド
レインに加わる電圧を制限するために使用され
る。すなわち、第1の高電圧インバータの出力が
ほゞ0Vであるとき、第2の高電圧インバータは
その基準電位が+5Vの低電圧とされているので、
+5Vを出力する。その結果、MISFET Q32の
ゲートに+5Vが印加され、MISFET Q33のド
レイン電圧が制限されることになる。MISFET
Q34は、第1、第2の高電圧インバータの出力
が高電圧になつたことにより出力線IHVが+20V
の高電圧にされた後、上記第1、第2の高電圧イ
ンバータの出力がほゞ0Vのロウレベルになつた
とき、出力線IHVからMISFET Q33のソース
に加わる高電圧を制限するために使用される。そ
の結果、スイツチ動作させられるMISFET Q3
3のソース及びドレイン接合の不所望なブレーク
ダウンが防止される。
消去回路ERSは、MISFET Q40ないしQ4
2からなる高電圧インバータと、MISFET Q4
3ないしQ46及びバイポーラトランジスタQ4
4とからなるプツシユプル回路とによつて構成さ
れている。上記高電圧インバータは、前記書き込
み禁止電圧発生回路IHA2と同様な構成とされ
ている。
上記プツシユプル出力回路において、バイポー
ラトランジスタQ44とMISFET Q43は並列
接続され、上記高電圧インバータの出力によつて
駆動される。メモリアレイを形成するウエル領域
は、後で説明する回路装置の構造から明らかなよ
うに、消去回路に対し、重い容量性負荷を構成す
る。従つて、消去回路ERSは、高速の消去動作
を行なわせるために、充分低い出力インピーダン
ス特性を持つことが必要とされる。バイポーラト
ランジスタは、半導体集積回路装置において、比
較的小型寸法(面積)で形成されてもMISFET
に対し充分低い動作抵抗特性を示す。従つて、図
示のようにバイポーラトランジスタQ44を出力
トランジスタとする消去回路ERSは、半導体集
積回路装置に小面積で形成されてもメモリアレイ
MAのウエル領域を充分高速で駆動する。上記
MISFETとともに同一半導体基板上に形成され
るバイポーラトランジスタの構造、製法は後で説
明される。
上記消去回路ERSにおいて、バイポーラトラ
ンジスタQ44のみを使用する場合、このバイポ
ーラトランジスタのしきい値電圧(ベース・エミ
ツタ間電圧)が、例えば0.6Vあるので、
MISFET Q40ないしQ42からなる上記高電
圧インバータがほゞ電源電圧VPPの信号を出力
しても出力線lに出力される電圧信号が上記トラ
ンジスタQ44のしきい値電圧だけ低下する。
図示の消去回路ERSは、基体ゲートが上記高
電圧インバータの負荷MISFET Q40の基体ゲ
ートと一体にされ、この基体ゲートとともにゲー
トが上記負荷MISFET Q40のソース、すなわ
ち高電圧インバータの出力端子に接続されたデイ
プレツシヨン型MISFET Q43を上記バイポー
ラトランジスタQ44と並列に接続している。上
記MISFET Q43は、基体ゲートの高電位が
ほゞ電源電圧VPPまで上昇するので、基板バイ
アス効果によるしきい値電圧の増加が実質的にな
い。従つて、出力線lにおける高電圧は、上記
MISFET Q43によつてほゞ電源電圧VPPまで
上昇させられるようになる。
上記MISFET Q43の基体ゲートは、図示の
接続からそのソース、すなわち出力線lに接続さ
れても良い。このようにした場合でも基板バイア
ス効果による出力線lの出力レベルが低下してし
まうことを防ぐことができる。しかしながら、こ
のようにすると、回路装置の構造上、MISFET
Q40の基体ゲートとしてのウエル領域とQ43
の基体ゲートとしてのウエル領域とを共通にでき
なく、互いに分離しなければならなくなる。ウエ
ル領域の相互に所定の間隔が必要であるので、必
要とする半導体基板の面積を増加させなければな
らないという不利益を生じる。
制御回路CRLは、インバータIN1ないしIN1
2、ナンド回路NA1ないしNA4、ノア回路
NR1,NR2および直列接続のMISFET Q37
ないしQ39からなる。この制御回路CRLは、
外部端子PGM,及びVPPにそれぞれ書き込み
制御信号、チツプ選択信号、書き込み及び消去信
号を受け、前記書き込み禁止電圧発生回路IHA
2からの出力信号を受けることにより線1,
r,Wl,及びに制御信号を出力する。
上記端子VPPに供給される信号は前記書き込
み回路WA1,WA2、書き込み禁止電圧発生回
路IHA2及び消去回路ERSに対する電源電圧と
して共用される+25Vの高電圧系の信号である。
制御回路CRLは、上記端子VPPの信号が所定
レベル以上になつたときだけ書き込み又は消去動
作の制御を行なうよう、上記のようなMISFET
Q37ないしQ39からなるレベルシフト回路を
含んでいる。
上記第1図の半導体記憶回路の動作は第2図な
いし第4図のタイミングチヤートを使用して次の
ように説明される。なお、第2図は読み出し動作
のタイミングチヤートを示し、第3図は消去動作
のタイミングチヤートを示している。更に第4図
は書き込み動作のタイミングチヤートを示してい
る。
読み出し動作においては、端子PGMにおける
書き込み制御信号がほゞ0Vのロウレベルとされ
ている。また端子VPPは、ほゞ0Vにされるかも
しくはフローテイングにされており、ゲートに+
5Vの電圧VCCを受けているMISFET Q39の
ドレインにはほゞ0Vの書き込み及び消去制御信
号が現われている。
上記端子VPPにおけるロウレベルの書き込み
制御信号及びMISFET Q39のドレインにおけ
るロウレベルの書き込み及び消去信号により、制
御線r,及びにおける信号は、ハイレベル
になつており、Wlにおける信号はロウレベルに
なつている。
従つて、メモリアレイMAの各基準電位線ED
1,ED2は書き込み禁止回路IHA1によつて
ほゞ0Vにされており、各第2ワード線W12,
W22も同様に書き込み回路WA1,WA2によ
つてほゞ0Vにされている。
タイミングは特に制限されないが、例えば時刻
t0において、アドレス入力端子A0ないしA1
0における信号が選択するメモリセルに対応して
セツトされる。例えば、選択するメモリセルが
MS11であるとすると、アドレスバツフアB0
ないしB6の出力によつてXデコーダXD1の出
力がハイレベルとなり、またアドレスデコーダB
7ないしB10の出力によつてYデコーダYD1
の出力がハイレベルとなる。
その結果、メモリセルMS11のMNOS Q1
のドレインと共通デイジツト線CDとの間に
MISFET Q11,Q10、デイジツト線D1及
びスイツチ用MISFET Q2を介する電流経路が
形成される。また、制御線rにおける信号のハイ
レベルによつて、共通デイジツト線CDとセンス
回路IOSの負荷MISFET Q47との間に電流経
路が形成される。
メモリセルMS11のMNOS Q1が第13図
Aの特性のようにオン状態となつているなら、セ
ンス回路IOSの出力線は、上記電流経路と
MNOS Q1を介して接地されることになる。そ
の結果、センス回路IOSの出力線はロウレベルに
なる。上記メモリセルMS11のMNOS Q1が
第13図Bの特性のようにオフ状態となつている
なら、負荷MISFET Q47に対する電流経路が
構成されず、その結果、センス回路IOSの出力線
はハイレベルとなる。
時刻t1において、端子におけるチツプ選
択信号がハイレベルからロウレベルにされること
によつて、ほゞ同時刻t2において制御線1
における信号がロウレベルになる。その結果、出
力バツフア回路IORは、高出力インピーダンス状
態から上記センス回路IOSの出力レベルに応じた
信号を出力するようになる。例えばセンス回路
IOSがハイレベル信号を出力しているなら出力バ
ツフア回路IORは、出力端子にハイレベル信号を
出力する。
時刻t3においてチツプ選択信号がロウレベル
からハイレベルにもどると、ほゞ同時刻t4にお
いて制御線1の信号がロウレベルからハイレ
ベルになり、これに応じて、出力バツフア回路
IORは再び高出力インピーダンス状態になる。
消去動作のために、予め端子VPPに+25Vの書
き込み及び消去信号が加えられ、端子に0Vの
ロウレベルのチツプ選択信号が加えられる。
制御線における信号は、上記レベルのチツ
プ選択信号によつてハイレベルとなつており、従
つて書き込み回路WA1,WA2は第2ワード線
W12,W22をほゞ0Vにしている。
第3図のように、時刻t10において書き込み
制御信号がハイレベルにされると、これに応じて
ナンド回路NA4の出力がロウレベルになる。上
記ナンド回路NA4のロウレベル信号によつて消
去回路ERSは、そのMISFET Q42及びQ46
がオフ状態となるので、出力線lに+25の高電圧
を出力する。
前記のように第2ワード線W12,W22にお
ける信号が0Vにされているので、消去回路ERS
の出力によつてウエル領域WELLが+25Vの高電
圧とされるとメモリアレイのMNOSのゲート絶
縁膜に消去のための高電圧が加えられることにな
る。
上記ウエル領域の正電圧は、メモリセルの
MNOS Q1及びスイツチ用MISFET Q2のソ
ース接合及びドレイン接合を順方向にバイアスす
る方向にある。従つて、基準電位線ED1,ED
2、デイジツト線D1,D2の少なくとも1つと
回路の接地端子との間に電流経路が形成されてい
るとウエル領域に加えるべき電圧は低下してしま
う。
図示の回路は、上記のウエル領域の電圧の低下
を防ぐよう、次のように動作する。
制御線rにおける信号は、上記時刻t10と
ほゞ同じ時刻t11において上記書き込み制御信
号がハイレベルになることに対応してロウレベル
になる。
上記制御線rにおける信号によつて書き込み禁
止回路IHA1のMISFET Q21,Q24及び書
き込み禁止電圧発生回路IHA2のMISFET Q3
6がオフ状態とされる。その結果、メモリアレイ
の各基準電位線ED1,ED2は実質的にフローテ
イングにされる。
制御線Wlにおける信号は、チツプ選択信号の
ロウレベルに応じてロウレベルになつている。従
つて共通デイジツト線CDに接続するデータ入力
回路IOWにおけるMISFET Q52はオフ状態に
ある。他方、上記共通デイジツト線CDに接続す
るセンス回路IOSにおけるMISFET Q48は、
上記制御線rにおける信号によつてオフ状態にな
る。
共通デイジツト線CDのフローテイングによつ
て、YゲートYGOの動作にかかわらずに、メモ
リアレイMAの各デイジツト線D1,D2はフロ
ーテイングになる。
時刻t11において、端子PGMにおける信号
がロウレベルにもどると、これに応じて、消去回
路ERSの出力もロウレベルにもどる。
消去動作が上記のように、チツプ選択状態にお
いて行なわれるのに対し、書き込み動作はチツプ
非選択状態、すなわち端子の信号のロウレベ
ルにおいて行なわれる。書き込み動作のために、
予め端子VPPに+25Vの書き込み及び消去信号が
加えられる。
時刻t20において例えばメモリセルMS11
を選択するようアドレス信号がセツトされる。
すなわち、XデコーダXD1によつて第1ワード
線W11がハイレベルとされ、YデコーダYD1
によつて線Y1がハイレベルとされる。
時刻t21において、書き込むべき情報が端子
P0に加えられる。書き込むべき情報が0なら、
端子P0は0Vにされ、これに応じてデータ入力
回路IOWのMISFET Q51は、入力バツフア回
路IN16から+5Vのハイレベル信号を受け、オ
ン状態となる。書き込む情報が1、すなわち例え
ば+5Vなら、上記MISFET Q51は入力バツフ
ア回路IN16から出力する0Vによつてオフ状態
になる。
時刻t22において端子PGMの書き込み制御
信号がハイレベルになると、制御回路CRLにお
けるインバータIN1,IN2及びノア回路NR2
によつて生ずる若干の遅延時間の後の時刻t23
に制御線Yにおける信号がロウレベルになる。そ
の結果、書き込み禁止回路IHA1のMISFET Q
21,Q24、書き込み禁止電圧発生回路IHA
2のMISFET Q86及びセンス回路IOSの
MISFET Q48がオフ状態となる。
上記時刻t23から若干の遅延時間の後の時刻
t24において、制御線の信号がロウレベル
になる。上記制御線の信号により、書き込み
禁止電圧発生回路IHA2は線IHVにほぼ+20Vの
高電圧を出力するようになり、これに応じて、メ
モリアレイの各基準電位線ED1,ED2は上記の
+20Vになる。
上記時刻t24とほぼ同時刻において、制御線
Weの信号はハイレベルになる。これに応じて、
データ入力回路20WのMISFET Q52がオン
状態にされる。同じ時刻において、書き込み回路
WA1,WA2のMISFET Q15がオン状態に
される。
上記書き込み禁止電圧発生回路IHA2の出力
線IHVの信号が充分に高電圧になると、この線
IHVの信号を受ける制御回路CRLは、時刻t2
5において制御線にロウレベルの信号を出力
する。上記の制御線における信号は次に説明
するように、書き込み開始信号とされる。上記の
ように、線IHVの信号が充分な書き込み禁止レ
ベルとなつた後に書き込み開始信号を出力させる
構成とすることにより、選択しないメモリセルに
誤つて情報が書き込まれてしまうことを防止する
ことができる。
上記のように、制御線における信号がロウ
レベルになることによつて、書き込み回路WA
1,WA2のMISFET Q18はオフ状態になる。
書き込み回路WA1は、第1ワード線W11が選
択されほぼ+5Vとされているので、第2ワード
線W12にほぼ+25Vの高電圧を出力する。
書き込み回路WA2は、第1ワード線W21が
非選択でありほぼ0Vとされているのでこれに応
じて第2ワード線W22にほぼ0Vを出力する。
選択すべきメモリセルMS11におけるMNOS
Q1は、スイツチ用MISFET Q2、デイジツト
線D1、YゲートYGOのMISFET Q12,Q
11、共通デイジツト線CD及びMISFET Q5
2を介して入力バツフア回路IN16の出力を受
けるMISFET Q51に結合される。書き込むべ
き情報が1であるなら、上記MISFET Q51の
オン状態によつて、メモリセルMS11における
MNOS Q1は、そのドレイン及びソースがほぼ
0Vとなり、そのゲート(第2ワード線W22)
の高電圧によつてゲート絶縁膜中に電子が注入さ
れる。書き込むべき情報が0であるなら、上記
MISFET Q51のオフ状態によつて上記メモリ
セルMS11におけるMNOS Q1のソース及び
ドレインが前記書き込み禁止電圧発生回路IHA
2の+20Vにされる。従つて上記のような電子は
注入されない。同一デイジツト線D1に結合され
る他の行のメモリセルMS21には、第2ワード
線W22の信号が前記のようにほぼ0Vとされる
ので、情報は書き込まれない。
他のデイジツト線D2は、対応するYゲート
YG0におけるMISFET Q13がオフ状態であ
るので、書き込み禁止電圧発生回路IHA2の出
力によつて+20Vに維持される。
端子PGMにおける書き込み制御信号が時刻t
26においてロウレベルになると、第3図に示す
ように、それぞれ時刻t27,t28,t29に
おいて制御線,,rにおける信号がハイレ
ベルとなる。それに応じて、第2ワード線w1
2、基準電位線ED1の信号もほぼ0になる。
本発明の半導体記憶回路は、例えば16Kビツト
のような比較的大容量にされ得る。
第5図は、第1図の回路を使用した半導体記憶
回路のブロツク図を示している。
第5図において、メモリアレイMAは、例えば
128行×128列に配置された16384個のメモリセル
を含んでいる。上記メモリアレイMAに対し、ア
ドレスバツフアB0ないしB6からの7ビツトの
アドレス入力信号を受けることにより128のメモ
リセル行を選択するXデコーダXDが設けられ
る。また、メモリセル列の16個ずつを選択する8
個のYゲートYG0ないしYG7が設けられ、こ
れらのYゲートは、アドレスバツフアB7ないし
B10からの4ビツトのアドレス入力信号を受け
るYデコーダYDによつて制御される。上記Yゲ
ートYG0ないしYG7に対応して、それぞれ第
1図のようなセンス回路、出力バツフア回路及び
データ入力回路を含む入出力回路I0ないしI7
が設けられている。各メモリセル列のそれぞれに
対応して第1図のようなMISFET Q20ないし
Q22を含み、かつ1個の書き込み禁止電圧発生
回路を含む書き込み禁止回路IHAが設けられ、
メモリセル行に対応して書き込み回路WAが設け
られる。更に、制御回路CRL及び消去回路ERS
が設けられる。
従つて、第5図の半導体記憶回路は、11ビツト
すなわち2048個の番地に8ビツトの情報を記憶す
る。
上記のように、メモリセルをMNOSとスイツ
チ用MISFETとによつて構成し、Xデコーダと
書き込み回路とを相互において独立の回路とする
ことによつて、Xデコーダの構成を単純にするこ
とができる。そのため、Xデコーダによるワード
線の選択を高速化することが容易になり、高速動
作の記憶回路を提供することができるようにな
る。
書き込み禁止回路におけるMISFET Q22,
Q25のソースは、第1図のように基準電位線
ED1,ED2に接続される代りに例えばデイジツ
ト線D1,D2に接続されても良い。上記のよう
にした場合でもメモリアレイに書き込み禁止電圧
を供給することが可能である。しかしながら、上
記のようにすると、各デイジツト線D1,D2に
上記MISFET Q22,Q25の接合容量、配線
容量等の浮遊容量が結合することになり、その結
果記憶情報の読み出し時及び書き込み時に、各デ
イジツト線の信号変化速度が制限されるので注意
が必要となる。第1図のようにMISFET Q2
2,Q25を基準電位線ED1,ED2に接続する
場合、デイジツト線の信号変化速度を大きくする
ことができる。
上記のような各回路は、半導体集積回路技術に
よつて、1つの半導体基板上に形成される。
この発明に従うと、上記のような各回路は、回
路特性を制限しないようにし、また使用する半導
体基板の大きさを増加させないような配置におい
て半導体基板上に形成される。
第6図は、シリコン基板1上に形成される各回
路及び配線のための領域のパターンを示している 同図において、XデコーダXDが基板1の表面
の中央に配置されている。メモリアレイは、MA
1とMA2の2つに分けられ、その一方MA1は
上記XデコーダXDの左側に配置され、他方MA
2は右側に配置されている。
上記メモリアレイMA1をはさんだ左側には書
き込み回路WAaが配置され、同様にメモリアレ
イMA2をはさんだ右側に書き込み回路WA6が
配置されている。
メモリアレイMA1の上方にはYゲートYGaが
配置され、同様にメモリアレイMA2の上方には
YゲートYGbが配置されている。上記Yゲート
YGaとYGbとの中間、すなわちXデコーダXDの
上方には、YデコーダYDが配置されている。
上記メモリアレイ、Xデコーダ、書き込み回
路、Yゲート及びYデコーダの周辺は打点で示し
たような配線領域WIRとされている。
配線領域WIRをはさんで上記メモリアレイMA
1,MA2のそれぞれの下方には、書き込み禁止
回路IHAa,IHAbが配置されている。
基板1の表面の周囲には、入出力回路IO、制
御回路CRL1及びCRL2、入力バツフア回路A
1ないしA12が配置されている。また、上記周
囲には、各種の入力端子、出力端子を回路装置外
の端子に接続するためのボンデイングパツトP1
ないしP26が配置されている。
前記第5図の回路を構成するために、メモリア
レイMA1及びMA2は、それぞれ128行×64行
の大きさとされる。メモリアレイMA1とMA2
の対応する第1ワード線は、XデコーダXDによ
つて同時に選択されるようにされる。上記Xデコ
ーダXDの入力線は、配線領域WIRの配線を介し
て、上記基板1の周囲に配置された入力バツフア
回路に接続される。
YゲートYGaとYGbとは、YデコーダYDの出
力によつて同時にそれぞれ対応するメモリアレイ
MA1,MA2のデイジツト線を選択するように
されている。上記YゲートYGa,YGbは、配線
領域WIRの配線を介して入出力回路IOに接続さ
れる。
書き込み禁止回路IHAa及びIHAbは、それぞ
れ配線領域WIRの配線を介して対応するメモリ
アレイMA1,MA2の基準電位線に接続され
る。
前記のように、この発明の実施例では、メモリ
アレイ及びその周辺回路のためにウエル領域を使
用する。
第7図は、第6図の回路配置に対応して、シリ
コン基板1の表面に形成されるウエル領域のパタ
ーンを示している。第8図は、上記第7図のA−
A視断面図を示している。
第7図、第8図において、メモリアレイを形成
するために、n型シリコン基板1の表面にそれぞ
れ独立したP型ウエル領域10a,10bが形成
されている。
上記ウエル領域10a,10bの周囲には、こ
れと離されてXデコーダ、Yデコーダ、Yゲー
ト、書き込み回路、書き込み禁止回路、入出力回
路、入力バツフア回路及び制御回路等の周辺回路
を形成するためのP型ウエル領域11が形成され
ている。
第7図の上方には、紙面の都合上大きい大きさ
で示されているが、第1図の出力バツフア回路
IORにおけるMISFET Q49のようにソースと
基体ゲートとを接続するMISFETを形成するた
めに、上記のP型ウエル領域11から離されて独
立したP型ウエル領域11aないし11bが形成
されている。
上記P型ウエル領域10aの左側及び10bの
右側には、同様に第1図の書き込み回路WA1に
おけるQ19のようなMISFETを形成するため
に、それぞれ独立したP型ウエル領域11cない
し11d及び11eないし11fが形成されてい
る。更に、第7図の紙面の下方には、第1図の書
き込み禁止回路IHA1、書き込み禁止電圧発生
回路IHA2等の同様な独立な基体ゲートを必要
とするMISFETを形成するために、それぞれ他
のP型ウエル領域から独立したP型ウエル領域1
1gないし11h及び11iないし11jが形成
されている。
第7図及び第8図では図示していないが、後で
説明するMISFETを形成するために、P型ウエ
ル領域11内の所定部分にn型シリコン基板1が
露出するようにされる。
この実施例に従うと、上記のようにn型シリコ
ン基板1上に各種のP型ウエル領域を形成する構
成をとるので、半導体記憶回路装置のための各種
の有効なトランジスタ等の素子を形成することが
できる。
例えば、複数のP型ウエル領域の相互間のn型
シリコン基板1の表面に後述するように、不純物
のイオン打込み法等によつて寄生チヤンネルを防
止するためのチヤンネルストツパが形成されるの
でこのチヤンネルストツパが有効に利用される。
すなわち、例えば第9図は、高耐圧特性が得ら
れるMISFETの断面図を示している。同図にお
いて、11mはP型ウエル領域、21は、上記ウ
エル領域11mの一部にまたがるようにして基板
1の表面に形成されたn型チヤンネルストツパ、
95,96はn+型ソース領域、ドレイン領域、
63はシリコン酸化物からなるゲート絶縁膜、6
0は、MISFET等の素子を形成する領域以外の
基板1及びウエル領域の表面を覆う厚いシリコン
酸化膜、84はn型多結晶シリコンからなるゲー
ト電極、120は、例えばリンシリケートガラス
からなる絶縁膜、121,122はそれぞれ例え
ば蒸着アルミニウムからなるドレイン電極、ソー
ス電極である。
第9図において、MISFETの実質的なドレイ
ン領域は電極121を接触させるための領域9S
とチヤンネルストツパ21とによつて構成されて
いる。上記チヤンネルストツパ21はn型基板1
の表面に寄生チヤンネルが誘起されないようにす
るためのものであり、比較的低不純物濃度とされ
る。従つて、P型ウエル領域11mの上にまで延
ばされた部分のチヤンネルストツパ21は、電極
121を接触させるための領域95よりも充分に
高比抵抗になる。第9図のMISFETは、上記の
ようにチヤンネルストツパをドレイン領域の一部
としているので、大きいドレイン耐圧となる。
従つて、実施例においては、n型基板1を高電
圧端子VPP(第1図参照)に接続し、この高電圧
端子VPPにドレインが接続されているMISFET
を上記第9図の構造のMISFETとする。すなわ
ち、第1図の書き込み禁止電圧発生回路IHA2
におけるデイプレツシヨン型MISFET Q26,
Q29,Q32、書き込み回路WA1,W2にお
けるデイプレツシヨン型MISFET Q19、消去
回路ERSにおけるデイプレツシヨン型MISFET
Q40,Q43及び制御回路CRL内のレベルシ
フト回路もしくは電圧分割回路Q37〜Q39に
おけるエンハンスメント型MISFET Q37を上
記第9図の構造のMISFETとする。
なお、上記デイプレツシヨン型MISFETは、
後の説明からより明確になるように、ゲート電極
84の下のP型ウエル領域11mの表面にP型不
純物、例えば硼素をイオン打ち込みすることによ
り形成される。
第10図は、npnトランジスタの断面図を示し
ている。同図において、n型基板1は、上記トラ
ンジスタのコレクタ領域とされ、P型ウエル領域
11nはベース領域とされ、n+型領域97はエ
ミツタ領域とされる。上記n+型領域97は、
MISFETのソース領域及びドレイン領域とする
ための領域と同時に形成される。上記npnトラン
ジスタは、第1図の消去回路ERSにおいて使用
される。
上記のMNOS及び各種のMISFETは、アルミ
ニウムゲートを持つような構造とされしも良い
が、前述したようなシリコンゲートを持つ構造と
される方が望ましい。
従つて、以下においてシリコンゲート技術によ
つて上記各回路を構成する素子及び配線の構造を
詳細に説明するに当り、理解をより容易にするた
めに、先ず製造方法について説明する。
以下、第11図A乃至Oに基づいて、一枚の半
導体基板上にMNOS素子、エンハンスメント型
MOS素子、デプリシヨン型MOS素子及びバイポ
ーラトランジスタを形成する際の製造プロセスに
ついて詳細に説明する。
(A) 基板ウエハ1として(100)結晶面を有する
n型単結晶、抵抗率8〜12Ωcm(不純物濃度約
5×1014cm-3)のシリコン(Si)ウエハを用い
る。このウエハの抵抗率は、低い不純物濃度の
ウエルを再現性よく形成するためには、出来る
だけ大きい(不純物濃度が小さい)ものが好ま
しいが、ここで示すEAROM(Electrically
Alterable Read Only Memory:電気的に書
換え可能な読出し専用メモリ)の実施例では、
ウエルの不純物濃度を約3×1015cm-3程度に設
定したため、上記の程度の不純物濃度のシリコ
ン(Si)ウエハを用いる。
第11図Aに示すようにこのシリコンウエハ
1の表面を適当な洗浄液(O3−H2SO4液ある
いはHF液)で洗浄したのち、熱酸化法により
約50nmのシリコン酸化膜(SiO2)2を形成
し、引き続きCVD(Chemical Vapor
Deposition:化学蒸着)法により、シリコンナ
イトライド(Si3N4)膜3を約100〜140nmの
厚さに形成する。このSi3N4膜形成法は、常圧
縦型CVD装置、常圧横型CVD装置および低圧
横型CVD装置などで比較を行なつたが特に大
差は見られなかつた。しかし、低圧CVD装置
で行つたものが最も膜厚の均一性がよく、ウエ
ハ内で±3%以内に入つており、微細加工上都
合がよい。堆積温度は、各法によつて若干の差
はあるがいづれも700〜1000℃の温度範囲が適
当である。この結果は以下に用いたSi3N4膜形
成に対しても同様である。
(B) 次にこのシリコンナイトライド膜3の上に写
真食刻法(ホトエツチング法)によりウエルを
形成する領域以外の部分(ウエルとウエルの
間)にのみホトレジスト膜4を形成する。つま
り、ウエルを形成する領域の表面は、Si3N4
が露出している。この状態で、プラズマエツチ
ング法により、露出している部分のSi3N4膜を
除去し、第11図Bに示すように表面にSiO2
膜2を露出させる。この後、上記レジスト膜4
をマスクとして、レジスト膜のない部分のSi基
板中へ、表面に露出しているSiO2膜2を通し
て、ボロン(B)イオンを、エネルギー75KeV、
トータルドーズ3×1012/cm2で打込みp型半導
体領域5,6を形成する。
(C) この後、上記レジスト膜4を除去した後、ド
ライ(乾燥した)酸素(O2)中で、ウエル拡
散を行なう。ボロンはSi中でアクセプタ形の不
純物となるためp型ウエルが形成される。1200
℃で16時間拡散した結果、形成されたp型ウエ
ル10,11は、表面濃度約3×1015cm-3、拡
散深さ約6μmとなる。但し、この値は、4探
針法により表面シート抵抗を測定した結果、お
よびステインエツチング法により拡散深さを測
定した結果から、ウエルの不純物分布がガウス
分布であることを仮定して求めた値である。ウ
エル拡散を酸素中で行なうのは、低濃度で均一
なウエルを形成するためである。
ウエル拡散が終了した時点では、第11図C
に示すように、ウエル10,11表面上には約
0.85μmのシリコン酸化膜12,13が形成さ
れており、Si3N4膜3表面には10nm程度の酸
化膜が形成されている。そこで、全面SiO2
ツチングで、約50nmのSiO2膜を除去すること
により、ウエル表面には、約0.8μmの厚いシリ
コン酸化膜12,13が残り、ウエル間には、
Si3N4膜3表面が露出する。
(D) 次にSi3N4膜3を例えば熱リン酸(H3PO4
液などを用いてエツチング除去し、ウエル間
に、最初に形成した約50nmのSiO2膜(第11
図D14,15,16)を露出する。この状態
では、ウエル上に約0.8μm、ウエル間には、約
50nmのSiO2膜が形成されている。この状態
で、全面にリン(P)イオンの打込をエネルギ
ー125KeV、ドーズ量1×1013cm-2で行なう。
この場合、ウエル上の厚いSiO2膜12,13
がマスクの役目を果し、ウエル領域の周辺部を
除いてはウエル内へはリンのイオン打込はされ
ず、ウエル間には、リンのイオン打込がなさ
れ、N型半導体領域20,21,22が形成さ
れる。なお、上記ウエル拡散時にマスクとして
用いたSi3N4膜の端部から、横方向にもウエル
が拡散時に拡がり、約6μm程の差がSi3N4膜端
部(つまり、ウエル上の厚いSiO2膜端部)と
ウエル端部に存在する。つまり、上記のリンの
イオン打込層はウエル端部からウエル内へ約
6μmの所まで形成されている。また、このリ
ンのイオン打込層は、最終的な熱工程を通した
後に測定すると、深さが約1μm程度となつて
いる。
このように、自己整合的にウエル間にリンイ
オン打込を行なうことにより、ウエル(p型)
間の導通を防止することができるため、以下こ
のリン打込層20,21,22をSAP(Self
Aligned P chaunel field ion
insplautation)層と呼ぶ。
上述のように、p型ウエル拡散領域をSi3N4
膜をマスクとして酸化性雰囲気での加熱処理に
よつて形成し、ウエル表面に形成された厚い酸
化膜をマスクとしてウエル間のN型基板表面に
各ウエルにまたがつてN型不純物を打込みウエ
ル間チヤンネル発生防止用のSAP層を形成す
るという方法を採用することによつて、マスク
枚数を増やすことなくウエル間のイオン打込み
ができ、又ウエル拡散領域とウエル間のイオン
打込層とは自己整合的に形成することができ
る。以下この技術をSAP法と称す。
この後、Si基板表面に形成されているSiO2
膜12,13および14,15,16をすべて
除去する。この状態では、Si基板表面に、p型
ウエル領域10,11およびn型(基板n型不
純物濃度よりも大きい不純物濃度をもつ)領域
20,21,22が形成され、さらに、この両
者の境界には、約0.4〜0.5μmの凹凸17(段
差)が形成されている。この段差を利用して、
次のホトエツチング工程のマスク合せを行なう
ことができる。
次に通常、いわゆるLOCOS(Local Oxi−
clation of Silicon)酸化と呼ばれている工程
を行なう。
(E) まず、上記したように、Si表面のSiO2膜を
すべて除去したのち、基板の全表面に約50nm
のSiO2膜24を熱酸化法により形成する。ひ
きつづきCVD法により、このSiO2膜上に100〜
140nmのSi3N4膜を形成する。
次に写真食刻法(ホトエツチング法)によ
り、活性素子を形成する領域等の所定領域にの
みホトレジスト膜を残す(第11図Eの35,
36,37,38,39,40)。つまり、こ
の状態では素子間分離をするため等で厚い酸化
膜を形成する必要がある部分の表面は、ホトレ
ジスト膜が除去され、Si3N4膜が露出してい
る。この状態でプラズマエツチングを行ない、
露出しているSi3N4膜を除去し、表面に先に形
成した約50nmのSiO2膜24を露出させた。こ
の後、上記レジスト膜をマスクとして、レジス
ト膜のない部分のSi基板中へ、表面に露出して
いるSiO2膜24を通して、ボロン(B)イオンを
エネルギー75KeV、トータルドーズ量2×1013
cm-2で打込み、p型半導体層41,42,4
3,44,45,46を形成する。この際、高
耐圧DMOSを形成する必要のある部分はウエ
ル端部のSAPインプラ層の中にSi3N4膜の端部
がくるようにホトマスクを設計する。このよう
にすると、第11図Eに示すように、SAP層
21とウエルにまたがつてアクテイブ領域が形
成される。なお、このボロンイオン打込みを以
下フイールドインプランテーシヨン(Fインプ
ラ)と称す。
(F) この後、上記レジスト膜を除去した後、ウエ
ツト(湿つた)酸素(O2)中で、フイールド
酸化を行なう。この酸化処理を1000℃で約4時
間行なうことにより、Si3N4膜が除去されてい
る部分のSi基板表面には、約0.95μmのSiO2
60が形成される。この状態で、ウエル間に約
0.95μmの厚いフイールド酸化膜が形成されて
いる部分例えば第11図F20のSi表面には
SAPによるリンと、Fインプラによるボロン
が混在しており、しかもドーズ量では、リンが
1×1013cm-2、ボロンが2×1013cm2-2とボロン
の方が多量に打込まれているが、フイールド酸
化を行なう際にSiO2中へ偏析する量がボロン
の方が大きい、つまり、Si中のボロンはSiO2
との界面でデイプリート(枯渇)するが、Si中
のリンはSiO2との界面でパイルアツプ(蓄積)
される(第28図、第29図参照)ため、最終
的には、ウエル間の表面は、リンの濃度が大き
く、チヤネルストツパーとしての役目を十分果
している。このように前記SAP法とLOCOSプ
ロセスを共用し上記の如くリンとボロンの
SiO2界面での挙動の違いをうまく利用するこ
とにより、特にマスキングの工程を用いずに出
来るだけ低濃度のリン打込(これは、後程述べ
る、高耐圧デプリーシヨンMOSFETDMOSの
ドレーンとして用いるために必要な事項)と、
これ以上のドーズ量を必要とするボロン打込
(寄生MOS(フイールドMOS)のしきい電圧を
ある程度高く保つために必要な事項)を共存さ
せ、かつ、最終的にリン濃度を高くするプロセ
ス技術が可能となる。かくして、第11図Eの
p型イオン打込層41〜46に対応して基板表
面の厚い酸化膜下にp型半導体領域51〜56
が形成される。
さて、このフイールド酸化を行なつた直後の
状態は、第11図Fに示すようにアクテイブ領
域上には、約50nmのSiO2膜24上に約100〜
140nmのSi3N4膜25〜30、さらにその表面
に約20nmの酸化膜が形成されており、フイー
ルド領域には、約0.95μmのSiO2膜60が形成
されている。
(G) この状態で、全面SiO2エツチングを行ない
約50nmのSiO2膜を除去すると、フイールド領
域には、約0.9μmのSiO2膜60が残り、アクテ
イブ領域には50nmのSiO2膜24および100〜
140nmのSi3N4膜25〜30が残存し、この
Si3N4膜が露出している。そこで引きつづき、
このSi3N4膜25〜30を、例えば、熱リン酸
(H3PO4)液などを用いて、除去する。このよ
うにすると、アクテイブ領域には、先に形成し
た約50nmのSiO2膜24が残存しており、この
SiO2膜24をアクテイブMISFETゲート酸化
膜として使用することも可能であるが、
LOCOS端部に発生する異常な領域(一般には、
Si3N4膜ではないかと考えられている)のため
に、ゲート耐圧の不良等が生じやすいため、第
11図Gに示すようにこの薄い酸化膜24及び
その上のSi3N4膜を一旦除去し、さらに例えば
45nmのSiO2形成→除去を繰り返した後、第1
1図Hに示すように実際にゲート絶縁膜として
使う約75nmのSiO2膜62〜67を、例えばド
ライO2中1000℃110分で形成する。
(H) さらに、MOSトランジスタのうち、EMOS
(Enhaucemeut mode MOS:しきい電圧が高
くゲート電圧0Vで電流が実用上0であるもの)
のしきい電圧を設定するために、上記薄いゲー
ト絶縁膜62〜67を通して全面にボロンイオ
ンを打込エネルギー40KeV、トータルドーズ
2×1011/cm2で打込む(第11図H71〜7
6)。当然のことながら、厚い酸化膜を有して
いるフイールド領域には、このボロンは打込ま
れず、アクテイブ領域の約75nmのSiO2膜が存
在している部分の下のSi基板表面に、SiO2
を通して打込まれる。
(I) 次に、この実施例で述べるEAROMは、周
辺回路をE/Dインバータを用い高速化してい
るため、上に述べたEMOS以外にDMOS
(Depletion mode MOS:しきい電圧が低く、
ゲート電圧0Vで電流が流れるもの)を形成す
る必要がある。このDMOSを所定の部分に形
成するため、SiO2膜60,62〜67上にホ
トレジスト膜を被着したのち、ホトエツチング
工程により、第11図Iに示すようにDMOS
を形成する必要のある領域上のホトレジスト膜
を除去し、その他の部分はホトレジスト膜80
を残し、これをマスクとして、所定の部分にの
みリンのイオン打込を行ない81、DMOSの
しきい電圧を設定する。ここでは、例えば、エ
ネルギー100KeV、ドーズ量1.2×1012/cm2で打
込んだ。これは、高耐圧DMOSの領域も同様
である(第11図I81)。このように、ウエ
ル間の自己整合的分離法(SAP)法によつて
作られたウエル周辺の境界部表面にデプリシヨ
ンMOSFETを形成することによつて以下の説
明からも判るように同一チツプ上にホトマスク
の増加なしに不揮発性メモリ素子MNOSと高
耐圧DMOSを共存せしめることが可能となる。
(J) 次に、上記のホトレジスト膜80を除去した
後、SiO2膜上にCVD法により多結晶シリコン
(poly Si)層を約0.35μm、約580℃で形成す
る。poly Si形成法についても、常圧法と低圧
法を比較したが、膜厚の均一性が後者の方がす
ぐれているという事実以外には、特に大きな特
性上の差はなかつた。引き続き、poly Siに拡
散法によりリンをドーピングした。この場合の
条件は、例えば、1000℃で、20分POCl3源から
のPをpoly Si表面に堆積、拡散し、さらに5
分間の引きのばしを行ない、poly Siの抵抗を
約15Ω/□とした。
この後、poly Si表面に形成されているリン
ガラスを例えばHFなどを含む液でエツチング
除去したのち、ホトエツチング法により、所定
の部分のみホトレジストを残し、プラズマエツ
チング法によつて、ホトレジストが残存してい
る部分以外のpoly Siを除去し、SiO2膜上に第
1層poly Siによりゲート電極、および配線を
形成した(第11図J83,84)。
次に、上記第1層poly Si層83,84をマ
スクとして、ゲート酸化膜62を選択的にエツ
チングし第11図Jに示すように基板表面を部
分的に露出せしめる。
(K) この後、ウエツトな雰囲気で850℃、20分の
酸化を行ない、露出したSi基板表面に約40nm
のSiO2膜(第11図K87)を、poly Si表面
上に約200nmのSiO2膜85,86を形成する。
この後、全面SiO2膜エツチングを行ない約60n
mのSiO2膜を除去することにより、poly Si上
には約140nmのSiO2が残される。このように
poly Siの上に厚い酸化膜を形成し、Si基板表
面には、十分薄い酸化膜を形成するためには、
poly Si中に少くともリンを1020cm-3以上含ま
せておき、酸化を600〜1000℃の範囲でウエツ
トな雰囲気で行なうことが重要である。
(L) 次に、poly Si上に残されたSiO2膜85,8
6をマスクとして(つまり、この場合のSiO2
が高濃度にドープされた第1層poly Siのエツ
チングを防止している)、露出したSi基板表面
をNH3−H2O2およびHCl−H2O2を含むエツチ
ング液で軽くエツチングしたのち、約2nmの
薄い酸化膜(第11図K88)をN2希釈O2
で850℃、120分の酸化により形成し、引き続い
てCVD法により、約50nmのSi3N4膜90を形
成する。ここで、形成したSi3N4膜の形成法も
前に触れたような各種の方法で比較したが、最
終的には、後で述べる高温のH2アニールによ
り、いずれの場合も問題のない特性を得ること
ができた。
この後、このSi3N4膜90上にpoly Si(第2
層目)を約0.3μm堆積した後、ホトエツチング
法により加工し、第2層(第2の)poly Siゲ
ート(第11図L91)を形成する。引き続い
て、第2層poly Si91をマスクとして、1×
1016cm-2、90KeVでリンイオンをシリコン基板
内に打込みソース、ドレイン等のN型半導体領
域92〜100を形成し、同時に第2層poly
Si91にもリンをドーピングした。この際、第
1層のpoly Si83,84は、すでにリンがド
ープされ、結晶粒が増大しているため、リンイ
オンの打込により、第1層poly Si下のSi基板
表面に、リンが打込まれる危険があるが、上記
したように、第1層poly Si上には、約140nm
のSiO2膜85,86と、50nmのSi3N4膜90
が形成されているため、この危険性は除かれ
る。
(M) 次に、第2層poly Si91の下に形成され
ているSi3N4膜90をマスクとして第2層poly
Si91,84をウエツトな雰囲気で例えば850
℃10分間選択酸化した後、この酸化膜102を
マスクとして、Si3N4膜を選択的に除去する。
つまり、高濃度にドープされた第2層poly Si
を上の酸化膜でSi3N4エツチング液から保護し
ている。この状態では、第2層poly Siゲート
とソース又はドレーン間の耐圧(ゲート耐圧)
が悪いため、この後、850℃、30分間ウエツト
雰囲気中で酸化処理を行ない、第2層poly Si
ゲートのゲート耐圧を向上させるとともに、第
1層poly Si83,84ゲートの端部の形状を
改善し、耐圧を向上させている。この状態で
は、第11図Mに示すように、第1層poly Si
層83,84上に、約0.3μmのSiO2膜85,8
6が、第2層poly Si層91およびソース、ド
レーンn+拡散層上には約0.2μmのSiO2膜10
2,104〜112が形成されている。
上記したように、ポリシリコンの如き高温に
耐える材料をゲート電極として第11図J,K
のようにMOS素子を形成したのち、低温酸化
法によりこのゲート電極に酸化膜を形成し、Si
基板(ウエル)上の薄いSiO2膜を除去し、改
めて基板上にSiO2膜を形成し、その上にSi3N4
膜を設け更にその上に部分的にポリSiのゲート
電極を形成し、上記Si3N4膜をマスクとしてポ
リSiゲート表面を酸化して酸化膜を形成し、こ
の酸化膜をマスクとしてSi3N4膜を除去して第
11図Mに示す如きMNOS素子を形成すると
いう方法を採用することによつて、MOSより
も後にMNOS素子が形成されるためMNOS素
子の特性の劣化が少なくなる。又、選択酸化法
を適用してMOS又はMNOSのゲートを酸化膜
で覆うため層間耐圧又は層間容量等で好ましい
特性をもつたものが得られる。
このようにしてMNOS素子が形成されるが、
第11図L及びMに対応してMNOS素子形成
部及びMOS素子形成部を拡大断面図を用いて
描くと第30図乃至第33図のようになる。即
ち、第30図のように、10nm以下という極め
て薄いSiO2膜88の上に被着形成されたSi3N4
膜90上に部分的にポリシリコン層91が形成
され、このポリシリコン層をマスクとして基板
表面内にソース・ドレイン形成用不純物が導入
され、次いで第31図に示すようにSi3N4膜を
マスクとしてこのポリシリコン層91の表面が
酸化されその表面に比較的厚い酸化膜(SiO2
102が形成される。更に第32図のように、
この形成された酸化膜102をマスクとして
Si3N4膜90が部分的にエツチング除去され
る。この時薄いSiO2膜88も基板表面より除
去されるが、第33図に示すように酸化性雰囲
気中で加熱処理して露出されたソース・ドレイ
ン領域の表面に酸化膜(SiO2)104,10
5を形成する。ゲート電極材料とSi3N4膜エツ
チング液(又はガス)の組み合せによつては、
ゲート電極もエツチングされるおそれがある
が、上記のようにゲート電極をパターニングし
た後Si3N4膜をマスクとして酸化しゲート電極
ののを酸化膜で覆いこの酸化膜をマスクとして
Si3N4膜をエツチングするので、ゲート電極材
料がSi3N4エツチング材料によつてエツチされ
る場合にもこの方法で微細なゲート電極を保護
することができる。又、第33図に示すように
ポリシリコン層91上のSiO2膜102とシリ
コン基板(ウエル)表面に形成されるSiO2
104,105とでSi3N4膜90が完全に覆わ
れるので、このように十分な酸化処理を施こす
ことによつて、所謂プロテクテツドゲート
(protected gate)の構造を自己整合的に形成
することができるので、MNOS素子のゲート
耐圧を向上することができ又、寄生容量を小さ
くすることができる等の効果がある。
また、第30図乃至第33図より理解される
ように、同一半導体基板上にMNOS素子と
MOS素子との両素子を形成し、MNOS素子の
ゲート下にのみSi3N4膜90を残すことによ
り、上記の如くMNOS素子のゲート耐圧を向
上させるために行なう酸化処理で第33図に示
すようにMOS素子のゲート電極の端部も酸化
され逆ひさし構造とすることができMOS素子
のゲート耐圧をも向上せしめることができるの
で、結果として両タイプの素子のゲート耐圧を
向上できる。
(N) 次に、第11図Mの工程を終えたあとホト
エツチング法により、第11図Nのように上記
の各酸化膜で、後でその下のn+層あるいは
poly Si層と伝気的な接続をとる必要がある部
分、例えば106,112および、p型ウエル
とコンタクトをとる必要のある所定の部分例え
ば110,111のSiO2膜をエツチング除去
する。この場合、約0.3μmのSiO2膜エツチング
を行なうため、p型ウエルとコンタクトをとる
部分の酸化膜は、一部エツチングされるだけ
で、約0.3μmのSiO2膜が残つている。
(O) この後、上記工程で用いたホトレジスト膜
を除去したのち、CVD法により、P2O5濃度約
1モル%のフオスフオシリケートガラス(以下
リンガラスと称す)20を堆積し、この後、
H2雰囲気で、900℃、20分の熱処理を行ない、
リンガラスの緻密化、およびMNOS素子の特
性改善を行なう。
この後、上に記したようなn+層、poly Si層
およびp型ウエル層などと、電気的な接続をと
る必要がある領域上のリンガラスをホトエツチ
ング法により除去する。この際、光にあけた酸
化膜の穴114〜118と、このリンガラスの
穴が少くとも1部の領域を共有するようにし、
その部分のSi基板表面、あるいはpoly Si表面
を露出する。この状態では、p型ウエルとコン
タクトをとる部分116,117,60には、
光のエツチング時のオーバーエツチングにより
わずかに膜厚が減少するものの、依然として、
約0.2μm程度のSiO2膜が残つているため、さら
に、ホトエツチング法により、先にあけたリン
ガラスの穴の内側にホトレジストの穴がくるよ
うにして、残つた約0.2μmのSiO2膜をエツチン
グ除去する。
リンガラスとSiO2膜の二層膜にコンタクト
用の穴をあける場合、リンガラスのエツチング
速度が早くSiO2のエツチング速度が遅いため
二層膜を一度に穴あけを行なうと穴の寸法が大
きくなつたり、或いはホトレジストとリンガラ
スの密着性が悪くなる等加工上の問題がある
が、上述の第11図N及び第11図Oの説明及
び部分拡大図第34図乃至第36図より判るよ
うに、先ず基板表面上のSiO2膜105にコン
タクト用マスクを用いてエツチングにより穴あ
け119を行ない、この後リンガラス120を
堆積させ、次に少なくとも上記コンタクト用穴
119の一部を共有する形でリンガラス層12
0に穴あけを行ない孔部125を設けるように
することによつて、該穴あけが設計値に対して
より精度よく行なうことができる。なお、第3
6図ではリンガラスの穴部125がSiO2膜の
穴部119より少しずれた形態を図示している
が、アルミニウム等の金属配線の段切れを防止
するためにはSiO2膜の穴部119を全て更に
望ましくはSiO2膜の端部表面までも露出する
ようにリンガラスの穴部125を形成した方が
望ましい。
(P) 次に、上記で使用したホトレジストを除去
したのち、全面にAl蒸着膜を約300℃で形成す
る。膜厚は約0.8μmである。
次にホトエツチング法により、第11図Oに
示すように上記Al膜に配線パターンを形成し
てアルミニウム電極又は配線部121,12
2,123,124を形成し、ホトレジストを
除去したのち、上記Alとn+、poly Siあるいは
p型ウエルとのコンタクトを確実にとるため、
および表面準位を減少するため、H2雰囲気で
約450℃60分の熱処理を行なう。
以上詳細に説明した(A)乃至(P)の工程を終る
ことによつて、第11図Oに示すように、ゲート
電極91をMNOS素子、ゲート電極83を有す
るエンハンスメント型のMOS素子、ゲート電極
84を有するデプリーシヨン型のMOS素子と共
に、特別なホトマスクを増加せずに半導体領域9
7,11,1からなるNPN型バイポーラトラン
ジスタを一枚の半導体基板1内及びその上に形成
することができる。なお、同図中121は
EMOS素子のソース又はドレイン電極を、12
2はバイポーラトランジスタのエミツタ電極を、
123は同トランジスタのベース電極及びp型ウ
エル領域11の電極を、124は領域22及び基
板の電極を構成している。
第15図は、リンガラス層を形成する前のメモ
リアレイの平面図を示し、第16図は、アルミニ
ウム配線を形成した後のメモリアレイの平面図を
示している。また第17図、第18図及び第19
図は、それぞれ第16図の平面のA−A′視断面、
B−B′視断面及びC−C′視断面を示している。
メモリアレイは、n型シリコン基板1上に形成
されたP型ウエル領域10a上に形成されてい
る。
第15図において、メモリセルのMNOS及び
スイツチ用MISFETのソース領域、ドレイン領
域及びチヤンネル領域とされる部分は一点鎖線で
区画されて示されている。上記の一点鎖線で囲ま
れた区域CH1,CH2以外のP型ウエル領域1
0aの表面には、厚いシリコン酸化膜60が形成
されている。
上記P型ウエル領域10aの表面には、シリコ
ン酸化膜を介して上記区域CH1,CH2を横切
る方向に、メモリセルのスイツチ用MISFETの
ゲート電極とされかつ第1のワード線とされる複
数の多結晶シリコン層W11,W21,W31,
W41が配置されている。
同様に、メモリセルのMNOSのゲート電極と
されかつ第2ワード線とされる複数の多結晶シリ
コン層W12,W22,W32,W42が配置さ
れている。
上記各多結晶シリコン層で覆われていない区域
CH1,CH2におけるP型ウエル領域10aの
表面には、前記の第11図をもつて説明したよう
な製法によりn型不純物が導込され、MNOS及
びスイツチ用MISFETのソース及びドレイン領
域とするためのn+型領域が形成されている。
区域CH1内において、n+型領域92a、多結
晶シリコン層W11,W12及びn+型領域94
aは、第1のメモリセルを構成する。すなわち、
n+型領域92aは、スイツチングMISFETのド
レイン領域を構成し、多結晶シリコン層W11は
そのゲート電極を構成する。また、多結晶シリコ
ン層W12はMNOSのゲート電極を構成し、n+
型領域94aはそのソース領域を構成する。
上記区域CH1内において、上記第1のメモリ
セルに隣接するn+型領域92b、多結晶シリコ
ン層W21,W22及びn+型領域94bは第2
のメモリセルを構成する。すなわち、上記92
b,W21,W22及び94bはそれぞれスイツ
チ用MISFETのドレイン領域、そのゲート電極、
MNOSのゲート電極及びそのソース領域を構成
する。
同様に、上記区域CH1内において、94c,
W32,W31,92cは第8のメモリセルを構
成し、92d,W41,W42,94dは第4の
メモリセルを構成している。
上記区域CH1の隣りの区域内においても記号
を付していないが第1ないし第4のメモリセルが
構成されている。
上記区域CH1内に形成された各メモリセル
は、第1のメモリセル列を構成し、同様に円域
CH2内に形成された各メモリセルは第2のメモ
リセル列を構成する。
第1ワード線としての多結晶シリコン層W11
は、第15図のように、厚いシリコン酸化膜60
上において多結晶シリコン層W12の下を横切つ
て延びる延長部分W11aないしW11cを持つ
ている。
上記多結晶シリコン層W12は、前記のように
第2ワード線を構成するので、記憶情報の書き込
み時に+25Vのような高電圧を受けることにな
る。そのため、多結晶シリコン層W12の下のP
型ウエル領域10aの表面に寄生チヤンネルが誘
起されることが有る。多結晶シリコン層W11
は、第1ワード線を構成し、前記の+5Vのよう
な低電圧系の信号を受ける。従つて、上記多結晶
シリコン層W12の下のP型ウエル領域10aの
表面に誘起される上記寄生チヤンネルは、上記多
結晶シリコン層W11の延長部W11aないしW
11c下においてそれぞれ遮断されることにな
る。
その結果、区域CH1とCH2とにおけるメモ
リセル相互が、寄生チヤンネルによつて電気的に
結合し、その結果、選択すべきメモリセルに情報
の書き込みが行なわれなくなるというような望ま
しくない動作を防ぐことができる。
上記第15図のメモリアレイの表面に、前記第
11図で説明した製法によりリンガラス層120
が形成され、次いでこのリンガラス層120及び
その下の酸化膜が選択的に除去され、上記n+
領域を露出する開孔CNT1ないしC5(第6図
参照)が設けられる。
次いでアルミニウムの蒸着及びその選択エツチ
ングが行なわれ、第16図のように、アルミニウ
ム配線層ED1,ED2,D1及びD2が形成され
る。
上記配線層ED1は、それぞれ上記開孔CNT
1,CNT3及びCNT5において、第1ないし第
4のメモリセルにおけるMNOSのソース領域と
してのn+領域94a,94b,94c及び94
d(第15図参照)に接触する。従つて、この配
線層ED1は、メモリアレイの基準電位線を構成
する。
配線層D1は、それぞれ上記開孔CNT2及び
CNT4において、第1ないし第4のメモリセル
におけるスイツチ用MISFETのドレイン領域と
してのn+型領域92a,92b,92c及び9
2dに接触する。従つて、この配線D1は、メモ
リアレイのデイジツト線を構成する。
同様に、配線層ED2,C2はそれぞれ他の基
準電位線、デイジツト線を構成する。
上記のメモリアレイは、第15図のように、同
一メモリ列内のメモリセルにおけるMNOSとス
イツチング用MISFETとの配列を交互に反転さ
せている。従つて、例えば92aと92b、94
bと94cのように隣り合うメモリセルのn+
領域を共通化でき、それぞれのメモリセルのため
のn+型領域をそれぞれ独立に形成するような場
合に比べて列方向の寸法を小さくすることができ
る。
また、第16図のように、メモリセルを形成す
る区域CH1,CH2上も配線領域となるようア
ルミニウム配線層ED1,ED2,D1,D2を上
記区域CH1,CH2が延びる方向に対し傾斜さ
せているので、配線領域を上記区域に対して独立
に設定するような場合に比べて行方向、すなわ
ち、紙面の横方向の寸法を小さくすることができ
る。
加えて、基準電位線及びデイジツト線として
n+型半導体配線領域などの半導体を使用するの
ではなく図示のようにアルミニウム配線層を使用
するので、その抵抗を充分小さくできる。配線抵
抗の減少により、上記のメモリアレイは高速度で
動作することができるようになる。
第20図は、リンガラス層を形成する前の単位
のXデコーダのパターンを示しており、第21図
は上記第20図に対応した部分のアルミニウム配
線層を形成した後のパターンを示している。
上記Xデコーダのそれぞれがメモリアレイのメ
モリセル行と対応して設けられるので、単位Xデ
コーダのそれぞれは、上記メモリセル行のピツチ
を増加させないように考慮される。そのために、
特に制限されないが、以下説明するように、第2
0図、第21図においては、2つの単位Xデコー
ダの組合せが実質的に1つの単位とされる。
第20図において、Xデコーダは、n型シリコ
ン基板1上に形成されたP型ウエル領域11上に
形成される。各MISFETを形成するための領域
は、同図において一点鎖線で囲まれている。上記
領域以外のP型ウエル領域11の表面は、前記と
同様に厚いシリコン酸化膜60が形成されてい
る。
上記シリコン酸化膜60及び上記一点鎖線で囲
まれた領域上のゲート酸化膜上には、打点と実線
との組合せで示したようなパターンの第1層目の
多結晶シリコン層W11,W21,a0,a0′,
a1,a1′が形成されている。上記一点鎖線で
囲まれた領域のうち、上記多結晶シリコン層下以
外において前記の第11図の製法によりn+型領
域が形成されている。
第20図において、左下りの斜線の付けられた
部分の多結晶シリコン層の下には、エンハンスメ
ント型MISFETのチヤンネル領域が形成される
ことを意味しており、左下り及び右下りの2つの
斜線が組合されて付けられた部分の多結晶シリコ
ン層の下には、デイブレツシヨン型MISFETの
チヤンネル領域が形成されることを意味してい
る。
第20図の紙面の上半分の部分においてn+
領域VCCaと多結晶シリコン層W11とn+型領域
W11bとによつてデイブレツシヨン型
MISFET Q3が構成され、n+型領域W11cと
多結晶シリコン層a0′とn+型領域GNDaとによ
つてエンハンスメント型MISFET Q4が構成さ
れ、n+型領域W11cと多結晶シリコン層a
1′とn+型領域GNDbとによつてエンハンスメン
ト型MISFET Q5が構成されている。
第20図の紙面の下半分の部分において同様な
MISFET Q3′,Q4′及びQ5′が構成される。
上記第20図のデコーダの表面には第21図の
ようにリンガラス層120が形成され、次いでこ
のリンガラス層及びその下の酸化膜に選択エツチ
ングにより開孔が設けられる。
アルミニウム蒸着及びその選択エツチングによ
り第21図のように各種のアルミニウム配線層が
形成される。なお、図において、上記リンガラス
層及び酸化膜等の絶縁膜に設けられた開孔が×印
によつて示されている。従上記×印部分において
上記各アルミニウム配線層はその下の多結晶シリ
コン層もしくは半導体領域に接触する。
第21図において、配線層W11aは、短絡用
の配線層であり、MISFET Q3(第20図参
照)のゲート電極としての多結晶シリコン層W1
1とそのソース領域及び前記MISFET Q4,Q
5の共通のドレイン領域としてのn+型領域W1
1bとを短絡している。配線層VCCは電源用の
配線層であり、MISFET Q3及びQ3′(第2
0図参照)の共通ドレイン領域としてのn+型領
域VCCaに接触している。配線層GNDは接地用
の配線層であり、MISFET Q4,Q4′の共通
ソース領域としてのn+型領域GNDaに接触して
いる。なお、第20図のようにMISFET Q5,
Q5′の共通ソース領域としてのn+型領域GNDb
は上記n+型領域GNDaに連続している。
配線層a0と0は、互いに逆相のアドレス信
号を受ける対の配線層であり、そのうちの選択さ
れた一方、すなわち図示の場合a0が多結晶シリ
コン層a0′に接触し、またa0″に接触してい
る。
同様に、配線層a1とa1は互いに逆相の他の
アドレス信号を受ける対の配線層である。図示の
場合、配線層a1が多結晶シリコン層a1′に接
触し、配線層1が多結晶シリコン層a1″に接
触している。
以上のように、第12図の上半分に前記第1図
のXデコーダXD1のような単位デコーダが構成
され、下半分においてXD2のような他の単位デ
コーダが構成されている。
上記単位Xデコーダは、メモリセル行に対応し
て並べられる。従つて配線層VCC,GND,a
0,0,a1,1等は複数の単位Xデコーダ
に共通とされる。
第22図A及び第22図Bは、リンガラス層を
形成する前の単位の書き込み回路のパターンを示
しており、第23図A及び第23図Bはそれぞれ
上記第22図A、第22図Bに対応した部分のア
ルミニウム配線層を形成した後のパターンを示し
ている。なお、パターンとして第22図Aの右端
は第22図Bの左端につながり、同様に第23図
Aの右端は第23図Bの左端につながる。
上記第22図A,B、第23図A,B、のパタ
ーンは前記第20図、第21図と同じ標記法で示
されている。
単位の書き込み回路は、前記Xデコーダと同様
な理由により、その2つが実質的に1つの単位と
される。
厚いシリコン酸化膜60を介してメモリアレイ
を構成するための二点鎖線で示されたP型ウエル
領域10b上に延長されてきた第ワード線として
の多結晶シリコン層W11,W21は、それぞれ
アルミニウム配線層W11C,W21Cを介して
P型ウエル領域11に形成されたMISFET Q1
5,Q15のドレイン領域W11d,W21dに
接触する。
なお、上記P型ウエル領域10bには、図示の
ように消去回路(第1図参照)からの信号が加え
られるアルミニウム配線層eが接触する。
上記MISFET Q15,Q16のゲートとして
の多結晶シリコン層Weには、制御線We(第1図
参照)の信号が加えられる。
第2ワード線としての多結晶シリコン層W1
2,W22は、それぞれアルミニウム配線層W1
2a,W22aを介して、2点鎖線で示されてい
るP型ウエル領域11に形成されたMISFET Q
16とQ17の共通ドレイン領域W12b、
MISFET Q16′とQ17′との共通ドレイン領
域W22bに接触し、更に、それぞれ多結晶シリ
コン層W12c,W22cに接触している。
上記MISFET Q16,Q17,Q16′,Q
17′の共通ゲートとしての多結晶シリコン層
VCCには+5Vの電源電圧が加えられる。
MISFETQ18とQ18との共通ドレイン領域
GNDaには、接地電位にされるアルミニウム配線
層GNDが接触している。
多結晶シリコン層W12cは、独立のP型ウエ
ル領域11rに形成されたMISFET Q19のゲ
ート電極とされており、アルミニウム配線層W1
2dによつて上記MISFET Q19のソース領域
W12eとP型ウエル領域11rとに接触してい
る。
同様に、多結晶シリコン層W22cは、他の独
立のP型ウエル領域11sに形成された
MISFET Q19′のゲート電極とされており、
アルミニウム配線層W22dによつて上記
MISFET Q19′のソース領域W22eとP型
ウエル領域11sとに接触している。
上記MISFET Q19とQ19′は前記第9図
もしくは第11図で説明されたような構造とされ
ている。n型シリコン基板1上に延長された上記
MISFET Q19とQ19′との共通ドレイン領
域VPPaには、書き込み及び消去用の高電圧が加
えられるアルミニウム配線層VPPに接触してい
る。
上記MISFET Q15ないしQ19によつて、
例えば第1図の回路WA1が構成され、Q15′
ないしQ19′によつて他の回路WA2が構成さ
れる。
第22図A,B、第23図A,Bの単位の書き
込み回路は前記のXデコーダと同様に、メモリセ
ル行と対応して並べられる。
第24図は、リンガラス層を形成する前のYゲ
ートのパターンを示しており、第25図は、アル
ミニウム配線層を形成した後の上記第24図に対
応した部分のパターンを示している。
共通デイジツト線としての多結晶シリコン層
CDには、単位ゲートを並列接続するためのアル
ミニウム配線層CDaが接触している。
上記アルミニウム配線層CDaは、MISFET Q
11とQ13の共通ドレイン領域CDbに接触して
いる。上記MISFET Q11,Q13のゲート電
極としての多結晶シリコン層Y1a,Y2aには
それぞれYデコーダYD1,YD2(第1図参照)
の出力を受けるアルミニウム配線層Y1,Y2が
接触している。
MISFET Q11のソース領域とQ12のドレ
イン領域は共通のn+型領域D1bとされ、同様
にMISFET Q13のソース領域とQ14のドレ
イン領域が共通のn+型領域とされている。
上記MISFET Q12とQ14のゲート電極と
しての多結晶シリコン層VCCには、+5Vの電源電
圧が供給される。
MISFET Q12のソース領域D1aには、デ
イジツト線としてのアルミニウム配線層D1が接
触し、同様にMISFET Q14のソース領域D2
aには、他のデイジツト線としてのアルミニウム
配線層が接触している。
第26図A及び第26図Bは、リンガラス層を
形成する前の書き込み禁止回路のパターンを示し
ており、第27図A及び第27図bは、アルミニ
ウム配線層が形成された後のそれぞれ上記第26
図A、第26図Bに対応する部分のパターンを示
している。なお、パターンとして第26図Aの下
端が第26図Bの上端につながり、同様に第27
図Aの下端が第27図Bの上端につながる。
第6図のように、メモリアレイと書き込み禁止
回路との間に配線領域WIRが配置されるので、
特に制限されないが、第15図、第16図で説明
した基準電位線としてのアルミニウム配線層ED
1,ED2は、各MISFETの多結晶シリコン層と
同時に形成された多結晶シリコン層ED1a,ED
2aにそれぞれ接触させられる。上記配線領域
WTRにおいては、上記多結晶シリコン層ED1
a,ED2a上に酸化膜及びリンガラス層を介し
て各種のアルミニウム配線層が形成される。
なお、上記第26図A,B、第27図A,Bは
前記各図と同じ標記法に従つて示されている。従
つて、上記第26図A,B、第27図A,Bにお
ける書き込み禁止回路の構成については説明を省
略する。
この発明に従うと、第6図のように、メモリア
レイをはさんでデコーダと書き込み回路を配置す
るので動作速度、特に読み出し動作速度を大きく
することができるようになる。これに対し、デコ
ーダと書き込み回路とをメモリアレイの片側に配
置する場合、例えばデコーダからメモリセルへの
配線が長くなり、また、メモリアレイの片側に複
数の回路を配置するので、半導体集積回路におい
て公知のような交差配線個所が多くなつてくるこ
とになる。その結果、メモリアレイに信号を供給
する配線径路の信号伝送特性が劣化し、動作速度
が制限を受けることになる。
上記のように、メモリアレイをはさんでデコー
ダと書き込み回路を配置する場合、単位のデコー
ダと書き込み回路のピツチを比較的小さくできる
ので、メモリアレイの大きさをこれらの回路で制
限しなくても良いようになる。
またメモリアレイをはさんでゲートもしくはデ
コーダーと書き込み禁止回路を配置するので、上
記と同様な理由で高速動作とすることができるよ
うになる。
上記のように、メモリアレイをはさんでデコー
ダと書き込み回路とを配置する構成もしくはメモ
リアレイをはさんでゲートもしくはデコーダと書
き込み回路を配置する構成は、書き込み回路もし
くは書き込み禁止回路を使用する他の種類の記憶
装置に適用することができる。
この発明に従うと、前記のようにウエル領域を
使用し、このウエル領域を高耐圧回路のために有
効に使用することができる。
前記第1図のエンハンスメント型MISFET Q
37ないしQ39を直列接続した電圧分割回路に
おいて、MISFET Q37のドレインに最も高い
電圧が加わるので、このMISFET Q37が高電
圧によつて破壊されると、この破壊された
MISFET Q37を介してQ38に高電圧が加わ
ることになる。その結果、直列接続のMISFET
が次々と破壊する。しかしながら、上記の最も高
い電圧が加わるMISFET Q37を前記のように
ウエル領域を利用した構造にすることによつて高
耐圧化すると、他のMISFET Q38ないしQ3
9を普通の構造としても、上記のような破壊を防
ぐことができる。上記のような電圧分割回路は、
実施例の記憶回路装置以外の他の回路装置に使用
することができる。
同様に、第1図の消去回路、書き込み禁止電圧
発生回路のような回路は、他の用途に使用するこ
とができる。
【図面の簡単な説明】
第1図は半導体記憶回路の回路図、第2図、第
3図及び第4図は、第1図の回路の動作タイミン
グチヤート図、第5図は、半導体記憶回路のブロ
ツク図、第6図は、半導体記憶回路装置の平面
図、第7図は第6図の半導体記憶回路装置を形成
する半導体基板の平面図、第8図は第7図のA−
A′部分の断面図、第9図は、MISFETを形成し
た半導体基板の断面図、第10図はバイポーラト
ランジスタを形成した半導体基板の断面図、第1
1図Aないし0は半導体記憶回路装置の各製造工
程における半導体基板の断面図、第12図は、
MNOSの断面図、第13図は第12図のMNOS
の特性曲線図、第14図はメモリセルの等価回路
図、第15図は、リンガラス層を形成する前のメ
モリアレイの平面図、第16図はアルミニウム配
線層を形成した後のメモリアレイの平面図、第1
7図、第18図及び第19図はそれぞれ第16図
のA−A′部分、B−B′部分及びC−C′部分の断
面図、第20図は、リンガラス層を形成する前の
Xデコーダの平面図、第21図はアルミニウム配
線層を形成した後のXデコーダの平面図、第22
図A及び第22図Bはリンガラス層を形成する前
の書き込み回路の平面図、第23図A及び第23
図Bはアルミニウム配線層を形成した後の書き込
み回路の平面図、第24図は、リンガラス層を形
成する前のYゲートの平面図、第25図は、アル
ミニウム配線層を形成した後のYゲートの平面
図、第26図A及び第26図Bは、リンガラス層
を形成する前の書き込み禁止回路の平面図、第2
7図A及び第27図Bは、アルミニウム配線層を
形成した後の書き込み禁止回路の平面図、第28
図及び第29図はSi−SiO2界面における夫々リ
ン、ボロン不純物の濃度分布を示す状態図、第3
0図乃至第33図及び第34図乃至第36図は
夫々半導体装置要部の製造工程毎の断面図であ
る。 MA……メモリアレイ、XD1,XD2……Xデ
コーダ、YG0……Yゲート、YD1,YD2……
Yデコーダ、WA1,WA2……書き込み回路、
IHA1……書き込み禁止回路、IHA2……書き
込み禁止電圧発生回路、ERS……消去回路、
CRL……制御回路、IOS……センス回路、IOR…
…出力バツフア回路、IOW……データ入力回路、
B0〜B10……入力バツフア回路。

Claims (1)

    【特許請求の範囲】
  1. 1 半導体基板に形成され、比較的高電圧によつ
    て電気的に情報の書き込みが可能な不揮発性記憶
    素子およびその記憶素子に直列接続されるスイツ
    チ用素子の直列回路を含むメモリセルを複数行列
    状に配置して成るメモリアレイ部と、前記メモリ
    アレイ部の各行に対応して延在する一対のワード
    線から成り、その一方のワード線に各行に対応す
    るメモリセル群の不揮発性記憶素子が結合され、
    その他方のワード線に各行に対応するメモリセル
    群のスイツチ用素子が結合されて成るワード線対
    群と、前記不揮発性記憶素子に前記比較的高電圧
    を与えるための書き込み回路部と、前記メモリア
    レイ部の所定の行に配列された前記不揮発性記憶
    素子を選択するための比較的低電圧で動作するデ
    コーダ回路部とを具備し、前記メモリアレイ部は
    前記半導体基板の主表面のPN接合によつて区画
    された第1導電型の第1の半導体領域内に形成さ
    れ、前記書き込み回路部は、前記第1の半導体領
    域の1辺に沿う前記半導体基板主表面の前記第1
    の半導体領域外の第2の半導体領域内に形成さ
    れ、前記デコーダ回路部は、前記第1の半導体領
    域の前記1辺と対向する他の辺に沿う前記半導体
    基板主表面の前記第1の半導体領域外の第3の半
    導体領域内に形成され、前記ワード線対群は、前
    記第1の半導体領域の前記1辺と前記他の辺との
    間に延在し、前記ワード線対群の一方のワード線
    群は前記書き込み回路部に結合され、その他方の
    ワード線群は前記デコーダ回路部に結合されて成
    ることを特徴とする半導体記憶回路装置。
JP6394179A 1979-05-25 1979-05-25 Manufacture of semiconductor device Granted JPS55156370A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP6394179A JPS55156370A (en) 1979-05-25 1979-05-25 Manufacture of semiconductor device
DE19803019850 DE3019850A1 (de) 1979-05-25 1980-05-23 Halbleitervorrichtung und verfahren zu ihrer herstellung
US06/487,085 US4586238A (en) 1979-05-25 1983-04-21 Method of manufacturing field-effect transistors utilizing self-aligned techniques
US06/850,037 US4851364A (en) 1979-05-25 1986-04-10 Method of forming well regions for field effect transistors utilizing self-aligned techniques
US07/351,847 US5114870A (en) 1979-05-25 1989-05-15 Method for manufacturing field effect transistors
US07/820,933 US5252505A (en) 1979-05-25 1992-01-15 Method for manufacturing a semiconductor device
US08/009,061 US5348898A (en) 1979-05-25 1993-01-26 Semiconductor device and method for manufacturing the same
US08/268,569 US5519244A (en) 1979-05-25 1994-07-06 Semiconductor device having aligned semiconductor regions and a plurality of MISFETs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6394179A JPS55156370A (en) 1979-05-25 1979-05-25 Manufacture of semiconductor device

Related Child Applications (6)

Application Number Title Priority Date Filing Date
JP61117252A Division JPS6271268A (ja) 1986-05-23 1986-05-23 半導体装置の製法
JP63121705A Division JPH02371A (ja) 1988-05-20 1988-05-20 半導体装置の製造方法
JP63121709A Division JPH023182A (ja) 1988-05-20 1988-05-20 半導体記憶回路装置
JP63121707A Division JPH02357A (ja) 1988-05-20 1988-05-20 半導体装置
JP63121708A Division JPH02358A (ja) 1988-05-20 1988-05-20 半導体記憶回路装置
JP63121706A Division JPH02356A (ja) 1988-05-20 1988-05-20 半導体装置

Publications (2)

Publication Number Publication Date
JPS55156370A JPS55156370A (en) 1980-12-05
JPH0219980B2 true JPH0219980B2 (ja) 1990-05-07

Family

ID=13243870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6394179A Granted JPS55156370A (en) 1979-05-25 1979-05-25 Manufacture of semiconductor device

Country Status (3)

Country Link
US (3) US4586238A (ja)
JP (1) JPS55156370A (ja)
DE (1) DE3019850A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338475U (ja) * 1989-08-24 1991-04-15

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252505A (en) * 1979-05-25 1993-10-12 Hitachi, Ltd. Method for manufacturing a semiconductor device
JPS55156370A (en) * 1979-05-25 1980-12-05 Hitachi Ltd Manufacture of semiconductor device
US5348898A (en) * 1979-05-25 1994-09-20 Hitachi, Ltd. Semiconductor device and method for manufacturing the same
JPS5736844A (en) * 1980-08-15 1982-02-27 Hitachi Ltd Semiconductor device
JPS57114283A (en) * 1981-01-08 1982-07-16 Toshiba Corp Non-volatile semiconductive memory
EP0061512B1 (de) * 1981-04-01 1985-09-18 Deutsche ITT Industries GmbH Integrierte Schaltungsanordnung zum Schreiben, Lesen und Löschen von Speichermatrizen mit Isolierschicht-Feldeffekttransistoren nichtflüchtigen Speicherverhaltens
US4516313A (en) * 1983-05-27 1985-05-14 Ncr Corporation Unified CMOS/SNOS semiconductor fabrication process
NL8304256A (nl) * 1983-12-09 1985-07-01 Philips Nv Halfgeleiderinrichting.
US4769787A (en) * 1985-07-26 1988-09-06 Hitachi, Ltd. Semiconductor memory device
JPH0789569B2 (ja) * 1986-03-26 1995-09-27 株式会社日立製作所 半導体集積回路装置及びその製造方法
US4922311A (en) * 1987-12-04 1990-05-01 American Telephone And Telegraph Company Folded extended window field effect transistor
US5057448A (en) * 1988-02-26 1991-10-15 Hitachi, Ltd. Method of making a semiconductor device having DRAM cells and floating gate memory cells
JP2654449B2 (ja) * 1988-06-09 1997-09-17 株式会社日立製作所 半導体集積回路装置及びその製造方法
JPH0271499A (ja) * 1988-09-06 1990-03-12 Hitachi Ltd 半導体記憶装置
JP2515009B2 (ja) * 1989-01-13 1996-07-10 株式会社東芝 不揮発性半導体メモリの製造方法
JP2572653B2 (ja) * 1989-12-29 1997-01-16 セイコーエプソン株式会社 半導体装置の製造方法
US5624741A (en) * 1990-05-31 1997-04-29 E. I. Du Pont De Nemours And Company Interconnect structure having electrical conduction paths formable therein
JPH04123471A (ja) 1990-09-14 1992-04-23 Oki Electric Ind Co Ltd 半導体記憶装置のデータ書込みおよび消去方法
US5286992A (en) * 1990-09-28 1994-02-15 Actel Corporation Low voltage device in a high voltage substrate
JP3266644B2 (ja) * 1991-04-08 2002-03-18 テキサス インスツルメンツ インコーポレイテツド ゲートアレイ装置
US5514616A (en) * 1991-08-26 1996-05-07 Lsi Logic Corporation Depositing and densifying glass to planarize layers in semi-conductor devices based on CMOS structures
US5369054A (en) * 1993-07-07 1994-11-29 Actel Corporation Circuits for ESD protection of metal-to-metal antifuses during processing
US5619063A (en) * 1993-07-07 1997-04-08 Actel Corporation Edgeless, self-aligned, differential oxidation enhanced and difusion-controlled minimum-geometry antifuse and method of fabrication
US5498895A (en) * 1993-07-07 1996-03-12 Actel Corporation Process ESD protection devices for use with antifuses
DE69330564T2 (de) * 1993-12-15 2002-06-27 St Microelectronics Srl Integrierte Schaltung die eine EEPROM-Zelle und einen MOS-Transistor enthält
US5783470A (en) * 1995-12-14 1998-07-21 Lsi Logic Corporation Method of making CMOS dynamic random-access memory structures and the like
US5824596A (en) * 1996-08-08 1998-10-20 National Semiconductor Corporation POCl3 process flow for doping polysilicon without forming oxide pillars or gate oxide shorts
US5909049A (en) * 1997-02-11 1999-06-01 Actel Corporation Antifuse programmed PROM cell
JP4014708B2 (ja) * 1997-08-21 2007-11-28 株式会社ルネサステクノロジ 半導体集積回路装置の設計方法
JP3408466B2 (ja) * 1999-08-23 2003-05-19 エヌイーシーマイクロシステム株式会社 半導体記憶装置
JP2001332561A (ja) * 2000-05-22 2001-11-30 Nec Corp バイポーラトランジスタおよびその製造方法
TW497151B (en) * 2001-09-21 2002-08-01 Mosel Vitelic Inc Method for producing semiconductor with increased threshold voltage uniformity of transistor
JP4547852B2 (ja) * 2002-09-04 2010-09-22 富士ゼロックス株式会社 電気部品の製造方法
KR100623633B1 (ko) * 2004-05-19 2006-09-18 이태복 고 내압용 반도체 소자의 제조방법
JP4991134B2 (ja) * 2005-09-15 2012-08-01 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN109524457B (zh) * 2017-09-20 2021-11-02 联华电子股份有限公司 半导体装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347241A (en) * 1976-10-08 1978-04-27 Westinghouse Electric Corp Integrated circuit
JPS53102684A (en) * 1977-02-18 1978-09-07 Mitsubishi Electric Corp Semiconductor memory device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1153428A (en) * 1965-06-18 1969-05-29 Philips Nv Improvements in Semiconductor Devices.
US3882469A (en) * 1971-11-30 1975-05-06 Texas Instruments Inc Non-volatile variable threshold memory cell
US3853633A (en) * 1972-12-04 1974-12-10 Motorola Inc Method of making a semi planar insulated gate field-effect transistor device with implanted field
US3983572A (en) * 1973-07-09 1976-09-28 International Business Machines Semiconductor devices
US4027380A (en) * 1974-06-03 1977-06-07 Fairchild Camera And Instrument Corporation Complementary insulated gate field effect transistor structure and process for fabricating the structure
US4053798A (en) * 1975-02-20 1977-10-11 Matsushita Electronics Corporation Negative resistance device
JPS51147976A (en) * 1975-06-02 1976-12-18 Ncr Co Nnchannel silicone added polysilicon gate semiconductor device and method of producing same
JPS5228229A (en) * 1975-08-28 1977-03-03 Mitsubishi Electric Corp Semiconductor memory
JPS5286083A (en) * 1976-01-12 1977-07-16 Hitachi Ltd Production of complimentary isolation gate field effect transistor
JPS52131483A (en) * 1976-04-28 1977-11-04 Hitachi Ltd Mis-type semiconductor device
US4179311A (en) * 1977-01-17 1979-12-18 Mostek Corporation Method of stabilizing semiconductor device by converting doped poly-Si to polyoxides
JPS53124084A (en) * 1977-04-06 1978-10-30 Hitachi Ltd Semiconductor memory device containing floating type poly silicon layer and its manufacture
DE2746234A1 (de) * 1977-10-14 1979-04-19 Itt Ind Gmbh Deutsche Feldeffekt-speichertransistor und speichermatrix
JPS5457875A (en) * 1977-10-17 1979-05-10 Hitachi Ltd Semiconductor nonvolatile memory device
US4384399A (en) * 1978-03-20 1983-05-24 Texas Instruments Incorporated Method of making a metal programmable MOS read only memory device
US4385432A (en) * 1978-05-18 1983-05-31 Texas Instruments Incorporated Closely-spaced double level conductors for MOS read only
JPS5529116A (en) * 1978-08-23 1980-03-01 Hitachi Ltd Manufacture of complementary misic
US4377818A (en) * 1978-11-02 1983-03-22 Texas Instruments Incorporated High density electrically programmable ROM
NL7903158A (nl) * 1979-04-23 1980-10-27 Philips Nv Werkwijze voor het vervaardigen van een veldeffekt- transistor met geisoleerde poortelektrode, en transistor vervaardigd door toepassing van een derge- lijke werkwijze.
JPS55156370A (en) * 1979-05-25 1980-12-05 Hitachi Ltd Manufacture of semiconductor device
US4306916A (en) * 1979-09-20 1981-12-22 American Microsystems, Inc. CMOS P-Well selective implant method
KR910009739B1 (ko) * 1988-07-13 1991-11-29 삼성전자 주식회사 반도체장치의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347241A (en) * 1976-10-08 1978-04-27 Westinghouse Electric Corp Integrated circuit
JPS53102684A (en) * 1977-02-18 1978-09-07 Mitsubishi Electric Corp Semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338475U (ja) * 1989-08-24 1991-04-15

Also Published As

Publication number Publication date
JPS55156370A (en) 1980-12-05
US5114870A (en) 1992-05-19
US4851364A (en) 1989-07-25
DE3019850C2 (ja) 1992-02-06
DE3019850A1 (de) 1980-11-27
US4586238A (en) 1986-05-06

Similar Documents

Publication Publication Date Title
JPH0219980B2 (ja)
US5504706A (en) Low voltage Fowler-Nordheim flash EEPROM memory array utilizing single level poly cells
US5079603A (en) Semiconductor memory device
US6608346B2 (en) Method and structure for an improved floating gate memory cell
US4783766A (en) Block electrically erasable EEPROM
US7476586B2 (en) NOR flash memory cell with high storage density
US5493138A (en) Single transistor non-volatile electrically alterable semiconductor memory device
JPS6046554B2 (ja) 半導体記憶素子及び記憶回路
JPH07193150A (ja) 不揮発性半導体記憶装置およびその動作方法
US4972371A (en) Semiconductor memory device
US5340760A (en) Method of manufacturing EEPROM memory device
KR101309876B1 (ko) 비휘발성 메모리 어레이
JP2005537649A (ja) 非コンタクト形態のトンネル分離pウェルを有する不揮発性メモリアレイの構造、製造方法及び操作方法
US5189497A (en) Semiconductor memory device
US6696723B2 (en) Electrically erasable, programmable, non-volatile memory device compatible with a CMOS/SOI production process
US5252505A (en) Method for manufacturing a semiconductor device
US5472891A (en) Method of manufacturing a semiconductor device
US5348898A (en) Semiconductor device and method for manufacturing the same
JPH0368543B2 (ja)
JPH0543301B2 (ja)
JPH0421350B2 (ja)
JP2544569B2 (ja) 半導体記憶装置
JPH0157508B2 (ja)
JPH02356A (ja) 半導体装置
JPH023182A (ja) 半導体記憶回路装置