JP2005532431A - ポリアルコキシル化されたグリセリンの(メタ)アクリルエステル - Google Patents

ポリアルコキシル化されたグリセリンの(メタ)アクリルエステル Download PDF

Info

Publication number
JP2005532431A
JP2005532431A JP2004511367A JP2004511367A JP2005532431A JP 2005532431 A JP2005532431 A JP 2005532431A JP 2004511367 A JP2004511367 A JP 2004511367A JP 2004511367 A JP2004511367 A JP 2004511367A JP 2005532431 A JP2005532431 A JP 2005532431A
Authority
JP
Japan
Prior art keywords
reaction mixture
weight
ester
optionally
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004511367A
Other languages
English (en)
Other versions
JP4373328B2 (ja
Inventor
ポップ アンドレアス
ダニエル トーマス
シュレーダー ユルゲン
ヤヴォレク トーマス
フンク リューディガー
シュヴァルム ラインホルト
ヴァイスマンテル マティアス
リーゲル ウルリヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10225943A external-priority patent/DE10225943A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of JP2005532431A publication Critical patent/JP2005532431A/ja
Application granted granted Critical
Publication of JP4373328B2 publication Critical patent/JP4373328B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/58Ethylene oxide or propylene oxide copolymers, e.g. pluronics

Abstract

本発明は、ポリアルコキシル化されたグリセリンの新規の(メタ)アクリルエステル、該エステルの単純化された製造法及びそのようにして得ることができる反応混合物の使用に関する。

Description

本発明は、ポリアルコキシル化されたグリセリンの新規の(メタ)アクリルエステル、該エステルの単純化された製造法及びそのようにして得ることができる反応混合物の使用に関する。
膨潤可能なヒドロゲルを形成するポリマー、いわゆる高吸収体(Super-Absorbing Polymers, SAP)は先行技術から公知である。これは柔軟な親水性ポリマーの網状構造であり、このポリマーはイオン性の性質並びに非イオン性の性質を有していてもよい。これは、ヒドロゲルを形成しながら水性液体を吸収することができかつ、従って有利にタンポン、おむつ、生理用ナプキン、失禁用品、子供用のトレーニング下着、靴中敷及び体液を吸収する際の他の衛生用品の製造のために使用される。高吸収体は、更に、液体、特に水又は水溶液を吸収する他の工業分野において使用される。この分野は、例えば貯蔵、包装、輸送(水に敏感な製品の包装材料、例えば生花輸送、衝撃保護);食料品分野(魚、精肉の輸送;鮮魚/肉−包装内での水、血液の吸収);医薬品(創傷プラスター、火傷包帯用又は他の湿った傷用の吸水性材料)、化粧品(薬理化学物質及び医薬品用の担持材料、リュウマチ用プラスター、超音波ゲル、冷却ゲル、化粧品用増粘剤、サンスクリーン);油/水−もしくは水/油−エマルション用の増粘剤;繊維製品(手袋、スポーツウェア、繊維製品中の湿分調節、靴中敷);化学工業的用途(有機反応用の触媒、大きな機能性分子(酵素)の固定、凝集用の接着剤、蓄熱材、濾過助剤、ポリマー積層品中の親水性成分、分散剤、液化剤);建築物及び構築物、設備(粉末射出成形品、粘土ベースの化粧塗り、振動抑制媒体、水の多い地盤のトンネル掘削の際の助剤、ケーブルコーティング);水処理、廃棄物処理、水分離(解凍剤、例えば再利用可能な砂嚢);清浄化;農業工業(灌漑、雪解け水及び結露沈積物の保持、コンポスト添加物、真菌/昆虫による被害からの森林保護、植物に関する作用物質の遅延放出);防火(火の粉)(SAPゲルを用いた家屋の被覆もしくは家の壁の被覆、水は著しく高い熱容量を有するため、着火を阻止することができる;火災時、例えば森林火災時のSAPゲルの吹き付け);熱可塑性ポリマー中での同時押出剤(多層の親水化)シート、水を吸収することができるシート及び熱可塑性成形品の製造(例えば農業用の雨水及び結露水を貯蔵するシート;果実及び野菜の鮮度維持のためのSAP含有シート、これらは湿ったシートで包装できる;凝結液滴を形成させずに果実及び野菜から出る水を保持し、かつこの水を部分的に果実及び野菜に再び放出し、腐敗及び傷みを生じさせないSAP;例えば食品用、例えば肉、魚、鳥肉、果実及び野菜の包装用SAP−ポリスチレン−同時押出物);作用物質調製剤中の担持物質(医薬、農薬)である。衛生用品では、この高吸収体は、通常、いわゆる吸収剤コア内に存在し、このコアは他の材料として特に繊維(セルロース繊維)を有し、この繊維は一種の液体リザーバーとして自発的に生じた液体量を中間貯蔵しかつ吸収剤コア内で高吸収体への体液の良好な通路網を保証する。
おむつ構造の最近の傾向は、わずかな割合のセルロース繊維及び高い割合のヒドロゲルを有するより薄い構造体を製造することにある。次第に薄くなるおむつ構造体のこの傾向と共に、水膨潤性の親水性ポリマーに関する要求はこの数年にわたり明らかに変化している。高吸収性のヒドロゲルの開発の初期にはまず最初に単独で著しく高い膨潤能力が強調されていたが、後になって液体を伝達及び分散する高吸収体の能力が極めて重要であることが明らかとなった。従来の高吸収体は表面が液体で濡れた場合に著しく膨潤し始めるため、粒子内部への液体の輸送が著しく困難であるか又は全く停止されてしまうことが明らかとなった。この高吸収体の特性は「ゲルブロッキング」ともいわれる。衛生用品のより高い積載能力(単位面積当たりのポリマー)に基づき、このポリマーは膨潤した状態で、後続する液体のために遮断層を形成してはならない。この製品が良好な輸送特性を示す場合には、全体の衛生用品の最適な利用を保証できる。従って極端な場合に液体の流出、いわゆる衛生用品の漏れを引き起こすこのゲルブロッキングの現象は阻止される。この液体の伝達及び分散はつまり体液の初期の吸収時にも極めて重要である。
良好な輸送特性は、例えば膨潤状態で高いゲル強度を示すヒドロゲルが有している。わずかなゲル強度しか示さないゲルは、適用された圧力(体圧)下で変形可能であり、高吸収体/セルロース繊維−吸収体中の孔を塞ぎ、それにより更に液体を吸収することを妨げてしまう。高めたゲル強度は通常高い架橋によって達成され、それにより確かに製品の保持率は低下する。ゲル強度を高める優れた方法は表面後架橋である。この方法の場合、平均的な架橋密度を有する乾燥した高吸収体を付加的に架橋させる。この表面後架橋により、高吸収体粒子のシェル中の架橋密度は向上し、それにより圧力負荷の下での吸収はより高水準に引き上げられる。高吸収体シェル中での吸収容量は低下する一方で、この高吸収体粒子のコアは可動のポリマー鎖の存在によってシェルと比較して改善された吸収容量を有するため、このシェル構造によってゲルブロッキング効果を生じさせずに、改善された液体伝達が保証される。高吸収体の全体の容量は突発的ではなく、時間的にずらして利用することによって十分に望ましい。この衛生用品は一般に複数回尿にさらされるため、この高吸収体の吸収能力は有利に最初の処置の後に尽きてしまってはならない。
親水性の高膨潤性ヒドロゲルは、殊に、(共)重合した親水性モノマーからなるポリマー、1種又は数種の親水性モノマーの適当なグラフト基体へのグラフト(コ)ポリマー、架橋されたセルロースエーテル又はデンプンエーテル、架橋されたカルボキシメチルセルロース、部分的に架橋されたポリアルキレンオキシド又は水性液体中で膨潤可能な天然生成物、例えばグアール誘導体(Guarderivate)である。そのようなヒドロゲルは、おむつ、タンポン、生理用ナプキン及び他の衛生用品を製造するための水溶液吸収製品として、また、農業園芸における水を保持する材料として使用される。
適用特性、例えばおむつにおける再湿潤及びAULを改善するために、親水性の高膨潤性ヒドロゲルを一般に表面後架橋又はゲル後架橋させる。この後架橋は当業者に自体公知であり、有利に水性ゲル相中で、又は粉砕及び過篩されたポリマー粒子の表面後架橋として行われる。
EP238050号には、高吸収体のための可能な内部架橋剤として、アクリル酸又はメタクリル酸で2ないし3回エステル化された、トリメチロールプロパンへのエチレンオキシド及び/又はプロピレンオキシドの付加生成物が開示されている。
例えば、Sartomer(Exton, PA, USA)から、記載された商品名で、トリメチロールプロパントリアクリレート(SR351)、1×3回エトキシル化されたトリメチロールプロパントリアクリレート(SR454)、2×3回エトキシル化されたトリメチロールプロパントリアクリレート(SR499)、3×3回エトキシル化されたトリメチロールプロパントリアクリレート(SR502)、5×3回エトキシル化されたトリメチロールプロパントリアクリレート(SR9035)及び全部で20回エトキシル化されたトリメチロールプロパントリアクリレート(SR415)が市販されている。プロポキシル化されたトリメチロールプロパントリアクリレートは、SR492(TMP1つ当たり1×3個のPO)及びCD501(TMP1つ当たり2×3個のPO)なる商品名で得ることができる。グリセリン誘導体として、CD9021なる商品名の高度にプロポキシル化されたグリセリントリアクリレート及びCD9020なる商品名のトリプロポキシグリセリントリアクリレートが市販されている。
WO93/21237号の記載から、架橋剤としてのアルコキシル化された多価のC〜C10−炭化水素の(メタ)アクリレートは公知である。SR351、SR454、SR502、SR9035及びSR415に相当するトリメチルプロパン架橋剤が使用されている。これらの架橋剤は、TMP1つ当たり0、3、9、15又は20個のEO単位を有する。WO93/21237号の記載によれば、TMP1つ当たり2〜7×3個のEO単位、殊に、TMP1つ当たり4〜6×3個のEO単位が有利である。
前記化合物の欠点は、使用物質と副生成物との少なくとも部分的な分離のために、 −上記刊行物において使用されている架橋剤は、0.1質量%未満のアクリル酸の含分を有する− 費用のかかる精製操作が必要である点である。
エトキシル化されたトリメチロールプロパントリ(メタ)アクリレートは、内部架橋剤として特許刊行物に繰り返し記載されており、その際、Sartomerから市販されているTMP誘導体のみが使用されており、例えば、WO98/47951号ではトリメチロールプロパントリエトキシレート−トリアクリレートが使用されており、WO01/41818号では、いわゆる高度にエトキシル化されたトリメチロールプロパントリアクリレート(HeTMPTA)としてのSartomer #9035が使用されており、WO01/56625号ではSR9035及びSR−492が使用されている。
(メタ)アクリル酸と相応するアルコールとを、抑制剤/抑制剤系並びに場合により溶剤、例えばベンゼン、トルエン、シクロヘキサンの存在で酸性触媒を用いてエステル化することによるそのような高級(メタ)アクリル酸エステルの製造は、一般に公知である。
公知の通り、(メタ)アクリル酸とアルコールとからのエステルの形成は平衡反応に基づいているため、経済的な変換率を達成するためには、通常、使用物質を過剰で使用し、かつ/又は形成されたエステル化水及び/又は目的エステルを平衡から取り除く。
従って、高級(メタ)アクリル酸を製造する際には、通常、反応水を除去し、大抵、過剰の(メタ)アクリル酸が使用される。
US4187383号には、20〜80℃の反応温度で、2〜3:1の当量過剰での、(メタ)アクリル酸と有機ポリオールとのエステル化法が記載されている。
前記方法の欠点は、低い反応温度により、反応時間が35時間までであり、反応混合物中の過剰の酸を、中和及び後続の相分離により除去する点である。
WO2001/14438号(Derwent-Abstract No.2001-191644/19)及びWO2001/10920号(Chemical Abstracts 134:163502)には、(メタ)アクリル酸とポリアルキレングリコールモノアルキルエーテルとを、3:1〜50:1の割合で、酸及び重合抑制剤の存在でエステル化するための方法、及び、酸性触媒の不活性化の後に、(メタ)アクリル酸エステルと(メタ)アクリル酸とからの残留物をpH1.5〜3.5で共重合させるための方法、並びに、セメント添加物としてのその使用が記載されている。
前記方法の欠点は、ポリアルキレングリコールモノアルキルエーテルに限定されていること、触媒を不活性化させなければならないこと、及び、このような共重合体は官能価がたったの1であるため、ヒドロゲルのための架橋剤として使用することができないことである。
ポリマーのための、殊に高吸収体のためのラジカル架橋剤として使用することのできる他の化合物を提供し、かつ、高吸収体のためのラジカル架橋剤として使用することができる物質のための製造法を単純化するという課題が存在していた。
前記課題は、式Ia:
Figure 2005532431
[式中、
AOは各AOに関して互いに無関係にEO又はPOを表し、
その際、EOはO−CH−CH−を表し、
POは互いに無関係にO−CH−CH(CH)−又はO−CH(CH)−CH−を表し、
+p+pは3、4又は5であり、
R1、R2、R3は互いに無関係にH又はCHである]
のエステルFを提供することにより解決される。
EOないしPO単位は、ポリエーテルが生じ、かつペルオキシドが生じないように組み込まれている。
AOがEOを表す上記エステルFは有利である。
更に、少なくとも1個のAOがPOを表し、少なくとももう1個のAOがEOを表す上記エステルFは有利である。
更に、前記課題は、式Ib:
Figure 2005532431
[式中、
EOはO−CH−CH−を表し、
POは互いに無関係にO−CH−CH(CH)−又はO−CH(CH)−CH−を表し、
+m+m+n+n+nは3、4又は5であり、
+m+mは1、2、3又は4であり、
R1、R2、R3は互いに無関係にH又はCHである]
のエステルFにより解決されるか、又は式Ic:
Figure 2005532431
[式中、
EOはO−CH−CH−を表し、
POは互いに無関係にO−CH−CH(CH)−又はO−CH(CH)−CH−を表し、
+m+m+n+n+nは3、4又は5であり、
+m+mは1、2、3又は4であり、
R1、R2、R3は互いに無関係にH又はCHである]
のエステルFによっても解決される。
上記のエステルにおいて、m+m+m+n+n+n、又はp+p+pが3であるエステルFは有利である。
上記のエステルにおいて、m+m+m+n+n+n、又はp+p+pが5であるエステルFは有利である。
全部で3個のPOが存在しているエステルFは殊に有利である。
グリセリンの3個のアルコキシ鎖のそれぞれの中に少なくとも1個のPOが存在しているエステルFは、極めて殊に有利である。
R1、R2及びR3が同じであり、殊にR1、R2及びR3がHを表す場合のエステルFは、極めて殊に有利である。
本発明によれば、上記意味を有する上記式のエステルFを、水性液体を吸収するヒドロゲルを形成するポリマーの製造のために、殊に内部架橋剤として使用することができる。
他の課題は、以下の工程:
a)アルコキシル化されたグリセリンと(メタ)アクリル酸とを、少なくとも1種のエステル化触媒C及び少なくとも1種の重合抑制剤D、並びに場合により、水と共沸混合物を形成する溶剤Eの存在で、エステルFの形成下に反応させる工程
b)場合により、a)で生じた水の少なくとも一部を反応混合物から除去する工程、その際、b)を、a)の間及び/又は後に行うことができる
f)場合により、反応混合物を中和させる工程
h)溶剤Eを使用する場合、場合によりこの溶剤を蒸留により除去する工程、及び/又は
i)反応条件下で不活性であるガスを用いてストリッピングする工程
を含む、アルコキシル化されたグリセリンと(メタ)アクリル酸とのエステルFの製造法により解決される。
この場合有利に、
−モル過剰の(メタ)アクリル酸対アルコキシル化されたグリセリンが3.15:1であり、かつ
−最後の工程の後に得られた反応混合物中に含有される、場合により中和された(メタ)アクリル酸が、本質的に反応混合物中に残留する。
(メタ)アクリル酸とは、本発明において、メタクリル酸、アクリル酸、又は、メタクリル酸とアクリル酸とからの混合物であると解釈される。アクリル酸が有利である。
純粋な形のエステルFが所望される場合、エステルFを公知の分離法により精製することができる。
モル過剰の(メタ)アクリル酸対アルコキシル化されたグリセリンは、少なくとも3.15:1、有利に少なくとも3.3:1、殊に有利に少なくとも3.75:1、極めて殊に有利に少なくとも4.5:1、殊に少なくとも7.5:1である。
有利な実施態様の1つにおいて、(メタ)アクリル酸は、例えば、15:1を上回る、有利に30:1を上回る、殊に有利に60:1を上回る、極めて殊に有利に150:1を上回る、殊に225:1を上回る、特に300:1を上回る過剰で使用される。
そのようにして得ることができるエステル化生成物は、本質的に他の精製なしに、殊に、過剰の(メタ)アクリル酸及びエステル化触媒Cの含分の本質的な分離なしで、ラジカル架橋剤としてヒドロゲル中で使用することができる。
架橋とは、本明細書において別に記載がない限り、ラジカル架橋(ゲル架橋、内部架橋、直鎖又は弱架橋されたポリマーの架橋)であると解釈される。この架橋は、ラジカル重合機序又はカチオン重合機序、又は他の、例えばマイケル付加、エステル化機序又はエステル交換機序を介して、有利にラジカル重合により生じうる。
水性液体を吸収するヒドロゲルを形成するポリマーは、有利に、少なくとも自重の蒸留水、有利に自重の10倍の蒸留水、殊に自重の20倍の蒸留水の吸収を伴うポリマーであり、該吸収は有利に0.7psiの圧力下でも達成される。
本発明により使用可能なアルコキシル化されたグリセリンは、式IIa、IIb又はIIc
Figure 2005532431
[式中、
AO、EO、PO、n、n、n、m、m、m、p、p、pはエステルの場合に記載された意味を有する]
のような構造を有する。
グリセリンとアルキレンオキシドの反応は当業者に自体公知である。可能な実施態様は、Houben-Weyl, Methoden der Organischen Chemie 第4版、1979、Thieme Verlag Stuttgart, Hrsg. Heinz Kropf, 第6/1a巻、第1部、第373〜385頁に記載されている。
式IIの化合物を製造するために、例えば、まず、グリセリンとEOとを反応させ、その後、引き続きPOと反応させるか、又は、まずPOと反応させ、その後、EO又はPO及びEOを同時に導入する。
これは、例えば、グリセリン約77gと水中で45%のKOH0.5gとをオートクレーブ中に装入し、一緒に、80℃で低下された圧力(約20ミリバール)で脱水して行うことができる。その後、120〜130℃で、相応する量のプロピレンオキシドを添加し、この温度で高められた圧力下で反応させる。圧力変化がもはや観察されなくなった時には反応が終了している。その後、120℃でなお30分間、後撹拌する。引き続き、相応する量のエチレンオキシドを145〜155℃でより長い時間にわたって高められた圧力で供給し、同様に完全に反応させる。不活性ガスで洗浄し、60℃に冷却した後、触媒を、ピロリン酸ナトリウムの添加及び引き続く濾過により分離する。
本発明により使用可能なポリアルコールの粘度に関して、ポリアルコールが約80℃までの温度で問題なくポンプ輸送可能であるべきであるということ以外に特別な要求は課されておらず、有利に、ポリアルコールは1000mPas未満、有利に800mPas未満、極めて殊に有利に500mPas未満の粘度を有するべきである。
本発明により使用可能なエステル化触媒Cは、硫酸、アリール又はアルキルスルホン酸、又はその混合物である。アリールスルホン酸のための例は、ベンゼンスルホン酸、パラ−トルエンスルホン酸又はドデシルベンゼンスルホン酸である。アルキルスルホン酸のための例は、メタンスルホン酸、エタンスルホン酸又はトリフルオロメタンスルホン酸である。強酸イオン交換体又はゼオライトも、エステル化触媒として使用可能である。硫酸及びイオン交換体は有利である。
本発明により使用可能な重合抑制剤Dは、例えばフェノール、例えば、アルキルフェノール、例えばo−、m−もしくはp−クレゾール(メチルフェノール)、2−t−ブチル−4−メチルフェノール、6−t−ブチル−2,4−ジメチル−フェノール、2,6−ジ−t−ブチル−4−メチルフェノール、2−t−ブチルフェノール、4−t−ブチルフェノール、2,4−ジ−t−ブチルフェノール、2−メチル−4−t−ブチルフェノール、4−t−ブチル−2,6−ジメチルフェノール、又は2,2’−メチレン−ビス−(6−t−ブチル−4−メチルフェノール)、4,4’−オキシジフェニル、3,4−メチレンジオキシジフェノール(セサモール)、3,4−ジメチルフェノール、ヒドロキノン、ピロカテキン(1,2−ジヒドロキシベンゼン)、2−(1’−メチルシクロヘキシ−1’−イル)−4,6−ジメチルフェノール、2−もしくは4−(1’−フェニル−エチ−1’−イル)−フェノール、2−t−ブチル−6−メチルフェノール、2,4,6−トリス−t−ブチルフェノール、2,6−ジ−t−ブチルフェノール、2,4−ジ−t−ブチルフェノール、4−t−ブチルフェノール、ノニルフェノール[11066−49−2]、オクチルフェノール[140−66−9]、2,6−ジメチルフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールB、ビスフェノールC、ビスフェノールS、3,3’,5,5’−テトラブロモビスフェノールA、2,6−ジ−t−ブチル−p−クレゾール、BASF AG社のKoresin(登録商標)、3,5−ジ−t−ブチル−4−ヒドロキシ安息香酸メチルエステル、4−t−ブチルピロカテキン、2−ヒドロキシベンジルアルコール、2−メトキシ−4−メチルフェノール、2,3,6−トリメチルフェノール、2,4,5−トリメチルフェノール、2,4,6−トリメチルフェノール、2−イソプロピルフェノール、4−イソプロピルフェノール、6−イソプロピル−m−クレゾール、n−オクタデシル−ベータ−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、1,3,5−トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオニルオキシエチル−イソシアヌレート、1,3,5−トリス−(2,6−ジメチル−3−ヒドロキシ−4−t−ブチルベンジル)−イソシアヌレート又はペンタエリトリット−テトラキス−[ベータ−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート]、2,6−ジ−t−ブチル−4−ジメチルアミノメチル−フェノール、6−s−ブチル−2,4−ジニトロフェノール、Ciba Spezialitaetenchemie社のIrganox(登録商標)565、1141、1192、1222及び1425、3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオン酸オクタデシルエステル、3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオン酸ヘキサデシルエステル、3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオン酸オクチルエステル、3−チア−1,5−ペンタンジオール−ビス−[(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、4,8−ジオキサ−1,11−ウンデカンジオール−ビス−[(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、4,8−ジオキサ−1,11−ウンデカンジオール−ビス−[(3’−t−ブチル−4’−ヒドロキシ−5’−メチルフェニル)プロピオネート]、1,9−ノナンジオール−ビス−[(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、1,7−ヘプタンジアミン−ビス[3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオン酸アミド]、1,1−メタンジアミン−ビス[3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオン酸アミド]、3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオン酸ヒドラジド、3−(3’,5’−ジ−メチル−4’−ヒドロキシフェニル)プロピオン酸ヒドラジド、ビス(3−t−ブチル−5−エチル−2−ヒドロキシ−フェン−1−イル)メタン、ビス(3,5−ジ−t−ブチル−4−ヒドロキシ−フェン−1−イル)メタン、ビス[3−(1’−メチルシクロヘキシ−1’−イル)−5−メチル−2−ヒドロキシ−フェン−1−イル]メタン、ビス(3−t−ブチル−2−ヒドロキシ−5−メチル−フェン−1−イル)メタン、1,1−ビス(5−t−ブチル−4−ヒドロキシ−2−メチル−フェン−1−イル)エタン、ビス(5−t−ブチル−4−ヒドロキシ−2−メチル−フェン−1−イル)スルフィド、ビス(3−t−ブチル−2−ヒドロキシ−5−メチル−フェン−1−イル)スルフィド、1,1−ビス(3,4−ジメチル−2−ヒドロキシ−フェン−1−イル)−2−メチルプロパン、1,1−ビス(5−t−ブチル−3−メチル−3−メチル2−ヒドロキシ−フェン−1−イル)−ブタン、1,3,5−トリス[1’−(3’’,5’’−ジ−t−ブチル−4’’−ヒドロキシ−フェン−1’’−イル)−メチ−1’−イル]−2,4,6−トリメチルベンゼン、1,1,4−トリス(5’−t−ブチル−4’−ヒドロキシ−2’−メチル−フェン−1’−イル)ブタン、アミノフェノール、例えばパラ−アミノフェノール、ニトロソフェノール、例えばパラ−ニトロソフェノール、p−ニトロソ−o−クレゾール、アルコキシフェノール、例えば2−メトキシフェノール(グアジャコール(Guajacol)、ピロカテキンモノメチルエーテル)、2−エトキシフェノール、2−イソプロポキシフェノール、4−メトキシフェノール(ヒドロキノンモノメチルエーテル)、モノ−もしくはジ−t−ブチル−4−メトキシフェノール、3,5−ジ−t−ブチル−4−ヒドロキシアニソール、3−ヒドロキシ−4−メトキシベンジルアルコール、2,5−ジメトキシ−4−ヒドロキシベンジルアルコール(シリンガアルコール)、4−ヒドロキシ−3−メトキシベンズアルデヒド(バニリン)、4−ヒドロキシ−3−エトキシベンズアルデヒド(エチルバニリン)、3−ヒドロキシ−4−メトキシベンズアルデヒド(イソバニリン)、1−(4−ヒドロキシ−3−メトキシ−フェニル)エタノン(アセトバニロン)、オイゲノール、ジヒドロオイゲノール、イソオイゲノール、トコフェロール、例えばアルファ−、ベータ−、ガンマ−、デルタ−及びイプシロン−トコフェロール、トコール、アルファ−トコフェロールヒドロキノン、並びに2,3−ジヒドロ−2,2−ジメチル−7−ヒドロキシベンゾフラン(2,2−ジメチル−7−ヒドロキシクマラン)、キノン及びヒドロキノン、例えばヒドロキノン又はヒドロキノンモノメチルエーテル、2,5−ジ−t−ブチルヒドロキノン、2−メチル−p−ヒドロキノン、2,3−ジメチルヒドロキノン、トリメチルヒドロキノン、4−メチルピロカテキン、t−ブチルヒドロキノン、3−メチルピロカテキン、ベンゾキノン、2−メチル−p−ヒドロキノン、2,3−ジメチルヒドロキノン、トリメチルヒドロキノン、3−メチルピロカテキン、4−メチルピロカテキン、t−ブチルヒドロキノン、4−エトキシフェノール、4−ブトキシフェノール、ヒドロキノンモノベンジルエーテル、p−フェノキシフェノール、2−メチルヒドロキノン、2,5−ジ−t−ブチルヒドロキノン、テトラメチル−p−ベンゾキノン、ジエチル−1,4−シクロヘキサンジオン−2,5−ジカルボキシレート、フェニル−p−ベンゾキノン、2,5−ジメチル−3−ベンジル−p−ベンゾキノン、2−イソプロピル−5−メチル−p−ベンゾキノン(チモキノン)、2,6−ジイソプロピル−p−ベンゾキノン、2,5−ジメチル−3−ヒドロキシ−p−ベンゾキノン、2,5−ジヒドロキシ−p−ベンゾキノン、エンベリン(Embeline)、テトラヒドロキシ−p−ベンゾキノン、2,5−ジメトキシ−1,4−ベンゾキノン、2−アミノ−5−メチル−p−ベンゾキノン、2,5−ビスフェニルアミノ−1,4−ベンゾキノン、5,8−ジヒドロキシ−1,4−ナフトキノン、2−アニリノ−1,4−ナフトキノン、アントラキノン、N,N−ジメチルインドアニリン、N,N−ジフェニル−p−ベンゾキノンジイミン、1,4−ベンゾキノンジオキシム、コエルリグノン(Coerulignon)、3,3’−ジ−t−ブチル−5,5’−ジメチルジフェノキノン、p−ロゾール酸(アウリン)、2,6−ジ−t−ブチル−4−ベンジリデン−ベンゾキノン、2,5−ジ−t−アミルヒドロキノン、N−オキシル、例えば4−ヒドロキシ−2,2,6,6−テトラメチル−ピペリジン−N−オキシル、4−オキソ−2,2,6,6−テトラメチル−ピペリジン−N−オキシル、4−アセトキシ−2,2,6,6−テトラメチル−ピペリジン−N−オキシル、2,2,6,6−テトラメチル−ピペリジン−N−オキシル、4,4’,4’’−トリス(2,2,6,6−テトラメチル−ピペリジン−N−オキシル)−ホスフィット、3−オキソ−2,2,5,5−テトラメチル−ピロリジン−N−オキシル、1−オキシル−2,2,6,6−テトラメチル−4−メトキシピペリジン、1−オキシル−2,2,6,6−テトラメチル−4−トリメチルシリルオキシピペリジン、1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル−2−エチルヘキサノエート、1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル−ステアレート、1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル−ベンゾエート、1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル−(4−t−ブチル)ベンゾエート、ビス(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−スクシネート、ビス(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−アジペート、1,10−デカン二酸−ビス(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−エステル、ビス(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−n−ブチルマロネート、ビス(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−フタレート、ビス(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−イソフタレート、ビス(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−テレフタレート、ビス(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−ヘキサヒドロテレフタレート、N,N−ビス(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−アジピンアミド、N−(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−カプロラクタム、N−(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−ドデシルスクシンイミド、2,4,6−トリス−[N−ブチル−N−(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル]トリアジン、N,N’−ビス(1−オキシル−2,2,6,6−テトラメチルピペリジン−4−イル)−N,N’−ビス−ホルミル−1,6−ジアミノヘキサン、4,4’−エチレンビス(1−オキシル−2,2,6,6−テトラメチルピペラジン−3−オン)、芳香族アミン、例えばフェニレンジアミン、N,N−ジフェニルアミン、N−ニトロソ−ジフェニルアミン、ニトロソジエチルアニリン、N,N’−ジアルキル−パラ−フェニレンジアミン、この場合アルキル基は、同一でも異なっていてもよく、それぞれ互いに独立に1〜4個の炭素原子からなり、直鎖又は分枝鎖であってもよく、例えばN,N’−ジ−イソ−ブチル−p−フェニレンジアミン、N,N−ジ−イソ−プロピル−p−フェニレンジアミン、Ciba Spezialitaetenchemie社のIrganox5057、p−フェニレ
ンジアミン、N−フェニル−p−フェニレンジアミン、N,N’−ジフェニル−p−フェニレンジアミン、N−イソプロピル−N−フェニル−p−フェニレンジアミン、N,N’−ジ−s−ブチル−p−フェニレンジアミン(BASF AG社のKerobit(登録商標) BPD)、N−フェニル−N’−イソプロピル−p−フェニレンジアミン(Bayer AGのVulkanox(登録商標)4010)、N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、N−フェニル−2−ナフチルアミン、イミノジベンジル、N,N’−ジフェニルベンジジン、N−フェニルテトラアニリン、アクリドン、3−ヒドロキシジフェニルアミン、4−ヒドロキシジフェニルアミン、ヒドロキシルアミン、例えばN,N−ジエチルヒドロキシルアミン、尿素誘導体、例えば尿素又はチオ尿素、リン含有化合物、例えばトリフェニルホスフィン、トリフェニルホスフィット、次亜リン酸又はトリエチルホスフィット、硫黄含有化合物、例えばジフェニルスルフィド、フェノチアジン、又は金属塩、例えば塩化銅、塩化マンガン、塩化セシウム、塩化ニッケル、塩化クロム、ジチオカルバミド酸銅、ジチオカルバミド酸マンガン、ジチオカルバミド酸セシウム、ジチオカルバミド酸ニッケル、ジチオカルバミド酸クロム、硫酸銅、硫酸マンガン、硫酸セシウム、硫酸ニッケル、硫酸クロム、サリチル酸銅、サリチル酸マンガン、サリチル酸セシウム、サリチル酸ニッケル、サリチル酸クロム、又は酢酸銅、酢酸マンガン、酢酸セシウム、酢酸ニッケル、酢酸クロム又はその混合物である。上記のフェノール及びキノリンは有利であり、ヒドロキノン、ヒドロキノンモノメチルエーテル、2−t−ブチル−4−メチルフェノール、6−t−ブチル−2,4−ジメチル−フェノール、2,6−ジ−t−ブチル−4−メチルフェノール、2,4−ジ−t−ブチルフェノール、トリフェニルホスフィット、次亜リン酸、CuCl及びグアジャコールは殊に有利であり、ヒドロキノン及びヒドロキノンモノメチルエーテルは極めて殊に有利である。
場合によりトリフェニルホスフィット及び/又は次亜リン酸と組み合わせられた、ヒドロキノンモノメチルエーテル、ヒドロキノン及びアルキルフェノールは殊に有利である。
安定化を更に促進するために、酸素含有ガス、有利に空気、又は、空気と窒素とから成る混合物(希薄空気)が存在していてよい。
上記の安定剤の中で、好気性である安定剤、即ち、その抑制作用を十分に発揮するために酸素の存在が必要である安定剤が有利である。
本発明により使用可能な溶剤Eは、殊に、所望の場合には反応水の共沸除去のために適当な溶剤であり、とりわけ、脂肪族、脂環式及び芳香族炭化水素又はその混合物である。
有利に、n−ペンタン、n−ヘキサン、n−ヘプタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン又はキシレンが使用される。シクロヘキサン、メチルシクロヘキサン及びトルエンは殊に有利である。
エステル化のために、例えば冒頭に記載された、又はDE−A19941136号、DE−A3843843号、DE−A3843854号、DE−A19937911号、DE−A19929258号、EP−A331845号、EP554651号、又はUS4187383号に記載された当業者に公知の多価アルコールの製造方法及び/又は後処理法を使用することができる。
一般に、エステル化は以下のように実施することができる:
エステル化装置は、撹拌反応器、有利に、循環蒸発器及び凝縮器と相分離容器とを有する取り付けられた蒸留ユニットを有する反応器から成る。
反応器は、例えば二重ジャケット加熱装置及び/又は内部加熱コイルを有する反応器であってよい。有利に、外部熱交換器及び自然循環又は強制的循環、即ちポンプを使用する循環、特に有利に機械的補助手段を使用しないで循環を行う自然循環を有する反応器を使用する。
当然のことながら、多数の反応帯域、例えば2〜4個、有利に2又は3個の反応器から成る反応器カスケード中で反応を実施することもできる。
適当な循環蒸発器は当業者に公知であり、例えばR. Billet, Verdampfertechnik, HTB-Verlag, Bibliographisches Institut Mannheim, 1965, 53に記載されている。循環蒸発器の例は、管束型熱交換器、プレート型熱交換器等である。
当然のことながら、循環内に複数の熱交換器が存在してよい。
蒸留ユニットは自体公知の構造のものである。この場合、場合により飛沫よけが取り付けられた簡単な蒸留ユニットであってもよく、又は精留塔であってもよい。塔内部構造物として、原則的に全ての慣用の内部構造物、例えばトレー、充填物及び/又は堆積物である。トレーのうち、泡鐘トレー、多孔板トレー、バルブトレー、トールマン(Thormann)トレー及び/又はデュアルフロートレーが有利であり、堆積物のうち、リング、コイル、サドル又はひも状物を有するものが有利である。
一般に、5〜20個の理論段で十分である。
凝縮器及び分離容器は慣用の構造のものである。
(メタ)アクリル酸及びアルコキシル化されたグリセリンは、エステル化a)において、通常、上記のようなモル過剰で使用される。使用される過剰は、所望の場合には約3000:1までであってよい。
エステル化触媒Cとして、上記のものが該当する。
エステル化触媒Cは、通常、エステル化混合物に対して0.1〜5質量%、有利に0.5〜5質量%、殊に有利に1〜4質量%、極めて殊に有利に2〜4質量%の量で使用される。
必要な場合には、イオン交換体を用いて反応混合物からエステル化触媒を除去することができる。この場合、イオン交換体を反応混合物中に直接与え、引き続き濾別してもよいし、反応混合物をイオン交換体堆積物に導通させてもよい。
有利に、エステル化触媒は反応混合物中に放置される。しかしながら、触媒がイオン交換体である場合には、これは有利に例えば濾過により除去される。
安定化を更に促進するために、酸素含有ガス、有利に空気、又は、空気と窒素とから成る混合物(希薄空気)が存在していてよい。
この酸素含有ガスを、有利に塔底領域内及び/又は循環蒸発器内に供給し、かつ/又は反応混合物に導通及び/又は通過させる。
重合抑制剤(混合物)D(上記の通り)は、エステル化混合物に対して、0.01〜1質量%、有利に0.02〜0.8質量%、殊に有利に0.05〜0.5質量%の全量で使用される。
重合抑制剤(混合物)Dは、例えば、水溶液として、又は出発物質又は生成物中の溶液として使用されてよい。
b)反応の際に生じる反応水は、エステル化a)の間又は後に留去することができ、その際、このプロセスは、水と共沸混合物を形成する溶剤により促進され得る。
反応水の共沸除去のための溶剤Eとして、所望の場合には、上記化合物が適当である。
溶剤の存在でエステル化を実施するのが有利である。
溶剤の使用量は、アルコキシル化されたグリセリンと(メタ)アクリル酸との合計に対して、10〜200質量%、有利に20〜100質量%、殊に有利に30〜100質量%である。
しかしながら、例えばDE−A13843854号、第2欄、第18行〜第4欄、第45行に記載されているように、共沸添加剤なしで、しかしながらこれとは異なって上記の安定剤を用いて実施することも考えられる。
反応混合物中に含有される水を、共沸混合物を形成する溶剤によって除去しない場合には、例えばDE−A3843843号に記載されているように、この水を、不活性ガス、有利に酸素含有ガス、殊に有利に空気又は希薄空気を用いたストリッピングにより除去することができる。
エステル化a)の反応温度は、一般に40〜160℃、有利に60〜140℃、殊に有利に80〜120℃である。温度は、反応の進行中に一定であってもよいし上昇してもよいが、有利に反応の進行中に温度を上昇させる。この場合、エステル化の最終温度は開始温度よりも5〜30℃高い。エステル化の温度は、DE−A19941136号及びドイツ特許出願番号第10063175.4号に記載されているように、反応混合物中の溶剤濃度の変動によって、決定及び調節することができる。
溶剤を使用する場合は、反応器に取り付けられた蒸留ユニットを介して反応混合物から溶剤を留去することができる。
留出物は、選択的に、除去することもできるし、凝縮の後に相分離装置に導入することもできる。ドイツ特許出願番号第10063175.4号に記載されているように、こうして得られた水相を一般に排出し、有機相を蒸留ユニットに還流として導入し、かつ/又は反応帯域に直接導入し、かつ/又は循環蒸発器に導入することができる。
還流として使用する場合は、有機相は、DE−A19941136号に記載されているように、エステル化における温度を調節するために使用することができる。
エステル化a)は、常圧、過圧又は減圧で実施することができるが、有利に常圧で処理される。
反応時間は、一般に2〜20時間、有利に4〜15時間、殊に有利に7〜12時間である。
個々の反応成分の添加の順序は、本発明によれば重要でない。全ての成分を混合して装入し、引き続き加熱することもできるし、1種以上の成分を装入しないか又は部分的に装入し、加熱後になって初めて添加することもできる。
使用可能な(メタ)アクリル酸は、その組成が限定されず、例えば以下の成分を有することができる:
(メタ)アクリル酸 90〜99.9質量%
酢酸 0.05〜3質量%
プロピオン酸 0.01〜1質量%
ジアクリル酸 0.01〜5質量%
水 0.05〜5質量%
カルボニル含有物 0.01〜0.3質量%
抑制剤 0.01〜0.1質量%
(無水)マレイン酸 0.001〜0.5質量%
使用される粗製(メタ)アクリル酸は、一般に、比肩可能な安定化を可能にする量のフェノチアジン又は他の安定剤200〜600ppmで安定化される。カルボニル含有物という表現は、ここでは例えばアセトン、低級アルデヒド、例えばホルムアルデヒド、アセトアルデヒド、クロトンアルデヒド、アクロレイン、2−フルフラール及び3−フルフラール及びベンズアルデヒドであると解釈される。
ここで、粗製(メタ)アクリル酸とは、プロパン/プロペン/アクロレインないしイソブタン/イソブテン/メタクロレイン−酸化の反応ガスを吸収剤に吸収させ、引き続き吸収剤を分離した後に生じるか、もしくは、反応ガスの分別凝縮により取得される(メタ)アクリル酸含有混合物であると解釈される。
当然のことながら、例えば以下の純度を有する純粋な(メタ)アクリル酸を使用することもできる:
(メタ)アクリル酸 99.7〜99.99質量%
酢酸 50〜1000質量ppm
プロピオン酸 10〜500質量ppm
ジアクリル酸 10〜500質量ppm
水 50〜1000質量ppm
カルボニル含有物 1〜500質量ppm
抑制剤 1〜300質量ppm
(無水)マレイン酸 1〜200質量ppm
使用される純粋な(メタ)アクリル酸は、一般に、比肩可能な安定化を可能にする量のヒドロキノンモノメチルエーテル又は他の貯蔵安定剤100〜300ppmで安定化されている。
純粋な、ないし予め精製された(メタ)アクリル酸とは、一般に、純度が少なくとも99.5質量%であり、アルデヒド成分、他のカルボニル含有成分及び高沸点成分を実質的に含まない(メタ)アクリル酸であると解釈される。
(存在する場合には)取り付けられた塔を介して分離された凝縮物の、エステル化の間に留去された水相は、一般に(メタ)アクリル酸0.1〜10質量%を含有することができ、この水相は分離され、かつ排出される。有利に、水相に含まれる(メタ)アクリル酸を、抽出剤、有利に場合によりエステル化に使用される溶剤、例えばシクロヘキサンを用いて、温度10〜40℃で、水相対抽出剤の比1:5〜30、有利に1:10〜20で抽出し、エステル化に返送することができる。
循環を更に促進するために、不活性ガス、有利に酸素含有ガス、殊に有利に空気又は空気と窒素とから成る混合物(希薄空気)を、例えば反応混合物の容積に対して0.1〜1m/mh、有利に0.2〜0.8m/mh、殊に有利に0.3〜0.7m/mhの量で、循環に供給し、反応混合物に導通又は通過させることができる。
エステル化a)の進行は、排出される水の量及び/又は反応器中のカルボン酸濃度の減少を監視することにより監視できる。
例えば、理論的に期待される水の量の90%、有利に少なくとも95%、殊に有利に少なくとも98%が溶剤により排出されたらすぐに反応を停止させることができる。
反応の終了は、例えば、本質的に、反応水がもはや共沸添加剤により除去されないことにより確認することができる。(メタ)アクリル酸が反応水と一緒に排出される場合には、その割合は、例えば、水相のアリコートの逆滴定により測定することができる。
(メタ)アクリル酸が、高い化学量論的過剰で、例えば少なくとも4.5:1、有利に少なくとも7.5:1、極めて殊に有利に少なくとも15:1で使用される場合、反応水の除去を省略することができる。この場合、生じる水の量の本質的な部分が反応混合物中に残存する。反応の間又は後に、施された温度での揮発性により決定される分の水のみが反応混合物から除去されるに過ぎず、更に、生じる反応水の分離のための処置は施されない。例えば、生じる反応水の少なくとも10質量%、有利に少なくとも20質量%、殊に有利に少なくとも30質量%、極めて殊に有利に少なくとも40質量%、殊に少なくとも50質量%が反応混合物中に残留する。
c)エステル化の終了後に、反応混合物を慣用の方法で10〜30℃の温度に冷却し、場合により水の共沸除去のために使用される溶剤と同じか又は別であってよい溶剤を場合により添加することにより、任意の目的濃度を設定することができる。
もう1つの実施態様において、例えば粘度を低下させるために、反応を適当な希釈剤Gを用いて停止させ、例えば10〜90質量%、有利に20〜80質量%、殊に有利に20〜60質量%、極めて殊に有利に30〜50質量%、殊に約40%の濃度に希釈することができる。
この場合、希釈後に本質的に均質な溶液が形成されることが重要である。
これは、有利にヒドロゲルの製造における使用の比較的すぐ直前になって初めて、例えば24時間前以内、有利に20時間前以内、殊に有利に12時間前以内、極めて殊に有利に6時間前以内、殊に3時間前以内に行われる。
希釈剤Gは、水、水と1種以上の水と境界なく可溶である有機溶剤との混合物、又は、水と1種以上の単官能性もしくは多官能性アルコール、例えばメタノール及びグリセリンとの混合物から成る群から選択されている。アルコールは、有利に1、2又は3個のヒドロキシ基を有し、有利に1〜10個、殊に4個までのC原子を有する。1級及び2級アルコールは有利である。
有利なアルコールは、メタノール、エタノール、イソプロパノール、エチレングリコール、1,2−プロパンジオール又は1,3−プロパンジオールである。
d)必要な場合には、例えば、活性炭又は金属酸化物、例えば酸化アルミニウム、一酸化ケイ素、酸化マグネシウム、酸化ジルコン、酸化ホウ素又はこれらの混合物を、例えば0.1〜50質量%、有利に0.5〜25質量%、殊に有利に1〜10質量%の量で用いて、例えば10〜100℃、有利に20〜80℃、殊に有利に30〜60℃の温度で処理することによって、反応混合物を脱色することができる。
これは、反応混合物に粉末状又は顆粒状の脱色剤を添加し、引き続き濾過することによって、又は、反応混合物を任意の適当な成形体の形の脱色剤の堆積物上に移動させることよって行うことができる。
反応混合物の脱色は、後処理工程の任意の箇所で、例えば、粗製反応混合物の段階で、又は、場合により行われる予備洗浄、中和、洗浄又は溶剤の除去の後に行うことができる。
反応混合物を、更に、予備洗浄e)及び/又は中和f)及び/又は後洗浄g)することができ、有利に1回だけ中和f)する。場合により、中和f)と予備洗浄e)との順序を入れ替えてもよい。
洗浄e)及びg)及び/又は中和f)の水相から、含有されている(メタ)アクリル酸及び/又は触媒Cを、酸性化及び溶剤を用いた抽出によって少なくとも部分的に回収し、再利用することができる。
予備洗浄又は後洗浄e)又はg)のために、反応混合物を、洗浄液、例えば水、又は、5〜30質量%、有利に5〜20質量%、殊に有利に5〜15質量%の、食塩、塩化カリウム、塩化アンモニウム、硫酸ナトリウム又は硫酸アンモニウム溶液、有利に水又は食塩溶液を有する洗浄装置内で処理する。
反応混合物:洗浄液の量比は、一般に1:0.1〜1、有利に1:0.2〜0.8、殊に有利に1:0.3〜0.7である。
洗浄又は中和は、例えば撹拌容器又は他の慣用の装置、例えば、塔又はミキサー−セトラー−装置内で実施することができる。
処理技術的に、本発明による方法における洗浄又は中和のために、例えば、Ullmann's Encyclopedia of Industrial Chemistry、第6版、1999 Electronic Release, 章:Liquid-Liquid Extraction-Apparatusに記載されているような自体公知の全ての抽出法及び洗浄法及び抽出装置及び洗浄装置を使用することができる。例えばこれらは、一段又は多段の、有利に一段の抽出、並びに、並流又は向流方式、有利に向流方式のものであってよい。
有利に、多孔板トレー塔、又は規則充填塔もしくは不規則充填塔、撹拌容器又はミキサー−セトラー−装置、並びに、脈動塔又は回転式内部構造物を有するものが使用される。
抑制剤として、金属塩、有利に銅又は銅塩を(同時に)使用する場合には、有利に予備洗浄e)を導入する。
f)で中和された反応混合物から塩基又は塩の痕跡を除去するために、後洗浄g)が有利である。
中和f)のために、場合により予備洗浄された、なお少量の触媒及び主要量の過剰の(メタ)アクリル酸を含有し得る反応混合物を、5〜25質量%、有利に5〜20質量%、殊に有利に5〜15質量%の塩基、例えばアルカリ金属又はアルカリ土類金属の酸化物、水酸化物、炭酸塩又は炭酸水素塩の水溶液、有利に苛性ソーダ液、水酸化カリウム溶液、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、水酸化カルシウム、石灰乳、アンモニア、アンモニア水、又は炭酸カリウム、殊に有利に苛性ソーダ液又は苛性ソーダ液−食塩−溶液を用いて中和することができ、これに場合により5〜15質量%の食塩、塩化カリウム、塩化アンモニウム又は硫酸アンモニウムが添加されてもよい。中和度は、酸基を含有するモノマーに対して、有利に5〜60モル%、有利に10〜40モル%、殊に有利に20〜30モル%である。前記の中和は、重合の前及び/又は間に行うことができ、有利に重合の前に行うことができる。
塩基の添加は、装置内の温度が上昇して60℃を上回ることがなく、有利に20〜35℃であり、pH−値が4〜13となるように行う。中和熱の排出を、有利に、内部冷却コイルを使用して、又は二重ジャケット冷却により容器を冷却することによって行う。
反応混合物:中和液の量比は、一般に1:0.1〜1、有利に1:0.2〜0.8、殊に有利に1:0.3〜0.7である。
前記の説明は装置に関して適用できる。
h)反応混合物に溶剤が含有されている場合には、溶剤を蒸留により本質的に除去することができる。有利に、場合により含有されている溶剤を洗浄及び/又は中和の後に反応混合物から除去するが、しかしながら所望の場合には、洗浄ないし中和の前にこれを行うこともできる。
このために、溶剤の除去後に、その100〜500ppm、有利に200〜500ppm、殊に有利に200〜400ppmが目的エステル(残留物)中に含有されているような量の貯蔵安定剤、有利にヒドロキノンモノメチルエーテルを反応混合物と混合する。
蒸留による主要量の溶剤の除去は、例えば二重ジャケット加熱及び/又は内部加熱コイルを有する撹拌容器内で、減圧下、例えば20〜700ミリバール、有利に30〜500ミリバール、殊に有利に50〜150ミリバールで、40〜80℃の温度で行う。
当然のことながら、蒸留を、流下薄膜式蒸発器又は薄膜蒸発器内で行うこともできる。このために、反応混合物を、有利に複数回循環させて、減圧下で、例えば20〜700ミリバール、有利に30〜500ミリバール、殊に有利に50〜150ミリバールで、40〜80℃の温度で装置に導通させる。
有利に、不活性ガス、有利に酸素含有ガス、殊に有利に空気又は空気と窒素とから成る混合物(希薄空気)を、例えば反応混合物の容積に対して0.1〜1m/mh、有利に0.2〜0.8m/mh、殊に有利に0.3〜0.7m/mhの量で、蒸留装置に導入することができる。
蒸留後の残留物中の残留溶剤含量は、一般に5質量%未満、有利に0.5〜5質量%、殊に有利に1〜3質量%である。
分離した溶剤を凝縮させ、有利に再利用する。
必要な場合には、蒸留に加えて、又は蒸留の代わりに、溶剤ストリッピングi)を実施することができる。
このために、なお少量の溶剤を含有する目的エステルを、50〜90℃、有利に80〜90℃に加熱し、残留する溶剤の量を適当な装置内で適当なガスを使用して除去する。促進のために、場合により真空を施すこともできる。
適当な装置は、例えば、慣用の内部構造物、例えば、トレー、堆積物又は配向充填物、有利に堆積物を有する、自体公知の構造の塔である。塔内部構造物として、原則的に全ての慣用の内部構造物、例えば、トレー、規則充填体及び/又は不規則充填体が該当する。トレーのうち、泡鐘トレー、多孔板トレー、バルブトレー、トールマントレー及び/又はデュアルフロートレーが有利であり、堆積物のうち、リング、コイル、サドル、ラッシヒリング、イントス(Intos)リング又はポールリング、バールサドル又はインタロックスサドル、トップパック(Top-Pak)等又はひも状物を有するものが有利である。
ここでも、流下薄膜式蒸発器、薄膜蒸発器又はワイプ薄膜蒸発器(Wischfilmverdampfer)、例えば、ルワ(Luwa)蒸発器、ロータフィルム(Rotafilm)蒸発器又はサンベー(Sambay)蒸発器も可能であり、これは、飛沫よけとして例えばデミスターを備えていてよい。
適当なガスは、ストリッピング条件下で不活性であるガス、有利に酸素含有ガス、殊に有利に空気又は空気と窒素とから成る混合物(希薄空気)、又は、殊に50〜100℃に熱処理された水蒸気である。
ストリッピングガスの量は、反応混合物の容積に対して、例えば5〜20m/mh、殊に有利に10〜20m/mh、極めて殊に有利に10〜15m/mhである。
必要な場合には、エステルを、後処理工程の任意の段階で、有利に洗浄/中和及び場合により溶剤除去の後に濾過j)し、沈殿した痕跡量の塩並びに場合により含有されている脱色剤を除去することができる。
考え得る実施態様において、アルコキシル化されたグリセリンと(メタ)アクリル酸とのエステル化a)は、上記の少なくとも15:1のモル過剰で、少なくとも1種のエステル化触媒C及び少なくとも1種の重合抑制剤Dの存在で、水と共沸混合物を形成する溶剤なしに実施される。
過剰に使用される(メタ)アクリル酸は、有利な実施態様において本質的に分離されず、即ち、施された温度での揮発性により決定される分の(メタ)アクリル酸のみが反応混合物から除去され、更に、カルボン酸の分離のための措置、例えば蒸留工程、精留工程、抽出工程、例えば洗浄、吸収工程、例えば活性炭の導通又はイオン交換体の導通、及び/又は化学的工程、例えばエポキシドを用いたカルボン酸の捕捉は実施されない。
有利に、反応混合物中に含有される(メタ)アクリル酸は、反応終了後に反応混合物中に含有されている(メタ)アクリル酸に対して、75質量%以下、殊に有利に50質量%以下、極めて殊に有利に25質量%以下、殊に10質量%以下、特に5質量%以下が、反応混合物から分離される。殊に有利な実施態様において、工程b)を行わなくてよく、従って、施された温度での揮発性により決定される分の反応水及び(メタ)アクリル酸のみが反応混合物から除去される。これは有利に本質的に完全な凝縮により回避され得る。
更に、使用されるエステル化触媒Cも本質的に反応混合物中に残存する。
そのようにして得ることができる反応混合物は、有利に、少なくとも25mgKOH/反応混合物g、殊に有利に25〜80mgKOH/反応混合物g、極めて殊に有利に25〜50mgKOH/反応混合物gのDIN EN3682による酸価を有する。
予備洗浄又は後洗浄e)又はg)が有利に行われない場合、濾過工程j)のみで合理的であり得る。
引き続き、反応混合物を工程c)において希釈することができ、この場合、反応混合物を、有利に6時間以内、殊に有利に3時間以内でヒドロゲルに変換することができる。ヒドロゲルを有利に工程f)において中和することができる。
この場合、工程c)、j)及びf)の順序は任意である。
本発明は更に、以下
−上記のエステル化法の1つにより得ることができる少なくとも1種のエステルF
−(メタ)アクリル酸及び
−希釈剤G
を含有する物質混合物に関する。
他の成分として、以下
−プロトン化されたか又はプロトン化されていない形のエステル化触媒C
−重合抑制剤D、並びに
−エステル化において使用された場合には、場合により溶剤E
が含有されていてよい。
物質混合物は、場合により中和されていてよく、上記のf)に記載したようなpH値を有してよい。
物質混合物が中和されている場合、(メタ)アクリル酸の少なくとも一部は、その水溶性のアルカリ金属塩、アルカリ土類金属塩又はアンモニウム塩に変換されている。
有利な物質混合物は、以下
−物質混合物中のエステルF 0.1〜40質量%、殊に有利に0.5〜20質量%、極めて殊に有利に1〜10質量%、殊に2〜5質量%、殊に2〜4質量%、
−モノマーM 0.5〜99.9質量%、殊に有利に0.5〜50質量%、極めて殊に有利に1〜25質量%、殊に2〜15質量%、殊に3〜5質量%、
−エステル化触媒C 0〜10質量%、殊に有利に0.02〜5質量%、極めて殊に有利に0.05〜2.5質量%、殊に0.1〜1質量%、
−重合抑制剤D 0〜5質量%、殊に有利に0.01〜1.0質量%、極めて殊に有利に0.02〜0.75質量%、殊に0.05〜0.5質量%、殊に0.075〜0.25質量%、
−溶剤E 0〜10質量%、殊に有利に0〜5質量%、極めて殊に有利に0.05〜1.5質量%、殊に0.1〜0.5質量%、
但し、合計は常に100質量%である、並びに
−場合により希釈剤G 100質量%まで
を含有する。
上記の方法により得ることができる反応混合物及び本発明による物質混合物は、
−吸水性ヒドロゲルのラジカル架橋剤として
−ポリマー分散液の製造のための出発物質として
−ポリアクリレート(ヒドロゲルを除く)の製造のための出発物質として
−ラッカー原料として、又は
−セメント添加物として
使用することができる。
吸水性ヒドロゲルのラジカル架橋剤として使用するために、殊に、少なくとも5質量%、有利に少なくとも10質量%、殊に有利に少なくとも20質量%、極めて殊に有利に少なくとも30質量%、殊に少なくとも50質量%の、(蒸留水中で25℃での)水への溶解度を有するような本発明による物質混合物が適当である。
k)進行する場合にはその後処理工程を含めたエステル化からの反応混合物、例えばf)からの、ないしf)を行わない場合にはb)からの、ないしb)を行わない場合にはa)からの反応混合物を、場合により、酸基を有していないが親水性モノマーMと共重合可能である付加的なモノエチレン性不飽和化合物Nと混合することができ、その後、吸水性ヒドロゲルの製造のために、少なくとも1種のラジカル開始剤K及び場合により少なくとも1種のグラフト基体Lの存在で重合させることができる。
有利に、
l)k)からの反応混合物を後架橋させることができる。
この親水性の高膨潤性ヒドロゲルの製造k)のために適当な親水性モノマーMは、例えば、重合可能な酸、例えばアクリル酸、メタクリル酸、エタクリル酸、α−クロロアクリル酸、クロトン酸、マレイン酸、無水マレイン酸、ビニルスルホン酸、ビニルホスホン酸、その無水物を含むマレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、アコニット酸、アリルスルホン酸、スルホエチルアクリレート、スルホメタクリレート、スルホプロピルアクリレート、スルホプロピルメタクリレート、2−ヒドロキシ−3−アクリルオキシプロピルスルホン酸、2−ヒドロキシ−3−メタクリル−オキシプロピルスルホン酸、アリルホスホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、2−アクリルアミド−2−メチルプロパンホスホン酸、並びにそのアミド、ヒドロキシアルキルエステル及びアミノ基又はアンモニウム基含有エステル及びアミドである。モノマーは単独で又は相互に混合して使用することができる。更に、水溶性N−ビニルアミド又はジアリルジメチルアンモニウムクロリドである。有利な親水性モノマーは、式V
Figure 2005532431
[式中、
は水素、メチル又はエチルを表し、
は基−COOR、スルホニル基又はホスホニル基、(C〜C)−アルキルアルコールでエステル化されたホルホニル基、又は式VI
Figure 2005532431
の基を表し、
は水素、メチル、エチル又はカルボキシル基を表し、
は水素、アミノ、又はヒドロキシ−(C〜C)−アルキルを表し、
はスルホニル基、ホスホニル基又はカルボキシル基を表す]
の化合物である。
(C〜C)−アルキルアルコールの例は、メタノール、エタノール、n−プロパノール又はn−ブタノールである。
殊に有利な親水性モノマーは、アクリル酸及びメタクリル酸、殊にアクリル酸である。
特性を最適化するために、酸基を有していないが、酸基を含有するモノマーと共重合可能な付加的なモノエチレン性不飽和化合物Nを使用することも合理的であり得る。これには、例えばモノエチレン性不飽和カルボン酸のアミド及びニトリル、例えばアクリルアミド、メタクリルアミド及びN−ビニルホルムアミド、N−ビニルアセトアミド、N−メチルビニルアセトアミド、アクリロニトリル及びメタクリロニトリルが属する。さらに適当な化合物は、例えば飽和C〜C−カルボン酸のビニルエステル、例えばギ酸ビニル、酢酸ビニル又はプロピオン酸ビニル、アルキル基中に少なくとも2個のC原子を有するアルキルビニルエーテル、例えばエチルビニルエーテル又はブチルビニルエーテル、モノエチレン性不飽和C〜C−カルボン酸のエステル、例えば1価のC〜C18−アルコールとアクリル酸、メタクリル酸又はマレイン酸とからのエステル、マレイン酸の半エステル、例えばマレイン酸モノ−メチルエステル、N−ビニルラクタム、例えばN−ビニルピロリドン又はN−ビニルカプロラクタム、アルコキシル化された1価の飽和アルコール、例えばアルコール1モル当たり2〜200モルのエチレンオキシド及び/又はプロピレンオキシドと反応している10〜25個のC原子を有するアルコールのアクリル酸エステル及びメタクリル酸エステル、並びにポリエチレングリコール又はポリプロピレングリコールのモノアクリル酸エステル及びモノメタクリル酸エステルであり、その際、ポリアルキレングリコールの分子量(M)は例えば2000までであることができる。さらに、適当なモノマーはスチレン及びアルキル置換スチレン、例えばエチルスチレン又はt−ブチルスチレンである。
これらの酸基を有していないモノマーは、他のモノマーと混合した形で、例えばビニルアセテートと2−ヒドロキシエチルアクリレートとの任意の割合での混合物の形で使用することができる。これらの酸基を有していないモノマーは、0〜50質量%、有利に20質量%未満の量で反応混合物に添加される。
酸基を有するモノエチレン性不飽和モノマー(このモノマーは場合により重合の前又は後でそのアルカリ金属塩又はアンモニウム塩に変換される)と、全質量に対して0〜40質量%の酸基を有していないモノエチレン性不飽和モノマーとからの、架橋された(コ)ポリマーは有利である。
(メタ)アクリル酸含有(コ)ポリマー、ポリアクリル酸及び高吸収体の製造、試験及び使用はすでに何度も記載されており、従って十分に公知である。”Modern Superabsorbent Polymer Technology”, F.L. Buchholz及びA.T. Graham著, Wiley-VCH, 1998、又はUllmann's Handbuch der technischen Chemie 第35巻 2003 Markus Frank ”Superabsorbents”を参照のこと。
酸基を有するモノエチレン性不飽和モノマーM又はその塩の架橋性の重合又は共重合により得られるヒドロゲルは有利である。
得ることができるポリマーは、改善された鹸化指数(VSI)が顕著である。
後架橋のための方法において、出発ポリマーを後架橋剤で処理し、有利に処理の間又は後に、温度を上昇させることにより後架橋及び乾燥させ、その際、架橋剤は有利に不活性溶剤中に含有されている。不活性溶剤とは、反応の際に、出発ポリマーとも後架橋剤とも本質的に反応しない溶剤であると解釈される。90%を上回って、有利に95%を上回って、殊に有利に99%を上回って、殊に99.5%を上回って、化学的に出発ポリマー又は後架橋剤と反応しない溶剤は有利である。
この場合、後架橋l)及び乾燥m)のために、30〜250℃、殊に50〜200℃の温度範囲が有利であり、100〜180℃の範囲は極めて殊に有利である。表面後架橋溶液の塗布は、有利に適当な噴霧ミキサー中でポリマーに吹付けることにより行われる。吹付けに引き続き、ポリマー粉末を熱的に乾燥させ、その際、架橋反応は乾燥の前のみならず間にも生じ得る。反応ミキサー又は混合−及び乾燥装置、例えばレーディゲ−ミキサー(Loedige-Mischer)、ベペックス−ミキサー(BEPEX-Mischer)、ナウタ−ミキサー(NAUTA-Mischer)、シュッギ−ミキサー(SHUGGI-Mischer)又はプロセスオール(PROCESSALL)中での架橋剤の溶液の吹付けは有利である。その上、流動床型乾燥器を使用することもできる。
この乾燥は、ミキサー自体の中で、ジャケットの加熱によるか又は加熱空気の吹込によって行うことができる。同様に、後方接続された乾燥器、例えばシェルフ(Horden)乾燥器、回転管型オーブン、又は加熱可能なスクリュー装置は適当である。しかしながら、例えば共沸蒸留を乾燥法として利用することもできる。前記温度での反応ミキサー又は乾燥器中での有利な滞留時間は、60分未満、殊に有利に30分未満である。
出発ポリマーが、ポリマーアクリル酸又はポリアクリレート、殊に、多官能性エチレン性不飽和ラジカル架橋剤を使用するラジカル重合により得られたポリマーアクリル酸又はポリアクリレートであるような上記方法は有利である。
出発ポリマーの質量に対して、0.1〜20質量%、殊に0.5〜10質量%の割合でラジカル架橋剤、即ちエステルF及び希釈剤Gを含有する物質混合物を使用する方法は有利である。
ラジカル架橋剤を、出発ポリマーに対して0.01〜5.0質量%、有利に0.02〜3.0質量%、極めて殊に有利に0.03〜2.5質量%、殊に0.05〜1.0質量%、殊に0.1〜0.75質量%の計量供給量で使用する方法は有利である。
上記の1つの方法により製造されたポリマー、及び、衛生用品、包装材、及び不織布における該ポリマーの使用、並びに、架橋された、又は熱処理により架橋可能なポリマーを製造するための、殊にラッカー及び染料における、上記の1つの物質混合物の使用も、本発明の対象である。
この場合使用可能な親水性の高膨潤性ヒドロゲル(出発ポリマー)は、殊に(共)重合された親水性モノマーから成るポリマーM、1種又は数種の親水性モノマーMの適当なグラフト基体Lへのグラフト(コ)ポリマー、架橋されたセルロース−又はデンプンエーテル、又は水性液体中で膨潤可能な天然生成物、例えばグアール誘導体(Guarderivate)である。上記ヒドロゲルは当業者に公知であり、例えばUS−4286082、DE−C−2706135、US−4340706、DE−C−3713601、DE−C−2840010、DE−A−4344548、DE−A4020780、DE−A−4015085、DE−A−3917846、DE−A−3807289、DE−A−3533337、DE−A−3503458、DE−A−4244548、DE−A−4219607、DE−A−4021847、DE−A−3831261、DE−A−3511086、DE−A−3118172、DE−A−3028043、DE−A−4418881、EP−A−0801483、EP−A−0455985、EP−A−0467073、EP−A−0312952、EP−A−0205874、EP−A−0499774、DE−A2612846、DE−A−4020780、EP−A−0205674、US−5145906、EP−A−0530438、EP−A−0670073、US4057521、US−4062817、US−4525527、US−4295987、US−5011892、US−4076663又はUS−4931497に記載されている。例えばWO01/38402に記載されているような製造法からの高膨潤性ヒドロゲル、並びに、DE19854575に記載されているような無機−有機ハイブリッド高膨潤性ヒドロゲルも殊に適当である。上記特許明細書の内容、殊に該方法により製造されたヒドロゲルは、本発明の開示の明らかな構成要素である。
オレフィン性不飽和酸のグラフト共重合により得ることができる親水性ヒドロゲルのための適当なグラフト基体Lは、天然又は合成の源であることができる。この例は、デンプン、セルロース又はセルロース誘導体並びに他の多糖類及びオリゴ糖類、ポリアルキレンオキシド、特にポリエチレンオキシド及びポリプロピレンオキシド、並びに親水性ポリエステルである。
吸水性ポリマーは、水溶性ポリマーマトリックス上へのアクリル酸又はアクリレートのラジカルグラフト共重合により得ることができる。適当な水溶性ポリマーマトリックスは、例えば、これに限定されるものではないが、アルギネート、ポリビニルアルコール及び多糖類、例えばデンプンである。本発明の範囲内におけるグラフト共重合の場合、多官能性エチレン性不飽和ラジカル架橋剤が使用される。
吸水性ポリマーは、一方ではポリマーアクリル酸又はポリアクリレートからの、他方ではシリケート、アルミネート、又はアルモシリケートからの有機−無機ハイブリッドポリマーであってよい。殊に、多官能性エチレン性不飽和ラジカル架橋剤を使用し、その製造方法において水中で可溶性のシリケート又は可溶性のアルミネート又は双方の混合物を使用するラジカル重合により得られたポリマーアクリル酸又はポリアクリレートを使用することができる。
有利なヒドロゲルは、殊にポリアクリレート、ポリメタクリレート、並びに、US−4931497、US−5011892及びUS−5041496に記載されたグラフトコポリマーである。極めて殊に有利なヒドロゲルは、WO01/38402に記載された混練機ポリマー(Kneterpolymere)、及び、DE19854575に記載されたポリアクリレートベースのハイブリッド有機−無機ヒドロゲルである。
本発明により製造された、ヒドロゲルにおいてラジカル架橋剤として使用可能な物質は、例えば以下のように、単独で、又は他の架橋剤、例えば内部架橋剤又は表面架橋剤と組み合わせて使用することができる:
適当な付加的な架橋剤は、殊にメチレンビスアクリルアミドもしくはメチレンビスメタクリルアミド、ポリオールの不飽和モノカルボン酸又はポリカルボン酸のエステル、例えばジアクリレート又はトリアクリレート、例えばブタンジオール−又はエチレングリコールジアクリレートないし−メタクリレート、並びに、トリメチロールプロパントリアクリレート及びアリル化合物、例えばアリル(メタ)アクリレート、トリアリルシアヌレート、マレイン酸ジアリルエステル、ポリアリルエステル、テトラアリルオキシエタン、トリアリルアミン、テトラアリルエチレンジアミン、リン酸のアリルエステル、並びに例えばEP−A−0343427に記載されているビニルホスホン酸誘導体である。しかしながら本発明による方法において、ポリアリルエーテルを付加的な架橋剤として使用しながら、アクリル酸の酸性単独重合により製造されるヒドロゲルは殊に有利である。適当な架橋剤は、ペンタエリトリトールトリ−及び−テトラアリルエーテル、ポリエチレングリコールジアリルエーテル、モノエチレングリコール−ジアリルエーテル、グリセリンジ−及びトリアリルエーテル、ソルビトールをベースとするポリアリルエーテル、並びにそのエトキシル化された変形である。更に殊に有利な架橋剤は、ポリエチレングリコール−ジアクリレート、トリメチロールプロパントリアクリレートのエトキシル化誘導体、例えばSartomer SR 9035、並びにグリセリンジアクリレート及びグリセリントリアクリレートのエトキシル化誘導体である。当然のことながら、上記架橋剤の混合物を使用することもできる。
ラジカル架橋剤として本発明により製造されたエステルFを用いて製造されるヒドロゲルは極めて殊に有利である。
吸水性ポリマーは、有利にポリマーアクリル酸又はポリアクリレートである。この吸水性ポリマーの製造は、刊行物の記載から公知である方法により行われてよい。架橋性コモノマーを含有する(0.001〜10モル%)ポリマーは有利であるが、しかしながら多官能性エチレン性不飽和ラジカル架橋剤を使用したラジカル重合により得られたポリマーは極めて殊に有利である。
親水性の高膨潤性ヒドロゲルは自体公知の重合法により製造されてよい。水性溶液中でのいわゆるゲル重合の方法による重合は有利である。この場合、1種以上の親水性モノマー及び場合により適当なグラフト基体Lの、上記の希釈された溶液、有利に水溶液、殊に有利に15〜50質量%の水溶液を、ラジカル開始剤の存在で、有利に機械的な完全混合なしに、トロムスドルフ・ノリッシ効果(Makromol. Chem. 1, 169 (1947))を利用して重合させる。重合反応は0℃〜150℃、有利に10℃〜100℃の温度範囲内で、標準圧、及び高められたか又は低められた圧力下で実施されてよい。通常のように、この重合は、保護ガス雰囲気中で、有利に窒素下で実施することもできる。重合を生じさせるために、高エネルギー電磁放射線又は慣用の化学的重合開始剤K、例えば有機ペルオキシド、例えばベンゾイルペルオキシド、t−ブチルヒドロペルオキシド、メチルエチルケトンペルオキシド、クメンヒドロペルオキシド、アゾ化合物、例えばアゾジイソブチロニトリル、並びに無機ペルオキシ化合物、例えば(NH、K又はHを採用することができる。
これらを、場合により、還元剤、例えばアスコルビン酸、亜硫酸水素ナトリウムと、硫酸鉄(II)、又は還元成分として脂肪族及び芳香族スルフィン酸、例えばベンゼンスルフィン酸及びトルエンスルフィン酸又はこれらの酸の誘導体を含有するレドックス系、例えば、DE−C−1301566に記載されているようなスルフィン酸、アルデヒド及びアミノ化合物からのマンニッヒ付加物と組み合わせて使用することができる。50〜130℃、有利に70〜100℃の温度範囲内で、ポリマーゲルを数時間後加熱することにより、ポリマーの品質特性をさらに改善することができる。
得られたゲルは、使用されたモノマーに対して0〜100モル%、有利に25〜100モル%、殊に有利に50〜85モル%が中和され、その際、慣用の中和剤、有利にアルカリ金属水酸化物、アルカリ金属酸化物又は相応するアルカリ金属炭酸塩、しかしながら殊に有利に水酸化ナトリウム、炭酸ナトリウム及び炭酸水素ナトリウムが使用されてよい。
通常、中和は、中和剤を水溶液として又は有利に固体として混入することにより達成される。このために、ゲルは例えば肉挽き機を用いて機械的に粉砕され、中和剤が噴霧、散布又は注入され、その後慎重に混合される。それに加え、得られたゲル塊状物を更に複数回均質化してよい。その後、中和されたゲル塊状物は、残留湿度が有利に10質量%未満、殊に5質量%となるまでベルト型乾燥器又はローラー乾燥器を用いて乾燥される。
しかしながら、重合自体は、刊行物に記載された全ての別の方法により実施されてもよい。殊に、工程f)に上記されたように、アクリル酸の中和は重合の前に実施されてもよい。その後、重合は当業者に公知のベルト型反応器又は混練機中で連続的又はバッチ式で実施されてよい。ベルト型反応器中で重合を実施する際、電磁放射線を用いた、有利にUV−線を用いた開始、又はレドックス開始剤系を用いた開始は殊に有利である。電磁放射線と化学的レドックス開始剤系との双方の開始法を同時に組合せることも極めて殊に有利である。
n)この後、乾燥させたヒドロゲルを粉砕及び篩別し、その際、粉砕のために通常、ロールミル、ピン型ミル又は振動ミルを使用することができる。篩別されたヒドロゲルの有利な粒径は、45〜1000μm、有利に45〜850μm、殊に有利に200〜850μm、極めて殊に有利に300〜850μmの範囲内である。別の殊に有利な範囲は、150〜850μm、極めて殊に有利に150〜700μmである。有利に80質量%の粒子、殊に90質量%の粒子がこの範囲内に存在する。サイズ分布は、確立されたレーザー法を用いて測定されてよい。
本発明の対象は、更に、重合導入された形の少なくとも1種の親水性モノマーMを含有し、かつアルコキシル化されたグリセリンと(メタ)アクリル酸とのエステルFで架橋された、架橋されたヒドロゲルである。エステルは、本発明により、又は公知技術の公知の方法により、有利に本発明による方法により製造されてよい。
エステルFとして、上記のような化合物を使用することができる。
本発明によるヒドロゲルを形成するポリマーのCRC値[g/g]は、明細書に記載された方法により測定することができ、かつ有利に15より大きい、殊に16、18、20、22、24又はそれ以上、特に有利に25、殊に26、27、28、29、殊に有利に30、31、32、33、34、35、36、37又はそれ以上である。
本発明によるヒドロゲルを形成するポリマーのAUL−0.7psi値[g/g]は、明細書に記載された方法により測定することができ、有利に8より大きい、殊に9、10、11、12、13、14又はそれ以上、特に有利に15、殊に16、17、18、19又はそれ以上、殊に有利に20より大きい、殊に21、22、23、24、25、26、27、28又はそれ以上である。
本発明によるヒドロゲルを形成するポリマーのAUL−0.5psi値[g/g]は、明細書に記載された方法により測定することができ、有利に8より大きい、殊に9、10、11、12、13、14又はそれ以上、特に有利に15、殊に16、17、18、19又はそれ以上、殊に有利に20より大きい、殊に21、22、23、24、25、26、27、28又はそれ以上である。
本発明によるヒドロゲルを形成するポリマーの鹸化指数VSIは、明細書に記載された方法により測定することができ、有利に11未満、10.5又は10、殊に9.5、9又は8.5又はそれ未満、殊に有利に8未満、殊に7.5、7、6.5、6、5.5又はそれ未満、殊に有利に5未満、殊に4.5、4、3.5又はそれ未満である。
本発明によるヒドロゲルを形成するポリマーの残留架橋剤含分は、明細書に記載された方法により測定することができ、有利に10ppm未満、殊に9.5ppm、9ppm又は8.5ppm又はそれ未満、殊に有利に8ppm未満、殊に7.5ppm、7ppm、6.5ppm、6ppm、5.5ppm又はそれ未満、殊に有利に5ppm未満、殊に4.5ppm、4ppm、3.5ppm又はそれ未満である。
本発明によるヒドロゲルを形成するポリマーの使用及び用途
本発明は更に、
(P)上側の液体透過性のカバー、
(Q)下側の液体不透過性層、
(R)(P)及び(Q)の間に存在する、以下のものを有するコア、
本発明による、ヒドロゲルを形成するポリマー10〜100質量%、親水性繊維材料0〜90質量%、
有利に、本発明による、ヒドロゲルを形成するポリマー20〜100質量%、親水性繊維材料0〜80質量%、
さらに有利に、本発明による、ヒドロゲルを形成するポリマー30〜100質量%、親水性繊維材料0〜70質量%、
さらに有利に、本発明による、ヒドロゲルを形成するポリマー40〜100質量%、親水性繊維材料0〜60質量%、
さらに有利に、本発明による、ヒドロゲルを形成するポリマー50〜100質量%、親水性繊維材料0〜50質量%、
特に有利に、本発明による、ヒドロゲルを形成するポリマー60〜100質量%、親水性繊維材料0〜40質量%、
殊に有利に、本発明による、ヒドロゲルを形成するポリマー70〜100質量%、親水性繊維材料0〜30質量%、
極めて有利に、本発明による、ヒドロゲルを形成するポリマー80〜100質量%、親水性繊維材料0〜20質量%、
最も有利に、本発明による、ヒドロゲルを形成するポリマー90〜100質量%、親水性繊維材料0〜10質量%、
(S)場合によりコア(R)のすぐ上方及び下方に存在する薄織物層、及び
(T)場合により(P)と(R)との間に存在する収容層
を含む衛生用品における、前記のヒドロゲルを形成するポリマーの使用に関する。
これらのパーセント数値は、10〜100質量%の場合に、本発明による、ヒドロゲルを形成するポリマーについて11、12、13、14、15、16、17、18、19からそのそれぞれ100質量%までであり、かつその間の%数値(例えば12.2%)も可能であり、かつ相応して親水性繊維材料は0からそれぞれ89、88、87、86、85、83、82、81質量%までであり、かつその間のパーセント数値(例えば87.8%)も可能であると解釈される。コア中に他の材料が存在する場合、ポリマー及び繊維のパーセント値が相応して減少する。同様のことが有利な範囲について該当し、例えば極めて有利には、本発明による、ヒドロゲルを形成するポリマーは81、82、83、84、85、86、87、88、89質量%であり、繊維材料は相応して19、18、17、16、15、14、13、12、11質量%であってよい。本発明による、ヒドロゲルを形成するポリマーの有利な範囲は20、21、22、23、24、25、26、27、28、29から100質量%、本発明による、ヒドロゲルを形成するポリマーのさらに有利な範囲は30、31、32、33、34、35、36、37、38、39から100質量%、本発明による、ヒドロゲルを形成するポリマーのさらに有利な範囲は40、41、42、43、44、45、46、47、48、49から100質量%、本発明による、ヒドロゲルを形成するポリマーのさらに有利な範囲は50、51、52、53、54、55、56、57、58、59から100質量%、本発明による、ヒドロゲルを形成するポリマーの特に有利な範囲は60、61、62、63、64、65、66、67、68、69から100質量%、本発明による、ヒドロゲルを形成するポリマーの殊に有利な範囲は70、71、72、73、74、75、76、77、78、79から100質量%及び本発明による、ヒドロゲルを形成するポリマーの最も有利な範囲は90、91、92、93、94、95、96、97、98、99又は100質量%であってよい。
衛生用品とは、この場合に、大人用の失禁パッド及び失禁パンツ並びに幼児用おむつであると解釈される。
液体透過性のカバー(P)は皮膚と直接接触する層である。このための材料は、この場合、通常の合成繊維又は半合成繊維又はポリエステル、ポリオレフィン、レーヨンのフィルム又は天然繊維、例えば綿からなる。不織布材料の場合、この繊維は一般に結合剤、例えばポリアクリレートにより結合されている。有利な材料はポリエステル、レーヨン及びこれらのブレンド、ポリエチレン及びポリプロピレンである。液体透過性の層の例は、WO99/57355A1、EP1023883A2に記載されている。
液体不透過性の層(Q)は、一般にポリエチレン又はポリプロピレンからのシートからなる。
コア(R)は本発明によるヒドロゲルを形成するポリマーの他に親水性繊維材料を含有する。親水性とは、水性液体がこの繊維を介して迅速に分配されることであると解釈される。通常この繊維材料はセルロース、変性セルロース、レーヨン、ポリエステル、例えばポリエチレンテレフタレートである。特にセルロース繊維はパルプであるのが有利である。この繊維は一般に1〜200μm、有利に10〜100μmの直径を有する。さらに、この繊維は最短長さ1mmを有する。
おむつの構造及び形状は一般に公知であり、例えばWO95/26209第66頁、34行〜第69頁11行、DE19604601A1、EP−A−0316518及びEP−A−0202127に記載されている。一般に、おむつ及び他の衛生用品は、WO00/65084の特に第6〜15頁、WO00/65348の特に第4〜17頁、WO00/35502の特に第3〜9頁、DE19737434、WO98/8439にも記載されている。女性衛生用の衛生用品は、次の文献に記載されている。本発明による水性液体を吸収するヒドロゲルを形成するポリマーはこれらに使用することができる。文献箇所 女性衛生用品:WO95/24173:臭い制御用の吸収用品、WO91/11977:体液臭い制御、EP389023:吸収衛生用品、WO94/25077:臭い制御材料、WO97/01317:吸収衛生用品、WO99/18905、EP834297、US5,762,644、US5,895,381、WO98/57609、WO2000/065083、WO2000/069485、WO2000/069484、WO2000/069481、US6,123,693、EP1104666、WO2001/024755、WO2001/000115、EP105373、WO2001/041692、EP1074233。タンポンは次の文献に記載されている:WO98/48753、WO98/41179、WO97/09022、WO98/46182、WO98/46181、WO2001/043679、WO2001/043680、WO2000/061052、EP1108408、WO2001/033962、DE200020662、WO2001/001910、WO2001/001908、WO2001/001909、WO2001/001906、WO2001/001905、WO2001/24729。失禁用品は次の文献に記載されている:失禁用の使い捨て吸収用品:EP311344明細書第3〜9頁;使い捨て用吸収用品:EP850623;吸収用品:WO95/26207;吸収用品:EP894502;ドライレイド繊維構造体:EP850616;WO98/22063;WO97/49365;EP903134;EP887060;EP887059;EP887058;EP887057;EP887056;EP931530;WO99/25284;WO98/48753。女性衛生用品及び失禁用品は次の文献に記載されている:月経用品、WO93/22998明細書第26〜33頁;体液用の吸収用品:WO95/26209明細書第36〜69頁;使い捨て用吸収用品:WO98/20916明細書第13〜24頁;改良した複合吸収構造体:EP306262明細書第3〜14頁;排泄物吸収用品:WO99/45973。これらの文献は、本発明の開示に明確に取り入れられる。
本発明によるヒドロゲルを形成するポリマーは、水及び水性液体用の吸収材料として特に適しているため、有利に、農業園芸における水を保持する材料として、濾過助剤として及び特に衛生用品、例えばおむつ、タンポン又は生理用ナプキンの吸収性成分として使用できる。
本発明による高膨潤性ヒドロゲルの導入及び固定
前記した高膨潤性ヒドロゲルに対して付加的に、本発明による吸収組成物中に、高膨潤性ヒドロゲルを包含している又はこのヒドロゲルを固定している構成物が存在する。高膨潤性ヒドロゲルを収容することができかつさらに吸収層中に組み込むことができる各構成物が適している。この種の多数の組成物は既に公知であり、かつ文献中に詳細に記載されている。高膨潤性ヒドロゲルを組み込むための構成物は、例えばセルロース繊維混合物(エアレイドウェブ、ウェットレイドウェブ)からなるか又は合成のポリマー繊維(メルトブローンウェブ、スパンボンドウェブ)からなるか又はセルロース繊維と合成繊維とからなる混紡繊維製品からなる繊維マトリックスであることができる。可能な繊維材料は次の章で詳細に記載する。エアレイドウェブのプロセスは例えばWO98/28478に記載されている。さらに、連続気泡フォーム又は類似の形態も高膨潤性ヒドロゲルの組み込みのために用いることができる。
また、この種の構成物は2枚の別個の層を融合することにより得ることができ、その際に高膨潤性ヒドロゲルを含有する1つ又は有利に多数の室が形成される。この種の室のシステムはEP0615736A1第7頁26行以降に記載されている。
この場合に、この2つの層の少なくとも一方が水透過性であるべきである。この第2の層は水透過性であるか又は水不透過性であることができる。層材料として、薄織物又はその他の織物、独立気泡又は連続気泡フォーム、穴が開けられたフィルム、エラストマー又は繊維材料からなる織物を使用することができる。吸収性組成物が層の構成物からなる場合には、この層材料は多孔構造を有し、この孔の寸法は高膨潤性ヒドロゲル粒子を保持するために十分に小さくなければならない。吸収性組成物の構成物のための前記の例は、少なくとも2つの層からなる積層体を有し、この2つの層の間に高膨潤性ヒドロゲルが組み込まれてかつ固定されている。
一般に、この方法は、ヒドロゲル粒子をいわゆるドライ−集結度及びウェット−集結度の改善のために吸収体コアの内部に固定することである。ドライ−集結度及びウェット−集結度とは、高膨潤性ヒドロゲルが吸収性組成物中に、外部の力の作用に湿潤状態でも乾燥状態でも耐えられ、かつ高膨潤性ポリマーのずれ又は漏出が生じないように組み込まれている特性であると解釈される。力の作用とは、特に例えば衛生用品を身につけた場合に運動の経過において生じる機械的負荷又は特に衛生用品が失禁の場合にさらされる体重負荷であると解釈される。固定するために、当業者に公知の多くの方法がある。例えば熱処理、接着剤、熱可塑性プラスチック、結合材料の添加による固定は、WO95/26209第37頁36行〜第41頁14行に記載されている。前記の箇所は従って本発明の構成要素である。湿式強度を高める方法は、WO2000/36216A1にも記載されている。
さらに、吸収性組成物は支持材料、例えばポリマーフィルムから成り、このポリマーフィルム上に高膨潤性ヒドロゲル粒子が固定されていることができる。この固定は片面又は両面で行われていてもよい。この支持材料は水透過性であるか又は水不透過性であることができる。
吸収性組成物の上記の成分において、高膨潤性ヒドロゲルは、この構成物及び高膨潤性ヒドロゲルの全質量に対して、10〜100質量%、有利に20〜100質量%、さらに有利に30〜100質量%、さらに有利に40〜100質量%、さらに有利に50〜100質量%、特に有利に60〜100質量%、殊に有利に70〜100質量%、極端に有利に80〜100質量%及び最も有利に90〜100質量%の質量割合で組み込まれている。
吸収性組成物の繊維材料
本発明による吸収性組成物の構造は、繊維網目構造又はマトリックスとして使用される多様な繊維材料に基づいている。本発明の範囲内では、天然起源の繊維(変性又は非変性)も、合成繊維も含まれる。
本発明において使用可能な繊維の例についての詳細な概要は、特許明細書WO95/26209の第28頁9行〜第36頁8行に記載されている。前記の箇所は従って本発明の構成要素である。
セルロース繊維の例は、通常の吸収用品で使用されるもの、例えばフリースパルプ及び綿タイプのパルプが含まれる。この材料(針葉樹又は広葉樹)、製造方法、例えばケミカルパルプ、セミケミカルパルプ、ケミサーマルメカニカルパルプ(CTMP)及び漂白方法は特に制限はない。例えば天然のセルロース繊維、例えば綿、亜麻、絹、羊毛、ジュート、エチルセルロース及びセルロースアセテートが使用される。
適当な合成繊維はポリビニルクロリド、ポリビニルフルオリド、ポリテトラフルオロエチレン、ポリビニリデンクロリド、ポリアクリル化合物、例えばORLON(登録商標)、ポリビニルアセテート、ポリエチルビニルアセテート、可溶性又は不溶性のポリビニルアルコールから製造される。合成繊維の例には、熱可塑性ポリオレフィン繊維、例えばポリエチレン繊維(PULPEX(登録商標))、ポリプロピレン繊維及びポリエチレン−ポリプロピレン−二成分繊維、ポリエステル繊維、例えばポリエチレンテレフタレート繊維(DACRON(登録商標)又はKODEL(登録商標))、コポリエステル、ポリビニルアセテート、ポリエチルビニルアセテート、ポリビニルクロリド、ポリビニリデンクロリド、ポリアクリル、ポリアミド、コポリアミド、ポリスチレン及び前記のポリマーのコポリマー、並びにポリエチレンテレフタレート−ポリエチレン−イソフタレート−コポリマー、ポリエチルビニルアセテート/ポリプロピレン、ポリエチレン/ポリエステル、ポリプロピレン/ポリエステル、コポリエステル/ポリエステルからの二成分繊維、ポリアミド繊維(ナイロン)、ポリウレタン繊維、ポリスチレン繊維及びポリアクリロニトリル繊維が含まれる。ポリオレフィン繊維、ポリエステル繊維及びこれらの二成分繊維が有利である。さらに、液体吸収後での優れた形状安定性のために、シェル−コア−タイプ及びサイド−バイ−サイド−タイプのポリオレフィンからなる熱接着性二成分繊維が有利である。
前記の合成繊維は、熱可塑性繊維との組み合わせで使用するのが有利である。熱処理時に、この後者は部分的に存在する繊維材料のマトリックス内へ移行し、冷却時に結合箇所及び新たな補強構成要素が生じる。付加的に、熱可塑性繊維の添加は、熱処理が行われた後で存在する孔の寸法の拡大を意味する。このように、熱可塑性繊維の連続的な供給により、吸収層の形成の間に、熱可塑性繊維の割合をカバー方向に向かって連続的に向上させ、それにより同様に孔のサイズを増大させることが可能である。熱可塑性繊維は多数の熱可塑性ポリマーから形成することができ、これは190℃より低い、有利に75℃〜175℃の融点を有する。この温度の場合に、セルロース繊維の損傷は行われない。
前記の合成繊維の長さ及び直径は特に制限はないが、一般に、長さ1〜200mm及び直径0.1〜100デニール(9000メーター当たりのグラム)を示すそれぞれ任意の繊維を有利に使用できる。有利な熱可塑性繊維は、長さ3〜50mm、特に有利に長さ6〜12mmを有する。熱可塑性繊維の有利な直径は、1.4〜10デシテックス、特に有利に1.7〜3.3デシテックス(10000メーター当たりのグラム)である。この形状は特に制限はなく、例えば織物状、細い円柱状、カット−/スプリットヤーン状、ステープル繊維状及びエンドレス繊維状が含まれる。
本発明による吸収性組成物中の繊維は、親水性、疎水性又はこれらの2つの組み合わせであってよい。Robert F. Gould著の刊行物”Kontaktwinkel, Benetzbarkeit und Adhaesion”, American Chemical Society (1964)の定義によると、液体と繊維(もしくは繊維表面)との接触角が90゜より小さいか、又は液体が自発的に繊維の表面上に広がる傾向がある場合に、繊維は親水性とされる。2つの現象は通常は共存している。反対に、90゜より大きな接触角が形成されかつ広がりが観察されない場合に、繊維は疎水性とされる。
有利に親水性の繊維材料が使用される。特に、身体側は親水性が弱く、かつ高膨潤性ヒドロゲルの周辺領域に最も親水性が高い繊維材料を使用するのが有利である。製造プロセスにおいて、多様な親水性の層を使用することで勾配を作成し、この勾配は接する液体をヒドロゲル方向へ運び、そこで最終的に吸収が行われる。
本発明による吸収性組成物中で使用するために適当な親水性の繊維は、例えばセルロース繊維、変性されたセルロース繊維、レーヨン、ポリエステル繊維、例えばポリエチレンテレフタレート(DACRON(登録商標))及び親水性ナイロン(HYDROFIL(登録商標))である。適当な親水性の繊維は、疎水性の繊維の親水化によって、例えばポリオレフィン(例えばポリエチレン又はポリプロピレン、ポリアミド、ポリスチレン、ポリウレタン等)から得られた熱可塑性繊維を界面活性剤又はシリカで処理することにより得ることもできる。しかしながら、コストの理由から及び入手性の理由からセルロース繊維が有利である。
この高膨潤性ヒドロゲル粒子は、前記の繊維材料中に埋め込まれる。これには多くの方法があり、例えばヒドロゲル材料及び繊維と一緒に吸収層をマトリックスの形で構築するか、又は高膨潤性ヒドロゲルを繊維混合物からなる層内へ導入し、そこで接着剤又は層のラミネートによって最終的に固定することにより行われる。
液体を吸収する及び分配する繊維マトリックスは、この場合に、合成繊維又はセルロース繊維又は合成繊維とセルロース繊維の混合物からなることができ、この場合、混合比は合成繊維(100〜0):セルロース繊維(0〜100)の間で可変である。この使用したセルロース繊維は、衛生用品の形状安定性の向上のために付加的に化学的に補強することができる。
セルロース繊維の化学的補強は多様な方法によって達成することができる。一方で、適当な被覆/コーティングを繊維材料に添加することにより、繊維補強を達成することができる。この種の添加物には、例えばポリアミド−エピクロロヒドリン−被覆(Kymene(登録商標) 557 H, Hercoles, Inc. Wilmington Delaware, USA)、ポリアクリルアミド−被覆(米国特許第3,556,932号明細書に記載されてるか又はMarke Parez(登録商標)631 NC, American Cyanamid Co., Stamford, CT, USAの市販製品として)、メラミン−ホルムアルデヒド−被覆及びポリエチレンイミン−被覆が含まれる。
セルロース繊維の化学的補強は、化学反応によって行うこともできる。例えば、適当な架橋物質の添加が繊維内で行われる架橋を引き起こすことができる。適当な架橋物質はモノマーの架橋のために使用される典型的な物質である。しかしながらこれに限定されず、酸性官能基を有するC〜C−ジアルデヒド、C〜C−モノアルデヒド、特にC〜C−ポリカルボン酸も含まれる。この系列からの特別な物質は、例えばグルタルアルデヒド、グリオキサール、グリオキシル酸、ホルムアルデヒド及びクエン酸である。これらの物質は、個々のセルロース鎖内で又は個々のセルロース繊維内の隣接する2つのセルロース鎖間で少なくとも2つのヒドロキシル基と反応する。この架橋により、繊維の補強が行われ、この繊維はこの処理によりより大きな形状安定性を付与される。その親水性の特性の他に、この繊維は補強と弾性との一体的な組み合わせを有する。この物理的特性により、この毛管構造は液体との接触と圧縮力とが同時に起こる場合であっても維持され、予め崩壊することを妨げることができる。
化学的に架橋されたセルロース繊維は公知であり、WO91/11162、米国特許第3,224,926号明細書、米国特許第3,440,135号明細書、米国特許第3,932,209号明細書、米国特許第4,035,147号明細書、米国特許第4,822,453号明細書、米国特許第4,888,093号明細書、米国特許第4,898,642号明細書及び米国特許第5,137,537号明細書に記載されている。この化学的架橋は、繊維材料の補強を行い、これは最終的に全体の衛生用品の形状安定性の改善に反映される。この個々の層は、当業者に公知の方法、例えば熱処理による溶融、溶融接着剤、ラテックス結合剤等の添加により相互に結合させられる。
吸収性組成物の製造方法
この吸収性組成物は、高膨潤性ヒドロゲルを包含する構成物と、前記の構成物内に存在するか又はそれに固定されている高膨潤性ヒドロゲルとから構成される。
例えば支持材料から成り、かつ前記支持材料の片側又は両側に高膨潤性ヒドロゲルが固定されている吸収性組成物を得るための方法の例は公知であり、本発明に含まれるが、これに限定されない。
例えば合成繊維(a)とセルロース繊維(b)とからなる繊維材料混合物中に埋め込まれた高膨潤性ヒドロゲル(c)からなり、その際、この混合比は合成繊維(100〜0):セルロース繊維(0〜100)で変化してよい吸収性組成物を得る方法の例は、(1)(a)、(b)及び(c)を同時に混合する方法、(2)(a)と(b)とからなる混合物を(c)と混合する方法、(3)(b)と(c)とからなる混合物を(a)と混合する方法、(4)(a)と(c)とからなる混合物を(b)と混合する方法、(5)(b)と(c)を混合し、連続的に(a)に供給する方法、(6)(a)と(c)とを混合し、連続的に(b)に供給する方法、(7)(b)と(c)とを別々に(a)と混合する方法を包含する。これらの例の中で方法(1)と(5)とが有利である。この方法に使用される装置は特に制限はなく、通常の、当業者に公知の装置を使用できる。
相応して得られた吸収性組成物は、場合により熱処理にかけられ、その結果、湿潤条件下で優れた形状安定性を有する吸収層が得られる。熱処理のためのこの方法は特に制限はない。例えば熱風又は赤外線の供給による熱処理も含まれる。熱処理の際の温度は60℃〜230℃、有利に100℃〜200℃、特に有利に100℃〜180℃にある。
この熱処理の時間は、合成繊維の種類、その量及び衛生用品の製造速度に依存する。一般に、この熱処理の時間は0.5秒〜3分、有利に1秒〜1分である。
この吸収性組成物は、一般に例えば液体に対して透過性のカバー層と液体に対して不透過性の下層とを備えている。さらに、脚部折り返し及び接着テープを設置し、衛生用品が仕上げられる。透過性のカバー層及び不透過性の下層、並びに脚部の折り返し及び接着テープの材料及び種類は当業者に公知であり、特に制限はない。これについての例はWO95/26209に記載されている。
本発明の利点は、架橋剤として使用可能なエステルFを、その製造の後に精製しなくてもよいこと、殊に、(メタ)アクリル酸、有利にアクリル酸はヒドロゲルの製造のためのモノマーであるためにこれらを分離しなくてもよいことに基づいている。
実験の部
本明細書で使用するppm及び百分率の記載は、別に記載がない限り質量百分率及び質量ppmに関する。
本発明による方法を以下の実施例により詳説する。
実施例
高吸収体架橋剤としてのアクリレート−粗製エステルの製造
高吸収体架橋剤の製造を、実施例において、アルコキシル化されたグリセリンとアクリル酸とのエステル化により行い、その際、水の分離を共沸蒸留により行う。エステル化触媒は、実施例において硫酸である。実施例において、反応物を、ヒドロキノンモノメチルエーテル、トリフェニルホスフィット及び次亜リン酸から成る安定剤混合物と一緒に、共沸添加剤としてのメチルシクロヘキサン中に装入する。その後、共沸蒸留が開始されるまで反応混合物を約98℃に加熱する。共沸蒸留の間、反応混合物中の温度は上昇する。分離された水量を測定する。少なくとも理論的な水量が分離された時に蒸留を中断する。引き続き、共沸添加剤を真空蒸留で除去する。生成物を冷却し、架橋剤として高吸収体製造で使用する。
エステル化において分離された水がアクリル酸をも含有し、共沸添加剤の真空蒸留の間にアクリル酸も除去されるため、反応の変換率及び収率を厳密には測定しない。粗製エステルもなお遊離アクリル酸を含有し、これを触媒と一緒に滴定する(酸価)。
全ての量の記載は、別に記載がない限り質量部である。
エステルの製造
酸価をDIN EN3682により測定した。
実施例1 アルコキシル化されたグリセリンの製造
a)グリセリン−3EO
グリセリン77gを、水中で45%のKOH0.5gと共にオートクレーブ中に装入し、一緒に80℃で減圧(約20ミリバール)で脱水する。その後、145〜155℃でエチレンオキシド110gを添加し、この温度で高めた圧力下で完全に反応させる。圧力変化がもはや観察されなくなった時には反応が終了している。その後、なお30分間、約150℃で後撹拌する。不活性ガスで洗浄し、60℃に冷却した後、ピロリン酸ナトリウムを添加し、引き続き濾過することにより触媒を分離する。
b)グリセリン−5EO
グリセリン77gを、水中で45%のKOH0.5gと共にオートクレーブ中に装入し、一緒に80℃で減圧(約20ミリバール)で脱水する。その後、145〜155℃でエチレンオキシド184gを添加し、この温度で高めた圧力下で完全に反応させる。圧力変化がもはや観察されなくなった時には反応が終了している。その後、なお30分間、約150℃で後撹拌する。不活性ガスで洗浄し、60℃に冷却した後、ピロリン酸ナトリウムを添加し、引き続き濾過することにより触媒を分離する。
c)グリセリン−3PO−2EO(ブロックポリマー)
グリセリン77gを、水中で45%のKOH0.5gと共にオートクレーブ中に装入し、一緒に80℃で減圧(約20ミリバール)で脱水する。その後、120〜130℃でプロピレンオキシド146gを添加し、この温度で高めた圧力下で完全に反応させる。圧力変化がもはや観察されなくなった時には反応が終了している。その後、なお30分間、120℃で後撹拌する。引き続き、エチレンオキシド74gを145〜155℃でより長い時間にわたって高められた圧力で供給し、同様に完全に反応させる。不活性ガスで洗浄し、60℃に冷却した後、ピロリン酸ナトリウムを添加し、引き続き濾過することにより触媒を分離する。
d)グリセリン−2EO−3PO(ブロックポリマー)
グリセリン77gを、水中で45%のKOH0.5gと共にオートクレーブ中に装入し、一緒に80℃で減圧(約20ミリバール)で脱水する。その後、145〜155℃でエチレンオキシド74gを添加し、この温度で高めた圧力下で完全に反応させる。圧力変化がもはや観察されなくなった時には反応が終了している。その後、なお30分間、約150℃で後撹拌する。引き続き、プロピレンオキシド146gを120〜130℃でより長い時間にわたって高められた圧力で供給し、同様に完全に反応させる。不活性ガスで洗浄し、60℃に冷却した後、ピロリン酸ナトリウムを添加し、引き続き濾過することにより触媒を分離する。
e)グリセリン−2EO−3PO(混合ポリマー)
グリセリン77gを、水中で45%のKOH0.5gと共にオートクレーブ中に装入し、一緒に80℃で減圧(約20ミリバール)で脱水する。その後、120〜130℃でエチレンオキシド74g及びプロピレンオキシド146gを添加し、温度をゆっくりと約150℃に上昇させる。高めた圧力下で完全に反応させる。圧力変化がもはや観察されなくなった時には反応が終了している。その後、なお30分間、約150℃で後撹拌する。不活性ガスで洗浄し、60℃に冷却した後、ピロリン酸ナトリウムを添加し、引き続き濾過することにより触媒を分離する。
比較例a)
TMP−3EO
トリメチロールプロパン77gを、水中で45%のKOH0.5gと共にオートクレーブ中に装入し、一緒に80℃で減圧(約20ミリバール)で脱水する。その後、145〜155℃でエチレンオキシド76gを添加し、この温度で高めた圧力下で完全に反応させる。圧力変化がもはや観察されなくなった時には反応が終了している。その後、なお30分間、約150℃で後撹拌する。不活性ガスで洗浄し、60℃に冷却した後、ピロリン酸ナトリウムを添加し、引き続き濾過することにより触媒を分離する。
比較例b)
TMP−15EO
トリメチロールプロパン77gを、水中で45%のKOH0.5gと共にオートクレーブ中に装入し、一緒に80℃で減圧(約20ミリバール)で脱水する。その後、145〜155℃でエチレンオキシド379gを添加し、この温度で高めた圧力下で完全に反応させる。圧力変化がもはや観察されなくなった時には反応が終了している。その後、なお30分間、約150℃で後撹拌する。不活性ガスで洗浄し、60℃に冷却した後、ピロリン酸ナトリウムを添加し、引き続き濾過することにより触媒を分離する。
実施例2 アクリル酸エステルの製造
a)
約3回エトキシル化されたグリセリン(実施例1aによる)183部を、アクリル酸216部及び硫酸5部を用いて、メチルシクロヘキサン345部中でエステル化する。助剤として、ヒドロキノンモノメチルエーテル3部、トリフェニルホスフィット1部及び次亜リン酸1部を添加する。水44部を分離し、その後共沸添加剤を真空蒸留により除去する。生成物をK300−フィルターを介して精製する。酸価を測定する。アクリル酸96部の添加により、粘度を調節する。ほぼ無色の生成物(ヨウ素色価0〜1)の粘度は約330mPasである。
b)
約5回エトキシル化されたグリセリン(実施例1bによる)255部を、アクリル酸216部及び硫酸5部を用いて、メチルシクロヘキサン345部中でエステル化する。助剤として、ヒドロキノンモノメチルエーテル3部、トリフェニルホスフィット1部及び次亜リン酸1部を添加する。水44部を分離し、その後共沸添加剤を真空蒸留により除去する。生成物をK300−フィルターを介して精製する。酸価を測定する。アクリル酸96部の添加により、粘度を調節する。ほぼ無色の生成物(ヨウ素色価0〜1)の粘度は約320mPasである。
c−e)
約2回エトキシル化され3回プロポキシル化されたグリセリン(実施例1c−eによる)290部を、アクリル酸216部及び硫酸5部を用いて、メチルシクロヘキサン345部中でエステル化する。助剤として、ヒドロキノンモノメチルエーテル3部、トリフェニルホスフィット1部及び次亜リン酸1部を添加する。水44部を分離し、その後共沸添加剤を真空蒸留により除去する。生成物をK300−フィルターを介して精製する。酸価を測定する。アクリル酸96部の添加により、粘度を調節する。
ヒドロゲルの製造
表面架橋の品質を測定するために、乾燥したヒドロゲルを以下の試験方法を用いて試験することができる。
試験方法
a) 遠心分離保持容量(CRC Centrifuge Retention Capacity)
この方法の場合に、ヒドロゲルの自由膨潤能をティーバッグ中で測定する。CRCの測定のために、乾燥したヒドロゲル0.2000+/−0.0050g(粒度フラクション106〜850μm)を、60×85mmの大きさのティーバッグ中に量り入れ、引き続きシールする。このティーバックを30分間過剰量の0.9質量%の食塩溶液中に浸す(少なくとも0.83l食塩溶液/1gポリマー粉末)。引き続き、ティーバックを250gで3分間遠心分離する。液体量の測定は遠心分離したティーバックの秤量によって行う。
b) 加圧下での吸収能(AUL Absorbency Under Load)(0.7psi)
AUL0.7psiの測定のための測定セルは、内径60mm、高さ50mmのプレキシガラス−シリンダーであり、このシリンダーは下側に接着された、メッシュ幅36μmの特殊鋼−メッシュ底部を有している。この測定セルには、さらに、直径59mmのプラスチックプレートと、プラスチックプレートと一緒に測定セル内に置くことができる重りとが所属する。プラスチックプレートと重りとの重量は合計で1345gである。AUL 0.7psiの測定を実施するために、空のプレキシガラス−シリンダーとプラスチックプレートの重量を測定し、これをWとして記録する。ヒドロゲルを形成するポリマー(粒度分布150〜800μm)0.900+/−0.005gをプレキシガラス−シリンダー中に量り入れ、できる限り均一に特殊鋼−スクリーン底部上に分配する。引き続きプラスチックプレートを注意深くプレキシガラス−シリンダー中に入れ、全体のユニットを計量し;この重量をWとして記録する。そこで、プレキシガラス−シリンダー中のプラスチックプレート上に重りを置く。直径200mm、高さ30mmのペトリ皿の中央に、直径120mm、多孔度0のセラミックフィルタープレートを置き、0.9質量%の塩化ナトリウム溶液を、液体表面がフィルター表面に達するが、フィルタープレートの表面が濡れていないように満たす。引き続き、直径90mm、多孔度<20μm(S&S 589 Schwarzband, Schleicher & Schuell社)の円形の濾紙をセラミックプレート上に置く。ヒドロゲルを形成するポリマーを有するプレキシガラス−シリンダーをプラスチックプレートと重りと共に濾紙上に置き、60分間放置する。この時間の後に、全部のユニットを濾紙のペトリ皿から取り出し、引き続きこのプレキシガラス−シリンダーから重りを取り除く。膨潤したヒドロゲルを含むプレキシガラス−シリンダーをプラスチックプレートと一緒に秤量し、この重量をWとして記録する。
加圧下での吸収能(AUL)を次のように計算した:
AUL 0.7psi[g/g]=[W−W]/[W−W
AUL 0.5psiを同様に減圧で測定する。
c) 16時間後に抽出可能な割合の測定(Extract. 16h)を、EP−A1811636、第13頁、第1〜19行目に記載されているのと同様に実施した。
d)ヒドロゲル中の架橋剤の残留含分を測定するための方法
未反応の残留架橋剤の含分を測定するために、この残留架橋剤をまず二重抽出を用いて乾燥したヒドロゲルから抽出する。それに加えて、乾燥したヒドロゲル0.400g及び0.9質量%の食塩溶液40gをシール可能でかつ遠心分離可能なアンプル中に量り入れる。このために、ジクロロメタン8mlを添加し、アンプルをシールし、その後60分間振盪させる。その後すぐに、有機相と水相とが明確に分離するように、アンプルを1500rpmで5分間遠心分離する。
第二のアンプル中に、モノエチレングリコール50μlを量り入れ、これにジクロロメタン抽出物約5〜6mlを添加し、抽出物の重量を0.001gを厳密に計量する。その後、ジクロロメタンを50〜55℃で蒸発させ、残留物を冷却後にメタノール−水−混合物(それぞれ50体積部)2mlを用いて取り出す。これを10分間振盪させ、その後、PTFE0.45μm−フィルターを介して濾過する。
そのようにして得られた試料を、液相クロマトグラフィーを用いて分離し、質量分析を行う。使用した同じ架橋剤の一連の希釈に対して定量化を行う。
クロマトグラフィーカラムとして、Zorbax Eclipse XDB C-8(150×4.6mm−5μm)を使用し、前置カラムとしてZorbax Eclipse XDB C-8(12.5×4.6mm−5μm)を使用する。移動相として、メタノール/水−混合物(75/25)を使用する。
勾配経過は以下の通りである:
Figure 2005532431
流れは、圧力1600psiで1ml/分である。
注入体積は20μlである。
典型的な分析時間は各試料に関して14分である。
検出を、例えば800〜1300m/z(フルスキャン、ポジティブ)の範囲内での質量分析により行う。APCI(Atmospheric Pressure Chemical Ionisation、陽イオン化)を用いて装置を運転させる。最適化のために、キャピラリー温度を180℃に調節し、APCI蒸発器温度を450℃に調節し、ソース電流を5.0μAに調節し、ガス流を80ml/分に調節する。
個々の調節を架橋剤に対して個別に行わねばならない。これに加えて、架橋剤の適当なキャリブレーション溶液を用いて、後で評価に関連する特性ピークを測定する。通常、主なピークを選択する。
その後、残留架橋剤濃度の算出を、以下の通り行う:
CONCProbe=AProbe×CONCStd×VF/AStd
CONCProbeは、mg/kgでの、乾燥したヒドロゲル中の求めたい残留架橋剤濃度である。
CONCStdは、mg/kgでの、キャリブレーション溶液中の求めたい残留架橋剤濃度である。
Probeは、乾燥したヒドロゲルの抽出試料のピーク面積である。
Stdは、キャリブレーション溶液のピーク面積である。
VFは希釈係数である:
VF=MDCM×MSolv/(MProbe×MExtract
DCMは、抽出のためのジクロロメタンの重量である。
Probeは、乾燥したヒドロゲルの重量である。
Solvは、メタノール−水−混合物+モノエチレングリコールの重量である。
Extractは、ジクロロメタン−抽出物の重量である。
この場合、キャリブレーション(例えば0〜50ppmの範囲内の複数の点)を用いて、測定が直線的範囲で実施されることを保証する。
e)鹸化指数VSI
粉砕したゲルを2つの異なる方法で更に処理する:
後処理方法1:
粉砕したゲルを多孔板上で均質に薄層に分配し、その後、真空中で80℃で24時間乾燥させる。この乾燥は生成物を極めて大事に取扱いするため、最適な比較基準である。
その後、乾燥したヒドロゲルを粉砕し、300〜600マイクロメートルの篩分級物を分離する。
後処理方法2:
粉砕したゲルをまず閉鎖されたプラスチックバッグ中で90℃で24時間熱処理する。その後、多孔板上で均質に薄層に分配し、その後、真空中で80℃で24時間乾燥させる。この乾燥は、典型的な製造プラント中で生じ、かつ通常乾燥性能及び処理能力をそれと結び付く品質低下のために制限する乾燥条件をシミュレートする。
乾燥したヒドロゲルを粉砕し、300〜600マイクロメートルの篩分級物を分離する。
2つの後処理方法により得られたヒドロゲルを、ティーバッグ容量(CRC)並びに16時間後の抽出可能な含分を測定することにより、完全には反応していない残留架橋剤の含分に関して特性決定する。付加的に湿度を測定し、湿度が1質量%を上回る場合には湿度をこの特性を測定する際に算出に基づいて考慮する。典型的には、湿度は約5質量%である。
測定値から、ゲル中の架橋剤の鹸化指数(VSI)を以下のように算出して決定する:
VSI=0.5×(CRC−CRC)+0.5×(抽出可能−抽出可能
下付き文字は、ここでは、後処理方法1ないし2を表す。プラント乾燥によりティーバッグ容量が上昇するほど、及びこの場合抽出可能な分が上昇するほど鹸化指数が大きくなる。2つの寄与は同じ影響力を有する。
一般に、鹸化指数が出来る限り小さい架橋剤が有利に使用される。理想的な架橋剤は、0のVSIを有する。そのような架橋剤を使用することにより、品質損失なしに、プラント乾燥機の性能を技術的に達成可能な最大まで高めることが可能となる。その理由は、重合の間に生じる架橋 −及びそれに伴う最終生成物の特性− が、加水分解によって乾燥の際にもはや変化しないことである。
実施例3 実施例2aからのアクリル酸エステル及び別の内部架橋剤を使用した高吸収体の製造
実施例a
耐酸性プラスチック浴中で、アクリル酸305g及び37.3質量%のアクリル酸ナトリウム溶液3204gを蒸留水1465g中に溶解させる。これに、架橋剤としてのグリセリン−3EO−トリアクリレート12.2g、並びにV−50(2,2’−アゾビスアミジノプロパンジヒドロクロリド)0.61g及び開始剤としての過硫酸ナトリウム3.05gを添加する。この場合、開始剤を有利にバッチ水の一部に予め溶解させる。バッチを数分間良好に撹拌する。
その後、浴中のプラスチックフィルムで被覆された溶液を通じて約30分間窒素ガス気泡を発生させ、酸素を除去し、かつ架橋剤を均質に分配させる。最後に、水5g中に溶解された過酸化水素0.244g及び水5g中に溶解されたアスコルビン酸をこれに添加する。反応の開始時の開始温度は11〜13℃であるのが有利である。反応溶液の層厚は約6cmである。数分後に反応が開始し、断熱的に完全に反応させ、ゲルを後処理する前に30分を上回らずに断熱浴を更に静置する。
ゲルの後処理のために、ゲルブロックをまず打ち砕いて破片にし、その後、6mm−開口プレート(Lochscheibe)を有する肉挽き機により粉砕する。
粉砕したゲルを2つの異なる方法で更に処理する:
後処理方法1:
粉砕したゲルを多孔板上で均質に薄層に分配し、その後、真空中で80℃で24時間乾燥させる。この乾燥は生成物を極めて大事に取扱いするため、最適な比較基準である。その後、乾燥したヒドロゲルを粉砕し、300〜600マイクロメートルの篩分級物を分離する。
後処理方法2:
粉砕したゲルをまず閉鎖されたプラスチックバッグ中で90℃で24時間熱処理する。その後、多孔板上で均質に薄層に分配し、その後、真空中で80℃で24時間乾燥させる。この乾燥は、典型的な製造プラント中で生じ、かつ通常乾燥性能及び処理能力をそれと結び付く品質低下のために制限する乾燥条件をシミュレートする。
乾燥したヒドロゲルを粉砕し、300〜600マイクロメートルの篩分級物を分離する。
実施例aと同様に、以下の他の実施例を調製する。
Figure 2005532431
これらのヒドロゲルの達成された特性を第2表にまとめる:
Figure 2005532431
後架橋:
乾燥した標準のベースポリマー粉末に、 −使用したポリマーに対してそれぞれ− エチレングリコールジグリシジルエーテル(Nagase社、日本国)0.06質量%、水3.43質量%及びプロパンジオール−1,2 1.47質量%から成る溶液を撹拌下に均質に噴霧する。
その後、湿潤した粉末を、乾燥炉中で150℃で60分間熱処理する。その後、再度850マイクロメートルで篩別し、凝集物を除去する。この後架橋されたポリマーの特性を測定する。

Claims (28)

  1. 式Ia
    Figure 2005532431
    [式中、
    AOは各AOに関して互いに無関係にEO又はPOを表し、
    その際、EOはO−CH−CH−を表し、
    POは互いに無関係にO−CH−CH(CH)−又はO−CH(CH)−CH−を表し、
    +p+pは3、4又は5であり、
    R1、R2、R3は互いに無関係にH又はCHである]
    のエステルF。
  2. AOがEOを表す、請求項1記載のエステルF。
  3. 少なくとも1個のAOがPOを表し、少なくとももう1個のAOがEOを表す、請求項1記載のエステルF。
  4. 式Ib
    Figure 2005532431
    [式中、
    EOはO−CH−CH−を表し、
    POは互いに無関係にO−CH−CH(CH)−又はO−CH(CH)−CH−を表し、
    +m+m+n+n+nは3、4又は5であり、
    +m+mは1、2、3又は4であり、
    R1、R2、R3は互いに無関係にH又はCHである]
    のエステルF。
  5. 式Ic
    Figure 2005532431
    [式中、
    EOはO−CH−CH−を表し、
    POは互いに無関係にO−CH−CH(CH)−又はO−CH(CH)−CH−を表し、
    +m+m+n+n+nは3、4又は5であり、
    +m+mは1、2、3又は4であり、
    R1、R2、R3は互いに無関係にH又はCHである]
    のエステルF。
  6. +m+m+n+n+n、又はp+p+pが3又は5である、請求項1から5までのいずれか1項記載のエステルF。
  7. 全部で3個のPOが存在している、請求項1、又は3から6までのいずれか1項記載のエステルF。
  8. グリセリンの3個のアルコキシ鎖のそれぞれの中に少なくとも1個のPOが存在している、請求項1又は3から7までのいずれか1項記載のエステルF。
  9. 式IIa、IIb又はIIc
    Figure 2005532431
    [式中、
    AO、EO、PO、n、n、n、m、m、m、p、p、pは請求項1から8までのいずれか1項に記載された意味を有する]
    のアルコキシル化されたグリセリンと(メタ)アクリル酸との請求項1から8までのいずれか1項記載のエステルFの製造法において、以下の工程:
    a)アルコキシル化されたグリセリンと(メタ)アクリル酸とを、少なくとも1種のエステル化触媒C及び少なくとも1種の重合抑制剤D、並びに場合により、水と共沸混合物を形成する溶剤Eの存在で、エステルFの形成下に反応させる工程
    b)場合により、a)で生じた水の少なくとも一部を反応混合物から除去する工程、その際、b)を、a)の間及び/又は後に行うことができる
    f)場合により、反応混合物を中和させる工程
    h)溶剤Eを使用する場合、場合によりこの溶剤を蒸留により除去する工程、及び/又は
    i)反応条件下で不活性であるガスを用いてストリッピングする工程
    を含むことを特徴とする、請求項1から8までのいずれか1項記載のエステルFの製造法。
  10. −モル過剰の(メタ)アクリル酸対アルコキシル化されたグリセリンが少なくとも3.15:1であり、かつ
    −最後の工程の後に得られた反応混合物中に含有される、場合により中和された(メタ)アクリル酸が、本質的に反応混合物中に残留する
    請求項9記載の方法。
  11. (メタ)アクリル酸を、最後の工程の後に得られた、エステルFを含有する反応混合物から、75質量%以下分離する、請求項9又は10記載の方法。
  12. 最後の工程の後に得られた、エステルFを含有する反応混合物が、少なくとも25mgKOH/gのDIN EN3682による酸価を有する、請求項9から11までのいずれか1項記載の方法。
  13. 最後の工程の後に得られた、エステルFを含有する反応混合物が、少なくとも0.5質量%の(メタ)アクリル酸の含分を有する、請求項9から12までのいずれか1項記載の方法。
  14. 反応a)において、(メタ)アクリル酸対アルコキシル化されたグリセリンのモル比が少なくとも15:1である、請求項9から13までのいずれか1項記載の方法。
  15. 架橋されたヒドロゲルの製造法において、以下の工程
    k)請求項1から8までのいずれか1項記載のエステルFと、(メタ)アクリル酸と、場合により付加的なモノエチレン性不飽和化合物Nと、並びに場合により、少なくとももう1種の共重合可能な親水性モノマーMとを、少なくとも1種のラジカル開始剤K及び場合により少なくとも1種のグラフト基体Lの存在で重合させる工程
    l)場合により、k)から得られた反応混合物を後架橋させる工程
    m)k)又はl)から得られた反応混合物を乾燥させる工程、及び
    n)場合により、k)、l)又はm)から得られた反応混合物を粉砕及び/又は篩別する工程
    を含むことを特徴とする、架橋されたヒドロゲルの製造法。
  16. 架橋されたヒドロゲルの製造法において、請求項9から14までのいずれか1項記載の工程a)からi)、及び付加的に、以下の工程
    k)進行する場合には工程a)からi)の1つからの反応混合物と、場合により付加的なモノエチレン性不飽和化合物Nと、並びに場合により、少なくとももう1種の共重合可能な親水性モノマーMとを、少なくとも1種のラジカル開始剤K及び場合により少なくとも1種のグラフト基体Lの存在で重合させる工程
    l)場合により、k)から得られた反応混合物を後架橋させる工程
    m)k)又はl)から得られた反応混合物を乾燥させる工程、及び
    n)場合により、k)、l)又はm)から得られた反応混合物を粉砕及び/又は篩別する工程
    を含むことを特徴とする、架橋されたヒドロゲルの製造法。
  17. 請求項15又は16記載の方法により得ることができるポリマー。
  18. 架橋されたヒドロゲルにおいて、請求項1から8までのいずれか1項記載のエステルFで架橋され、重合導入された形の少なくとも1種の親水性モノマーMを含有することを特徴とする、架橋されたヒドロゲル。
  19. 架橋されたヒドロゲルにおいて、請求項9から13までのいずれか1項記載の方法により得ることができるような、エステルFを含有する反応混合物で架橋され、重合導入された形の少なくとも1種の親水性モノマーMを含有することを特徴とする、架橋されたヒドロゲル。
  20. 衛生用品、包装材料における、及び不織布における、請求項17から19までのいずれか1項記載のポリマーの使用。
  21. 物質混合物において、以下:
    −請求項1から8までのいずれか1項記載の少なくとも1種のエステルF及び(メタ)アクリル酸 0.1〜40質量%、
    −少なくとも1種の親水性モノマーM 0.5〜99.9質量%
    −少なくとも1種のエステル化触媒C 0〜10質量%
    −少なくとも1種の重合抑制剤D 0〜5質量%、及び
    −溶剤E 0〜10質量%
    を含有するが、但し、合計は常に100質量%であることを特徴とする物質混合物。
  22. 付加的に、
    −希釈剤G 100質量%まで
    を含有する、請求項21記載の物質混合物。
  23. 架橋されたヒドロゲルにおいて、請求項21又は22記載の物質混合物と、付加的に以下の工程
    l)場合により、得られた反応混合物を後架橋させる工程
    m)直接得られたか又はl)から得られた反応混合物を乾燥させる工程、及び
    n)場合により、直接得られたか又はl)又はm)から得られた反応混合物を粉砕及び/又は篩別する工程
    とから得ることができることを特徴とする、架橋されたヒドロゲル。
  24. −吸水性ヒドロゲルのラジカル架橋剤としての
    −ポリマー分散液の製造のための出発物質としての
    −ポリアクリレートの製造のための出発物質としての
    −ラッカー原料としての、又は
    −セメント添加物としての、
    請求項9から13までのいずれか1項の記載により得ることができる反応混合物、又は、請求項21又は22記載の物質混合物の使用。
  25. 10未満、有利に8未満、殊に5未満の鹸化指数を有する、架橋されたヒドロゲル。
  26. 11未満、有利に10未満、殊に有利に8未満、殊に5未満の鹸化指数を有する、請求項17、18、19又は23のいずれか1項記載の架橋されたヒドロゲル。
  27. 10ppm未満、有利に8ppm未満、殊に有利に5ppm未満の残留架橋剤含分を有する、請求項17、18、19、23、25又は26のいずれか1項記載の架橋されたヒドロゲル。
  28. 水性液体を吸収するヒドロゲルを形成するポリマーを製造するための、請求項1から8までのいずれか1項記載のエステルFの使用。
JP2004511367A 2002-06-11 2003-06-10 ポリアルコキシル化されたグリセリンの(メタ)アクリルエステル Expired - Lifetime JP4373328B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10225943A DE10225943A1 (de) 2002-06-11 2002-06-11 Verfahren zur Herstellung von Estern von Polyalkoholen
DE10319462 2003-04-29
PCT/EP2003/006028 WO2003104301A1 (de) 2002-06-11 2003-06-10 (meth)acrylester von polyalkoxyliertem glycerin

Publications (2)

Publication Number Publication Date
JP2005532431A true JP2005532431A (ja) 2005-10-27
JP4373328B2 JP4373328B2 (ja) 2009-11-25

Family

ID=29737593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004511367A Expired - Lifetime JP4373328B2 (ja) 2002-06-11 2003-06-10 ポリアルコキシル化されたグリセリンの(メタ)アクリルエステル

Country Status (14)

Country Link
US (1) US20050165208A1 (ja)
EP (1) EP1517942B1 (ja)
JP (1) JP4373328B2 (ja)
CN (1) CN100349958C (ja)
AT (1) ATE325150T1 (ja)
AU (1) AU2003274698A1 (ja)
BR (1) BR0311498A (ja)
CA (1) CA2487030A1 (ja)
DE (1) DE50303213D1 (ja)
ES (1) ES2263988T3 (ja)
MX (1) MXPA04012180A (ja)
PL (1) PL374404A1 (ja)
RU (1) RU2005100765A (ja)
WO (1) WO2003104301A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527378A (ja) * 2003-07-10 2007-09-27 ビーエーエスエフ アクチェンゲゼルシャフト モノアルコキシル化ポリオールの(メタ)アクリル酸エステルおよびその製造
JP2017527669A (ja) * 2014-09-09 2017-09-21 ユニバーシティ・オブ・ワシントン 官能性双性イオン性ポリマーおよび混合電荷ポリマー、関連するヒドロゲルならびにこれらの使用方法

Families Citing this family (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE523180T1 (de) 2003-02-12 2011-09-15 Procter & Gamble Saugfähiger kern für einen saugfähigen artikel
DE60323810D1 (de) 2003-02-12 2008-11-13 Procter & Gamble Bequem Windel
EP1654012B1 (en) 2003-08-06 2013-04-24 Basf Se Water-swellable material comprising coated water-swellable polymer particles
US7270881B2 (en) * 2003-08-06 2007-09-18 The Procter & Gamble Company Coated water-swellable material
JP2007501079A (ja) * 2003-08-06 2007-01-25 ザ プロクター アンド ギャンブル カンパニー コーティングされた水膨潤性ポリマー類を含む水膨潤性材料を製造する方法
EP1518567B1 (en) * 2003-09-25 2017-06-28 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles
DE102004051242A1 (de) 2004-10-20 2006-05-04 Basf Ag Feinteilige wasserabsorbierende Polymerpartikel mit hoher Flüssigkeitstransport- und Absorptionsleistung
DE102004055765A1 (de) * 2004-11-18 2006-05-24 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
WO2006083584A2 (en) 2005-02-04 2006-08-10 The Procter & Gamble Company Absorbent structure with improved water-absorbing material
DE102005014291A1 (de) 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
US20060264861A1 (en) 2005-05-20 2006-11-23 Lavon Gary D Disposable absorbent article having breathable side flaps
WO2007012581A1 (de) * 2005-07-27 2007-02-01 Basf Se Geruchsverhindernde wasserabsorbierende zusammensetzungen
DE102005042604A1 (de) 2005-09-07 2007-03-08 Basf Ag Neutralisationsverfahren
CN101351232A (zh) * 2005-12-28 2009-01-21 巴斯夫欧洲公司 用于生产吸水性材料的方法
DE102006008998A1 (de) * 2006-02-23 2007-08-30 Röhm Gmbh Verfahren zur Herstellung von Alkoxypolyoxyalkylen(meth)acrylaten
JP2009545720A (ja) * 2006-08-03 2009-12-24 ダウ グローバル テクノロジーズ インコーポレイティド 新規充填組成物およびその製法
DE102008000237A1 (de) 2007-02-06 2008-08-07 Basf Se Phenol-Imidazolderivate zur Stabilisierung von polymerisationsfähigen Verbindungen
WO2008155722A2 (en) 2007-06-18 2008-12-24 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
AU2008264838A1 (en) 2007-06-18 2008-12-24 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
AR069725A1 (es) * 2007-06-27 2010-02-17 Shell Int Research Proceso para preparar una composicion de alcoxilato y una composicion alcoxilada
MX2010011806A (es) 2008-04-29 2010-11-30 Procter & Gamble Proceso para fabricar un nucleo absorbente con una cubierta de nucleo resistente al estiramiento.
EP2163266A1 (en) 2008-09-12 2010-03-17 The Procter & Gamble Absorbent article comprising water-absorbing material
CN102655950B (zh) 2009-02-18 2015-05-13 巴斯夫欧洲公司 制备吸水聚合物颗粒的方法
US20100247916A1 (en) 2009-03-24 2010-09-30 Basf Se Process for Producing Surface Postcrosslinked Water-Absorbing Polymer Particles
CN102414226B (zh) 2009-04-30 2013-07-03 巴斯夫欧洲公司 去除金属杂质的方法
CN102438665B (zh) 2009-05-20 2016-04-27 巴斯夫欧洲公司 吸水性储存层
US8410221B2 (en) 2009-06-26 2013-04-02 Basf Se Process for producing water-absorbing polymer particles with low caking tendency and high absorption under pressure
EP2277558B1 (en) 2009-07-20 2014-07-02 The Procter and Gamble Company Superabsorbent polymer composite particles and processes therefore
EP2277557B1 (en) 2009-07-20 2014-06-25 The Procter and Gamble Company Coated superabsorbent polymer particles and processes therefore
ES2351756B1 (es) * 2009-07-28 2011-10-05 Universidad Del Pais Vasco Nanopartículas lipídicas para terapia génica.
ES2352634B1 (es) * 2009-08-10 2011-12-30 CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC) (Titular al 60%) Hidrogeles basados en poloxameros con estructura de estrella para liberacion controlada de sustancias activas
EP2470222B1 (de) 2009-08-25 2015-10-14 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter blutabsorption durch polymerisation von tropfen einer monomerlösung
JP2013503214A (ja) 2009-08-25 2013-01-31 ビーエーエスエフ ソシエタス・ヨーロピア 軟質の粒状超吸収体及びその使用
JP5615364B2 (ja) 2009-08-26 2014-10-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 臭気を抑制する組成物
EP2470226A1 (en) 2009-08-28 2012-07-04 Basf Se Process for producing triclosan-coated superabsorbents
US8481159B2 (en) 2009-09-04 2013-07-09 Basf Se Water-absorbent porous polymer particles having specific sphericity and high bulk density
BR112012005901A2 (pt) 2009-09-16 2019-09-24 Basf Se superabsorvente, processo para produzir um superabsorvente, artigo para absorver fluidos, e, processo para produzir artigos para absorver fluidos
JP2013505313A (ja) 2009-09-17 2013-02-14 ビーエーエスエフ ソシエタス・ヨーロピア 色安定性の超吸収剤
EP2478050B1 (de) 2009-09-18 2018-01-24 Basf Se Mit superabsorber ausgerüstete offenzellige schäume
WO2011042362A1 (de) 2009-10-09 2011-04-14 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
WO2011042429A1 (de) 2009-10-09 2011-04-14 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
CN102573931B (zh) 2009-10-09 2016-01-27 巴斯夫欧洲公司 用热蒸汽冷凝液制备吸水聚合物颗粒
EP2486066B1 (de) 2009-10-09 2013-08-28 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
JP2013510245A (ja) 2009-11-06 2013-03-21 ビーエーエスエフ ソシエタス・ヨーロピア 改善された高吸収体を含むテキスタイル
US9574019B2 (en) 2009-11-23 2017-02-21 Basf Se Methods for producing water-absorbent foamed polymer particles
CN102770469B (zh) 2009-11-23 2015-04-15 巴斯夫欧洲公司 制备具有改善的色彩稳定性的吸水性聚合物颗粒的方法
EP2504038A1 (de) 2009-11-23 2012-10-03 Basf Se Verfahren zur herstellung wasserabsorbierender polymerer schäume
EP2329803B1 (en) 2009-12-02 2019-06-19 The Procter & Gamble Company Apparatus and method for transferring particulate material
CN102791298B (zh) 2010-01-27 2015-02-18 巴斯夫欧洲公司 抑制气味的吸水复合物
EP2539382B1 (de) 2010-02-24 2014-10-22 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP2013520539A (ja) 2010-02-24 2013-06-06 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子の製造法
US8703876B2 (en) 2010-03-15 2014-04-22 Basf Se Process for producing water absorbing polymer particles with improved color stability
BR112012023050A2 (pt) 2010-03-15 2016-05-17 Basf Se processo para produzir partículas de polímero que absorvem água, partículas de polímero que absorvem água, e, artigo que absorve fluido
CN102906124B (zh) 2010-03-24 2014-12-17 巴斯夫欧洲公司 从吸水性聚合物颗粒中移除残余单体的方法
WO2011117263A1 (en) 2010-03-24 2011-09-29 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
EP2549968B1 (en) 2010-03-24 2022-01-05 Basf Se Ultrathin fluid-absorbent cores
EP2550316B2 (de) 2010-03-25 2018-11-14 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2011131526A1 (de) 2010-04-19 2011-10-27 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP5766283B2 (ja) 2010-06-14 2015-08-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 改善された色安定性を有する吸水性ポリマー粒子
US9962459B2 (en) 2010-07-02 2018-05-08 Basf Se Ultrathin fluid-absorbent cores
US9089624B2 (en) 2010-08-23 2015-07-28 Basf Se Ultrathin fluid-absorbent cores comprising adhesive and having very low dry SAP loss
WO2012045705A1 (de) 2010-10-06 2012-04-12 Basf Se Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2438983A1 (en) * 2010-10-08 2012-04-11 SAES GETTERS S.p.A. Dispensable polymeric precursor composition for transparent composite sorber materials
WO2012054661A1 (en) 2010-10-21 2012-04-26 The Procter & Gamble Company Absorbent structures comprising post-crosslinked water-absorbent particles
US20130207037A1 (en) 2010-10-21 2013-08-15 Basf Se Water-Absorbing Polymeric Particles and Method for the Production Thereof
EP2447286A1 (en) 2010-11-01 2012-05-02 The Procter & Gamble Company Process using supercritical medium to produce polymers
EP2476714A1 (de) 2011-01-13 2012-07-18 Basf Se Polyurethanintegralschaumstoffe mit verbesserter Oberflächenhärte
CN103347548B (zh) 2011-02-07 2017-09-19 巴斯夫欧洲公司 具有高溶胀速度的吸水性聚合物颗粒的制备方法
WO2012107344A1 (de) 2011-02-07 2012-08-16 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
DE102011003877A1 (de) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Zusammensetzung zum Löschen und/oder Hemmen von Fluor- und/oder Phosphor-haltigen Bränden
DE102011003882A1 (de) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Zusammensetzung zum Löschen und/oder Hemmen von Fluor- und/oder Phosphor-haltigen Bränden
CN103415553B (zh) 2011-03-08 2015-07-08 巴斯夫欧洲公司 用于制备具有改进渗透性的吸水性聚合物颗粒的方法
EP2705075B1 (de) 2011-05-06 2016-12-21 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US9265855B2 (en) 2011-05-18 2016-02-23 The Procter & Gamble Company Feminine hygiene absorbent article comprising a superabsorbent foam of high swell rate
US20120296297A1 (en) 2011-05-18 2012-11-22 Achille Di Cintio Feminine hygiene absorbent articles comprising water-absorbing polymeric foams
CN103547616B (zh) 2011-05-18 2016-03-16 巴斯夫欧洲公司 高溶胀率的超吸水性泡沫的制备
WO2012156386A1 (de) 2011-05-18 2012-11-22 Basf Se Verwendung wasserabsorbierender polymerpartikel zur entwässerung von fäkalien
US9149556B2 (en) 2011-05-18 2015-10-06 The Procter & Gamble Company Feminine hygiene absorbent articles comprising water-absorbing composites
US8987545B2 (en) 2011-05-18 2015-03-24 The Procter & Gamble Company Feminine hygiene absorbent articles comprising water-absorbing polymer particles
CN103561784B (zh) 2011-05-18 2016-12-07 巴斯夫欧洲公司 吸水复合材料
EP2709682B1 (de) 2011-05-18 2016-12-14 Basf Se Verwendung wasserabsorbierender polymerpartikel zur absorption von blut und/oder menstruationsflüssigkeit
JP6253575B2 (ja) 2011-05-26 2017-12-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造法
WO2012159949A1 (de) 2011-05-26 2012-11-29 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
DE112012002289A5 (de) 2011-06-01 2014-03-13 Basf Se Geruchsinhibierende Mischungen für Inkontinenzartikel
US8999884B2 (en) 2011-06-01 2015-04-07 The Procter & Gamble Company Absorbent structures with coated water-absorbing material
US8664151B2 (en) 2011-06-01 2014-03-04 The Procter & Gamble Company Articles comprising reinforced polyurethane coating agent
JP6053762B2 (ja) 2011-06-03 2016-12-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の連続的な製造法
CN103562240B (zh) 2011-06-03 2017-02-15 巴斯夫欧洲公司 连续制备吸水性聚合物颗粒的方法
ES2751141T3 (es) 2011-06-10 2020-03-30 Procter & Gamble Estructura absorbente para artículos absorbentes
CA2838951C (en) 2011-06-10 2019-07-16 The Procter & Gamble Company An absorbent core for disposable diapers comprising longitudinal channels
EP2532329B1 (en) 2011-06-10 2018-09-19 The Procter and Gamble Company Method and apparatus for making absorbent structures with absorbent material
PL3338751T3 (pl) 2011-06-10 2020-04-30 The Procter & Gamble Company Struktura chłonna do wyrobów chłonnych
PL2532328T3 (pl) 2011-06-10 2014-07-31 Procter & Gamble Sposób i urządzenie do wytworzenia struktur chłonnych z materiałem chłonnym
EP2532334B1 (en) 2011-06-10 2016-10-12 The Procter and Gamble Company Absorbent core for disposable absorbent article
SG195105A1 (en) 2011-06-10 2013-12-30 Procter & Gamble Absorbent core for disposable absorbent articles
PL2532332T5 (pl) 2011-06-10 2018-07-31 The Procter And Gamble Company Pieluszka jednorazowego użytku o zredukowanym połączeniu pomiędzy wkładem chłonnym a warstwą spodnią
US9757491B2 (en) 2011-06-30 2017-09-12 The Procter & Gamble Company Absorbent structure comprising an oil-scavenger component
WO2013007819A1 (de) 2011-07-14 2013-01-17 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
WO2013045163A1 (en) 2011-08-12 2013-04-04 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
WO2013056978A2 (en) 2011-10-18 2013-04-25 Basf Se Fluid-absorbent article
EP2586410A1 (en) 2011-10-24 2013-05-01 Bostik SA Novel process for preparing an absorbent article
EP2586409A1 (en) 2011-10-24 2013-05-01 Bostik SA New absorbent article and process for making it
EP2586412A1 (en) 2011-10-24 2013-05-01 Bostik SA New absorbent article and process for making it
DE102011117127A1 (de) 2011-10-28 2013-05-02 Basf Se Flüssigkeiten aufnehmende und Flüssigkeiten speichernde Polymere, insbesondere Pfropfpolymere, Verfahren zu deren Herstellung sowie deren Verwendung
US9126186B2 (en) 2011-11-18 2015-09-08 Basf Se Process for producing thermally surface postcrosslinked water-absorbing polymer particles
WO2013076031A1 (de) 2011-11-22 2013-05-30 Basf Se Superabsorber mit pyrogenem aluminiumoxid
CN104093753A (zh) 2012-02-06 2014-10-08 巴斯夫欧洲公司 制备吸水聚合物颗粒的方法
EP2814854B1 (de) 2012-02-15 2019-01-23 Basf Se Wasserabsorbierende polymerpartikel mit hoher quellgeschwindigkeit und hoher permeabilität
WO2013144027A1 (de) 2012-03-30 2013-10-03 Basf Se Farbstabiler superabsorber
WO2013144026A1 (de) 2012-03-30 2013-10-03 Basf Se Farbstabiler superabsorber
CN104204039A (zh) 2012-03-30 2014-12-10 巴斯夫欧洲公司 在具有反式螺杆螺纹的筒式热交换器中进行热表面后交联的方法
CN102643197B (zh) * 2012-03-31 2014-07-30 江苏利田科技股份有限公司 双三羟甲基丙烷四丙烯酸酯或季戊四醇四丙烯酸酯的清洁生产方法
JP2015514841A (ja) 2012-04-17 2015-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 表面後架橋された吸水性ポリマー粒子の製造法
JP2015514842A (ja) 2012-04-17 2015-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 表面後架橋された吸水性ポリマー粒子の製造法
EP2671554B1 (en) 2012-06-08 2016-04-27 The Procter & Gamble Company Absorbent core for use in absorbent articles
EP2859039A2 (en) 2012-06-08 2015-04-15 Basf Se Odour-control superabsorbent
CN104364269B (zh) 2012-06-13 2016-10-12 巴斯夫欧洲公司 在装有至少两个轴向平行旋转轴的聚合反应器中制备吸水性聚合物颗粒的方法
EP2861633B1 (de) 2012-06-19 2016-08-10 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2679210B1 (en) 2012-06-28 2015-01-28 The Procter & Gamble Company Absorbent articles with improved core
EP2679208B1 (en) 2012-06-28 2015-01-28 The Procter & Gamble Company Absorbent core for use in absorbent articles
EP2679209B1 (en) 2012-06-28 2015-03-04 The Procter & Gamble Company Absorbent articles with improved core
WO2014005860A1 (de) 2012-07-03 2014-01-09 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbessertem eigenschaftsprofil
WO2014019813A1 (de) 2012-07-30 2014-02-06 Basf Se Geruchsinhibierende mischungen für inkontinenzartikel
JP6344744B2 (ja) 2012-08-27 2018-06-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造方法
CN104718228B (zh) 2012-09-19 2017-06-20 巴斯夫欧洲公司 制备吸水性聚合物颗粒的方法
DE102013018940A1 (de) 2012-11-13 2014-05-15 The Procter & Gamble Company Absorptionsartikel mit Kanälen und Signalen
EP2730596A1 (de) 2012-11-13 2014-05-14 Basf Se Polyurethanweichschaumstoffe enthaltend Pflanzensamen
EP3381956B1 (en) 2012-11-21 2021-05-05 Basf Se Surface-postcrosslinked water-absorbent polymer particles
WO2014079785A2 (de) 2012-11-26 2014-05-30 Basf Se Verfahren zur herstellung von superabsorbern auf basis nachwachsender rohstoffe
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
ES2743718T3 (es) 2012-12-10 2020-02-20 Procter & Gamble Artículo absorbente con sistema de sistema de captación-distribución perfilado
PL2740452T3 (pl) 2012-12-10 2022-01-31 The Procter & Gamble Company Wyrób chłonny o wysokiej zawartości materiału chłonnego
EP2740449B1 (en) 2012-12-10 2019-01-23 The Procter & Gamble Company Absorbent article with high absorbent material content
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
EP2740450A1 (en) 2012-12-10 2014-06-11 The Procter & Gamble Company Absorbent core with high superabsorbent material content
DE202012013571U1 (de) 2012-12-10 2017-12-06 The Procter & Gamble Company Absorptionspartikel mit hohem Absorptionsmaterialgehalt
DE202012013572U1 (de) 2012-12-10 2017-12-05 The Procter & Gamble Company Absorptionsartikel mit hohem Absorptionsmaterialgehalt
EP2951212B1 (de) 2013-01-29 2017-03-15 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher quellgeschwindigkeit und hoher zentrifugenretentionskapazität bei gleichzeitig hoher permeabilität des gequollenen gelbetts
WO2014118025A1 (de) 2013-01-30 2014-08-07 Basf Se Verfahren zur entfernung von restmonomeren aus wasserabsorbierenden polymerpartikeln
US9820894B2 (en) 2013-03-22 2017-11-21 The Procter & Gamble Company Disposable absorbent articles
BR112015025638A2 (pt) 2013-04-08 2017-07-18 Procter & Gamble artigos absorventes com braçadeiras de perna de barreira
ES2655690T3 (es) 2013-06-14 2018-02-21 The Procter & Gamble Company Artículo absorbente y canales de formación de núcleo absorbente cuando están húmedos
US20160206772A1 (en) 2013-08-26 2016-07-21 Basf Se Fluid-Absorbent Article
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
RU2649546C2 (ru) 2013-08-27 2018-04-03 Дзе Проктер Энд Гэмбл Компани Абсорбирующие изделия, содержащие каналы
WO2015036273A1 (de) 2013-09-12 2015-03-19 Basf Se Verfahren zur herstellung von acrylsäure
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
JP6169800B2 (ja) 2013-09-16 2017-07-26 ザ プロクター アンド ギャンブル カンパニー チャネルと標識を持つ吸収性物品
EP2851048B1 (en) 2013-09-19 2018-09-05 The Procter and Gamble Company Absorbent cores having material free areas
EP3473655B1 (de) 2013-10-30 2021-06-09 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch suspensionspolymerisation
CN105980799B (zh) 2013-11-22 2019-09-03 巴斯夫欧洲公司 制备吸水性聚合物颗粒的方法
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
EP2905001B1 (en) 2014-02-11 2017-01-04 The Procter and Gamble Company Method and apparatus for making an absorbent structure comprising channels
EP2949300B1 (en) 2014-05-27 2017-08-02 The Procter and Gamble Company Absorbent core with absorbent material pattern
ES2643577T3 (es) 2014-05-27 2017-11-23 The Procter & Gamble Company Núcleo absorbente con diseño de material absorbente
EP2995322B1 (de) 2014-09-15 2017-03-01 Evonik Degussa GmbH Geruchsadsorptionsmittel
EP2995323B1 (de) 2014-09-15 2019-02-27 Evonik Degussa GmbH Aminopolycarboxylsäuren als Prozesshilfsmittel bei der Superabsorberherstellung
WO2016050397A1 (de) 2014-09-30 2016-04-07 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP3009474B1 (de) 2014-10-16 2017-09-13 Evonik Degussa GmbH Herstellverfahren für wasserlösliche Polymere
WO2016135020A1 (de) 2015-02-24 2016-09-01 Basf Se Verfahren zur kontinuierlichen dehydratisierung von 3-hydroxypropionsäure zu acrylsäure
CN107405223B (zh) 2015-03-16 2021-03-02 宝洁公司 具有改善的强度的吸收制品
JP2018508292A (ja) 2015-03-16 2018-03-29 ザ プロクター アンド ギャンブル カンパニー 改善されたコアを有する吸収性物品
WO2016162175A1 (de) 2015-04-07 2016-10-13 Basf Se Verfahren zur dehydratisierung von 3-hydroxypropionsäure zu acrylsäure
SG11201708206RA (en) 2015-04-07 2017-11-29 Basf Se Method for producing super absorber particles
SG11201708205VA (en) 2015-04-07 2017-11-29 Basf Se Method for the agglomeration of superabsorber particles
EP3295102B1 (de) 2015-05-08 2023-06-07 Basf Se Herstellungsverfahren zur herstellung wasserabsorbierender polymerartikel und bandtrockner
MX2017014428A (es) 2015-05-12 2018-04-10 Procter & Gamble Articulo absorbente con adhesivo mejorado del nucleo al lienzo inferior.
JP6743057B2 (ja) 2015-05-29 2020-08-19 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company チャネル及び湿り度インジケータを有する吸収性物品
WO2016207444A1 (en) 2015-06-26 2016-12-29 Bostik Inc. New absorbent article comprising an acquisition/distribution layer and process for making it
EP3167859B1 (en) 2015-11-16 2020-05-06 The Procter and Gamble Company Absorbent cores having material free areas
ES2838027T3 (es) 2015-12-02 2021-07-01 Hartmann Paul Ag Artículo absorbente con núcleo mejorado
EP3205318A1 (en) 2016-02-11 2017-08-16 The Procter and Gamble Company Absorbent article with high absorbent capacity
US20170281425A1 (en) 2016-03-30 2017-10-05 Basf Se Fluid-absorbent article
US10881555B2 (en) 2016-03-30 2021-01-05 Basf Se Fluid-absorbent article
US10806640B2 (en) 2016-03-30 2020-10-20 Basf Se Ultrathin fluid-absorbent article
EP3238678B1 (en) 2016-04-29 2019-02-27 The Procter and Gamble Company Absorbent core with transversal folding lines
EP3238676B1 (en) 2016-04-29 2019-01-02 The Procter and Gamble Company Absorbent core with profiled distribution of absorbent material
EP3251648A1 (en) 2016-05-31 2017-12-06 The Procter and Gamble Company Absorbent article with improved fluid distribution
EP3464427B1 (de) 2016-05-31 2021-01-06 Basf Se Verfahren zur herstellung von superabsorbern
EP3278782A1 (en) 2016-08-02 2018-02-07 The Procter and Gamble Company Absorbent article with improved fluid storage
JP7150701B2 (ja) 2016-08-10 2022-10-11 ビーエーエスエフ ソシエタス・ヨーロピア 高吸収体の製造方法
JP2020500693A (ja) 2016-10-26 2020-01-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 超吸収体粒子をサイロから排出して、バルクコンテナに充填する方法
US11136528B2 (en) * 2016-11-04 2021-10-05 Indorama Ventures Oxides Llc Estolides of vegetable oil alkoxylates and method of making and using
US10828208B2 (en) 2016-11-21 2020-11-10 The Procte & Gamble Company Low-bulk, close-fitting, high-capacity disposable absorbent pant
ES2932273T3 (es) 2017-02-06 2023-01-17 Basf Se Artículo absorbente de fluidos
WO2018149783A1 (en) 2017-02-17 2018-08-23 Basf Se Fluid-absorbent article
EP3391959A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Method for making water-absorbing polymer particles having areas with inorganic solid particles and areas substantially free of inorganic solid particles
EP3391962A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Method for making water-absorbing polymer particles
EP3391960B1 (en) 2017-04-19 2023-11-22 The Procter & Gamble Company Superabsorbent polymer particles comprising one, or more than one area(s) with clay platelets and at least two distinct, non-adjacent areas with no clay platelets
US10875985B2 (en) 2017-04-19 2020-12-29 The Procter & Gamble Company Superabsorbent polymer particles comprising one or more than one area(s) with clay platelets and at least two distinct areas substantially free of clay platelets
US10767029B2 (en) 2017-04-19 2020-09-08 The Procter & Gamble Company Agglomerated superabsorbent polymer particles comprising clay platelets with edge modification and/or surface modification
EP3391961A1 (en) 2017-04-19 2018-10-24 The Procter & Gamble Company Agglomerated superabsorbent polymer particles having a specific size ratio
EP3391958B1 (en) 2017-04-19 2020-08-12 The Procter & Gamble Company Method of making surface-coated water-absorbing polymer particles in a microfluidic device
US11053370B2 (en) 2017-04-19 2021-07-06 The Procter & Gamble Company Agglomerated superabsorbent polymer particles having a specific size ratio
EP3391963B1 (en) 2017-04-19 2021-04-14 The Procter & Gamble Company Process to prepare agglomerated superabsorbent polymer particles comprising clay platelets with edge modification and/or surface modification
US20180333310A1 (en) 2017-05-18 2018-11-22 The Procter & Gamble Company Incontinence pant with low-profile unelasticized zones
KR102563402B1 (ko) 2017-07-12 2023-08-04 바스프 에스이 고흡수성 중합체 입자 제조 방법
KR20200036858A (ko) 2017-07-31 2020-04-07 바스프 에스이 고흡수성 폴리머 입자의 분류 방법
KR102621946B1 (ko) 2017-10-18 2024-01-05 바스프 에스이 초흡수제의 제조 방법
DE202017005496U1 (de) 2017-10-24 2017-12-19 The Procter & Gamble Company Einwegwindel
EP3706900B1 (de) 2017-11-10 2022-12-07 Basf Se Superabsorber
DE202017006014U1 (de) 2017-11-21 2018-01-14 The Procter & Gamble Company Absorptionsartikel mit Taschen
DE202017006016U1 (de) 2017-11-21 2017-12-01 The Procter & Gamble Company Absorptionsartikel mit Kanälen
WO2019113781A1 (en) * 2017-12-12 2019-06-20 Avery Dennison Corporation Removable pressure-sensitive adhesives with high peel strength and removability
CN111566145A (zh) 2018-01-09 2020-08-21 巴斯夫欧洲公司 超吸收剂混合物
JP7342035B2 (ja) 2018-02-06 2023-09-11 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収体粒子を空気輸送する方法
JP7337823B2 (ja) 2018-02-22 2023-09-04 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収体粒子を製造する方法
EP3774999B1 (de) 2018-04-10 2022-08-03 Basf Se Permeabler superabsorber und verfahren zu seiner herstellung
EP3781108B1 (en) 2018-04-20 2023-11-29 Basf Se Process for producing superabsorbents
US20220071818A9 (en) 2018-04-20 2022-03-10 Basf Se Thin fluid absorbent core-absorbent paper
EP3784056A1 (en) * 2018-04-27 2021-03-03 DSM IP Assets B.V. Method of manufacturing spray-dried powders
EP3827031A1 (de) 2018-07-24 2021-06-02 Basf Se Verfahren zur herstellung von superabsorbern
EP3829511B1 (en) 2018-08-01 2024-02-14 Basf Se Fluid-absorbent core
CN112638337B (zh) 2018-08-01 2023-01-20 巴斯夫欧洲公司 女性卫生吸收制品
US20210154637A1 (en) 2018-08-20 2021-05-27 Basf Se Method for the production of superabsorbents
TWI818054B (zh) 2018-08-31 2023-10-11 美商陶氏全球科技有限責任公司 具有氣味控制組分之纖維
JP2022502543A (ja) 2018-09-28 2022-01-11 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 超吸収体の製造の方法
WO2020089013A1 (en) 2018-10-29 2020-05-07 Basf Se Process for producing long-term color stable superabsorbent polymer particles
DE102019216910A1 (de) 2018-11-12 2020-05-14 Basf Se Verfahren zur Oberflächennachvernetzung von Superabsorbern
WO2020099153A1 (en) 2018-11-14 2020-05-22 Basf Se Process for producing superabsorbents
WO2020099154A1 (en) 2018-11-14 2020-05-22 Basf Se Process for producing superabsorbents
KR20210089157A (ko) 2018-11-14 2021-07-15 바스프 에스이 고흡수제의 제조 방법
US20220003679A1 (en) 2018-11-29 2022-01-06 Basf Se Prediction of physical properties of superabsorbent polymers
WO2020151969A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151971A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
KR20210117272A (ko) 2019-01-23 2021-09-28 바스프 에스이 고흡수성 입자의 제조 방법
WO2020151972A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
CN113302212A (zh) 2019-01-24 2021-08-24 巴斯夫欧洲公司 制备超吸收性颗粒的方法
JP2022523396A (ja) 2019-03-01 2022-04-22 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収性ポリマー粒子を製造する方法
JP2022542057A (ja) 2019-07-24 2022-09-29 ビーエーエスエフ ソシエタス・ヨーロピア 浸透性超吸収体、及びそれを製造する方法
EP4214252A1 (en) 2020-09-17 2023-07-26 Basf Se Process for producing superabsorbent polymer particles
WO2022093672A1 (en) 2020-10-28 2022-05-05 The Procter & Gamble Company Cementitious compositions comprising recycled superabsorbent polymer
EP4263630A1 (de) 2020-12-16 2023-10-25 Basf Se Verfahren zur herstellung von superabsorberpartikeln
CN112982020B (zh) * 2021-03-22 2022-04-15 中国石油大学(华东) 一种高强度、高效油水分离滤纸的制备方法
WO2023046583A1 (de) 2021-09-27 2023-03-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2023168616A1 (en) 2022-03-09 2023-09-14 The Procter & Gamble Company Absorbent article with high permeability sap
US20240091073A1 (en) 2022-09-08 2024-03-21 The Procter & Gamble Company Disposable absorbent pants with elasticized waist panel structure and obscuring print patterns

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177409A (ja) * 1989-12-06 1991-08-01 Nippon Oil Co Ltd 高分子固体電解質
JPH05230122A (ja) * 1991-10-23 1993-09-07 Hughes Aircraft Co 改良されたポリマー分散液晶フィルムのための共重合可能な開始剤
JPH0687804A (ja) * 1992-08-05 1994-03-29 Bayer Ag アミノアクリレートおよびその製造方法
JPH07263026A (ja) * 1994-03-28 1995-10-13 Yuasa Corp 電 池
JPH08188602A (ja) * 1994-06-08 1996-07-23 Nippon Shokubai Co Ltd 吸水性樹脂及びその製造方法
JPH09147920A (ja) * 1995-11-28 1997-06-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000306604A (ja) * 1999-04-22 2000-11-02 Mitsubishi Chemicals Corp 高分子ゲル電解質及びこれを用いたリチウム二次電池
JP2001019874A (ja) * 1999-07-09 2001-01-23 Nof Corp 被覆剤組成物及びそれを硬化させた被覆物
JP2002515079A (ja) * 1995-11-21 2002-05-21 シュトックハウゼン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・カーゲー 液体吸収性ポリマー、その製造方法及びその応用
WO2003046615A1 (fr) * 2001-11-30 2003-06-05 Nikon Corporation Composition precurseur de resine optique, resine a utilisation optique, element et article optiques
JP2003534405A (ja) * 2000-05-08 2003-11-18 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 眼用レンズの製造のための組成物および方法
JP2004083842A (ja) * 2002-06-27 2004-03-18 Nippon Shokubai Co Ltd 硬化性水系組成物
JP2005221743A (ja) * 2004-02-05 2005-08-18 Hitachi Chem Co Ltd 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの製造法及びプリント配線板の製造法
JP2007204746A (ja) * 1995-08-23 2007-08-16 Mitsui Chemicals Inc 高分子固体電解質

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380831A (en) * 1964-05-26 1968-04-30 Du Pont Photopolymerizable compositions and elements
US4187383A (en) * 1976-12-28 1980-02-05 Union Carbide Corporation Process for producing low color residue acrylate esters
US4382135A (en) * 1981-04-01 1983-05-03 Diamond Shamrock Corporation Radiation-hardenable diluents
DE3609545A1 (de) * 1986-03-21 1987-09-24 Basf Ag Verfahren zur diskontinuierlichen herstellung von vernetzten, feinteiligen polymerisaten
US5472617A (en) * 1986-10-18 1995-12-05 Basf Aktiengesellschaft Method of demulsifying crude oil and water mixtures with copolymers of acrylates or methacrylates and hydrophilic commonomers
DE3843930A1 (de) * 1988-12-24 1990-06-28 Henkel Kgaa Verfahren zur verbesserten herstellung von (meth)acrylsaeureestern mehrwertiger alkohole (iii)
GB9208449D0 (en) * 1992-04-16 1992-06-03 Dow Deutschland Inc Crosslinked hydrophilic resins and method of preparation
US5356754A (en) * 1992-09-25 1994-10-18 Mitsubishi Rayon Co., Ltd. Crosslinking curable resin composition
DE4326772A1 (de) * 1993-08-10 1995-02-16 Basf Ag Reaktionsprodukte aus olefinisch ungesättigten Carbonsäuren und Polyetherolen sowie ihre Verwendung als Demulgatoren für Rohölemulsionen
DE19716657A1 (de) * 1997-04-21 1998-10-22 Stockhausen Chem Fab Gmbh Superabsorber mit kontrollierter Absorptionsgeschwindigkeit
US6172129B1 (en) * 1999-01-29 2001-01-09 Sartomer Technologies, Inc. Cyclic amine acrylate monomers and polymers
WO2001014438A1 (fr) * 1999-08-23 2001-03-01 Kao Corporation Procede de production de polymeres (meth)acryliques
DE10054085A1 (de) * 2000-10-31 2002-05-16 Basf Ag Verfahren zur Herstellung von Polyetherolen

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177409A (ja) * 1989-12-06 1991-08-01 Nippon Oil Co Ltd 高分子固体電解質
JPH05230122A (ja) * 1991-10-23 1993-09-07 Hughes Aircraft Co 改良されたポリマー分散液晶フィルムのための共重合可能な開始剤
JPH0687804A (ja) * 1992-08-05 1994-03-29 Bayer Ag アミノアクリレートおよびその製造方法
JPH07263026A (ja) * 1994-03-28 1995-10-13 Yuasa Corp 電 池
JPH08188602A (ja) * 1994-06-08 1996-07-23 Nippon Shokubai Co Ltd 吸水性樹脂及びその製造方法
JP2007204746A (ja) * 1995-08-23 2007-08-16 Mitsui Chemicals Inc 高分子固体電解質
JP2002515079A (ja) * 1995-11-21 2002-05-21 シュトックハウゼン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・カーゲー 液体吸収性ポリマー、その製造方法及びその応用
JPH09147920A (ja) * 1995-11-28 1997-06-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000306604A (ja) * 1999-04-22 2000-11-02 Mitsubishi Chemicals Corp 高分子ゲル電解質及びこれを用いたリチウム二次電池
JP2001019874A (ja) * 1999-07-09 2001-01-23 Nof Corp 被覆剤組成物及びそれを硬化させた被覆物
JP2003534405A (ja) * 2000-05-08 2003-11-18 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 眼用レンズの製造のための組成物および方法
WO2003046615A1 (fr) * 2001-11-30 2003-06-05 Nikon Corporation Composition precurseur de resine optique, resine a utilisation optique, element et article optiques
JP2004083842A (ja) * 2002-06-27 2004-03-18 Nippon Shokubai Co Ltd 硬化性水系組成物
JP2005221743A (ja) * 2004-02-05 2005-08-18 Hitachi Chem Co Ltd 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの製造法及びプリント配線板の製造法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527378A (ja) * 2003-07-10 2007-09-27 ビーエーエスエフ アクチェンゲゼルシャフト モノアルコキシル化ポリオールの(メタ)アクリル酸エステルおよびその製造
JP4763602B2 (ja) * 2003-07-10 2011-08-31 ビーエーエスエフ ソシエタス・ヨーロピア モノアルコキシル化ポリオールの(メタ)アクリル酸エステルおよびその製造
JP2017527669A (ja) * 2014-09-09 2017-09-21 ユニバーシティ・オブ・ワシントン 官能性双性イオン性ポリマーおよび混合電荷ポリマー、関連するヒドロゲルならびにこれらの使用方法

Also Published As

Publication number Publication date
WO2003104301A1 (de) 2003-12-18
PL374404A1 (en) 2005-10-17
RU2005100765A (ru) 2005-09-10
CN1659213A (zh) 2005-08-24
BR0311498A (pt) 2005-03-15
EP1517942A1 (de) 2005-03-30
AU2003274698A1 (en) 2003-12-22
CN100349958C (zh) 2007-11-21
MXPA04012180A (es) 2005-02-25
ES2263988T3 (es) 2006-12-16
US20050165208A1 (en) 2005-07-28
ATE325150T1 (de) 2006-06-15
JP4373328B2 (ja) 2009-11-25
DE50303213D1 (de) 2006-06-08
EP1517942B1 (de) 2006-05-03
CA2487030A1 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
JP4373328B2 (ja) ポリアルコキシル化されたグリセリンの(メタ)アクリルエステル
JP2005532430A (ja) ポリアルコキシル化されたトリメチロールプロパンの(メタ)アクリルエステル
JP2005532432A (ja) ポリアルコキシル化されたトリメチロールプロパンの(メタ)アクリルエステル
JP5781100B2 (ja) 多価アルコールのエステルの製造法
US7405321B2 (en) (Meth)acrylic ester of alkenylene glycols and the use thereof
JP2006524275A (ja) ポリアルコキシル化トリメチロールプロパンの(メタ)アクリルエステルの混合物
JP4763602B2 (ja) モノアルコキシル化ポリオールの(メタ)アクリル酸エステルおよびその製造
JP4787745B2 (ja) アルコキシル化された不飽和ポリオールエーテルの(メタ)アクリル酸エステルおよびその製造
US7420013B2 (en) Mixtures of compounds comprising at least two double bonds and use thereof
JP2006527179A (ja) アルキレニレングリコールの(メタ)アクリル酸エステルおよびその使用
EP1613685B1 (de) Gemische von (meth)acrylester von polyalkoxyliertem trimethylolpropan
KR20050020984A (ko) 폴리알콕실화 트리메틸올프로판의 (메트)아크릴산에스테르
KR20050020983A (ko) 폴리알콕실화 트리메틸올프로판의 (메트)아크릴산에스테르
KR20050019130A (ko) 폴리알콕실화 글리세린의 (메트)아크릴산 에스테르

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4373328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term