WO2023046583A1 - Verfahren zur herstellung von superabsorberpartikeln - Google Patents

Verfahren zur herstellung von superabsorberpartikeln Download PDF

Info

Publication number
WO2023046583A1
WO2023046583A1 PCT/EP2022/075742 EP2022075742W WO2023046583A1 WO 2023046583 A1 WO2023046583 A1 WO 2023046583A1 EP 2022075742 W EP2022075742 W EP 2022075742W WO 2023046583 A1 WO2023046583 A1 WO 2023046583A1
Authority
WO
WIPO (PCT)
Prior art keywords
zones
polymer gel
weight
circulating air
belt dryer
Prior art date
Application number
PCT/EP2022/075742
Other languages
English (en)
French (fr)
Inventor
Thomas Daniel
Sebastian Marius RAUPP
Monte Alan Peterson
Vernon Lynn ADEY
Karl Possemiers
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2023046583A1 publication Critical patent/WO2023046583A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a process for the production of surface post-crosslinked superabsorbent particles, in which an aqueous monomer solution is polymerized with a little initiator to form a polymer gel, the polymer gel obtained is extruded through a perforated plate, the extruded polymer gel is dried on a circulating air belt dryer with one or more zones and after grinding and classification, the polymer particles obtained are thermally surface post-crosslinked, with the temperatures of the supplied drying gas being from 120 to 160° C. and the velocities of the supplied drying gas from 1.2 to 3.0 m/s during drying in the front zones of the circulating air belt dryer.
  • Superabsorbents are used in the manufacture of diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • the superabsorbers are also referred to as water-absorbing polymers.
  • superabsorbent particles are generally surface postcrosslinked. This increases the degree of crosslinking of the particle surface, whereby the absorption under a pressure of 49.2 g/cm 2 (AUL0.7psi) and the centrifuge retention capacity (CRC) can be at least partially decoupled.
  • This surface post-crosslinking can be carried out in an aqueous gel phase.
  • dried, ground and sieved polymer particles base polymer
  • Crosslinkers suitable for this purpose are compounds which can form covalent bonds with at least two carboxylate groups of the polymer particles.
  • EP 0 289 338 A2 describes a method for drying polymer gels by means of a gas containing steam.
  • EP 1 002 806 A1 describes a method for drying polymer gels in three defined drying sections.
  • WO 2006/100300 A1 describes a method for drying polymer gels on a belt dryer with the setting of defined temperature profiles.
  • EP 2 557 095 A1 WO 2014/118024 A1 and WO 2015/169912 A1 describe methods for the gentle extrusion of polymer gels to improve liquid conduction (SFC) and swelling rate (FSR).
  • SFC liquid conduction
  • FSR swelling rate
  • WO 2018/114702 A1 and WO 2018/114703 A1 describe single-screw extruders that are particularly suitable for the extrusion of polymer gels.
  • the object of the present invention was to provide an improved process for producing surface-postcrosslinked superabsorbent particles, in particular for producing surface-postcrosslinked superabsorbent particles with rapid liquid absorption of 20 g/g (T20) or rapid volumetric liquid absorption under 0.3 psi (2.07 kPa) pressure (VAUL). Furthermore, the surface postcrosslinked superabsorbent particles should only have a low content of residual monomers. The sum off Centrifuge retention capacity (CRC) and absorption under a pressure of 49.2 g/cm 2 (AlIHL), on the other hand, should be as large as possible.
  • CRC Centrifuge retention capacity
  • AlIHL Absorption under a pressure of 49.2 g/cm 2
  • the object was achieved by a process for producing surface-postcrosslinked superabsorbent particles by polymerizing an aqueous monomer solution or suspension containing a) at least one ethylenically unsaturated, acid-group-carrying monomer which is at least partially neutralized, b) at least one crosslinker and c) at least one initiator, wherein the aqueous monomer solution or suspension is polymerized to form a polymer gel, the polymer gel obtained is extruded through a perforated plate, the extruded polymer gel is dried on a circulating air belt dryer with one or more zones and, after grinding and classification, the polymer particles obtained are thermally surface post-crosslinked, characterized in that that no more than 0.14% by weight of initiator c) is used, based on the monomer a) before neutralization, in the front zones of the circulating air belt dryer for at least 50% of the total residence time in the front zones the temperatures d it be supplied drying gas from 120 to 160 ° C and in the
  • the present invention is based on the knowledge that the liquid absorption of 20 g/g (T20) is not only influenced by extrusion of the polymer gel before drying.
  • the level of extractables also appears to have a significant impact.
  • the level of extractables can be controlled by the amount of initiator used in the polymerization and the drying conditions. It is important that the drying is carried out at relatively low temperatures and relatively quickly.
  • the velocities of the supplied drying gas in the front zones of the circulating air belt dryer are also 10 to 80% of the total residence time in the front zones from 0.1 to 1.15 m/s, with the zones with the lower velocities ahead of the zones with the higher speeds.
  • polymer gel layers that are more uniform and easier to dry are obtained on the circulating air belt dryer.
  • the water vapor content of the supplied drying gas in the front zones of the circulating air belt dryer is preferably at least 200 g, particularly preferably at least 250 g, very particularly preferably at least 300 g, in each case per kg of dry drying gas.
  • the thermal surface postcrosslinking is carried out at a maximum temperature of preferably at least 180°C, particularly preferably at least 185°C, very particularly preferably at least 190°C.
  • the temperatures of the supplied drying gas are preferably from 125 to 155.degree. C., particularly preferably from 130 to 150.degree. C., very particularly preferably from 135 to 145.degree.
  • the speeds of the supplied drying gas are preferably from 1.3 to 2.8 m/s, particularly preferably from 1.4 to 2.6 m/s, very particularly preferably from 1.5 to 2.4 m/s.
  • the front zones of the circulating air belt dryer are the zones of the circulating air belt dryer where the moisture content of the polymer gel to be dried, at least at the beginning of the respective zone, is preferably more than 25% by weight, particularly preferably more than 29% by weight, very particularly preferably more than 32% by weight .-%, amounts to.
  • the temperature of the polymer gel during extrusion is preferably from 70 to 125°C, particularly preferably from 80 to 115°C, very particularly preferably from 90 to 105°C.
  • the moisture content of the polymer gel during extrusion is preferably from 20 to 70% by weight, particularly preferably from 30 to 65% by weight, very particularly preferably from 40 to 60% by weight.
  • the perforated openings of the perforated plate have a diameter of preferably 2 to 20 mm, particularly preferably 4 to 15 mm, very particularly preferably 6 to 10 mm.
  • the perforated openings of the perforated plate have a length of preferably 15 to 45 mm, particularly preferably 20 to 40 mm, very particularly preferably 25 to 35 mm.
  • the superabsorbents are produced by polymerizing a monomer solution or suspension and are usually water-insoluble.
  • the monomers a) are preferably water-soluble, i.e. the solubility in water at 23°C is typically at least 1 g/100 g water, preferably at least 5 g/100 g water, more preferably at least 25 g/100 g water, most preferably at least 35g/100g water.
  • Suitable monomers a) are ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Acrylic acid is very particularly preferred.
  • the monomers a) usually contain polymerization inhibitors, preferably hydroquinone monomethyl ether (MEHQ), as a storage stabilizer.
  • polymerization inhibitors preferably hydroquinone monomethyl ether (MEHQ), as a storage stabilizer.
  • Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be radically polymerized into the polymer chain, and functional groups which can form covalent bonds with the acid groups of the monomer a). Furthermore, polyvalent metal salts which can form coordinate bonds with at least two acid groups of the monomer a) are also suitable as crosslinkers b).
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1, di- and triacrylates, as described in EP 0 547 847 A1, EP 0 559 476 A1, EP 0 632 068 A1, WO 93/21237 A1, WO 03/104299 A1, WO 03/104300 A1, WO 03/104301 A1 and DE 103 31 450 A1 describe mixed acrylates which contain further ethylenically unsaturated groups in addition to acrylate groups, as in DE 103 31 456 A1 and DE 103 55 401 A1 described, or crosslinker mixtures, as described, for example, in DE 195 43 368 A1, DE 196 46 484 A
  • the amount of crosslinker b) is preferably from 0.05 to 1.5% by weight, particularly preferably from 0.1 to 1% by weight, very particularly preferably from 0.3 to 0.6% by weight, calculated in each case the total amounts of monomer a) used.
  • CRC centrifuge retention capacity
  • initiators c All compounds which generate free radicals under the polymerization conditions can be used as initiators c), for example thermal initiators, redox initiators, photoinitiators.
  • Suitable thermal initiators are peroxomono- and disulfates and peroxomono- and diphosphates.
  • Suitable redox initiators are sodium peroxodisulfate/ascorbic acid, hydrogen peroxide/ascorbic acid, sodium peroxodisulfate/sodium bisulfite and hydrogen peroxide/sodium bisulfite.
  • Mixtures of thermal initiators and redox initiators are preferably used, such as sodium peroxodisulfate/hydrogen peroxide/ascorbic acid.
  • the disodium salt of 2-hydroxy-2-sulfonatoacetic acid or a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite is preferably used as the reducing component.
  • Such mixtures are available as Bruggolite® FF6 and Bruggolite® FF7 (Bruggemann Chemicals; Heilbronn; Germany).
  • the amount of initiator c) is at most 0.14% by weight, preferably at most 0.12% by weight, preferably at most 0.10% by weight, particularly preferably at most 0.08% by weight, very particularly preferably at most 0.06% by weight, most preferably at most 0.04% by weight, in each case based on the monomer a) before neutralization.
  • aqueous monomer solution is usually used.
  • the water content of the monomer solution is preferably from 40 to 75% by weight, particularly preferably from 45 to 70% by weight, very particularly preferably from 50 to 65% by weight. It is also possible to use monomer suspensions, i.e. monomer solutions with monomer a) exceeding the solubility, for example sodium acrylate. As the water content increases, the energy required for the subsequent drying increases, and as the water content decreases, the heat of polymerization can only be dissipated insufficiently.
  • the preferred polymerization inhibitors require dissolved oxygen for optimal activity.
  • the monomer solution can therefore be freed from dissolved oxygen before the polymerization by rendering it inert, i.e. flowing through it with an inert gas, preferably nitrogen or carbon dioxide.
  • the oxygen content of the monomer solution is preferably reduced to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight, most preferably to less than 0.1 ppm by weight, before the polymerization.
  • Suitable reactors for the polymerization are, for example, kneading reactors or belt reactors.
  • the polymer gel formed during the polymerisation of an aqueous monomer solution or suspension is continuously comminuted by, for example, counter-rotating stirrer shafts, as described in WO 2001/038402 A1. Kneaders with kneading shafts running in the same direction can also be used. Polymerization on the belt is described, for example, in DE 38 25 366 A1 and US Pat. No. 6,241,928.
  • the polymer gel obtained is then extruded through a perforated plate.
  • the hole openings of the perforated plate are essentially not limited in their shape and can e.g. B. circular, oval, rectangular, triangular, hexagonal, star-shaped or irregularly shaped.
  • the hole openings of the perforated plate are preferably circular.
  • the diameter of the holes is preferably in the range from 2 to 20 mm, more preferably 4 to 15 mm, most preferably 6 to 10 mm.
  • the hole diameter is defined as the equivalent area diameter, ie, the diameter of a circle of equal cross-sectional area.
  • the length of the holes in the perforated plate is preferably in the range from 15 to 45 mm, particularly preferably from 20 to 40 mm, very particularly preferably from 25 to 35 mm. If the holes are holes in the perforated plate, the thickness of the perforated plate corresponds to the length of the holes.
  • the openings can also be realized in the form of tubular inserts in the perforated plate, which can protrude beyond the perforated plate. In this case, the hole length corresponds to the length of the inserts.
  • the extruder usually consists of an elongated housing, an outlet opening provided with the perforated plate and at least one screw shaft rotating in the housing, which conveys the polymer gel in the direction of the outlet opening while generating a counter-pressure.
  • the polymer gel is extruded from the high pressure inside the extruder through the perforated plate to the environment.
  • the extruder is preferably concomitantly heated as required, particularly preferably with heating steam, or concomitantly cooled.
  • the extrusion can be operated both continuously and discontinuously.
  • the pressure drop across the perforated plate during extrusion is preferably from 5 to 45 bar, particularly preferably from 10 to 40 bar, very particularly preferably from 15 to 35 bar, and the opening ratio of the perforated plate is preferably 5, 0 to 50, more preferably from 7.5 to 30%, most preferably from 10.0 to 20%.
  • the opening ratio is defined as the ratio of the open area (total of the perforated areas) of the perforated plate to the maximum usable area of the perforated plate.
  • the pressure drop across the perforated plate during extrusion is preferably from 3 to 15 bar, particularly preferably from 4 to 14 bar, very particularly preferably from 5 to 13 bar, and the opening ratio of the perforated plate is preferably 35 to 75, more preferably from 40 to 70%, most preferably from 45 to 65%.
  • the opening ratio is defined as the ratio of the open area (total of the perforated areas) of the perforated plate to the maximum usable area of the perforated plate.
  • the polymer gel experiences a mechanical energy input, mainly due to the effect of the rotating screw shaft(s). Energy inputs that are too high lead to damage to the internal structure of the polymer gel.
  • the energy input can be influenced, for example, via the ratio of the internal length to the internal diameter of the extruder (L/D).
  • the ratio of the internal length to the internal diameter of the extruder is preferably from 1 to 6.0, particularly preferably from 2 to 5.5, very particularly preferably from 3 to 5.0.
  • the specific mechanical energy (SME) introduced during the extrusion is preferably from 2.5 to 60 kWh/t, particularly preferably from 5.0 to 50 kWh/t, very particularly preferably from 10.0 to 40 kWh/t.
  • the specific mechanical energy (SME) is the motor power of the extruder in kW divided by the throughput of polymer gel in t/h. This avoids damage to the polymer gel during extrusion.
  • the polymer gel has a temperature in the range of preferably 70 to 125°C, more preferably 80 to 115°C, most preferably 90 to 105°C.
  • the moisture content of the polymer gel is preferably from 20 to 70% by weight, particularly preferably from 30 to 65% by weight, very particularly preferably from 40 to 60% by weight. Because extrusion can involve evaporation of water, the moisture content of the polymer gel generally decreases during extrusion.
  • the ratio of the moisture content of the polymer gel after passing through the perforated plate to the moisture content of the polymer gel before passing through the perforated plate is preferably at least 0.99, particularly preferably at least 0.95, very particularly preferably at least 0.91 .
  • the acid groups of the polymer gel are usually partially neutralized.
  • the neutralization is preferably carried out at the monomer stage. This is usually done by mixing in the neutralizing agent as an aqueous solution or preferably also as a solid.
  • the degree of neutralization is preferably from 40 to 85 mol%, particularly preferably from 50 to 80 mol%, very particularly preferably from 60 to 75 mol%, it being possible to use the customary neutralizing agents, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogen carbonates as well their mixtures. Instead of alkali metal salts, ammonium salts can also be used.
  • Solid carbonates and hydrogen carbonates can also be used here in encapsulated form, preferably in the monomer solution directly before the polymerization, during or after the polymerization in the polymer gel and before it is dried.
  • the encapsulation is carried out by coating the surface with an insoluble or only slowly soluble material (e.g. using film-forming polymers, inert inorganic materials or fusible organic materials), which delays the solution and reaction of the solid carbonate or bicarbonate in such a way that carbon dioxide is only released during drying and the resulting superabsorbent has a high internal porosity.
  • the extruded polymer gel is then dried using a circulating air belt dryer with one or more zones until the moisture content is preferably 0.5 to 10% by weight, particularly preferably 1 to 7% by weight, very particularly preferably 2 to 5% by weight , whereby the moisture content is determined according to the test method no. WSP 230.2-05 "Mass Loss Upon Heating" recommended by EDANA.
  • the zones of the circulating air belt dryer are spatially separate areas in which the drying conditions such as temperature, speed and humidity of the drying gas can be set individually. In the monograph ''Modern Superabsorbent Polymer Technology'', F.L. Buchholz and A.T.
  • the dried polymer gel has a glass transition temperature Tg that is too low and is difficult to process further. If the moisture content is too low, the dried polymer gel is too brittle and the subsequent comminution steps result in undesirably large amounts of polymer particles with too small a particle size (“fines”).
  • the moisture content of the polymer gel is preferably from 20 to 70% by weight, particularly preferably from 30 to 65% by weight, very particularly preferably from 40 to 60% by weight. The dried polymer gel is then broken up and optionally coarsely comminuted.
  • the drying conditions in the front zones of the circulating air belt dryer are decisive for rapid liquid absorption of 20 g/g (T20).
  • the front zones of the circulating air belt dryer are the zones where the moisture content of the polymer gel to be dried, at least at the beginning of the respective zone, is more than 20% by weight, preferably more than 25% by weight, particularly preferably at least 29% by weight, very particularly preferably at least 32% by weight.
  • the temperatures of the drying gas supplied are at least 50%, preferably at least 60%, particularly preferably at least 70%, very particularly preferably at least 80% of the total residence time in the front zones of 120 to 160°C , preferably from 125 to 155°C, particularly preferably from 130 to 150°C, very particularly preferably from 135 to 145°C.
  • the speeds of the drying gas supplied are at least 20%, preferably at least 30%, particularly preferably at least 40%, very particularly preferably at least 50%, of the total residence time in the front zones from 1.2 to 3 0 m/s, preferably from 1.3 to 2.8 m/s, particularly preferably from 1.4 to 2.6 m/s, very particularly preferably from 1.5 to 2.4 m/s.
  • the number of front zones is not subject to any limitation. In the event that all zones meet the condition for the moisture content, because the circulating air belt dryer has, for example, only a single zone, the front zones encompass the entire circulating air belt dryer within the meaning of this invention.
  • lower speeds of the supplied drying gas are set in the first zones of the circulating air belt dryer.
  • the speeds of the supplied drying gas are then additionally 10 to 50%, preferably 15 to 70%, particularly preferably 20 to 60%, very particularly preferably 25 to 50% of the total residence time in the front zones the velocities of the supplied drying gas from 0.1 to 1.15 m/s, preferably from 0.3 to 1.10 m/s, particularly preferably from 0.5 to 1.05 m/s, very particularly preferably from 0, 7 to 1.00 m/s.
  • a circulating air belt dryer has a total of 10 zones and the residence time in each zone is 5 minutes and the initial value for the moisture content of the polymer gel to be dried is only met in the first four zones, the total residence time in the front zones is 20 minutes.
  • the residence time is calculated at a velocity of the supplied drying gas of 1.00 m/s. s to 25% of the total residence time in the front zones and the residence time at a drying gas inlet velocity of 2.0 m/s to 75% of the total residence time in the front zones.
  • the polymer gel to be dried can be flown from below or from above in the circulating air belt dryer.
  • Suitable drying gases are, for example, air, nitrogen and air-nitrogen mixtures. However, drying could also be carried out using superheated steam as the drying gas, as described in Chapter 19 "Superheated Steam Drying” of the “Handbook of Industrial Drying", 3rd edition, 2006, ISBN 9781420017618.
  • the water vapor content should be at least 50%, preferably at least 60%, particularly preferably at least 70%, very particularly preferably at least 80%, of the residence time in the front zones, preferably at least 200 g, particularly preferably at least 250 g, very particularly preferably at least 300 g, in each case per kg of dry drying gas.
  • the water vapor content of the supplied drying gas can be achieved by actively supplying water via nozzles or atomizers, by supplying water vapor, or by moistening the material to be dried.
  • the dried polymer gel is then usually ground and classified, it being possible to use single-stage or multi-stage roller mills, preferably two-stage or three-stage roller mills, pinned mills, hammer mills or vibratory mills for the grinding.
  • the mean particle size of the polymer particles removed as product fraction is preferably at least 200 ⁇ m, particularly preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • the average particle size of the product fraction can be determined using the test method no. WSP 220.2-05 "Particle Size Distribution" recommended by EDANA, whereby the mass fractions of the sieve fractions are applied cumulatively and the average particle size is determined graphically.
  • the mean particle size here is the value of the mesh size that results for a cumulative 50% by weight.
  • the proportion of particles with a particle size of greater than 150 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
  • Polymer particles with a particle size that is too small lower the permeability (SFC).
  • the proportion of polymer particles that are too small (“fines”) should therefore be low.
  • Polymer particles that are too small are therefore usually separated off and returned to the process. This is preferably done before, during or immediately after the polymerization, i.e. before the polymer gel is dried.
  • the polymer particles that are too small can be moistened with water and/or aqueous surfactant before or during recycling.
  • the recycled polymer particles that are too small are surface post-crosslinked or otherwise coated, for example with pyrogenic silica.
  • the polymer particles that are too small are preferably added during the last third of the polymerization.
  • the centrifuge retention capacity (CRC) of the water-absorbing polymer particles obtained is reduced as a result.
  • CRC centrifuge retention capacity
  • the proportion of particles with a particle size of at most 850 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
  • the proportion of particles with a particle size of at most 600 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
  • Polymer particles with a particle size that is too large reduce the swelling rate. Therefore, the proportion of oversized polymer particles should also be low.
  • Polymer particles that are too large are therefore usually separated off and returned to the grinding of the dried polymer gel.
  • Suitable surface postcrosslinkers are compounds that contain groups that can form covalent bonds with at least two carboxylate groups of the polymer particles. Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols, as described in DE 33 14 019 A1, DE 35 23 617 A1 and EP 0 450 922 A2, or ⁇ -hydroxyalkylamides, as described in DE 102 04 938 A1 and US Pat. No. 6,239,230. Particularly suitable surface postcrosslinkers are ethylene carbonate and its derivatives, and 2-oxazolidone and its derivatives. Ethylene carbonate and N-(2-hydroxyethyl)-2-oxazolidinone are particularly preferred.
  • the amount of surface postcrosslinker is preferably from 0.001 to 2% by weight, particularly preferably from 0.02 to 1% by weight, very particularly preferably from 0.05 to 0.2% by weight, based in each case on the polymer particles.
  • polyvalent cations can be applied to the particle surface.
  • the polyvalent cations that can be used in the process of the invention are, for example, divalent cations such as zinc, magnesium, calcium and strontium cations, trivalent cations such as aluminum, iron, chromium, rare earth and manganese cations, tetravalent cations such as titanium cations and Zirconium.
  • divalent cations such as zinc, magnesium, calcium and strontium cations
  • trivalent cations such as aluminum, iron, chromium, rare earth and manganese cations
  • tetravalent cations such as titanium cations and Zirconium.
  • chloride, bromide, hydroxide, sulfate, hydrogen sulfate, carbonate, hydrogen carbonate, nitrate, phosphate, hydrogen phosphate, dihydrogen phosphate and carboxylate such as acetate and lactate are possible.
  • Aluminum hydroxide, aluminum sulfate and aluminum lactate are preferred.
  • the amount of polyvalent cation used is, for example, 0.001 to 1.5% by weight, preferably 0.005 to 1% by weight, particularly preferably 0.02 to 0.8% by weight. in each case based on the polymer.
  • the surface postcrosslinking is usually carried out by spraying a solution of the surface postcrosslinker onto the dried polymer particles. After spraying, the polymer particles coated with surface post-crosslinking agent are thermally treated.
  • a solution of the surface postcrosslinker is preferably sprayed on in mixers with moving mixing tools, such as screw mixers, disk mixers and paddle mixers.
  • moving mixing tools such as screw mixers, disk mixers and paddle mixers.
  • Horizontal mixers such as paddle mixers, are particularly preferred, and vertical mixers are very particularly preferred.
  • the distinction between horizontal mixers and vertical mixers is based on the mounting of the mixing shaft, ie horizontal mixers have a horizontally mounted mixing shaft and vertical mixers have a vertically mounted mixing shaft.
  • Suitable mixers are, for example, Horizontal Ploughshare® Mixer (Gebr.
  • the surface post-crosslinkers are typically used as an aqueous solution.
  • the depth of penetration of the surface postcrosslinker into the polymer particles can be adjusted via the content of nonaqueous solvent or the total amount of solvent.
  • the thermal treatment is preferably carried out in contact dryers, particularly preferably paddle dryers, very particularly preferably disc dryers.
  • Suitable dryers are, for example, Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH; Lein-baum; Germany), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH; Leingart; Germany), Holo-Flite® dryers (Metso Minerals Industries Inc.; Danville ; USA) and Nara Paddle Dryer (NARA Machinery Europe; Frechen; Germany).
  • fluidized bed dryers can also be used.
  • the surface post-crosslinking can take place in the mixer itself, by heating the jacket or blowing in warm air.
  • a downstream dryer such as a tray dryer, a rotary kiln or a heatable screw, is also suitable. Mixing and thermal surface post-crosslinking are particularly advantageous in a fluidized bed dryer.
  • the reaction temperatures are preferably in the range from 180 to 250.degree. C., particularly preferably from 185 to 220.degree. C., very particularly preferably from 190 to 210.degree.
  • the preferred residence time at this temperature is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes, and usually at most 60 minutes.
  • the temperature in the surface post-crosslinking can also be significantly lower.
  • the surface-postcrosslinked polymer particles can then be reclassified, with polymer particles that are too small and/or too large being separated off and returned to the process.
  • the surface post-crosslinked polymer particles can be coated or post-moistened to further improve their properties.
  • the subsequent moistening is preferably carried out at 30 to 80.degree. C., particularly preferably at 35 to 70.degree. C., very particularly preferably at 40 to 60.degree.
  • the amount of water used for post-wetting is preferably from 1 to 10% by weight, particularly preferably from 2 to 8% by weight, very particularly preferably from 3 to 5% by weight.
  • the remoistening increases the mechanical stability of the polymer particles and reduces their tendency to static charging.
  • the post-wetting is carried out in the cooler after the thermal surface post-crosslinking.
  • Suitable coatings for improving the swelling rate and the gel bed permeability are, for example, inorganic inert substances, such as water-insoluble ones Metal salts, organic polymers, cationic polymers and divalent or polyvalent metal cations.
  • Suitable coatings for dust binding are, for example, polyols.
  • Suitable coatings to counteract the undesirable tendency of the polymer particles to cake are, for example, pyrogenic silica such as Aerosil® 200, precipitated silica such as Sipernat® D17, and surfactants such as Span® 20.
  • WSP Standard Test Methods for the Nonwovens Industry
  • EDANA Herrmann-Debrouxlaan 46, 1160 Oudergem, Belgium, www.edana.org
  • INDA 1100 Crescent Green, Suite 115, Cary, North Carolina 27518, USA, www.inda.org. This release is available from both EDANA and INDA.
  • the measurements should be carried out at an ambient temperature of 23 ⁇ 2°C and a relative humidity of 50 ⁇ 10%.
  • the super absorber particles are thoroughly mixed before the measurement.
  • the residual monomer content is determined according to the test method WSP No. 210.2 (05) "Residual Monomers" recommended by EDANA.
  • the moisture content is determined according to the EDANA recommended test method no. WSP 230.2 (05) "Mass Loss Upon Heating”. If the moisture content is more than 5% by weight, the drying time at 105 ⁇ 2°C should be extended until the weight is constant.
  • intermediate weighing can also be carried out with the total quantity of polymer gel.
  • the amount of polymer gel can also be less than 1.0 kg.
  • it is dried at 105 ⁇ 2° C. to constant weight. The moisture content of the polymer gel during the intermediate weighing is then calculated.
  • the centrifuge retention capacity (CRC) is determined according to the EDANA recommended test method No. WSP 241.2 (05) "Fluid Retention Capacity in Saline, After Centrifugation".
  • the content of extractable components of the water-absorbing polymer particles is determined according to the test method no. WSP 270.2 (05) "Extractable” recommended by EDANA.
  • the liquid uptake of 20 g/g (T20) is determined according to the test method “K(t) Test Method (Dynamic Effective Permeability and Uptake Kinetics Measurement Test Method)” described in EP 2 535 027 A1 on pages 13 to 18.
  • the T-value is determined according to the "Volumetric Absorbency Under Load (VAUL)" test method described in EP 2 922 882 B1 on page 22 .
  • the T-value is called the "characteristic swelling time”.
  • the liquid conduction (SFC) is determined according to the test method “Urine Permeability Measurement (UPM) Test method” described in EP 2 535 698 A1 on pages 19 to 22.
  • An acrylic acid/sodium acrylate solution is prepared by continuously mixing deionized water, 50% strength by weight sodium hydroxide solution and acrylic acid, so that the degree of neutralization corresponds to 71.0 mol %.
  • the solids content of the monomer solution is 41.0% by weight.
  • Glycerol triacrylate (approx. 85% strength by weight) which has been ethoxylated three times is used as crosslinker b).
  • the amount used is 0.45% by weight, based on the acrylic acid used.
  • the monomer solution contains 0.75% by weight of polyethylene glycol 4000 (polyethylene glycol with an average molar mass of 4000 g/mol), based on the acrylic acid used.
  • the monomer solution is metered into a List Contikneter reactor with a volume of 6.3 m 3 (LIST AG, Arisdorf, Switzerland).
  • the throughput of the monomer solution is about 20 t/h.
  • the monomer solution is rendered inert with nitrogen between the point of addition for the crosslinking agent and the points of addition for the hydrogen peroxide and sodium peroxodisulphate solutions. Ascorbic acid is dosed directly into the reactor.
  • the polymer gel obtained is metered into a 650 EX extruder (ECT-KEMA GmbH, Girbigsdorf, Germany).
  • the temperature of the polymer gel during extrusion is about 115 to 130°.
  • the perforated plate has 2764 holes with a hole diameter of 8 mm.
  • the thickness of the perforated plate is 33 mm.
  • the aperture ratio of the perforated plate is 42%.
  • the ratio of the internal length to the internal diameter of the extruder (L/D) is 4.
  • the pressure drop across the perforated plate is about 27 to 28 bar.
  • the simulator is programmable and can generate any desired drying profile one after the other - also with regard to the time course of a drying process.
  • the belt dryer simulator can be used to map drying in a circulating air belt dryer with one or more zones.
  • the height of the polymer gel bed is 9 cm. This requires either 1,285 g of extruded polymer gel.
  • the polymer gel is dried for 25 minutes.
  • the polymer gel is first flowed through from below for 1/3 of the time and then from above.
  • the temperature of the drying air is 135 to 170°C.
  • the speed of the drying air is 1.0 to 2.0 m/s.
  • the drying air contains 100 to 700 g of water vapor per kg of dry air. The exact conditions of the individual examples can be found in Table 1.
  • the dried polymer gel is coarsely comminuted, ground using a three-stage roller mill and sieved to a particle size of 150 to 700 ⁇ m. It is screened off in such a way that at least 95% by weight of the polymer particles have a particle size of 150 to 700 ⁇ m.
  • Tab. 1 Process conditions for the base polymer
  • Example 8 Comparing Example 8 with Example 1 shows the improvement in T20 by reducing the amount of initiator used in the polymerization.
  • Example 1 Comparing Example 1 with Example 4 shows the improvement in T20 by extrusion prior to drying.
  • Comparing Example 1 with Example 5 shows the improvement in T20 by lowering the drying air temperature.
  • Comparing example 5 with example 6 shows the slowdown in drying when drying air velocities are too low.
  • Comparing Example 5 with Example 7 shows the improvement in T20 by increasing drying air velocities.
  • Comparison of Example 2 with Example 1 shows the improvement in residual monomer content by increasing the water vapor content of the drying air.
  • Example 1 Comparing Example 1 with Example 3 shows the improvement in the sum of CRC and AlIHL by increasing the temperature in thermal surface post-crosslinking.
  • Examples 8 to 13 according to the invention have a T20 which is at least 12 s better than examples 1 to 6 (comparative examples).
  • An acrylic acid/sodium acrylate solution is prepared by continuously mixing deionized water, 50% strength by weight sodium hydroxide solution and acrylic acid, so that the degree of neutralization corresponds to 71.0 mol %.
  • the solids content of the monomer solution is 41.0% by weight.
  • Glycerol triacrylate (approx. 85% strength by weight) which has been ethoxylated three times is used as crosslinker b).
  • the amount used is 0.45% by weight, based on the acrylic acid used.
  • the monomer solution contains 0.75% by weight of polyethylene glycol 4000 (polyethylene glycol with an average molar mass of 4000 g/mol), based on the acrylic acid used.
  • the monomer solution is metered into a List Contikneter reactor with a volume of 6.3 m 3 (LIST AG, Arisdorf, Switzerland).
  • the throughput of the monomer solution is about 20 t/h.
  • the monomer solution is rendered inert with nitrogen between the point of addition for the crosslinking agent and the points of addition for the hydrogen peroxide and sodium peroxodisulphate solution. Ascorbic acid is dosed directly into the reactor.
  • the polymer gel obtained is metered into a 650 EX extruder (ECT-KEMA GmbH, Girbigsdorf, Germany).
  • the temperature of the polymer gel during extrusion is about 115 to 130°.
  • the perforated plate has 2764 holes with a hole diameter of 8 mm.
  • the thickness of the perforated plate is 33 mm.
  • the aperture ratio of the perforated plate is 42%.
  • the ratio of the internal length to the internal diameter of the extruder (L/D) is 4.
  • the pressure drop across the perforated plate is about 27 to 28 bar. Drying:
  • the simulator is programmable and can generate any desired drying profile one after the other - also with regard to the time course of a drying process.
  • the belt dryer simulator can be used to map drying in a circulating air belt dryer with one or more zones.
  • the height of the polymer gel bed is 9 cm. This requires 1,285 g of extruded polymer gel.
  • the polymer gel is dried for 25 minutes.
  • the polymer gel is first flowed through from below in the first three zones and then from above.
  • the residence time in each zone is 2.5 minutes.
  • the last zone is a cooling zone.
  • the temperature of the drying air is 140 to 198°C.
  • the speed of the drying air is 1.0 to 2.0 m/s.
  • the drying air contains 75 to 350 g of water vapor per kg of dry air. The exact conditions of the individual examples can be found in Table 4.
  • the dried polymer gel is coarsely comminuted, ground using a three-stage roller mill and sieved to a particle size of 150 to 700 ⁇ m. It is screened off in such a way that at least 95% by weight of the polymer particles have a particle size of 150 to 700 ⁇ m.
  • Tab. 4 Process conditions for the base polymer Tab. 4: Process conditions for the base polymer (continued)
  • Moisture content Moisture content of the polymer gel at the beginning of the zone T Dry air temperature v Dry air velocity
  • Example 14 In Examples 14 to 17, a fluffy polymer gel layer was obtained. If the layer is loose, there is a risk that drying air will flow between the polymer gel particles in random channels (by-pass). In Example 18, the relatively low speed of the Drying air at the very beginning of the drying together with the relatively low temperature of the drying gas to form a dense polymer gel layer.
  • solution A 5% by weight aluminum lactate (solution A) or a mixture of 3.0% by weight water, 1.5% by weight 1,2-propanediol and 0.04% by weight ethylene glycol diglycidyl ether (solution B) coated, each based on the polymer particles used.
  • solution A classified polymer particles with a particle size of 100 to 600 ⁇ m were used.
  • solution B classified polymer particles with a particle size of 300 to 600 ⁇ m were used.
  • Table 6 The exact conditions of the individual examples can be found in Table 6.

Abstract

Verfahren zur Herstellung von oberflächennachvernetzten Superabsorberpartikeln, wobei eine wässrige Monomerlösung mit wenig Initiator zu einem Polymergel polymerisiert wird, das erhaltene Polymergel durch eine Lochplatte extrudiert wird, das extrudierte Polymergel auf einem Umluftbandtrockner mit einer oder mehreren Zonen getrocknet wird und nach Mahlung und Klassierung die erhaltenen Polymerpartikel thermisch oberflächennachvernetzt werden, wobei bei der Trocknung in den vorderen Zonen des Umluftbandtrockners die Temperaturen des zugeführten Trockengases von 120 bis 160°C und die Geschwindigkeiten der zugeführten Luft von 1,2 bis 3,0 m/s betragen.

Description

Verfahren zur Herstellung von Superabsorberpartikeln
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von oberflächennachvernetzten Superabsorberpartikeln, wobei eine wässrige Monomerlösung mit wenig Initiator zu einem Polymergel polymerisiert wird, das erhaltene Polymergel durch eine Lochplatte extrudiert wird, das extrudierte Polymergel auf einem Umluftbandtrockner mit einer oder mehreren Zonen getrocknet wird und nach Mahlung und Klassierung die erhaltenen Polymerpartikel thermisch oberflächennachvernetzt werden, wobei bei der Trocknung in den vorderen Zonen des Umluftbandtrockners die Temperaturen des zugeführten Trockengases von 120 bis 160°C und die Geschwindigkeiten des zugeführten Trockengases von 1 ,2 bis 3,0 m/s betragen.
Superabsorber werden zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserrückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet. Die Superabsorber werden auch als wasserabsorbierende Polymere bezeichnet.
Die Herstellung von Superabsorbern wird in der Monografie ’’Modern Superabsorbent Polymer Technology”, F.L. Buchholz und A.T. Graham, Wiley-VCH, 1998, Seiten 71 bis 103, beschrieben.
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Gelbettpermeabilität (GBP) und Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi), werden Superabsorberpartikel im allgemeinen oberflächennachvernetzt. Dadurch steigt der Vernetzungsgrad der Partikeloberfläche, wodurch die Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi) und die Zentrifugenretentionskapazität (CRC) zumindest teilweise entkoppelt werden können. Diese Oberflächennachvernetzung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber getrocknete, gemahlene und abgesiebte Polymerpartikel (Grundpolymer) an der Oberfläche mit einem Oberflächennachvernetzer beschichtet und thermisch oberflächennachvernetzt. Dazu geeignete Vernetzer sind Verbindungen, die mit mindestens zwei Carboxylat- gruppen der Polymerpartikel kovalente Bindungen bilden können.
EP 0 289 338 A2 beschreibt ein Verfahren zur Trocknung von Polymergelen mittels eines Wasserdampfs enthaltenden Gases.
EP 1 002 806 A1 beschreibt ein Verfahren zur Trocknung von Polymergelen in drei definierten T rocknungsabschnitten.
WO 2006/100300 A1 beschreibt ein Verfahren zur Trocknung von Polymergelen auf einem Bandtrockner unter Einstellung von definierten Temperaturprofilen.
EP 2 557 095 A1 , WO 2014/118024 A1 und WO 2015/169912 A1 beschreiben Verfahren zur schonenden Extrusion von Polymergelen zur Verbesserung von Flüssigkeitsweiterleitung (SFC) und Quellgeschwindigkeit (FSR).
WO 2018/114702 A1 und WO 2018/114703 A1 beschreiben zur Extrusion von Polymergelen besonders geeignete Einwellenextruder.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Herstellung von oberflächennachvernetzten Superabsorberpartikeln, insbesondere zur Herstellung von oberflächennachvernetzten Superabsorberpartikeln mit schneller Flüssigkeitsaufnahme von 20 g/g (T20) bzw. schneller volumetrischer Flüssigkeitsaufnahme unter 0,3 psi (2,07 kPa) Druck (VAUL). Weiterhin sollten die oberflächennachvernetzten Superabsorberpartikel nur einen niedrigen Gehalt an Restmonomeren haben. Die Summe aus Zentrifugenretentionskapazität (CRC) und Absorption unter einem Druck von 49,2 g/cm2 (AlIHL) sollte dagegen möglichst groß sein.
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung von oberflächennachvernetzten Superabsorberpartikeln durch Polymerisation einer wässrigen Monomerlösung oder -suspension, enthaltend a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert ist, b) mindestens einen Vernetzer und c) mindestens einen Initiator, wobei die wässrige Monomerlösung oder -suspension zu einem Polymergel polymerisiert wird, das erhaltene Polymergel durch eine Lochplatte extrudiert wird, das extrudierte Polymergel auf einem Umluftbandtrockner mit einer oder mehreren Zonen getrocknet wird und nach Mahlung und Klassierung die erhaltenen Polymerpartikel thermisch oberflächennachvernetzt werden, dadurch gekennzeichnet, dass höchstens 0,14 Gew.-% Initiator c) eingesetzt werden, bezogen auf das Monomer a) vor der Neutralisation, in den vorderen Zonen des Umluftbandtrockners zu mindestens 50% der Gesamtverweilzeit in den vorderen Zonen die Temperaturen des zugeführten Trockengases von 120 bis 160°C betragen und in den vorderen Zonen des Umluftbandtrockners zu mindestens 20% der Gesamtverweilzeit in den vorderen Zonen die Geschwindigkeiten des zugeführten Trockengases von 1 ,2 bis 3,0 m/s betragen, wobei die vorderen Zonen des Umluftbandtrockners die Zonen des Umluftbandtrockners sind, wo der Feuchtegehalt des zu trocknenden Polymergels zumindest am Anfang der jeweiligen Zone mehr als 20 Gew.- % beträgt.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass die Flüssigkeitsaufnahme von 20 g/g (T20) nicht nur durch Extrusion des Polymergels vor der Trocknung beeinflusst wird. Der Gehalt an Extrahierbaren scheint ebenfalls einen erheblichen Einfluss zu haben. Der Gehalt an Extrahierbaren lässt sich dagegen durch die Menge an Initiator bei der Polymerisation und die Bedingungen bei der Trocknung steuern. Wichtig ist dabei, dass die Trocknung bei relativ niedrigen Temperaturen und relativ schnell durchgeführt wird.
In einer besonderen Ausführungsform der vorliegenden Erfindung betragen die Geschwindigkeiten des zugeführten Trockengases zusätzlich in den vorderen Zonen des Umluftbandtrockners zu 10 bis 80% der Gesamtverweilzeit in den vorderen Zonen von 0,1 bis 1 ,15 m/s, wobei die Zonen mit den niedrigeren Geschwindigkeiten vor den Zonen mit den höheren Geschwindigkeiten liegen. Dadurch werden gleichmäßigere und besser zu trocknende Polymergel- Schichten auf dem Umluftbandtrockner erhalten.
Die Wasserdampfgehalte des zugeführten Trockengases in den vorderen Zonen des Umluftbandtrockners betragen vorzugsweise mindestens 200 g, besonders bevorzugt mindestens 250 g, ganz besonders bevorzugt mindestens 300 g, jeweils pro kg trockenem Trockengas.
Die thermische Oberflächennachvernetzung wird bei einer Maximaltemperatur von vorzugsweise mindestens 180°C, besonders bevorzugt mindestens 185°C, ganz besonders bevorzugt mindestens 190°C, durchgeführt.
Es werden vorzugsweise höchstens 0,12 Gew.-%, bevorzugt höchstens 0,10 Gew.-%, besonders bevorzugt höchstens 0,08 Gew.-%, ganz besonders bevorzugt höchstens 0,06 Gew.-%, am meisten bevorzugt höchstens 0,04 Gew.-%, Initiator c) eingesetzt, jeweils bezogen auf das Monomer a) vor der Neutralisation. In den vorderen Zonen des Umluftbandtrockners betragen die Temperaturen des zugeführten Trockengases vorzugsweise von 125 bis 155°C, besonders bevorzugt von 130 bis 150°C, ganz besonders bevorzugt von 135 bis 145°C.
In den vorderen Zonen des Umluftbandtrockners betragen die Geschwindigkeiten des zugeführten Trockengases vorzugsweise von 1 ,3 bis 2,8 m/s, besonders bevorzugt von 1 ,4 bis 2,6 m/s, ganz besonders bevorzugt von 1 ,5 bis 2,4 m/s.
Die vorderen Zonen des Umluftbandtrockners sind die Zonen des Umluftbandtrockners, wo der Feuchtegehalt des zu trocknenden Polymergels zumindest am Anfang der jeweiligen Zone vorzugsweise mehr als 25 Gew.-%, besonders bevorzugt mehr als 29 Gew.-%, ganz besonders bevorzugt mehr als 32 Gew.-%, beträgt.
Die Temperatur des Polymergels bei der Extrusion beträgt vorzugsweise von 70 bis 125°C, besonders bevorzugt von 80 bis 115°C, ganz besonders bevorzugt von 90 bis 105°C.
Der Feuchtegehalt des Polymergels bei der Extrusion beträgt vorzugsweise von 20 bis 70 Gew.-%, besonders bevorzugt von 30 bis 65 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%.
Die Lochöffnungen der Lochplatte weisen einen Durchmesser von vorzugsweise 2 bis 20 mm, besonders bevorzugt 4 bis 15 mm, ganz besonders bevorzugt 6 bis 10 mm, auf.
Die Lochöffnungen der Lochplatte weisen eine Länge von vorzugsweise 15 bis 45 mm, besonders bevorzugt 20 bis 40 mm, ganz besonders bevorzugt 25 bis 35 mm, auf.
Im Folgenden wird die Herstellung der Superabsorber näher erläutert:
Die Superabsorber werden durch Polymerisation einer Monomerlösung oder -suspension hergestellt und sind üblicherweise wasserunlöslich.
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindestens 35 g/100 g Wasser.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Die Monomere a) enthalten üblicherweise Polymerisationsinhibitoren, vorzugsweise Hydrochinonmonomethylether (MEHQ), als Lagerstabilisator.
Geeignete Vernetzer b) sind Verbindungen mit mindestens zwei zur Vernetzung geeigneten Gruppen. Derartige Gruppen sind beispielsweise ethylenisch ungesättigte Gruppen, die in die Polymerkette radikalisch einpolymerisiert werden können, und funktionelle Gruppen, die mit den Säuregruppen des Monomers a) kovalente Bindungen ausbilden können. Weiterhin sind auch polyvalente Metallsalze, die mit mindestens zwei Säuregruppen des Monomeren a) koordinative Bindungen ausbilden können, als Vernetzer b) geeignet.
Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiac- rylat, Polyethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallylammoniumchlorid, Tetraallyloxyethan, wie in EP 0 530 438 A1 beschrieben, Di- und Triac- rylate, wie in EP 0 547 847 A1 , EP 0 559 476 A1 , EP 0 632 068 A1 , WO 93/21237 A1 , WO 03/104299 A1 , WO 03/104300 A1 , WO 03/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 02/032962 A2 beschrieben.
Die Menge an Vernetzer b) beträgt vorzugsweise 0,05 bis 1 ,5 Gew.-%, besonders bevorzugt 0,1 bis 1 Gew.-%, ganz besonders bevorzugt 0,3 bis 0,6 Gew.-%, jeweils berechnet auf die Gesamtmengen an eingesetztem Monomer a). Mit steigendem Vernetzergehalt sinkt die Zentrifugenretentionskapazität (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 (AUL0.3psi) durchläuft ein Maximum.
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen Radikale erzeugende Verbindungen eingesetzt werden, beispielsweise thermische Initiatoren, Redox-Initiatoren, Photoinitiatoren. Geeignete thermische Initiatoren sind Peroxomono- und disulfate sowie Peroxomono- und diphosphate. Geeignete Redox-Initiatoren sind Natriumperoxodisulfat/Ascor- binsäure, Wasserstoff-peroxid/Ascorbinsäure, Natriumperoxodisulfat/Natriumbisulfit und Was- serstoffperoxid/Natriumbisulfit. Vorzugsweise werden Mischungen aus thermischen Initiatoren und Redox-Initiatoren eingesetzt, wie Natriumperoxodisulfat/Wasserstoffperoxid/Ascorbinsäure. Als reduzierende Komponente wird vorzugsweise das Dinatriumsalz der 2-Hydroxy-2-sulfonato- essig-säure oder ein Gemisch aus dem Natriumsalz der 2-Hydroxy-2-sulfinatoessigsäure, dem Dinatriumsalz der 2-Hydroxy-2-sulfonatoessigsäure und Natriumbisulfit eingesetzt. Derartige Gemische sind als Brüggolite® FF6 und Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; Deutschland) erhältlich.
Die Menge an Initiator c) beträgt höchstens 0,14 Gew.-%, vorzugsweise höchstens 0,12 Gew.- %, bevorzugt höchstens 0,10 Gew.-%, besonders bevorzugt höchstens 0,08 Gew.-%, ganz besonders bevorzugt höchstens 0,06 Gew.-%, am meisten bevorzugt höchstens 0,04 Gew.-%, jeweils bezogen auf das Monomer a) vor der Neutralisation.
Üblicherweise wird eine wässrige Monomerlösung verwendet. Der Wassergehalt der Monomerlösung beträgt vorzugsweise von 40 bis 75 Gew.-%, besonders bevorzugt von 45 bis 70 Gew.-%, ganz besonders bevorzugt von 50 bis 65 Gew.-%. Es ist auch möglich Monomersuspensionen, d.h. Monomerlösungen mit der Löslichkeit überschreitendem Monomer a), beispielsweise Natriumacrylat, einzusetzen. Mit steigendem Wassergehalt steigt der Energieaufwand bei der anschließenden Trocknung und mit sinkendem Wassergehalt kann die Polymerisationswärme nur noch ungenügend abgeführt werden.
Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisierung, d.h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff oder Kohlendioxid, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffgehalt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, ganz besonders bevorzugt auf weniger als 0,1 Gew.-ppm, gesenkt.
Geeignete Reaktoren für die Polymerisation sind beispielsweise Knetreaktoren oder Bandreaktoren. Im Kneter wird das bei der Polymerisation einer wässrigen Monomerlösung oder -suspension entstehende Polymergel durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert, wie in WO 2001/038402 A1 beschrieben. Ebenso können Kneter mit gleichlaufenden Knetwellen eingesetzt werden. Die Polymerisation auf dem Band wird beispielsweise in DE 38 25 366 A1 und US 6,241 ,928 beschrieben.
Das erhaltene Polymergel wird anschließend durch eine Lochplatte extrudiert. Die Lochöffnungen der Lochplatte sind in ihrer Form im Wesentlichen nicht beschränkt und können z. B. kreisförmig, oval, rechteckig, dreieckig, sechseckig, sternförmig oder irregulär geformt sein. Bevorzugt sind die Lochöffnungen der Lochplatte kreisförmig. Der Durchmesser der Löcher liegt vorzugsweise im Bereich von 2 bis 20 mm, besonders bevorzugt 4 bis 15 mm, ganz besonders bevorzugt 6 bis 10 mm. Bei nicht-kreisförmigen Öffnungen ist der Lochdurchmesser als der flächenbezogene Äquivalentdurchmesser, d. h. als der Durchmesser eines Kreises gleicher Querschnittsfläche definiert.
Die Länge der Löcher in der Lochplatte liegt im Bereich von vorzugsweise von 15 bis 45 mm, besonders bevorzugt von 20 bis 40 mm, ganz besonders bevorzugt von 25 bis 35 mm. Wenn es sich bei den Löchern um Bohrungen in der Lochplatte handelt, entspricht die Dicke der Lochplatte der Länge der Löcher. Die Öffnungen können auch in Form von rohrförmigen Einsätzen in der Lochplatte verwirklicht sein, welche über die Lochplatte hinausragen können. In diesem Fall entspricht die Lochlänge der Länge der Einsätze.
Der Extruder besteht üblicherweise aus einem länglichen Gehäuse, einer mit der Lochplatte versehenen Auslassöffnung und mindestens einer im Gehäuse rotierenden Schneckenwelle, die das Polymergel unter Erzeugung eines Gegendrucks in Richtung der Auslassöffnung befördert. Im Allgemeinen extrudiert man das Polymergel vom hohen Druck im Inneren des Extruders durch die Lochplatte an die Umgebung. Um ein übermäßiges Abkühlen oder Aufheizen des Polymergels während der Extrusion zu vermeiden, wird der Extruder vorzugsweise je nach Bedarf begleitbeheizt, besonders bevorzugt mit Heizdampf, bzw. begleitgekühlt. Die Extrusion kann sowohl kontinuierlich als auch diskontinuierlich betrieben werden.
Besonders geeignete Extruder werden beispielsweise in WO 2018/114702 A1 und WO 2018/114703 A1 beschrieben.
Wird die Polymerisation in einem Knetreaktor durchgeführt, beträgt der Druckverlust über die Lochplatte bei der Extrusion vorzugsweise von 5 bis 45 bar, besonders bevorzugt von 10 bis 40 bar, ganz besonders bevorzugt von 15 bis 35 bar, und das Öffnungsverhältnis der Lochplatte vorzugsweise von 5,0 bis 50, besonders bevorzugt von 7,5 bis 30%, ganz besonders bevorzugt von 10,0 bis 20%. Das Öffnungsverhältnis ist definiert als das Verhältnis der offenen Fläche (Summe der Lochflächen) der Lochplatte zur maximal nutzbaren Fläche der Lochplatte.
Wird die Polymerisation mittels eines Bandreaktors durchgeführt, so beträgt der Druckverlust über die Lochplatte bei der Extrusion vorzugsweise von 3 bis 15 bar, besonders bevorzugt von 4 bis 14 bar, ganz besonders bevorzugt von 5 bis 13 bar, und das Öffnungsverhältnis der Lochplatte vorzugsweise von 35 bis 75, besonders bevorzugt von 40 bis 70%, ganz besonders bevorzugt von 45 bis 65%. Das Öffnungsverhältnis ist definiert als das Verhältnis der offenen Fläche (Summe der Lochflächen) der Lochplatte zur maximal nutzbaren Fläche der Lochplatte.
Das Polymergel erfährt bei der Extrusion, v.a. durch die Einwirkung der rotierende(n) Schne- ckenwelle(n), einen mechanischen Energieeintrag. Zu hohe Energieeinträge führen zu einer Schädigung der inneren Struktur des Polymergels.
Der Energieeintrag kann beispielsweise über das Verhältnis von Innenlänge zu Innendurchmesser des Extruders (L/D) beeinflusst werden. Das Verhältnis von Innenlänge zu Innendurchmesser des Extruders beträgt vorzugsweise 1 bis 6,0, besonders bevorzugt 2 bis 5,5, ganz besonders bevorzugt 3 bis 5,0.
Die bei der Extrusion eingetragene spezifische mechanische Energie (SME) beträgt vorzugsweise von 2,5 bis 60 kWh/t, besonders bevorzugt von 5,0 bis 50 kWh/t, ganz besonders bevorzugt von 10,0 bis 40 kWh/t. Die spezifische mechanische Energie (SME) ist die Motorleistung des Extruders in kW dividiert durch den Durchsatz an Polymergel in t/h. Dadurch wird eine Schädigung des Polymergels bei der Extrusion vermieden. Während der Extrusion weist das Polymergel eine Temperatur im Bereich von vorzugsweise 70 bis 125°C, besonders bevorzugt 80 bis 115°C, ganz besonders bevorzugt 90 bis 105°C auf.
Der Feuchtegehalt des Polymergels beträgt vor dem Durchtritt durch die Lochplatte vorzugsweise von 20 bis 70 Gew.-%, besonders bevorzugt von 30 bis 65 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%. Da die Extrusion mit der Verdampfung von Wasser verbunden sein kann, sinkt der Feuchtegehalt des Polymergels während der Extrusion im Allgemeinen an. Das Verhältnis des Feuchtegehalts des Polymergels nach dem Durchtritt durch die Lochplatte zum Feuchtegehalts des Polymergels vor dem Durchtritt durch die Lochplatte (FGnach- Extr/FGvorExtr) beträgt vorzugsweise mindestens 0,99, besonders bevorzugt mindestens 0,95, ganz besonders bevorzugt mindestens 0,91.
Die Säuregruppen des Polymergels sind üblicherweise teilweise neutralisiert. Die Neutralisation wird vorzugsweise auf der Stufe der Monomeren durchgeführt. Dies geschieht üblicherweise durch Einmischung des Neutralisationsmittels als wässrige Lösung oder bevorzugt auch als Feststoff. Der Neutralisationsgrad beträgt vorzugsweise von 40 bis 85 mol-%, besonders bevorzugt von 50 bis 80 mol-%, ganz besonders bevorzugt von 60 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallkarbonate oder Alkalimetallhydrogenkarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natriumkarbonat oder Natriumhydrogenkarbonat sowie deren Mischungen. Feste Carbonate und Hydrogencarbonate können hierbei auch in verkapselter Form eingesetzt werden, vorzugsweise in die Monomerlösung direkt vor der Polymerisation, während oder nach der Polymerisation ins Polymergel und vor dessen Trocknung. Die Verkapselung erfolgt durch Beschichtung der Oberfläche mit einem unlöslichen oder nur langsam löslichen Material (beispielsweise mittels filmbildender Polymere, inerter anorganischer Materialien oder schmelzbaren organischer Materialien), welches die Lösung und Reaktion des festen Carbonats oder Hydrogencarbonats so verzögert, dass erst während der Trocknung Kohlendioxid freigesetzt wird und der entstehende Superabsorber eine hohe innere Porosität aufweist.
Das extrudierte Polymergel wird dann mit einem Umluftbandtrockner mit einer oder mehreren Zonen getrocknet bis der Feuchtegehalt vorzugsweise 0,5 bis 10 Gew.-%, besonders bevorzugt 1 bis 7 Gew.-%, ganz besonders bevorzugt 2 bis 5 Gew.-%, beträgt, wobei der Feuchtegehalt gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 230.2-05 "Mass Loss Upon Heating" bestimmt wird. Die Zonen des Umluftbandtrockners sind räumlich getrennte Bereiche in denen die Trockenbedingungen wie Temperatur, Geschwindigkeit und Feuchte des Trockengases individuell eigestellt werden können. In der Monografie ’’Modern Superabsorbent Polymer Technology”, F.L. Buchholz und A.T. Graham, Wiley-VCH, 1998, Seite 89, Abbildung 3.6, wird ein Umluftbandtrockner mit fünf Zonen und einer Abkühlzone gezeigt. Bei einer zu hohen Feuchte weist das getrocknete Polymergel eine zu niedrige Glasübergangstemperatur Tg auf und ist nur schwierig weiter zu verarbeiten. Bei einer zu niedrigen Feuchte ist das getrocknete Polymergel zu spröde und in den anschließenden Zerkleinerungsschritten fallen unerwünscht große Mengen an Polymerpartikeln mit zu niedriger Partikelgröße („fines“) an. Der Feuchtegehalt des Polymergels beträgt vor der Trocknung vorzugsweise von 20 und 70 Gew.-%, besonders bevorzugt von 30 bis 65 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%. Anschließend wird das getrocknete Polymergel gebrochen und optional grob zerkleinert.
Für eine schnelle Flüssigkeitsaufnahme von 20 g/g (T20) sind die Trockenbedingungen in den vorderen Zonen des Umluftbandtrockners entscheidend. Die vorderen Zonen des Umluftbandtrockners sind die Zonen, wo der Feuchtegehalt des zu trocknenden Polymergels zumindest am Anfang der jeweiligen Zone mehr als 20 Gew.-%, vorzugsweise mehr als 25 Gew.-%, besonders bevorzugt mindestens 29 Gew.-%, ganz besonders bevorzugt mindestens 32 Gew.-%, beträgt. In den vorderen Zonen des Umluftbandtrockners betragen die Temperaturen des zugeführten Trocknungsgases zu mindestens 50%, vorzugsweise zu mindestens 60%, besonders bevorzugt zu mindestens 70%, ganz besonders bevorzugt zu mindestens 80%, der Gesamtverweilzeit in den vorderen Zonen von 120 bis 160°C, vorzugsweise von 125 bis 155°C, besonders bevorzugt von 130 bis 150°C, ganz besonders bevorzugt von 135 bis 145°C.
In den vorderen Zonen des Umluftbandtrockners betragen die Geschwindigkeiten des zugeführten Trocknungsgases zu mindestens 20%, vorzugsweise zu mindestens 30%, besonders bevorzugt zu mindestens 40%, ganz besonders bevorzugt zu mindestens 50%, der Gesamtverweilzeit in den vorderen Zonen von 1 ,2 bis 3,0 m/s, vorzugsweise von 1 ,3 bis 2,8 m/s, besonders bevorzugt von 1 ,4 bis 2,6 m/s, ganz besonders bevorzugt von 1 ,5 bis 2,4 m/s.
Die Anzahl der vorderen Zonen unterliegt keiner Beschränkung. Für den Fall, dass alle Zonen die Bedingung für den Feuchtegehalt erfüllen, weil der Umluftbandtrockner beispielsweise nur eine einzige Zone hat, umfassen die vorderen Zonen im Sinne dieser Erfindung den gesamten Umluftbandtrockner.
In einer besonderen Ausführungsform der vorliegenden Erfindung werden in den ersten Zonen des Umluftbandtrockners niedrigere Geschwindigkeiten des zugeführten Trockengases eingestellt. In den vorderen Zonen des Umluftbandtrockners betragen die Geschwindigkeiten des zugeführten Trockengases dann zusätzlich zu 10 bis 50%, vorzugsweise zu 15 bis 70%, besonders bevorzugt zu 20 bis 60%, ganz besonders bevorzugt zu 25 bis 50%, der Gesamtverweilzeit in den vorderen Zonen die Geschwindigkeiten des zugeführten Trockengases von 0,1 bis 1 ,15 m/s, vorzugsweise von 0,3 bis 1 ,10 m/s, besonders bevorzugt von 0,5 bis 1 ,05 m/s, ganz besonders bevorzugt von 0,7 bis 1 ,00 m/s.
Hat ein Umluftbandtrockner insgesamt 10 Zonen und die Verweilzeit beträgt in jeder Zone 5 Minuten und der Anfangswert für den Feuchtegehalt des zu trocknenden Polymergels wird nur in den ersten vier Zonen erfüllt, so beträgt die Gesamtverweilzeit in den vorderen Zonen 20 Minuten.
Beträgt die Geschwindigkeit des zugeführten Trockengases gemäß der besonderen Ausführungsform in der ersten Zone 1 ,00 m/s und in den folgenden drei Zonen 2,0 m/s, so berechnet sich die Verweilzeit bei einer Geschwindigkeit des zugeführten Trockengases von 1 ,00 m/s zu 25% der Gesamtverweilzeit in den vorderen Zonen und die Verweilzeit bei einer Geschwindigkeit des zugeführten Trockengases von 2,0 m/s zu 75% der Gesamtverweilzeit in den vorderen Zonen.
Das zu trocknende Polymergel kann im Umluftbandtrockner von unten oder von oben angeströmt werden. Für eine gleichmäßige Trocknung ist es zweckmäßig das zu trocknende Polymergel zunächst für ca. 1/3 der Verweilzeit im Umluftbandtrockner von unten und anschließend das zu trocknende Polymergel von oben anzuströmen. Eine derartige Vorgehensweise und deren Vorteile werden in WO 2006/100300 A1 beschrieben.
Geeignete Trockengase sind beispielsweise Luft, Stickstoff und Luft-Stickstoffgemische. Die Trocknung könnte aber auch mit überhitztem Wasserdampf als Trockengas durchgeführt werden, wie in Kapitel 19 „Superheated Steam Drying“ des „Handbook of Industrial Drying“, 3. Auflage, 2006, ISBN 9781420017618, beschrieben.
In den vorderen Zonen des Umluftbandtrockners sollten die Wasserdampfgehalte zu mindestens 50%, vorzugsweise zu mindestens 60%, besonders bevorzugt zu mindestens 70%, ganz besonders bevorzugt zu mindestens 80%, der Verweilzeit in den vorderen Zonen vorzugsweise mindestens 200 g, besonders bevorzugt mindestens 250 g, ganz besonders bevorzugt mindestens 300 g, betragen, jeweils pro kg trockenem Trockengas. Dadurch werden nicht umgesetzte Monomere a) während der Trocknung besser abgebaut. Der Wasserdampfgehalt des zugeführten Trockengases kann durch aktive Zuführung von Wasser über Düsen oder Zerstäuber, durch Zufuhr von Wasserdampf, oder durch Befeuchtung des Trockenguts erreicht werden. Ebenso ist es möglich den Wasserdampfgehalt aus dem Trockengut ganz oder teilweise selbst zu erzeugen, beispielsweise indem die Frischluftzufuhr entsprechend geregelt wird und die Durchlüftung des Trockenguts selbst passend eingestellt wird. Beispielsweise kann in den vorderen Zonen eine niedrige Trockentemperatur, eine verringerte Frischluftzufuhr und eine verlangsamte Durchströmung des Trockenguts genutzt werden.
Das getrocknete Polymergel wird hiernach üblicherweise gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, bevorzugt zwei- oder dreistufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen, eingesetzt werden können.
Die mittlere Partikelgröße der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugsweise mindestens 200 pm, besonders bevorzugt von 250 bis 600 pm, ganz besonders von 300 bis 500 pm. Die mittlere Partikelgröße der Produktfraktion kann mittels der von der EDANA empfohlenen Testmethode Nr. WSP 220.2-05 "Partikel Size Distribution" ermittelt werden, wobei die Massenanteile der Siebfraktionen kumuliert aufgetragen werden und die mittlere Partikelgröße graphisch bestimmt wird. Die mittlere Partikelgröße ist hierbei der Wert der Maschenweite, der sich für kumulierte 50 Gew.-% ergibt.
Der Anteil an Partikeln mit einer Partikelgröße von größer 150 pm beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Polymerpartikel mit zu niedriger Partikelgröße senken die Permeabilität (SFC). Daher sollte der Anteil zu kleiner Polymerpartikel („fines“) niedrig sein.
Zu kleine Polymerpartikel werden daher üblicherweise abgetrennt und in das Verfahren rückgeführt. Dies geschieht vorzugsweise vor, während oder unmittelbar nach der Polymerisation, d.h. vor der Trocknung des Polymergels. Die zu kleinen Polymerpartikel können vor oder während der Rückführung mit Wasser und/oder wässrigem Tensid angefeuchtet werden.
Es ist auch möglich in späteren Verfahrensschritten zu kleine Polymerpartikel abzutrennen, beispielsweise nach der Oberflächennachvernetzung oder einem anderen Beschichtungsschritt. In diesem Fall sind die rückgeführten zu kleinen Polymerpartikel oberflächennachvernetzt bzw. anderweitig beschichtet, beispielsweise mit pyrogener Kieselsäure.
Wird zur Polymerisation ein Knetreaktor verwendet, so werden die zu kleinen Polymerpartikel vorzugsweise während des letzten Drittels der Polymerisation zugesetzt.
Werden die zu kleinen Polymerpartikel sehr früh zugesetzt, beispielsweise bereits zur Monomerlösung, so wird dadurch die Zentrifugenretentionskapazität (CRC) der erhaltenen wasserabsorbierenden Polymerpartikel gesenkt. Dies kann aber beispielsweise durch Anpassung der Einsatzmenge an Vernetzer b) kompensiert werden.
Werden die zu kleinen Polymerpartikel sehr spät zugesetzt, beispielsweise erst in einem dem Polymerisationsreaktor nachgeschalteten Apparat, beispielsweise einem Extruder, so lassen sich die zu kleinen Polymerpartikel nur noch schwer in das erhaltene Polymergel einarbeiten. Unzureichend eingearbeitete zu kleine Polymerpartikel lösen sich aber während der Mahlung wieder von dem getrockneten Polymergel, werden beim Klassieren daher erneut abgetrennt und erhöhen die Menge rückzuführender zu kleiner Polymerpartikel. Der Anteil an Partikeln mit einer Partikelgröße von höchstens 850 pm, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 600 pm, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Polymerpartikel mit zu großer Partikelgröße senken die Quellgeschwindigkeit. Daher sollte der Anteil zu großer Polymerpartikel ebenfalls niedrig sein.
Zu große Polymerpartikel werden daher üblicherweise abgetrennt und in die Mahlung des getrockneten Polymergels rückgeführt.
Die Polymerpartikel werden zur weiteren Verbesserung der Eigenschaften thermisch oberflächennachvernetzt. Geeignete Oberflächennachvernetzer sind Verbindungen, die Gruppen enthalten, die mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise polyfunktionelle Amine, polyfunktionelle Amidoamine, polyfunktionelle Epoxide, wie in EP 0 083 022 A2, EP 0 543 303 A1 und EP 0 937 736 A2 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE 33 14 019 A1 , DE 35 23 617 A1 und EP 0 450 922 A2 beschrieben, oder ß-Hydroxyalkylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben. Besonders geeignete Oberflächennachvernetzer sind Ethylenkarbonat und dessen Derivate, sowie 2-Oxazolidon und dessen Derivate. Besonders bevorzugt sind Ethylenkarbonat und N-(2-Hydroxyethyl)-2-oxazolidinon.
Die Menge an Oberflächennachvernetzer beträgt vorzugsweise 0,001 bis 2 Gew.-%, besonders bevorzugt 0,02 bis 1 Gew.-%, ganz besonders bevorzugt 0,05 bis 0,2 Gew.-%, jeweils bezogen auf die Polymerpartikel.
Neben den Oberflächennachvernetzern können polyvalente Kationen auf die Partikeloberfläche aufgebracht werden.
Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind beispielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Seltenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Chlorid, Bromid, Hydroxid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbonat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und Carboxylat, wie Acetat und Lactat, möglich. Aluminiumhydroxid, Aluminiumsulfat und Aluminiumlaktat sind bevorzugt.
Die Einsatzmenge an polyvalentem Kation beträgt beispielsweise 0,001 bis 1 ,5 Gew.-%, vorzugsweise 0,005 bis 1 Gew.-%, besonders bevorzugt 0,02 bis 0,8 Gew.-%. jeweils bezogen auf das Polymer.
Die Oberflächennachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Oberflächennachvernetzers auf die getrockneten Polymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen werden die mit Oberflächennachvernetzer beschichteten Polymerpartikel thermisch behandelt.
Das Aufsprühen einer Lösung des Oberflächennachvernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Scheibenmischer und Schaufelmischer, durchgeführt. Besonders bevorzugt sind Horizontalmischer, wie Schaufelmischer, ganz besonders bevorzugt sind Vertikalmischer. Die Unterscheidung in Horizontalmischer und Vertikalmischer erfolgt über die Lagerung der Mischwelle, d.h. Horizontalmischer haben eine horizontal gelagerte Mischwelle und Vertikalmischer haben eine vertikal gelagerte Mischwelle. Geeignete Mischer sind beispielsweise Horizontale Pflugschar® Mischer (Gebr. Lödige Maschinenbau GmbH; Paderborn; Deutschland), Vrieco-Nauta Continuous Mixer (Hosokawa Micron BV; Doetinchem; Niederlande), Processall Mixmill Mixer (Processall Incorporated; Cincinnati; USA) und Schugi Flexomix® (Hosokawa Micron BV; Doetinchem; Niederlande). Es ist aber auch möglich die Oberflächennachvernetzerlösung in einem Wirbelbett aufzusprühen.
Die Oberflächennachvernetzer werden typischerweise als wässrige Lösung eingesetzt. Über den Gehalt an nichtwässrigem Lösungsmittel bzw. Gesamtlösungsmittelmenge kann die Eindringtiefe des Oberflächennachvernetzers in die Polymerpartikel eingestellt werden.
Die thermische Behandlung wird vorzugsweise in Kontakttrocknern, besonders bevorzugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH; Lein-garten; Deutschland), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH; Leingarten; Deutschland), Holo-Flite® dryers (Metso Minerals Industries Inc.; Danville; USA) und Nara Paddle Dryer (NARA Machinery Europe; Frechen; Deutschland). Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Oberflächennachvernetzung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Besonders vorteilhaft wird in einem Wirbelschichttrockner gemischt und thermisch oberflächennachvernetzt.
Die Reaktionstemperaturen liegen im Bereich von vorzugsweise 180 bis 250°C, besonders bevorzugt von 185 bis 220°C, ganz besonders bevorzugt von 190 bis 210°C. Die bevorzugte Verweilzeit bei dieser Temperatur beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten, und üblicherweise höchstens 60 Minuten.
Bei entsprechend hohen Reaktionstemperaturen werden besonders hohe Werte für die Summe aus Zentrifugenretentionskapazität (CRC) und Absorption unter einem Druck von 49,2 g/cm2 (AU HL) erreicht.
Sofern Oberflächennachvernetzer mit Epoxid-Gruppen eingesetzt werde, beispielsweise Ethyl- englykoldiglycidylether, kann die Temperatur in der Oberflächennachvernetzung auch deutlich darunter liegen.
Anschließend können die oberflächennachvernetzten Polymerpartikel erneut klassiert werden, wobei zu kleine und/oder zu große Polymerpartikel abgetrennt und in das Verfahren rückgeführt werden.
Die oberflächennachvernetzten Polymerpartikel können zur weiteren Verbesserung der Eigenschaften beschichtet oder nachbefeuchtet werden.
Die Nachbefeuchtung wird vorzugsweise bei 30 bis 80°C, besonders bevorzugt bei 35 bis 70°C, ganz besonders bevorzugt bei 40 bis 60°C, durchgeführt. Bei zu niedrigen Temperaturen neigen die Polymerpartikel zum Verklumpen und bei höheren Temperaturen verdampft bereits merklich Wasser. Die zur Nachbefeuchtung eingesetzte Wassermenge beträgt vorzugsweise von 1 bis 10 Gew.-%, besonders bevorzugt von 2 bis 8 Gew.-%, ganz besonders bevorzugt von 3 bis 5 Gew.-%. Durch die Nachbefeuchtung wird die mechanische Stabilität der Polymerpartikel erhöht und deren Neigung zur statischen Aufladung vermindert. Vorteilhaft wird die Nachbefeuchtung im Kühler nach der thermischen Oberflächennachvernetzung durchgeführt.
Geeignete Beschichtungen zur Verbesserung der Quellgeschwindigkeit sowie der Gelbettpermeabilität (GBP) sind beispielsweise anorganische inerte Substanzen, wie wasserunlösliche Metallsalze, organische Polymere, kationische Polymere sowie zwei- oder mehrwertige Metallkationen. Geeignete Beschichtungen zur Staubbindung sind beispielsweise Polyole. Geeignete Beschichtungen gegen die unerwünschte Verbackungsneigung der Polymerpartikel sind beispielsweise pyrogene Kieselsäure, wie Aerosil® 200, Fällungskieselsäure, wie Sipernat® D17, und Tenside, wie Span® 20.
Methoden:
Die nachfolgend beschriebenen, mit „WSP“ bezeichneten Standard-Testmethoden werden beschrieben in: „Standard Test Methods for the Nonwovens Industry“, Ausgabe 2005, gemeinsam herausgegeben von den „Worldwide Strategie Partners“ EDANA (Herrmann-Debrouxlaan 46, 1160 Oudergem, Belgien, www.edana.org) und INDA (1100 Crescent Green, Suite 115, Cary, North Carolina 27518, USA, www.inda.org). Diese Veröffentlichung ist sowohl von EDANA als auch von INDA erhältlich.
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 ± 2°C und einer relativen Luftfeuchte von 50 ± 10% durchgeführt werden. Die Superabsorberpartikel werden vor der Messung gut durchmischt.
Restmonomer
Der Gehalt an Restmonomer wird gemäß der von der EDANA empfohlenen Testmethode WSP Nr. 210.2 (05) "Residual Monomers" bestimmt.
Feuchtegehalt
Der Feuchtegehalt wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 230.2 (05) "Mass Loss Upon Heating" bestimmt. Bei Feuchtegehalten über 5 Gew.-% ist die Trockenzeit bei 105 ± 2°C bis zur Gewichtskonstanz zu verlängern.
Zur Bestimmung des Feuchtegehalts des zu trocknenden Polymergels werden 1 ,0 bis 1 ,5 kg Polymergel bei 105 ± 2°C bis zur Gewichtskonstanz getrocknet. Zur Beschleunigung der Trocknung kann das Polymergel zwischendurch zerkleinert werden.
Bei kleineren Mengen, beispielsweise bei einer Trocknung im Bandtrocknersimulator, können auch Zwischenwägungen mit der Gesamtmenge an Polymergel durchgeführt werden. Die Menge an Polymergel kann in diesem Fall auch weniger als 1 ,0 kg betragen. Im letzten Schritt wird bei 105 ± 2°C bis zur Gewichtskonstanz getrocknet. Die Feuchtegehalte des Polymergels bei den Zwischenwägungen wird anschließend rechnerisch emittelt.
Zentrifugenretentionskapazität (Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 241.2 (05) "Fluid Retention Capacity in Saline, After Centrifugation" bestimmt.
Absorption unter einem Druck von 21 ,0 g/cm2 (Absorption under Load)
Die Absorption unter einem Druck von 21 ,0 g/cm2 (AUL) wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 242.2 (05) "Absorption Under Pressure, Gravimetrie Determination" bestimmt. Absorption unter einem Druck von 49,2 q/cm2 (Absorption under High Load)
Die Absorption unter einem Druck von 49,2 g/cm2 (AlIHL) wird analog der von der EDANA empfohlenen Testmethode Nr. WSP 242.2 (05) "Absorption Under Pressure, Gravimetrie Determination" bestimmt, wobei statt eines Drucks von 21 ,0 g/cm2 (0.3psi) ein Druck von 49,2 g/cm2 (0.7psi) eingestellt wird.
Extrahierbare
Der Gehalt an extrahierbaren Bestandteilen der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 270.2 (05) "Extractable" bestimmt.
Flüssigkeitsaufnahme von 20 g/g (T20)
Die Flüssigkeitsaufnahme von 20 g/g (T20) wird gemäß der in der EP 2 535 027 A1 auf den Seiten 13 bis 18 beschriebenen Testmethode ,,K(t) Test Method (Dynamic Effective Permeability and Uptake Kinetics Measurement Test Method)“ bestimmt. volumetrische Flüssigkeitsaufnahme unter 0,3 psi (2,07 kPa) Druck (VAUL)
Bei der volumetrischen Flüssigkeitsaufnahme unter 0,3 psi (2,07 kPa) Druck (VAUL) wird der T-Wert gemäß der in der in EP 2 922 882 B1 auf der Seite 22 beschriebenen Testmethode „Volumetrie Absorbency Under Load (VAUL)“ bestimmt. Der T-Wert wird dort als „characteristic swelling time“ bezeichnet.
Flüssigkeitsweiterleitung (Saline Flow Conductivity)
Die Flüssigkeitsweiterleitung (SFC) wird gemäß der in der EP 2 535 698 A1 auf den Seiten 19 bis 22 beschrieben Testmethode „Urine Permeability Measurement (UPM) Test method“ bestimmt.
Beispiele
Beispiele 1 bis 13
Polymerisation:
Durch kontinuierliches Mischen von entionisiertem Wasser, 50 gew.-%iger Natronlauge und Acrylsäure wird eine Acrylsäure/Natriumacrylat-Lösung hergestellt, so dass der Neutralisationsgrad 71 ,0 mol-% entspricht. Der Feststoffgehalt der Monomerlösung beträgt 41 ,0 Gew.-%.
Als Vernetzer b) wird 3-fach ethoxiliertes Glyzerintriacrylat (ca. 85 gew.-%ig) verwendet. Die Einsatzmenge beträgt 0,45 Gew.-%, bezogen auf eingesetzte Acrylsäure. Zusätzlich enthält die Monomerlösung 0,75 Gew.-% Polyethylenglykol-4000 (Polyethylenglykol mit einer mittleren Molmasse von 4.000 g/mol), bezogen auf eingesetzte Acrylsäure.
Zur Initiierung der radikalischen Polymerisation werden 0,0005 bis 0,0020 Gew.-% Wasserstoffperoxid, 0,06 bis 0,15 Gew.-% Natriumperoxodisulfat und 0,0076 Gew.-% Ascorbinsäure eingesetzt, jeweils bezogen auf eingesetzte Acrylsäure. Die genauen Bedingungen der einzelnen Beispiele finden sich in Tabelle 1.
Die Monomerlösung wird in einen Reaktor vom Typ List Contikneter mit einem Volumen 6,3m3 (LIST AG, Arisdorf, Schweiz) dosiert. Der Durchsatz der Monomerlösung beträgt ca. 20 t/h. Zwischen dem Zugabepunkt für den Vernetzer und den Zugabestellen für die Wasserstoffperoxid- und Natriumperoxodisulfatlösungen wird die Monomerlösung mit Stickstoff inertisiert. Ascorbinsäure wird direkt in den Reaktor dosiert.
Nach ca. 50% der Verweilzeit werden zusätzlich ca. 1.200 kg/h durch Zerkleinerung und Klassierung im Herstellungsprozess anfallende Polymerpartikel mit einer Partikelgröße von weniger als 150 pm in den Reaktor dosiert. Die Verweilzeit der Reaktionsmischung im Reaktor beträgt ca. 15 Minuten.
Extrusion:
Das erhaltene Polymergel wird in einen Extruder vom Typ 650 EX (ECT-KEMA GmbH, Girbigsdorf, Deutschland) dosiert.
Die Temperatur des Polymergels bei der Extrusion beträgt ca. 115 bis 130°. Die Lochplatte hat 2764 Löcher mit einem Lochdurchmesser von 8 mm. Die Dicke der Lochplatte beträgt 33 mm. Das Öffnungsverhältnis der Lochplatte beträgt 42%. Das Verhältnis von Innenlänge zu Innendurchmesser des Extruders (L/D) beträgt 4. Der Druckverlust über die Lochplatte beträgt ca. 27 bis 28 bar.
Trocknung:
Es werden noch heiße Proben des Polymergels entnommen und in einen stationären Bandtrocknersimulator locker geschichtet.
Der Bandtrocknersimulator ist ein zylindrischer Edelstahltopf mit Siebboden. Das Polymergel wird dabei wahlweise entweder von unten oder von oben mit Trocknungsluft durchströmt. Kontrolliert einstellbar sind die Richtung, Temperatur, Feuchte (Injektion von Dampf) und die Menge (= Geschwindigkeit) der Trocknungsluft. Der Simulator ist programmierbar und kann verschiedene beliebige Trocknungsprofile nacheinander erzeugen - auch hinsichtlich des zeitlichen Verlaufs einer Trocknung. Mit dem Bandtrocknersimulator kann die Trocknung in einem Umluftbandtrockner mit einer oder mehreren Zonen abgebildet werden.
Beim Einfüllen des Polymergels ist darauf zu achten, dass die Trocknungsluft durch das poröse Polymergelbett strömen kann. Die Höhe des Polymergelbetts beträgt 9 cm. Dazu werden entweder 1 .285 g extrudiertes Polymergel benötigt.
Das Polymergel wird 25 Minuten getrocknet. Das Polymergel wird dabei zunächst 1/3 der Zeit von unten durchströmt und anschließend von oben. Die Temperatur der Trockenluft beträgt 135 bis 170°C. Die Geschwindigkeit der Trockenluft beträgt 1 ,0 bis 2,0 m/s. Die Trocknungsluft enthält 100 bis 700 g Wasserdampf pro kg trockener Luft. Die genauen Bedingungen der einzelnen Beispiele finden sich in Tabelle 1.
Zerkleinerung und Klassierung:
Das getrocknete Polymergel wird grob zerkleinert, mittels eines dreistufigen Walzenstuhls gemahlen und auf eine Partikelgröße von 150 bis 700 pm abgesiebt. Es wird so abgesiebt, dass mindestens 95 Gew.-% der Polymerpartikel eine Partikelgröße von 150 bis 700 pm aufweisen. Tab. 1: Verfahrensbedingungen für das Grundpolymer
Figure imgf000015_0001
NaPS Natriumperoxodisulfat bezogen auf eingesetzte Acrylsäure H2O2 Wasserstoffperoxid bezogen auf eingesetzte Acrylsäure
T T emperatur der T rockenluft v Geschwindigkeit der T rockenluft
Feuchte Feuchte der T rockenluft
*) Vergleichsbeispiel
**) nicht vollständig getrocknet
***) 60 Minuten getrocknet
Tab. 2: Eigenschaften des Grundpolymers
Figure imgf000015_0002
*) Vergleichsbeispiel
**) nicht vollständig getrocknet
***) 60 Minuten getrocknet
Oberflächennachvernetzung:
1,2 kg klassierte Polymerpartikel werden in einem Pflugschar-Mischer vom Typ VT 5R-MK mit Heizmantel (Gebr. Lödige Maschinenbau GmbH; Paderborn, Deutschland) bei 23°C und einer Wellendrehzahl von 200 Umdrehungen pro Minute mittels einer Zweistoff-Sprühdüse mit einem Gemisch aus 1,41 Gew.-% Isopropanol, 3,13 Gew.-% Wasser, 0,07 Gew.-% N-Hydroxyethyl-2- oxazolidinon, 0,07 Gew.-% 1,3-Propandiol und 0,5 Gew.-% Aluminiumlaktat (Lösung A) oder einem Gemisch aus 2,54 Gew.-% Wasser und 2,00 Gew.-% Ethylencarbonat (Lösung B) beschichtet, jeweils bezogen auf die eingesetzten Polymerpartikel. Die genauen Bedingungen der einzelnen Beispiele finden sich in Tabelle 3.
Nach dem Aufsprühen wird die Produkttemperatur auf 175 bis 185°C erhöht und das Reaktionsgemisch 45 Minuten lang bei dieser Temperatur und einer Wellendrehzahl von 50 Umdrehungen pro Minute gehalten. Das erhaltene Produkt wird auf Umgebungstemperatur abgekühlt und erneut mit einem 700pm Sieb klassiert. Die Fraktion mit einer Partikelgröße von kleiner 700 pm wird analysiert. Die Ergebnisse sind in Tabelle 3 eingetragen.
Tab. 3: Verfahrensbedingungen und Ergebnisse der Oberflächennachvernetzung
Figure imgf000016_0001
T T emperatur der Oberflächennachvernetzung
Remos Restmonomer
*) Vergleichsbeispiel
**) nicht vollständig getrocknet
***) 60 Minuten getrocknet
Der Vergleich von Beispiel 8 mit Beispiel 1 zeigt die Verbesserung des T20 durch Senkung der eingesetzten Initiatormenge bei der Polymerisation.
Der Vergleich von Beispiel 1 mit Beispiel 4 zeigt die Verbesserung des T20 durch Extrusion vor der Trocknung.
Der Vergleich von Beispiel 1 mit Beispiel 5 zeigt die Verbesserung des T20 durch Senkung der Temperatur der Trockenluft.
Der Vergleich von Beispiel 5 mit Beispiel 6 zeigt die Verlangsamung der Trocknung bei zu niedrigen Geschwindigkeiten der Trockenluft.
Der Vergleich von Beispiel 5 mit Beispiel 7 zeigt die Verbesserung des T20 durch Erhöhung der Geschwindigkeiten der Trockenluft. Der Vergleich von Beispiel 2 mit Beispiel 1 zeigt die Verbesserung beim Gehalt an Restmonomeren durch Erhöhung des Wasserdampfgehaltes der Trockenluft.
Der Vergleich von Beispiel 1 mit Beispiel 3 zeigt die Verbesserung bei der Summe von CRC und AlIHL durch Erhöhung der Temperatur bei der thermischen Oberflächennachvernetzung.
Die erfindungsgemäßen Beispiele 8 bis 13 haben eine um mindestens 12 s bessere T20 als die Beispiele 1 bis 6 (Vergleichsbeispiele).
Beispiele 14 bis 18
Polymerisation:
Durch kontinuierliches Mischen von entionisiertem Wasser, 50 gew.-%iger Natronlauge und Acrylsäure wird eine Acrylsäure/Natriumacrylat-Lösung hergestellt, so dass der Neutralisationsgrad 71 ,0 mol-% entspricht. Der Feststoffgehalt der Monomerlösung beträgt 41 ,0 Gew.-%.
Als Vernetzer b) wird 3-fach ethoxiliertes Glyzerintriacrylat (ca. 85 gew.-%ig) verwendet. Die Einsatzmenge beträgt 0,45 Gew.-%, bezogen auf eingesetzte Acrylsäure. Zusätzlich enthält die Monomerlösung 0,75 Gew.-% Polyethylenglykol-4000 (Polyethylenglykol mit einer mittleren Molmasse von 4.000 g/mol), bezogen auf eingesetzte Acrylsäure.
Zur Initiierung der radikalischen Polymerisation werden 0,0005 Gew.-% Wasserstoffperoxid, 0,06 Gew.-% Natriumperoxodisulfat und 0,0076 Gew.-% Ascorbinsäure eingesetzt, jeweils bezogen auf eingesetzte Acrylsäure. Die genauen Bedingungen der einzelnen Beispiele finden sich in Tabelle 1.
Die Monomerlösung wird in einen Reaktor vom Typ List Contikneter mit einem Volumen 6,3m3 (LIST AG, Arisdorf, Schweiz) dosiert. Der Durchsatz der Monomerlösung beträgt ca. 20 t/h.
Zwischen dem Zugabepunkt für den Vernetzer und den Zugabestellen für die Wasserstoffperoxid- und Natriumperoxodisulfatlösung wird die Monomerlösung mit Stickstoff inertisiert. Ascorbinsäure wird direkt in den Reaktor dosiert.
Nach ca. 50% der Verweilzeit werden zusätzlich ca. 1.200 kg/h durch Zerkleinerung und Klassierung im Herstellungsprozess anfallende Polymerpartikel mit einer Partikelgröße von weniger als 150 pm in den Reaktor dosiert. Die Verweilzeit der Reaktionsmischung im Reaktor beträgt ca. 15 Minuten.
Extrusion:
Das erhaltene Polymergel wird in einen Extruder vom Typ 650 EX (ECT-KEMA GmbH, Girbigsdorf, Deutschland) dosiert.
Die Temperatur des Polymergels bei der Extrusion beträgt ca. 115 bis 130°. Die Lochplatte hat 2764 Löcher mit einem Lochdurchmesser von 8 mm. Die Dicke der Lochplatte beträgt 33 mm. Das Öffnungsverhältnis der Lochplatte beträgt 42%. Das Verhältnis von Innenlänge zu Innendurchmesser des Extruders (L/D) beträgt 4. Der Druckverlust über die Lochplatte beträgt ca. 27 bis 28 bar. Trocknung:
Es werden noch heiße Proben des Polymergels entnommen und in einen stationären Bandtrocknersimulator locker geschichtet.
Der Bandtrocknersimulator ist ein zylindrischer Edelstahltopf mit Siebboden. Das Polymergel wird dabei wahlweise entweder von unten oder von oben mit Trocknungsluft durchströmt. Kontrolliert einstellbar sind die Richtung, Temperatur, Feuchte (Injektion von Dampf) und die Menge (= Geschwindigkeit) der Trocknungsluft. Der Simulator ist programmierbar und kann verschiedene beliebige Trocknungsprofile nacheinander erzeugen - auch hinsichtlich des zeitlichen Verlaufs einer Trocknung. Mit dem Bandtrocknersimulator kann die Trocknung in einem Umluftbandtrockner mit einer oder mehreren Zonen abgebildet werden.
Beim Einfüllen des Polymergels ist darauf zu achten, dass die Trocknungsluft durch das poröse Polymergelbett strömen kann. Die Höhe des Polymergelbetts beträgt 9 cm. Dazu werden 1.285 g extrudiertes Polymergel benötigt.
Das Polymergel wird 25 Minuten getrocknet. Das Polymergel wird dabei zunächst in den ersten drei Zonen von unten durchströmt und anschließend von oben. Die Verweilzeit in jeder Zone beträgt 2,5 Minuten. Die letzte Zone ist eine Kühlzone. Die Temperatur der Trockenluft beträgt 140 bis 198°C. Die Geschwindigkeit der Trockenluft beträgt 1,0 bis 2,0 m/s. Die Trocknungsluft enthält 75 bis 350 g Wasserdampf pro kg trockener Luft. Die genauen Bedingungen der einzelnen Beispiele finden sich in Tabelle 4.
Zerkleinerung und Klassierung:
Das getrocknete Polymergel wird grob zerkleinert, mittels eines dreistufigen Walzenstuhls gemahlen und auf eine Partikelgröße von 150 bis 700 pm abgesiebt. Es wird so abgesiebt, dass mindestens 95 Gew.-% der Polymerpartikel eine Partikelgröße von 150 bis 700 pm aufweisen.
Tab. 4: Verfahrensbedingungen für das Grundpolymer
Figure imgf000018_0001
Tab. 4: Verfahrensbedingungen für das Grundpolymer (Fortsetzung)
Figure imgf000019_0001
Feuchtegehalt Feuchtegehalt des Polymergels am Anfang der Zone T Temperatur der Trockenluft v Geschwindigkeit der T rockenluft
Feuchte Feuchte der T rockenluft
*) Vergleichsbeispiel
In den Beispielen 14 bis 17 wurde eine lockere Polymergelschicht erhalten. Bei einer lockeren Schicht besteht die Gefahr, dass Trockenluft zwischen den Polymergelpartikeln in zufälligen Kanälen hindurchströmt (by-pass). In Beispiel 18 führte die relativ niedrige Geschwindigkeit der Trockenluft ganz am Anfang der Trocknung zusammen mit der relativ niedrigen Temperatur des Trockengases zu einer dichten Polymergelschicht.
Tab. 5: Eigenschaften des Grundpolymers
Figure imgf000020_0001
*) Vergleichsbeispiel
Oberflächennachvernetzung:
1,2 kg klassierte Polymerpartikel werden in einem Pflugschar-Mischer vom Typ VT 5R-MK mit Heizmantel (Gebr. Lödige Maschinenbau GmbH; Paderborn, Deutschland) bei 23°C und einer Wellendrehzahl von 200 Umdrehungen pro Minute mittels einer Zweistoff-Sprühdüse mit einem Gemisch aus 1,41 Gew.-% Isopropanol, 3,13 Gew.-% Wasser, 0,07 Gew.-% N-Hydroxyethyl-2- oxazolidinon, 0,07 Gew.-% 1,3-Propandiol und 0,5 Gew.-% Aluminiumlaktat (Lösung A) oder einem Gemisch aus 3,0 Gew.-% Wasser, 1 ,5 Gew.-% 1 ,2-Propandiol und 0,04 Gew.-% Ethyl- englykoldiglycidylether (Lösung B) beschichtet, jeweils bezogen auf die eingesetzten Polymerpartikel. Für die Lösung A wurden klassierte Polymerpartikel mit einer Partikelgröße von 100 bis 600 pm verwendet. Für die Lösung B wurden klassierte Polymerpartikel mit einer Partikelgröße von 300 bis 600 pm verwendet. Die genauen Bedingungen der einzelnen Beispiele finden sich in Tabelle 6.
Nach dem Aufsprühen wird die Produkttemperatur auf 185°C (Lösung A) oder 160°C (Lösung B) erhöht und das Reaktionsgemisch 45 Minuten (Lösung A) oder 30 Minuten (Lösung B) lang bei dieser Temperatur und einer Wellendrehzahl von 50 Umdrehungen pro Minute gehalten. Das erhaltene Produkt wird auf Umgebungstemperatur abgekühlt und erneut mit einem 700pm Sieb klassiert. Die Fraktion mit einer Partikelgröße von kleiner 700 pm wird analysiert. Die Ergebnisse sind in Tabelle 6 eingetragen.
Tab. 6: Verfahrensbedingungen und Ergebnisse der Oberflächennachvernetzung
Figure imgf000021_0001
Remos Restmonomer
*) Vergleichsbeispiel

Claims

Patentansprüche
1. Verfahren zur Herstellung von oberflächennachvernetzten Superabsorberpartikeln durch Polymerisation einer wässrigen Monomerlösung oder -suspension, enthaltend a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert ist, b) mindestens einen Vernetzer und c) mindestens einen Initiator, wobei die wässrige Monomerlösung oder -suspension zu einem Polymergel polymerisiert wird, das erhaltene Polymergel durch eine Lochplatte extrudiert wird, das extrudierte Polymergel auf einem Umluftbandtrockner mit einer oder mehreren Zonen getrocknet wird und nach Mahlung und Klassierung die erhaltenen Polymerpartikel thermisch oberflächennachvernetzt werden, dadurch gekennzeichnet, dass höchstens 0,14 Gew.-% Initiator c) eingesetzt werden, bezogen auf das Monomer a) vor der Neutralisation, in den vorderen Zonen des Umluftbandtrockners zu mindestens 50% der Gesamtverweilzeit in den vorderen Zonen die Temperaturen des zugeführten Trockengases von 120 bis 160°C betragen und in den vorderen Zonen des Umluftbandtrockners zu mindestens 20% der Gesamtverweilzeit in den vorderen Zonen die Geschwindigkeiten des zugeführten Trockengases von 1 ,2 bis 3,0 m/s betragen, wobei die vorderen Zonen des Umluftbandtrockners die Zonen des Umluftbandtrockners sind, wo der Feuchtegehalt des zu trocknenden Polymergels zumindest am Anfang der jeweiligen Zone mehr als 20 Gew.-% beträgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zusätzlich in den vorderen Zonen des Umluftbandtrockners zu 10 bis 80% der Gesamtverweilzeit in den vorderen Zonen die Geschwindigkeiten des zugeführten Trockengases von 0,1 bis 1 ,15 m/s betragen, wobei die Zonen mit den niedrigeren Geschwindigkeiten vor den Zonen mit den höheren Geschwindigkeiten liegen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzlich in den vorderen Zonen des Umluftbandtrockners zu 25 bis 50% der Gesamtverweilzeit in den vorderen Zonen die Geschwindigkeiten des zugeführten Trockengases von 0,7 bis 1 ,00 m/s betragen, wobei die Zonen mit den niedrigeren Geschwindigkeiten vor den Zonen mit den höheren Geschwindigkeiten liegen.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Wasserdampfgehalte des zugeführten Trockengases in den vorderen Zonen des Umluftbandtrockners mindestens 200 g pro kg trockenem Trockengas betragen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die thermische Oberflächennachvernetzung bei einer Maximaltemperatur von mindestens 180°C durchgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass höchstens 0,04 Gew.-% Initiator c) eingesetzt werden, bezogen auf das Monomer a) vor der Neutralisation.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in den vorderen Zonen des Umluftbandtrockners zu mindestens 80% der Gesamtverweilzeit in den vorderen Zonen die Temperaturen des zugeführten Trockengases von 135 bis 145°C betragen.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in den vorderen Zonen des Umluftbandtrockners zu mindestens 50% der Gesamtverweilzeit in den vorderen Zonen die Geschwindigkeiten des zugeführten Trockengases von 1 ,5 bis 2,4 m/s betragen.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die vorderen Zonen des Umluftbandtrockners die Zonen des Umluftbandtrockners sind, wo der Feuchtegehalt des zu trocknenden Polymergels zumindest am Anfang der jeweiligen Zone mehr als 32 Gew.-% beträgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Temperatur des Polymergels bei der Extrusion von 70 bis 125°C beträgt.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Temperatur des Polymergels bei der Extrusion von 90 bis 105°C beträgt.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass der Feuchtegehalt des Polymergels bei der Extrusion von 20 bis 70 Gew.-% beträgt.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Feuchtegehalt des Polymergels bei der Extrusion von 40 bis 60 Gew.-% beträgt.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Lochöffnungen der Lochplatte einen Durchmesser von 2 bis 20 mm aufweisen.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Lochöffnungen der Lochplatte eine Länge von 15 bis 45 mm aufweisen.
PCT/EP2022/075742 2021-09-27 2022-09-16 Verfahren zur herstellung von superabsorberpartikeln WO2023046583A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21199060 2021-09-27
EP21199060.1 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023046583A1 true WO2023046583A1 (de) 2023-03-30

Family

ID=77951642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/075742 WO2023046583A1 (de) 2021-09-27 2022-09-16 Verfahren zur herstellung von superabsorberpartikeln

Country Status (2)

Country Link
TW (1) TW202323402A (de)
WO (1) WO2023046583A1 (de)

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083022A2 (de) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Wasserabsorbierendes Harz mit verbesserter Wasserabsorbierbarkeit und Wasserdispergierbarkeit und Verfahren zur Herstellung
DE3314019A1 (de) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Absorbierender gegenstand
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
EP0289338A2 (de) 1987-04-30 1988-11-02 Nippon Shokubai Co., Ltd. Hydrophyles Polymer und Verfahren zur Herstellung
DE3825366A1 (de) 1987-07-28 1989-02-09 Dai Ichi Kogyo Seiyaku Co Ltd Verfahren zur kontinuierlichen herstellung eines acrylpolymergels
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
EP0450922A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von flüssigkeitsstabilem Aggregat
EP0530438A1 (de) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Superabsorbierendes Polymer mit verbesserten Absorbiereigenschaften
EP0543303A1 (de) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophile, hochquellfähige Hydrogele
EP0547847A1 (de) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines wasserabsorbierenden Harzes
EP0559476A1 (de) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Verfahren zu Herstellung eines absorbierenden Harzes
WO1993021237A1 (en) 1992-04-16 1993-10-28 The Dow Chemical Company Crosslinked hydrophilic resins and method of preparation
EP0632068A1 (de) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines absorbierenden Harzes
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
EP0937736A2 (de) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Vernetzen eines wasserspeichernden Produktes
EP1002806A1 (de) 1998-11-18 2000-05-24 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines hydrophilen Polymer
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
WO2001038402A1 (de) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
WO2002032962A2 (en) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Compositions of human proteins and method of use thereof
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
WO2003104300A1 (de) 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem trimethylolpropan
WO2003104301A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem glycerin
WO2003104299A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Verfahren zur herstellung von estern von polyalkoholen
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
WO2008037676A1 (de) * 2006-09-25 2008-04-03 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2527391A1 (de) * 2010-01-20 2012-11-28 Nippon Shokubai Co., Ltd. Verfahren zur herstellung eines wasserabsorbierenden harzes
EP2535027A1 (de) 2011-06-17 2012-12-19 The Procter & Gamble Company Absorbierender Artikel mit verbesserten Absorptionseigenschaften
EP2535698A1 (de) 2011-06-17 2012-12-19 The Procter & Gamble Company Absorbierender Artikel mit verbesserten Absorptionseigenschaften
EP2546283A1 (de) * 2010-03-08 2013-01-16 Nippon Shokubai Co., Ltd. Trocknungsverfahren für granulare wasserhaltige gelartige vernetzte polymere
EP2557095A1 (de) 2010-04-07 2013-02-13 Nippon Shokubai Co., Ltd. Verfahren zur herstellung eines wasserabsorbierenden polyacrylsäure(salz)-harzpulvers sowie wasserabsorbierendes polyacrylsäure(salz)-harzpulver
WO2014118024A1 (de) 2013-01-29 2014-08-07 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher quellgeschwindigkeit und hoher zentrifugenretentionskapazität bei gleichzeitig hoher permeabilität des gequollenen gelbetts
WO2015169912A1 (de) 2014-05-08 2015-11-12 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2922882B1 (de) 2012-11-21 2018-03-28 Basf Se Verfahren zur herstellung von oberflächennachvernetzten wasserabsorbierenden polymerpartikeln
WO2018114703A1 (de) 2016-12-21 2018-06-28 Basf Se Einwellenextruder und verwendung eines einwellenextruders sowie verfahren zum ändern einer morphologie eines superabsorbierenden polymergels mit einem einwellenextruder
WO2018114702A1 (de) 2016-12-21 2018-06-28 Basf Se Einwellenextruder und verwendung eines einwellenextruders sowie verfahren zum ändern einer morphologie eines superabsorbierenden polymers, nämlich eines sap-polymergels, mit einem einwellenextruder

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083022A2 (de) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Wasserabsorbierendes Harz mit verbesserter Wasserabsorbierbarkeit und Wasserdispergierbarkeit und Verfahren zur Herstellung
DE3314019A1 (de) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Absorbierender gegenstand
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
EP0289338A2 (de) 1987-04-30 1988-11-02 Nippon Shokubai Co., Ltd. Hydrophyles Polymer und Verfahren zur Herstellung
DE3825366A1 (de) 1987-07-28 1989-02-09 Dai Ichi Kogyo Seiyaku Co Ltd Verfahren zur kontinuierlichen herstellung eines acrylpolymergels
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
EP0450922A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von flüssigkeitsstabilem Aggregat
EP0530438A1 (de) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Superabsorbierendes Polymer mit verbesserten Absorbiereigenschaften
EP0543303A1 (de) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophile, hochquellfähige Hydrogele
EP0547847A1 (de) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines wasserabsorbierenden Harzes
EP0559476A1 (de) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Verfahren zu Herstellung eines absorbierenden Harzes
WO1993021237A1 (en) 1992-04-16 1993-10-28 The Dow Chemical Company Crosslinked hydrophilic resins and method of preparation
EP0632068A1 (de) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines absorbierenden Harzes
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
EP0937736A2 (de) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Vernetzen eines wasserspeichernden Produktes
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
EP1002806A1 (de) 1998-11-18 2000-05-24 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines hydrophilen Polymer
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
WO2001038402A1 (de) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
WO2002032962A2 (en) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Compositions of human proteins and method of use thereof
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
WO2003104300A1 (de) 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem trimethylolpropan
WO2003104301A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem glycerin
WO2003104299A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Verfahren zur herstellung von estern von polyalkoholen
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
WO2008037676A1 (de) * 2006-09-25 2008-04-03 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2527391A1 (de) * 2010-01-20 2012-11-28 Nippon Shokubai Co., Ltd. Verfahren zur herstellung eines wasserabsorbierenden harzes
EP2546283A1 (de) * 2010-03-08 2013-01-16 Nippon Shokubai Co., Ltd. Trocknungsverfahren für granulare wasserhaltige gelartige vernetzte polymere
EP2557095A1 (de) 2010-04-07 2013-02-13 Nippon Shokubai Co., Ltd. Verfahren zur herstellung eines wasserabsorbierenden polyacrylsäure(salz)-harzpulvers sowie wasserabsorbierendes polyacrylsäure(salz)-harzpulver
EP2535027A1 (de) 2011-06-17 2012-12-19 The Procter & Gamble Company Absorbierender Artikel mit verbesserten Absorptionseigenschaften
EP2535698A1 (de) 2011-06-17 2012-12-19 The Procter & Gamble Company Absorbierender Artikel mit verbesserten Absorptionseigenschaften
EP2922882B1 (de) 2012-11-21 2018-03-28 Basf Se Verfahren zur herstellung von oberflächennachvernetzten wasserabsorbierenden polymerpartikeln
WO2014118024A1 (de) 2013-01-29 2014-08-07 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher quellgeschwindigkeit und hoher zentrifugenretentionskapazität bei gleichzeitig hoher permeabilität des gequollenen gelbetts
WO2015169912A1 (de) 2014-05-08 2015-11-12 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2018114703A1 (de) 2016-12-21 2018-06-28 Basf Se Einwellenextruder und verwendung eines einwellenextruders sowie verfahren zum ändern einer morphologie eines superabsorbierenden polymergels mit einem einwellenextruder
WO2018114702A1 (de) 2016-12-21 2018-06-28 Basf Se Einwellenextruder und verwendung eines einwellenextruders sowie verfahren zum ändern einer morphologie eines superabsorbierenden polymers, nämlich eines sap-polymergels, mit einem einwellenextruder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F.L. BUCHHOLZA.T. GRAHAM: "Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH, pages: 71 - 103

Also Published As

Publication number Publication date
TW202323402A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2014118024A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher quellgeschwindigkeit und hoher zentrifugenretentionskapazität bei gleichzeitig hoher permeabilität des gequollenen gelbetts
WO2014079785A2 (de) Verfahren zur herstellung von superabsorbern auf basis nachwachsender rohstoffe
EP2411422A1 (de) Verfahren zur herstellung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP3140325B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP3497141B1 (de) Verfahren zur herstellung von superabsorbern
EP3856105A1 (de) Verfahren zur herstellung von superabsorbern
EP2547705A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter farbstabilität
EP2504368B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter farbstabilität
EP2432836A1 (de) Beschichtungsverfahren für wasserabsorbierende polymerpartikel
EP2814854B1 (de) Wasserabsorbierende polymerpartikel mit hoher quellgeschwindigkeit und hoher permeabilität
EP2550316A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2012163995A1 (de) Geruchsinhibierende mischungen für inkontinenzartikel
WO2023046583A1 (de) Verfahren zur herstellung von superabsorberpartikeln
EP3140326B1 (de) Wasserabsorbierende polymerpartikel
EP2714104B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2011104139A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2020151970A1 (de) Verfahren zur herstellung von superabsorberpartikeln
EP2861631B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel in einem polymerisationsreaktor mit mindestens zwei achsparallel rotierenden wellen
EP4263630A1 (de) Verfahren zur herstellung von superabsorberpartikeln
EP2714103B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
WO2020151971A1 (de) Verfahren zur herstellung von superabsorberpartikeln
WO2020151969A1 (de) Verfahren zur herstellung von superabsorberpartikeln
WO2020020675A1 (de) Verfahren zur herstellung von superabsorbern
WO2020038742A1 (de) Verfahren zur herstellung von superabsorbern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790458

Country of ref document: EP

Kind code of ref document: A1