EP2504038A1 - Verfahren zur herstellung wasserabsorbierender polymerer schäume - Google Patents

Verfahren zur herstellung wasserabsorbierender polymerer schäume

Info

Publication number
EP2504038A1
EP2504038A1 EP10782259A EP10782259A EP2504038A1 EP 2504038 A1 EP2504038 A1 EP 2504038A1 EP 10782259 A EP10782259 A EP 10782259A EP 10782259 A EP10782259 A EP 10782259A EP 2504038 A1 EP2504038 A1 EP 2504038A1
Authority
EP
European Patent Office
Prior art keywords
monomer
alkyl
water
hydrogen
photoinitiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10782259A
Other languages
English (en)
French (fr)
Inventor
Francisco Javier Lopez Villanueva
Markus LINSENBÜHLER
Matthias Weismantel
Bernd Siegel
Timo Baumgärtner
Michael Fastner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP10782259A priority Critical patent/EP2504038A1/de
Publication of EP2504038A1 publication Critical patent/EP2504038A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a process for the preparation of water-absorbing polymeric foams by polymerization of a foamed aqueous monomer solution or suspension comprising an ethylenically unsaturated, acidic group-containing monomer which may be at least partially neutralized, a crosslinker, a photoinitiator and a surfactant.
  • Water-absorbent polymers are used as aqueous solution-absorbing products for the production of diapers, tampons, sanitary napkins, panty liners, wound dressings and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • the water-absorbing polymers are also referred to as superabsorbents.
  • Water-absorbing polymeric foams based on monomers containing crosslinked acid groups are known, for example from EP 0 858 478 B1, US Pat.
  • They are prepared, for example, by foaming a polymerizable aqueous mixture containing at least 50 mol% of neutralized, acid group-containing ethylenically unsaturated monomers, crosslinkers and at least one surfactant, and then polymerizing the foamed mixture.
  • the foaming of the polymerizable mixture may be carried out by dispersing fine bubbles of a radical-inert gas or by dissolving such a gas under elevated pressure in the polymerizable mixture and depressurizing the mixture.
  • the foams are used, for example, in hygiene articles for the acquisition, distribution and storage of body fluids.
  • the object of the present invention was to provide water-absorbing polymer foams having an improved profile of properties, such as a high centrifuge retention capacity (CRC) and a low washout loss (AWV). Furthermore, the water-absorbing foams should contain little residual monomer and few residual crosslinkers and should be as white as possible and not release any odors.
  • the object was achieved by a process for producing water-absorbing polymeric foams by polymerization of a foamed aqueous monomer solution or suspension containing a) at least one ethylenically unsaturated, acid group-carrying monomer which may be at least partially neutralized,
  • R 1 , R 2 , R 3 , R 4 and R 5 independently of one another are hydrogen or C 1 -C 5 -alkyl, preferably independently of one another, hydrogen or C 1 -C 4 -alkyl, more preferably independently of one another, hydrogen or C 1 -C 2 -alkyl, where Cs-alkyl may be branched or unbranched,
  • X is hydrogen, OR 6 or Ci-Cs-alkyl, preferably OR 6 or
  • C 1 -C 4 -alkyl particularly preferably OR 6 or C 1 -C 2 -alkyl, where C 3 -C 8 -alkyl can be branched or unbranched,
  • R 6 is Ci-Cs-alkyl or Ci-Cs-hydroxyalkyl, preferably Ci-C4-alkyl or Ci-C4-hydroxyalkyl, particularly preferably Ci-C2-alkyl or
  • C 1 -C 2 -hydroxyalkyl where C 3 -C 5 -alkyl or C 3 -C -hydroxyalkyl can be branched or unbranched,
  • R 7 and R 8 independently of one another are C 1 -C 5 -alkyl or C 6 -C 12 -aryl, preferably C 1 -C 4 -alkyl or C 6 -C 10 -aryl, more preferably independently of one another C 1 -C 2 -alkyl or C 6 -C 8 -alkyl Aryl, where C3-Cs-alkyl or C9-Ci2-aryl can be branched or unbranched, mean.
  • the amount of photoinitiator c) is preferably 0.001 to 2 wt .-%, particularly preferably 0.01 to 1 wt .-%, most preferably 0.05 to 0.2 wt .-%, each based on the unneutralized monomer a ).
  • the monomers a) are preferably water-soluble, i. the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 35 g / 100 g of water.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • Suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids, such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • sulfonic acids such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • a suitable monomer a) is, for example, an acrylic acid purified according to WO 2004/035514 A1 with 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203% by weight.
  • Propionic acid 0.0001% by weight furfurale, 0.0001% by weight maleic anhydride
  • the amount of monomer a) is preferably 20 to 90 wt .-%, particularly preferably 30 to 85 wt .-%, most preferably 35 to 75 wt .-%, each based on the unneutralized monomer a) and on the Monomer solution or suspension. Based on the unneutralized monomer a) in the context of this invention, that for the calculation of the proportion of the monomer a) is used prior to neutralization, ie the contribution of neutralization is disregarded.
  • the acid groups of the monomers a) are usually neutralized to 25 to 95 mol%, preferably 40 to 85 mol%, preferably 50 to 80 mol%, particularly preferably 55 to 75 mol%, wherein the customary neutralizing agents can be used, for example, alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal bicarbonates and mixtures thereof.
  • the neutralization can also be carried out with ammonia, amines or alkanolamines, such as ethanolamine, diethanolamine or triethanolamine.
  • 10 to 90 mol%, preferably 20 to 80 mol%, particularly preferably 30 to 70 mol%, very particularly preferably 40 to 60 mol%, of the neutralized monomers a) by means of an alkanolamine were neutralized.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • the monomers a) usually contain polymerization inhibitors, preferably hydroquinone half ethers, as a storage stabilizer.
  • the monomer solution preferably contains up to 250 ppm by weight, preferably at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular by 50% by weight .-ppm, hydroquinone, in each case based on the unneutralized monomer a).
  • an ethylenically unsaturated, acid group-carrying monomer having a corresponding content of hydroquinone half-ether can be used to prepare the monomer solution.
  • Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or alpha-tocopherol (vitamin E).
  • Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be incorporated in the polymer chain by free-radical polymerization, and functional groups which can form covalent bonds with the acid groups of the monomer a). Furthermore, polyvalent metal salts containing at least two acid groups of the monomer a) can form coordinative bonds, suitable as crosslinker b).
  • Crosslinkers b) are preferably compounds having at least two polymerizable groups which can be incorporated in the polymer network in free-radically polymerized form.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1, di- and triacrylates, as in EP 0 547 847 A1, EP 0 559 476 A1,
  • WO 2003/104301 A1 and DE 103 31 450 A1 mixed acrylates which, in addition to acrylate groups, contain further ethylenically unsaturated groups, as described in DE 103 31 456 A1 and DE 103 55 401 A1, or crosslinker mixtures, as described, for example, in DE 195 43 368 A1, DE 196 46 484 A1, WO 90/15830 A1 and WO 2002/032962 A2.
  • Preferred crosslinkers b) are pentaerythritol triallyl ether, tetraalloxyethane, methylenebis methacrylamide, 15-times ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO 2003/104301 A1.
  • Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol.
  • diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol.
  • Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerol, in particular the triacylate of 3-times ethoxylated glycerol.
  • the amount of crosslinker b) is preferably 0.5 to 15 wt .-%, more preferably 2 to 10 wt .-%, most preferably 3 to 8 wt .-%, each based on the unneutralized monomer a).
  • the centrifuge retention capacity decreases and the absorption under a pressure of 21.0 g / cm 2 (AUL 0.3 psi) passes through a maximum.
  • the monomer solution or suspension may contain further initiators. This can be used under the polymerization in radical-generating compounds, such as thermal initiators, redox initiators.
  • Thermal initiators are, for example, peroxides, hydroperoxides, hydrogen peroxide, persulfates and azo initiators.
  • Suitable azo initiators are, for example 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis (N, N-dimethylene) isobutyramidine dihydrochloride, 2- (carbamoylazo) isobutyronitrile, 2,2'-azo bis [2] (2'-imidazolin-2-yl) propane] dihydrochloride and 4,4'-azobis (4-cyanovaleric acid).
  • combinations of photoinitiator c) and azo initiator are used.
  • the surfactants d) are of crucial importance for the preparation and stabilization of the foamed monomer solution or suspension.
  • Usable nonionic surfactants are, for example, addition products of alkylene oxides, in particular ethylene oxide, propylene oxide and / or butylene oxide with alcohols, amines, phenols, naphthols or carboxylic acids.
  • the surfactants used are advantageously addition products of ethylene oxide and / or propylene oxide with alcohols containing at least 10 carbon atoms, the addition products containing 3 to 200 moles of ethylene oxide and / or propylene oxide per mole of alcohol.
  • the addition products contain the alkylene oxide units in the form of blocks or in random distribution.
  • nonionic surfactants which can be used are the addition products of 7 mol of ethylene oxide and 1 mol of tallow fatty alcohol, reaction products of 9 mol of ethylene oxide with 1 mol of tallow fatty alcohol and adducts of 80 mol of ethylene oxide and 1 mol of tallow fatty alcohol.
  • Other useful commercial nonionic surfactants consist of reaction products of Oxoal- koholen or Ziegler alcohols with 5 to 12 moles of ethylene oxide per mole of alcohol, especially with 7 moles of ethylene oxide.
  • Other useful commercial nonionic surfactants are obtained by ethoxylation of castor oil. For example, 12 to 80 moles of ethylene oxide are added per mole of castor oil.
  • Further commercial products which can be used are, for example, the reaction products of 18 mol of ethylene oxide with 1 mol of tallow fatty alcohol, the addition products of 10 mol of ethylene oxide with 1 mol of a Ci3 / Ci5-oxoalcohol, or the reaction products of 7 to 8 mol of ethylene oxide with 1 mol of a Ci3 / Cis oxo alcohol.
  • Further suitable nonionic surfactants are phenol alkoxylates, such as, for example, p-tert-butylphenol which has been reacted with 9 mol of ethylene oxide, or methyl ethers of reaction products of 1 mol of a C12-bis
  • Cis-alcohol and 7.5 moles of ethylene oxide Cis-alcohol and 7.5 moles of ethylene oxide.
  • the nonionic surfactants described above can be converted, for example, by esterification with sulfuric acid into the corresponding sulfuric acid half esters.
  • the sulfuric acid half esters are used in the form of the alkali metal or ammonium salts as anionic surfactants.
  • Suitable anionic surfactants are, for example, example, alkali metal or ammonium salts of sulfuric monoesters of addition products of ethylene oxide and / or propylene oxide with fatty alcohols, alkali metal or ammonium salts of alkylbenzenesulfonic acid or alkylphenol ether sulfates. Products of the type mentioned are commercially available. For example, the sodium salt of a sulfuric monoester of one reacted with 106 moles of ethylene oxide
  • Ci3 / Ci5-oxoalcohols the triethanolamine salt of dodecylbenzenesulfonic acid, the sodium salt of Alkylphenolethersulfaten and the sodium salt of the sulfuric monoester of a reaction product of 106 moles of ethylene oxide with 1 mole of tallow fatty alcohol commercially available anionic surfactants.
  • anionic surfactants are sulfuric monoesters of C 13 / C 15 -oxo alcohols, paraffin-sulfonic acids, such as
  • the polymerizable aqueous mixture may contain combinations of a nonionic surfactant and an anionic surfactant or combinations of nonionic surfactants or combinations of anionic surfactants. Also cationic surfactants are suitable.
  • Examples thereof are the dimethyl sulfate-quaternized reaction products of 6.5 mol of ethylene oxide with 1 mol of oleylamine, distearyldimethylammonium chloride, lauryltrimethylammonium chloride, cetylpyridinium bromide and dimethyl sulfate-quaternized stearic acid triethanolamine ester, which is preferably used as cationic surfactant.
  • the amount of surfactant, based on the unneutralized monomer a) is preferably 0.01 to 10 wt .-%, particularly preferably 0.1 to 6 wt .-%, most preferably 0.8 to 3 wt .-%.
  • Examples of ethylenically unsaturated monomers e) which can be copolymerized with the ethylenically unsaturated monomers having acid groups are acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate.
  • Solubilizers f) are water-miscible organic solvents, for example dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, monohydric alcohols, glycols, polyethylene glycols or monoethers derived therefrom, the monoethers having no
  • Suitable ethers are methyl glycol, butyl glycol, butyl diglycol, methyl diglycol, butyl triglycol, 3-ethoxy-1-propanol and glyceryl monomethyl ether. If solubilizers f) are used, their content in the monomer solution or suspension is preferably up to 50% by weight, particularly preferably 1 to
  • the monomer solution or suspension may contain thickeners, foam stabilizers, fillers, fibers and / or cell nucleating agents g). Thickeners are used, for example, to optimize the foam structure and to improve foam stability. This ensures that the foam shrinks only slightly during the polymerization. Suitable thickeners are all known natural and synthetic polymers which greatly increase the viscosity of an aqueous system. These may be water-swellable or water-soluble synthetic and natural polymers.
  • Suitable water-swellable or water-soluble synthetic polymers which are suitable as thickeners are, for example, high molecular weight polyethylene glycols or copolymers of ethylene glycol and propylene glycol and high molecular weight polysaccharides such as starch, guar gum, locust bean gum or derivatives of natural substances such as carboxymethylcellulose, hydroxyethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose and cellulose mixed ethers.
  • Another group of thickeners are water-insoluble products, such as finely divided silica, zeolites, bentonite, cellulose powder or other finely divided powders of crosslinked polymers.
  • the monomer solution or suspension may contain the thickeners in amounts of up to 30% by weight. If such thickening agents are used at all, they are contained in amounts of 0.1 to 10 wt .-%, preferably 0.5 to 20 wt .-% in the monomer solution or suspension.
  • hydrocarbons having at least 5 C atoms in the molecule are, for example, pentane, cyclopentane, hexane, cyclohexane, heptane, octane, isooctane, decane and dodecane.
  • the aliphatic hydrocarbons contemplated may be straight chain, branched or cyclic and have a boiling temperature which is above the temperature of the aqueous mixture during foaming. The aliphatic hydrocarbons increase the service life of the not yet polymerized foamed aqueous reaction mixture.
  • the hydrocarbons act as cell nucleating agents and at the same time stabilize the already formed foam. In addition, they can cause further foaming when polymerizing the monomer solution or suspension. You can then also have the function of a propellant.
  • chlorinated or fluorinated hydrocarbons as cell nucleating agents and / or foam stabilizers, such as dichloromethane, trichloromethane, 1,2-dichloroethane, trichlorofluorocarboxylic acid. methane or 1, 1, 2-trichlorotrifluoroethane.
  • hydrocarbons are used, for example, in amounts of 0.1 to 20 wt .-%, preferably 0.1 to 10 wt .-%, based on the monomer solution or suspension.
  • one or more fillers may be added, for example chalk, talc, "Gay", titanium dioxide, magnesium oxide, alumina, precipitated silicas in hydrophilic or hydrophobic modifications, dolomite and / or calcium sulfate be contained in the monomer solution or suspension in amounts up to 30 wt .-%.
  • the aqueous monomer solutions or suspensions described above are first foamed.
  • an inert gas such as nitrogen, carbon dioxide or air
  • nitrogen, carbon dioxide or air can be dissolved in the aqueous monomer solution or suspension under a pressure of, for example, 2 to 400 bar, and then be allowed to relax to atmospheric pressure.
  • the gas solubility increases with decreasing temperature, the gas saturation and the subsequent foaming should be carried out at the lowest possible temperature, whereby undesirable precipitation should be avoided.
  • the aqueous monomer solutions or suspensions can also be foamed by another method by dispersing therein fine bubbles of an inert gas.
  • the foaming of the aqueous monomer solutions or suspensions can be carried out in the laboratory, for example, by foaming the aqueous monomer solution or suspension in a food processor equipped with a whisk. Furthermore, it is possible to foam the aqueous monomer solutions or suspensions with carbon dioxide by using carbonates or bicarbonates for neutralization.
  • the generation of foam is preferably carried out in an inert gas atmosphere and with inert gases, for example by adding nitrogen or noble gases under atmospheric pressure or elevated pressure, for example up to 25 bar, and then releasing.
  • inert gases for example by adding nitrogen or noble gases under atmospheric pressure or elevated pressure, for example up to 25 bar, and then releasing.
  • the consistency of the monomer foams, the size of the gas bubbles and the distribution of the gas bubbles in the monomer foam can be varied within a wide range, for example by selecting the surfactants d), solubilizers f), foam stabilizers, cell nucleating agents, thickeners and fillers g). This makes it easy to adjust the density, the degree of off-set and the wall thickness of the monomer foam.
  • the aqueous monomer solution or suspension is preferably foamed at temperatures below the boiling point of its constituents, for example at ambient temperature up to 100 ° C, preferably at 0 to 50 ° C, more preferably at 5 to 20 ° C.
  • temperatures below the boiling point of the component with the lowest boiling point by foaming the aqueous monomer solution or suspension in a pressure-tight container. This gives monomer foams which are flowable and are stable over a longer period of time.
  • the density of the monomer foams at a temperature of 20 ° C, for example, 0.01 to 0.9 g / cm 3 .
  • the obtained monomer foam can be polymerized on a suitable support.
  • the polymerization is carried out in the presence of the photoinitiators c).
  • the radicals can be generated for example by heating (thermal polymerization) or by irradiation with light of a suitable wavelength (UV polymerization).
  • Polymeric foams having a layer thickness of up to about 5 millimeters are produced, for example, by one-sided or two-sided heating or, in particular, by irradiation of the monomer foams on one or both sides. If thicker polymeric foams are to be produced, for example polymeric foams with thicknesses of several centimeters, the heating of the monomer foam with the aid of microwaves is particularly advantageous because in this way a relatively uniform heating can be achieved.
  • the proportion of unreacted monomer a) and crosslinker b) in the resulting polymeric foam increases.
  • the thermal polymerization takes place, for example, at temperatures of 20 to 180 ° C, preferably in the range of 40 ° C to 160 ° C, in particular at temperatures of 65 to 140 ° C.
  • the monomer foam can be heated on both sides and / or irradiated, for example by means of contact heating or by irradiation or in a drying oven.
  • the resulting polymeric foams are open-celled.
  • the proportion of open cells is for example at least 80%, preferably it is above 90%. Particularly preferred are polymeric foams having an open cell content of 100%.
  • the proportion of open cells in the polymeric foam is determined, for example, by means of scanning electron microscopy (Scanning Electron Microscopy).
  • drying of the polymeric foam takes place. This removes water and other volatile components.
  • suitable drying methods are thermal convection drying, such as forced-air drying, thermal contact drying, such as drum drying, radiation drying, such as infrared drying, dielectric drying, such as microwave drying, and freeze-drying.
  • the drying temperatures are usually in the range 50 to 200 ° C, preferably 60 to 150 ° C, more preferably 80 to 120 ° C, most preferably 90 to 1 10 ° C.
  • the preferred residence time at this temperature in the dryer is preferably at least 1 minute, more preferably at least 2 minutes, most preferably at least 5 minutes, and usually at most 20 minutes.
  • a particularly suitable drying process is the (vacuum) belt drying.
  • the polymeric foam usually contains less than 15% by weight of water.
  • the water content of the polymeric foam can be arbitrarily adjusted by wetting with water or steam.
  • the water-absorbent polymeric foams can be surface postcrosslinked to further improve the properties.
  • Suitable surface post-crosslinkers are compounds which contain groups which can form covalent bonds with at least two carboxylate groups of the polymer particles. Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols, as described in DE 33 14 019 A1,
  • Preferred surface postcrosslinkers are ethylene carbonate, ethylene glycol diglycidyl ether, reaction products of polyamides with epichlorohydrin and mixtures of propylene glycol and 1,4-butanediol.
  • Very particularly preferred surface postcrosslinkers are 2-hydroxyethyloxazolidin-2-one, oxazolidin-2-one and 1,3-propanediol.
  • surface postcrosslinkers which contain additional polymerizable ethylenically unsaturated groups, as described in DE 37 13 601 A1
  • the amount of surface postcrosslinker is preferably 0.001 to 2 wt .-%, more preferably 0.02 to 1 wt .-%, most preferably 0.05 to 0.2 wt .-%, each based on the water-absorbing polymeric foam.
  • polyvalent cations are applied to the water-absorbent polymeric foam before, during or after the surface postcrosslinking in addition to the surface postcrosslinkers.
  • the polyvalent cations which can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium, iron and strontium, trivalent cations, such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations, such as the cations of Titanium and zirconium.
  • divalent cations such as the cations of zinc, magnesium, calcium, iron and strontium
  • trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese
  • tetravalent cations such as the cations of Titanium and zirconium.
  • chloride, bromide, sulfate, hydrogensulfate, carbonate, hydrogencarbonate, nitrate, phosphate, hydrogenphosphate, dihydrogenphosphate and carboxylate, such as acetate and lactate are possible.
  • Aluminum sulfate is preferred.
  • the amount of polyvalent cation used is, for example, 0.001 to 1.5% by weight, preferably 0.005 to 1% by weight, particularly preferably 0.02 to 0.8% by weight. each based on the water-absorbent polymeric foam.
  • the surface postcrosslinking is usually carried out so that a solution of the surface postcrosslinker is sprayed onto the water absorbing polymeric foams.
  • the surface-postcrosslinker-coated polymeric foams are thermally dried, whereby the surface postcrosslinking reaction can occur both before and during drying.
  • Preferred drying temperatures are in the range 50 to 250 ° C, preferably 70 to 150 ° C, more preferably 85 to 120 ° C, most preferably 90 to 1 10 ° C.
  • the preferred residence time at this temperature in the dryer is preferably at least 1 minute, more preferably at least 2 minutes, most preferably at least 5 minutes, and usually at most 20 minutes.
  • polymeric foams can be coated or rewetted to improve the properties.
  • Suitable coatings for improving the swelling rate (FSR) and the liquid transfer (SFC) are, for example, inorganic inert substances, such as water-insoluble metal salts, organic polymers, cationic polymers and di- or polyvalent metal cations, such as aluminum sulfate and aluminum sulfate. did.
  • Suitable coatings against the unwanted tendency to cake are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20.
  • Suitable coatings for reducing the content of unreacted monomers (residual monomers) are, for example, reducing agents, such as the salts of sulfurous acid, the hypophosphorous Acid and / or organic sulfinic acid.
  • the reducing agent used is preferably a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium hydrogen sulfite.
  • Such mixtures are available as Brüggolite® FF6 and Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; DE).
  • water-absorbent polymeric foams having a high centrifuge retention capacity (CRC) and a low elution loss (AWV) can be produced.
  • Further objects of the present invention are the water-absorbent polymeric foams obtainable by the process according to the invention and water-absorbent polymeric foams having a centrifuge retention capacity (CRC) of at least 5 g / g and a content of residual monomers of less than
  • the water-absorbing polymeric foams according to the invention have a centrifuge retention capacity (CRC) of typically at least 5 g / g, preferably at least 6 g / g, preferably at least 7 g / g, more preferably at least 8 g / g, most preferably at least 9 g / g, on.
  • CRC centrifuge retention capacity
  • the centrifuge retention capacity (CRC) of the water-absorbent polymeric foams is usually less than 20 g / g.
  • the water-absorbing polymeric foams according to the invention have a content of residual monomer of typically less than 0.15% by weight, preferably less than 0.12% by weight, preferably less than 0.1% by weight, more preferably less than 0.075 wt .-%, most preferably less than 0.05 wt .-%, on.
  • the water-absorbing polymeric foams according to the invention have a content of residual crosslinker of typically less than 0.002% by weight, preferably less than 0.001% by weight, preferably less than 0.0005% by weight, more preferably less than 0.0002% by weight. %, most preferably less than
  • a further subject of the present invention are hygiene articles which contain water-absorbing polymeric foams according to the invention.
  • the hygiene articles are in particular disposable diapers, tampons, sanitary napkins, panty liners and wound coverings.
  • Measurements should be taken at an ambient temperature of 23 ⁇ 2 ° C and a relative humidity of 50 ⁇ 10%, unless otherwise specified.
  • the water-absorbing polymer particles are thoroughly mixed before the measurement.
  • the residual monomers of the water-absorbing polymeric foam are determined analogously to the EDANA-recommended test method no. WSP 210.2-05 "Residual Monomers".
  • Residual Crosslinker The residual crosslinker content of the water-absorbent polymeric foam polymer particles is determined by HPLC using a ZORBAX® Eclipse XDB C18 reverse phase column (Agilent Technologies, US) followed by UV / VI S detection and external standard calibration.
  • the mobile phase used is acetonitrile / water with a gradient.
  • the centrifuge retention capacity (CRC) of the water-absorbent polymeric foam is determined analogously to the EDANA-recommended test method no. WSP 241.2-05 "Centrifuge Retention Capacity”.
  • the leaching loss (AWV) of the water-absorbing polymeric foam is determined analogously to the EDANA-recommended test method No. WSP 270.2-05 "Extractables", wherein the average molecular weight of the optionally partially neutralized monomer a) is used for the molecular weight M acr .
  • the EDANA test methods are available, for example, from EDANA, Avenue Eugene Plasky 157, B-1030 Brussels, Belgium. Examples
  • Example 1 209.1 g of acrylic acid, 81.3 g of a 37.3% strength by weight aqueous sodium acrylate solution, 16.8 g of Sartomer® SR-344 (diacrylate of a polyethylene glycol having a molecular weight of about 400 g / mol), 25 , 6 g of a 15 wt .-% aqueous solution of Lutensol® AT80 (addition product of 80 moles of ethylene oxide to 1 mole of a linear saturated C16-C18 fatty alcohol, BASF SE, Ludwigshafen, DE) and 26.6 g of water were in a Beaker mixed. Subsequently, 240.5 g of triethanolamine was added dropwise with cooling, the temperature remaining below 15 ° C.
  • the resulting homogeneous solution was transferred to a pressure vessel and saturated there with carbon dioxide for 25 minutes at a pressure of 12 bar. Under pressure, 8.0 g of a 3% strength by weight aqueous solution of Wako® V-50 (2,2'-azobis (2-amidinopropane) dihydrochloride) and 0.24 g of Irgacure® 2959 (1) were added. [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methylpropan-1-one) was added and mixed in with a strong stream of carbon dioxide. Carbon dioxide was then passed through the reaction mixture for a further 5 minutes. The carbon dioxide-saturated reaction mixture was then squeezed out through a nozzle with a diameter of 1.0 mm at a pressure of 12 bar, forming a fine-celled, readily flowable foam.
  • the bottom of a DIN A3 glass plate with 3 mm high edges was covered with a transparent polyester film.
  • the obtained monomer foam was applied to the glass plate and covered with a second transparent polyester film and a second glass plate.
  • the foam sample was irradiated synchronously from both sides for 4 minutes with UV light, from the top with a UVA / IS emitter UVASPOT 1000 / T (Dr Hönle AG, Gräfelfing, DE), from below with 2 UVA / IS emitters UVASPOT 400 / T (Dr. Hönle AG, Gräfelfing, DE).
  • the distance of the upper lamp to the monomer foam was 39 cm and the distance of the lower lamps to the monomer foam was 13 cm.
  • the resulting polymeric foam was dried for 10 minutes in a convection oven at 100 ° C and analyzed.
  • the foam had a residual monomer content of 0.13 wt%, a residual crosslinker content of 0.0003 wt%, a centrifuge retention capacity (CRC) of 8.4 g / g, and the elution loss (AWV) 55% by weight.
  • Example 2 comparative example
  • Example 2 The procedure was as in Example 1.
  • the initiator used was 16.0 g of a 3% strength by weight aqueous solution of Wako® V-50 (2,2'-azobis (2-amidinopropane) dihydrochloride).
  • the foam had a residual monomer content of 0.72% by weight, a residual crosslinker content of 0.14% by weight, a centrifuge retention capacity (CRC) of 9.6 g / g, and the elution loss (AWV) was 42% by weight .-%.
  • Example 2 The procedure was as in Example 1.
  • the initiator used was 0.48 g of Irgacure® 2959 (1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methylpropan-1-one).
  • the resulting polymeric foam was difficult to dissolve from the lower polyester film.
  • the foam had a residual monomer content of 0.068% by weight, a residual crosslinker content of less than 0.0001% by weight, a centrifuge retention capacity (CRC) of 8.8 g / g, and the elution loss (AWV) was 52% by weight .-%.
  • CRC centrifuge retention capacity
  • AAV elution loss
  • Example 4 The procedure was as in Example 1. The initiator used was 0.48 g of Lucirin® TPO-L
  • the resulting polymeric foam was difficult to dissolve from the lower polyester film.
  • the foam had a residual monomer content of 0.37 wt%, a residual crosslinker content of less than 0.0001 wt%, a centrifuge retention capacity (CRC) of 10.1 g / g, and the elution loss (AWV) 59% by weight.
  • Example 2 The procedure was as in Example 1. 0.48 g of Irgacure® 184 (1-hydroxycyclohexylphenyl ketone) was used as the initiator. The foam had a content
  • Example 6 comparative example
  • Example 7 The procedure was as in Example 1.
  • the initiator used was 0.48 g of Irgacure® 250 ((4-methylphenyl) [4- (2-methylpropyl) phenyl] iodonium hexafluorophosphate).
  • the resulting polymeric foam smelled unpleasant and did not peel off the polyester films.
  • the foam had a residual monomer content of 1.6% by weight, a residual crosslinker content of 0.074% by weight, a centrifuge retention capacity (CRC) of 7.7 g / g, and the elution loss (AWV) was 62% by weight. %.
  • Example 7 comparativative example
  • Example 2 The procedure was as in Example 1.
  • the initiator used was 0.48 g of 2-amino-9-fluorenone.
  • the foam had a residual monomer content of 3.1% by weight, a residual crosslinker content of 1.1% by weight, a centrifuge retention capacity (CRC) of 8.8 g / g, and the elution loss (AWV) was 80% by weight .-%.
  • CRC centrifuge retention capacity
  • AAV elution loss
  • Example 2 The procedure was as in Example 1.
  • the initiator used was 0.48 g of Darocur® 1 173 (2-hydroxy-2-methyl-1-phenylpropan-1-one).
  • the foam had 0.045 wt% residual monomer content, less than 0.0001 wt% residual crosslinker, 9.0 g / g CRC and 63 wt% washout loss .-%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Verfahren zur Herstellung wasserabsorbierender polymerer Schäume durch Polymerisation einer aufgeschäumten wässrigen Monomerlösung oder -Suspension, enthaltend ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert sein kann, einen Vernetzer, einen Photoinitiator und ein Tensid.

Description

Verfahren zur Herstellung wasserabsorbierender polymerer Schäume Beschreibung Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender polymerer Schäume durch Polymerisation einer aufgeschäumten wässrigen Monomerlösung oder -Suspension, enthaltend ein ethylenisch ungesättigtes, säuregruppentra- gendes Monomer, das zumindest teilweise neutralisiert sein kann, einen Vernetzer, einen Photoinitiator und ein Tensid.
Wasserabsorbierende Polymere werden als wässrige Lösungen absorbierende Produkte zur Herstellung von Windeln, Tampons, Damenbinden, Slipeinlagen, Wundabdeckungen und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet. Die wasserabsorbierenden Polymere wer- den auch als Superabsorber bezeichnet.
Die Herstellung wasserabsorbierender Polymere wird in der Monographie "Modern Superabsorbent Polymer Technology", F.L. Buchholz und AT. Graham, Wiley-VCH, 1998, Seiten 71 bis 103, beschrieben.
Wasserabsorbierende polymere Schäume auf Basis von vernetzten Säuregruppen enthaltenden Monomeren sind bekannt, beispielsweise aus EP 0 858 478 B1 ,
WO 97/31971 A1 , WO 99/44648 A1 und WO 00/52087 A1. Sie werden beispielsweise durch Schäumen einer polymerisierbaren wässrigen Mischung, die zu mindestens 50 Mol-% neutralisierte, Säuregruppen enthaltende ethylenisch ungesättigte Monomere, Vernetzer und mindestens ein Tensid enthalten, und anschließendes Polymerisie- ren der geschäumten Mischung hergestellt. Das Schäumen der polymerisierbaren Mischung kann durch Dispergieren von feinen Blasen eines gegenüber Radikalen inerten Gases oder durch Lösen eines solchen Gases unter erhöhtem Druck in der polymeri- sierbaren Mischung und Entspannen der Mischung erfolgen. Die Schäume werden beispielsweise in Hygieneartikeln zur Akquisition, Distribution und Speicherung von Körperflüssigkeiten verwendet.
Aufgabe der vorliegenden Erfindung war die Bereitstellung wasserabsorbierender po- lymerer Schäume mit verbessertem Eigenschaftsprofil, wie einer hohen Zentrifugenre- tentionskapazität (CRC) und einem niedrigen Auswaschverlust (AWV). Weiterhin sollten die wasserabsorbierenden Schäume wenig Restmonomere und wenig Restvernet- zer enthalten sowie möglichst weiß sein und keine Gerüche freisetzen. Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung wasserabsorbierender polymerer Schäume durch Polymerisation einer aufgeschäumten wässrigen Monomerlösung oder -Suspension, enthaltend a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert sein kann,
b) mindestens einen Vernetzer,
c) mindestens einen Photoinitiator,
d) mindestens ein Tensid,
e) optional ein oder mehrere mit den unter a) genannten Monomeren copolymeri- sierbare ethylenisch ungesättigte Monomere,
f) optional einen Lösevermittler und
g) optional Verdicker, Schaumstabilisatoren, Polymerisationsregler, Füllstoffe, Fasern und/oder Zellkeimbildner, wobei die Monomerlösung oder -Suspension zu einem polymeren Schaum polymeri- siert wird, dadurch gekennzeichnet, dass der mindestens eine Photoinitiator eine Verbindung der allgemeinen Formel I ist,
worin
R1 , R2, R3, R4 und R5 unabhängig voneinander Wasserstoff oder Ci-Cs-Alkyl, vorzugsweise unabhängig voneinander Wasserstoff oder Ci-C4-Alkyl, besonders bevorzugt unabhängig voneinander Wasserstoff oder Ci-C2-Alkyl, wobei C3-Cs-Alkyl verzweigt oder unverzweigt sein können,
X Wasserstoff, OR6 oder Ci-Cs-Alkyl, vorzugsweise OR6 oder
Ci-C4-Alkyl, besonders bevorzugt OR6 oder Ci-C2-Alkyl, wobei C3-C8-Alkyl verzweigt oder unverzweigt sein können,
R6 Ci-Cs-Alkyl oder Ci-Cs-Hydroxyalkyl, vorzugsweise Ci-C4-Alkyl oder Ci-C4-Hydroxyalkyl, besonders bevorzugt Ci-C2-Alkyl oder
Ci-C2-Hydroxyalkyl, wobei C3-Cs-Alkyl oder C3-Cs-Hydroxyalkyl verzweigt oder unverzweigt sein können,
Y C4-Ce-Cycloalkyl, C(R7)R8 oder P(=0)R7
R7 und R8 unabhängig voneinander Ci-Cs-Alkyl oder C6-Ci2-Aryl, vorzugs- weise unabhängig voneinander Ci-C4-Alkyl oder C6-Cio-Aryl, besonders bevorzugt unabhängig voneinander Ci-C2-Alkyl oder C6-C8-Aryl, wobei C3-Cs-Alkyl oder C9-Ci2-Aryl verzweigt oder unverzweigt sein können, bedeuten.
Ganz besonders bevorzugt sind Photoinitiatoren c) der allgemeinen Formel I, worin R1, R2, R3, R4 und R5 jeweils Wasserstoff, X OR6, R6 Hydroxyethyl, Y C(R7)R8 sowie R7 und R8 jeweils Methyl bedeuten (Irgacure® 2959), worin R1, R2, R3, R4 und R5 jeweils Wasserstoff, X Wasserstoff, Y C(R7)R8 sowie R7 und R8 jeweils Methyl bedeuten (Da- rocure® 1 173), worin R1, R2, R3, R4 und R5 jeweils Wasserstoff, X Wasserstoff sowie Y Cyclohexyl bedeuten (Irgacure® 184) und worin R1 und R3 jeweils Wasserstoff, R2 und R4 jeweils Methyl, R5 Ethyl, X Methyl, Y P(=0)R7 sowie R7 Phenyl bedeuten (Lucerin® TPO-L).
Die Menge an Photoinitiator c) beträgt vorzugsweise 0,001 bis 2 Gew.-%, besonders bevorzugt 0,01 bis 1 Gew.-%, ganz besonders bevorzugt 0,05 bis 0,2 Gew.-%, jeweils bezogen auf das unneutralisierte Monomer a).
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz beson- ders bevorzugt mindestens 35 g/100 g Wasser.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Weitere geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Sulfon- säuren, wie Styrolsulfonsäure und 2-Acrylamido-2-methylpropansulfonsäure (AMPS).
Verunreinigungen können einen erheblichen Einfluss auf die Polymerisation haben. Daher sollten die eingesetzten Rohstoffe eine möglichst hohe Reinheit aufweisen. Es ist daher oft vorteilhaft die Monomeren a) speziell zu reinigen. Geeignete Reinigungsverfahren werden beispielsweise in der WO 2002/055469 A1 , der WO 2003/078378 A1 und der WO 2004/035514 A1 beschrieben. Ein geeignetes Monomer a) ist beispielsweise eine gemäß WO 2004/035514 A1 gereinigte Acrylsäure mit 99,8460 Gew.-% Acrylsäure, 0,0950 Gew.-% Essigsäure, 0,0332 Gew.-% Wasser, 0,0203 Gew.-% Propionsäure, 0,0001 Gew.-% Furfurale, 0,0001 Gew.-% Maleinsäureanhydrid,
0,0003 Gew.-% Diacrylsäure und 0,0050 Gew.-% Hydrochinonmonomethylether.
Die Menge an Monomer a) beträgt vorzugsweise 20 bis 90 Gew.-%, besonders bevor- zugt 30 bis 85 Gew.-%, ganz besonders bevorzugt 35 bis 75 Gew.-%, jeweils bezogen auf das unneutralisierte Monomer a) und auf die Monomerlösung oder -Suspension. Bezogen auf das unneutralisierte Monomer a) bedeutet im Rahmen dieser Erfindung, dass für die Berechnung der Anteil des Monomeren a) vor der Neutralisation verwendet wird, d.h. der Beitrag der Neutralisation bleibt unberücksichtigt.
Die Säuregruppen der Monomere a) sind üblicherweise zu 25 bis 95 mol-%, vorzugs- weise zu 40 bis 85 mol-%, bevorzugt zu 50 bis 80 mol-%, besonders bevorzugt zu 55 bis 75 mol-%, neutralisiert, wobei die üblichen Neutralisationsmittel verwendet werden können, beispielsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallcarbonate oder Alkalimetallhydrogencarbonate sowie deren Mischungen. Die Neutralisation kann jedoch auch mit Ammoniak, Aminen oder Alkanolaminen, wie Ethanolamin, Diethano- lamin oder Triethanolamin, vorgenommen werden.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden 10 bis 90 mol-%, vorzugsweise 20 bis 80 mol-%, besonders bevorzugt 30 bis 70 mol-%, ganz besonders bevorzugt 40 bis 60 mol-%, der neutralisierten Monomere a) mittels eines Alkanolamins, neutralisiert wurden.
Mit steigendem Anteil an Alkanolamin nehmen sowohl die Flexibilität der polymeren Schäume als auch der Auswaschverlust (AVW) zu. Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%.
Die Monomere a) enthalten üblicherweise Polymerisationsinhibitoren, vorzugsweise Hydrochinonhalbether, als Lagerstabilisator.
Die Monomerlösung enthält vorzugsweise bis zu 250 Gew.-ppm, bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf das unneutralisierte Monomer a). Beispielsweise kann zur Herstellung der Monomerlösung ein ethylenisch ungesättigtes, säuregruppentragendes Monomer mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden. Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder alpha-Tocopherol (Vitamin E).
Geeignete Vernetzer b) sind Verbindungen mit mindestens zwei zur Vernetzung geeigneten Gruppen. Derartige Gruppen sind beispielsweise ethylenisch ungesättigte Grup- pen, die in die Polymerkette radikalisch einpolymerisiert werden können, und funktionelle Gruppen, die mit den Säuregruppen des Monomeren a) kovalente Bindungen ausbilden können. Weiterhin sind auch polyvalente Metallsalze, die mit mindestens zwei Säuregruppen des Monomeren a) koordinative Bindungen ausbilden können, als Vernetzer b) geeignet.
Vernetzer b) sind vorzugsweise Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldi- acrylat, Polyethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Trially- lamin, Tetraallylammoniumchlorid, Tetraallyloxyethan, wie in EP 0 530 438 A1 beschrieben, Di- und Triacrylate, wie in EP 0 547 847 A1 , EP 0 559 476 A1 ,
EP 0 632 068 A1 , WO 93/21237 A1 , WO 2003/104299 A1 , WO 2003/104300 A1 ,
WO 2003/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 2002/032962 A2 beschrieben.
Bevorzugte Vernetzer b) sind Pentaerythrittriallylether, Tetraalloxyethan, Methylenbis- methacrylamid, 15-fach ethoxiliertes Trimethylolpropantriacrylat, Polyethylenglykoldiacrylat, Trimethylolpropantriacrylat und Triallylamin.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine, wie sie beispielsweise in WO 2003/104301 A1 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1 - bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins, insbesondere das Triac- rylat des 3-fach ethoxylierten Glyzerins. Die Menge an Vernetzer b) beträgt vorzugsweise 0,5 bis 15 Gew.-%, besonders bevorzugt 2 bis 10 Gew.-%, ganz besonders bevorzugt 3 bis 8 Gew.-%, jeweils bezogen auf das unneutralisierte Monomer a). Mit steigendem Vernetzergehalt sinkt die Zentri- fugenretentionskapazität (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 (AUL0.3psi) durchläuft ein Maximum.
Zusätzlich zu den Photoinitiatoren c) kann die Monomerlösung oder -Suspension weitere Initiatoren enthalten. Dies können sämtliche unter den Polymerisationsbedingungen in Radikale erzeugende Verbindungen eingesetzt werden, beispielsweise thermische Initiatoren, Redox-Initiatoren.
Thermische Initiatoren sind beispielsweise Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate und Azoinitiatoren. Geeignete Azoinitiatoren sind beispielsweise 2,2'-Azobis-(2-amidinopropan)dihydrochlond, 2,2'-Azobis-(N,N- dimethylen)isobutyramidin-dihydrochlorid, 2-(Carbamoylazo)isobutyronitril, 2,2'-Azo- bis[2-(2'-imidazolin-2-yl)propan]dihydrochlorid und 4,4'-Azobis-(4-cyanovaleriansäure). In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden Kombinationen aus Photoinitiator c) und Azoinitiator eingesetzt. Hierdurch können besonders weiße wasserabsorbierende polymere Schäume mit besonders wenig Restmonomeren erhalten werden. Die Tenside d) sind für die Herstellung und die Stabilisierung der aufgeschäumten Monomerlösung oder -Suspension von entscheidender Bedeutung. Man kann anionische, kationische oder nichtionische Tenside oder Tensidmischungen verwenden, die miteinander verträglich sind. Man kann niedermolekulare oder auch polymere Tenside einsetzen, wobei sich Kombinationen unterschiedlicher oder auch gleichartiger Typen von Tensiden als vorteilhaft herausgestellt haben. Verwendbare nichtionische Tenside sind beispielsweise Additionsprodukte von Alkylenoxiden, insbesondere Ethylenoxid, Propylenoxid und/oder Butylenoxid an Alkohole, Amine, Phenole, Naphthole oder Carbonsäuren. Vorteilhaft setzt man als Tenside Additionsprodukte von Ethylenoxid und/oder Propylenoxid an mindestens 10 C-Atome enthaltende Alkohole ein, wobei die Additionsprodukte pro Mol Alkohol 3 bis 200 Mol Ethylenoxid und/oder Propylenoxid angelagert enthalten. Die Additionsprodukte enthalten die Alkylenoxid-Einheiten in Form von Blöcken oder in statistischer Verteilung. Beispiele für einsetzbare nichtionische Tenside sind die Additionsprodukte von 7 Mol Ethylenoxid an 1 Mol Talgfettalkohol, Umsetzungsprodukte von 9 Mol Ethylenoxid mit 1 Mol Talgfettalkohol und Additi- onsprodukte von 80 Mol Ethylenoxid an 1 Mol Talgfettalkohol. Weitere verwendbare handelsübliche nichtionische Tenside bestehen aus Umsetzungsprodukten von Oxoal- koholen oder Ziegler-Alkoholen mit 5 bis 12 Mol Ethylenoxid pro Mol Alkohol, insbesondere mit 7 Mol Ethylenoxid. Weitere verwendbare handelsübliche nichtionische Tenside werden durch Ethoxylierung von Rizinusöl erhalten. Pro Mol Rizinusöl werden beispielsweise 12 bis 80 Mol Ethylenoxid angelagert. Weitere einsetzbare handelsübliche Produkte sind beispielsweise die Umsetzungsprodukte von 18 Mol Ethylenoxid mit 1 Mol Talgfettalkohol, die Additionsprodukte von 10 Mol Ethylenoxid an 1 Mol eines Ci3/Ci5-Oxoalkohols, oder die Umsetzungsprodukte von 7 bis 8 Mol Ethylenoxid an 1 Mol eines Ci3/Cis-Oxoalkohols. Weitere geeignete nichtionische Tenside sind Pheno- lalkoxylate, wie beispielsweise p-tert.-Butylphenol, das mit 9 Mol Ethylenoxid umgesetzt ist, oder Methylether von Umsetzungsprodukten aus 1 Mol eines C12- bis
Cis-Alkohols und 7,5 Mol Ethylenoxid.
Die oben beschriebenen nichtionischen Tenside können beispielsweise durch Vereste- rung mit Schwefelsäure in die entsprechenden Schwefelsäurehalbester überführt werden. Die Schwefelsäurehalbester werden in Form der Alkalimetall- oder Ammoniumsalze als anionische Tenside eingesetzt. Als anionische Tenside eignen sich beispiels- weise Alkalimetall- oder Ammoniumsalze von Schwefelsäurehalbestern von Additionsprodukten von Ethylenoxid und/oder Propylenoxid an Fettalkohole, Alkalimetall- oder Ammoniumsalze von Alkylbenzolsulfonsäure oder von Alkylphenolethersulfaten. Produkte der genannten Art sind im Handel erhältlich. Beispielsweise sind das Natriumsalz eines Schwefelsäurehalbesters eines mit 106 Mol Ethylenoxid umgesetzten
Ci3/Ci5-Oxoalkohols, das Triethanolaminsalz von Dodecylbenzolsulfonsäure, das Natriumsalz von Alkylphenolethersulfaten und das Natriumsalz des Schwefelsäurehalbesters eines Umsetzungsprodukts von 106 Mol Ethylenoxid mit 1 Mol Talgfettalkohol handelsübliche einsetzbare anionische Tenside. Weitere geeignete anionische Tenside sind Schwefelsäurehalbester von Ci3/Ci5-Oxoalkoholen, Paraffinsulfonsäuren, wie
Ci5-Alkylsulfonat, alkylsubstituierte Benzolsulfonsäuren und alkylsubstituierte Naphtha- linsulfonsäuren wie Dodecylbenzolsulfonsäure und Di-n-butylnaphthalinsulfonsäure, sowie Fettalkoholphosphate, wie C-is/C-is-Fettalkoholphosphat. Die polymerisierbare wässrige Mischung kann Kombinationen aus einem nichtionischen Tensid und einem anionischen Tensid oder Kombinationen aus nichtionischen Tensiden oder Kombinationen aus anionischen Tensiden enthalten. Auch kationische Tenside sind geeignet. Beispiele hierfür sind die mit Dimethylsulfat quaternierten Umsetzungsprodukte von 6,5 Mol Ethylenoxid mit 1 Mol Oleylamin, Distearyldimethylammoniumchlorid, Lau- ryltrimethylammoniumchlorid, Cetylpyridiniumbromid und mit Dimethylsulfat quaternier- ter Stearinsäuretriethanolaminester, der bevorzugt als kationisches Tensid eingesetzt wird.
Die Menge an Tensid, bezogen auf das unneutralisierte Monomer a) beträgt vorzugsweise 0,01 bis 10 Gew.-%, besonders bevorzugt 0,1 bis 6 Gew.-%, ganz besonders bevorzugt 0,8 bis 3 Gew.-%.
Mit den ethylenisch ungesättigten, säuregruppentragenden Monomeren a) copolymeri- sierbare ethylenisch ungesättigte Monomere e) sind beispielsweise Acrylamid, Methac- rylamid, Hydroxyethylacrylat, Hydroxyethylmethacrylat, Dimethylaminoethylmethacry- lat, Dimethylaminoethylacrylat, Dimethylaminopropylacrylat, Diethylaminopropylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat.
Lösevermittler f) sind mit Wasser mischbare organische Lösemittel, beispielsweise Dimethylsulfoxid, Dimethylformamid, N-Methylpyrrolidon, einwertige Alkohole, Glykole, Polyethylenglykole bzw. davon abgeleitete Monoether, wobei die Monoether keine
Doppelbindungen im Molekül enthalten. Geeignete Ether sind Methylglykol, Butylglykol, Butyldiglykol, Methyldiglykol, Butyltriglykol, 3-Ethoxy-1 -propanol und Glyzerinmonome- thylether. Falls Lösevermittler f) eingesetzt werden, beträgt ihr Gehalt in der Monomerlösung oder -Suspension vorzugsweise bis zu 50 Gew.-%, besonders bevorzugt 1 bis
25 Gew.-%, ganz besonders bevorzugt 5 bis 10 Gew.-%. Die Monomerlösung oder -Suspension kann Verdicker, Schaumstabilisatoren, Füllstoffe, Fasern und/oder Zellkeimbildner g) enthalten. Verdicker werden beispielsweise zur Optimierung der Schaumstruktur und zur Verbesserung der Schaumstabilität eingesetzt. Man erreicht damit, dass der Schaum während der Polymerisation nur geringfü- gig schrumpft. Als Verdickungsmittel kommen alle hierfür bekannten natürlichen und synthetischen Polymeren in Betracht, die die Viskosität eines wässrigen Systems stark erhöhen. Hierbei kann es sich um wasserquellbare oder wasserlösliche synthetische und natürliche Polymere handeln. Eine ausführliche Übersicht über Verdicker findet man beispielsweise in den Veröffentlichungen von R.Y. Lochhead und W.R. Fron, Cosmetics & Toiletries, 108, 95-135 (Mai 1993) und M.T. Clarke, "Rheological Additives" in D. Laba (ed.) "Rheological Properties of Cosmetics and Toiletries", Cosmetic Science and Technology Series, Vol. 13, Marcel Dekker Inc., New York 1993.
Als Verdicker in Betracht kommende wasserquellbare oder wasserlösliche synthetische Polymere sind beispielsweise hochmolekulare Polyethylenglykole oder Copolymere aus Ethylenglykol und Propylenglykol sowie hochmolekulare Polysaccharide, wie Stärke, Guarkernmehl, Johannisbrotkernmehl oder Derivate von Naturstoffen, wie Car- boxymethylcellulose, Hydroxyethylcellulose, Hydroxymethylcellulose, Hydroxypropyl- cellulose und Cellulosemischether. Eine weitere Gruppe von Verdickern sind wasser- unlösliche Produkte, wie feinteiliges Siliciumdioxid, Zeolithe, Bentonit, Cellulosepulver oder andere feinteilige Pulver von vernetzten Polymerisaten. Die Monomerlösung oder -Suspension kann die Verdicker in Mengen bis zu 30 Gew.-% enthalten. Falls solche Verdickungsmittel überhaupt eingesetzt werden, sind sie in Mengen von 0,1 bis 10 Gew.-%, vorzugsweise 0,5 bis 20 Gew.-% in der Monomerlösung oder -Suspension enthalten.
Um die Schaumstruktur zu optimieren, kann man wahlweise Kohlenwasserstoffe mit mindestens 5 C-Atomen im Molekül zu der wässrigen Reaktionsmischung zusetzen. Geeignete Kohlenwasserstoffe sind beispielsweise Pentan, Cyclopentan, Hexan, Cy- clohexan, Heptan, Octan, Isooctan, Decan und Dodecan. Die in Betracht kommenden aliphatischen Kohlenwasserstoffe können geradkettig, verzweigt oder zyklisch sein und haben eine Siedetemperatur, die oberhalb der Temperatur der wässrigen Mischung während des Schäumens liegt. Die aliphatischen Kohlenwasserstoffe erhöhen die Standzeit der noch nicht polymerisierten geschäumten wässrigen Reaktionsmischung. Dadurch wird das Handling der noch nicht polymerisierten Schäume erleichtert und die Prozesssicherheit erhöht. Die Kohlenwasserstoffe wirken beispielsweise als Zellkeimbildner und stabilisieren gleichzeitig den bereits gebildeten Schaum. Darüber hinaus können sie beim Polymerisieren der Monomerlösung oder -Suspension ein weiteres Schäumen bewirken. Sie können dann auch die Funktion eines Treibmittels haben. Anstelle von Kohlenwasserstoffen oder in Mischung damit kann man wahlweise auch chlorierte oder fluorierte Kohlenwasserstoffe als Zellkeimbildner und/oder Schaumstabilisator einsetzen, wie Dichlormethan, Trichlormethan, 1 ,2-Dichlorethan, Trichlorfluor- methan oder 1 ,1 ,2-Trichlortrifluorethan. Falls Kohlenwasserstoffe eingesetzt werden, verwendet man sie beispielsweise in Mengen von 0,1 bis 20 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-%, bezogen auf die Monomerlösung oder -Suspension. Um die Eigenschaften der Schaumstoffe zu modifizieren, kann man einen oder mehrere Füllstoffe zusetzen, beispielsweise Kreide, Talkum, Ton („Gay"), Titandioxid, Magnesiumoxid, Aluminiumoxid, Fällungskieselsäuren in hydrophilen oder hydrophoben Modifikationen, Dolomit und/oder Kalziumsulfat. Die Füllstoffe können in Mengen bis zu 30 Gew.-% in der Monomerlösung oder -Suspension enthalten sein.
Die oben beschriebenen wässrigen Monomerlösungen oder -Suspensionen werden zunächst geschäumt. Man kann beispielsweise ein inertes Gas, wie Stickstoff, Kohlendioxid oder Luft, unter einem Druck von beispielsweise 2 bis 400 bar in der wässrigen Monomerlösung oder -Suspension lösen und sie anschließend auf Atmosphärendruck entspannen. Beim Entspannen aus mindestens einer Düse entsteht ein fließfähiger Monomerschaum. Da die Gaslöslichkeit mit fallender Temperatur zunimmt, sollte die Gassättigung und das anschließende Schäumen bei möglichst niedriger Temperatur durchgeführt werden, wobei unerwünschte Ausfällungen vermieden werden sollten. Man kann die wässrigen Monomerlösungen oder -Suspensionen auch nach einer ande- ren Methode schäumen, indem man darin feine Blasen eines inerten Gases disper- giert. Das Schäumen der wässrigen Monomerlösungen oder -Suspensionen kann im Labor beispielsweise dadurch erfolgen, dass man die wässrige Monomerlösung oder - Suspension in einer Küchenmaschine, die mit einem Schneebesen ausgerüstet ist, schäumt. Weiterhin ist es möglich die wässrigen Monomerlösungen oder -suspen- sionen mit Kohlendioxid zu Schäumen, indem zur Neutralisation Karbonate oder Hydrogenkarbonate eingesetzt werden.
Die Schaumerzeugung wird vorzugsweise in einer Inertgasatmosphäre und mit Inertgasen durchgeführt, beispielsweise durch Versetzen mit Stickstoff oder Edelgasen un- ter Normaldruck oder erhöhtem Druck, beispielsweise bis zu 25 bar und anschließendes Entspannen. Die Konsistenz der Monomerschäume, die Größe der Gasblasen und die Verteilung der Gasblasen im Monomerschaum kann beispielsweise durch die Auswahl der Tenside d), Lösevermittler f), Schaumstabilisatoren, Zellkeimbildner, Verdickungsmittel und Füllstoffe g) in einem weiten Bereich variiert werden. Dadurch kann man die Dichte, den Grad der Offenzeiligkeit und die Wandstärke des Monomer- schaums leicht einstellen. Die wässrige Monomerlösung oder -Suspension wird vorzugsweise bei Temperaturen geschäumt, die unterhalb des Siedepunkts ihrer Bestandteile liegen, beispielsweise bei Umgebungstemperatur bis zu 100°C, vorzugsweise bei 0 bis 50°C, besonders bevorzugt bei 5 bis 20°C. Man kann jedoch auch bei Tempera- turen oberhalb des Siedepunkts der Komponente mit dem niedrigsten Siedepunkt arbeiten, indem man die wässrige Monomerlösung oder -Suspension in einem druckdicht verschlossenen Behälter schäumt. Man erhält Monomerschäume, die fließfähig und über einen längeren Zeitraum stabil sind. Die Dichte der Monomerschäume beträgt bei einer Temperatur von 20°C beispielsweise 0,01 bis 0,9 g/cm3.
Der erhaltene Monomerschaum kann auf einer geeigneten Unterlage polymerisiert werden. Die Polymerisation wird in Gegenwart der Photoinitiatoren c) durchgeführt. Die Radikale können beispielsweise durch Erwärmen (thermische Polymerisation) oder durch Bestrahlung mit Licht einer geeigneten Wellenlänge (UV-Polymerisation) erzeugt werden. Polymere Schäume mit einer Schichtdicke von bis zu etwa 5 Millimeter stellt man beispielsweise durch einseitiges oder beidseitiges Erwärmen oder insbesondere durch einseitiges oder beidseitiges Bestrahlen der Monomerschäume her. Falls dickere po- lymere Schäume hergestellt werden sollen, beispielsweise polymere Schäume mit Dicken von mehreren Zentimetern, ist die Erwärmung des Monomerschaums mit Hilfe von Mikrowellen besonders vorteilhaft, weil auf diesem Wege eine relativ gleichmäßige Erwärmung erreicht werden kann. Mit zunehmender Schichtdicke nimmt aber der Anteil an nicht umgesetzten Monomer a) und Vernetzer b) im erhaltenen polymeren Schaum zu. Die thermische Polymerisation erfolgt dabei beispielsweise bei Temperaturen von 20 bis 180°C, vorzugsweise in dem Bereich von 40°C bis 160°C, insbesondere bei Temperaturen von 65 bis 140°C. Bei dickeren polymeren Schäumen kann der Monomerschaum beidflächig erwärmt und/oder bestrahlt werden, beispielsweise mit Hilfe einer Kontaktheizung oder durch Bestrahlung oder in einem Trockenschrank. Die erhaltenen polymeren Schäume sind offenzellig. Der Anteil an offenen Zellen beträgt beispielsweise mindestens 80%, vorzugsweise liegt er oberhalb von 90%. Besonders bevorzugt sind polymere Schäume mit einem offenzelligen Anteil von 100%. Der Anteil an offenen Zellen im polymeren Schaum wird beispielsweise mit Hilfe der Rasterelektronenmikroskopie (Scanning Electron Microscopy) bestimmt.
Nach dem Polymerisieren des Monomerschaums oder während des Polymerisierens erfolgt die Trocknung des polymeren Schaums. Hierbei werden Wasser und andere flüchtige Bestandteile entfernt. Beispiele für geeignete Trocknungsverfahren sind thermische Konvektionstrocknung, wie Umlufttrocknung, thermische Kontakttrocknung, wie Walzentrocknung, Strahlungstrocknung, wie Infrarottrocknung, dielektrische Trocknung, wie Mikrowellentrocknung, und Gefriertrocknung.
Die Trocknungstemperaturen liegen üblicherweise im Bereich 50 bis 200°C, vorzugsweise 60 bis 150°C, besonders bevorzugt 80 bis 120°C, ganz besonders bevorzugt 90 bis 1 10°C. Die bevorzugte Verweilzeit bei dieser Temperatur im Trockner beträgt vorzugsweise mindestens 1 Minuten, besonders bevorzugt mindestens 2 Minuten, ganz besonders bevorzugt mindestens 5 Minuten, und üblicherweise höchstens 20 Minuten. Um unerwünschte Zersetzungs- und Vernetzungsreaktionen zu vermeiden, kann es vorteilhaft sein, die Trocknung bei reduziertem Druck, unter einer Schutzgasatmosphäre und/oder unter schonenden thermischen Bedingungen, bei denen die Produkttemperatur 120°C, bevorzugt 100°C, nicht überschreitet, durchzuführen. Ein besonders geeignetes Trocknungsverfahren stellt die (Vakuum)bandtrocknung dar.
Nach dem Trocknungsschritt enthält der polymere Schaum meistens weniger als 15 Gew.-% Wasser. Der Wassergehalt des polymeren Schaums kann jedoch durch Befeuchten mit Wasser oder Wasserdampf beliebig eingestellt werden.
Die wasserabsorbierenden polymeren Schäume können zur weiteren Verbesserung der Eigenschaften oberflächennachvernetzt werden. Geeignete Oberflächennachver- netzer sind Verbindungen, die Gruppen enthalten, die mit mindestens zwei Carboxy- latgruppen der Polymerpartikel kovalente Bindungen bilden können. Geeignete Verbin- düngen sind beispielsweise polyfunktionelle Amine, polyfunktionelle Amidoamine, polyfunktionelle Epoxide, wie in EP 0 083 022 A2, EP 0 543 303 A1 und EP 0 937 736 A2 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE 33 14 019 A1 ,
DE 35 23 617 A1 und EP 0 450 922 A2 beschrieben, oder ß-Hydroxyalkylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben.
Des weiteren sind in DE 40 20 780 C1 zyklische Karbonate, in DE 198 07 502 A1 2-Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE 198 07 992 C1 Bis- und Poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE 198 54 574 A1 N-Acyl-2-Oxazolidone, in
DE 102 04 937 A1 zyklische Harnstoffe, in DE 103 34 584 A1 bizyklische Amidacetale, in EP 1 199 327 A2 Oxetane und zyklische Harnstoffe und in WO 2003/31482 A1 Morpholin-2,3-dion und dessen Derivate als geeignete Oberflächennachvernetzer beschrieben. Bevorzuge Oberflächennachvernetzer sind Ethylenkarbonat, Ethylenglykoldiglycidy- lether, Umsetzungsprodukte von Polyamiden mit Epichlorhydrin und Gemische aus Propylenglykol und 1 ,4-Butandiol.
Ganz besonders bevorzugte Oberflächennachvernetzer sind 2-Hydroxyethyloxazolidin- 2-on, Oxazolidin-2-οη und 1 ,3-Propandiol.
Weiterhin können auch Oberflächennachvernetzer eingesetzt werden, die zusätzliche polymerisierbare ethylenisch ungesättigte Gruppen enthalten, wie in DE 37 13 601 A1 beschrieben Die Menge an Oberflächennachvernetzer beträgt vorzugsweise 0,001 bis 2 Gew.-%, besonders bevorzugt 0,02 bis 1 Gew.-%, ganz besonders bevorzugt 0,05 bis 0,2 Gew.- %, jeweils bezogen auf den wasserabsorbierenden polymeren Schaum. In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden vor, während oder nach der Oberflächennachvernetzung zusätzlich zu den Oberflächennach- vernetzern polyvalente Kationen auf den wasserabsorbierenden polymeren Schaum aufgebracht. Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind beispielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium, Eisen und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Seltenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Chlorid, Bromid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbonat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und Carboxylat, wie Acetat und Lactat, möglich. Aluminiumsulfat ist bevorzugt. Außer Metallsalzen können auch Polyamine als polyvalente Kationen eingesetzt werden.
Die Einsatzmenge an polyvalentem Kation beträgt beispielsweise 0,001 bis 1 ,5 Gew.- %, vorzugsweise 0,005 bis 1 Gew.-%, besonders bevorzugt 0,02 bis 0,8 Gew.-%. jeweils bezogen auf den wasserabsorbierenden polymeren Schaum.
Die Oberflächennachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Oberflächennachvernetzers auf die wasserabsorbierenden polymeren Schäume aufgesprüht wird. Im Anschluss an das Aufsprühen werden die mit der Oberflächennachvernetzer beschichteten polymeren Schäume thermisch getrocknet, wobei die Oberflächennachvernetzungsreaktion sowohl vor als auch während der Trocknung stattfinden kann. Bevorzugte Trocknungstemperaturen liegen im Bereich 50 bis 250°C, bevorzugt 70 bis 150°C, besonders bevorzugt 85 bis 120°C, ganz besonders bevorzugt 90 bis 1 10°C. Die bevorzugte Verweilzeit bei dieser Temperatur im Trockner beträgt vorzugsweise mindestens 1 Minute, besonders bevorzugt mindestens 2 Minuten, ganz besonders bevorzugt mindestens 5 Minuten, und üblicherweise höchstens 20 Minuten.
Weiterhin können die polymeren Schäume zur Verbesserung der Eigenschaften beschichtet oder nachbefeuchtet werden.
Geeignete Beschichtungen zur Verbesserung der Quellgeschwindigkeit (FSR) sowie der Flüssigkeitsweiterleitung (SFC) sind beispielsweise anorganische inerte Substanzen, wie wasserunlösliche Metallsalze, organische Polymere, kationische Polymere sowie zwei- oder mehrwertige Metallkationen, wie Aluminiumsulfat und Aluminuimlak- tat. Geeignete Beschichtungen gegen die unerwünschte Verbackungsneigung sind beispielsweise pyrogene Kieselsäure, wie Aerosil® 200, und Tenside, wie Span® 20. Geeignete Beschichtungen zur Verminderung des Gehaltes an nicht umgesetzten Monomeren (Restmonomere) sind beispielsweise Reduktionsmittel, wie die Salze der schwefeligen Säure, der unterphosphorigen Säure und/oder organischer Sulfinsäure. Als Reduktionsmittel wird aber vorzugsweise ein Gemisch aus dem Natriumsalz der 2-Hydroxy-2-sulfinatoessigsäure, dem Dinatriumsalz der 2-Hydroxy-2-sulfonatoessig- säure und Natriumhydrogensulfit eingesetzt. Derartige Gemische sind als Brüggolite® FF6 und Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; DE) erhältlich.
Gemäß dem erfindungsgemäßen Verfahren können wasserabsorbierende polymere Schäume mit einer hohen Zentrifugenretentionskapazität (CRC) und einem niedrigen Auswaschverlust (AWV) hergestellt werden. Weitere Gegenstände der vorliegenden Erfindung sind die gemäß dem erfindungsgemäßen Verfahren erhältlichen wasserabsorbierenden polymeren Schäume und wasserabsorbierende polymere Schäume mit einer Zentrifugenretentionskapazität (CRC) von mindestens 5 g/g und einem Gehalt an Restmonomeren von weniger als
0,15 Gew.-%.
Die erfindungsgemäßen wasserabsorbierenden polymeren Schäume weisen eine Zentrifugenretentionskapazität (CRC) von typischerweise mindestens 5 g/g, vorzugsweise mindestens 6 g/g, bevorzugt mindestens 7 g/g, besonders bevorzugt mindestens 8 g/g, ganz besonders bevorzugt mindestens 9 g/g, auf. Die Zentrifugenretentionskapazität (CRC) der wasserabsorbierenden polymeren Schäume beträgt üblicherweise weniger als 20 g/g.
Die erfindungsgemäßen wasserabsorbierenden polymeren Schäume weisen eine Gehalt an Restmonomer von typischerweise weniger als 0,15 Gew.-%, vorzugsweise we- niger als 0,12 Gew.-%, bevorzugt weniger als 0,1 Gew.-%, besonders bevorzugt weniger als 0,075 Gew.-%, ganz besonders bevorzugt weniger als 0,05 Gew.-%, auf.
Die erfindungsgemäßen wasserabsorbierenden polymeren Schäume weisen eine Gehalt an Restvernetzer von typischerweise weniger als 0,002 Gew.-%, vorzugsweise weniger als 0,001 Gew.-%, bevorzugt weniger als 0,0005 Gew.-%, besonders bevorzugt weniger als 0,0002 Gew.-%, ganz besonders bevorzugt weniger als
0,0001 Gew.-%, auf.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Hygieneartikel, die erfin- dungsgemäße wasserabsorbierende polymere Schäume enthalten. Die Hygieneartikel sind insbesondere Einwegwindeln, Tampons, Damenbinden, Slipeinlagen und Wundabdeckungen. Methoden:
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 ± 2 °C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die wasserabsorbierenden Polymerpartikel werden vor der Messung gut durchmischt.
Restmonomere (Residual Monomers)
Die Restmonomeren des wasserabsorbierenden polymeren Schaums wird analog der von der EDANA empfohlenen Testmethode Nr. WSP 210.2-05 "Residual Monomers" bestimmt.
Restvernetzer Der Gehalt an Restvernetzer des wasserabsorbierenden polymeren Schaums Polymerpartikel wird mittels HPLC unter Verwendung einer Umkehrphasensäule vom Typ ZORBAX® Eclipse XDB C18 (Agilent Technologies, US) mit nachfolgender UV/VI S- Detektion und Kalibrierung mit externem Standard bestimmt. Als mobile Phase wird Acetonitril/Wasser mit einem Gradienten verwendet.
Zentrifugenretentionskapazität (Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität (CRC) des wasserabsorbierenden polymeren Schaums wird analog der von der EDANA empfohlenen Testmethode Nr. WSP 241.2- 05 "Centrifuge Retention Capacity" bestimmt.
Auswaschverlust (Extractables)
Der Auswaschverlust (AWV) des wasserabsorbierenden polymeren Schaums wird analog der von der EDANA empfohlenen Testmethode Nr. WSP 270.2-05 "Extractables" bestimmt wobei für das Molgewicht Macr das mittlere Molgewicht des ggf. teilneutralisierten Monomeren a) verwendet wird.
Die EDANA-Testmethoden sind beispielsweise erhältlich bei der EDANA, Avenue Eu- gene Plasky 157, B-1030 Brüssel, Belgien. Beispiele
Beispiel 1 209,1 g Acrylsäure, 81 ,3 g einer 37,3 gew.-%igen wässrigen Natriumacrylatlösung, 16,8 g Sartomer® SR-344 (Diacrylat eines Polyethylenglykols mit einem Molgewicht von ca. 400 g/mol), 25,6 g einer 15 gew.-%igen wässrigen Lösung von Lutensol® AT80 (Additionsprodukt von 80 Mol Ethylenoxid an 1 Mol eines linearen, gesättigten C16-C18 Fettalkohols; BASF SE; Ludwigshafen; DE) und 26,6 g Wasser wurden in einem Be- cherglas gemischt. Anschließend wurde unter Kühlung 240,5 g Triethanolamin zugetropft, wobei die Temperatur unter 15°C blieb.
Die erhaltene homogene Lösung wurde in einen Druckbehälter überführt und dort für 25 Minuten bei einem Druck von 12 bar mit Kohlendioxid gesättigt. Unter Druck wurden 8,0 g einer 3 gew.-%igen, wässrigen Lösung von Wako® V-50 (2,2'-Azobis-(2- amidinopropan)-dihydrochlorid) und 0,24 g Irgacure® 2959 (1 -[4-(2-Hydroxyethoxy)- phenyl]-2-hydroxy-2-methylpropan-1 -on) zugegeben und mit einem starken Kohlendioxidstrom untergemischt. Anschließend wurde für weitere 5 Minuten Kohlendioxid durch die Reaktionsmischung geleitet. Die mit Kohlendioxid gesättigte Reaktionsmi- schung wurde danach bei einem Druck von 12 bar durch eine Düse mit einem Durchmesser von 1 ,0 mm ausgepresst, wobei sich ein feinzelliger, gut fließfähiger Schaum bildete.
Der Boden einer DIN A3 große Glasplatte mit 3 mm hohen Rändern wurde mit einer durchsichtigen Polyesterfolie bedeckt. Der erhaltene Monomerschaum wurde auf die Glasplatte aufgebracht und mit einer zweiten durchsichtigen Polyesterfolie und einer zweiten Glassplatte bedeckt. Die Schaumprobe wurde synchron von beiden Seiten über 4 Minuten mit UV-Licht bestrahlt, von oben mit einem UVA/IS-Strahler UVASPOT 1000/T (Dr. Hönle AG; Gräfelfing; DE), von unten mit 2 UVA/IS-Strahlern UVASPOT 400/T (Dr. Hönle AG; Gräfelfing; DE). Der Abstand der oberen Lampe zum Monomerschaum betrug 39 cm und der Abstand der unteren Lampen zum Monomerschaum betrug 13 cm.
Der erhaltene polymere Schaum wurde 10 Minuten in einem Umlufttrockenschrank bei 100°C getrocknet und analysiert. Der Schaum hatte einen Gehalt an Restmonomeren von 0,13 Gew.-%, einen Gehalt an Restvernetzer von 0,0003 Gew.-%, eine Zentrifu- genretentionskapazität (CRC) von 8,4 g/g und der Auswaschverlust (AWV) betrug 55 Gew.-%. Beispiel 2 (Vergleichsbeispiel)
Es wurde verfahren wie unter Beispiel 1. Als Initiator wurde 16,0 g einer 3 gew.-%igen, wässrigen Lösung von Wako® V-50 (2,2'-Azobis-(2-amidinopropan)-dihydrochlorid) eingesetzt. Der Schaum hatte einen Gehalt an Restmonomeren von 0,72 Gew.-%, einen Gehalt an Restvernetzer von 0,14 Gew.-%, eine Zentrifugenretentionskapazität (CRC) von 9,6 g/g und der Auswaschverlust (AWV) betrug 42 Gew.-%.
Beispiel 3
Es wurde verfahren wie unter Beispiel 1. Als Initiator wurde 0,48 g Irgacure® 2959 (1 -[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methylpropan-1 -on) eingesetzt. Der erhaltene polymere Schaum ließ sich nur schwer von der unteren Polyesterfolie lösen. Der Schaum hatte einen Gehalt an Restmonomeren von 0,068 Gew.-%, einen Gehalt an Restvernetzer von weniger als 0,0001 Gew.-%, eine Zentrifugenretentionskapazität (CRC) von 8,8 g/g und der Auswaschverlust (AWV) betrug 52 Gew.-%.
Beispiel 4 Es wurde verfahren wie unter Beispiel 1. Als Initiator wurde 0,48 g Lucirin® TPO-L
(2,4,6-Trimethylbenzoylphenylphosphinsäureethylester) eingesetzt. Der erhaltene polymere Schaum ließ sich nur schwer von der unteren Polyesterfolie lösen. Der Schaum hatte einen Gehalt an Restmonomeren von 0,37 Gew.-%, einen Gehalt an Restvernetzer von weniger als 0,0001 Gew.-%, eine Zentrifugenretentionskapazität (CRC) von 10,1 g/g und der Auswaschverlust (AWV) betrug 59 Gew.-%.
Beispiel 5
Es wurde verfahren wie unter Beispiel 1. Als Initiator wurde 0,48 g Irgacure® 184 (1 -Hydroxycyclohexylphenylketon) eingesetzt. Der Schaum hatte einen Gehalt an
Restmonomeren von 0,094 Gew.-%, einen Gehalt an Restvernetzer von 0,0002 Gew.- %, eine Zentrifugenretentionskapazität (CRC) von 9,2 g/g und der Auswaschverlust (AWV) betrug 53 Gew.-%. Beispiel 6 (Vergleichsbeispiel)
Es wurde verfahren wie unter Beispiel 1 . Als Initiator wurde 0,48 g Irgacure® 250 ((4- Methylphenyl)[4-(2-methylpropyl)phenyl]iodonium-hexafluorophosphat) eingesetzt. Der erhaltene polymere Schaum roch unangenehm und ließ sich nicht von den Polyesterfolien lösen. Der Schaum hatte einen Gehalt an Restmonomeren von 1 ,6 Gew.-%, einen Gehalt an Restvernetzer von 0,074 Gew.-%, eine Zentrifugenretentionskapazität (CRC) von 7,7 g/g und der Auswaschverlust (AWV) betrug 62 Gew.-%. Beispiel 7 (Vergleichsbeispiel)
Es wurde verfahren wie unter Beispiel 1. Als Initiator wurde 0,48 g 2-Amino-9-fluorenon eingesetzt. Der Schaum hatte einen Gehalt an Restmonomeren von 3,1 Gew.-%, einen Gehalt an Restvernetzer von 1 ,1 Gew.-%, eine Zentrifugenretentionskapazität (CRC) von 8,8 g/g und der Auswaschverlust (AWV) betrug 80 Gew.-%.
Beispiel 8
Es wurde verfahren wie unter Beispiel 1. Als Initiator wurde 0,48 g Darocur® 1 173 (2-Hydroxy-2-methyl-1 -phenylpropan-1 -on) eingesetzt. Der Schaum hatte einen Gehalt an Restmonomeren von 0,045 Gew.-%, einen Gehalt an Restvernetzer von weniger als 0,0001 Gew.-%, eine Zentrifugenretentionskapazität (CRC) von 9,0 g/g und der Auswaschverlust (AWV) betrug 63 Gew.-%.

Claims

Patentansprüche
1 . Verfahren zur Herstellung wasserabsorbierender polymerer Schäume durch Polymerisation einer aufgeschäumten wässrigen Monomerlösung oder -Suspension, enthaltend a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert sein kann,
b) mindestens einen Vernetzer,
c) mindestens einen Photoinitiator und
d) mindestens ein Tensid, wobei die Monomerlösung oder -Suspension zu einem polymeren Schaum poly- merisiert wird, dadurch gekennzeichnet, dass der mindestens eine Photoinitiator eine Verbindung der allgemeinen Formel I ist,
worin
R1, R2, R3, R4 und R5 unabhängig voneinander Wasserstoff oder Ci-Cs-Alkyl, wobei C3-C8-Alkyl verzweigt oder unverzweigt sein können,
X Wasserstoff, OR6 oder Ci-C8-Alkyl, wobei C3-C8-Alkyl ver- zweigt oder unverzweigt sein können,
R6 Ci-Cs-Alkyl oder Ci-C8-Hydroxyalkyl, wobei C3-C8-Alkyl oder C3-C8-Hydroxyalkyl verzweigt oder unverzweigt sein können,
Y C4-Ce-Cycloalkyl, C(R7)R8 oder P(=0)R7
R7 und R8 unabhängig voneinander Ci-Cs-Alkyl oder C6-Ci2-Aryl, wobei C3-C8-Alkyl oder C9-Ci2-Aryl verzweigt oder unverzweigt sein können, bedeuten.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass der mindestens eine Photoinitiator c) eine Verbindung der allgemeinen Formel I ist, worin R1, R2, R3 und R4 und R5 jeweils Wasserstoff, X OR6, R6 Hydroxyethyl, Y C(R7)R8 sowie R7 und R8 jeweils Methyl bedeuten.
3. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass der mindestens eine Photoinitiator c) eine Verbindung der allgemeinen Formel I ist, worin R1, R2,
R3 und R4 und R5 jeweils Wasserstoff, X Wasserstoff, Y C(R7)R8 sowie R7 und R8 jeweils Methyl bedeuten.
4. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass der mindestens eine Photoinitiator c) eine Verbindung der allgemeinen Formel I ist, worin R1 und
R3 jeweils Wasserstoff, R2 und R4 jeweils Methyl, R5 Ethyl, X Methyl, Y P(=0)R7 sowie R7 Phenyl bedeuten.
5. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass der mindestens eine Photoinitiator c) eine Verbindung der allgemeinen Formel I ist, worin R1, R2,
R3, R4 und R5 jeweils Wasserstoff, X Wasserstoff sowie Y Cyclohexyl bedeuten.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zusätzlich ein Azoinitiator eingesetzt wird.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Säuregruppen des Monomeren a) zu 25 bis 95 mol-% neutralisiert sind.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die neutralisierten Säuregruppen des Monomeren a) zu 10 bis 95 mol-% mit einem Alkanolamin neutralisiert wurden.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Monomerlösung oder -Suspension bezogen auf das unneutralisierte Monomer a) von 1 bis 4 Gew.-% Vernetzer b) enthält.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Monomerlösung oder -Suspension bezogen auf das unneutralisierte Monomer a) von 0,05 bis 0,2 Gew.-% Photoinitiator c) enthält.
1 1 . Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Monomerlösung oder -Suspension bezogen auf das unneutralisierte Monomer a) von 0,05 bis 0,1 Gew.-% Tensid d) enthält.
12. Verfahren gemäß einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass die Monomerlösung oder -Suspension durch Lösen eines inerten Gases unter Druck und anschließendem Entspannen aufgeschäumt wird.
13. Wasserabsorbierender polymerer Schaum, erhältlich gemäß einem Verfahren der Ansprüche 1 bis 12.
14. Wasserabsorbierender polymerer Schaum, wobei der wasserabsorbierende po- lymere Schaum eine Zentrifugenretentionskapazität von mindestens 5 g/g und einem Gehalt an Restmonomeren von weniger als 0,15 Gew.-% aufweist.
15. Hygieneartikel, enthaltend einen wasserabsorbierenden Schaum gemäß Anspruch 13 oder 14.
EP10782259A 2009-11-23 2010-11-19 Verfahren zur herstellung wasserabsorbierender polymerer schäume Withdrawn EP2504038A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10782259A EP2504038A1 (de) 2009-11-23 2010-11-19 Verfahren zur herstellung wasserabsorbierender polymerer schäume

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09176761 2009-11-23
PCT/EP2010/067812 WO2011061282A1 (de) 2009-11-23 2010-11-19 Verfahren zur herstellung wasserabsorbierender polymerer schäume
EP10782259A EP2504038A1 (de) 2009-11-23 2010-11-19 Verfahren zur herstellung wasserabsorbierender polymerer schäume

Publications (1)

Publication Number Publication Date
EP2504038A1 true EP2504038A1 (de) 2012-10-03

Family

ID=43566656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10782259A Withdrawn EP2504038A1 (de) 2009-11-23 2010-11-19 Verfahren zur herstellung wasserabsorbierender polymerer schäume

Country Status (5)

Country Link
US (1) US9120878B2 (de)
EP (1) EP2504038A1 (de)
JP (1) JP2013511610A (de)
CN (1) CN102665772B (de)
WO (1) WO2011061282A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2637991B1 (de) * 2010-11-10 2019-08-07 Silicon Fire AG Verfahren und vorrichtung für methanolsynthese auf kohlendioxidbasis
US20120296297A1 (en) * 2011-05-18 2012-11-22 Achille Di Cintio Feminine hygiene absorbent articles comprising water-absorbing polymeric foams
KR101960041B1 (ko) * 2015-04-28 2019-03-19 주식회사 엘지화학 고흡수성 수지의 제조방법
KR102086053B1 (ko) * 2016-12-13 2020-03-06 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102093352B1 (ko) * 2016-12-19 2020-03-25 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR102102459B1 (ko) * 2016-12-20 2020-04-20 주식회사 엘지화학 고흡수성 수지의 제조 방법
JP2024504326A (ja) * 2021-12-24 2024-01-31 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744435A1 (de) * 1994-12-08 1996-11-27 Nippon Shokubai Co., Ltd. Wasserabsorbierendes harz, verfahren zu dessen herstellung und wasserabsorbierende harzzusammensetzung
WO2004035668A2 (de) * 2002-10-10 2004-04-29 Basf Aktiengesellschaft Superabsorbierender schaum, verfahren zu seiner herstellung und seine verwendung

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018690B2 (ja) 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
JPS58180233A (ja) 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収剤
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
DE3713601A1 (de) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
CA2038779A1 (en) 1990-04-02 1991-10-03 Takumi Hatsuda Method for production of fluid stable aggregate
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
ES2097235T3 (es) 1991-09-03 1997-04-01 Hoechst Celanese Corp Polimero superabsorbente que tiene propiedades de absorcion mejoradas.
DE4138408A1 (de) 1991-11-22 1993-05-27 Cassella Ag Hydrophile, hochquellfaehige hydrogele
JP3045422B2 (ja) 1991-12-18 2000-05-29 株式会社日本触媒 吸水性樹脂の製造方法
DE69312126T2 (de) 1992-03-05 1997-11-06 Nippon Catalytic Chem Ind Verfahren zu Herstellung eines absorbierenden Harzes
GB9208449D0 (en) 1992-04-16 1992-06-03 Dow Deutschland Inc Crosslinked hydrophilic resins and method of preparation
DE69412547T2 (de) 1993-06-18 1999-04-22 Nippon Catalytic Chem Ind Verfahren zur Herstellung eines absorbierenden Harzes
DE19540951A1 (de) * 1995-11-03 1997-05-07 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19543368C2 (de) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19646484C2 (de) 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19607551A1 (de) 1996-02-28 1997-09-04 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19807502B4 (de) 1998-02-21 2004-04-08 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen, daraus hergestellte Hydrogele und deren Verwendung
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6503979B1 (en) 1998-02-26 2003-01-07 Basf Aktiengesellschaft Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones
DE19809540A1 (de) 1998-03-05 1999-09-09 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
DE19909214A1 (de) 1999-03-03 2000-09-07 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate mit verbesserter Verteilungswirkung, Verfahren zu ihrer Herstellung und ihre Verwendung
ATE277111T1 (de) * 1999-03-12 2004-10-15 Basf Ag Farbstabile superabsorbierende polymerzusammensetzung
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
US6979564B2 (en) 2000-10-20 2005-12-27 Millennium Pharmaceuticals, Inc. 80090, human fucosyltransferase nucleic acid molecules and uses thereof
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
BR0206396A (pt) 2001-01-12 2004-02-10 Degussa Processo contìnuo para preparação e purificação de ácido (met)acrìlico
US7183360B2 (en) 2001-10-05 2007-02-27 Basf Aktiengesellschaft Method for crosslinking hydrogels with morpholine-2,3-diones
US6949128B2 (en) 2001-12-28 2005-09-27 3M Innovative Properties Company Method of making an abrasive product
KR20040091010A (ko) 2002-02-06 2004-10-27 바스프 악티엔게젤샤프트 수-흡수성 염기성 중합체로부터 제조된 발포체, 그의 제조방법 및 용도
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10211686A1 (de) 2002-03-15 2003-10-02 Stockhausen Chem Fab Gmbh (Meth)Acrylsäurekristall und Verfahren zur Herstellung und Aufreinigung von wässriger (Meth)Acrylsäure
DE10225943A1 (de) 2002-06-11 2004-01-08 Basf Ag Verfahren zur Herstellung von Estern von Polyalkoholen
BR0311498A (pt) 2002-06-11 2005-03-15 Basf Ag éster f, processos para preparar o mesmo e um hidrogel reticulado, polìmero, hidrogel reticulado, uso de um polìmero, composição de matéria, e usos de uma mistura da reação, e de um éster f
CA2488226A1 (en) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated trimethylolpropane
EP1546281A1 (de) 2002-09-27 2005-06-29 Basf Aktiengesellschaft Polymerisierte hydrogel-klebstoffe mit einem hohen monomergehalt in seiner salzform
DE10247240A1 (de) 2002-10-10 2004-04-22 Basf Ag Verfahren zur Herstellung von Acrylsäure
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
WO2005054356A1 (de) 2003-12-03 2005-06-16 Basf Aktiengesellschaft Mindestens ein sterisch gehindertes einwertiges und/oder mehrwertiges phenol enthaltende superabsorber
TWI344469B (en) * 2005-04-07 2011-07-01 Nippon Catalytic Chem Ind Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
CN101155840B (zh) * 2005-04-07 2011-06-15 株式会社日本触媒 聚丙烯酸(盐)吸水树脂的生产方法
JP5669391B2 (ja) 2006-07-19 2015-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 高い透過性を有する吸水性ポリマー粒子の重合による製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744435A1 (de) * 1994-12-08 1996-11-27 Nippon Shokubai Co., Ltd. Wasserabsorbierendes harz, verfahren zu dessen herstellung und wasserabsorbierende harzzusammensetzung
WO2004035668A2 (de) * 2002-10-10 2004-04-29 Basf Aktiengesellschaft Superabsorbierender schaum, verfahren zu seiner herstellung und seine verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011061282A1

Also Published As

Publication number Publication date
US20120232176A1 (en) 2012-09-13
CN102665772A (zh) 2012-09-12
US9120878B2 (en) 2015-09-01
CN102665772B (zh) 2016-08-03
JP2013511610A (ja) 2013-04-04
WO2011061282A1 (de) 2011-05-26

Similar Documents

Publication Publication Date Title
EP2709682B1 (de) Verwendung wasserabsorbierender polymerpartikel zur absorption von blut und/oder menstruationsflüssigkeit
EP2504038A1 (de) Verfahren zur herstellung wasserabsorbierender polymerer schäume
EP2504037A1 (de) Verfahren zur herstellung wasserabsorbierender, aufgeschäumter polymerpartikel
EP2411422B2 (de) Verfahren zur herstellung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2297211B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
US20120296297A1 (en) Feminine hygiene absorbent articles comprising water-absorbing polymeric foams
EP2922580A2 (de) Verfahren zur herstellung von superabsorbern auf basis nachwachsender rohstoffe
DE102004024437A1 (de) Verfahren zur Herstellung wasserquellbarer, polymerer Partikel
EP2470221B1 (de) Geruchsinhibierende zusammensetzungen
EP2099828B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch suspensionspolymerisation
DE102005002412A1 (de) Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
US9198996B2 (en) Water-absorbing composites
EP2731975A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
EP3227345A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch suspensionspolymerisation
WO2012156386A1 (de) Verwendung wasserabsorbierender polymerpartikel zur entwässerung von fäkalien
WO2016135016A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch suspensionspolymerisation
JP6109157B2 (ja) 高膨潤率の超吸収性フォームの製造
EP2714750A1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP3262085A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch suspensionspolymerisation
WO2024115158A1 (de) Verfahren zur herstellung von farbstabilen superabsorberpartikeln
WO2012107344A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2485774B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120625

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130626

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180710