EP3661915B1 - Procédés de préparation de composés de pyrrolidine - Google Patents

Procédés de préparation de composés de pyrrolidine Download PDF

Info

Publication number
EP3661915B1
EP3661915B1 EP18755654.3A EP18755654A EP3661915B1 EP 3661915 B1 EP3661915 B1 EP 3661915B1 EP 18755654 A EP18755654 A EP 18755654A EP 3661915 B1 EP3661915 B1 EP 3661915B1
Authority
EP
European Patent Office
Prior art keywords
process according
reaction
acid
molar equivalents
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18755654.3A
Other languages
German (de)
English (en)
Other versions
EP3661915A1 (fr
Inventor
Paul T. Angell
Berenice LEWANDOWSKI
Benjamin J. Littler
William A. Nugent
David Smith
John Studley
Robert M. HUGHES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertex Pharmaceuticals Inc
Original Assignee
Vertex Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vertex Pharmaceuticals Inc filed Critical Vertex Pharmaceuticals Inc
Publication of EP3661915A1 publication Critical patent/EP3661915A1/fr
Application granted granted Critical
Publication of EP3661915B1 publication Critical patent/EP3661915B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/06Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4015Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having oxo groups directly attached to the heterocyclic ring, e.g. piracetam, ethosuximide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms

Definitions

  • processes for preparing 5,5-dimethyl-3-methylenepyrrolidin-2-one are disclosed.
  • the disclosure is drawn to processes for preparing ( S )-2,2,4-trimethylpyrrolidine free base or ( S )-2,2,4-trimethylpyrrolidine salts.
  • the ( S )-2,2,4-trimethylpyrrolidine salt is ( S )-2,2,4-trimethylpyrrolidine hydrochloride.
  • the disclosure is drawn to processes for preparing ( R )-2,2,4-trimethylpyrrolidine free base or ( R )-2,2,4-trimethylpyrrolidine salts.
  • the ( R )-2,2,4-trimethylpyrrolidine salt is ( R )-2,2,4-trimethylpyrrolidine hydrochloride.
  • the disclosure is drawn to processes for preparing ( S )-3,5,5-trimethylpyrrolidine-2-one.
  • the disclosure is drawn to processes for ( R )-3,5,5-trimethylpyrrolidine-2-one.
  • Scheme 1 a process for preparing ( S )-2,2,4-trimethylpyrrolidine is depicted in Scheme 1 and comprises:
  • a salt of 2,2,6,6-tetramethyl-piperidin-4-one is used.
  • Non-limiting examples of salts include a hydrochloride salt, a hydrobromide salt, a sulfate salt, a phoshpate salt, a fumarate salt, an oxalate salt, a maleate salt, a citrate salt, or a benzoate salt.
  • 2,2,6,6-tetramethyl-piperidin-4-one hydrochloride is used. These salts can be prepared by conventional methods in the art, by for example, treating 2,2,6,6-tetramethyl-piperidin-4-one with an acid.
  • a process for preparing a salt of ( S )-2,2,4-trimethylpyrrolidine comprises:
  • Scheme 2 a process for preparing ( R )-2,2,4-trimethylpyrrolidine is depicted in Scheme 2 and comprises:
  • a process for preparing a salt of (R)-2,2,4-trimethylpyrrolidine comprises:
  • Scheme 3 a process for preparing 5,5-dimethyl-3-methylenepyrrolidin-2-one is depicted in Scheme 3 and comprises:
  • reaction in (b) is conducted without isolation of the product(s) of the reaction in (a). This results in a process with fewer purifications and less reliance on materials and solvents, which can provide compound 3 in higher efficiency and lower cost.
  • Scheme 4 a process for preparing ( S )-3,5,5-trimethylpyrrolidin-2-one is depicted in Scheme 4 and comprises:
  • Scheme 5 a process for preparing ( R )-3,5,5-trimethylpyrrolidin-2-one is depicted in Scheme 5 and comprises:
  • 2,2,6,6-tetramethyl-piperidin-4-one or a salt thereof is reacted with chloroform and at least one base.
  • the at least one base is chosen from potassium t -butoxide, potassium hydroxide, and sodium hydroxide.
  • the at least one base is sodium hydroxide.
  • 3 to 15 molar equivalents of the at least one base relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one are added for the reaction in (a). In some embodiments, 5 to 12 molar equivalents of the at least one base are added. In some embodiments, 7.5 molar equivalents of the at least one base are added. In some embodiments, 10 molar equivalents of said at least one base are added. In some embodiments, 8 molar equivalents of sodium hydroxide are added.
  • the at least one base in the reaction (a) is in solid form in at least one anhydrous solvent.
  • the at least one anhydrous solvent is chosen from dimethylsulfoxide and isopropyl alcohol.
  • the at least one base in the reaction (a) is in the form of an aqueous solution having a concentration ranging from 20 wt% to 80 wt% relative to the total weight of the solution.
  • the at least one base is 20 wt% aqueous NaOH.
  • the at least one base is 30 wt% aqueous NaOH.
  • the at least one base is 40 wt% aqueous NaOH.
  • the at least one base is 50 wt% aqueous NaOH.
  • chloroform in the reaction (a) is present in an amount ranging from 1 to 4 molar equivalents relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one. In some embodiments, the chloroform is present in an amount ranging from 1.5 to 3.5 molar equivalents relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one. In some embodiments, the chloroform is present in an amount of 1.75 molar equivalents relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one.
  • 2,2,6,6-tetramethyl-piperidin-4-one or a salt thereof is reacted with chloroform, at least one base, and at least one solvent.
  • the at least one solvent is chosen from organic solvents.
  • the at least one solvent is immiscible with water.
  • the volume of the at least one solvent ranges from 0.1 to 10 volume equivalents relative to the volume of 2,2,6,6-tetramethylpiperidin-4-one.
  • the volume of the at least one solvent ranges from 1 to 4 volume equivalents relative to the volume of 2,2,6,6-tetramethylpiperidin-4-one.
  • the volume of the at least one solvent ranges from 1 to 3 volume equivalents relative to the volume of 2,2,6,6-tetramethylpiperidin-4-one. In some embodiments, the volume of the at least one solvent ranges from 1.5 to 2.5 volume equivalents relative to the volume of 2,2,6,6-tetramethylpiperidin-4-one. In some embodiments, the volume of the at least one solvent is 2 volume equivalents of the at least one solvent relative to the volume of 2,2,6,6-tetramethylpiperidin-4-one.
  • the at least one solvent is chosen from dichloromethane, heptane, chloroform, trifluorotoluene, tetrahydrofuran (THF), and N-methylpyrrolidone (NMP).
  • the at least one solvent is chosen from dichloromethane and heptane. In some embodiments, the at least one solvent is dichloromethane.
  • reaction (a) is performed without the at least one solvent.
  • reaction in (a) is performed without the use of phase transfer catalyst.
  • the at least one phase transfer catalyst is chosen from tetraalkylammonium salts and crown ethers such as 18-crown-6 and 15-crown-5 phase transfer catalysts. In some embodiments, the at least one phase transfer catalyst is chosen from crown ethers, such as 18-crown-6 and 15-crown-5 phase transfer catalysts. In some embodiments, the at least one phase transfer catalyst is chosen from tetraalkylammonium salts.
  • the at least one phase transfer catalyst is chosen from tetraalkylammonium halides. In some embodiments, the at least one phase transfer catalyst is chosen from tributylmethylammonium chloride, tributylmethylammonium bromide, tetrabutylammonium bromide (TBAB), tetrabutylammonium chloride (TBAC), tetrabutylammonium iodide (TBAI), tetrabutylammonium hydroxide (TBAH), benzyltrimethylammonium chloride, tetraoctylammonium bromide (TOAB), tetraoctylammonium chloride (TOAC), tetraoctylammonium iodide (TOAI), trioctylmethylammonium chloride, and trioctylmethylammonium bromide.
  • TBAB tributylmethylammonium bromide
  • TBAC tetra
  • 0.01 molar equivalents to 0.2 molar equivalents of the at least one phase transfer catalyst relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one is added to the reaction in (a).
  • 0.02 molar equivalents to 0.1 molar equivalents of said at least one phase transfer catalyst relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one is added.
  • 0.03 molar equivalents to 0.06 molar equivalents of said at least one phase transfer catalyst relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one is added.
  • 0.01 molar equivalents to 1 molar equivalent such as to 0.2 molar equivalents, 0.4 molar equivalents, 0.6 molar equivalents, or 0.8 molar equivalents of said at least one phase transfer catalyst relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one is added.
  • the acid of the reaction in (b) is chosen from aqueous solutions of protic acids.
  • the protic acids are chosen from hydrochloric acid, methane sulfonic acid, triflic acid, and sulfuric acid.
  • the concentration of said aqueous solutions of protic acids range from 1M to 18M. In some embodiments, the concentration of said aqueous solutions of protic acids range from 2M to 10M.
  • the acid of the reaction in (b) is chosen from HCl having a concentration ranging from 2M to 3M. In some embodiments, the acid of the reaction in (b) is chosen from 2M HCl.
  • the acid of the reaction in (b) is chosen from 2.5M HCl. In some embodiments, the acid of the reaction in (b) is chosen from 3M HCl. In some embodiments, 0.5 to 10 molar equivalents of said acid relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one are added to the reaction in (b). In some embodiments, 1 to 4 molar equivalents of said acid relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one are added to the reaction in (b). In some embodiments, 1.5 molar equivalents of said acid relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one are added to the reaction in (b).
  • the yield of 5,5-dimethyl-3-methylenepyrrolidin-2-one produced from the reactions in (a) and (b) ranges from 40% to 70% relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one. In some embodiments, the yield of 5,5-dimethyl-3-methylenepyrrolidin-2-one produced from the reactions in (a) and (b) ranges from 30% to 80% relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one.
  • the yield of 5,5-dimethyl-3-methylenepyrrolidin-2-one produced from the reactions in (a) and (b) ranges from 50% to 70% relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one. In some embodiments, the yield of 5,5-dimethyl-3-methylenepyrrolidin-2-one produced from the reactions in (a) and (b) ranges from 60% to 80% relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one.
  • 5,5-dimethyl-3-methylenepyrrolidin-2-one is hydrogenated to produce (S)- or (R)-3,5,5-trimethyl-pyrrolidin-2-one.
  • the hydrogenation comprises reacting 5,5-dimethyl-3-methylenepyrrolidin-2-one with at least one catalyst and hydrogen gas to produce (S)-3,5,5-trimethyl-pyrrolidin-2-one.
  • the at least one catalyst is chosen from metals from the platinum group.
  • platinum group means ruthenium, rhodium, palladium, osmium, iridium, and platinum.
  • the at least one catalyst is chosen from ruthenium hydrogenation catalysts, rhodium hydrogenation catalysts, and iridium hydrogenation catalysts.
  • the hydrogenation comprises reacting 5,5-dimethyl-3-methylenepyrrolidin-2-one with at least one catalyst and hydrogen gas to produce ( R )-3,5,5-trimethyl-pyrrolidin-2-one.
  • the at least one catalyst is chosen from ruthenium hydrogenation catalysts, rhodium hydrogenation catalysts, and iridium hydrogenation catalysts.
  • the at least one catalyst may be heterogeneous or homogeneous. In some embodiments, the at least one catalyst is heterogeneous. In some embodiments, the at least one catalyst is homogenous. In some embodiments, the at least one catalyst comprises platinum. In some embodiments, the at least one catalyst comprises rhodium, ruthenium, or iridium. In some embodiments, the at least one catalyst employs at least one ligand. In some embodiments, the at least one ligand is chiral. In some embodiments, the at least one catalyst employs at least one phosphorus-containing ligand.
  • the hydrogenation is enantioselective. Enantioselective hydrogenation can be done using a chiral ligand.
  • the at least one catalyst employs at least one chiral phosphorus-containing ligand. In some embodiments, the at least one chiral phosphorus-containing ligand is a chiral tertiary diphosphine. In some embodiments, the at least one catalyst employs at least one atropisomeric ligand, such as BINAP, Tol-BINAP, T-BINAP, H8-BINAP, Xyl-BINAP, DM-BINAP, or MeOBiphep.
  • the at least one catalyst employs at least one segphos-based ligand, such as segphos, dm-segphos, or dtbm-segphos. In some embodiments, the at least one catalyst employs at least one chiral ferrocenyl-based ligand, such as Josiphos, Walphos, Mandyphos, or Taniaphos.
  • BINAP include ( R )-(+)-(1,1'-Binaphthalene-2,2'-diyl)bis(diphenylphosphine), ( R )-(+)-2,2'-Bis(diphenylphosphino)-1,1 '-binaphthalene (( R )-(+)-BINAP), ( S )-(-)-(1,1 '-Binaphthalene-2,2'-diyl)bis(diphenylphosphine), and ( S )-(-)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthalene (( S )-(-)-BINAP)).
  • Tol-BINAP is ( R )-(+)-2,2'-Bis(di- p -tolylphosphino)-1,1'-binaphthyl.
  • T-BINAP include ( S )-(-)-2,2'- p -tolyl-phosphino)-1,1'-binaphthyl, ( S )-Tol-BINAP.
  • H8-BINAP examples include ( R )-(+)-2,2'-Bis(diphenylphospino)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl, [(1 R )-5,5',6,6',7,7',8,8'-octahydro-[1,1'-binaphthalene]-2,2'-diyl]bis[diphenylphosphine], and ( S )-(-)-2,2'-Bis(diphenylphospino)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl, [(1 S )-5,5',6,6',7,7',8,8'-octahydro-[1,1'-binaphthalene]-2,2'-diyl]bis[diphenyl
  • Non-limiting examples of DM-BINAP include ( R )-(+)-1,1'-Binaphthalene-2,2'-diyl)bis[bis(3,5-dimethylphenyl)phosphine] and ( R )-(+)-2,2'-Bis[di(3,5 -xylyl)phosphino]-1,1 '-binaphthyl.
  • a non-limiting example of Xyl-BINAP is (R) -(+)-XylBINAP and (S) -(+)-XylBINAP available from Takasago International Corp.
  • MeOBiphep examples include ( R )-(6,6'-Dimethoxybiphenyl-2,2'-diyl)bis[bis(3,5-di- tert -butyl-4-methoxyphenyl)phosphine, ( S )-(6,6'-Dimethoxybiphenyl-2,2'-diyl)bis[bis(3,5-di- tert- butyl-4-methoxyphenyl)phosphine, ( R )-(6,6'-Dimethoxybiphenyl-2,2'-diyl)bis[bis(3,5-di- tert -butylphenyl)phosphine], ( S )-(6,6'-Dimethoxybiphenyl-2,2'-diyl)bis[bis(3,5-di- tert- butylphenyl)phosphine], ( R )-(6,6'-Dimethoxy
  • Non-limiting examples of segphos include ( R )-(+)-5,5'-Bis(diphenylphosphino)-4,4'-bi-1,3-benzodioxole (or [4( R )-(4,4'-bi-1,3-benzodioxole)-5,5'-diyl]bis[diphenylphosphine]) and ( S )-(-)-5,5'-Bis(diphenylphosphino)-4,4'-bi-1,3-benzodioxole.
  • Non-limiting examples of dtbm-segphos include ( R )-(-)-5,5'-Bis[di(3,5-di- tert -butyl-4-methoxyphenyl)phosphino]-4,4'-bi-1,3-benzodioxole (or [(4 R )-(4,4'-bi-1,3-benzodioxole)-5,5'-diyl]bis[bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine]) and (S)-(+)-5,5'-Bis[di(3,5-di- tert -butyl-4-methoxyphenyl)phosphino]-4,4'-bi-1,3-benzodioxole.
  • Examples of dm-segphos include ( S )-(+)-5,5'-Bis[di(3,5-di- tert -butyl-4-methoxyphenyl)phosphino]-4,4'-bi-1,3-benzodioxole and ( R )-(+)-5,5'-Bis[di(3,5-xylyl)phosphino]-4,4'-bi-1,3-benzodioxole (or [(4 R )-(4,4'-bi-1,3-benzodioxole)-5,5'-diyl]bis[bis(3,5-dimethylphenyl)phosphine]).
  • Non-limiting examples of chiral ferrocenyl-based ligands can be found in US 2015/0045556 .
  • Non-limiting examples chiral ferrocenyl-based ligands include: and
  • the hydrogenation is carried out in the presence of at least one chiral ligand.
  • the at least one chiral ligand is chosen from phosphine ligands, BINOL, TADDOL, BOX, DuPhos, DiPAMP, BINAP, Tol-BINAP, T-BINAP, H8-BINAP, DM-BINAP, Xyl-BINAP, MeOBiphep, DIOP, PHOX, PyBox, SALENs, SEGPHOS, DM-SEGPHOS, DTBM-SEGPHOS, JOSIPHOS, MANDYPHOS, WALPHOS, TANIAPHOS, sPHOS, xPHOS, SPANphos, Triphos, Xantphos, and Chiraphos ligands.
  • the at least one chiral ligand is a SEGPHOS ligand. In some embodiments, the at least one chiral ligand is a MANDYPHOS ligand. In some embodiments, the at least one chiral ligand is a MANDYPHOS SL-M004-1 available from, for example, Solvias. In some embodiments, the at least one chiral ligand is chosen from the following: and
  • the hydrogenation is carried out in the presence of at least one transition metal.
  • the at least one transition metal is chosen from the platinum group metals.
  • the at least one transition metal is chosen from rhodium, ruthenium, rhenium, and palladium.
  • the at least one transition metal is ruthenium.
  • the at least one transition metal is rhodium.
  • hydrogenation is carried out in the presence of at least one catalyst chosen from: [Rh(nbd)Cl] 2 ; [Rh(COD) 2 OC(O)CF 3 ]; [Rh(COD)(Ligand A)BF 4 ; [Rh(COD)(Ligand B)BF 4 ; [Rh(COD)(Ligand C)BF 4 ; and [Rh(COD)(Ligand D)BF, wherein COD is 1,5-cyclooctadiene; Ligand A is: Ligand B is: Ligand C is and Ligand D is In some embodiments, hydrogenation is carried out in the presence of at least one catalyst chosen from: [Ru(COD) 2 Me-allyl) 2 ]BF 4 , [RuCl(p-cymene) ⁇ ( R )-segphos ⁇ ]Cl; [RuCl(p-cymene) ⁇ (R) -binap ⁇ ]Cl; Ru(OAc) 2
  • hydrogenation is carried out in the presence of [RuCl(p-cymene) ⁇ (R) -segphos ⁇ ]Cl. In some embodiments, hydrogenation is carried out in the presence of [Ru(COD) 2 Me-allyl) 2 ]BF 4 . In some embodiments, hydrogenation is carried out in the presence of [RuCl(p-cymene) ⁇ (R) -segphos ⁇ ]Cl; [RuCl(p-cymene) ⁇ (R)- binap ⁇ ]Cl; and/or [NH 2 Me 2 ][ ⁇ RuCl[ (R) -segphos] ⁇ 2 ( ⁇ -Cl) 3 ].
  • the hydrogenation is carried out in the presence of at least one catalyst prepared in situ with a metal precursor and a ligand.
  • the at least one ligand is chosen from chiral ligands set forth above.
  • the at least one ligand is chosen from: and
  • at least one metal precursor is chosen from [Rh(nbd)Cl] 2 ; [Rh(COD) 2 OC(O)CF 3 ]; [Rh(COD)(Ligand A)BF 4 ; [Rh(COD)(Ligand B)BF 4 ; [Rh(COD)(Ligand C)BF 4 ; [Rh(COD)(Ligand D)BF 4 , [Ru(COD)(OC(O)CF 3 ) 2 ], [Ru(COD)Me-allyl) 2 ], [Rh(COD)(Ligand A)BF 4 ; [Rh(COD)(Ligand B)BF 4
  • the hydrogenation is carried out at a temperature of 10 °C to 70 °C. In some embodiments, hydrogenation is carried out at a temperature of 30 °C to 50 °C. In some embodiments, hydrogenation is carried out at 45 °C. In some embodiments, hydrogenation is carried out at 30 °C.
  • the disclosed process comprises reducing ( S )- or ( R )-3,5,5-trimethyl-pyrrolidin-2-one to produce ( S )- or ( R )-2,2,4-trimethylpyrrolidine, respectively.
  • the reduction is performed in the presence of at least one reducing agent.
  • the at least one reducing agent is a hydride.
  • the hydride is chosen from lithium aluminum hydride, lithium aluminum deuteride, sodium bis(2-methoxyethoxy)aluminumhydride, and borane. In some embodiments, 1-2 equivalents of hydride are added.
  • the reducing agent is lithium aluminum hydride.
  • the reduction is carried out at 40 °C to 100 °C. In some embodiments, the reduction is carried out at 40 °C to 80 °C. In some embodiments, the reduction is carried out at 50 °C to 70 °C. In some embodiments, the reduction is carried out at 68 °C.
  • the reducing agent is hydrogen gas. In some embodiments, the reduction is carried out in the presence of one or more catalysts and hydrogen gas. In some embodiments, the reduction is carried out in the presence of one or more metallic catalysts and hydrogen gas. In some embodiments, the reduction is carried out under a catalytic hydrogenation condition in the presence of one or more catalysts and hydrogen gas. In some embodiments, the catalyst is chosen from Pt, Co, Sn, Rh, Re, and Pd. In some embodiments, the reduction is carried out in the presence of hydrogen gas and one or more catalysts chosen from Pt, Co, Sn, Rh, Re, and Pd.
  • the reduction is carried out in the presence of hydrogen gas and one or more monometallic or bimetallic catalysts chosen from Pt, Pd, Pt-Re, Pt-Co, Pt-Sn, Pd-Re, and Rh-Re. Any suitable amounts of such catalysts can be used for the reduction. In some embodiments, 0.1 wt% - 5 wt% of such catalysts can be used. In some embodiments, such catalysts are used in one or more support materials selected from TiO 2 , SiO 2 , Al 2 O 3 (e.g., theta-Al 2 O 3 or gamma-Al 2 O 3 ), and zeolite.
  • the reduction is carried out in the presence of hydrogen gas and one or more monometallic or bimetallic catalysts chosen from Pt-Sn in TiO 2 (or Pt-Sn/ TiO 2 ), Pt-Re in TiO 2 (or Pt-Re/ TiO 2 ), Pt in TiO 2 (or Pt/ TiO 2 ), Rh in TiO 2 (or Rh/ TiO 2 ), Rh-Re in TiO 2 (or Rh-Re/ TiO 2 ), Pt-Sn in theta-Al 2 O 3 (or Pt-Sn/ theta-Al 2 O 3 ), Pt-Sn in SiO 2 (or Pt-Sn/ SiO 2 ), and Pt-Sn in TiO 2 (or Pt-Sn/ TiO 2 ).
  • Pt-Sn in TiO 2 or Pt-Sn/ TiO 2
  • Pt-Re in TiO 2 or Pt-Re/ TiO 2
  • Pt in TiO 2 or Pt/ TiO 2
  • the reduction is carried out in the presence of hydrogen gas and one or more monometallic or bimetallic catalysts chosen from 4wt%Pt-2 wt%Sn in TiO 2 (or 4wt%Pt-2wt%Sn/TiO 2 ), 4wt%Pt-2wt%Re in TiO 2 (or 4wt%Pt-2wt%Re/TiO 2 ), 4wt%Pt in TiO 2 (or 4wt%Pt/TiO 2 ), 4wt%Rh in TiO 2 (or 4wt%Rh/TiO 2 ), 4wt%Rh-2%Re in TiO 2 (or 4wt%Rh-2wt%Re/TiO 2 ), 4wt%Pt-2wt%Sn in theta-Al 2 O 3 (or 4wt%Pt-2wt%Sn/theta-Al 2 O 3 ), 4wt%Pt-2wt%Sn in SiO 2 (or 4wt%Pt
  • the reducing agent is quenched after reaction. In some embodiments, the reducing agent is quenched by sodium sulfate. In some embodiments, the reducing agent is quenched by water and then 15 wt% KOH in water.
  • the product from the reduction step with a hydride is further treated with acid to produce a salt.
  • the acid is chosen from hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, oxalic acid, citric acid, a tartaric acid (e.g., L- or D-tartaric acid or dibenzoyl tartaric acid), a malic acid (e.g., L- or D-malic acid), a maleic acid (e.g., L- or D-maleic acid, 4-bromo-mandelic acid or 4-bromo-mandelic acid), a tartranilic acid (e.g., L- or D-tartranilic acid, (2,3)-2'-methoxy-tartranilic acid), a mandelic acid (e.g., L- or D-mandelic acid, 4-methyl-mandelic acid.
  • hydrochloric acid e.g., hydrobromic acid, phosphoric acid, sulfuric acid, oxalic acid, citric acid, a tartaric acid (e.g., L- or D-tar
  • O-acetyl mandelic acid or 2-chloromandelic acid O-acetyl mandelic acid or 2-chloromandelic acid
  • a tartaric acid e.g., L- or D-mandelic acid, di- p -toluoyltartaric acid, di- p -anisoyltartaric acid
  • acetic acid alpha-methoxy-phenyl acetic acid
  • a lactic acid e.g., L- or D-lactic acid, 3-phenyllactic acid
  • a phenylalanine e.g., N -acetyl-phenylalanine, Boc-homophenylalanine, or Boc-phenylalanine
  • glutamic acid e.g., L- or D-glutamic acid or pyroglutamic acid
  • phencyphos hydrate chlocyphos, camphor sulfonic acid, camphoric acid, anisyphos
  • the reduction and acid treatment reactions are performed without isolation of the reduction product.
  • ( R )-3,5,5-trimethyl-pyrrolidin-2-one is reacted with a hydride and then with an acid to produce an ( R )-2,2,4-trimethylpyrrolidine salt.
  • ( S )-3,5,5-trimethyl-pyrrolidin-2-one is reacted with a hydride and then with an acid to produce an ( S )-2,2,4-trimethylpyrrolidine salt.
  • the reduction step product (e.g. ( S )- or ( R )-2,2,4-trimethylpyrrolidine) is isolated before the acid treatment step.
  • ( S )-2,2,4-trimethylpyrrolidine is treated with an acid to produce a salt of ( S )-2,2,4-trimethylpyrrolidine.
  • ( R )-2,2,4-trimethylpyrrolidine is treated with an acid to produce a salt of ( R )-2,2,4-trimethylpyrrolidine.
  • Compound 2 is commercially available.
  • contraction of piperidone ring of Compound 2 to yield pyrrolidine of Compound 3 is carried out in the presence of NaOH and tri-butyl methyl ammonium chloride.
  • the reaction is further treated with hydrochloric acid to promote predominantly Compound 3 .
  • Compound 3 undergoes enantioselective hydrogenation in the presence of chiral ruthenium catalysts with phosphine ligands.
  • Compound 4S or 4R is reduced with lithium aluminum hydride. In some embodiments, Compound 4S or 4R is reduced with lithium aluminum deuteride.
  • structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
  • Compounds 1S , 1R , 3 , 4S , and 4R wherein one or more hydrogen atoms are replaced with deuterium or tritium, or one or more carbon atoms are replaced by a 13 C- or 14 C-enriched carbon are within the scope of this invention.
  • Compounds 1S , 1R , 3 , 4S , and 4R, wherein one or more hydrogen atoms are replaced with deuterium are prepared by the methods described herein. Such compounds are useful, for example, as analytical tools, probes in biological assays, or compounds with improved therapeutic profile.
  • the reaction mixture was stirred at 300 rpm, and 50 wt% NaOH (195.81 g, 133.2 mL, 2,447.863 mmol, 8.000 equiv) was added dropwise (via addition funnel) over 1.5 h while maintaining the temperature below 25 °C with intermittent ice/acetone bath.
  • the reaction mixture was stirred at 500 rpm for 18 h, and monitored by GC (3% unreacted piperidinone after 18 h).
  • the suspension was diluted with DCM (100.0 mL, 2.00 vol) and H 2 O (300.0 mL, 6.00 vol), and the phases were separated.
  • the aqueous phase was extracted with DCM (100.0 mL, 2.00 vol).
  • the organic phases were combined and 3 M hydrochloric acid (16.73 g, 153.0 mL, 458.974 mmol, 1.500 equiv) was added. The mixture was stirred at 500 rpm for 2 h. The conversion was complete after approximately 1 h.
  • the aqueous phase was saturated with NaCl, H 2 O (100.0 mL, 2.00 vol) was added to help reduce the emulsion, and the phases were separated.
  • the aqueous phase was extracted with DCM (100.0 mL, 2.00 vol) twice. H 2 O (100.0 mL, 2.00 vol) was added to help with emulsion separation.
  • the reaction mixture was stirred and monitored by GC. ii.
  • the suspension was diluted with DCM (683.3 kg) and water (1544.4 kg).
  • the organic phase was separated.
  • the aqueous phase was extracted with DCM (683.3 kg).
  • the organic phases were combined, cooled to 10°C and then 3 M hydrochloric acid (867.8 kg, 2559.0 mol, 1.5 eq.) was added.
  • the mixture was stirred at 10 ⁇ 15 °C for 2 h.
  • the organic phase was separated.
  • the aqueous phase was extracted with DCM (683.3 kg x 2).
  • the organic phases were combined, dried over Na 2 SO 4 (145.0 kg) for 6 h.
  • the solid was filtered off and washed with DCM (120.0 kg).
  • Step 1 Preparation of Rh Catalyst Formation: In a 3 L Schlenk flask, 1.0 L of tetrahydrofuran (THF) was degassed with an argon stream. Mandyphos Ligand SL-M004-1 (1.89 g) and [Rh(nbd)Cl] 2 (98%, 0.35 g) (chloronorbornadiene rhodium(I) dimer) were added. The resulting orange catalyst solution was stirred for 30 min at room temperature to form a catalyst solution.
  • THF tetrahydrofuran
  • Step 2 A 50 L stainless steel autoclave was charged with 5,5-dimethyl-3-methylenepyrrolidin-2-one (6.0 kg, Compound (3)) and THF (29 L). The autoclave was sealed and the resulting suspension was flushed with nitrogen (3 cycles at 10 bar), and then released of pressure. Next the catalyst solution from Step 1 was added. The autoclave was flushed with nitrogen without stirring (3 cycles at 5 bar) and hydrogen (3 cycles at 5 bar). The pressure was set to 5 bar and a 50 L reservoir was connected. After 1.5 h with stirring at 1000 rpm and no hydrogen uptake the reactor was flushed again with nitrogen (3 cycles at 10 bar) with stirring and additional catalyst solution was added.
  • the autoclave was again flushed to hydrogen with the above described procedure (3 ⁇ 5 bar N2, 3 ⁇ 5 bar H2) and adjusted to 5 bar. After 2 h, the pressure was released, the autoclave was flushed with nitrogen (3 cycles at 5 bar) and the product solution was discharged into a 60 L inline barrel. The autoclave was charged again with THF (5 L) and stirred with 1200 rpm for 5 min. The wash solution was added to the reaction mixture.
  • Step 3 The combined solutions were transferred into a 60 L reactor.
  • the inline barrel was washed with 1 L THF which was also added into the reactor.
  • 20 L THF were removed by evaporation at 170 mbar and 40°C.
  • 15 L heptane were added.
  • the distillation was continued and the removed solvent was continuously replaced by heptane until the THF content in the residue was 1% w/w (determined by NMR).
  • the reaction mixture was heated to 89°C (turbid solution) and slowly cooled down again (ramp: 14°C/h). Several heating and cooling cycles around 55 to 65°C were made.
  • Compound ( 3 ) (300 g) was dissolved in THF (2640 g, 10 Vol) in a vessel. In a separate vessel, a solution of [RuCl(p-cymene) ⁇ ( R )-segphos ⁇ ]Cl (0.439g, 0.0002 eq) in THF (660 g, 2.5 Vol) was prepared. The solutions were premixed in situ and passed through a Plug-flow reactor (PFR). The flow rate for the Compound ( 3 ) solution was at 1.555 mL/min and the Ru catalyst solution was at 0.287 mL/min. Residence time in the PFR was 4 hours at 30 °C, with hydrogen pressure of 4.5 MPa.
  • PFR Plug-flow reactor
  • Example 2A and 2B Analytical chiral HPLC method for the determination of the conversion, chemoselectivity and enantiomeric excess of the products form Example 2A and 2B was made under the following conditions: Instrument: Agilent Chemstation 1100; Column: Phenomenex Lux 5u Cellulose-2, 4.6 mm ⁇ 250 mm ⁇ 5 um, LHS6247; Solvent: Heptane/iPrOH (90:10); Flow: 1.0 ml/min; Detection: UV (210 nm); Temperature: 25°C; Sample concentration: 30 ⁇ l of reaction solution evaporated, dissolved in 1 mL; heptane/iPrOH (80/20); Injection volume: 10.0 ⁇ L, Run time 20 min; Retention times: 5,5-dimethyl-3-methylenepyrrolidin-2-one: 13.8 min, (S)-3,5,5-trimethyl-pyrrolidin-2-one: 10.6 min, and (R)-3,5,5-trimethyl
  • the apparatus was flushed with H 2 (3 ⁇ ) and charged with 5 bar H 2 . After standing for 45 minutes, the apparatus was placed in an oil bath at temperature of 45°C. The reaction mixtures were stirred overnight under H 2 . 200 ⁇ L of the reaction mixture was diluted with MeOH (800 ⁇ L) and analyzed for conversion and ee.
  • Anhydrous THF (100 ml) was charged to a dry 750 ml reactor and the jacket temperature was set to 50° C. Once the vessel contents were at 50° C, LiAlH 4 pellets (10 g, 263 mmol, 1.34 eq.) were added. The mixture was stirred for 10 minutes, then a solution of (4S) (25 g, 197 mmol) in anhydrous THF (100 ml) was added dropwise over 45 minutes, maintaining the temperature between 50-60° C. Once the addition was complete the jacket temperature was increased to 68° C and the reaction was stirred for 18.5 hrs.
  • the reaction mixture was cooled to 30° C then saturated sodium sulfate solution (20.9 ml) was added dropwise over 30 minutes, keeping the temperature below 40° C. Vigorous evolution of hydrogen was observed and the reaction mixture thickened but remained mixable. The mixture thinned towards the end of the addition.
  • the mixture was cooled to 20° C, diluted with iPrOAc (100 ml) and stirred for an additional 10 minutes. The suspension was then drained and collected through the lower outlet valve, washing through with additional iPrOAc (50 ml). The collected suspension was filtered through a Celite pad on a sintered glass funnel under suction and washed with iPrOAc (2x50 ml).
  • reaction mixture was cooled to 22 °C and sampled to check for completion, then cautiously quenched with the addition of EtOAc (1.0 L, 10 moles, 0.16 eq) followed by a mixture of THF (3.4 L) and water (2.5 kg, 2.0 eq) then followed by a mixture of water (1.75 kg) with 50 % aqueous sodium hydroxide (750 g, 2 eq water with 1.4 eq sodium hydroxide relative to aluminum), followed by 7.5 L water (6 eq "Fieser” quench). After the addition was completed, the reaction mixture was cooled to room temperature, and the solid was removed by filtration and washed with THF (3 ⁇ 25 L).
  • reaction mixture was cooled to below 40 °C and cautiously quenched with drop-wise addition of a saturated aqueous solution of Na 2 SO 4 (209 mL) over 2 h. After the addition was completed, the reaction mixture was cooled to ambient temperature, diluted with i -PrOAc (1 L), and mixed thoroughly. The solid was removed by filtration (Celite pad) and washed with i -PrOAc (2 ⁇ 500 mL). With external cooling and N 2 blanket, the filtrate and washings were combined and treated with drop-wise addition of anhydrous 4 M HCl in dioxane (492 mL; 2.95 mol; 1 equiv.) while maintaining the temperature below 20 °C.
  • a reactor was charged with lithium aluminum hydride (LAH) (1.20 equiv.) and 2-MeTHF (2-methyltetrahydrofuran) (4.0 vol), and heated to internal temperature of 60 °C while stirring to disperse the LAH.
  • LAH lithium aluminum hydride
  • 2-MeTHF 2-methyltetrahydrofuran
  • a solution of (S)- 3,5,5-trimethylpyrrolidin-2-one (1.0 equiv) in 2-MeTHF (6.0 vol) was prepared and stirred at 25 °C to fully dissolve the ( S )-3,5,5-trimethylpyrrolidin-2-one.
  • the (S) -3,5,5-trimethylpyrrolidin-2-one solution was added slowly to the reactor while keeping the off-gassing manageable, followed by rinsing the addition funnel with 2-MeTHF (1.0 vol) and adding it to the reactor.
  • the reaction was stirred at an internal temperature of 60 ⁇ 5 °C for no longer than 6 h.
  • the internal temperature was set to 5 ⁇ 5 °C and the agitation rate was increased.
  • a solution of water (1.35 equiv.) in 2-MeTHF (4.0v) was prepared and added slowly to the reactor while the internal temperature was maintained at or below 25 °C. Additional water (1.35 equiv.) was charged slowly to the reactor while the internal temperature was maintained at or below 25 °C.
  • Potassium hydroxide (0.16 equiv.) in water (0.40 vol) was added to the reactor over no less than 20 min while the temperature was maintained at or below 25 °C.
  • the resulting solids were removed by filtration, and the reactor and cake were washed with 2-MeTHF (2 ⁇ 2.5 vol).
  • the filtrate was transferred back to a jacketed vessel, agitated, and the temperature was adjusted to 15 ⁇ 5 °C.
  • Concentrated aqueous HCl 35-37%, 1.05 equiv. was added slowly to the filtrate while maintaining the temperature at or below 25 °C and was stirred no less than 30 min.
  • the resulting slurry was cooled to -10 °C (-15 to -5°C) linearly over no less than 12 h.
  • the slurry was stirred at -10 °C for no less than 2 h.
  • the solids were isolated via filtration or centrifugation and were washed with a solution of 2-MeTHF (2.25 vol) and IPA (isopropanol) (0.75 vol).
  • the solids were dried under vacuum at 45 ⁇ 5 °C for not less than 6 h to yield ( S )-2,2,4-trimethylpyrrolidine hydrochloride (( 1S )•HCl).
  • the phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v).
  • the organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added.
  • the reaction mixture was stirred until completion and assessed by HPLC.
  • the aqueous phase was saturated with NaCl and the phases were separated.
  • the aqueous phase was extracted with DCM (1.0 mL, 2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC.
  • reaction results are summarized in the following table: Reactions Conditions Result 5A 18-crown-6 (0.05 eq.) Complete in 2 h, 75% solution yield 5B TBAB (0.05 eq.) Complete in 2 h, 83% solution yield 5C TBAC (0.05 eq.) Complete in 4 h, 67% solution yield 5D Tetrabutylammonium hydroxide (0.05 eq.) Complete in 4 h, 74% solution yield 5E 15-crown-5 (0.05 eq.) Complete in 4 h, 78% solution yield 5F No PTC Incomplete after 4 days 5G benzyltrimethylammonium chloride (0.05 eq.) Complete in 7 h, 72% solution yield 5H Triton B (0.05 eq.) Almost complete in 7 h (1% starting material leftover), 69% solution yield 5I Tributylmethylammonium chloride (0.05 eq.) Complete in 4 h, 75% solution yield 5J Aliquat 336 (0.05 eq.) Complete in
  • the reaction mixture was stirred until completion and assessed by GC analysis.
  • the reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H 2 O (3.0 mL, 6.0v).
  • the phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v).
  • the organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added.
  • the reaction mixture was stirred until completion, assessed by HPLC.
  • the aqueous phase was saturated with NaCl and the phases were separated.
  • the reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H 2 O (3.0 mL, 6.0v). The phases were separated and the aqueous phase is extracted with DCM (1.0 mL, 2.0v). The organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added. The reaction mixture was stirred until completion, assessed by HPLC. The aqueous phase was saturated with NaCl and the phases were separated. The aqueous phase was extracted with DCM (1.0 mL, 2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC.
  • Reaction results are summarized in the following table: Reactions Conditions Result 7A 50 wt% NaOH (8 eq.) Almost complete overnight (3% starting material), 81% solution yield 7B 40 wt% NaOH (8 eq.) Incomplete overnight (9% starting material), 73% solution yield 7C 30 wt% NaOH (8 eq.) Incomplete overnight 7D solid NaOH (8 eq.) 10 ⁇ L water Complete in 2 h, 38% solution yield
  • the phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v).
  • the organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added.
  • the reaction mixture was stirred until completion, assessed by HPLC.
  • the aqueous phase was saturated with NaCl and the phases were separated.
  • the aqueous phase was extracted with DCM (1.0 mL, 2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC.
  • 2,2,6,6-tetramethyl-4-piperidinone (30 g, 193.2 mmol, 1.0 eq) was charged to a 500 mL nitrogen purged three necked round bottomed flask equipped with condenser. IPA (300 mL, 10 vol) was added to the flask and the mixture heated to 60 °C until dissolved.
  • the wet cake was charged to a 1 L nitrogen purged three necked round bottomed flask equipped with condenser.
  • IPA 450 mL, 15 vol
  • the mixture was allowed to cool slowly to ambient temperature over 3 h and the resulting suspension stirred overnight at ambient temperature.
  • the suspension was filtered under vacuum, washed with IPA (60 mL, 2 vol) and dried on the filter under vacuum for 30 min. The resulting product was dried in a vacuum oven at 40 °C over the weekend to give a white crystalline solid, 21.4 g, 64% yield.
  • Each reactor was charged with ( S )-3,5,5-trimethyl-pyrrolidin-2-one in THF, H 2 , and the catalyst shown in the below table.
  • the reactor was heated to 200 °C and pressurized to 60 bar, and allowed to react for 12 hours.

Claims (22)

  1. Procédé pour la préparation de la (S)-2,2,4-triméthylpyrrolidine ou d'un sel correspondant comprenant :
    (a) la mise en réaction de 2,2,6,6-tétraméthyl-pipéridin-4-one ou d'un sel correspondant avec du chloroforme et au moins une base ;
    (b) la mise en réaction des produits de la réaction en (a) avec un acide pour produire la 5,5-diméthyl-3-méthylènepyrrolidin-2-one ;
    (c) l'hydrogénation de la 5,5-diméthyl-3-méthylènepyrrolidin-2-one pour produire la (S)-3,5,5-triméthyl-pyrrolidin-2-one ;
    (d) la réduction de la (S)-3,5,5-triméthyl-pyrrolidin-2-one pour produire la (S)-2,2,4-triméthylpyrrolidine ; et
    (e) éventuellement, le traitement de la (S)-2,2,4-triméthylpyrrolidine avec un acide pour produire un sel de (S)-2,2,4-triméthylpyrrolidine.
  2. Procédé pour la préparation de la (R)-2,2,4-triméthylpyrrolidine ou d'un sel correspondant comprenant :
    (a) la mise en réaction de 2,2,6,6-tétraméthyl-pipéridin-4-one ou d'un sel correspondant avec du chloroforme et au moins une base ;
    (b) la mise en réaction des produits de la réaction en (a) avec un acide pour produire la 5,5-diméthyl-3-méthylènepyrrolidin-2-one ;
    (c) l'hydrogénation de la 5,5-diméthyl-3-méthylènepyrrolidin-2-one pour produire la (R)-3,5,5-triméthyl-pyrrolidin-2-one ;
    (d) la réduction de la (R)-3,5,5-triméthyl-pyrrolidin-2-one pour produire la (R)-2,2,4-triméthylpyrrolidine ; et
    (e) éventuellement, le traitement de la (R)-2,2,4-triméthylpyrrolidine avec un acide pour produire un sel de (R)-2,2,4-triméthylpyrrolidine.
  3. Procédé pour la préparation de la (S)-3,5,5-triméthylpyrrolidin-2-one comprenant :
    (a) la mise en réaction de 2,2,6,6-tétraméthyl-pipéridin-4-one ou d'un sel correspondant avec du chloroforme et au moins une base ;
    (b) la mise en réaction des produits de la réaction en (a) avec un acide pour produire la 5,5-diméthyl-3-méthylènepyrrolidin-2-one ; et
    (c) l'hydrogénation de la 5,5-diméthyl-3-méthylènepyrrolidin-2-one pour produire la (S)-3,5,5-triméthyl-pyrrolidin-2-one.
  4. Procédé pour la préparation de la (R)-3,5,5-triméthylpyrrolidin-2-one comprenant :
    (a) la mise en réaction de 2,2,6,6-tétraméthyl-pipéridin-4-one ou d'un sel correspondant avec du chloroforme et au moins une base ;
    (b) la mise en réaction des produits de la réaction en (a) avec un acide pour produire la 5,5-diméthyl-3-méthylènepyrrolidin-2-one ; et
    (c) l'hydrogénation de la 5,5-diméthyl-3-méthylènepyrrolidin-2-one pour produire la (R)-3,5,5-triméthyl-pyrrolidin-2-one.
  5. Procédé pour la préparation de la 5,5-diméthyl-3-méthylènepyrrolidin-2-one comprenant :
    (a) la mise en réaction de 2,2,6,6-tétraméthyl-pipéridin-4-one ou d'un sel correspondant avec du chloroforme et au moins une base ; et
    (b) la mise en réaction des produits de la réaction en (a) avec un acide pour produire la 5,5-diméthyl-3-méthylènepyrrolidin-2-one.
  6. Procédé selon la revendication 1, comprenant en outre le traitement de la (S)-2,2,4-triméthylpyrrolidine avec HCl pour générer le chlorhydrate de (S)-2,2,4-triméthylpyrrolidine.
  7. Procédé selon l'une quelconque des revendications 1 à 5, ladite au moins une base étant choisie parmi le t-butoxyde de potassium, l'hydroxyde de potassium et l'hydroxyde de sodium, éventuellement ladite au moins une base étant l'hydroxyde de sodium.
  8. Procédé selon l'une quelconque des revendications 1 à 5, de 3 à 15 équivalents molaires de ladite au moins une base par rapport à la mole de 2,2,6,6-tétraméthyl-pipéridin-4-one étant ajoutés pour la réaction en (a).
  9. Procédé selon la revendication 8,
    (i) de 5 à 12 équivalents molaires de ladite au moins une base étant ajoutés ; ou
    (ii) 7,5 équivalents molaires de ladite au moins une base étant ajoutés ; ou
    (iii) 10 équivalents molaires de ladite au moins une base étant ajoutés ; ou
    (iv) 8 équivalents molaires d'hydroxyde de sodium étant ajoutés.
  10. Procédé selon l'une quelconque des revendications 1 à 5, ladite au moins une base ajoutée pour la réaction en (a) étant sous la forme d'une solution aqueuse possédant une concentration dans la plage de 20 % en poids à 80 % en poids par rapport au poids total de ladite solution aqueuse.
  11. Procédé selon la revendication 10, ladite au moins une base étant :
    (i) du NaOH aqueux à 20 % en poids ; ou
    (ii) du NaOH aqueux à 40 % en poids ; ou
    (iii) du NaOH aqueux à 50 % en poids.
  12. Procédé selon l'une quelconque des revendications 1 à 5, ledit chloroforme étant présent en une quantité dans la plage de 1 à 4 équivalents molaires par rapport à la mole de 2,2,6,6-tétraméthylpipéridin-4-one, éventuellement ledit chloroforme étant présent en une quantité :
    (i) dans la plage de 1,5 à 3,5 équivalents molaires par rapport à la mole de 2,2,6,6-tétraméthylpipéridin-4-one ; ou
    (ii) de 1,75 équivalent molaire par rapport à la mole de 2,2,6,6-tétraméthylpipéridin-4-one.
  13. Procédé selon l'une quelconque des revendications 1 à 12, ladite 2,2,6,6-tétraméthylpipéridin-4-one ou un sel correspondant étant mis à réagir avec du chloroforme, au moins une base, et au moins un catalyseur de transfert de phases.
  14. Procédé selon la revendication 13, au moins un catalyseur de transfert de phases étant choisi parmi :
    (i) des sels de tétraalkylammonium et des éthers couronnes ; ou
    (ii) des sels de tétraalkylammonium ; ou
    (iii) des halogénures de tétraalkylammonium ; ou
    (iv) le chlorure de tributylméthylammonium, le bromure de tributylméthylammonium, le bromure de tétrabutylammonium (TBAB), le chlorure de tétrabutylammonium (TBAC), l'iodure de tétrabutylammonium (TBAI), l'hydroxyde de tétrabutylammonium (TBAH), le chlorure de benzyltriméthylammonium, le bromure de tétraoctylammonium (TAOB), le chlorure de tétraoctylammonium (TAOC), l'iodure de tétraoctylammonium (TAOI), le chlorure de trioctylméthylammonium et le bromure de trioctylméthylammonium.
  15. Procédé selon l'une quelconque des revendications 13 et 14, de 0,01 équivalent molaire à 0,2 équivalent molaire dudit au moins un catalyseur de transfert de phases par rapport à la mole de 2,2,6,6-tétraméthylpipéridin-4-one étant ajouté à la réaction en (a), éventuellement :
    (i) de 0,02 équivalent molaire à 0,1 équivalent molaire dudit au moins un catalyseur de transfert de phases par rapport à la mole de 2,2,6,6-tétraméthylpipéridin-4-one étant ajouté ; ou
    (ii) de 0,03 équivalent molaire à 0,06 équivalent molaire dudit au moins un catalyseur de transfert de phases par rapport à la mole de 2,2,6,6-tétraméthylpipéridin-4-one étant ajouté.
  16. Procédé selon l'une quelconque des revendications 1 à 15, ledit acide de la réaction en (b) étant choisi parmi des solutions aqueuses d'acides protiques, éventuellement :
    (i) lesdits acides protiques étant choisis parmi l'acide chlorhydrique, l'acide méthanesulfonique, l'acide triflique et l'acide sulfurique ; ou
    (ii) la concentration desdites solutions aqueuses d'acides protiques se situant dans la plage de 1 M à 18 M, éventuellement de 2 M à 10 M, éventuellement, ledit acide de la réaction en (b) étant choisi parmi HCl possédant une concentration dans la plage de 2 M à 3 M, éventuellement 2 M HCl, 2,5 M HCl ou 3 M HCl.
  17. Procédé selon l'une quelconque des revendications 1 à 16, 0,5 à 10 équivalents molaires dudit acide par rapport à la mole de 2,2,6,6-tétraméthylpipéridin-4-one étant ajoutés à la réaction en (b), éventuellement :
    (i) 1 à 4 équivalents molaires dudit acide par rapport à la mole de 2,2,6,6-tétraméthylpipéridin-4-one étant ajoutés à la réaction en (b) ; ou
    (ii) 1,5 équivalent molaire dudit acide par rapport à la mole de 2,2,6,6-tétraméthylpipéridin-4-one étant ajoutés à la réaction en (b).
  18. Procédé selon l'une quelconque des revendications 1 à 5, un rendement de 5,5-diméthyl-3-méthylènepyrrolidin-2-one produite à partir des réactions en (a) et (b) se situant dans la plage de 40 % à 70 % par rapport à la mole de 2,2,6,6-tétraméthylpipéridin-4-one.
  19. Procédé selon l'une quelconque des revendications 1, 3 ou 6 à 18, ladite réaction d'hydrogénation en (c) comprenant la mise en réaction de 5,5-diméthyl-3-méthylènepyrrolidin-2-one avec au moins un catalyseur et de l'hydrogène gazeux pour produire la (S)-3,5,5-triméthyl-pyrrolidin-one, éventuellement, ledit catalyseur étant choisi parmi des catalyseurs d'hydrogénation au ruthénium, des catalyseurs d'hydrogénation au rhodium et des catalyseurs d'hydrogénation à l'iridium.
  20. Procédé selon l'une quelconque des revendications 1 ou 6 à 19, ladite réaction de réduction en (d) comprenant la mise en réaction de la (S)-3,5,5-triméthyl-pyrrolidin-one avec un hydrure pour produire la (S)-2,2,4-triméthylpyrrolidine.
  21. Procédé selon la revendication 20,
    (i) ladite réaction de réduction comprenant la mise en réaction de 1 à 2 équivalents molaires d'hydrure par rapport à la mole de (S)-3,5,5-triméthyl-pyrrolidin-one ; ou
    (ii) ledit hydrure étant choisi parmi l'aluminohydrure de lithium, le bis(2-méthoxyéthoxy)aluminohydrure de sodium et le borane.
  22. Procédé selon l'une quelconque des revendications 1 à 21, la 2,2,6,6-tétraméthyl-pipéridin-4-one ou un sel correspondant étant mis à réagir avec du chloroforme, au moins une base, et au moins un solvant, éventuellement l'au moins un solvant étant choisi parmi des solvants organiques, éventuellement le dichlorométhane, l'heptane, le chloroforme, un trifluorotoluène, le tétrahydrofuranne (THF) et la N-méthylpyrrolidone (NMP) .
EP18755654.3A 2017-08-02 2018-08-02 Procédés de préparation de composés de pyrrolidine Active EP3661915B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762540395P 2017-08-02 2017-08-02
PCT/US2018/044963 WO2019028228A1 (fr) 2017-08-02 2018-08-02 Procédés de préparation de composés de pyrrolidine

Publications (2)

Publication Number Publication Date
EP3661915A1 EP3661915A1 (fr) 2020-06-10
EP3661915B1 true EP3661915B1 (fr) 2022-03-09

Family

ID=63209720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18755654.3A Active EP3661915B1 (fr) 2017-08-02 2018-08-02 Procédés de préparation de composés de pyrrolidine

Country Status (14)

Country Link
US (1) US11434201B2 (fr)
EP (1) EP3661915B1 (fr)
JP (1) JP7121794B2 (fr)
KR (1) KR102606188B1 (fr)
CN (1) CN111051280B (fr)
AR (1) AR112467A1 (fr)
AU (1) AU2018309043B2 (fr)
CA (1) CA3071278A1 (fr)
ES (1) ES2912657T3 (fr)
IL (1) IL272384B (fr)
MA (1) MA49752A (fr)
MX (1) MX2020001302A (fr)
TW (1) TWI799435B (fr)
WO (1) WO2019028228A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250627B (zh) 2014-10-06 2024-02-02 弗特克斯药品有限公司 囊性纤维化跨膜转导调节因子调节剂
EP3519401B1 (fr) 2016-09-30 2021-09-29 Vertex Pharmaceuticals Incorporated Modulateur de régulateur de conductance transmembranaire de fibrose kystique, compositions pharmaceutiques, procédés de traitement et procédé de fabrication du modulateur
IL277491B (en) 2016-12-09 2022-08-01 Vertex Pharma Modulatory modulation of transmembrane conductance in cystic fibrosis, pharmaceutical preparations, treatment methods, and a process for creating the modulator
EP3634402A1 (fr) 2017-06-08 2020-04-15 Vertex Pharmaceuticals Incorporated Méthodes de traitement de la fibrose kystique
AU2018304168B2 (en) 2017-07-17 2023-05-04 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
CN111051280B (zh) 2017-08-02 2023-12-22 弗特克斯药品有限公司 制备吡咯烷化合物的方法
US10654829B2 (en) 2017-10-19 2020-05-19 Vertex Pharmaceuticals Incorporated Crystalline forms and compositions of CFTR modulators
MX2020005753A (es) 2017-12-08 2020-08-20 Vertex Pharma Procesos para producir moduladores de regulador de conductancia transmembranal de fibrosis quistica.
TWI810243B (zh) 2018-02-05 2023-08-01 美商維泰克斯製藥公司 用於治療囊腫纖化症之醫藥組合物
MD3752510T2 (ro) 2018-02-15 2023-06-30 Vertex Pharma Macrociclii ca modulatori ai regulatorului conductanței transmembranare în fibroza chistică, compoziții farmaceutice ale acestora, utilizarea lor în tratamentul fibrozei chistice, și procedeu pentru fabricarea acestora
EP3774825A1 (fr) 2018-04-13 2021-02-17 Vertex Pharmaceuticals Incorporated Modulateurs du régulateur de la conductance transmembranaire de la fibrose kystique, compositions pharmaceutiques, procédés de traitement et procédé de fabrication du modulateur
TW202120517A (zh) 2019-08-14 2021-06-01 美商維泰克斯製藥公司 製備cftr調節劑之方法
BR112022002605A2 (pt) 2019-08-14 2022-05-03 Vertex Pharma Formas cristalinas de moduladores de cftr
TW202115092A (zh) 2019-08-14 2021-04-16 美商維泰克斯製藥公司 囊腫纖維化跨膜傳導調節蛋白之調節劑

Family Cites Families (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB967177A (en) * 1959-10-13 1964-08-19 Rohm & Haas A method for preparing pyrrolidinones and piperidinones
EP0194599A3 (fr) 1985-03-14 1988-01-20 Nissan Chemical Industries Ltd. Dérivés de benzamide, leur procédé de préparation et fongicides pour le sol les contenant
GB9122590D0 (en) 1991-10-24 1991-12-04 Lilly Industries Ltd Pharmaceutical compounds
DE4410453A1 (de) 1994-03-25 1995-09-28 Hoechst Ag Substituierte heterocyclische Carbonsäureamidester, ihre Herstellung und ihre Verwendung als Arzneimittel
GB9514160D0 (en) 1994-07-25 1995-09-13 Zeneca Ltd Aromatic compounds
PL321244A1 (en) 1995-01-19 1997-11-24 Ciba Geigy Ag Insecticide composition
EA001418B1 (ru) 1995-11-23 2001-02-26 Новартис Аг Гербицидная композиция
AU707574B2 (en) 1995-12-15 1999-07-15 Merck Frosst Canada & Co. Tri-aryl ethane derivatives as PDE IV inhibitors
JPH10114654A (ja) 1996-10-09 1998-05-06 Fujisawa Pharmaceut Co Ltd 新規用途
AU6209098A (en) 1997-01-15 1998-08-07 Novartis Ag Herbicidal agent
GB9716657D0 (en) 1997-08-07 1997-10-15 Zeneca Ltd Chemical compounds
DE19742951A1 (de) 1997-09-29 1999-04-15 Hoechst Schering Agrevo Gmbh Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende Mittel und Verfahren zu ihrer Herstellung
DE19802697A1 (de) 1998-01-24 1999-07-29 Bayer Ag Selektive Herbizide auf Basis von N-Aryl-triazolin(thi)onen und N-Arylsulfonylamino(thio)carbonyltriazolin(thi)onen
WO1999041238A1 (fr) 1998-02-13 1999-08-19 Kureha Kagaku Kogyo K.K. Derives de n-(pnenylsulfonyle) picolinamide, procede de production de ces derniers et herbicide
WO1999051574A1 (fr) 1998-04-06 1999-10-14 Fujisawa Pharmaceutical Co., Ltd. Derives d'indole
MXPA01011112A (es) 1999-06-10 2002-06-04 Warner Lambert Co Metodo para la inhibicion de la agregacion de las proteinas amiloides y formacion de imagenes de los depositos amiloides utilizando derivados de la isoindolina.
DE19936438A1 (de) 1999-08-03 2001-02-08 Aventis Cropscience Gmbh Kombinationen von Herbiziden und Safenern
DE19940860A1 (de) 1999-08-27 2001-03-01 Bayer Ag Selektive Herbizide auf Basis eines substituierten Phenylsulfonyl aminocarbonyltriazolinons und Safenern II
DE19958381A1 (de) 1999-12-03 2001-06-07 Bayer Ag Herbizide auf Basis von N-Aryl-uracilen
WO2002015902A1 (fr) 2000-08-23 2002-02-28 Merck & Co., Inc. Procede pour traiter et prevenir l'incontinence urinaire par utilisation d'antagonistes de recepteur ep1 de prostanoide
US6720338B2 (en) 2000-09-20 2004-04-13 Abbott Laboratories N-acylsulfonamide apoptosis promoters
US20020055631A1 (en) 2000-09-20 2002-05-09 Augeri David J. N-acylsulfonamide apoptosis promoters
AR031130A1 (es) 2000-09-20 2003-09-10 Abbott Lab N-acilsulfonamidas promotoras de la apoptosis
MXPA03003174A (es) 2000-10-10 2003-07-14 Smithkline Beecham Corp Indoles substituidos, composiciones farmaceuticas que contienen dichos indoles y su uso como agentes de enlace ppar-y..
US20100074949A1 (en) 2008-08-13 2010-03-25 William Rowe Pharmaceutical composition and administration thereof
DE10119721A1 (de) 2001-04-21 2002-10-31 Bayer Cropscience Gmbh Herbizide Mittel enthaltend Benzoylcyclohexandione und Safener
DK1395566T3 (da) 2001-05-31 2008-01-07 Vicore Pharma Ab Tricycliske forbindelser, der er nyttige som angiotensin Il-agonister
AU2002307839B2 (en) 2001-06-28 2006-03-16 Zoetis P Llc Triamide-substituted indoles, benzofuranes and benzothiophenes as inhibitors of microsomal triglyceride transfer protein (MTP) and/or apolipoprotein B (Apo B) secretion
DE10145019A1 (de) 2001-09-13 2003-04-03 Bayer Cropscience Gmbh Kombinationen aus Herbiziden und Safenern
DE10146873A1 (de) 2001-09-24 2003-04-17 Bayer Cropscience Gmbh Heterocyclische Amide und -Iminderivate, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel
EP1447096A1 (fr) 2001-11-19 2004-08-18 Ono Pharmaceutical Co., Ltd. Remedes pour la frequence urinaire
DE10157545A1 (de) 2001-11-23 2003-06-12 Bayer Cropscience Gmbh Herbizide Mittel enthaltend Benzoylpyrazole und Safener
JP4471842B2 (ja) 2002-03-27 2010-06-02 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー アミド化合物および該化合物を用いる方法
GB0212785D0 (en) 2002-05-31 2002-07-10 Glaxo Group Ltd Compounds
MXPA04012252A (es) 2002-06-08 2005-02-25 Bayer Cropscience Gmbh Combinaciones de acidos carboxilicos aromaticos herbicidas y de antidotos.
DE10237461A1 (de) 2002-08-16 2004-02-26 Bayer Cropscience Gmbh Herbizide Mittel enthaltend Benzoylpyrazole und Safener
EP1536794A2 (fr) 2002-09-06 2005-06-08 Merck & Co., Inc. Traitement de la polyarthrite rhumatoide par inhibition de pde4
CA2503063A1 (fr) 2002-10-22 2004-05-06 Merck Frosst Canada & Co./Merck Frosst Canada & Cie Inhibiteurs selectifs de la cyclo-oxygenase-2 liberant de l'oxyde nitrique
GB0225548D0 (en) 2002-11-01 2002-12-11 Glaxo Group Ltd Compounds
AU2003302106A1 (en) 2002-11-21 2004-06-15 Vicore Pharma Ab New tricyclic angiotensin ii agonists
BR0317426A (pt) 2002-12-20 2005-11-16 Pfizer Prod Inc Inibidores de proteìna de transferência de triglicéridos microssomais
BR0317323A (pt) 2002-12-20 2005-11-16 Pfizer Prod Inc Inibidores de proteìna de transferência de triglicerìdeos microssomal
JP2006519258A (ja) 2003-02-28 2006-08-24 エンサイシブ・ファーマシューティカルズ・インコーポレイテッド ピリジン、ピリミジン、キノリン、キナゾリンおよびナフタレン系のウロテンシン−ii受容体拮抗薬
WO2004085420A1 (fr) 2003-03-24 2004-10-07 Vicore Pharma Ab Composes bicycliques utiles en tant qu'agonistes d'angiotensine ii
DE602004022819D1 (de) 2003-06-06 2009-10-08 Vertex Pharma Von atp-bindende kassette transportern
CN1925854A (zh) 2003-11-14 2007-03-07 沃泰克斯药物股份有限公司 可用作atp-结合弹夹转运蛋白调控剂的噻唑和噁唑
GB0328024D0 (en) 2003-12-03 2004-01-07 Glaxo Group Ltd Compounds
AU2005207037A1 (en) 2004-01-22 2005-08-04 Nitromed, Inc. Nitrosated and/or nitrosylated compounds, compositions and methods of use
US7977322B2 (en) 2004-08-20 2011-07-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
JP4960708B2 (ja) 2004-01-30 2012-06-27 バーテックス ファーマシューティカルズ インコーポレイテッド Atp結合カセットトランスポーターのモジュレーター
KR100799802B1 (ko) 2004-02-04 2008-01-31 화이자 프로덕츠 인크. 치환된 퀴놀린 화합물
US20050197376A1 (en) 2004-03-02 2005-09-08 Fujisawa Pharmaceutical Co. Ltd. Concomitant drugs
ES2526614T3 (es) 2004-03-05 2015-01-13 Nissan Chemical Industries, Ltd. Compuesto de benzamida sustituida con isoxazolina y agente de control de organismos nocivos
WO2005099705A2 (fr) 2004-03-24 2005-10-27 Bayer Pharmaceuticals Corporation Preparation de derives imidazoles et leurs procedes d'utilisation
GB0410121D0 (en) 2004-05-06 2004-06-09 Glaxo Group Ltd Compounds
US8354427B2 (en) 2004-06-24 2013-01-15 Vertex Pharmaceutical Incorporated Modulators of ATP-binding cassette transporters
ME02970B (fr) 2004-06-24 2018-07-20 Vertex Pharma Modulateurs de transporteurs de cassette de liaison a l ́ATP
WO2006030807A1 (fr) 2004-09-15 2006-03-23 Shionogi & Co., Ltd. Dérivé de carbamoylpyridone ayant une activité d'inhibition de la vih intégrase
EP1812429A4 (fr) 2004-09-29 2010-07-21 Portola Pharm Inc 2h-1,3-benzoxazin-4(3h)-ones substitues
WO2006065204A1 (fr) 2004-12-14 2006-06-22 Astrazeneca Ab Aminopyridines substituees et utilisations
GB0428173D0 (en) 2004-12-23 2005-01-26 Astrazeneca Ab Compounds
AR052429A1 (es) 2004-12-23 2007-03-21 Glaxo Group Ltd Compuesto de arilpiridina, composicion farmaceutica que lo comprende, su uso para l a eleboracion de un medicamento y procedimiento para prepararlo
AU2006251624A1 (en) 2005-05-24 2006-11-30 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding cassette transporters
US20070032488A1 (en) 2005-08-05 2007-02-08 Genelabs Technologies, Inc. 6-Membered aryl and heteroaryl derivatives for treating viruses
RU2008109031A (ru) 2005-08-11 2009-09-20 Вертекс Фармасьютикалз Инкорпорейтед (Us) Модуляторы муковисцидозного трансмембранного регулятора проводимости
WO2007053641A2 (fr) 2005-11-01 2007-05-10 Mars, Incorporated Procyanidines de type a et inflammation
CA2635214A1 (fr) 2005-12-27 2007-07-05 Vertex Pharmaceuticals Incorporated Composes utiles dans les bio-essais cftr et leurs procedes
NZ569327A (en) 2005-12-28 2011-09-30 Vertex Pharma 1-(benzo [d] [1,3] dioxol-5-yl) -n- (phenyl) cyclopropane- carboxamide derivatives and related compounds as modulators of ATP-binding cassette transporters for the treatment of cystic fibrosis
LT1993360T (lt) 2005-12-28 2017-06-12 Vertex Pharmaceuticals Incorporated N-[2,4-bis(1,1-dimetiletil)-5-hidroksifenil]-1,4-dihidro-4-oksochinolin-3-karboksamido kieta forma
US7671221B2 (en) 2005-12-28 2010-03-02 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette transporters
WO2007113327A2 (fr) 2006-04-05 2007-10-11 Bayer Cropscience Sa Dérivés de n-cyclopropylsulfonylamide fongicides
DK3091011T3 (en) 2006-04-07 2018-02-26 Vertex Pharma MODULATORS OF ATP BINDING CASSETTE TRANSPORT
WO2007134279A2 (fr) 2006-05-12 2007-11-22 Vertex Pharmaceuticals Incorporated Compositions de n-[2,4-bis(1,1-diméthyléthyl)-5-hydroxyphényl]-1,4-dihydro-4-oxoquinoléine-3-carboxamide
US8778977B2 (en) 2006-06-30 2014-07-15 Sunesis Pharmaceuticals, Inc. Pyridinonyl PDK1 inhibitors
AU2007351454B2 (en) 2006-11-03 2013-07-18 Vertex Pharmaceuticals Incorporated Azaindole derivatives as CFTR modulators
US7754739B2 (en) 2007-05-09 2010-07-13 Vertex Pharmaceuticals Incorporated Modulators of CFTR
MX2009008439A (es) 2007-02-12 2009-08-13 Intermune Inc Nuevos inhibidores de la replicacion del virus de hepatitis c.
WO2008141385A1 (fr) 2007-05-21 2008-11-27 Biota Scientific Management Pty Ltd Inhibiteurs de polymérases virales
US8058299B2 (en) 2007-05-22 2011-11-15 Via Pharmaceuticals, Inc. Diacylglycerol acyltransferase inhibitors
US8173810B2 (en) 2007-05-25 2012-05-08 Amgen Inc. Substituted hydroxyethyl amine compounds as beta-secretase modulators and methods of use
GB0716532D0 (en) 2007-08-24 2007-10-03 Angeletti P Ist Richerche Bio Therapeutic compounds
KR20100049667A (ko) 2007-08-29 2010-05-12 쉐링 코포레이션 바이러스 감염 치료용 2,3-치환된 인돌 유도체
AU2008301907B2 (en) 2007-09-14 2014-02-20 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
CA2705586A1 (fr) 2007-11-16 2009-05-22 Schering Corporation Derives d'indole a substitution heterocyclique en position 3 et leurs procedes d'utilisation
AU2013231151B2 (en) 2007-11-16 2015-06-25 Vertex Pharmaceuticals Incorporated Isoquinoline modulators of ATP-Binding Cassette transporters
GB0723794D0 (en) 2007-12-05 2008-01-16 Lectus Therapeutics Ltd Potassium ion channel modulators and uses thereof
KR20100101130A (ko) 2007-12-07 2010-09-16 버텍스 파마슈티칼스 인코포레이티드 3-(6-(1-(2,2-디플루오로벤조[d][1,3]디옥솔-5-일)사이클로프로판카복스아미도)-3-메틸피리딘-2-일)벤조산의 고체 형태
CA2707494C (fr) 2007-12-07 2018-04-24 Vertex Pharmaceuticals Incorporated Procedes de fabrication d'acides cycloalkylcarboxamido-pyridine benzoiques
AU2013270464B2 (en) 2008-03-31 2016-05-26 Vertex Pharmaceuticals Incorporated Pyridyl derivatives as CFTR modulators
CN102036952A (zh) 2008-04-16 2011-04-27 比奥里波克斯公司 用作药物的双芳基化合物
US20110112193A1 (en) 2008-05-14 2011-05-12 Peter Nilsson Bis-aryl compounds for use as medicaments
EP2145537A1 (fr) 2008-07-09 2010-01-20 Bayer CropScience AG Régulateur de croissance végétale
UY31982A (es) 2008-07-16 2010-02-26 Boehringer Ingelheim Int Derivados de 1,2-dihidropiridin-3-carboxamidas n-sustituidas
JP5575768B2 (ja) 2008-08-13 2014-08-20 バーテックス ファーマシューティカルズ インコーポレイテッド 薬学的組成物およびその投与
EP2326178A4 (fr) 2008-08-21 2012-10-24 Glaxosmithkline Llc Inhibiteurs de la prolyl-hydroxylase
MX2011002149A (es) 2008-08-27 2011-04-05 Calcimedica Inc Compuestos que modulan el calcio intracelular.
UA104876C2 (uk) 2008-11-06 2014-03-25 Вертекс Фармасьютікалз Інкорпорейтед Модулятори atф-зв'язувальних касетних транспортерів
DK2365972T3 (en) 2008-11-06 2015-01-19 Vertex Pharma Modulators of atp-binding cassette conveyors
UA108193C2 (uk) 2008-12-04 2015-04-10 Апоптозіндукуючий засіб для лікування раку і імунних і аутоімунних захворювань
US20100160322A1 (en) 2008-12-04 2010-06-24 Abbott Laboratories Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
RU2539587C2 (ru) 2009-01-19 2015-01-20 Эббви Инк. Индуцирующие апоптоз средства для лечения рака и иммунных и аутоиммунных заболеваний
CN103641709B (zh) 2009-03-11 2017-08-25 拜耳知识产权有限责任公司 被卤代烷基亚甲基氧基苯基取代的酮烯醇
EP2821400B1 (fr) 2009-03-20 2017-09-27 Vertex Pharmaceuticals Incorporated Procédé pour faire des modulateurs de régulateur de conductance transmembranaire de la fibrose kystique
WO2010110231A1 (fr) 2009-03-26 2010-09-30 塩野義製薬株式会社 Dérivé de 3-hydroxy-4-pyridone substitué
CN102458122A (zh) 2009-04-20 2012-05-16 人类健康研究所 含有哒嗪磺胺衍生物的化合物、组合物和方法
TWI537269B (zh) 2009-05-26 2016-06-11 艾伯維巴哈馬有限公司 用於治療癌症及免疫及自體免疫疾病之細胞凋亡誘發劑
EP2515902A1 (fr) * 2009-12-24 2012-10-31 Vertex Pharmaceuticals Incorporated Analogues destinés au traitement ou à la prévention d'infections à flavivirus
WO2011102514A1 (fr) 2010-02-22 2011-08-25 武田薬品工業株式会社 Composé cyclique aromatique
CA2792207A1 (fr) 2010-03-19 2011-09-22 Vertex Pharmaceuticals Incorporated Formes solides de n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
PL3835297T3 (pl) 2010-03-25 2023-09-11 Vertex Pharmaceuticals Incorporated Synteza i związki pośrednie (r)-1-(2,2-difluorobenzo[d][1,3]-dioksol-5-ilo)-n-(1-(2,3-dihydroksypropylo)-6-fluoro-2-(1-hydroksy-2-metylopropan-2-ylo)-1h-indol-5-ilo)-cyklopropanokarboksyamidu
LT3150198T (lt) 2010-04-07 2021-12-10 Vertex Pharmaceuticals Incorporated 3-(6-(1-(2,2-difluorbenzo[d][1,3]dioksol-5-il) ciklopropankarboksamido)-3-metilpiridin-2-il)benzoinės rūgšties farmacinė kompozicija ir jos įvedimas
RU2579370C2 (ru) 2010-04-07 2016-04-10 Вертекс Фармасьютикалз Инкорпорейтед Твердые формы 3-(2, 2-дифторбензо[d][1, 3] диоксол-5-ил)циклопропанкарбоксамидо)-3-метилпиридин-2-ил)бензойной кислоты
US8344137B2 (en) 2010-04-14 2013-01-01 Hoffman-La Roche Inc. 3,3-dimethyl tetrahydroquinoline derivatives
SG184987A1 (en) 2010-04-22 2012-11-29 Vertex Pharma Process of producing cycloalkylcarboxamido-indole compounds
EP2560649A1 (fr) 2010-04-22 2013-02-27 Vertex Pharmaceuticals Incorporated Compositions pharmaceutiques et leurs administrations
TWI520960B (zh) 2010-05-26 2016-02-11 艾伯維有限公司 用於治療癌症及免疫及自體免疫疾病之細胞凋亡誘導劑
US8563593B2 (en) 2010-06-08 2013-10-22 Vertex Pharmaceuticals Incorporated Formulations of (R)-1-(2,2-difluorobenzo[D] [1,3] dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
CN103153287A (zh) 2010-08-23 2013-06-12 弗特克斯药品有限公司 (R)-1-(2,2-二氟苯并[d][1,3]间二氧杂环戊烯-5-基)-N-(1-(2,3-二羟基丙基)-6-氟-2-(1-羟基-2-甲基丙-2-基)-1H-吲哚-5-基)环丙烷甲酰胺的药物组合物及其施用
EP2608775A2 (fr) 2010-08-27 2013-07-03 Vertex Pharmaceuticals Incorporated Composition pharmaceutique et ses administrations
JP2013540145A (ja) 2010-10-21 2013-10-31 ウニベルシテート デス ザールランデス コルチゾール依存性疾患の治療用の選択的cyp11b1阻害剤
EP2638008B1 (fr) * 2010-11-10 2015-07-01 Actelion Pharmaceuticals Ltd Dérivés de lactame utiles en tant qu'antagonistes du récepteur de l'orexine
WO2012087938A1 (fr) 2010-12-20 2012-06-28 Glaxosmithkline Llc Dérivés de quinazolinone en tant qu'agents antiviraux
EP2471363A1 (fr) 2010-12-30 2012-07-04 Bayer CropScience AG Utilisation d'acides aryl-, hétéroaryl- et benzylsulfonaminés, d'esters d'acide aminé, d'amides d'acide aminé et carbonitrile ou leurs sels pour l'augmentation de la tolérance au stress dans des plantes
JPWO2012102297A1 (ja) 2011-01-26 2014-06-30 杏林製薬株式会社 ピラゾロピリジン誘導体、またはその薬理学的に許容される塩
US9000026B2 (en) 2011-02-17 2015-04-07 Bayer Intellectual Property Gmbh Substituted 3-(biphenyl-3-yl)-8,8-difluoro-4-hydroxy-1-azaspiro[4.5]dec-3-en-2-ones for therapy
CA2828639C (fr) 2011-03-01 2019-02-12 Bayer Intellectual Property Gmbh 2-acyloxy-pyrrolin-4-ones
AR085585A1 (es) 2011-04-15 2013-10-09 Bayer Cropscience Ag Vinil- y alquinilciclohexanoles sustituidos como principios activos contra estres abiotico de plantas
US9260416B2 (en) 2011-05-27 2016-02-16 Amira Pharmaceuticals, Inc. Heterocyclic autotaxin inhibitors and uses thereof
CN103917096A (zh) 2011-07-18 2014-07-09 阿得罗公司 外周阿片样物质拮抗剂化合物的制备方法及所述化合物的中间体
BR112014004845A2 (pt) 2011-08-30 2017-04-04 Chdi Foundation Inc pelo menos uma entidade química; pelo menos um composto; composição farmacêutica; uso de uma quantidade terapeuticamente eficaz de pelo menos uma entidade química; composição farmacêutica embalada
WO2013038373A1 (fr) 2011-09-16 2013-03-21 Novartis Ag Dérivés pyrimidinamides
EP2755472B1 (fr) 2011-09-16 2016-08-31 Bayer Intellectual Property GmbH Utilisation de cyprosulfamide pour améliorer le rendement des plantes
JP2014527973A (ja) 2011-09-23 2014-10-23 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 非生物的な植物ストレスに対する作用剤としての4−置換1−フェニルピラゾール−3−カルボン酸誘導体の使用
WO2013070961A1 (fr) 2011-11-08 2013-05-16 Vertex Pharmaceuticals Incorporated Modulateurs de transporteurs de cassette de liaison à l'atp
US8426450B1 (en) 2011-11-29 2013-04-23 Helsinn Healthcare Sa Substituted 4-phenyl pyridines having anti-emetic effect
RU2644723C2 (ru) 2012-01-25 2018-02-13 Вертекс Фармасьютикалз Инкорпорейтед Препараты 3-(6-(1-(2, 2-дифторбензо[d][1, 3]диоксол-5-ил)циклопропанкарбоксамидо)-3-метилпиридин-2-ил)бензойной кислоты
JP2015083542A (ja) 2012-02-08 2015-04-30 大日本住友製薬株式会社 3位置換プロリン誘導体
WO2013130669A1 (fr) 2012-02-27 2013-09-06 Vertex Pharmaceuticals Incorporated Composition pharmaceutique et son administration
US8889730B2 (en) 2012-04-10 2014-11-18 Pfizer Inc. Indole and indazole compounds that activate AMPK
WO2013158121A1 (fr) 2012-04-20 2013-10-24 Vertex Pharmaceuticals Incorporated Formes solides de n-[2,4-bis(1,1-diméthyléthyle)-5-hydroxyphényle]-1,4-dihydro-4-oxoquinoline-3-carboxamide
MX2014014234A (es) 2012-05-22 2015-05-07 Genentech Inc Benzamidas n-sustituidas y su uso en el tratamiento del dolor.
EP2858645A1 (fr) 2012-06-08 2015-04-15 Vertex Pharmaceuticals Incorporated Compositions pharmaceutiques pour le traitement des troubles à médiation par cftr
WO2013185202A1 (fr) 2012-06-14 2013-12-19 Beta Pharma Canada Inc Inducteurs d'apoptose
KR101663436B1 (ko) 2012-07-06 2016-10-06 제넨테크, 인크. N-치환된 벤즈아미드 및 이의 사용 방법
AU2013290444B2 (en) 2012-07-16 2018-04-26 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of (R)-1-(2,2-diflurorbenzo[d][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl) cyclopropanecarboxamide and administration thereof
JP2015178458A (ja) 2012-07-25 2015-10-08 杏林製薬株式会社 ベンゼン環縮合含窒素5員複素環式化合物、またはその薬理学的に許容される塩
ES2677480T3 (es) 2012-08-13 2018-08-02 Abbvie Inc. Agentes que inducen apoptosis
US9896443B2 (en) 2012-08-21 2018-02-20 Peter Maccallum Cancer Institute Perforin inhibiting benzenesulfonamide compounds, preparation and uses thereof
US10227357B2 (en) 2012-09-06 2019-03-12 Plexxikon Inc. Compounds and methods for kinase modulation, and indications therefor
US10093640B2 (en) 2012-09-21 2018-10-09 Vanderbilt University Substituted benzofuran, benzothiophene and indole MCL-1 inhibitors
WO2014071247A1 (fr) 2012-11-02 2014-05-08 Dana-Farber Cancer Institute, Inc. Dérivés d'acide pyrrol-1-yl-benzoïque utiles en tant qu'inhibiteurs de myc
IL283276B1 (en) 2012-11-02 2024-01-01 Vertex Pharma Preparations containing 3-(6-(1-(2,2-difluorobenzo[1,3][D]dioxol-5-yl)cycloproponecarboxamide)-3-methylpyridin-2-yl)benzoic acid and N-(5-hydroxy- 2,4-ditert-butyl-phenyl)-4-oxo-H1-quinoline-3-carboxamide and their uses
US9458137B2 (en) 2012-11-05 2016-10-04 Nantbioscience, Inc. Substituted indol-5-ol derivatives and their therapeutical applications
BR112015012926A2 (pt) 2012-12-05 2017-07-11 Bayer Cropscience Ag uso de 1-(aril etinil)-, 1-(heteroaril etinil)-, 1-(heterociclil etinil)- substituído e 1-(cicloalquenil etinil)-ciclohexanóis como agentes ativos contra o estresse abiótico da planta
US20150315146A1 (en) 2012-12-05 2015-11-05 Bayer Cropscience Ag Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cycloalkenylethynyl)-bicycloalkanols as active agents against abiotic plant stress
UA115576C2 (uk) 2012-12-06 2017-11-27 Байєр Фарма Акцієнгезелльшафт Похідні бензимідазолу як антагоністи ер4
GB201223265D0 (en) 2012-12-21 2013-02-06 Selvita Sa Novel benzimidazole derivatives as kinase inhibitors
WO2014109858A1 (fr) 2013-01-14 2014-07-17 Amgen Inc. Méthodes d'utilisation d'inhibiteurs de cycle cellulaire pour moduler une ou plusieurs propriétés d'une culture cellulaire
ES2700541T3 (es) 2013-03-14 2019-02-18 Univ Columbia Octahidrociclopentapirroles, su preparación y uso
US10273243B2 (en) 2013-03-14 2019-04-30 The Trustees Of Columbia University In The City Of New York 4-phenylpiperidines, their preparation and use
SI3660013T1 (sl) 2013-03-15 2022-05-31 Cyclerion Therapeutics, Inc. SGC stimulatorji
KR102376354B1 (ko) 2013-03-29 2022-04-04 다케다 야쿠힌 고교 가부시키가이샤 6-(5-히드록시-1h-피라졸-1-일)니코틴아미드 유도체 및 phd의 저해제로서의 그의 용도
WO2014180562A1 (fr) 2013-05-07 2014-11-13 Galapagos Nv Nouveaux composés et leurs compositions pharmaceutiques pour le traitement de la mucoviscidose
WO2014181287A1 (fr) 2013-05-09 2014-11-13 Piramal Enterprises Limited Composés hétérocyclyliques et leurs utilisations
CN105473578A (zh) 2013-05-24 2016-04-06 加州生物医学研究所 用于治疗抗药性和持续性结核病的化合物
WO2015010832A1 (fr) 2013-07-22 2015-01-29 Syngenta Participations Ag Dérivés hétérocycliques microbiocides
EP3038618B1 (fr) 2013-08-28 2020-10-14 Vanderbilt University Inhibiteurs de mcl-1 de type indole substitué
US9663508B2 (en) 2013-10-01 2017-05-30 Amgen Inc. Biaryl acyl-sulfonamide compounds as sodium channel inhibitors
WO2015069287A1 (fr) 2013-11-08 2015-05-14 Allergan, Inc. Composés à utiliser en tant que modulateurs des tyrosine kinases
PT3068392T (pt) 2013-11-12 2021-05-14 Vertex Pharma Processo de preparação de composições farmacêuticas para o tratamento de doenças mediadas por condutância transmembrana da fibrose quística (cftr)
PL3925607T3 (pl) 2014-04-15 2023-10-30 Vertex Pharmaceuticals Incorporated Kompozycje farmaceutyczne do leczenia chorób, w których pośredniczy mukowiscydozowy przezbłonowy regulator przewodnictwa
CN112250627B (zh) * 2014-10-06 2024-02-02 弗特克斯药品有限公司 囊性纤维化跨膜转导调节因子调节剂
AU2015330923B2 (en) 2014-10-07 2020-03-12 Vertex Pharmaceuticals Incorporated Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator
HUE055423T2 (hu) 2014-11-18 2021-11-29 Vertex Pharma Eljárás nagy áteresztõképességû tesztelõ nagy teljesítményû folyadék-kromatográfia elvégzésére
US10738011B2 (en) 2014-12-23 2020-08-11 Proteostasis Therapeutics, Inc. Derivatives of 5-(hetero)arylpyrazol-3-carboxylic amide or 1-(hetero)aryltriazol-4-carboxylic amide useful for the treatment of inter alia cystic fibrosis
MA41253A (fr) 2014-12-23 2017-10-31 Proteostasis Therapeutics Inc Composés, compositions et procédés pour augmenter l'activité du cftr
SG11201706451TA (en) 2015-02-15 2017-09-28 Hoffmann La Roche 1-(het)arylsulfonyl-(pyrrolidine or piperidine)-2-carboxamide derivatives and their use as trpa1 antagonists
US10196384B2 (en) 2015-03-31 2019-02-05 Vertex Pharmaceuticals (Europe) Limited Deuterated CFTR modulators
CN108367002A (zh) 2015-09-21 2018-08-03 弗特克斯药品欧洲有限公司 氘化cftr增强剂的给予
EP3854782A1 (fr) 2016-03-30 2021-07-28 Genentech, Inc. Benzamides substitués et leurs procédés d'utilisation
ES2946970T3 (es) 2016-03-31 2023-07-28 Vertex Pharma Regulador de conductancia transmembrana de moduladores de fibrosis quística
BR112018070747B1 (pt) 2016-04-07 2024-01-09 Proteostasis Therapeutics, Inc Átomos de silicone contendo análogos de ivacaftor, composições farmacêuticas e usos terapêuticos
EP3448842A1 (fr) 2016-04-26 2019-03-06 AbbVie S.À.R.L. Modulateurs de protéine régulatrice de conductance transmembranaire de la fibrose kystique
US10138227B2 (en) 2016-06-03 2018-11-27 Abbvie S.Á.R.L. Heteroaryl substituted pyridines and methods of use
ES2954658T3 (es) 2016-06-21 2023-11-23 Proteostasis Therapeutics Inc Compuestos, composiciones y procedimientos para aumentar la actividad de CFTR
EP3519401B1 (fr) * 2016-09-30 2021-09-29 Vertex Pharmaceuticals Incorporated Modulateur de régulateur de conductance transmembranaire de fibrose kystique, compositions pharmaceutiques, procédés de traitement et procédé de fabrication du modulateur
US9981910B2 (en) 2016-10-07 2018-05-29 Abbvie S.Á.R.L. Substituted pyrrolidines and methods of use
US10399940B2 (en) 2016-10-07 2019-09-03 Abbvie S.Á.R.L. Substituted pyrrolidines and methods of use
WO2018081377A1 (fr) 2016-10-26 2018-05-03 Proteostasis Therapeutics, Inc. Dérivés n-phényl-2-(3-phényl-6-oxo-1,6-dihydropyridazine-1-yl)acétamide pour traiter la mucoviscidose
US20190248765A1 (en) 2016-10-26 2019-08-15 Proteostasis Therapeutics, Inc. Compounds, compositions, and methods for increasing cftr activity
CA3041811A1 (fr) 2016-10-26 2018-05-03 Proteostasis Therapeutics, Inc. Composes, compositions et methodes permettant de moduler cftr
MX2019005822A (es) 2016-11-18 2019-09-09 Cystic Fibrosis Found Therapeutics Inc Pirrolopirimidinas como potenciadores de cftr.
IL277491B (en) * 2016-12-09 2022-08-01 Vertex Pharma Modulatory modulation of transmembrane conductance in cystic fibrosis, pharmaceutical preparations, treatment methods, and a process for creating the modulator
BR112019012335A2 (pt) 2016-12-16 2020-03-03 Cystic Fibrosis Foundation Therapeutics, Inc. Derivados de heteroarila bicíclica como potenciadores de cftr
EP3558982A1 (fr) 2016-12-20 2019-10-30 AbbVie S.À.R.L. Modulateurs cftr deutérés et procédés d'utilisation
CN110177788B (zh) 2017-01-07 2023-03-24 重庆复创医药研究有限公司 作为bcl-2选择性凋亡诱导剂的化合物
TW201831471A (zh) 2017-02-24 2018-09-01 盧森堡商艾伯維公司 囊腫纖化症跨膜傳導調節蛋白的調節劑及其使用方法
US20180280349A1 (en) 2017-03-28 2018-10-04 Vertex Pharmaceuticals Incorporated Methods of treating cystic fibrosis in patients with residual function mutations
CA3061476A1 (fr) 2017-04-28 2018-11-01 Proteostasis Therapeutics, Inc. Derives de 4-sulfonylaminocarbonylquinoleine pour accroitre l'activite du cftr
EP3634402A1 (fr) 2017-06-08 2020-04-15 Vertex Pharmaceuticals Incorporated Méthodes de traitement de la fibrose kystique
CA3068609A1 (fr) 2017-07-01 2019-01-10 Vertex Pharmaceuticals Incorporated Compositions et methodes de traitement de la fibrose kystique
US20200171015A1 (en) 2017-07-17 2020-06-04 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
AU2018304168B2 (en) 2017-07-17 2023-05-04 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
EP3662079A4 (fr) 2017-07-31 2021-04-14 Technion Research & Development Foundation Limited Procédés de détection d'adn modifié et non modifié
CN111051280B (zh) 2017-08-02 2023-12-22 弗特克斯药品有限公司 制备吡咯烷化合物的方法
US10988454B2 (en) 2017-09-14 2021-04-27 Abbvie Overseas S.À.R.L. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
US20210369749A1 (en) 2017-10-06 2021-12-02 Proteostasis Therapeutics, Inc. Compounds, compositions, and methods for increasing cftr activity
US10654829B2 (en) 2017-10-19 2020-05-19 Vertex Pharmaceuticals Incorporated Crystalline forms and compositions of CFTR modulators
US20210228489A1 (en) 2017-12-04 2021-07-29 Vertex Pharmaceuticals Incorporated Compositions for treating cystic fibrosis
MX2020005753A (es) 2017-12-08 2020-08-20 Vertex Pharma Procesos para producir moduladores de regulador de conductancia transmembranal de fibrosis quistica.
TWI810243B (zh) 2018-02-05 2023-08-01 美商維泰克斯製藥公司 用於治療囊腫纖化症之醫藥組合物
WO2019191620A1 (fr) 2018-03-30 2019-10-03 Vertex Pharmaceuticals Incorporated Formes cristallines de modulateurs de cftr
EP3774825A1 (fr) 2018-04-13 2021-02-17 Vertex Pharmaceuticals Incorporated Modulateurs du régulateur de la conductance transmembranaire de la fibrose kystique, compositions pharmaceutiques, procédés de traitement et procédé de fabrication du modulateur

Also Published As

Publication number Publication date
EP3661915A1 (fr) 2020-06-10
US20200369608A1 (en) 2020-11-26
CN111051280B (zh) 2023-12-22
IL272384A (en) 2020-03-31
WO2019028228A1 (fr) 2019-02-07
CN111051280A (zh) 2020-04-21
JP7121794B2 (ja) 2022-08-18
MA49752A (fr) 2021-04-21
KR102606188B1 (ko) 2023-11-23
JP2020529414A (ja) 2020-10-08
AU2018309043A1 (en) 2020-02-27
TWI799435B (zh) 2023-04-21
IL272384B (en) 2022-04-01
CA3071278A1 (fr) 2019-02-07
KR20200035431A (ko) 2020-04-03
MX2020001302A (es) 2020-03-20
AR112467A1 (es) 2019-10-30
US11434201B2 (en) 2022-09-06
AU2018309043B2 (en) 2022-03-31
TW201920097A (zh) 2019-06-01
ES2912657T3 (es) 2022-05-26

Similar Documents

Publication Publication Date Title
EP3661915B1 (fr) Procédés de préparation de composés de pyrrolidine
EP2220064B1 (fr) Procédé de préparation de dibenzoyl-l-tartrate de (3ar,4s,6r,6as)-6-amino-2,2-diméthyltétrahydro-3ah-cyclopenta[d][1,3]dioxol-4-ol et produits dudit procédés
US20110172465A1 (en) Method for producing 3-methyl-cyclopentadecenones, method for producing (r)- and (s)- muscone, and method for producing optically active muscone
CN103183673B (zh) (s,s)-2,8-二氮杂双环[4,3,0]壬烷的合成方法
EP2383261B1 (fr) Procédé d'hydrogénation asymétrique de cétones
CN103159633A (zh) 他喷他多的制备方法及用于制备他喷他多的化合物
WO2024017221A1 (fr) PROCÉDÉ DE SYNTHÈSE D'UNE α-AZIDO CÉTONE CONTENANT UN STÉRÉOCENTRE TERTIAIRE
JP2018087184A (ja) (e)−3−メチル−2−シクロアルケノン化合物、3−ハロ−3−メチルシクロアルカノン化合物および(r)−3−メチルシクロアルカノン化合物の製造方法
JP4763771B2 (ja) 光学活性3−フェニルプロピオン酸誘導体を生成する方法、およびその誘導体の後続生成物
CN101142164B (zh) 生产光学活性3-苯基丙酸衍生物以及后者的后续产物的生产方法
RU2291862C2 (ru) Способ получения арилконденсированных полициклических лактамов
CN112094241B (zh) 一种1,4-二氮杂螺[5,5]十一烷-3-酮的制备方法
CN113373466B (zh) 一种β-乙酰氨基羰基化合物的电化学合成方法
EP2800739B1 (fr) Procédé pour la préparation d'octahydrocyclopenta[c]pyrrole
JP7452810B2 (ja) 固定化触媒を用いたフロー反応によるドネペジルの製造方法
WO2016116607A1 (fr) Procédé et intermédiaires pour la racémisation de 1-aminoindane énantiomériquement enrichi
Wang et al. Synthesis of Planar‐Chiral [2.2] Paracyclophane‐Based Oxazole‐Pyrimidine Ligands and Application in Nickel‐Catalyzed 1, 2‐Reduction of α, β‐Unsaturated Ketones
JP4314602B2 (ja) 光学活性3−ヒドロキシピロリジン誘導体の製造方法
CN115960007A (zh) 一种利用含氮甲酰基催化剂的西格列汀中间体的制备方法
US7015320B2 (en) Process for the manufacture of optically active 3-substituted lactams by asymmetric hydrogenation of 3-alkylidenelactams
BE563681A (fr)
JP2005126380A (ja) 光学活性な1,2−ビス(3,5−ジメチルフェニル)−1,2−エタンジアミンの製造方法
JPH03246277A (ja) オクタヒドロイソキノリン誘導体のラセミ化法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40031025

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210323

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210924

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1474056

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018032022

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2912657

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220526

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1474056

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220711

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MD

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220709

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018032022

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

26N No opposition filed

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230826

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 6

Ref country code: IE

Payment date: 20230828

Year of fee payment: 6

Ref country code: GB

Payment date: 20230828

Year of fee payment: 6

Ref country code: ES

Payment date: 20230901

Year of fee payment: 6

Ref country code: CH

Payment date: 20230903

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230825

Year of fee payment: 6

Ref country code: DE

Payment date: 20230829

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MA

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309