EP2817586B1 - Dispositif de balayage tridimensionnel - Google Patents
Dispositif de balayage tridimensionnel Download PDFInfo
- Publication number
- EP2817586B1 EP2817586B1 EP13748754.2A EP13748754A EP2817586B1 EP 2817586 B1 EP2817586 B1 EP 2817586B1 EP 13748754 A EP13748754 A EP 13748754A EP 2817586 B1 EP2817586 B1 EP 2817586B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- scan
- micromirror
- scene
- scanner
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims description 37
- 239000000758 substrate Substances 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 22
- 238000000576 coating method Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 238000013507 mapping Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 230000002441 reversible effect Effects 0.000 claims description 3
- 230000005693 optoelectronics Effects 0.000 description 19
- 238000013461 design Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 9
- 238000005286 illumination Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000006059 cover glass Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
- G01S17/894—3D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P19/00—Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
- B23P19/04—Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechanical part supplementary adjustable parts
- G01J1/0407—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
- G01J1/0411—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4811—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
- G01S7/4812—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4865—Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4868—Controlling received signal intensity or exposure of sensor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
- G02B27/0961—Lens arrays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0071—Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02253—Out-coupling of light using lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/023—Mount members, e.g. sub-mount members
- H01S5/02325—Mechanically integrated components on mount members or optical micro-benches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18386—Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
- H01S5/18388—Lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4012—Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4075—Beam steering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4081—Near-or far field control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/42—Arrays of surface emitting lasers
- H01S5/423—Arrays of surface emitting lasers having a vertical cavity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
- G01J2001/4446—Type of detector
- G01J2001/446—Photodiode
- G01J2001/4466—Avalanche
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02257—Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
Definitions
- the present invention relates generally to methods and devices for projection and capture of optical radiation, and particularly to optical 3D mapping.
- optical 3D mapping i.e., generating a 3D profile of the surface of an object by processing an optical image of the object.
- This sort of 3D profile is also referred to as a 3D map, depth map or depth image, and 3D mapping is also referred to as depth mapping.
- U.S. Patent Application Publication 2011/0279648 describes a method for constructing a 3D representation of a subject, which comprises capturing, with a camera, a 2D image of the subject. The method further comprises scanning a modulated illumination beam over the subject to illuminate, one at a time, a plurality of target regions of the subject, and measuring a modulation aspect of light from the illumination beam reflected from each of the target regions. A moving-mirror beam scanner is used to scan the illumination beam, and a photodetector is used to measure the modulation aspect. The method further comprises computing a depth aspect based on the modulation aspect measured for each of the target regions, and associating the depth aspect with a corresponding pixel of the 2D image.
- U.S. Patent 8,018,579 describes a three-dimensional imaging and display system in which user input is optically detected in an imaging volume by measuring the path length of an amplitude modulated scanning beam as a function of the phase shift thereof. Visual image user feedback concerning the detected user input is presented.
- U.S. Patent 7,952,781 describes a method of scanning a light beam and a method of manufacturing a microelectromechanical system (MEMS), which can be incorporated in a scanning device.
- MEMS microelectromechanical system
- a scanning mirror includes a substrate that is patterned to include a mirror area, a frame around the mirror area, and a base around the frame.
- a set of actuators operate to rotate the mirror area about a first axis relative to the frame, and a second set of actuators rotate the frame about a second axis relative to the base.
- the scanning mirror can be fabricated using semiconductor processing techniques.
- Drivers for the scanning mirror may employ feedback loops that operate the mirror for triangular motions.
- Some embodiments of the present invention that are described hereinbelow provide improved apparatus and methods for depth mapping using a scanning beam.
- PCT International Publication WO 2012/020380 which is assigned to the assignee of the present patent application, describes apparatus for mapping, which includes an illumination module.
- This module includes a radiation source, which is configured to emit a beam of radiation, and a scanner, which is configured to receive and scan the beam over a selected angular range.
- Illumination optics project the scanned beam so as to create a pattern of spots extending over a region of interest.
- An imaging module captures an image of the pattern that is projected onto an object in the region of interest.
- a processor processes the image in order to construct a three-dimensional (3D) map of the object.
- some embodiments of the present invention that are described hereinbelow provide depth engines that generate 3D mapping data by measuring the time of flight of a scanning beam.
- a light transmitter such as a laser, directs short pulses of light toward a scanning mirror, which scans the light beam over a scene of interest within a certain scan range.
- a receiver such as a sensitive, high-speed photodiode (for example, an avalanche photodiode) receives light returned from the scene via the same scanning mirror.
- Processing circuitry measures the time delay between the transmitted and received light pulses at each point in the scan. This delay is indicative of the distance traveled by the light beam, and hence of the depth of the object at the point. The processing circuitry uses the depth data thus extracted in producing a 3D map of the scene.
- the scanner can be controlled so as to cause the beam to scan over a selected window within the scan range and thus generate a 3D map of a part of the scene that is within the selected window.
- a different window may be selected in each scan of the beam.
- the depth engine may be controlled to zoom in on particular windows or objects that have been identified within the scene. Zooming in this manner enables the depth engine to provide data within the selected window at higher resolution or, alternatively or additionally, to increase the frame rate at which it scans.
- Fig. 1 is a schematic, pictorial illustration of a depth mapping system 20, in accordance with an embodiment of the present invention.
- the system is based on a scanning depth engine 22, which captures 3D scene information in a volume of interest (VOI) 30 that includes one or more objects.
- VOI volume of interest
- the objects comprise at least parts of the bodies of users 28.
- Engine 22 outputs a sequence of frames containing depth data to a computer 24, which processes and extracts high-level information from the map data. This high-level information may be provided, for example, to an application running on computer 24, which drives a display screen 26 accordingly.
- Computer 24 processes data generated by engine 22 in order to reconstruct a depth map of VOI 30 containing users 28.
- engine 22 emits pulses of light while scanning over the scene and measures the relative delay of the pulses reflected back from the scene.
- a processor in engine 22 or in computer 24 then computes the 3D coordinates of points in the scene (including points on the surface of the users' bodies) based on the time of flight of the light pulses at each measured point (X,Y) in the scene.
- This approach is advantageous in that it does not require the users to hold or wear any sort of beacon, sensor, or other marker. It gives the depth (Z) coordinates of points in the scene relative to the location of engine 22 and permits dynamic zooming and shift of the region that is scanned within the scene. Implementation and operation of the depth engine are described in greater detail hereinbelow.
- computer 24 is shown in Fig. 1 , by way of example, as a separate unit from depth engine 22, some or all of the processing functions of the computer may be performed by a suitable microprocessor and software or by dedicated circuitry within the housing of the depth engine or otherwise associated with the depth engine. As another alternative, at least some of these processing functions may be carried out by a suitable processor that is integrated with display screen 26 (in a television set, for example) or with any other suitable sort of computerized device, such as a game console or media player. The sensing functions of engine 22 may likewise be integrated into computer 24 or other computerized apparatus that is to be controlled by the depth output.
- a set of Cartesian axes is marked in Fig. 1 .
- the Z-axis is taken to be parallel to the optical axis of depth engine 22.
- the frontal plane of the depth engine is taken to be the X-Y plane, with the X-axis as the horizontal.
- Fig. 1 illustrates the zoom capabilities of depth engine 22.
- a beam 38 emitted by engine 22 scans the entire VOI 30 and generates a low-resolution depth map of the entire scene.
- the scan range may be large, as shown in the figure, for example 120° (X) x 80° (Y).
- X 120°
- Y 80°
- Computer 24 identifies users 28 and instructs engine 22 to narrow its scan range to a window 32 containing the users, and thus generate a higher-resolution depth map of the objects in the window.
- computer 24 may instruct engine 22 to zoom in still farther on specific parts or features of the users' faces and bodies, as exemplified by windows 34 and 36.
- the instructions and their execution by engine 22 may be dynamic, i.e., computer 24 may instruct engine 22 to modify the scan window during operation of the scanner.
- the locations of the windows may change from frame to frame in response to movement of the users or other changes in the scene or application requirements.
- the windows need not be centered within the scan range and can be located practically anywhere within the range.
- engine 22 scans VOI 30 in a raster pattern.
- window 32 For example, to generate window 32, the X-range of the raster scan is reduced, while the Y-range remains unchanged.
- This sort of windowing can be conveniently accomplished when the depth engine scans rapidly in the Y-direction, in a resonant scan with a fixed amplitude and frequency (such as 5-10 kHz), while scanning more slowly in the X-direction at the desired frame rate (such as 30 Hz).
- the X-direction scan is not a resonant frequency of rotation.
- the speed of the X-direction scan can be varied over the scan range so that each frame contains multiple vertical windows, such as scanning a respective window over each of users 28 while skipping over the space between them.
- the Y-range of the scan may be reduced, thus reducing the overall vertical field of view.
- the Y-range of the scan may be controlled, as well, thus giving scan windows 34 and 36 with different ranges in both X and Y.
- the Y- and/or X-range and X-offset of the scan may be modulated during each frame, so that non-rectangular windows may be scanned.
- Computer 24 may instruct depth engine 22 to change the zoom (i.e., to change the sizes and/or locations of the zoom windows) via a command interface provided by the depth engine.
- the computer may run an application program interface (API) and/or suitable middleware so that application programs running on the computer can invoke the command interface.
- API application program interface
- zoom control models can be implemented by the computer or, alternatively or additionally, by embedded software in depth engine 22.
- the computer or depth engine may change the zoom on the fly based on analysis of the depth map.
- the depth engine and computer may operate in a wide-angle, low-resolution search mode, and may then zoom into a higher-resolution tracking mode when a user is identified in the scene. For example, when a user enters the scene, the computer may detect the presence and location of the user and instruct the depth engine to zoom in on his location. When the user then makes a certain gesture, the computer may detect the gesture and instruct the depth engine to zoom in further on the user's hand.
- Fig. 2 is a block diagram that schematically shows functional components of depth engine 22, in accordance with an embodiment of the present invention.
- Engine 22 comprises an optical head 40 and a controller 42 (also referred to as a processor), which may be implemented as an application-specific integrated circuit (ASIC), as indicated in the figure.
- controller 42 also referred to as a processor
- ASIC application-specific integrated circuit
- Optical head 40 comprises a transmitter 44, such as a laser diode, whose output is collimated by a suitable lens.
- Transmitter 44 outputs a beam of light, which may comprise visible, infrared, and/or ultraviolet radiation (all of which are referred to as "light” in the context of the present description and in the claims).
- a laser driver which may similarly be implemented in an ASIC 53, modulates the laser output, so that it emits short pulses, typically with sub-nanosecond rise time.
- the laser beam is directed toward a scanning micromirror 46, which may be produced and driven using MEMS technology, as described below.
- the micromirror scans beam 38 over the scene, typically via projection/collection optics, such as a suitable lens (shown in the figures below).
- Pulses of light reflected back from the scene are collected by the optics and reflect from scanning mirror 46 onto a receiver 48.
- the receiver typically comprises a sensitive, high-speed photodetector, such as an avalanche photodiode (APD), along with a sensitive amplifier, such as a transimpedance amplifier (TIA), which amplifies the electrical pulses output by the photodetector. These pulses are indicative of the times of flight of the corresponding pulses of light.
- APD avalanche photodiode
- TIA transimpedance amplifier
- the pulses that are output by receiver 48 are processed by controller 42 in order to extract depth (Z) values as a function of scan location (X,Y).
- the pulses may be digitized by a high-speed analog/digital converter (A2D) 56, and the resulting digital values may be processed by depth processing logic 50.
- the corresponding depth values may be output to computer 24 via a USB port 58 or other suitable interface.
- a given projected light pulse may result in two reflected light pulses that are detected by receiver 48 - a first pulse reflected from the object itself in the foreground, followed by a second pulse reflected from the background behind the object.
- Logic 50 may be configured to process both pulses, giving two depth values (foreground and background) at the corresponding pixel. These dual values may be used by computer 24 in generating a more accurate depth map of the scene.
- Controller 42 also comprises a power converter 57, to provide electrical power to the components of engine 22, and controls the transmit, receive, and scanning functions of optical head 40.
- a MEMS control circuit 52 in controller 42 may direct commands to the optical head to modify the scanning ranges of mirror 46, as explained above.
- Position sensors associated with the scanning mirror such as suitable inductive or capacitive sensors (not shown), may provide position feedback to the MEMS control function.
- a laser control circuit 54 and a receiver control circuit 55 likewise control aspects of the operation of transmitter 44 and receiver 48, such as amplitude, gain, offset, and bias.
- the laser driver in ASIC 53 and/or laser control circuit 54 may control the output power of transmitter 44 adaptively, in order to equalize the level of optical power of the pulses that are incident on receiver 48.
- This adaptation compensates for variations in the intensity of the reflected pulses that occurs due to variations in the distance and reflectivity of objects in different parts of the scene from which the light pulses are reflected. It is thus useful in improving signal/noise ratio while avoiding detector saturation.
- the power of each transmitted pulse may be adjusted based on the level of the output from receiver 48 in response to one or more previous pulses, such as the preceding pulse or pulses emitted by the transmitter in the present scan, and/or the pulse at this X,Y position of mirror 46 in the preceding scan.
- the elements of optical head 40 may be configured to transmit and receive "scout pulses," at full or partial power, for the purpose of assessing returned power or object distance, and may then adjust the output of transmitter 44 accordingly.
- Fig. 3 is a schematic, pictorial illustration showing elements of optical head 40, in accordance with an embodiment of the present invention.
- Transmitter 44 emits pulses of light toward a polarizing beamsplitter 60.
- a polarizing beamsplitter 60 typically, only a small area of the beamsplitter, directly in the light path of transmitter 60, is coated for reflection, while the remainder of the beamsplitter is fully transparent (or even anti-reflection coated) to permit returned light to pass through to receiver 48.
- the light from transmitter 44 reflects off beamsplitter 60 and is then directed by a folding mirror 62 toward scanning micromirror 46.
- a MEMS scanner 64 scans micromirror 46 in X- and Y-directions with the desired scan frequency and amplitude. Details of the micromirror and scanner are shown in the figures that follow.
- micromirror 46 which reflects the light via turning mirror 62 through beamsplitter 60.
- Receiver 48 senses the returned light pulses and generates corresponding electrical pulses.
- the overall area of beamsplitter 60 and the aperture of receiver 48 are considerably larger than the area of the transmitted beam, and the beamsplitter is accordingly patterned, i.e., the reflective coating extends over only the part of its surface on which the transmitted beam is incident.
- the reverse side of the beamsplitter may have a bandpass coating, to prevent light outside the emission band of transmitter 44 from reaching the receiver.
- micromirror 46 be as large as possible, within the inertial constraints imposed by the scanner.
- the area of the micromirror may be about 10-15 mm 2 .
- Fig. 4 is a schematic, pictorial illustration of MEMS scanner 64, in accordance with an embodiment of the present invention.
- This scanner is produced and operates on principles similar to those described in the above-mentioned U.S. Patent 7,952,781 , but enables two-dimensional scanning of a single micromirror 46.
- Dual-axis MEMS-based scanners of this type are described further in U.S. Provisional Patent Application 61/675,828, filed July 26, 2012 .
- Alternative embodiments of the present invention may use scanners of other types that are known in the art, including designs that use two single-axis scanners (such as those described in U.S. Patent 7,952,781 , for example).
- Micromirror 46 is produced by suitably etching a semiconductor substrate 68 to separate the micromirror from a support 72, and to separate the support from the remaining substrate 68. After etching, micromirror 46 (to which a suitable reflective coating is applied) is able to rotate in the Y-direction relative to support 72 on spindles 70, while support 72 rotates in the X-direction relative to substrate 68 on spindles 74.
- Micromirror 46 and support 72 are mounted on a pair of rotors 76, which comprise permanent magnets. (Only one of the rotors is visible in the figure.) Rotors 76 are suspended in respective air gaps of magnetic cores 78. Cores 78 are wound with respective coils 80 of conductive wire, thus creating an electromagnetic stator assembly. (Although a single coil per core is shown in Fig. 4 for the sake of simplicity, two or more coils may alternatively be wound on each core; and different core shapes may also be used.) Driving an electrical current through coils 80 generates a magnetic field in the air gaps, which interacts with the magnetization of rotors 76 so as to cause the rotors to rotate or otherwise move within the air gaps.
- coils 80 may be driven with high-frequency differential currents so as to cause micromirror 46 to rotate resonantly back and forth about spindles 70 at high speed (typically in the range of 5-10 kHz, as noted above, although higher or lower frequencies may also be used). This resonant rotation generates the high-speed Y-direction raster scan of the output beam from engine 22.
- coils 80 are driven together at lower frequency to drive the X-direction scan by rotation of support 72 about spindles 74 through the desired scan range. The X- and Y-rotations together generate the overall raster scan pattern of micromirror 46.
- Fig. 5 is a schematic, pictorial illustration of a micromirror unit 82, in accordance with another embodiment of the present invention.
- Assembly 82 may be produced and operated using MEMS technology in a manner similar to that described above with reference to scanner 64.
- micromirror 46 is connected by spindles 84 to a Y-support 86, which is connected by spindles 88 to an X-support 90.
- the X-support is connected by spindles 92 to a substrate (not shown in this figure).
- Micromirror 46 rotates resonantly back and forth at high frequency on spindles 84, thus generating the high-speed Y-direction scan described above.
- Y- and X-supports 86 and 90 rotate at lower speed, with variable amplitude and offset, to define the X-Y windows over which assembly 82 will scan.
- This arrangement may be used conveniently, for example, to generate a scan over windows 34 and 36, as shown in Fig. 1 .
- MEMS-based scanners shown in Figs. 4 and 5 are described here by way of example. In alternative embodiments, other types of MEMS scanners may be used in depth engine 22, as well as suitable scanners based on other scanning technologies. All such implementations are considered to be within the scope of the present invention.
- Various scan modes can be enabled by applying appropriate drive signals to the sorts of micromirror-based scanners that are described above.
- the possibility of zooming in on particular windows was already mentioned above.
- the X-direction scan rate may be varied over the course of the scan to give higher resolution within one or more regions, by scanning the micromirror relatively slowly over these regions, while scanning the remainder of the scene at a faster rate.
- These high-resolution scans of particular regions can be interlaced, frame by frame, with low-resolution scans over the entire scene by maintaining a fixed X-direction scan rate as the micromirror scans over the scene in one direction (for example, scanning from left to right) to give the low-resolution depth map, and varying the X-direction scan rate between fast and slow while scanning in the reverse direction (on the return scan from right to left) to map the high-resolution window.
- Other sorts of variable, interlaced scan patterns may similarly be implemented by application of suitable drive signals.
- optical head 40 from discrete optical and mechanical components, as shown in Fig. 3 , requires precise alignment and can be costly.
- all parts requiring precise placement and alignment may be combined in a single integrated, modular package on micro-optical substrate, such as a silicon optical bench (SiOB) or other type of micro-optical bench based on a semiconductor or ceramic substrate, such as alumina, aluminum nitride, or glass (Pyrex®).
- SiOB silicon optical bench
- ceramic substrate such as alumina, aluminum nitride, or glass
- Fig. 6A is a schematic side view of an optoelectronic module 100 of this sort, in accordance with an embodiment of the present invention.
- a laser die 104, serving as the transmitter, and a driver chip 106 are placed on a silicon optical bench (SiOB) 102.
- Laser die 104 in this embodiment is an edge-emitting device, but in other embodiments, surface-emitting devices may be used, as described hereinbelow.
- the laser output beam from die 104 reflects from a turning mirror 108 and is collimated by a lens 110.
- a prism 112 may be placed in the laser beam in order to align its beam axis with that of the receiver.
- Prism 112 may be made as a monolithic part of lens 110, and typically covers a small fraction of the area of the lens (such as 1/10 of the lens clear aperture).
- the laser typically has significantly lower numerical aperture (NA) than lens 110. Therefore, the laser beam at the lens will be much narrower than the return beam captured by the lens.
- NA numerical aperture
- a ball lens may be placed on SiOB 102 between laser die 104 and mirror 108, as shown in Fig. 8A , for example, in order to reduce the numerical aperture of the beam that is seen by lens 110.
- an additional lens element may be added to lens 110 to collimate the outgoing laser beam, similar to the lens element shown in Fig. 6B .
- the output laser beam from module 100 strikes the scanning mirror, which scans the beam over the scene of interest.
- Lens 110 Light returned from the scene via the scanning mirror is collected by lens 110, which focuses the light onto an avalanche photodiode (APD) die 114 on bench 102.
- the output of the APD is amplified by a transimpedance amplifier (TIA) 116, as explained above.
- TIA transimpedance amplifier
- other sorts of detectors and amplifiers may be used in module 100 (and in the alternative module designs that are described below), as long as they have sufficient sensitivity and speed for the application at hand.
- Lens 110 may present different or similar collimation properties to laser and APD, since transmission and reception use different portions of the lens.
- Lens 110 may be produced by means of wafer-level optics or molding of polymeric materials or glass, for example. Such a lens may have "legs," which create the side walls of module 100, thus sealing the module. Assembly of module 100 may be performed at wafer level, wherein a wafer of SiOB with mounted dies is bonded to a wafer of lenses, and then diced. Alternatively, a spacer wafer with appropriately-formed cavities may be bonded to the SiOB wafer, and the lens wafer bonded on top of it. Further alternatively, the assembly may be carried out using singulated silicon optical benches and lenses. In any case, the entire module 100 will have the form of a hollow cube, typically about 5-8 mm on a side. (Alternatively, the micro-optical bench and the components thereon may be sealed with a transparent cap, and lens 110 with other associate optics may then be assembled as a precision add-on, in both this embodiment and the other embodiments described below).
- Fig. 6B is a schematic side view of an optoelectronic module 117, in accordance with another embodiment of the present invention.
- Module 117 is similar to module 100, except that in module 117 a mirror 118 that reflects the beam from laser die 104 is angled at approximately 45°, and thus the laser beam is reflected along an axis parallel to the optical axis of the received light (referred to herein as the "collection axis") that is defined by lens 110 and APD die 114.
- the collection axis is a matter of design choice, and can be slanted relative to the plane of APD die 114.
- prism 112 is not needed, but an additional lens element 119 may be added, by molding element 119 together with lens 110, for example, to collimate the outgoing laser beam.
- the offset between the axes in this embodiment has no substantial effect on system performance.
- mirrors 108 and 118 in the foregoing figures are shown by way of example, and other angles, both greater than and less than 45°, may alternatively be used. It is generally desirable to shield APD die 114 from any stray light, including back-reflected light from the beam emitted by laser die 104. For this reason, the sharper reflection angle of mirror 118 (by comparison with mirror 108 in the embodiment of Fig. 6A ) is advantageous. In an alternative embodiment (not shown in the figures) even a sharper reflection angle may be used, with suitable adaptation of the corresponding projection optics for the laser beam.
- SiOB 102 or alternatively, a silicon spacer wafer (not shown) placed on top of SiOB 102, may comprise a (100) silicon crystal, and may be wet-etched along the (111) plane and then coated with metal or with a dielectric stack to form a mirror at an inclination of 54.74°.
- lens 110 may be slanted or otherwise configured to focus off-axis onto APD die 114.
- module 100 or 117 may also include light baffling or other means (not shown) for shielding the APD die from stray reflections of the laser beam.
- APD die 114 may be placed behind laser die 104, rather than in front of it as shown in the figures.
- Fig. 7 is a schematic side view of an optoelectronic module 120, in accordance with still another embodiment of the present invention.
- This module is similar to modules 100 and 117, except that the transmitter elements (laser die 104 and driver 106) are placed on a pedestal 122, and a beamsplitter 124 is mounted over SiOB 102 in order to align the transmitted and received beams.
- Beamsplitter 124 may comprise a small, suitably coated region on a transparent plate 126, which is oriented diagonally in module 120.
- beamsplitter 124 may be polarization dependent, so as to reflect the polarization direction of the laser beam while passing the orthogonal polarization, thereby enhancing the optical efficiency of the module.
- Figs. 8A and 8B are schematic side views of an optoelectronic module 130, in accordance with yet another embodiment of the present invention.
- the view shown in Fig. 8B is rotated by 90° relative to that in Fig. 8A , so that items that are seen at the front of the view of Fig. 8A are on the left side of Fig. 8B .
- This embodiment differs from the preceding embodiments in that the transmitted and received beams are separate within module 130 and are aligned at the exit from the module by a beam combiner 142 mounted over the substrate of the module.
- the illumination beam emitted by laser die 104 is collimated by a ball lens 134, which is positioned in a groove 135 formed in SiOB 102.
- Groove 135 may be produced in silicon (and other semiconductor materials) with lithographic precision by techniques that are known in the art, such as wet etching.
- the ball lens may be attached directly to SiOB by an accurate pick-and-place machine, even without groove 135.
- a turning mirror 136 reflects the collimated beam away from SiOB 102 and through a cover glass 137, which protects the optoelectronic components in module 130.
- a beam expander 138 may be used to expand the laser beam, typically by a factor of three to ten, and thus enhance its collimation.
- beam expander 138 is shown here as a single-element optical component, multi-element beam expanders may alternatively be used.
- the design of module 130 is advantageous in that it can be assembled accurately without requiring active alignment, i.e., assembly and alignment can be completed to within fine tolerance without actually powering on laser die 104.
- the collimated beam that is output by beam expander 138 is turned by a reflector 144 in beam combiner 142, and is then turned back outward toward the scanning mirror by a beamsplitter 146.
- beamsplitter 146 may advantageously be polarization-dependent, as explained above with reference to Fig. 7 .
- the collected beam returned from the scanning mirror passes through beamsplitter 146 and is then focused onto APD 114 by a collection lens 140.
- the collection lens may have an asymmetrical, elongated shape, as shown in Figs. 8A and 8B , in order to maximize light collection efficiency within the geometrical constraints of module 130.
- beam combiner 142 is shown in Fig. 8B as a single prismatic element, other implementations may alternatively be used.
- the beam combining function may be performed by two separate angled plates: a reflecting plate in place of reflector 144 and a beamsplitting plate in place of beamsplitter 146.
- Fig. 9 is a schematic side view of a beam combiner 150, which can be used in place of beam combiner 142 in accordance with another embodiment of the present invention.
- Beam combiner 150 comprises a transparent substrate 152, made of glass, for example, with a reflective coating 154, taking the place of reflector 144, and a beamsplitting coating 156 (typically polarization-dependent), taking the place of beamsplitter 146.
- An anti-reflection coating 158 may be applied to the remaining areas of the front and rear surfaces of substrate 152, through which the projected and collected beams enter and exit combiner 150.
- the design of beam combiner 150 is advantageous in terms of simplicity of manufacture and assembly.
- Figs. 10A and 10B are schematic side views of an optoelectronic module 160, in accordance with a further embodiment of the present invention. The two views are rotated 90° relative to one another, such that elements at the front of Fig. 10A are seen at the right side in Fig. 10B .
- the principles of the design and operation of module 160 are similar to those of module 130 ( Figs. 8A/B ), except that no ball lens is used for collimation in module 160.
- a collimation lens 164 for the beam that is transmitted from laser die 104 and a collection lens 166 for the beam that is received from the scanning mirror are mounted in this case directly on a cover glass 162 of the module.
- the beam axes of the transmitted and received beams are typically aligned by a beam combiner (not shown in these figures), as in the embodiment of Figs. 8A /B.
- lenses 164 and 166 have tight manufacturing tolerances, they can be assembled in place using machine vision techniques to align their optical centers with the appropriate axes of module 160, on top of cover glass 162.
- Such miniature lenses typically have large manufacturing tolerances, commonly on the order of 1-5%, particularly when the lenses are mass-produced in a wafer-scale process. Such tolerance could, if not measured and accounted for, result in poor collimation of the beam from laser die 104.
- the actual effective focal length (EFL) of collimation lens 164 can be measured in advance.
- EFL effective focal length
- the EFL of each lens can be measured precisely at the wafer level, before module 160 is assembled.
- the distance of laser die 104 from turning mirror 136 on the substrate in each module 160 can then be adjusted at the time of fabrication, as illustrated by the horizontal arrow in Fig. 10A , to match the measured EFL of the corresponding lens 164.
- the laser die is then fixed (typically by glue or solder) in the proper location.
- a pick-and-place machine may similarly be used to position collection lens 166. Because of the less stringent geometrical constraints of the collected beam and the relatively large size of APD 114, however, EFL variations of the collection lens are less critical. Thus, as an alternative to mounting collection lens 166 on cover glass 162 as shown in Figs. 10A and B , the collection lens may be assembled onto module 160 after fabrication, together with the beam combiner.
- modules based on the principles of the embodiments described above may be fabricated on other sorts of micro- optical substrates, such as ceramic or glass substrates. Ceramic materials may be advantageous in terms of electrical performance.
- the transmitting and receiving portions of the optoelectronic module may be mounted separately on two different micro-optical benches. This approach may be advantageous since the requirements for the receiver are high bandwidth, low loss for high-frequency signals, and low price, while for the transmitter the main requirement are thermal conductivity, as well as hermetic sealing for reliability of the laser diode.
- Figs. 11A-C schematically illustrate a beam transmitter 170, in accordance with an embodiment of the present invention.
- Fig. 11A is a side view of the entire beam transmitter
- Figs. 11B and 11C are side and rear views, respectively, of a beam generator 172 that is used in transmitter 170.
- Transmitter 170 is suited particularly for use in optoelectronic modules that may be integrated in an optical scanning head of the type described above, and modules of this sort are described further hereinbelow. Transmitters of this type, however, may also be used in other applications in which a compact source is required to generate an intense, well-controlled output beam.
- Beam generator 172 comprises an array of surface-emitting devices 178, such as vertical-cavity surface-emitting lasers (VCSELs).
- the beams emitted by devices 178 are collected by a corresponding array of microlenses 176, which direct the beams toward a collimation lens 175.
- Devices 178 and microlenses 176 may conveniently be formed on opposing faces of a transparent optical substrate 180, such as a suitable semiconductor wafer, such as a GaAs wafer.
- GaAs has an optical passband that begins at about 900 nm, i.e., it is transparent at wavelengths longer than about 900 nm, and will thus pass the radiation at such wavelengths that is emitted by devices 178 on the back side of substrate 180.
- the thickness of substrate 180 is typically about 0.5 mm, although smaller or larger dimensions may alternatively be used.
- the locations of devices 178 are offset inwardly relative to the centers of the corresponding microlenses 176, thus giving rise to an angular spread between the individual beams transmitted by the microlenses.
- Fig. 11D is a schematic side view of a beam generator 182, in accordance with an alternative embodiment of the present invention.
- surface emitting devices 178 are formed on the front side of a substrate 183, which may be connected to an underlying substrate by wire bonds 185.
- Microlenses 176 are formed on a separate transparent blank 184, such as a glass blank, which is then aligned with and glued over devices 178 on substrate 183.
- the design of beam generator 182 is thus appropriate when devices 178 are designed to emit at shorter wavelengths, to which the substrate is not transparent.
- substrate 183 and blank 184 are each typically about 0.25 mm thick, although other dimensions may similarly be used.
- Figs. 12A-C schematically illustrate a beam transmitter 186, in accordance with another embodiment of the present invention.
- Fig. 12A is a schematic side view of the entire beam transmitter
- Figs. 12B and 12C are schematic side and rear views, respectively, of a beam generator 188 that is used in transmitter 186.
- Beam generator 188 differs from beam generator 172 in that the locations of devices 178 in beam generator 188 are offset outwardly relative to the centers of the corresponding microlenses 176, as shown in Fig. 12C .
- the individual beams transmitted by microlenses 176 converge to a focal waist, before again spreading apart, as shown in Fig. 12A .
- Surface-emitting devices 178 in beam transmitters 170 and 186 may be driven individually or in predefined groups in order to change the characteristics of the beam that is output by lens 175. For example, all of devices 178 may be driven together to give a large-diameter, intense beam, or only the center device alone or the central group of seven devices together may be driven to give smaller-diameter, less intense beams.
- Figs. 11C and 12C show a particular hexagonal arrangement of the array of surface-emitting devices, other arrangements, with larger or smaller numbers of devices, in hexagonal or other sorts of geometrical arrangements, may alternatively be used.
- Fig. 13 is a schematic side view of an optoelectronic module 190 that incorporates beam generator 172 ( Figs. 11B/C ), in accordance with an embodiment of the present invention.
- This module as well as the alternative modules that are shown in Figs. 14 and 15 , may be used in conjunction with a scanning mirror and other components in producing the sorts of optical scanning heads that are described above.
- the modules of Figs. 13-15 may alternatively be used in other applications requiring a compact optical transmitter and receiver with coaxial transmitted and received beams.
- beam generator 172 (as illustrated in Figs. 11B/C ) is mounted on a micro-optical substrate 192, such as a SiOB, along with a receiver 194, which contains a suitable detector, such as an APD, for example, as described above.
- a beam combiner 196 combines the transmitted and received beams, which pass through lens 175 toward the scanning mirror (not shown in Figs. 13-15 ).
- Beam combiner 196 in this embodiment comprises a glass plate, with an external reflective coating 198 over most of its surface, other than where the transmitted and reflected beams enter and exit the plate.
- the beam transmitted by beam generator 172 enters the beam combiner through a beamsplitter coating 200, which may be polarization-dependent, as explained above, and exits through a front window 202, which may be anti-reflection coated.
- the received beam collected by lens 175 enters beam combiner 196 through window 202, reflects internally from beamsplitter coating 200 and reflective coating 198, and then exits through a rear window 204 toward receiver 194.
- the thickness of the beam combiner plate is chosen to give the desired optical path length (which is longer than the back focal length of lens 175 would be otherwise).
- window 204 may be located at the focus of lens 175 and thus can be made as small as possible.
- Window 204 (as well as window 202) may have a narrowband filter coating, so that ambient light that is outside the emission band of beam generator 172 is excluded.
- Fig. 14 is a schematic side view of an optoelectronic module 210 that incorporates beam generator 188 ( Figs. 12B/C ), in accordance with another embodiment of the present invention.
- a beam combiner 212 in this case comprises a glass plate with a reflective coating 214 to fold the beam transmitted by beam generator 188 and a beamsplitter coating 216 where the transmitted and received beams are combined at the rear surface of the glass plate. Beamsplitter coating 216 may also be overlaid or otherwise combined with a narrowband filter on the path to receiver 194, as in the preceding embodiment.
- the thickness of beam combiner 212 in this embodiment is chosen to give the desired path length of the beam transmitted by beam generator 188, which has a focal waist inside the beam combiner.
- the aperture of the transmitted beam may alternatively be made smaller than that of the received beam.
- the diameter of beamsplitter coating 216 need be no larger than the transmitted beam aperture.
- the glass plate may have a reflective coating, so that the received beam can reach receiver 194 without loss of energy due to the beamsplitter.
- Fig. 15 is a schematic side view of an optoelectronic module 220 that incorporates beam generator 188, in accordance with yet another embodiment of the present invention.
- a bifocal lens 220 has a central zone that collects and collimates a beam 230 transmitted by beam generator 188, with a relatively small aperture and a short focal length.
- the peripheral zone of lens 220 collects and focuses a beam 232 onto receiver 194 with a larger aperture and longer focal length.
- the area of lens 220, and concomitantly the area of the scanning mirror is divided into a small, central transmit zone and a larger, surrounding receive zone.
- a beam combiner 224 used in this embodiment has a front window 226 that is large enough to accommodate beam 232, but a much smaller window 228 in reflective coating 198 on the rear side. Window 228 need only be large enough to accommodate the narrow beam transmitted by beam generator 188. Consequently, most of the energy in beam 232 is reflected inside the beam combiner by reflective coating 198 and reaches receiver 194 via rear window 204 (which may be made small and coated with a narrowband coating, as described above). There is no need for a beamsplitter coating in this embodiment, and beam generator 188 may therefore comprise unpolarized, multimode surface-emitting devices.
- a single detector element such as an APD
- other sorts of detector configurations may alternatively be used.
- a linear array of photodetectors may be used for this purpose, in which case the mirror used in collecting light from the scene need scan in only a single direction, perpendicular to the axis of the array.
- This same one-dimensional scanning mirror can be used to project a line of laser radiation onto the instantaneous field of view of the detector array.
- Such a system is also capable of zoom functionality, which can be achieved on one axis by changing the scan pattern and amplitude along the one-dimensional scan.
- a 2D matrix of photo-detectors with a stationary collection lens may be used to collect scanned light from the scene, covering the entire field of view so that no mechanical scanning of the receiver is needed.
- the transmitting laser is still scanned in two dimensions using a MEMS mirror, for example.
- the pixel positions in the resulting depth map are determined by the high precision of the scan, rather than the relatively lower resolution of the detector matrix.
- This approach has the advantages that alignment is easy (since the detector matrix is stationary); the scanning mirror can be small since it is not used to collect light, only to project the laser; and the collection aperture can be large.
- the field of view of each detector is approximately 1°.
- 60x60 detectors are needed for a 60° field of view.
- the resolution as determined by the scan accuracy, however, can reach 1000 x 1000 points.
- Another variant of this scheme may use multiple beams (created, for example, by a beamsplitter in the optical path of the transmitted beam after it reflects from the MEMS mirror). These beams create simultaneous readings on different detectors in the matrix, thus enabling simultaneous acquisition of several depth regions and points. It is desirable for this purpose that the beams themselves not overlap and be far enough apart in angular space so as not to overlap on any single element of the matrix.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Computer Graphics (AREA)
- Human Computer Interaction (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Measurement Of Optical Distance (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Optical Elements Other Than Lenses (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Claims (14)
- Appareil de cartographie (22), comprenant :un émetteur (44), qui est configuré pour émettre un faisceau (38) comprenant des impulsions lumineuses ;un scanner, qui comprend un micromiroir rotatif (46) qui est configuré pour faire balayer le faisceau sur une scène à l'intérieur d'une plage de balayage prédéfinie ;un récepteur (48), qui est configuré pour recevoir la lumière réfléchie depuis la scène et pour générer une sortie représentative d'un temps de vol des impulsions en direction et en provenance de points de la scène ; etun processeur (42), qui est couplé pour contrôler le scanner de manière à faire balayer le faisceau sur une fenêtre sélectionnée (32, 34, 36) à l'intérieur de la plage de balayage et traiter la sortie du récepteur de manière à générer une carte 3D d'une partie de la scène qui est dans la fenêtre sélectionnée,dans lequel le processeur est configuré pour sélectionner à chaque balayage du faisceau une fenêtre différente à balayer, par traitement de la sortie du récepteur durant le premier balayage de manière à générer une première carte 3D de la scène et identifier un objet dans la première carte 3D, et pour sélectionner la fenêtre à balayer durant un second balayage de manière à y inclure l'objet identifié,caractérisé en ce que :
le processeur est configuré pour piloter le scanner pour balayer la fenêtre sélectionnée à une fréquence d'image plus élevée que durant le premier balayage en faisant varier une vitesse de rotation du micromiroir sur la plage de balayage. - L'appareil selon la revendication 1, dans lequel le processeur est configuré pour piloter le scanner de manière à balayer la fenêtre sélectionnée à une résolution qui est renforcée par rapport à celle du premier balayage.
- L'appareil selon la revendication 1 ou 2, dans lequel le micromiroir est produit en utilisant une technologie de systèmes microélectromécaniques (MEMS), et dans lequel l'émetteur est configuré pour diriger le faisceau pour qu'il se réfléchisse à partir du micromiroir en direction de la scène.
- L'appareil selon la revendication 3, dans lequel le micromiroir est configuré pour tourner autour de deux axes, et dans lequel le processeur est couplé pour faire varier la vitesse de rotation du micromiroir autour d'au moins l'un des axes afin de définir la fenêtre.
- L'appareil selon la revendication 3 ou 4, dans lequel le scanner comprend :un substrat, qui est gravé pour définir le micromiroir et un support ainsi que des premières tiges reliant le micromiroir au support le long d'un premier axe et des secondes tiges reliant le support au substrat le long d'un second axe ; etun entraînement électromagnétique, qui fait tourner le micromiroir et le support autour de la première et de la seconde tige.
- L'appareil selon la revendication 5, dans lequel l'entraînement électromagnétique comprend :un ensemble de stator, comprenant au moins un noyau magnétique avec un entrefer d'air et au moins une bobine enroulée sur le noyau magnétique ; etau moins un rotor, sur lequel sont montés le micromiroir et le support et qui est suspendu dans l'entrefer de manière à se déplacer à l'intérieur de l'entrefer en réponse à un courant envoyé dans la au moins une bobine, dans lequel le au moins un noyau magnétique et le au moins un rotor comprennent deux noyaux et deux rotors suspendus dans des entrefers respectifs des noyaux, et dans lequel l'entraînement électromagnétique est configuré pour entraîner les bobines des deux noyaux par des courants différentiels qui font tourner le micromiroir et le support à des vitesses respectives différentes afin que le micromiroir opère un balayage en motif de trame.
- L'appareil selon la revendication 5 ou 6, dans lequel l'entraînement électromagnétique fait tourner le micromiroir autour des premières tiges à une première fréquence, qui est une fréquence résonante de rotation, tout en faisant tourner le support autour des secondes tiges à une seconde fréquence, qui est inférieure à la première fréquence.
- L'appareil selon la revendication 7, dans lequel la seconde fréquence n'est pas une fréquence résonante de rotation.
- L'appareil selon l'une des revendications 3 à 8, dans lequel le récepteur comprend un détecteur qui est configuré pour recevoir la lumière réfléchie par la scène via le micromiroir, et dans lequel l'appareil comprend un diviseur de faisceau qui est positionné de manière à diriger le faisceau émis par l'émetteur en direction du micromiroir, tout en permettant à la lumière réfléchie d'atteindre le détecteur, le faisceau émis et la lumière réfléchie ayant entre le diviseur de faisceau et le micromiroir des axes optiques respectifs qui sont parallèles.
- L'appareil selon la revendication 9, dans lequel le diviseur de faisceau est texturé avec un revêtement réflecteur polarisant seulement sur une partie d'une surface du diviseur de faisceau, et est positionné de manière que la partie texturée de la surface intercepte le faisceau provenant de l'émetteur et réfléchisse le faisceau en direction du micromiroir, et
dans lequel le diviseur de faisceau comprend sur un côté verso du diviseur de faisceau un revêtement passe-bande configuré pour empêcher que de la lumière hors d'une bande d'émission de l'émetteur n'atteigne le récepteur. - L'appareil selon la revendication 9 ou 10 et comprenant un substrat micro-optique, dans lequel l'émetteur et le récepteur sont montés ensemble sur le substrat micro-optique en un composant intégré unique.
- L'appareil selon l'une des revendications 1 à 11, dans lequel le processeur est configuré pour contrôler de façon variable un niveau de puissance des impulsions émises par l'émetteur en réponse à un niveau de la sortie provenant du récepteur en réponse à une ou plusieurs impulsions antérieures.
- Un procédé de cartographie, comprenant :la mise en œuvre d'un scanner, qui comprend un micromiroir rotatif (46), de manière à faire balayer sur une scène, à l'intérieur d'une plage de balayage prédéfinie, un faisceau (38) comprenant des impulsions lumineuses ;la réception de la lumière réfléchie depuis la scène et la génération d'une sortie représentative d'un temps de vol des impulsions en direction et en provenance de points de la scène ;le contrôle du scanner de manière à faire balayer le faisceau sur une fenêtre sélectionnée (32, 34, 36) à l'intérieur de la plage de balayage tout en sélectionnant des fenêtres différentes à balayer dans au moins un premier et un second balayage du faisceau ; etle traitement de la sortie de manière à générer une carte 3D d'une partie de la scène qui est à l'intérieur de la fenêtre sélectionnée,dans lequel le traitement de la sortie comprend le traitement de la sortie pendant le premier balayage de manière à générer une première carte 3D de la scène et à identifier un objet dans la première carte 3D, etdans lequel le contrôle du scanner comprend la sélection de la fenêtre à balayer durant le second balayage de manière qu'elle inclut l'objet identifié,caractérisé en ce que :
le scanner est piloté pour balayer la fenêtre sélectionnée à une fréquence d'image plus élevée que durant le premier balayage en faisant varier une vitesse de rotation du micromiroir sur la plage de balayage. - Le procédé selon la revendication 13, dans lequel le contrôle du scanner comprend le pilotage du scanner de manière à balayer la fenêtre sélectionnée à une résolution qui est renforcée par rapport à celle du premier balayage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261598921P | 2012-02-15 | 2012-02-15 | |
PCT/IB2013/051189 WO2013121366A1 (fr) | 2012-02-15 | 2013-02-14 | Dispositif de balayage tridimensionnel |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2817586A1 EP2817586A1 (fr) | 2014-12-31 |
EP2817586A4 EP2817586A4 (fr) | 2016-02-17 |
EP2817586B1 true EP2817586B1 (fr) | 2020-03-25 |
Family
ID=48944836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13748754.2A Active EP2817586B1 (fr) | 2012-02-15 | 2013-02-14 | Dispositif de balayage tridimensionnel |
Country Status (9)
Country | Link |
---|---|
US (7) | US9651417B2 (fr) |
EP (1) | EP2817586B1 (fr) |
JP (2) | JP5985661B2 (fr) |
KR (1) | KR101709844B1 (fr) |
CN (1) | CN104160240B (fr) |
AU (1) | AU2013219966B2 (fr) |
IL (1) | IL233337B (fr) |
TW (1) | TWI537603B (fr) |
WO (1) | WO2013121366A1 (fr) |
Families Citing this family (371)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8835740B2 (en) * | 2001-08-16 | 2014-09-16 | Beamz Interactive, Inc. | Video game controller |
IL165212A (en) | 2004-11-15 | 2012-05-31 | Elbit Systems Electro Optics Elop Ltd | Device for scanning light |
USRE46672E1 (en) | 2006-07-13 | 2018-01-16 | Velodyne Lidar, Inc. | High definition LiDAR system |
US20150205111A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9715112B2 (en) | 2014-01-21 | 2017-07-25 | Osterhout Group, Inc. | Suppression of stray light in head worn computing |
US9400390B2 (en) | 2014-01-24 | 2016-07-26 | Osterhout Group, Inc. | Peripheral lighting for head worn computing |
US9965681B2 (en) | 2008-12-16 | 2018-05-08 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9229233B2 (en) | 2014-02-11 | 2016-01-05 | Osterhout Group, Inc. | Micro Doppler presentations in head worn computing |
US9366867B2 (en) | 2014-07-08 | 2016-06-14 | Osterhout Group, Inc. | Optical systems for see-through displays |
US9952664B2 (en) | 2014-01-21 | 2018-04-24 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20150277120A1 (en) | 2014-01-21 | 2015-10-01 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9298007B2 (en) | 2014-01-21 | 2016-03-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20130223846A1 (en) | 2009-02-17 | 2013-08-29 | Trilumina Corporation | High speed free-space optical communications |
US10739460B2 (en) | 2010-08-11 | 2020-08-11 | Apple Inc. | Time-of-flight detector with single-axis scan |
WO2012020380A1 (fr) | 2010-08-11 | 2012-02-16 | Primesense Ltd. | Projecteurs à balayage et modules d'acquisition d'images pour cartographie 3d |
US12025807B2 (en) | 2010-10-04 | 2024-07-02 | Gerard Dirk Smits | System and method for 3-D projection and enhancements for interactivity |
WO2012066501A1 (fr) | 2010-11-19 | 2012-05-24 | Primesense Ltd. | Cartographie de profondeur à l'aide d'un éclairage à codage temporel |
US9131136B2 (en) | 2010-12-06 | 2015-09-08 | Apple Inc. | Lens arrays for pattern projection and imaging |
US11095365B2 (en) | 2011-08-26 | 2021-08-17 | Lumentum Operations Llc | Wide-angle illuminator module |
US10691219B2 (en) * | 2012-01-17 | 2020-06-23 | Ultrahaptics IP Two Limited | Systems and methods for machine control |
US11493998B2 (en) | 2012-01-17 | 2022-11-08 | Ultrahaptics IP Two Limited | Systems and methods for machine control |
US9329080B2 (en) | 2012-02-15 | 2016-05-03 | Aplle Inc. | Modular optics for scanning engine having beam combining optics with a prism intercepted by both beam axis and collection axis |
US9651417B2 (en) | 2012-02-15 | 2017-05-16 | Apple Inc. | Scanning depth engine |
US20160146939A1 (en) * | 2014-11-24 | 2016-05-26 | Apple Inc. | Multi-mirror scanning depth engine |
CN104221058B (zh) | 2012-03-22 | 2017-03-08 | 苹果公司 | 装有万向接头的扫描镜阵列 |
US9335220B2 (en) | 2012-03-22 | 2016-05-10 | Apple Inc. | Calibration of time-of-flight measurement using stray reflections |
TW201401183A (zh) * | 2012-06-18 | 2014-01-01 | tian-xiang Chen | 深度攝影的人臉或頭部偵測方法 |
AU2013294616B2 (en) | 2012-07-26 | 2016-04-28 | Apple Inc. | Dual-axis scanning mirror |
KR20150063540A (ko) | 2012-10-23 | 2015-06-09 | 애플 인크. | 마이크로 기계 디바이스의 제조 |
DE112013005980B4 (de) | 2012-12-13 | 2023-12-28 | Apple Inc. | Defekterfassung bei einem Scannerspiegel |
CN104981757B (zh) | 2013-02-14 | 2017-08-22 | 苹果公司 | 灵活的房间控制器 |
JP6159426B2 (ja) * | 2013-03-14 | 2017-07-05 | ラヴィヴ エルリク | 高度の回転性を有するmemsヒンジ |
US10302960B2 (en) * | 2013-03-14 | 2019-05-28 | Drs Network & Imaging Systems, Llc | Multi-axis sector motor |
US9702977B2 (en) | 2013-03-15 | 2017-07-11 | Leap Motion, Inc. | Determining positional information of an object in space |
CN105143820B (zh) | 2013-03-15 | 2017-06-09 | 苹果公司 | 利用多个发射器进行深度扫描 |
CN109755859B (zh) | 2013-06-19 | 2021-12-17 | 苹果公司 | 集成结构化光投影仪 |
KR102124930B1 (ko) * | 2013-08-16 | 2020-06-19 | 엘지전자 주식회사 | 공간 해상도가 가변되는 거리 정보를 획득할 수 있는 거리검출장치 |
DE102013219567A1 (de) * | 2013-09-27 | 2015-04-02 | Robert Bosch Gmbh | Verfahren zur Steuerung eines Mikrospiegelscanners und Mikrospiegelscanner |
CA2931482A1 (fr) | 2013-11-20 | 2015-05-28 | Trilumina Corp. | Systeme de combinaisons de sorties de reseau laser en un seul faisceau vehiculant des donnees numeriques |
US9448409B2 (en) | 2014-11-26 | 2016-09-20 | Osterhout Group, Inc. | See-through computer display systems |
US11103122B2 (en) | 2014-07-15 | 2021-08-31 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US9529195B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US10254856B2 (en) | 2014-01-17 | 2019-04-09 | Osterhout Group, Inc. | External user interface for head worn computing |
US9829707B2 (en) | 2014-08-12 | 2017-11-28 | Osterhout Group, Inc. | Measuring content brightness in head worn computing |
US20150277118A1 (en) | 2014-03-28 | 2015-10-01 | Osterhout Group, Inc. | Sensor dependent content position in head worn computing |
US9671613B2 (en) | 2014-09-26 | 2017-06-06 | Osterhout Group, Inc. | See-through computer display systems |
US10684687B2 (en) | 2014-12-03 | 2020-06-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US9299194B2 (en) | 2014-02-14 | 2016-03-29 | Osterhout Group, Inc. | Secure sharing in head worn computing |
US9810906B2 (en) | 2014-06-17 | 2017-11-07 | Osterhout Group, Inc. | External user interface for head worn computing |
US9594246B2 (en) | 2014-01-21 | 2017-03-14 | Osterhout Group, Inc. | See-through computer display systems |
US20150228119A1 (en) | 2014-02-11 | 2015-08-13 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US10191279B2 (en) | 2014-03-17 | 2019-01-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9841599B2 (en) | 2014-06-05 | 2017-12-12 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
US9746686B2 (en) | 2014-05-19 | 2017-08-29 | Osterhout Group, Inc. | Content position calibration in head worn computing |
US9939934B2 (en) | 2014-01-17 | 2018-04-10 | Osterhout Group, Inc. | External user interface for head worn computing |
US20160019715A1 (en) | 2014-07-15 | 2016-01-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9575321B2 (en) | 2014-06-09 | 2017-02-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US11227294B2 (en) | 2014-04-03 | 2022-01-18 | Mentor Acquisition One, Llc | Sight information collection in head worn computing |
US9366868B2 (en) | 2014-09-26 | 2016-06-14 | Osterhout Group, Inc. | See-through computer display systems |
US10649220B2 (en) | 2014-06-09 | 2020-05-12 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
CN106415361B (zh) | 2014-01-19 | 2018-11-13 | 苹果公司 | 用于装有万向接头的扫描镜阵列的耦接方案 |
US20150205135A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | See-through computer display systems |
US9811153B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11487110B2 (en) | 2014-01-21 | 2022-11-01 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9811159B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9651784B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9494800B2 (en) | 2014-01-21 | 2016-11-15 | Osterhout Group, Inc. | See-through computer display systems |
US11892644B2 (en) | 2014-01-21 | 2024-02-06 | Mentor Acquisition One, Llc | See-through computer display systems |
US12093453B2 (en) | 2014-01-21 | 2024-09-17 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
US11737666B2 (en) | 2014-01-21 | 2023-08-29 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9532714B2 (en) | 2014-01-21 | 2017-01-03 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US11669163B2 (en) | 2014-01-21 | 2023-06-06 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9766463B2 (en) | 2014-01-21 | 2017-09-19 | Osterhout Group, Inc. | See-through computer display systems |
US9753288B2 (en) | 2014-01-21 | 2017-09-05 | Osterhout Group, Inc. | See-through computer display systems |
US12105281B2 (en) | 2014-01-21 | 2024-10-01 | Mentor Acquisition One, Llc | See-through computer display systems |
US9651788B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US9310610B2 (en) | 2014-01-21 | 2016-04-12 | Osterhout Group, Inc. | See-through computer display systems |
US9846308B2 (en) | 2014-01-24 | 2017-12-19 | Osterhout Group, Inc. | Haptic systems for head-worn computers |
KR102277309B1 (ko) * | 2014-01-29 | 2021-07-14 | 엘지이노텍 주식회사 | 깊이 정보 추출 장치 및 방법 |
JP6693880B2 (ja) | 2014-01-29 | 2020-05-13 | エルジー イノテック カンパニー リミテッド | 深さ情報抽出装置および方法 |
US10388098B2 (en) * | 2014-02-07 | 2019-08-20 | Korea Institute Of Machinery & Materials | Apparatus and method of processing anti-counterfeiting pattern, and apparatus and method of detecting anti-counterfeiting pattern |
US12112089B2 (en) | 2014-02-11 | 2024-10-08 | Mentor Acquisition One, Llc | Spatial location presentation in head worn computing |
US9401540B2 (en) | 2014-02-11 | 2016-07-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9852545B2 (en) | 2014-02-11 | 2017-12-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9523850B2 (en) | 2014-02-16 | 2016-12-20 | Apple Inc. | Beam scanning using an interference filter as a turning mirror |
US20160187651A1 (en) | 2014-03-28 | 2016-06-30 | Osterhout Group, Inc. | Safety for a vehicle operator with an hmd |
US9651787B2 (en) | 2014-04-25 | 2017-05-16 | Osterhout Group, Inc. | Speaker assembly for headworn computer |
US9672210B2 (en) | 2014-04-25 | 2017-06-06 | Osterhout Group, Inc. | Language translation with head-worn computing |
US9423842B2 (en) | 2014-09-18 | 2016-08-23 | Osterhout Group, Inc. | Thermal management for head-worn computer |
US10853589B2 (en) | 2014-04-25 | 2020-12-01 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
DE102015002270A1 (de) | 2014-05-09 | 2015-11-26 | Elmos Semiconductor Aktiengesellschaft | Vorrichtung und Verfahren zum insbesondere dreidimensionalen optischen Scannen, Vermessen und Klassifizieren von Objekten und zur Objekterkennung mittels Lichtlaufzeitmessung |
US10663740B2 (en) | 2014-06-09 | 2020-05-26 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
DE102014211073A1 (de) * | 2014-06-11 | 2015-12-17 | Robert Bosch Gmbh | Fahrzeug-Lidar-System |
US9377533B2 (en) * | 2014-08-11 | 2016-06-28 | Gerard Dirk Smits | Three-dimensional triangulation and time-of-flight based tracking systems and methods |
EP3195010A4 (fr) * | 2014-08-15 | 2018-04-11 | Aeye, Inc. | Procédés et systèmes de transmission ladar |
US9660418B2 (en) | 2014-08-27 | 2017-05-23 | Align Technology, Inc. | VCSEL based low coherence emitter for confocal 3D scanner |
US9835853B1 (en) | 2014-11-26 | 2017-12-05 | Apple Inc. | MEMS scanner with mirrors of different sizes |
US9784838B1 (en) | 2014-11-26 | 2017-10-10 | Apple Inc. | Compact scanner with gimbaled optics |
US9684172B2 (en) | 2014-12-03 | 2017-06-20 | Osterhout Group, Inc. | Head worn computer display systems |
FR3030063B1 (fr) * | 2014-12-15 | 2016-12-30 | Keopsys | Dispositif optique multifonctions compact |
US9854226B2 (en) | 2014-12-22 | 2017-12-26 | Google Inc. | Illuminator for camera system having three dimensional time-of-flight capture with movable mirror element |
USD743963S1 (en) | 2014-12-22 | 2015-11-24 | Osterhout Group, Inc. | Air mouse |
US9674415B2 (en) * | 2014-12-22 | 2017-06-06 | Google Inc. | Time-of-flight camera system with scanning illuminator |
USD751552S1 (en) | 2014-12-31 | 2016-03-15 | Osterhout Group, Inc. | Computer glasses |
KR102317329B1 (ko) * | 2015-01-02 | 2021-10-26 | 삼성전자주식회사 | 광 스캐닝 프로브 및 이를 이용한 3차원 데이터 생성 장치 |
USD753114S1 (en) | 2015-01-05 | 2016-04-05 | Osterhout Group, Inc. | Air mouse |
US9798135B2 (en) | 2015-02-16 | 2017-10-24 | Apple Inc. | Hybrid MEMS scanning module |
US20160239985A1 (en) | 2015-02-17 | 2016-08-18 | Osterhout Group, Inc. | See-through computer display systems |
US10878775B2 (en) | 2015-02-17 | 2020-12-29 | Mentor Acquisition One, Llc | See-through computer display systems |
US9921299B2 (en) | 2015-02-20 | 2018-03-20 | Apple Inc. | Dynamic beam spot size for light beam scanning device |
US10107914B2 (en) | 2015-02-20 | 2018-10-23 | Apple Inc. | Actuated optical element for light beam scanning device |
JP6522384B2 (ja) * | 2015-03-23 | 2019-05-29 | 三菱重工業株式会社 | レーザレーダ装置及び走行体 |
US9692522B2 (en) * | 2015-04-15 | 2017-06-27 | Cisco Technology, Inc. | Multi-channel optical receiver or transmitter with a ball lens |
US11736832B2 (en) | 2015-04-20 | 2023-08-22 | Samsung Electronics Co., Ltd. | Timestamp calibration of the 3D camera with epipolar line laser point scanning |
US10145678B2 (en) | 2015-04-20 | 2018-12-04 | Samsung Electronics Co., Ltd. | CMOS image sensor for depth measurement using triangulation with point scan |
US10250833B2 (en) | 2015-04-20 | 2019-04-02 | Samsung Electronics Co., Ltd. | Timestamp calibration of the 3D camera with epipolar line laser point scanning |
US20160309135A1 (en) | 2015-04-20 | 2016-10-20 | Ilia Ovsiannikov | Concurrent rgbz sensor and system |
US11002531B2 (en) | 2015-04-20 | 2021-05-11 | Samsung Electronics Co., Ltd. | CMOS image sensor for RGB imaging and depth measurement with laser sheet scan |
US9525863B2 (en) | 2015-04-29 | 2016-12-20 | Apple Inc. | Time-of-flight depth mapping with flexible scan pattern |
CN105874349B (zh) * | 2015-07-31 | 2018-06-12 | 深圳市大疆创新科技有限公司 | 探测装置、探测系统、探测方法,以及可移动设备 |
US10012831B2 (en) | 2015-08-03 | 2018-07-03 | Apple Inc. | Optical monitoring of scan parameters |
TWI576648B (zh) * | 2015-09-03 | 2017-04-01 | 宏碁股份有限公司 | 影像擷取裝置及方法 |
US9880267B2 (en) | 2015-09-04 | 2018-01-30 | Microvision, Inc. | Hybrid data acquisition in scanned beam display |
US10503265B2 (en) * | 2015-09-08 | 2019-12-10 | Microvision, Inc. | Mixed-mode depth detection |
DE102015217908A1 (de) * | 2015-09-18 | 2017-03-23 | Robert Bosch Gmbh | Lidarsensor |
US9992477B2 (en) | 2015-09-24 | 2018-06-05 | Ouster, Inc. | Optical system for collecting distance information within a field |
US10063849B2 (en) | 2015-09-24 | 2018-08-28 | Ouster, Inc. | Optical system for collecting distance information within a field |
US9897801B2 (en) | 2015-09-30 | 2018-02-20 | Apple Inc. | Multi-hinge mirror assembly |
US9703096B2 (en) | 2015-09-30 | 2017-07-11 | Apple Inc. | Asymmetric MEMS mirror assembly |
US9971948B1 (en) | 2015-11-12 | 2018-05-15 | Apple Inc. | Vein imaging using detection of pulsed radiation |
US10215846B2 (en) * | 2015-11-20 | 2019-02-26 | Texas Instruments Incorporated | Compact chip scale LIDAR solution |
US9869858B2 (en) | 2015-12-01 | 2018-01-16 | Apple Inc. | Electrical tuning of resonant scanning |
WO2017106875A1 (fr) | 2015-12-18 | 2017-06-22 | Gerard Dirk Smits | Détection de position en temps réel d'objets |
US10324171B2 (en) | 2015-12-20 | 2019-06-18 | Apple Inc. | Light detection and ranging sensor |
JP6559899B2 (ja) * | 2015-12-21 | 2019-08-14 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 画像のための奥行きマップの処理 |
US10627490B2 (en) | 2016-01-31 | 2020-04-21 | Velodyne Lidar, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US10591728B2 (en) | 2016-03-02 | 2020-03-17 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US10641872B2 (en) | 2016-02-18 | 2020-05-05 | Aeye, Inc. | Ladar receiver with advanced optics |
US9933513B2 (en) | 2016-02-18 | 2018-04-03 | Aeye, Inc. | Method and apparatus for an adaptive ladar receiver |
US10042159B2 (en) | 2016-02-18 | 2018-08-07 | Aeye, Inc. | Ladar transmitter with optical field splitter/inverter |
US20170242104A1 (en) | 2016-02-18 | 2017-08-24 | Aeye, Inc. | Ladar Transmitter with Induced Phase Drift for Improved Gaze on Scan Area Portions |
US10667981B2 (en) | 2016-02-29 | 2020-06-02 | Mentor Acquisition One, Llc | Reading assistance system for visually impaired |
US20170336510A1 (en) * | 2016-03-18 | 2017-11-23 | Irvine Sensors Corporation | Comprehensive, Wide Area Littoral and Land Surveillance (CWALLS) |
WO2017164989A1 (fr) | 2016-03-19 | 2017-09-28 | Velodyne Lidar, Inc. | Éclairage et détection intégrés pour imagerie 3d basée sur lidar |
JP2019511010A (ja) | 2016-03-24 | 2019-04-18 | キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc | マルチチャネル光ファイバ回転接合器 |
US10684478B2 (en) | 2016-05-09 | 2020-06-16 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US9910284B1 (en) | 2016-09-08 | 2018-03-06 | Osterhout Group, Inc. | Optical systems for head-worn computers |
CN108885260B (zh) | 2016-04-08 | 2022-06-03 | 苹果公司 | 具有单轴扫描的渡越时间探测器 |
US10466491B2 (en) | 2016-06-01 | 2019-11-05 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US10824253B2 (en) | 2016-05-09 | 2020-11-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US9927558B2 (en) * | 2016-04-19 | 2018-03-27 | Trilumina Corp. | Semiconductor lens optimization of fabrication |
US10761195B2 (en) | 2016-04-22 | 2020-09-01 | OPSYS Tech Ltd. | Multi-wavelength LIDAR system |
US11106030B2 (en) | 2016-05-11 | 2021-08-31 | Texas Instruments Incorporated | Optical distance measurement system using solid state beam steering |
US20170328990A1 (en) * | 2016-05-11 | 2017-11-16 | Texas Instruments Incorporated | Scalable field of view scanning in optical distance measurement systems |
US11340338B2 (en) | 2016-08-10 | 2022-05-24 | James Thomas O'Keeffe | Distributed lidar with fiber optics and a field of view combiner |
US10578719B2 (en) | 2016-05-18 | 2020-03-03 | James Thomas O'Keeffe | Vehicle-integrated LIDAR system |
WO2018128655A2 (fr) | 2016-09-25 | 2018-07-12 | Okeeffe James | Télémètre à laser distribué à fibres optiques et micromiroirs |
GB2570791B (en) | 2016-05-18 | 2021-10-27 | James Okeeffe | A dynamically steered lidar adapted to vehicle shape |
US10416292B2 (en) | 2016-05-24 | 2019-09-17 | Veoneer Us, Inc. | Direct detection LiDAR system and method with frequency modulation (FM) transmitter and quadrature receiver |
US10473784B2 (en) | 2016-05-24 | 2019-11-12 | Veoneer Us, Inc. | Direct detection LiDAR system and method with step frequency modulation (FM) pulse-burst envelope modulation transmission and quadrature demodulation |
US10838062B2 (en) | 2016-05-24 | 2020-11-17 | Veoneer Us, Inc. | Direct detection LiDAR system and method with pulse amplitude modulation (AM) transmitter and quadrature receiver |
EP3465268B1 (fr) * | 2016-05-31 | 2023-01-11 | ABB Schweiz AG | Émetteur de distance à alimentation en boucle |
US10393877B2 (en) | 2016-06-01 | 2019-08-27 | Velodyne Lidar, Inc. | Multiple pixel scanning LIDAR |
DE102016112557B4 (de) | 2016-07-08 | 2019-08-22 | Jenoptik Advanced Systems Gmbh | Optische Stahlformungseinheit und Entfernungsmessvorrichtung |
US10241244B2 (en) | 2016-07-29 | 2019-03-26 | Lumentum Operations Llc | Thin film total internal reflection diffraction grating for single polarization or dual polarization |
WO2018031830A1 (fr) | 2016-08-10 | 2018-02-15 | Okeeffe James | Télémétrie laser et utilisation améliorée d'un miroir situé à distance |
US10145680B2 (en) | 2016-08-12 | 2018-12-04 | Microvision, Inc. | Devices and methods for providing depth mapping with scanning laser image projection |
US9766060B1 (en) * | 2016-08-12 | 2017-09-19 | Microvision, Inc. | Devices and methods for adjustable resolution depth mapping |
US10310064B2 (en) * | 2016-08-15 | 2019-06-04 | Qualcomm Incorporated | Saliency based beam-forming for object detection |
US10298913B2 (en) | 2016-08-18 | 2019-05-21 | Apple Inc. | Standalone depth camera |
AU2017315762B2 (en) | 2016-08-24 | 2020-04-09 | Ouster, Inc. | Optical system for collecting distance information within a field |
US10690936B2 (en) | 2016-08-29 | 2020-06-23 | Mentor Acquisition One, Llc | Adjustable nose bridge assembly for headworn computer |
WO2018126248A1 (fr) * | 2017-01-02 | 2018-07-05 | Okeeffe James | Réseau de micromiroirs destiné à améliorer la résolution d'image sur la base d'une rétroaction |
WO2018044958A1 (fr) | 2016-08-29 | 2018-03-08 | Okeeffe James | Télémètre à laser avec intensité laser intelligente avec vigilance de sécurité |
KR102457029B1 (ko) | 2016-09-20 | 2022-10-24 | 이노비즈 테크놀로지스 엘티디 | Lidar 시스템 및 방법 |
US10488652B2 (en) | 2016-09-21 | 2019-11-26 | Apple Inc. | Prism-based scanner |
US9798912B1 (en) * | 2016-09-26 | 2017-10-24 | Symbol Technologies, Llc | Imaging module and reader for, and method of, reading targets by image capture with a substantially constant resolution over an extended range of working distances |
WO2018064520A1 (fr) * | 2016-09-30 | 2018-04-05 | Magic Leap, Inc. | Projecteur avec modulation spatiale de lumière |
US10466036B2 (en) * | 2016-10-07 | 2019-11-05 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Attachable depth and orientation tracker device and method of depth and orientation tracking using focal plane polarization and color camera |
USD840395S1 (en) | 2016-10-17 | 2019-02-12 | Osterhout Group, Inc. | Head-worn computer |
TWI633324B (zh) * | 2016-11-30 | 2018-08-21 | 國家中山科學研究院 | 主動式偏振之雷射雷達系統 |
US10451714B2 (en) | 2016-12-06 | 2019-10-22 | Sony Corporation | Optical micromesh for computerized devices |
US10536684B2 (en) | 2016-12-07 | 2020-01-14 | Sony Corporation | Color noise reduction in 3D depth map |
US10178370B2 (en) | 2016-12-19 | 2019-01-08 | Sony Corporation | Using multiple cameras to stitch a consolidated 3D depth map |
US10181089B2 (en) | 2016-12-19 | 2019-01-15 | Sony Corporation | Using pattern recognition to reduce noise in a 3D map |
US10200683B2 (en) | 2016-12-21 | 2019-02-05 | Microvision, Inc. | Devices and methods for providing foveated scanning laser image projection with depth mapping |
WO2018125850A1 (fr) | 2016-12-27 | 2018-07-05 | Gerard Dirk Smits | Systèmes et procédés pour la perception par les machines |
US10830878B2 (en) * | 2016-12-30 | 2020-11-10 | Panosense Inc. | LIDAR system |
USD864959S1 (en) | 2017-01-04 | 2019-10-29 | Mentor Acquisition One, Llc | Computer glasses |
CN112531463B (zh) | 2017-01-16 | 2024-03-26 | 苹果公司 | 在同一基板上组合不同散度的发光元件 |
US10310598B2 (en) * | 2017-01-17 | 2019-06-04 | Facebook Technologies, Llc | Varifocal head-mounted display including modular air spaced optical assembly |
US10718847B2 (en) * | 2017-01-17 | 2020-07-21 | LMD Power of Light Corporation | Flexible beacon system |
US10158845B2 (en) | 2017-01-18 | 2018-12-18 | Facebook Technologies, Llc | Tileable structured light projection for wide field-of-view depth sensing |
WO2018147963A1 (fr) | 2017-02-08 | 2018-08-16 | Princeton Optronics, Inc. | Boîtier d'éclairage vcsel comprenant une structure optique intégrée dans l'encapsulant |
US10495735B2 (en) | 2017-02-14 | 2019-12-03 | Sony Corporation | Using micro mirrors to improve the field of view of a 3D depth map |
US10976413B2 (en) | 2017-02-14 | 2021-04-13 | Baidu Usa Llc | LIDAR system with synchronized MEMS mirrors |
KR102162047B1 (ko) * | 2017-02-17 | 2020-10-06 | 호쿠요덴키 가부시키가이샤 | 물체 포착 장치 |
AU2018220938B2 (en) | 2017-02-17 | 2022-03-17 | Aeye, Inc. | Method and system for ladar pulse deconfliction |
US10419741B2 (en) | 2017-02-24 | 2019-09-17 | Analog Devices Global Unlimited Company | Systems and methods for compression of three dimensional depth sensing |
US10795022B2 (en) | 2017-03-02 | 2020-10-06 | Sony Corporation | 3D depth map |
US10775612B2 (en) | 2017-03-05 | 2020-09-15 | Apple Inc. | Resonant scanning mirror with both magnetic and mechanical torsion springs |
US10644548B1 (en) | 2017-03-05 | 2020-05-05 | Apple Inc. | Scanning motor with built-in magnetic stiffness |
JP7037830B2 (ja) | 2017-03-13 | 2022-03-17 | オプシス テック リミテッド | 眼安全性走査lidarシステム |
US11054507B2 (en) * | 2017-03-15 | 2021-07-06 | Samsung Electronics Co., Ltd. | Method for detecting object and electronic device thereof |
US10969488B2 (en) * | 2017-03-29 | 2021-04-06 | Luminar Holdco, Llc | Dynamically scanning a field of regard using a limited number of output beams |
US10386465B2 (en) * | 2017-03-31 | 2019-08-20 | Velodyne Lidar, Inc. | Integrated LIDAR illumination power control |
WO2018176972A1 (fr) * | 2017-04-01 | 2018-10-04 | 北科天绘(苏州)激光技术有限公司 | Dispositif radar laser et son procédé de déclenchement de canal |
US10979687B2 (en) | 2017-04-03 | 2021-04-13 | Sony Corporation | Using super imposition to render a 3D depth map |
US11381060B2 (en) | 2017-04-04 | 2022-07-05 | Apple Inc. | VCSELs with improved optical and electrical confinement |
US10908282B2 (en) * | 2017-04-07 | 2021-02-02 | General Electric Company | LiDAR system and method |
CN115575928A (zh) | 2017-05-08 | 2023-01-06 | 威力登激光雷达美国有限公司 | Lidar数据获取与控制 |
US10473921B2 (en) | 2017-05-10 | 2019-11-12 | Gerard Dirk Smits | Scan mirror systems and methods |
DE202018006696U1 (de) | 2017-05-15 | 2022-04-01 | Ouster, Inc. | Optischer Bildübertrager mit Helligkeitsverbesserung |
US10895692B2 (en) | 2017-06-01 | 2021-01-19 | Canon U.S.A., Inc. | Fiber optic rotary joints and methods of using and manufacturing same |
US11163042B2 (en) | 2017-06-06 | 2021-11-02 | Microvision, Inc. | Scanned beam display with multiple detector rangefinding |
US11409105B2 (en) | 2017-07-24 | 2022-08-09 | Mentor Acquisition One, Llc | See-through computer display systems |
US10578869B2 (en) | 2017-07-24 | 2020-03-03 | Mentor Acquisition One, Llc | See-through computer display systems with adjustable zoom cameras |
US10422995B2 (en) | 2017-07-24 | 2019-09-24 | Mentor Acquisition One, Llc | See-through computer display systems with stray light management |
US11482835B2 (en) | 2017-07-25 | 2022-10-25 | Lumentum Operations Llc | VCSEL device with multiple stacked active regions |
WO2019022941A1 (fr) * | 2017-07-28 | 2019-01-31 | OPSYS Tech Ltd. | Émetteur lidar à réseau vcsel à faible divergence angulaire |
US10705191B2 (en) * | 2017-07-31 | 2020-07-07 | Stmicroelectronics, Inc. | Three-dimensional time-of-flight sensors for a transportation system |
US10969584B2 (en) | 2017-08-04 | 2021-04-06 | Mentor Acquisition One, Llc | Image expansion optic for head-worn computer |
CN109387845A (zh) * | 2017-08-07 | 2019-02-26 | 信泰光学(深圳)有限公司 | 测距模块 |
EP3669430B1 (fr) | 2017-08-14 | 2022-11-09 | Lumentum Operations LLC | Matrice vcsel compatible avec un montage en surface |
US10084285B1 (en) * | 2017-08-28 | 2018-09-25 | Hewlett Packard Enterprise Development Lp | Orthoganolly polarized VCSELs |
US10153614B1 (en) | 2017-08-31 | 2018-12-11 | Apple Inc. | Creating arbitrary patterns on a 2-D uniform grid VCSEL array |
US10890650B2 (en) | 2017-09-05 | 2021-01-12 | Waymo Llc | LIDAR with co-aligned transmit and receive paths |
CN111344647B (zh) | 2017-09-15 | 2024-08-02 | 艾耶股份有限公司 | 具有低延时运动规划更新的智能激光雷达系统 |
US11460550B2 (en) | 2017-09-19 | 2022-10-04 | Veoneer Us, Llc | Direct detection LiDAR system and method with synthetic doppler processing |
US10838043B2 (en) | 2017-11-15 | 2020-11-17 | Veoneer Us, Inc. | Scanning LiDAR system and method with spatial filtering for reduction of ambient light |
US10613200B2 (en) | 2017-09-19 | 2020-04-07 | Veoneer, Inc. | Scanning lidar system and method |
DE102017216826B4 (de) * | 2017-09-22 | 2024-05-02 | Robert Bosch Gmbh | Laserscanner beispielsweise für ein LIDAR-System eines Fahrerassistenzsystems |
US10177872B1 (en) | 2017-09-25 | 2019-01-08 | Hewlett Packard Enterprise Development Lp | Orthogonally polarized VCSELs |
US10684370B2 (en) | 2017-09-29 | 2020-06-16 | Veoneer Us, Inc. | Multifunction vehicle detection system |
US11194022B2 (en) | 2017-09-29 | 2021-12-07 | Veoneer Us, Inc. | Detection system with reflection member and offset detection array |
US11415675B2 (en) | 2017-10-09 | 2022-08-16 | Luminar, Llc | Lidar system with adjustable pulse period |
US11353559B2 (en) * | 2017-10-09 | 2022-06-07 | Luminar, Llc | Adjustable scan patterns for lidar system |
US20190107622A1 (en) * | 2017-10-11 | 2019-04-11 | Veoneer Us, Inc. | Scanning LiDAR System and Method with Source Laser Beam Splitting Apparatus and Method |
DE102017124535A1 (de) * | 2017-10-20 | 2019-04-25 | Sick Ag | Sende-Empfangsmodul für einen optoelektronischen Sensor und Verfahren zur Erfassung von Objekten |
JP2019078631A (ja) * | 2017-10-24 | 2019-05-23 | シャープ株式会社 | パルス光照射受光装置、および光レーダー装置 |
US10484667B2 (en) | 2017-10-31 | 2019-11-19 | Sony Corporation | Generating 3D depth map using parallax |
JP7388720B2 (ja) | 2017-11-15 | 2023-11-29 | オプシス テック リミテッド | ノイズ適応ソリッドステートlidarシステム |
US11585901B2 (en) | 2017-11-15 | 2023-02-21 | Veoneer Us, Llc | Scanning lidar system and method with spatial filtering for reduction of ambient light |
US10908383B1 (en) | 2017-11-19 | 2021-02-02 | Apple Inc. | Local control loop for projection system focus adjustment |
DE102017127813A1 (de) * | 2017-11-24 | 2019-05-29 | Tesat-Spacecom Gmbh & Co. Kg | Strahlausrichtung in unidirektionalen optischen Kommunikationssystemen |
TWI646348B (zh) * | 2017-11-30 | 2019-01-01 | 國家中山科學研究院 | Matching laser radar system |
JP7152147B2 (ja) * | 2017-12-04 | 2022-10-12 | パイオニア株式会社 | 測距装置 |
EP3493339B1 (fr) | 2017-12-04 | 2022-11-09 | ams AG | Dispositif semi-conducteur et procédé de mesures de la durée de vol et de la proximité |
US11340336B2 (en) | 2017-12-07 | 2022-05-24 | Ouster, Inc. | Rotating light ranging system with optical communication uplink and downlink channels |
US11294041B2 (en) | 2017-12-08 | 2022-04-05 | Velodyne Lidar Usa, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
US10942244B2 (en) * | 2017-12-12 | 2021-03-09 | Waymo Llc | Systems and methods for LIDARs with adjustable resolution and failsafe operation |
US10516876B2 (en) * | 2017-12-19 | 2019-12-24 | Intel Corporation | Dynamic vision sensor and projector for depth imaging |
US10949700B2 (en) * | 2018-01-10 | 2021-03-16 | Qualcomm Incorporated | Depth based image searching |
US10671219B2 (en) | 2018-02-12 | 2020-06-02 | Microvision, Inc. | Scanning time of flight 3D sensing with smart pulsing |
US10474248B2 (en) | 2018-02-12 | 2019-11-12 | Microvision, Inc. | Smart pulsing in regions of interest in scanned beam 3D sensing systems |
WO2019159802A1 (fr) * | 2018-02-13 | 2019-08-22 | パイオニア株式会社 | Dispositif de commande, système d'irradiation, procédé de commande et programme |
US10823955B2 (en) * | 2018-03-08 | 2020-11-03 | Apple Inc. | Grating-based spatial mode filter for laser scanning |
CN108318873A (zh) * | 2018-03-20 | 2018-07-24 | 深圳市速腾聚创科技有限公司 | 一种固态激光雷达 |
US11169251B2 (en) * | 2018-03-28 | 2021-11-09 | Qualcomm Incorporated | Proximity detection using multiple power levels |
JP7324518B2 (ja) | 2018-04-01 | 2023-08-10 | オプシス テック リミテッド | 雑音適応型固体ライダシステム |
US11029406B2 (en) * | 2018-04-06 | 2021-06-08 | Luminar, Llc | Lidar system with AlInAsSb avalanche photodiode |
JP2019191018A (ja) * | 2018-04-26 | 2019-10-31 | ソニー株式会社 | 測距装置及び測距モジュール |
EP3665727A4 (fr) * | 2018-04-28 | 2020-07-22 | SZ DJI Technology Co., Ltd. | Capteurs de détection et de télémétrie par la lumière ayant de multiples émetteurs et de multiples récepteurs, et systèmes et procédés associés |
US10788582B2 (en) | 2018-05-11 | 2020-09-29 | Silc Technologies, Inc. | Optical sensor chip |
CN111970971B (zh) * | 2018-05-30 | 2024-08-27 | 松下知识产权经营株式会社 | 识别装置及识别方法 |
US11536805B2 (en) | 2018-06-25 | 2022-12-27 | Silc Technologies, Inc. | Optical switching for tuning direction of LIDAR output signals |
US10549186B2 (en) | 2018-06-26 | 2020-02-04 | Sony Interactive Entertainment Inc. | Multipoint SLAM capture |
JP7180145B2 (ja) | 2018-06-28 | 2022-11-30 | 富士フイルムビジネスイノベーション株式会社 | 発光素子アレイ、及び光計測システム |
JP6519033B1 (ja) * | 2018-07-03 | 2019-05-29 | Dolphin株式会社 | 物体検出装置、物体検出方法、および物体検出装置の設計方法 |
US11796677B2 (en) | 2018-07-19 | 2023-10-24 | Silc Technologies, Inc. | Optical sensor system |
DE102018117776B4 (de) * | 2018-07-23 | 2021-06-24 | Air Profile GmbH | Vorrichtung zur Ermittlung einer Geschwindigkeitskomponente eines Objekts |
US10739189B2 (en) | 2018-08-09 | 2020-08-11 | Ouster, Inc. | Multispectral ranging/imaging sensor arrays and systems |
US11473969B2 (en) | 2018-08-09 | 2022-10-18 | Ouster, Inc. | Channel-specific micro-optics for optical arrays |
EP3611533B1 (fr) * | 2018-08-15 | 2023-06-28 | STMicroelectronics (Research & Development) Limited | Appareil pour fournir une pluralité de faisceaux de lumière |
US11681021B2 (en) | 2018-08-17 | 2023-06-20 | SiLC Technologies. Inc. | Optical sensor system |
CN109190533B (zh) * | 2018-08-22 | 2021-07-09 | Oppo广东移动通信有限公司 | 图像处理方法和装置、电子设备、计算机可读存储介质 |
KR102137313B1 (ko) * | 2018-08-24 | 2020-07-23 | 대전대학교 산학협력단 | 라이다 센서 제어 방법 및 라이다 센서 제어 시스템 |
US11971507B2 (en) | 2018-08-24 | 2024-04-30 | Velodyne Lidar Usa, Inc. | Systems and methods for mitigating optical crosstalk in a light ranging and detection system |
JP6912732B2 (ja) * | 2018-08-31 | 2021-08-04 | 日亜化学工業株式会社 | 発光装置およびその製造方法 |
WO2020045770A1 (fr) | 2018-08-31 | 2020-03-05 | Samsung Electronics Co., Ltd. | Procédé et dispositif permettant d'obtenir des images en 3d |
US11280988B2 (en) * | 2018-09-04 | 2022-03-22 | Omnivision Technologies, Inc. | Structure light module using vertical cavity surface emitting laser array and folding optical element |
US11178392B2 (en) * | 2018-09-12 | 2021-11-16 | Apple Inc. | Integrated optical emitters and applications thereof |
US10712434B2 (en) | 2018-09-18 | 2020-07-14 | Velodyne Lidar, Inc. | Multi-channel LIDAR illumination driver |
US11550038B2 (en) | 2018-09-26 | 2023-01-10 | Apple Inc. | LIDAR system with anamorphic objective lens |
US11892565B2 (en) | 2018-10-12 | 2024-02-06 | Silc Technologies, Inc. | Controlling direction of LIDAR output signals |
US11327177B2 (en) | 2018-10-25 | 2022-05-10 | Aeye, Inc. | Adaptive control of ladar shot energy using spatial index of prior ladar return data |
US11585933B2 (en) * | 2018-10-29 | 2023-02-21 | Lawrence Livermore National Security, Llc | System and method for adaptive object-oriented sensor fusion for environmental mapping |
DE102018218706A1 (de) * | 2018-10-31 | 2020-04-30 | Osram Gmbh | Abstandsmesseinheit |
US11082010B2 (en) | 2018-11-06 | 2021-08-03 | Velodyne Lidar Usa, Inc. | Systems and methods for TIA base current detection and compensation |
JP7219057B2 (ja) * | 2018-11-09 | 2023-02-07 | 株式会社キーエンス | 変位測定装置 |
WO2020102111A1 (fr) | 2018-11-14 | 2020-05-22 | Trilumina Corp. | Mesure in situ de tension de polarisation de vcsel |
CN113348374B (zh) * | 2018-11-21 | 2024-06-04 | 硅光芯片技术公司 | 用于lidar应用的光学歧管 |
WO2020123164A1 (fr) | 2018-12-11 | 2020-06-18 | Silc Technologies, Inc. | Distance d'image dans des systèmes lidar |
EP3896488A4 (fr) * | 2018-12-18 | 2022-01-12 | SZ DJI Technology Co., Ltd. | Dispositif de mesure laser et véhicule aérien sans pilote |
US12061263B2 (en) | 2019-01-07 | 2024-08-13 | Velodyne Lidar Usa, Inc. | Systems and methods for a configurable sensor system |
US11885958B2 (en) | 2019-01-07 | 2024-01-30 | Velodyne Lidar Usa, Inc. | Systems and methods for a dual axis resonant scanning mirror |
EP3687008B1 (fr) * | 2019-01-24 | 2022-01-19 | Nichia Corporation | Unité de source de lumière |
CN111742240A (zh) * | 2019-01-24 | 2020-10-02 | 深圳市大疆创新科技有限公司 | 探测装置、可移动平台 |
EP3914928B1 (fr) | 2019-01-25 | 2024-09-25 | SiLC Technologies, Inc. | Orientation de signaux de sortie dans des systèmes lidar |
TWM582709U (zh) * | 2019-01-25 | 2019-08-21 | 智林企業股份有限公司 | Laser device |
JP6656438B1 (ja) * | 2019-01-30 | 2020-03-04 | キヤノン株式会社 | 光学装置、それを備える車載システム及び移動装置 |
US11137246B2 (en) * | 2019-01-31 | 2021-10-05 | Himax Technologies Limited | Optical device |
EP3888204B1 (fr) * | 2019-02-04 | 2022-12-14 | Apple Inc. | Émetteurs verticaux à microlentilles intégrées |
JP2022521459A (ja) | 2019-02-09 | 2022-04-08 | シルク テクノロジーズ インコーポレイティッド | スペックル感度が低減されたlidarシステム |
US11322910B2 (en) | 2019-02-21 | 2022-05-03 | Apple Inc. | Indium-phosphide VCSEL with dielectric DBR |
US20220155450A1 (en) * | 2019-03-05 | 2022-05-19 | Waymo Llc | Methods and systems for detecting degraded lidar range measurement accuracy |
CN116299342A (zh) * | 2019-03-11 | 2023-06-23 | 上海禾赛科技有限公司 | 激光雷达系统 |
CN113924440B (zh) | 2019-03-25 | 2023-11-07 | 朗美通经营有限责任公司 | 用于多区域照射的具有表面发射激光器的透镜阵列的空间复用 |
WO2020205166A1 (fr) | 2019-04-01 | 2020-10-08 | Apple Inc. | Réseau de vcsel ayant un pas étroit et une efficacité élevée |
EP3953727A4 (fr) | 2019-04-09 | 2023-01-04 | Opsys Tech Ltd. | Émetteur lidar à semi-conducteurs avec commande laser |
US12019185B2 (en) | 2019-04-16 | 2024-06-25 | Silc Technologies, Inc. | Concurrent LIDAR measurements of a region in a field of view |
US10641897B1 (en) | 2019-04-24 | 2020-05-05 | Aeye, Inc. | Ladar system and method with adaptive pulse duration |
JP7234171B2 (ja) * | 2019-04-25 | 2023-03-07 | キヤノン株式会社 | 撮像装置及びその制御方法 |
CN110244318B (zh) * | 2019-04-30 | 2021-08-17 | 深圳市光鉴科技有限公司 | 基于异步ToF离散点云的3D成像方法 |
EA202190115A1 (ru) | 2019-05-17 | 2021-03-25 | Байоксэл Терапьютикс, Инк. | Пленочные составы, содержащие дексмедетомидин, и способы их получения |
JP6651110B1 (ja) | 2019-05-28 | 2020-02-19 | Dolphin株式会社 | 物体検出装置 |
US11754682B2 (en) | 2019-05-30 | 2023-09-12 | Microvision, Inc. | LIDAR system with spatial beam combining |
US11828881B2 (en) | 2019-05-30 | 2023-11-28 | Microvision, Inc. | Steered LIDAR system with arrayed receiver |
US11796643B2 (en) | 2019-05-30 | 2023-10-24 | Microvision, Inc. | Adaptive LIDAR scanning methods |
KR20220003600A (ko) | 2019-05-30 | 2022-01-10 | 옵시스 테크 엘티디 | 액추에이터를 사용하는 눈-안전 장거리 lidar 시스템 |
US11374381B1 (en) | 2019-06-10 | 2022-06-28 | Apple Inc. | Integrated laser module |
CN113924506A (zh) | 2019-06-10 | 2022-01-11 | 欧普赛斯技术有限公司 | 眼睛安全的长范围固态lidar系统 |
KR20220024177A (ko) | 2019-06-25 | 2022-03-03 | 옵시스 테크 엘티디 | 적응형 다중 펄스 lidar 시스템 |
US10613203B1 (en) | 2019-07-01 | 2020-04-07 | Velodyne Lidar, Inc. | Interference mitigation for light detection and ranging |
US11480660B2 (en) | 2019-07-09 | 2022-10-25 | Microvision, Inc. | Arrayed MEMS mirrors for large aperture applications |
US11579256B2 (en) | 2019-07-11 | 2023-02-14 | Microvision, Inc. | Variable phase scanning lidar system |
US11579257B2 (en) | 2019-07-15 | 2023-02-14 | Veoneer Us, Llc | Scanning LiDAR system and method with unitary optical element |
US11474218B2 (en) | 2019-07-15 | 2022-10-18 | Veoneer Us, Llc | Scanning LiDAR system and method with unitary optical element |
CN114365004A (zh) * | 2019-08-13 | 2022-04-15 | 苹果公司 | 用于集成光子设备的焦平面光学调节 |
WO2021030034A1 (fr) | 2019-08-15 | 2021-02-18 | Apple Inc. | Cartographie de profondeur à l'aide d'un multiplexage spatial de phase d'éclairage |
KR102705224B1 (ko) | 2019-08-18 | 2024-09-11 | 애플 인크. | 광의 빔들을 스캐닝하기 위한 디바이스 및 방법 |
CN112394527A (zh) * | 2019-08-19 | 2021-02-23 | 上海鲲游光电科技有限公司 | 多维摄像装置及其应用终端和方法 |
US11714167B2 (en) | 2019-08-21 | 2023-08-01 | Silc Technologies, Inc. | LIDAR adapter for use with LIDAR chip |
US11681019B2 (en) * | 2019-09-18 | 2023-06-20 | Apple Inc. | Optical module with stray light baffle |
US11397317B2 (en) * | 2019-09-23 | 2022-07-26 | Microvision, Inc. | Automatic power reduction using a pre-scanned virtual protective housing |
US11506762B1 (en) | 2019-09-24 | 2022-11-22 | Apple Inc. | Optical module comprising an optical waveguide with reference light path |
US11313969B2 (en) | 2019-10-28 | 2022-04-26 | Veoneer Us, Inc. | LiDAR homodyne transceiver using pulse-position modulation |
US11513799B2 (en) * | 2019-11-04 | 2022-11-29 | Apple Inc. | Chained buffers in neural network processor |
US11579305B2 (en) | 2019-11-05 | 2023-02-14 | Silc Technologies, Inc. | LIDAR output steering systems having optical gratings |
US11703598B2 (en) | 2019-11-18 | 2023-07-18 | Silc Technologies, Inc. | Steering of LIDAR output signals |
US20220357431A1 (en) | 2019-12-30 | 2022-11-10 | Lumus Ltd. | Detection and ranging systems employing optical waveguides |
WO2021051724A1 (fr) * | 2020-01-03 | 2021-03-25 | 深圳市速腾聚创科技有限公司 | Module d'émission-réception laser et procédé de modulation de lumière associé, lidar et dispositif de conduite autonome |
KR102147279B1 (ko) * | 2020-02-20 | 2020-08-24 | 국방과학연구소 | 물체 이동 탐지 장치, 방법, 컴퓨터 판독 가능한 기록 매체 및 컴퓨터 프로그램 |
WO2021174227A1 (fr) | 2020-02-27 | 2021-09-02 | Gerard Dirk Smits | Balayage à haute résolution d'objets distants avec des faisceaux laser panoramiques rapides et récupération de signal par réseau de pixels agité |
EP4113168A4 (fr) * | 2020-03-20 | 2023-04-26 | Huawei Technologies Co., Ltd. | Système de télémétrie et véhicule associé |
US11763472B1 (en) | 2020-04-02 | 2023-09-19 | Apple Inc. | Depth mapping with MPI mitigation using reference illumination pattern |
US11194048B1 (en) | 2020-05-13 | 2021-12-07 | Luminar, Llc | Lidar system with high-resolution scan pattern |
US11558569B2 (en) | 2020-06-11 | 2023-01-17 | Apple Inc. | Global-shutter image sensor with time-of-flight sensing capability |
DE102020211784A1 (de) * | 2020-09-21 | 2022-03-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Optische messvorrichtung zur ortsaufgelösten abstandsbestimmung |
US12044800B2 (en) | 2021-01-14 | 2024-07-23 | Magna Electronics, Llc | Scanning LiDAR system and method with compensation for transmit laser pulse effects |
US11994694B2 (en) | 2021-01-17 | 2024-05-28 | Apple Inc. | Microlens array with tailored sag profile |
US11326758B1 (en) | 2021-03-12 | 2022-05-10 | Veoneer Us, Inc. | Spotlight illumination system using optical element |
US11675059B2 (en) | 2021-03-26 | 2023-06-13 | Aeye, Inc. | Hyper temporal lidar with elevation-prioritized shot scheduling |
US11635495B1 (en) | 2021-03-26 | 2023-04-25 | Aeye, Inc. | Hyper temporal lidar with controllable tilt amplitude for a variable amplitude scan mirror |
US11480680B2 (en) | 2021-03-26 | 2022-10-25 | Aeye, Inc. | Hyper temporal lidar with multi-processor return detection |
US11822016B2 (en) | 2021-03-26 | 2023-11-21 | Aeye, Inc. | Hyper temporal lidar using multiple matched filters to orient a lidar system to a frame of reference |
US11604264B2 (en) | 2021-03-26 | 2023-03-14 | Aeye, Inc. | Switchable multi-lens Lidar receiver |
US11467263B1 (en) | 2021-03-26 | 2022-10-11 | Aeye, Inc. | Hyper temporal lidar with controllable variable laser seed energy |
US11630188B1 (en) | 2021-03-26 | 2023-04-18 | Aeye, Inc. | Hyper temporal lidar with dynamic laser control using safety models |
GB202107061D0 (en) * | 2021-05-18 | 2021-06-30 | Ams Sensors Singapore Pte Ltd | Optical device and method of manufacture |
DE102021113604A1 (de) | 2021-05-26 | 2022-12-01 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Strahlung emittierende vorrichtung, messsystem und fahrzeug mit messsystem |
US11732858B2 (en) | 2021-06-18 | 2023-08-22 | Veoneer Us, Llc | Headlight illumination system using optical element |
US11768294B2 (en) * | 2021-07-09 | 2023-09-26 | Innovusion, Inc. | Compact lidar systems for vehicle contour fitting |
EP4124882A1 (fr) * | 2021-07-27 | 2023-02-01 | Scantinel Photonics GmbH | Dispositif lidar pour mesurer par balayage une distance par rapport à un objet |
CN115685219A (zh) * | 2021-07-30 | 2023-02-03 | 北京万集科技股份有限公司 | 基于激光扫描的目标探测方法、装置及目标探测终端 |
DE102021133748A1 (de) | 2021-12-17 | 2023-06-22 | Ifm Electronic Gmbh | Laservorrichtung |
WO2024053543A1 (fr) * | 2022-09-06 | 2024-03-14 | 株式会社小糸製作所 | Dispositif de projection d'image |
US12092278B2 (en) | 2022-10-07 | 2024-09-17 | Magna Electronics, Llc | Generating a spotlight |
US20240329221A1 (en) * | 2023-03-27 | 2024-10-03 | 3D at Depth, Inc. | OPTIMIZED MONOSTATIC LiDAR |
CN117613676B (zh) * | 2023-11-28 | 2024-05-03 | 北京大族天成半导体技术有限公司 | 一种小体积半导体激光器 |
Family Cites Families (301)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3401590A (en) | 1965-03-01 | 1968-09-17 | Sylvania Electric Prod | Optical coupler |
US4003626A (en) | 1974-06-14 | 1977-01-18 | Eastman Kodak Company | Distortion correction apparatus for electro-optical reflectors which scan beams to produce images |
US3918068A (en) | 1974-06-14 | 1975-11-04 | Eastman Kodak Co | Distortion correction apparatus for electro-optical reflectors which scan beams to produce images |
DE2951207A1 (de) | 1978-12-26 | 1980-07-10 | Canon Kk | Verfahren zur optischen herstellung einer streuplatte |
US4542376A (en) | 1983-11-03 | 1985-09-17 | Burroughs Corporation | System for electronically displaying portions of several different images on a CRT screen through respective prioritized viewports |
DE3570529D1 (en) * | 1984-03-05 | 1989-06-29 | Siemens Ag | Optical system for the simultaneous reception of thermal and laser radiation |
JPH0762869B2 (ja) | 1986-03-07 | 1995-07-05 | 日本電信電話株式会社 | パタ−ン投影による位置形状計測方法 |
US4843568A (en) | 1986-04-11 | 1989-06-27 | Krueger Myron W | Real time perception of and response to the actions of an unencumbered participant/user |
JPH0615968B2 (ja) | 1986-08-11 | 1994-03-02 | 伍良 松本 | 立体形状測定装置 |
JPH01240863A (ja) | 1988-03-23 | 1989-09-26 | Kowa Co | スペックルパターン発生方法及び装置 |
US4884697A (en) | 1988-06-21 | 1989-12-05 | Takacs Peter Z | Surface profiling interferometer |
US5090797A (en) | 1989-06-09 | 1992-02-25 | Lc Technologies Inc. | Method and apparatus for mirror control |
JPH0340591A (ja) | 1989-07-06 | 1991-02-21 | Katsuji Okino | 立体像の撮影・表示方法及び装置 |
JPH0743683Y2 (ja) | 1989-07-28 | 1995-10-09 | 日本電気株式会社 | 光ファイバの余長処理構造 |
JP3083834B2 (ja) * | 1990-08-21 | 2000-09-04 | オリンパス光学工業株式会社 | 光学ピックアップ装置 |
US5075562A (en) | 1990-09-20 | 1991-12-24 | Eastman Kodak Company | Method and apparatus for absolute Moire distance measurements using a grating printed on or attached to a surface |
GB9116151D0 (en) | 1991-07-26 | 1991-09-11 | Isis Innovation | Three-dimensional vision system |
US5483261A (en) | 1992-02-14 | 1996-01-09 | Itu Research, Inc. | Graphical input controller and method with rear screen image detection |
EP0559978B1 (fr) | 1992-03-12 | 1998-08-05 | International Business Machines Corporation | Procédé de traitement d'images |
JPH06211286A (ja) | 1992-04-06 | 1994-08-02 | Hitachi Ltd | 表面実装型半導体パッケ−ジ搬送治具 |
US5325386A (en) | 1992-04-21 | 1994-06-28 | Bandgap Technology Corporation | Vertical-cavity surface emitting laser assay display system |
US5636025A (en) | 1992-04-23 | 1997-06-03 | Medar, Inc. | System for optically measuring the surface contour of a part using more fringe techniques |
JP3003429B2 (ja) | 1992-10-08 | 2000-01-31 | 富士電機株式会社 | ねじり振動子および光偏向子 |
JP3353365B2 (ja) | 1993-03-18 | 2002-12-03 | 静岡大学長 | 変位および変位速度測定装置 |
US5856871A (en) | 1993-08-18 | 1999-01-05 | Applied Spectral Imaging Ltd. | Film thickness mapping using interferometric spectral imaging |
JP3537881B2 (ja) | 1994-03-29 | 2004-06-14 | 株式会社リコー | Ledアレイヘッド |
KR0127519B1 (ko) | 1994-06-29 | 1998-04-04 | 배순훈 | 광픽업장치 |
US5557397A (en) | 1994-09-21 | 1996-09-17 | Airborne Remote Mapping, Inc. | Aircraft-based topographical data collection and processing system |
US6041140A (en) | 1994-10-04 | 2000-03-21 | Synthonics, Incorporated | Apparatus for interactive image correlation for three dimensional image production |
JPH08186845A (ja) | 1994-12-27 | 1996-07-16 | Nobuaki Yanagisawa | 焦点距離制御式立体テレビ |
US5630043A (en) | 1995-05-11 | 1997-05-13 | Cirrus Logic, Inc. | Animated texture map apparatus and method for 3-D image displays |
IL114278A (en) | 1995-06-22 | 2010-06-16 | Microsoft Internat Holdings B | Camera and method |
JPH11510248A (ja) | 1995-07-18 | 1999-09-07 | ザ バッド カンパニー | 像の深度が拡張されたモアレ干渉測定のシステム及び方法 |
US5721842A (en) * | 1995-08-25 | 1998-02-24 | Apex Pc Solutions, Inc. | Interconnection system for viewing and controlling remotely connected computers with on-screen video overlay for controlling of the interconnection switch |
JPH0981955A (ja) * | 1995-09-18 | 1997-03-28 | Matsushita Electric Ind Co Ltd | 光ピックアップ |
US5742419A (en) | 1995-11-07 | 1998-04-21 | The Board Of Trustees Of The Leland Stanford Junior Universtiy | Miniature scanning confocal microscope |
JPH09261535A (ja) | 1996-03-25 | 1997-10-03 | Sharp Corp | 撮像装置 |
US5701326A (en) * | 1996-04-16 | 1997-12-23 | Loral Vought Systems Corporation | Laser scanning system with optical transmit/reflect mirror having reduced received signal loss |
US5614948A (en) | 1996-04-26 | 1997-03-25 | Intel Corporation | Camera having an adaptive gain control |
DE19638727A1 (de) | 1996-09-12 | 1998-03-19 | Ruedger Dipl Ing Rubbert | Verfahren zur Erhöhung der Signifikanz der dreidimensionalen Vermessung von Objekten |
US6096155A (en) | 1996-09-27 | 2000-08-01 | Digital Optics Corporation | Method of dicing wafer level integrated multiple optical elements |
JP3402138B2 (ja) | 1996-09-27 | 2003-04-28 | 株式会社日立製作所 | 液晶表示装置 |
IL119341A (en) | 1996-10-02 | 1999-09-22 | Univ Ramot | Phase-only filter for generating an arbitrary illumination pattern |
IL119831A (en) | 1996-12-15 | 2002-12-01 | Cognitens Ltd | A device and method for three-dimensional reconstruction of the surface geometry of an object |
EP0946856A1 (fr) | 1996-12-20 | 1999-10-06 | Pacific Title and Mirage, Inc. | Appareil et procede de parametrage rapide d'images 3d |
US5938989A (en) | 1997-01-24 | 1999-08-17 | Mems Optical, Inc. | Diffractive optical elements |
US5838428A (en) | 1997-02-28 | 1998-11-17 | United States Of America As Represented By The Secretary Of The Navy | System and method for high resolution range imaging with split light source and pattern mask |
JPH10327433A (ja) | 1997-05-23 | 1998-12-08 | Minolta Co Ltd | 合成画像の表示装置 |
US6229160B1 (en) | 1997-06-03 | 2001-05-08 | Lumileds Lighting, U.S., Llc | Light extraction from a semiconductor light-emitting device via chip shaping |
US6525821B1 (en) | 1997-06-11 | 2003-02-25 | Ut-Battelle, L.L.C. | Acquisition and replay systems for direct-to-digital holography and holovision |
US6008813A (en) | 1997-08-01 | 1999-12-28 | Mitsubishi Electric Information Technology Center America, Inc. (Ita) | Real-time PC based volume rendering system |
DE19736169A1 (de) | 1997-08-20 | 1999-04-15 | Fhu Hochschule Fuer Technik | Verfahren zur Verformungs- oder Schwingungsmessung mittels elektronischer Speckle-Pattern-Interferometrie |
US6101269A (en) | 1997-12-19 | 2000-08-08 | Lifef/X Networks, Inc. | Apparatus and method for rapid 3D image parametrization |
DE19815201A1 (de) | 1998-04-04 | 1999-10-07 | Link Johann & Ernst Gmbh & Co | Meßanordnung zur Erfassung von Dimensionen von Prüflingen, vorzugsweise von Hohlkörpern, insbesondere von Bohrungen in Werkstücken, sowie Verfahren zur Messung solcher Dimensionen |
US6750906B1 (en) | 1998-05-08 | 2004-06-15 | Cirrus Logic, Inc. | Histogram-based automatic gain control method and system for video applications |
US6731391B1 (en) | 1998-05-13 | 2004-05-04 | The Research Foundation Of State University Of New York | Shadow moire surface measurement using Talbot effect |
DE19821611A1 (de) | 1998-05-14 | 1999-11-18 | Syrinx Med Tech Gmbh | Verfahren zur Erfassung der räumlichen Struktur einer dreidimensionalen Oberfläche |
GB2352901A (en) | 1999-05-12 | 2001-02-07 | Tricorder Technology Plc | Rendering three dimensional representations utilising projected light patterns |
US6912293B1 (en) | 1998-06-26 | 2005-06-28 | Carl P. Korobkin | Photogrammetry engine for model construction |
US6377700B1 (en) | 1998-06-30 | 2002-04-23 | Intel Corporation | Method and apparatus for capturing stereoscopic images using image sensors |
US6140979A (en) | 1998-08-05 | 2000-10-31 | Microvision, Inc. | Scanned display with pinch, timing, and distortion correction |
JP3678022B2 (ja) | 1998-10-23 | 2005-08-03 | コニカミノルタセンシング株式会社 | 3次元入力装置 |
US6084712A (en) | 1998-11-03 | 2000-07-04 | Dynamic Measurement And Inspection,Llc | Three dimensional imaging using a refractive optic design |
US8965898B2 (en) | 1998-11-20 | 2015-02-24 | Intheplay, Inc. | Optimizations for live event, real-time, 3D object tracking |
US6759646B1 (en) | 1998-11-24 | 2004-07-06 | Intel Corporation | Color interpolation for a four color mosaic pattern |
US6091537A (en) | 1998-12-11 | 2000-07-18 | Xerox Corporation | Electro-actuated microlens assemblies |
JP2001166810A (ja) | 1999-02-19 | 2001-06-22 | Sanyo Electric Co Ltd | 立体モデル提供装置及び方法 |
US6259561B1 (en) | 1999-03-26 | 2001-07-10 | The University Of Rochester | Optical system for diffusing light |
US6815687B1 (en) | 1999-04-16 | 2004-11-09 | The Regents Of The University Of Michigan | Method and system for high-speed, 3D imaging of optically-invisible radiation |
US6751344B1 (en) | 1999-05-28 | 2004-06-15 | Champion Orthotic Investments, Inc. | Enhanced projector system for machine vision |
JP2000348367A (ja) * | 1999-06-04 | 2000-12-15 | Olympus Optical Co Ltd | 光学ユニットおよび光ピックアップ |
US6512385B1 (en) | 1999-07-26 | 2003-01-28 | Paul Pfaff | Method for testing a device under test including the interference of two beams |
US6268923B1 (en) | 1999-10-07 | 2001-07-31 | Integral Vision, Inc. | Optical method and system for measuring three-dimensional surface topography of an object having a surface contour |
JP2001141430A (ja) | 1999-11-16 | 2001-05-25 | Fuji Photo Film Co Ltd | 画像撮像装置及び画像処理装置 |
LT4842B (lt) | 1999-12-10 | 2001-09-25 | Uab "Geola" | Hologramų spausdinimo būdas ir įrenginys |
US6301059B1 (en) | 2000-01-07 | 2001-10-09 | Lucent Technologies Inc. | Astigmatic compensation for an anamorphic optical system |
US6937348B2 (en) | 2000-01-28 | 2005-08-30 | Genex Technologies, Inc. | Method and apparatus for generating structural pattern illumination |
US6700669B1 (en) | 2000-01-28 | 2004-03-02 | Zheng J. Geng | Method and system for three-dimensional imaging using light pattern having multiple sub-patterns |
US20020071169A1 (en) * | 2000-02-01 | 2002-06-13 | Bowers John Edward | Micro-electro-mechanical-system (MEMS) mirror device |
JP4560869B2 (ja) | 2000-02-07 | 2010-10-13 | ソニー株式会社 | メガネなし表示システムおよびバックライトシステム |
JP3662162B2 (ja) * | 2000-03-03 | 2005-06-22 | シャープ株式会社 | 双方向光通信モジュール |
JP4265076B2 (ja) | 2000-03-31 | 2009-05-20 | 沖電気工業株式会社 | 多画角カメラ、及び自動撮影装置 |
JP3723721B2 (ja) * | 2000-05-09 | 2005-12-07 | ペンタックス株式会社 | 光波測距儀及びaf機能を有する光波測距儀 |
KR100355718B1 (ko) | 2000-06-10 | 2002-10-11 | 주식회사 메디슨 | 스티어링이 가능한 프로브를 사용한 3차원 초음파 영상시스템 및 영상 형성 방법 |
US6810135B1 (en) | 2000-06-29 | 2004-10-26 | Trw Inc. | Optimized human presence detection through elimination of background interference |
US6888871B1 (en) | 2000-07-12 | 2005-05-03 | Princeton Optronics, Inc. | VCSEL and VCSEL array having integrated microlenses for use in a semiconductor laser pumped solid state laser system |
JP2002026452A (ja) * | 2000-07-12 | 2002-01-25 | Toyota Central Res & Dev Lab Inc | 面発光型光源及びその製造方法、レーザ加工機用光源 |
TW527518B (en) | 2000-07-14 | 2003-04-11 | Massachusetts Inst Technology | Method and system for high resolution, ultra fast, 3-D imaging |
US7227526B2 (en) | 2000-07-24 | 2007-06-05 | Gesturetek, Inc. | Video-based image control system |
US6686921B1 (en) | 2000-08-01 | 2004-02-03 | International Business Machines Corporation | Method and apparatus for acquiring a set of consistent image maps to represent the color of the surface of an object |
US6754370B1 (en) | 2000-08-14 | 2004-06-22 | The Board Of Trustees Of The Leland Stanford Junior University | Real-time structured light range scanning of moving scenes |
US6639684B1 (en) | 2000-09-13 | 2003-10-28 | Nextengine, Inc. | Digitizer using intensity gradient to image features of three-dimensional objects |
US6813440B1 (en) | 2000-10-10 | 2004-11-02 | The Hong Kong Polytechnic University | Body scanner |
JP3689720B2 (ja) | 2000-10-16 | 2005-08-31 | 住友大阪セメント株式会社 | 三次元形状測定装置 |
JP2002152776A (ja) | 2000-11-09 | 2002-05-24 | Nippon Telegr & Teleph Corp <Ntt> | 距離画像符号化方法及び装置、並びに、距離画像復号化方法及び装置 |
WO2002047241A1 (fr) | 2000-12-08 | 2002-06-13 | Gatzen Hans Heinrich | Dispositif micromecanique orientable a entrainement magnetique et procede permettant sa realisation |
JP2002191058A (ja) | 2000-12-20 | 2002-07-05 | Olympus Optical Co Ltd | 3次元画像取得装置および3次元画像取得方法 |
US7522568B2 (en) * | 2000-12-22 | 2009-04-21 | Terahop Networks, Inc. | Propagating ad hoc wireless networks based on common designation and routine |
JP4706105B2 (ja) | 2001-01-09 | 2011-06-22 | 株式会社ニコン | 撮影装置 |
JP2002213931A (ja) | 2001-01-17 | 2002-07-31 | Fuji Xerox Co Ltd | 3次元形状計測装置および3次元形状計測方法 |
US6841780B2 (en) | 2001-01-19 | 2005-01-11 | Honeywell International Inc. | Method and apparatus for detecting objects |
US20020163865A1 (en) * | 2001-05-01 | 2002-11-07 | Zimmer Erik J. | Optical pickup unit assembly process |
JP2002365023A (ja) | 2001-06-08 | 2002-12-18 | Koji Okamoto | 液面計測装置及び方法 |
AU2002354681A1 (en) | 2001-07-13 | 2003-01-29 | Mems Optical, Inc. | Autosteroscopic display with rotated microlens-array and method of displaying multidimensional images, especially color images |
WO2003009305A2 (fr) | 2001-07-18 | 2003-01-30 | The Regents Of The University Of California | Tete de mesure pour microscope a force atomique et autres applications |
US6741251B2 (en) | 2001-08-16 | 2004-05-25 | Hewlett-Packard Development Company, L.P. | Method and apparatus for varying focus in a scene |
WO2003028363A1 (fr) | 2001-08-28 | 2003-04-03 | Siemens Aktiengesellschaft | Camera de balayage |
US20030090818A1 (en) * | 2001-11-02 | 2003-05-15 | Wittenberger John Carl | Co-aligned receiver and transmitter for wireless link |
WO2003049156A2 (fr) | 2001-12-04 | 2003-06-12 | Primaxx, Inc. | Systeme et procede de gravure microelectromecanique |
WO2003071410A2 (fr) | 2002-02-15 | 2003-08-28 | Canesta, Inc. | Systeme de reconnaissance de geste utilisant des capteurs de perception de profondeur |
KR100451950B1 (ko) | 2002-02-25 | 2004-10-08 | 삼성전자주식회사 | 이미지 센서 소자 웨이퍼 소잉 방법 |
CN1372188A (zh) | 2002-03-28 | 2002-10-02 | 冯志刚 | 采用阶梯式平行光扩束镜组的触摸屏光学系统 |
US7369685B2 (en) | 2002-04-05 | 2008-05-06 | Identix Corporation | Vision-based operating method and system |
US7811825B2 (en) | 2002-04-19 | 2010-10-12 | University Of Washington | System and method for processing specimens and images for optical tomography |
US20030227614A1 (en) * | 2002-06-05 | 2003-12-11 | Taminiau August A. | Laser machining apparatus with automatic focusing |
AU2003253626A1 (en) | 2002-06-07 | 2003-12-22 | University Of North Carolina At Chapel Hill | Methods and systems for laser based real-time structured light depth extraction |
US7006709B2 (en) | 2002-06-15 | 2006-02-28 | Microsoft Corporation | System and method deghosting mosaics using multiperspective plane sweep |
US20040001145A1 (en) | 2002-06-27 | 2004-01-01 | Abbate Jeffrey A. | Method and apparatus for multifield image generation and processing |
JP3862623B2 (ja) | 2002-07-05 | 2006-12-27 | キヤノン株式会社 | 光偏向器及びその製造方法 |
US20040004775A1 (en) | 2002-07-08 | 2004-01-08 | Turner Arthur Monroe | Resonant scanning mirror with inertially coupled activation |
JP2004096088A (ja) * | 2002-07-10 | 2004-03-25 | Fuji Photo Film Co Ltd | 合波レーザー光源および露光装置 |
US6924915B2 (en) | 2002-08-26 | 2005-08-02 | Canon Kabushiki Kaisha | Oscillation device, optical deflector using the oscillation device, and image display device and image forming apparatus using the optical deflector, and method of manufacturing the oscillation device |
US6859326B2 (en) | 2002-09-20 | 2005-02-22 | Corning Incorporated | Random microlens array for optical beam shaping and homogenization |
KR100624405B1 (ko) | 2002-10-01 | 2006-09-18 | 삼성전자주식회사 | 광부품 실장용 기판 및 그 제조방법 |
US7194105B2 (en) | 2002-10-16 | 2007-03-20 | Hersch Roger D | Authentication of documents and articles by moiré patterns |
JP4380233B2 (ja) | 2002-10-18 | 2009-12-09 | 日本ビクター株式会社 | 光偏向器 |
GB2395261A (en) | 2002-11-11 | 2004-05-19 | Qinetiq Ltd | Ranging apparatus |
TWI291040B (en) | 2002-11-21 | 2007-12-11 | Solvision Inc | Fast 3D height measurement method and system |
US7103212B2 (en) | 2002-11-22 | 2006-09-05 | Strider Labs, Inc. | Acquisition of three-dimensional images by an active stereo technique using locally unique patterns |
US20040174770A1 (en) | 2002-11-27 | 2004-09-09 | Rees Frank L. | Gauss-Rees parametric ultrawideband system |
US7639419B2 (en) | 2003-02-21 | 2009-12-29 | Kla-Tencor Technologies, Inc. | Inspection system using small catadioptric objective |
US7127101B2 (en) | 2003-03-10 | 2006-10-24 | Cranul Technologies, Inc. | Automatic selection of cranial remodeling device trim lines |
US6912090B2 (en) | 2003-03-18 | 2005-06-28 | Lucent Technologies Inc. | Adjustable compound microlens apparatus with MEMS controller |
EP1606576A4 (fr) | 2003-03-24 | 2006-11-22 | D3D L P | Systeme numeriseur laser pour applications dentaires |
US6950454B2 (en) * | 2003-03-24 | 2005-09-27 | Eastman Kodak Company | Electronic imaging system using organic laser array illuminating an area light valve |
US20040213463A1 (en) | 2003-04-22 | 2004-10-28 | Morrison Rick Lee | Multiplexed, spatially encoded illumination system for determining imaging and range estimation |
US7539340B2 (en) | 2003-04-25 | 2009-05-26 | Topcon Corporation | Apparatus and method for three-dimensional coordinate measurement |
US6937909B2 (en) * | 2003-07-02 | 2005-08-30 | Johnson Controls Technology Company | Pattern recognition adaptive controller |
US7295330B2 (en) * | 2003-07-11 | 2007-11-13 | Chow Peter P | Film mapping system |
CA2435935A1 (fr) | 2003-07-24 | 2005-01-24 | Guylain Lemelin | Numeriseur tridimensionnel optique a zone de non-ambiguite elargie |
US20070057946A1 (en) | 2003-07-24 | 2007-03-15 | Dan Albeck | Method and system for the three-dimensional surface reconstruction of an object |
US7064876B2 (en) * | 2003-07-29 | 2006-06-20 | Lexmark International, Inc. | Resonant oscillating scanning device with multiple light sources |
US20050111705A1 (en) | 2003-08-26 | 2005-05-26 | Roman Waupotitsch | Passive stereo sensing for 3D facial shape biometrics |
US6934018B2 (en) | 2003-09-10 | 2005-08-23 | Shearographics, Llc | Tire inspection apparatus and method |
US7187437B2 (en) | 2003-09-10 | 2007-03-06 | Shearographics, Llc | Plurality of light sources for inspection apparatus and method |
US7064810B2 (en) * | 2003-09-15 | 2006-06-20 | Deere & Company | Optical range finder with directed attention |
EP1515364B1 (fr) * | 2003-09-15 | 2016-04-13 | Nuvotronics, LLC | Boîtier de dispositif et leurs procédés de fabrication et de test |
US7874917B2 (en) | 2003-09-15 | 2011-01-25 | Sony Computer Entertainment Inc. | Methods and systems for enabling depth and direction detection when interfacing with a computer program |
US8755644B2 (en) * | 2003-09-30 | 2014-06-17 | International Business Machines Corporation | Silicon based optical vias |
US7112774B2 (en) | 2003-10-09 | 2006-09-26 | Avago Technologies Sensor Ip (Singapore) Pte. Ltd | CMOS stereo imaging system and method |
US7289090B2 (en) | 2003-12-10 | 2007-10-30 | Texas Instruments Incorporated | Pulsed LED scan-ring array for boosting display system lumens |
US20050135555A1 (en) | 2003-12-23 | 2005-06-23 | Claus Bernhard Erich H. | Method and system for simultaneously viewing rendered volumes |
US7250949B2 (en) | 2003-12-23 | 2007-07-31 | General Electric Company | Method and system for visualizing three-dimensional data |
US8134637B2 (en) | 2004-01-28 | 2012-03-13 | Microsoft Corporation | Method and system to increase X-Y resolution in a depth (Z) camera using red, blue, green (RGB) sensing |
US7961909B2 (en) | 2006-03-08 | 2011-06-14 | Electronic Scripting Products, Inc. | Computer interface employing a manipulated object with absolute pose detection component and a display |
WO2005076198A1 (fr) | 2004-02-09 | 2005-08-18 | Cheol-Gwon Kang | Dispositif de mesure d'une forme tridimensionnelle a l'aide d'un motif irregulier et procede associe |
JP2005236513A (ja) | 2004-02-18 | 2005-09-02 | Fujinon Corp | 撮像装置 |
JP4572312B2 (ja) | 2004-02-23 | 2010-11-04 | スタンレー電気株式会社 | Led及びその製造方法 |
EP1569276A1 (fr) | 2004-02-27 | 2005-08-31 | Heptagon OY | Micro-optiques sur optoélectroniques |
US7427981B2 (en) | 2004-04-15 | 2008-09-23 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Optical device that measures distance between the device and a surface |
US7308112B2 (en) | 2004-05-14 | 2007-12-11 | Honda Motor Co., Ltd. | Sign based human-machine interaction |
US7442918B2 (en) | 2004-05-14 | 2008-10-28 | Microvision, Inc. | MEMS device having simplified drive |
DE602005004661D1 (de) * | 2004-06-16 | 2008-03-20 | Koninkl Philips Electronics Nv | Vorrichtung und verfahren zum erzeugen eines abtaststrahls in einem optischen abnehmerkopf, optischeem mit einem miniatur-abnehmerkopf |
CN101031837B (zh) | 2004-07-23 | 2011-06-15 | 通用电气医疗集团尼亚加拉有限公司 | 用于荧光共焦显微镜检查的方法和设备 |
US20060017656A1 (en) | 2004-07-26 | 2006-01-26 | Visteon Global Technologies, Inc. | Image intensity control in overland night vision systems |
US7212290B2 (en) | 2004-07-28 | 2007-05-01 | Agilent Technologies, Inc. | Differential interferometers creating desired beam patterns |
KR101183000B1 (ko) | 2004-07-30 | 2012-09-18 | 익스트림 리얼리티 엘티디. | 이미지 프로세싱을 기반으로 한 3d 공간 차원용 시스템 및방법 |
US6975784B1 (en) * | 2004-09-10 | 2005-12-13 | Intel Corporation | Singulated dies in a parallel optics module |
US7120228B2 (en) | 2004-09-21 | 2006-10-10 | Jordan Valley Applied Radiation Ltd. | Combined X-ray reflectometer and diffractometer |
JP5128047B2 (ja) | 2004-10-07 | 2013-01-23 | Towa株式会社 | 光デバイス及び光デバイスの生産方法 |
JP2006128818A (ja) | 2004-10-26 | 2006-05-18 | Victor Co Of Japan Ltd | 立体映像・立体音響対応記録プログラム、再生プログラム、記録装置、再生装置及び記録メディア |
IL165212A (en) * | 2004-11-15 | 2012-05-31 | Elbit Systems Electro Optics Elop Ltd | Device for scanning light |
US7076024B2 (en) | 2004-12-01 | 2006-07-11 | Jordan Valley Applied Radiation, Ltd. | X-ray apparatus with dual monochromators |
US20060156756A1 (en) | 2005-01-20 | 2006-07-20 | Becke Paul E | Phase change and insulating properties container and method of use |
US20060221218A1 (en) | 2005-04-05 | 2006-10-05 | Doron Adler | Image sensor with improved color filter |
WO2006107928A2 (fr) | 2005-04-06 | 2006-10-12 | Dimensional Photonics International, Inc. | Systeme de mesure de ligne hypsometrique interferometrique a pluralite de canaux |
JP2006310417A (ja) * | 2005-04-27 | 2006-11-09 | Sony Corp | 光電変換装置及びその製造方法、並びに光情報処理装置 |
US7750356B2 (en) | 2005-05-04 | 2010-07-06 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Silicon optical package with 45 degree turning mirror |
US7560679B1 (en) | 2005-05-10 | 2009-07-14 | Siimpel, Inc. | 3D camera |
US7609875B2 (en) | 2005-05-27 | 2009-10-27 | Orametrix, Inc. | Scanner system and method for mapping surface of three-dimensional object |
EP1760514A1 (fr) | 2005-09-05 | 2007-03-07 | DATALOGIC S.p.A. | Dispositif de balayage pour lecteur optique de codes |
JP5001286B2 (ja) | 2005-10-11 | 2012-08-15 | プライム センス リミティド | 対象物再構成方法およびシステム |
US20110096182A1 (en) | 2009-10-25 | 2011-04-28 | Prime Sense Ltd | Error Compensation in Three-Dimensional Mapping |
US9330324B2 (en) | 2005-10-11 | 2016-05-03 | Apple Inc. | Error compensation in three-dimensional mapping |
US20070091183A1 (en) | 2005-10-21 | 2007-04-26 | Ge Inspection Technologies, Lp | Method and apparatus for adapting the operation of a remote viewing device to correct optical misalignment |
US8018579B1 (en) | 2005-10-21 | 2011-09-13 | Apple Inc. | Three-dimensional imaging and display system |
US8792978B2 (en) | 2010-05-28 | 2014-07-29 | Lockheed Martin Corporation | Laser-based nerve stimulators for, E.G., hearing restoration in cochlear prostheses and method |
US20070133840A1 (en) | 2005-11-04 | 2007-06-14 | Clean Earth Technologies, Llc | Tracking Using An Elastic Cluster of Trackers |
FR2894685A1 (fr) | 2005-12-09 | 2007-06-15 | 6115187 Canada Inc | Procede et dispositif d'identification et de calibration d'optiques panoramiques |
US7856125B2 (en) | 2006-01-31 | 2010-12-21 | University Of Southern California | 3D face reconstruction from 2D images |
JP4917615B2 (ja) | 2006-02-27 | 2012-04-18 | プライム センス リミティド | スペックルの無相関を使用した距離マッピング(rangemapping) |
JP4692329B2 (ja) * | 2006-02-28 | 2011-06-01 | 日本ビクター株式会社 | 光無線通信装置 |
DE102006011284A1 (de) | 2006-02-28 | 2007-08-30 | Osram Opto Semiconductors Gmbh | Halbleiterlaservorrichtung |
JP5174684B2 (ja) | 2006-03-14 | 2013-04-03 | プライムセンス リミテッド | スペックル・パターンを用いた三次元検出 |
CN101501442B (zh) | 2006-03-14 | 2014-03-19 | 普莱姆传感有限公司 | 三维传感的深度变化光场 |
CN101957994B (zh) | 2006-03-14 | 2014-03-19 | 普莱姆传感有限公司 | 三维传感的深度变化光场 |
US7423821B2 (en) * | 2006-03-24 | 2008-09-09 | Gentex Corporation | Vision system |
US7869649B2 (en) | 2006-05-08 | 2011-01-11 | Panasonic Corporation | Image processing device, image processing method, program, storage medium and integrated circuit |
US8488895B2 (en) | 2006-05-31 | 2013-07-16 | Indiana University Research And Technology Corp. | Laser scanning digital camera with pupil periphery illumination and potential for multiply scattered light imaging |
US8139142B2 (en) | 2006-06-01 | 2012-03-20 | Microsoft Corporation | Video manipulation of red, green, blue, distance (RGB-Z) data including segmentation, up-sampling, and background substitution techniques |
US7352499B2 (en) * | 2006-06-06 | 2008-04-01 | Symbol Technologies, Inc. | Arrangement for and method of projecting an image with pixel mapping |
WO2008014826A1 (fr) | 2006-08-03 | 2008-02-07 | Alterface S.A. | Procédé et dispositif permettant d'identifier et d'extraire des images de plusieurs utilisateurs et de reconnaître les gestes des utilisateurs |
US7737394B2 (en) | 2006-08-31 | 2010-06-15 | Micron Technology, Inc. | Ambient infrared detection in solid state sensors |
DE102006041307A1 (de) | 2006-09-01 | 2008-03-13 | Sick Ag | Opto-elektronische Sensoranordnung |
WO2008029345A1 (fr) | 2006-09-04 | 2008-03-13 | Koninklijke Philips Electronics N.V. | Procédé pour déterminer une carte de profondeur à partir d'images, dispositif pour déterminer une carte de profondeur |
US7256899B1 (en) | 2006-10-04 | 2007-08-14 | Ivan Faul | Wireless methods and systems for three-dimensional non-contact shape sensing |
US8542421B2 (en) | 2006-11-17 | 2013-09-24 | Celloptic, Inc. | System, apparatus and method for extracting three-dimensional information of an object from received electromagnetic radiation |
US8090194B2 (en) | 2006-11-21 | 2012-01-03 | Mantis Vision Ltd. | 3D geometric modeling and motion capture using both single and dual imaging |
US7990545B2 (en) | 2006-12-27 | 2011-08-02 | Cambridge Research & Instrumentation, Inc. | Surface measurement of in-vivo subjects using spot projector |
US7840031B2 (en) | 2007-01-12 | 2010-11-23 | International Business Machines Corporation | Tracking a range of body movement based on 3D captured image streams of a user |
WO2008087652A2 (fr) | 2007-01-21 | 2008-07-24 | Prime Sense Ltd. | Cartographie de profondeur à l'aide d'un éclairage à faisceaux multiples |
US20080212835A1 (en) | 2007-03-01 | 2008-09-04 | Amon Tavor | Object Tracking by 3-Dimensional Modeling |
JP4232835B2 (ja) | 2007-03-07 | 2009-03-04 | セイコーエプソン株式会社 | アクチュエータ、光スキャナおよび画像形成装置 |
WO2008120217A2 (fr) | 2007-04-02 | 2008-10-09 | Prime Sense Ltd. | Cartographie de profondeur au moyen de profils projetés |
US8150142B2 (en) | 2007-04-02 | 2012-04-03 | Prime Sense Ltd. | Depth mapping using projected patterns |
US8488868B2 (en) | 2007-04-03 | 2013-07-16 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada | Generation of a depth map from a monoscopic color image for rendering stereoscopic still and video images |
US7734161B2 (en) | 2007-04-19 | 2010-06-08 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Image stabilization with adaptive shutter control |
AU2008244493A1 (en) | 2007-04-23 | 2008-11-06 | California Institute Of Technology | Single-lens, single-aperture, single-sensor 3-D imaging device |
US7760223B2 (en) * | 2007-05-14 | 2010-07-20 | Ricoh Company, Ltd. | Optical scan apparatus and image formation apparatus |
KR100901614B1 (ko) * | 2007-05-22 | 2009-06-08 | 엘지이노텍 주식회사 | 거리 측정 장치 및 방법 |
US7835561B2 (en) | 2007-05-18 | 2010-11-16 | Visiongate, Inc. | Method for image processing and reconstruction of images for optical tomography |
US8494252B2 (en) | 2007-06-19 | 2013-07-23 | Primesense Ltd. | Depth mapping using optical elements having non-uniform focal characteristics |
WO2009008864A1 (fr) | 2007-07-12 | 2009-01-15 | Thomson Licensing | Système et procédé pour une reconstruction d'objet tridimensionnelle à partir d'images bidimensionnelles |
JP4412362B2 (ja) | 2007-07-18 | 2010-02-10 | 船井電機株式会社 | 複眼撮像装置 |
CN101371786B (zh) | 2007-08-24 | 2011-01-12 | 北京师范大学珠海分校 | 一种x射线图像三维重构的方法及系统 |
US20090060307A1 (en) | 2007-08-27 | 2009-03-05 | Siemens Medical Solutions Usa, Inc. | Tensor Voting System and Method |
DE102007045332B4 (de) | 2007-09-17 | 2019-01-17 | Seereal Technologies S.A. | Holographisches Display zum Rekonstruieren einer Szene |
KR100858034B1 (ko) | 2007-10-18 | 2008-09-10 | (주)실리콘화일 | 단일 칩 활력 이미지 센서 |
JP5012463B2 (ja) * | 2007-12-03 | 2012-08-29 | セイコーエプソン株式会社 | 走査型画像表示システム及び走査型画像表示装置 |
JP5348449B2 (ja) | 2007-12-25 | 2013-11-20 | カシオ計算機株式会社 | 距離測定装置及びプロジェクタ |
US8166421B2 (en) | 2008-01-14 | 2012-04-24 | Primesense Ltd. | Three-dimensional user interface |
US8176497B2 (en) | 2008-01-16 | 2012-05-08 | Dell Products, Lp | Method to dynamically provision additional computer resources to handle peak database workloads |
US8384997B2 (en) | 2008-01-21 | 2013-02-26 | Primesense Ltd | Optical pattern projection |
CN103760682B (zh) | 2008-01-21 | 2016-08-31 | 苹果公司 | 用于使零级减少的光学设计 |
WO2009095862A1 (fr) | 2008-02-01 | 2009-08-06 | Koninklijke Philips Electronics N.V. | Dispositif d'affichage autostéréoscopique |
KR20090091610A (ko) * | 2008-02-25 | 2009-08-28 | 삼성전자주식회사 | 멤스 미러 및 이를 채용한 스캐닝 액츄에이터 |
DE102008011350A1 (de) | 2008-02-27 | 2009-09-03 | Loeffler Technology Gmbh | Vorrichtung und Verfahren zur Echtzeiterfassung von elektromagnetischer THz-Strahlung |
US8121351B2 (en) | 2008-03-09 | 2012-02-21 | Microsoft International Holdings B.V. | Identification of objects in a 3D video using non/over reflective clothing |
US8094352B2 (en) | 2008-05-13 | 2012-01-10 | Texas Instruments Incorporated | Mirror assembly with recessed mirror |
US8035806B2 (en) | 2008-05-13 | 2011-10-11 | Samsung Electronics Co., Ltd. | Distance measuring sensor including double transfer gate and three dimensional color image sensor including the distance measuring sensor |
JP5056629B2 (ja) | 2008-07-04 | 2012-10-24 | セイコーエプソン株式会社 | レーザ光源装置、波長変換素子、波長変換素子の製造方法、プロジェクタ、モニタ装置 |
US8456517B2 (en) | 2008-07-09 | 2013-06-04 | Primesense Ltd. | Integrated processor for 3D mapping |
KR101279441B1 (ko) | 2008-08-21 | 2013-07-05 | 삼성전자주식회사 | 멤스 미러, 미러 스캐너, 광주사 유닛 및 광주사 유닛을 채용한 화상형성장치 |
EP2362936B1 (fr) | 2008-10-28 | 2012-10-17 | 3Shape A/S | Analyseur optique à balayage avec commande à rétroaction |
KR20100063996A (ko) * | 2008-12-04 | 2010-06-14 | 삼성전자주식회사 | 스캐너 및 이를 채용한 화상 형성 장치 |
CN101446775B (zh) | 2008-12-30 | 2011-03-30 | 上海微电子装备有限公司 | 一种对准光源装置 |
US8462207B2 (en) | 2009-02-12 | 2013-06-11 | Primesense Ltd. | Depth ranging with Moiré patterns |
US7949024B2 (en) * | 2009-02-17 | 2011-05-24 | Trilumina Corporation | Multibeam arrays of optoelectronic devices for high frequency operation |
US8995493B2 (en) * | 2009-02-17 | 2015-03-31 | Trilumina Corp. | Microlenses for multibeam arrays of optoelectronic devices for high frequency operation |
EP2226652B1 (fr) | 2009-03-02 | 2013-11-20 | Sick Ag | Capteur optoélectronique doté d'un émetteur à lampe d'orientation |
US8786682B2 (en) | 2009-03-05 | 2014-07-22 | Primesense Ltd. | Reference image techniques for three-dimensional sensing |
US8717417B2 (en) | 2009-04-16 | 2014-05-06 | Primesense Ltd. | Three-dimensional mapping and imaging |
US8503720B2 (en) | 2009-05-01 | 2013-08-06 | Microsoft Corporation | Human body pose estimation |
US8744121B2 (en) | 2009-05-29 | 2014-06-03 | Microsoft Corporation | Device for identifying and tracking multiple humans over time |
WO2010139050A1 (fr) | 2009-06-01 | 2010-12-09 | Tiansheng Zhou | Micromiroir mems et matrice de micromiroirs |
EP2275990B1 (fr) | 2009-07-06 | 2012-09-26 | Sick Ag | Capteur 3D |
JP5537081B2 (ja) * | 2009-07-28 | 2014-07-02 | 浜松ホトニクス株式会社 | 加工対象物切断方法 |
US9582889B2 (en) | 2009-07-30 | 2017-02-28 | Apple Inc. | Depth mapping based on pattern matching and stereoscopic information |
CN101989446B (zh) * | 2009-08-05 | 2012-09-19 | 鸿富锦精密工业(深圳)有限公司 | 固态硬盘保护装置 |
WO2011031538A2 (fr) | 2009-08-27 | 2011-03-17 | California Institute Of Technology | Reconstruction d'objet en 3d précise utilisant un dispositif portable avec un motif lumineux projeté |
CN102667495A (zh) * | 2009-09-28 | 2012-09-12 | 喷特路姆科技有限公司 | 用于远程风感测的方法、装置和系统 |
US8305502B2 (en) * | 2009-11-11 | 2012-11-06 | Eastman Kodak Company | Phase-compensated thin-film beam combiner |
JP5588310B2 (ja) * | 2009-11-15 | 2014-09-10 | プライムセンス リミテッド | ビームモニタ付き光学プロジェクタ |
US8830227B2 (en) | 2009-12-06 | 2014-09-09 | Primesense Ltd. | Depth-based gain control |
EP2333603A1 (fr) | 2009-12-08 | 2011-06-15 | Alcatel Lucent | Scanner à faisceau optique |
US8320621B2 (en) | 2009-12-21 | 2012-11-27 | Microsoft Corporation | Depth projector system with integrated VCSEL array |
DE102010005993B4 (de) | 2010-01-27 | 2016-10-20 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Laserscanner-Einrichtung und Verfahren zur dreidimensionalen berührungslosen Umgebungserfassung mit einer Laserscanner-Einrichtung |
US20110188054A1 (en) | 2010-02-02 | 2011-08-04 | Primesense Ltd | Integrated photonics module for optical projection |
US20110187878A1 (en) | 2010-02-02 | 2011-08-04 | Primesense Ltd. | Synchronization of projected illumination with rolling shutter of image sensor |
JP2011160240A (ja) * | 2010-02-02 | 2011-08-18 | Funai Electric Co Ltd | テレビジョン装置 |
US8982182B2 (en) | 2010-03-01 | 2015-03-17 | Apple Inc. | Non-uniform spatial resource allocation for depth mapping |
US8279418B2 (en) * | 2010-03-17 | 2012-10-02 | Microsoft Corporation | Raster scanning for depth detection |
US8330804B2 (en) * | 2010-05-12 | 2012-12-11 | Microsoft Corporation | Scanned-beam depth mapping to 2D image |
US8654152B2 (en) * | 2010-06-21 | 2014-02-18 | Microsoft Corporation | Compartmentalizing focus area within field of view |
WO2012020380A1 (fr) | 2010-08-11 | 2012-02-16 | Primesense Ltd. | Projecteurs à balayage et modules d'acquisition d'images pour cartographie 3d |
US20120236379A1 (en) | 2010-08-23 | 2012-09-20 | Lighttime, Llc | Ladar using mems scanning |
WO2012066501A1 (fr) | 2010-11-19 | 2012-05-24 | Primesense Ltd. | Cartographie de profondeur à l'aide d'un éclairage à codage temporel |
US9280718B2 (en) | 2010-11-24 | 2016-03-08 | Nocimed, Llc | Systems and methods for automated voxelation of regions of interest for magnetic resonance spectroscopy |
US9131136B2 (en) | 2010-12-06 | 2015-09-08 | Apple Inc. | Lens arrays for pattern projection and imaging |
US9030528B2 (en) | 2011-04-04 | 2015-05-12 | Apple Inc. | Multi-zone imaging sensor and lens array |
US9684075B2 (en) * | 2011-10-27 | 2017-06-20 | Microvision, Inc. | Scanning laser time of flight 3D imaging |
US20130163627A1 (en) * | 2011-12-24 | 2013-06-27 | Princeton Optronics | Laser Illuminator System |
US9329080B2 (en) * | 2012-02-15 | 2016-05-03 | Aplle Inc. | Modular optics for scanning engine having beam combining optics with a prism intercepted by both beam axis and collection axis |
US9651417B2 (en) | 2012-02-15 | 2017-05-16 | Apple Inc. | Scanning depth engine |
US8569700B2 (en) | 2012-03-06 | 2013-10-29 | Omnivision Technologies, Inc. | Image sensor for two-dimensional and three-dimensional image capture |
US9396382B2 (en) | 2012-08-17 | 2016-07-19 | Flashscan3D, Llc | System and method for a biometric image sensor with spoofing detection |
US20140063189A1 (en) | 2012-08-28 | 2014-03-06 | Digital Signal Corporation | System and Method for Refining Coordinate-Based Three-Dimensional Images Obtained from a Three-Dimensional Measurement System |
US8948482B2 (en) | 2012-11-01 | 2015-02-03 | Align Technology, Inc. | Motion compensation in a three dimensional scan |
CN103033806A (zh) | 2012-12-27 | 2013-04-10 | 山东理工大学 | 一种用于机载激光扫描飞行高度变化实时补偿的方法与装置 |
KR20150057011A (ko) | 2013-11-18 | 2015-05-28 | 삼성전자주식회사 | 광원일체형 카메라 |
US20160125638A1 (en) | 2014-11-04 | 2016-05-05 | Dassault Systemes | Automated Texturing Mapping and Animation from Images |
KR20160075085A (ko) | 2014-12-19 | 2016-06-29 | 삼성전기주식회사 | 렌즈 조립체 및 이를 포함하는 카메라 모듈 |
US10107914B2 (en) | 2015-02-20 | 2018-10-23 | Apple Inc. | Actuated optical element for light beam scanning device |
JP6614810B2 (ja) | 2015-05-29 | 2019-12-04 | キヤノン株式会社 | ブレ補正装置、撮像装置、ブレ補正方法 |
US10054763B2 (en) | 2015-08-17 | 2018-08-21 | Apple Inc. | Optical position sensing with temperature calibration |
US10651624B2 (en) | 2016-01-11 | 2020-05-12 | Ams Sensors Singapore Pte. Ltd. | Optoelectronic modules having features for improved alignment and reduced tilt |
CN108291854B (zh) | 2016-03-10 | 2020-08-07 | 松下知识产权经营株式会社 | 光学检查装置、透镜以及光学检查方法 |
KR102348365B1 (ko) | 2016-05-03 | 2022-01-10 | 삼성전자주식회사 | 카메라 모듈을 포함하는 전자 장치 |
US10205937B2 (en) | 2016-08-02 | 2019-02-12 | Apple Inc. | Controlling lens misalignment in an imaging system |
KR20180040409A (ko) | 2016-10-12 | 2018-04-20 | 엘지전자 주식회사 | 이동 단말기 및 그 제어방법 |
US11209634B2 (en) | 2017-11-17 | 2021-12-28 | Robert Bosch Start-Up Platform North America, LLC, Series 1 | Optical system |
-
2013
- 2013-02-14 US US13/766,801 patent/US9651417B2/en active Active
- 2013-02-14 KR KR1020147025753A patent/KR101709844B1/ko active IP Right Grant
- 2013-02-14 WO PCT/IB2013/051189 patent/WO2013121366A1/fr active Application Filing
- 2013-02-14 AU AU2013219966A patent/AU2013219966B2/en active Active
- 2013-02-14 CN CN201380007623.5A patent/CN104160240B/zh active Active
- 2013-02-14 JP JP2014557150A patent/JP5985661B2/ja active Active
- 2013-02-14 EP EP13748754.2A patent/EP2817586B1/fr active Active
- 2013-02-14 US US13/766,811 patent/US9157790B2/en active Active
- 2013-02-18 TW TW102105535A patent/TWI537603B/zh active
-
2014
- 2014-06-23 IL IL233337A patent/IL233337B/en active IP Right Grant
-
2015
- 2015-09-07 US US14/846,856 patent/US9746369B2/en active Active
-
2016
- 2016-08-03 JP JP2016152724A patent/JP6367273B2/ja active Active
-
2017
- 2017-03-30 US US15/473,653 patent/US9898074B2/en active Active
- 2017-12-18 US US15/844,651 patent/US10261578B2/en active Active
-
2019
- 2019-03-05 US US16/292,367 patent/US11703940B2/en active Active
-
2020
- 2020-08-11 US US16/989,904 patent/US20200371585A1/en active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN104160240B (zh) | 2017-02-22 |
US11703940B2 (en) | 2023-07-18 |
US20180120931A1 (en) | 2018-05-03 |
US9651417B2 (en) | 2017-05-16 |
US20200371585A1 (en) | 2020-11-26 |
JP6367273B2 (ja) | 2018-08-01 |
KR101709844B1 (ko) | 2017-02-23 |
JP2016224058A (ja) | 2016-12-28 |
AU2013219966B2 (en) | 2015-04-02 |
AU2013219966A8 (en) | 2014-08-14 |
JP2015514965A (ja) | 2015-05-21 |
WO2013121366A1 (fr) | 2013-08-22 |
US9157790B2 (en) | 2015-10-13 |
US20190196579A1 (en) | 2019-06-27 |
US20170205873A1 (en) | 2017-07-20 |
US9746369B2 (en) | 2017-08-29 |
US9898074B2 (en) | 2018-02-20 |
US20150377696A1 (en) | 2015-12-31 |
CN104160240A (zh) | 2014-11-19 |
KR20140138724A (ko) | 2014-12-04 |
US20130207970A1 (en) | 2013-08-15 |
IL233337B (en) | 2018-07-31 |
EP2817586A4 (fr) | 2016-02-17 |
JP5985661B2 (ja) | 2016-09-06 |
EP2817586A1 (fr) | 2014-12-31 |
IL233337A0 (en) | 2014-08-31 |
TWI537603B (zh) | 2016-06-11 |
TW201341852A (zh) | 2013-10-16 |
US20130206967A1 (en) | 2013-08-15 |
AU2013219966A1 (en) | 2014-07-24 |
US10261578B2 (en) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11703940B2 (en) | Integrated optoelectronic module | |
US8427657B2 (en) | Device for optical imaging, tracking, and position measurement with a scanning MEMS mirror | |
US9267787B2 (en) | Depth scanning with multiple emitters | |
EP3224650B1 (fr) | Moteur multi-miroir au balayage en profondeur | |
US20170176596A1 (en) | Time-of-flight detector with single-axis scan | |
US9201237B2 (en) | Diffraction-based sensing of mirror position | |
US10247812B2 (en) | Multi-mirror scanning depth engine | |
AU2015203089B2 (en) | Scanning depth engine | |
CN108885260B (zh) | 具有单轴扫描的渡越时间探测器 | |
US20090251670A1 (en) | Optical feedback for high speed scan mirror |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140819 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: APPLE INC. |
|
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01B 11/10 20060101ALI20150929BHEP Ipc: G01S 17/10 20060101ALI20150929BHEP Ipc: G01S 17/42 20060101ALI20150929BHEP Ipc: G01S 7/486 20060101ALI20150929BHEP Ipc: G01S 7/481 20060101AFI20150929BHEP Ipc: H01S 5/42 20060101ALI20150929BHEP Ipc: H01S 5/40 20060101ALI20150929BHEP Ipc: G01S 17/89 20060101ALI20150929BHEP Ipc: G01B 11/22 20060101ALI20150929BHEP Ipc: H01S 5/022 20060101ALI20150929BHEP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013067169 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G01B0011220000 Ipc: G01S0007481000 |
|
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160119 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01S 17/89 20060101ALI20160113BHEP Ipc: H01S 5/022 20060101ALI20160113BHEP Ipc: G01S 7/486 20060101ALI20160113BHEP Ipc: G01S 7/481 20060101AFI20160113BHEP Ipc: G01S 17/42 20060101ALI20160113BHEP Ipc: G01B 11/22 20060101ALI20160113BHEP Ipc: G01S 17/10 20060101ALI20160113BHEP Ipc: G01B 11/10 20060101ALI20160113BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20171211 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: APPLE INC. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191008 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1249177 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013067169 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200626 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200818 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200725 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1249177 Country of ref document: AT Kind code of ref document: T Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013067169 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
26N | No opposition filed |
Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210214 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231221 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231220 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |