EP2453750A2 - Synergistische wirkstoffkombinationen mit phenyltriazolen - Google Patents

Synergistische wirkstoffkombinationen mit phenyltriazolen

Info

Publication number
EP2453750A2
EP2453750A2 EP10737493A EP10737493A EP2453750A2 EP 2453750 A2 EP2453750 A2 EP 2453750A2 EP 10737493 A EP10737493 A EP 10737493A EP 10737493 A EP10737493 A EP 10737493A EP 2453750 A2 EP2453750 A2 EP 2453750A2
Authority
EP
European Patent Office
Prior art keywords
methyl
spp
formula
phenyl
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10737493A
Other languages
English (en)
French (fr)
Inventor
Wolfram Andersch
Heike Hungenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Publication of EP2453750A2 publication Critical patent/EP2453750A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/18Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with sulfur as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/12Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing a —O—CO—N< group, or a thio analogue thereof, neither directly attached to a ring nor the nitrogen atom being a member of a heterocyclic ring

Definitions

  • the present invention relates to novel drug combinations which contain a known compound of the formula (I) on the one hand and at least one known fungicidal active ingredient on the other hand and are very well suited for controlling unwanted animal pests such as insects and unwanted phytopathogenic fungi.
  • R 1 is H or NH 2
  • R 2 is CH 3 or F
  • have insecticidal activity see WO 1999/055668 and WO 2006/043635).
  • substituted halopyrimidines have fungicidal properties (cf., DE-Al-196 46 407, EP-B-712 396).
  • the compounds of the formula (I) have a chiral sulfoxide group such that they form two enantiomers with R or S configuration on the sulfur in the absence of further chiral centers: (IA), R-enantiomers,
  • Methods eg. B. characterized by X-ray structure analysis or rotation determination.
  • the present invention therefore also relates to novel drug combinations which contain the R- or S-enantiomers of the compounds of the formula (I) and at least one further fungicidal active ingredient. It has now been found that active compound combinations of at least one compound of the formula (I) and at least one active compound selected from the groups (2) to (27) mentioned below are synergistically active and have very good insecticidal and fungicidal properties.
  • a 2 is NH or O
  • a 3 is N or CH
  • R 11 is in each case optionally monosubstituted or disubstituted by identical or different chlorine, cyano, methyl or trifluoromethyl-substituted phenyl, phenoxy or pyridinyl, or for 1- (4-chlorophenyl) -pyrazol-3-yl or for 1,2-propanedione bis (O-methyloxime) -1-yl, R 12 is hydrogen or fluorine;
  • R 15 and R 17 together then represent -CH 2 -CH 2 -CH [CH (CHj) 2 ] - or -CH 2 -CH r C (CH 3 ) 2 -, represents C or Si (silicon),
  • a 4 also represents -N (R 17 ) - and A 5 also together with R 15 and R 16 represents the group
  • R 15 is hydrogen, hydroxy or cyano
  • R 16 represents 1-cyclopropylethyl, 1-chlorocyclopropyl, C r C 4 alkyl, C r C 6 hydroxyalkyl, C 1 -C 4 - alkylcarbonyl, C r C 2 haloalkoxy C 1 -C 2 -alkyl, trimethylsilylC r C 2 -alkyl, monofluorophenyl, or phenyl,
  • R 15 and R 16 also together represent -0-CH 2 -CH (R 18 ) -O-, -O-CH 2 -CH (R 18 ) -CH 2 -, or -O-CH- (2-chlorophenyl) -, R 18 is hydrogen, C 1 -C 4 -alkyl or bromine; Group (4) sulfenamides of the general formula (IV)
  • X is 2-chloro-3-pyridinyl, 1-methylpyrazol-4-yl which is substituted in the 3-position by methyl, trifluoromethyl or difluoroethyl and in the 5-position by hydrogen, fluorine or chlorine, for 4-ethyl 2-ethylamino-1, 3-thiazol-5-yl, for 1-methylcyclohexyl, for 2,2-dichloro-1-ethyl-3-methylcyclopropyl, for 2-fluoro-2-propyl, 3, 4-dichloroisothiazol-5-yl, 5,6-dihydro-2-methyl-1,4-oxathiin-3-yl, 4-methyl-1,2,3-thiadiazol-5-yl, 4,5- dimethyl-2-trimethylsilyl-thiophen-3-yl, L-methylpyrrol-3-yl, which is substituted in the 4-position by methyl or trifluoromethyl and in the 5-position by hydrogen or chlorine, or represents phenyl which is monosub
  • a 6 is CH or N
  • R 20 represents hydrogen, chlorine, cyano, C 1 -C 6 -alkyl, optionally substituted once or twice, identically or differently by chlorine or di (C 1 -C 3 -alkyl) aminocarbonyl
  • R 21 is hydrogen, chlorine or isopropoxy
  • R 22 represents hydrogen, chlorine, hydroxyl, methyl, trifluoromethyl or di (C 1 -C 3 -alkyl) aminocarbonyl
  • R 20 and R 21 also together represent * -CH (CH 3 ) -CH 2 -C (CH 3 ) 2 - or * -CH (CH 3 ) -OC (CH 3 ) 2 -, wherein the bond marked with * is linked to R 20 or out of line for a rest stands;
  • R 24 is methyl, cyclopropyl or 1-propynyl
  • R 25 and R 26 are each hydrogen or together are -O-CF 2 -O-,
  • R 27 is hydrogen, Ci-Gi-alkylaminocarbonyl or 3,5-dimethylisoxazol-4-ylsulfonyl,
  • R 28 is chloro, methoxycarbonylamino, chlorophenyl, furyl or thiazolyl;
  • Group (11) Carbamates of the general formula (DO
  • R is n- or isopropyl
  • R 3Ü is di (C 1 -C 2 -alkyl) amino C 2 -C 4 alkyl or diethoxyphenyl, including salts of these compounds; as well as the carbamate pyribencarb.
  • R and R independently of one another represent hydrogen or methyl
  • R 33 is C r C 14 alkyl (preferably C] 2 -C 14 alkyl), C 5 -C 2 cycloalkyl (preferably C 0 -C 2 -Cycloal- alkyl), phenyl-Ci-C 4 alkyl, which may be substituted in the phenyl moiety by halogen or CpGi-alkyl, or acrylyl which is substituted by chlorophenyl and dimethoxyphenyl;
  • R 34 is chlorine or cyano
  • R 35 is chlorine or nitro
  • R j is chlorine
  • R and R together also represent -O-CF 2 -O-;
  • R 37 is phenyl, phenyl, 2-naphthyl, 1,2,3,4-tetrahydronaphthyl or indanyl unsubstituted or substituted by fluorine, chlorine, bromine, methyl or ethyl;
  • R> 3 y 9 is C 1 -C 6 -alkyl
  • R 4 ⁇ 6 alkenyl stands for Ci-Q-alkyl or C 2 -C
  • R 41 is C r C 6 alkyl
  • R 40 and R 41 also together represent C 4 -C 5 alkanediyl (alkylene) which is monosubstituted or disubstituted by Q-Ce-alkyl,
  • R 42 represents bromine or chlorine, R and R independently of one another represent hydrogen, fluorine, chlorine or methyl,
  • R and R independently of one another represent hydrogen or fluorine, R 45 represents hydrogen, fluorine or methyl, Group (23): iodochromones of the general formula (XV)
  • R " 5 is C r C 6 -alkyl
  • K> 4 ⁇ 9 is C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl or C 2 -C 6 -alkynyl;
  • R is hydrogen or fluorine
  • R 51 is fluorine, chlorine, bromine, methyl, trifluoromethyl, trifluoromethoxy
  • R 52 is hydrogen, fluorine, chlorine, bromine, methyl or trifluoromethyl
  • Het is one of the following radicals Hetl to Het 7:
  • R 53 is iodine, methyl, difluoromethyl or trifluoromethyl
  • R 54 is hydrogen, fluorine, chlorine or methyl
  • R 55 is methyl, difluoromethyl or trifluoromethyl
  • R 56 is chlorine, bromine, iodine, methyl, difluoromethyl or trifluoromethyl
  • R 57 is methyl or trifluoromethyl.
  • Group (25) Sulfonamides (25-1) Amisulbrom Group (26): Thiazolidines (26-1) Flutianil Group (27): Dinitrophenols (27-1) Meptyldinocap
  • the fungicidal action of the active compound combinations according to the invention is substantially higher than the sum of the effects of the individual active compounds. So there is an unpredictable, true synergistic effect and not just an effect supplement.
  • the insecticidal activity of the active compound combinations according to the invention is likewise substantially higher than the sum of the effects of the individual active compounds. So there is an unpredictable, true synergistic effect and not just an effect supplement.
  • the active compound combinations according to the invention contain, in addition to at least one compound of the formula (I), at least one active compound of the abovementioned groups (2) to (27).
  • the active compound combinations according to the invention preferably contain exactly one compound of the formula (I) and exactly one active compound of the groups (2) to (27) listed above. Further preferred are active compound combinations which contain a compound of the formula (I) and two active compounds of the groups (2) to (27) listed above. Also preferred are active compound combinations which comprise two compounds of the formula (I) and one active ingredient of the groups (2) to (27) listed above.
  • preferred subgroups for the compounds of the abovementioned formula (I) are listed in the active compound combinations according to the invention with at least one active compound of the abovementioned groups (2) to (27).
  • R 1 is hydrogen.
  • R 1 is NH 2 .
  • Li of another highlighted group of compounds of formula (I) R 2 is methyl.
  • R 2 is fluorine.
  • a preferred subgroup of the compounds of the formula (I) are those of the formula (I-1)
  • Another preferred subgroup of the compounds of the formula (I) are those of the formula (1-3)
  • Particularly preferred subgroups of the compounds of formula (I) are the respective R or S enantiomers of formulas (I-1A), (MB), (I-2A), (I-2B), (I-3A), ( I-3B), (1-4A), (I-4B):
  • Formula (II) encompasses the following preferred combination partners of group (2): (2-1) azoxystrobin (known from EP-A 0 382 375) of the formula
  • the formula (HI) comprises the following preferred combination partners of group (3):
  • the formula (IV) comprises the following preferred combination partners of group (4):
  • Preferred combination partners of group (5) are
  • Penthiopyrad (known from EP-A 0 737 682) of the formula
  • Preferred combination partners of group (7) are (7-1) Mancozeb (known from DE-A 12 34 704) with the IUPAC name Manganese ethylenebis (dithiocarbamate) (polymeric) complex with zinc
  • Zinc ammoniate ethylenebis (dithiocarbamate) - poly (ethylenethiuram disulfide)
  • the formula (VI) comprises the following preferred combination partners of the group (8):
  • the formula (VII) comprises the following preferred combination partners of the group (9):
  • the formula (VIII) comprises the following preferred combination partners of group (10):
  • the formula (IX) comprises the following preferred combination partners of the group (11):
  • the formula (X) comprises the following preferred combination partners of group (15):
  • Formula (XI) comprises the following preferred combination partners of group (16): (16-1) fenpiclonil (known from EP-A 0 236 272) of the formula
  • Preferred combination partners of group (17) are (17-1) fosetyl-Al (known from DE-A 24 56 627) of the formula (17-2) Phosphonic acid of the formula
  • the formula (XII) comprises the following preferred combination partners of group (18), which are known from WO 96/23793 and may each be present as (E) - or fZ ⁇ -isomers. Compounds of the formula (XII) can therefore be present as a mixture of different isomers or else in the form of a single isomer. Preference is given to compounds of the formula (XII) in the form of their (E) -isomer:
  • Metrafenone (known from EP-A 0 897 904) of the formula
  • Preferred combination partners of group (20) are:
  • Preferred combination partners of the group (21) are:
  • Preferred combination partners of group (22) are (22-1) 5-chloro-N - [ ⁇ S; -2,2,2-trifluoro-1-methylethyl] -6- (2,4,6-trifluorophenyl) [l , 2,4] triazolo [l, 5-a] - pyrimidin-7-amine (known from US 5,986,135) of the formula
  • Preferred combination partners of group (24) are (24-1) N-CS''-dichloro-S-fluoro-1J'-biphenyl-Z-y-O-S-cydifluoromethyl-1-methyl-1H-pyrazole-1-carboxamide (known from WO 03/070705) formula
  • Meptyldinocap (RS) -2- (1-methylheptyl) -4,6-dinitrophenyl crotonate (Known from ': Meptyldinocap: a new active substance for control of powdery mildew Hufnagl, AE; Distler, B .; Bacci, L .; Valverde, P. Dow AgroSciences, Mougins, Fr. International Plant Protection Congress, Proceedings, 16th, Glasgow, United Kingdom, Oct. 15-18, 2007 (2007), 1 32-39 Publisher: British Crop Production Council, Alton, UK)
  • the compound (6-7) carpropamid has three asymmetric substituted carbon atoms.
  • the compound (6-7) may therefore be present as a mixture of different isomers or in the form of a single component. Particularly preferred are the compounds
  • the active compound combinations according to the invention preferably comprise one of the compounds of the formula (I) which is selected from the group consisting of the compounds of the abovementioned formulas (I-1), (1-2), (1-3) or (1-4 ), and an active ingredient selected from the above-mentioned groups (2) to (27).
  • the active compound combinations according to the invention also particularly preferably contain one of the compounds of the formula (I) which is selected from the group consisting of the compounds of the abovementioned formulas (I-1) or (1-4) and an active compound selected from the abovementioned groups (2) to (27).
  • the active compound combinations according to the invention very particularly preferably contain the compound of the formula (I-1) and an active compound selected from the abovementioned groups (2) to (27).
  • the active compound combinations according to the invention contain the compound of the formula (1-4) and an active compound selected from the abovementioned groups (2) to (27).
  • the following active substances are particularly preferred:
  • very particularly preferred embodiments of the invention each provide combinations of enantiomerically pure compounds of formula (I-1), i. the compounds of the formulas (I-1A) and (I-1B) with an active compound of groups 2 to 27 according to Table 1, in particular preferred embodiments represent such combinations which the compound of formula (I-IA) and an active ingredient of Groups 2 to 27 according to Table 1 included.
  • very particularly preferred embodiments according to the invention each represent combinations of enantiomerically pure compounds of the formula (I-2), ie the compounds of the formulas (I-2A) and (I-2B) with an active compound of groups 2 to 27 according to Table 2, in particular Preferred embodiments are those combinations which contain the compound of the formula (I-2A) and an active compound of the groups 2 to 27 according to Table 2. Furthermore, the combinations listed in Table 3 are obtained, each combination representing a preferred embodiment according to the invention.
  • each combination represents combinations of enantiomerically pure compounds of the formula (1-3), ie the compounds of the formulas (I-3A) and (I-3B) with an active compound of groups 2 to 27 according to Table 3, in particular Preferred embodiments are those combinations which contain the compound of the formula (I-3A) and an active compound of the groups 2 to 27 according to Table 3. Furthermore, one obtains the combinations listed in Table 4, each combination represents a preferred embodiment of the invention itself.
  • Also very particularly preferred embodiments according to the invention each represent combinations of enantiomerically pure compounds of the formula (1-4), ie the compounds of the formulas (I-4A) and (I-4B) with an active compound of groups 2 to 27 according to Table 4, in particular Preferred embodiments are those combinations which contain the compound of the formula (I-4A) and an active compound of the groups 2 to 27 according to Table 4.
  • the active compound combinations according to the invention comprise, in addition to a compound of the formula (I), at least one active compound of the groups (2) to (27). You may also contain other fungicidal Zumischkomponenten.
  • the combinations according to the invention contain compounds of the formula (I) and a combination partner from one of the groups (2) to (27) in the mixing ratios exemplified in the table below.
  • the mixing ratios are based on weight ratios. The ratio is to be understood as compound of the formula (I): combination partner
  • Group (2) Strobilurins 125: 1 to 1: 2000 50: 1 to 1 1000
  • Group (3) triazoles 125: 1 to 1: 2000 50: 1 to 1: 1000
  • Group (9) Anilino-pyrimidines 500: 1 to 1100 250: 1 to 1 50
  • Group (11) Carbamate 500: 1 to 1100 250: 1 to 1 50
  • Group (12) dicarboximides 500: 1 to 1100 250: 1 to 1 50
  • Dithianone 500 1 to 1 100 250 1 to 1 50
  • Metrafenone 125 1 to 1 2000 50 1 to 1 1000
  • Triazolopyrimidines 125 1 to 1 2000 50 1 to 1 1000
  • the compounds of the formula (I) or the active compounds from the abovementioned groups (2) to (27) having at least one basic center are capable of forming, for example, acid addition salts, for example with strong inorganic acids such as mineral acids, eg perchloric acid, sulfuric acid , Nitric acid, nitrous acid, a phosphoric acid or a hydrohalic acid, with strong organic carboxylic acids such as unsubstituted or substituted, eg halogen-substituted, C r C 4 alkanecarboxylic acids, eg acetic acid, saturated or unsaturated dicarboxylic acids, eg oxalic acid, malonic acid, succinic acid, maleic acid, Fumaric acid and phthalic acid, hydroxycarboxylic acids, for example ascorbic acid, lactic acid, malic acid, tartaric acid and citric acid, or benzoic acid, or with organic sulfonic acids such as unsubstituted or substituted, for example
  • the compounds of the formula (I) or the active compounds from the abovementioned groups (2) to (27) having at least one acidic group are capable of forming, for example, salts with bases, for example metal salts such as alkali metal or alkaline earth metal salts, eg Sodium, potassium or magnesium salts, or salts with ammonia or an organic amine such as morpholine, piperidine, pyrrolidine, a lower mono-, di- or trialkylamine, for example ethyl, diethyl, triethyl or dimethylpropylamine, or a lower mono- , Di- or trihydroxyalkylamine, for example mono-, di- or triethanolamine.
  • bases for example metal salts such as alkali metal or alkaline earth metal salts, eg Sodium, potassium or magnesium salts, or salts with ammonia or an organic amine such as morpholine, piperidine, pyrrolidine, a lower mono-, di- or trialkylamine, for example
  • Agrochemically advantageous salts are preferred in the context of the invention.
  • any reference to the free compounds of formula (I ) or to free active compounds from the abovementioned groups (2) to (27) or their salts so that the corresponding salts or the free compounds of the formula (I) or the free active compounds from the groups listed above ( 2) to (27), if appropriate and appropriate.
  • This also applies correspondingly to tautomers of the compounds of the formula (I) or of the active compounds from the abovementioned groups (2) to (27) and to their salts.
  • active substance combination stands for different combinations of compounds of the formula (I) and active compounds from the abovementioned groups (2) to (27), for example in the form of a single ready-mix ("ready-mix").
  • ready-mix a combined spray mixture composed of separate formulations of the individual active ingredients, eg a tank mix or in a combined use of the individual active substances, if they are applied sequentially, for example successively within a reasonably short period of time, eg a few hours or days
  • the order of application of the compounds is the Formula (I) and the active compounds from the above-mentioned groups (2) to (27) are not critical to the practice of the present invention.
  • the application rate of the active compound combinations according to the invention is in the treatment of parts of plants, for example leaves from 0.1 to 1000 g / ha, preferably from 10 to 500 g / ha, particularly preferably from 50 to 300 g / ha (when used by pouring or drops the application rate can even be reduced, especially if inert substrates such as rockwool or perlite are used); in the seed treatment from 1 to 2000 g per 100 kg of seed, preferably from 2 to 1000 g per 100 kg of seed, more preferably from 3 to 750 g per 100 kg of seed, most preferably from 5 to 500 g per 100 kg of seed; in the soil treatment from 0.1 to 5000 g / ha, preferably from 1 to 1000 g / ha.
  • the active compound combinations according to the invention can be used to protect plants within a certain period of time after the treatment against attack by phytopathogenic fungi and / or animal pests.
  • the period of time within which protection is afforded generally ranges from 1 to 28 days, preferably from 1 to 14 days, more preferably from 1 to 10 days, most preferably from 1 to 7 days after treatment of the plants with the active ingredients or up to 200 days after seed treatment.
  • the active compound combinations according to the invention are suitable for plant tolerance, favorable warm-blooded toxicity and good environmental compatibility for the protection of plants and plant organs, for increasing crop yields, improving the quality of the crop and for controlling phytopathogenic fungi such as Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes, etc., and animal pests, in particular insects, arachnids, helminths, nematodes and molluscs, which are found in agriculture, horticulture, livestock, forestry, gardens and recreational facilities, in the protection of materials and materials and in the hygiene sector.
  • phytopathogenic fungi such as Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes, etc.
  • animal pests in
  • the active compound combinations according to the invention have very good fungicidal properties and can be used for controlling phytopathogenic fungi, such as Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes, etc.
  • the active compound combinations according to the invention are particularly suitable for controlling Phytophthora infestans, Plasmopara viticola and Botrytis cinerea.
  • Fungicides can be used in crop protection to combat Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in crop protection for controlling Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • Blumeria species such as Blumeria graminis
  • Podosphaera species such as Podosphaera leucotricha
  • Sphaerotheca species such as Sphaerotheca fuliginea
  • Uncinula species such as Uncinula necator
  • Gymnosporangium species such as, for example, Gymnosporangium sabinae Hemileia species, such as, for example, Hemileia vastatrix;
  • Phakopsora species such as Phakopsora pachyrhizi and Phakopsora meibomiae
  • Puccinia species such as Puccinia recondita
  • Uromyces species such as Uromyces appendicularus
  • Bremia species such as Bremia lactucae
  • Peronospora species such as Peronospora pisi or P. brassicae;
  • Phytophthora species such as Phytophthora infestans
  • Plasmopara species such as Plasmopara viticola
  • Pseudoperonospora species such as Pseudoperonospora humuli or Pseudoperonospora cubensis;
  • Pythium species such as Pythium ultimum
  • Alternaria species such as Alternaria solani;
  • Cercospora species such as Cercospora beticola
  • Cladiosporum species such as Cladiosporium cucumerinum
  • Cochliobolus species such as Cochliobolus sativus
  • Colletotrichum species such as Colletotrichum lindemuthanium
  • Cycloconium species such as cycloconium oleaginum
  • Diaporthe species such as Diaporthe citri;
  • Elsinoe species such as Elsinoe fawcettii
  • Gloeosporium species such as, for example, Gloeosporium laeticolor
  • Glomerella species such as Glomerella cingulata
  • Guignardia species such as Guignardia bidwelli;
  • Leptosphaeria species such as Leptosphaeria maculans
  • Magnaporthe species such as Magnaporthe grisea
  • Mycosphaerella species such as Mycosphaerelle graminicola
  • Phaeosphaeria species such as Phaeosphaeria nodorum
  • Pyrenophora species such as, for example, Pyrenophora teres
  • Ramularia species such as Ramularia collo-cygni
  • Rhynchosporium species such as Rhynchosporium secalis
  • Septoria species such as Septoria apii
  • Typhula species such as Typhula incarnata
  • Venturia species such as Venturia inaequalis
  • Corticium species such as Corticium graminearum
  • Fusarium species such as Fusarium oxysporum
  • Gaeumannomyces species such as Gaeumannomyces graminis
  • Rhizoctonia species such as Rhizoctonia solani
  • Tapesia species such as Tapesia acuformis
  • Thielaviopsis species such as Thielaviopsis basicola
  • Ear and panicle diseases caused by e.g.
  • Alternaria species such as Alternaria spp .
  • Aspergillus species such as Aspergillus flavus
  • Cladosporium species such as Cladosporium spp .
  • Claviceps species such as Claviceps purpurea
  • Fusarium species such as Fusarium culmorum
  • Gibberella species such as Gibberella zeae
  • Monographella species such as Monographella nivalis
  • Sphacelotheca species such as Sphacelotheca reiliana
  • Tilletia species such as Tilletia caries
  • Urocystis species such as Urocystis occulta; Ustilago species such as Ustilago nuda; Fruit rot caused by, for example, Aspergillus species such as Aspergillus flavus; Botrytis species, such as Botrytis cinerea; Penicillium species such as Penicillium expansum; Sclerotinia species, such as Sclerotinia sclerotiorum; Verticilium species such as Verticilium alboatrum;
  • Phytophthora species such as Phytophthora cactorum
  • Pythium species such as Pythium ultimum
  • Rhizoctonia species such as Rhizoctonia solani
  • Sclerotium species such as Sclerotium rolfsii; Cancers, galls and witches brooms caused by e.g.
  • Nectria species such as Nectria galligena
  • Monilinia species such as Monilinia laxa
  • Esca species such as Phaemoniella clamydospora
  • Botrytis species such as Botrytis cinerea
  • Diseases of plant tubers caused by eg Rhizoctonia species, such as Rhizoctonia solani
  • Diseases caused by bacterial pathogens such as Xanthomonas species, such as Xanthomonas campestris pv. Oryzae
  • Pseudomonas species such as Pseudomonas syringae pv. Lachrymans
  • Erwinia species such as Erwinia amylovora
  • the following diseases of soybean beans can be controlled: fungal diseases on leaves, stems, pods and seeds caused by e.g. Alternaria leaf spot (Alternaria spec. Atrans tenuissima), Anthracnose (Colletotrichum gloeosporoides dematium var.
  • Black Root Red (Calonectria crotalariae), Charcoal Red (Macrophomina phaseolina), Fusarium Blight or Wiit, Root Red, and Pod and Collar Red (Fusarium oxysporum, Fusarium orthoceras, Fusarium semitectum, Fusarium equiseti), Mycoleptodiscus Root Red (Mycoleptodiscus terrestris), Neocosmospora (Neocosmopspora vasinfecta), Pod and Star Blight (Diaporthe phaseolorum), Stem Canker (Diaporthe phaseolorum var.
  • Phytophthora red (Phytophthora megasperma), Brown Stem Red (Phialophora gregata), Pythium Red (Pythium aphanidermatum, Pythium irregular, Pythium Debaryanum, Pythium myriotylum, Pythium ultimum), Rhizoctonia Root Red, Stem Decay, and Damping Off (Rhizoctonia solani), Sclerotinia Stem Decay (Sclerotinia sclerotiorum), Sclerotinia Southern Blight (Sclerotinia rolfsii), Thielaviopsis Root Red (Thielaviopsis basicola).
  • the active compound combinations according to the invention can be used particularly successfully for combating cereal diseases, such as, for example, against Puccinia species and diseases in the wine, fruit and vegetable growing, such. against Botrytis, Venturia or Alternaria species.
  • the active compound combinations according to the invention also have very good antifungal effects. They have a very broad antimycotic spectrum of activity, in particular against dermatophytes and yeasts, mold and diphasic fungi (eg against Candida species such as Candida albicans, Candida glabrata) and Epidermophyton floccosum, Aspergillus species such as Aspergillus niger and Aspergillus fumigatus, Trichophyton species such as Trichophyton mentagrophytes, microsporon species such as Microsporon canis and audouinii.
  • Candida species such as Candida albicans, Candida glabrata
  • Epidermophyton floccosum Aspergillus species such as Aspergillus niger and Aspergillus fumigatus
  • Trichophyton species such as Trichophyton mentagrophytes
  • microsporon species such as Microsporon canis and audouinii.
  • the list of these fungi is by no means a limitation of the
  • the active compound combinations according to the invention also have very good insecticidal effects. They have a very broad insecticidal activity spectrum, in particular against the following animal pests:
  • Anoplura e.g. Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Trichodectes spp.
  • arachnids e.g. Acarus siro, Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia praetiosa, Chorioptes spp., Dermanyssus gallinae, Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp.
  • Starchus spp. Symphyletes spp., Tenebrio molitor, Tribolium spp., Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp.
  • Gastropoda e.g. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Succinea spp.
  • helminths from the class of helminths, for example, Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris lubricoides, Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp , Dictyocaulus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Lo
  • protozoa such as Eimeria
  • Eimeria protozoa
  • Pseudaletia spp., Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia ni, Spodoptera spp., Thermesia gemmatalis, Tinea pellionella, Tineola bisselliella, Tortrix viridana, Trichoplusia spp., Tuta spp.
  • Orthoptera e.g. Acheta domesticus, Blatta orientalis, Blattella germanica, Gryllotalpa spp., Leucophaea maderae, Locusta spp., Melanoplus spp., Periplaneta americana, Schistocerca gregaria.
  • siphonaptera e.g. Ceratophyllus spp., Xenopsylla cheopis.
  • Symphyla e.g. Scutigerella immaculata.
  • Thysanoptera e.g. Basothrips biformis, Enneothrips flavens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Kakothrips spp., Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamoni, Thrips spp.
  • Thysanura e.g. Lepisma saccharina.
  • the plant parasitic nematodes include, for example, Anguina spp., Aphelenchoides spp., Belonoaimus spp., Bursaphelenchus spp., Ditylenchus dipsaci, Globodera spp., Heliocotylenchus spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus similis, Rotylenchus spp., Trichodorus spp., Tylenchorhynchus spp., Tylenchulus spp., Tylenchulus semipenetrans, Xiphinema spp.
  • the active compound combinations according to the invention can be used to protect industrial materials against infestation and destruction by undesired microorganisms.
  • Technical materials as used herein mean non-living materials that have been prepared for use in the art.
  • technical materials to be protected from microbial change or destruction by the active compounds of the invention may be adhesives, glues, paper and cardboard, textiles, leather, wood, paints and plastics, coolants, and other materials that may be infested or degraded by microorganisms .
  • materials to be protected are also parts of production plants, such as cooling water circuits, called, which can be affected by the proliferation of microorganisms.
  • technical materials which may be mentioned are preferably adhesives, glues, papers and cartons, leather, wood, paints, cooling lubricants and heat transfer fluids, particularly preferably wood.
  • microorganisms that can cause degradation or a change in the technical materials, for example, bacteria, fungi, yeasts, algae and mucus organisms may be mentioned.
  • the active compound combinations according to the invention preferably act against fungi, in particular molds, wood-discolouring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • Aspergillus such as Aspergillus niger
  • Chaetomium such as Chaetomium globosum
  • Coniophora like Coniophora puetana,
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum
  • Polyporus such as Polyporus versicolor
  • Aureobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma such as Trichoderma viride
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active compound combinations according to the invention have a high insecticidal activity against insects which destroy industrial materials.
  • insects By way of example and preferably without limiting however, the following insects are mentioned:
  • Hymenoptera such as Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.
  • Termites such as Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
  • Non-living materials such as preferably plastics, adhesives, glues, papers and cardboard, leather, wood, wood processing products and paints.
  • the material to be protected from insect attack is wood and woodworking products.
  • Wood and woodworking products which can be protected by the active substance combinations according to the invention are to be understood by way of example: lumber, wooden beams, railway sleepers, bridge parts, boat jetties, wooden vehicles, crates, pallets, containers, telephone poles, wooden cladding, wooden windows and doors, plywood, Chipboard, carpentry or wood products, which are generally used in building or in the joinery.
  • the WirkstoflEkombinationen can be used as such, in the form of concentrates or generally customary formulations such as powders, granules, solutions, suspensions, emulsions or pastes.
  • the formulations mentioned can be prepared in a manner known per se, e.g. by mixing the active compounds with at least one solvent or diluent, emulsifier, dispersing and / or binding or fixing agent, water repellent, optionally siccatives and UV stabilizers and optionally dyes and pigments, and further processing aids.
  • the insecticidal active ingredient combinations or concentrates used for the protection of wood and wood-based materials contain the active ingredient according to the invention in a concentration of 0.0001 to 95 wt .-%, in particular 0.001 to 60 wt .-%.
  • the amount of active ingredient combinations or concentrates used depends on the nature and occurrence of the insects and on the medium.
  • the optimal amount used can be determined in each case by test series. In general, however, it is sufficient to use 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, of the active ingredient, based on the material to be protected.
  • insects in particular insects, arachnids and mites, which are used in enclosed spaces, such as, for example, apartments, factory halls, offices, vehicle cabins and the like. occurrence. They can be used to control these pests in household insecticide products. They are effective against sensitive and resistant species and against all stages of development. These pests include:
  • Acarina e.g. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae.
  • Opiliones eg Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium.
  • the Opiliones eg Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium.
  • the Isopoda eg Oniscus asellus, Porcellio scaber.
  • Diplopoda eg Blaniulus guttulatus, Polydesmus spp.
  • Chilopoda eg Geophilus spp.
  • Zygentoma e.g. Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus.
  • the Blattaria e.g. Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa.
  • Saltatoria e.g. Acheta domesticus.
  • Dermaptera e.g. Forf ⁇ cula auricularia.
  • Isoptera e.g. Kalotermes spp.
  • Reticulitermes spp. From the order of Psocoptera e.g. Lepinatus spp., Liposcelis spp.
  • Lepidoptera e.g. Achroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
  • Ctenocephalides canis Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis.
  • Hymenoptera From the order of the Hymenoptera, for example, Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum. From the order of the Anoplura eg Pediculus humanus capitis, Pediculus humanus co ⁇ oris, Phthirus pubis. From the order of Heteroptera eg Cimex hemipterus, Cimex lectularius, Rhodinus prolixus, Triatoma infestans.
  • Application is in aerosols, non-pressurized sprays, e.g. Pump and atomizer sprays, misting machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-less or passive evaporation systems, moth papers, moth cakes and moth gels, as granules or dusts, in straw baits or bait stations.
  • Pump and atomizer sprays misting machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-less or passive evaporation systems, moth papers, moth cakes and moth gels, as granules or dusts, in straw baits or bait stations.
  • the active compound combinations of the invention not only against plant, hygiene and storage pests, but also in the veterinary sector against animal parasites (ecotasparasites) such as ticks, leather ticks, mange mites, running mites, flies (stinging and licking), parasitic fly larvae, lice, Hair pieces, featherlings and fleas.
  • animal parasites ecotasparasites
  • ticks leather ticks, mange mites, running mites, flies (stinging and licking), parasitic fly larvae, lice, Hair pieces, featherlings and fleas.
  • Anoplurida e.g. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp.
  • Trimenopon spp. Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp.
  • Nematocerina and Brachycerina e.g. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp , Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Glossina spp., Chrysomyia spppp
  • siphonaptrida e.g. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp.
  • heteropterid e.g. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.
  • Actinedida Prostigmata
  • Acaridida e.g. Acarapis spp., Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp , Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp.
  • the active compound combinations according to the invention are also suitable for controlling arthropods which are farm animals, such as e.g. Cattle, sheep, goats, horses, pigs, donkeys, camels, buffaloes, rabbits, chickens, turkeys, ducks, geese, bees, other pets such as e.g. Dogs, cats, caged birds, aquarium fish and so-called experimental animals, such. Hamsters, guinea pigs, rats and mice.
  • arthropods are farm animals, such as e.g. Cattle, sheep, goats, horses, pigs, donkeys, camels, buffaloes, rabbits, chickens, turkeys, ducks, geese, bees, other pets such as e.g. Dogs, cats, caged birds, aquarium fish and so-called experimental animals, such. Hamsters, guinea pigs, rats and mice.
  • the application of the active compound combinations according to the invention is done in the veterinary sector in a known manner by enteral administration in the form of, for example, tablets, capsules, infusions, Drenchen, granules, pastes, BoIi, the feed-through process, suppositories, by parenteral administration, such as by Injections (intramuscular, subcutaneous, intravenous, intraperitoneal, etc.), implants, by nasal application, by dermal application in the form of, for example, dipping or bathing (dipping), spraying (spray), pouring (pour-on and spot-on), washing , powdering and with the aid of active substance-containing moldings, such as collars, ear tags, tail marks, limb bands, holsters, marking devices, etc.
  • enteral administration in the form of, for example, tablets, capsules, infusions, Drenchen, granules, pastes, BoIi, the feed-through process, suppositories
  • parenteral administration such as by
  • the active ingredient combinations as formulations for example, powders, emulsions, flowable agents
  • the active ingredients in an amount of 1 to 80% by weight apply directly or after 100 to 10 000 dilution or use as a chemical bath.
  • the active compound combinations according to the invention may optionally also be used in certain concentrations or application rates as herbicides, safeners, growth regulators or
  • Fungicides antimycotics, bactericides, viricides (including anti-viral agents) or as Agents against MLO (Mycoplasma-like-organism) and RLO (Rickettsia-like-organism) are used.
  • the active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, scattering granules, suspension-emulsion concentrates, active substance-impregnated natural products, Active substance-impregnated synthetic substances, fertilizers and ultrafine encapsulations in polymeric substances.
  • customary formulations such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, scattering granules, suspension-emulsion concentrates, active substance-impregnated natural products, Active substance-impregnated synthetic substances, fertilizers and ultrafine encapsulations in polymeric substances.
  • formulations are prepared in a known manner, e.g. by mixing the active compounds with extenders, ie liquid solvents and / or solid carriers, if appropriate using surface-active agents, ie emulsifiers and / or dispersants and / or foam-forming agents.
  • extenders ie liquid solvents and / or solid carriers
  • surface-active agents ie emulsifiers and / or dispersants and / or foam-forming agents.
  • Excipients which can be used are those which are suitable for imparting special properties to the composition itself and / or preparations derived therefrom (for example spray liquor, seed dressing), such as certain technical properties and / or specific biological properties.
  • Typical auxiliaries are: extenders, solvents and carriers.
  • Suitable extenders include, for example, water, polar and non-polar organic chemical liquids, for example from the classes of aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), alcohols and polyols (which may also be substituted, etherified and / or esterified ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly) ethers, simple and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, sulfones and sulfoxides (such as dimethyl sulfoxide).
  • aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
  • alcohols and polyols which may also be substituted, etherified and / or
  • organic solvents can also be used as auxiliary solvents.
  • Suitable liquid solvents are essentially: aromatics, such as xylene, toluene, or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethyl sulfoxide, and water.
  • the carrier means a natural or synthetic, organic or inorganic substance which may be solid or liquid, with which the active ingredients are mixed or combined for better applicability, in particular for application to plants or plant parts or seeds.
  • the solid or liquid carrier is generally inert and should be useful in agriculture.
  • Suitable solid or liquid carriers are: e.g. Ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and silicates, as solid carriers for granules are suitable: e.g. crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as paper, sawdust, coconut shells, corn cobs and tobacco stems; suitable emulsifiers and / or foam formers are: e.g.
  • nonionic and anionic emulsifiers such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, e.g. Alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulfonates and protein hydrolysates;
  • suitable dispersants are non-ionic and / or ionic substances, e.g.
  • Adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-type polymers such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids such as cephalins and lecithins and synthetic phospholipids may be used in the formulations.
  • Dyes such as inorganic pigments such as iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • Other additives may be fragrances, mineral or vegetable optionally modified oils, waxes and nutrients (also trace nutrients), such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • Stabilizers such as cold stabilizers, preservatives, antioxidants, light stabilizers or other chemical and / or physical stability-improving agents may also be present.
  • the active substance content of the application forms prepared from the commercial formulations can vary within wide ranges.
  • the active ingredient concentration of the use forms is in the range of 0.00000001 to 97 wt .-% of active ingredient, preferably in the range of 0.0000001 to 97 wt .-%, particularly preferably in the range of 0.000001 to 83 wt .-% or 0, 000001 to 5 wt .-% and most preferably in the range of 0.0001 to 1 wt .-%.
  • the active compound combinations according to the invention can be present in their commercially available formulations and in the formulations prepared from these formulations in admixture with other active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth-regulating substances, herbicides, safeners, fertilizers or semiochemicals.
  • active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth-regulating substances, herbicides, safeners, fertilizers or semiochemicals.
  • a mixture with other known active ingredients, such as herbicides, fertilizers, growth regulators, safeners, semiochemicals, or with agents for improving the plant properties is possible.
  • the active compound combinations according to the invention can furthermore be present in mixtures with synergists when used as fungicides and / or insecticides in their commercial formulations and in the forms of use prepared from these formulations.
  • Synergists are compounds that increase the effect of the active ingredients without the added synergist itself having to be active.
  • the active compound combinations according to the invention can also be present in their commercial formulations and in the forms of use prepared from these formulations in mixtures with inhibitors which inhibit degradation of the active substance after application in the environment of the plant, on the surface of plant parts or in plant tissues.
  • the application is done in a custom forms adapted to the application forms.
  • all plants and parts of plants can be treated.
  • plants are understood as meaning all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant breeders' rights.
  • Plant parts are to be understood as meaning all aboveground and underground parts and organs of the plants, such as shoot, leaf, flower and root, by way of example leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds and roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, for example fruits, seeds, cuttings, tubers, rhizomes, offshoots, seeds, bulbs, sinkers and shoots.
  • the treatment according to the invention of the plants and plant parts with the active ingredient combinations takes place directly or by acting on their environment, habitat or storage space according to the usual treatment methods, e.g. by dipping, spraying, evaporating, atomizing, spreading, brushing, injecting and in propagating material, in particular in seeds, further by single or multilayer coating.
  • the active ingredient combinations can be prepared before the treatment by mixing the individual active ingredients.
  • the treatment is carried out successively by using first a compound of the formula (I) followed by the treatment with an active compound of the groups (2) to (27).
  • plants which can be treated according to the invention mention may be made of the following: cotton, flax, grapevine, fruits, vegetables, such as Rosaceae sp. (For example, pomes such as apple and pear, but also stone fruits such as apricots, cherries, almonds and peaches and soft fruits such
  • Rubiaceae sp. for example, coffee
  • Theaceae sp. Sterculiceae sp.
  • Rutaceae sp. for example, lemons, organs and grapefruit
  • Solanaceae sp. for example
  • Tomatoes Tomatoes
  • Liliaceae sp. Asteraceae sp. (for example, lettuce), Umbelliferae sp., Cruciferae sp.,
  • Papilionaceae sp. for example, peas
  • Main crops such as Gramineae sp.
  • Asteraceae sp. for example sunflower
  • Brassicaceae sp. for example, white cabbage, red cabbage, Broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes and rape, mustard, horseradish and cress
  • Fabacae sp. for example, bean, peanuts
  • Papilionaceae sp. for example, soybean
  • Solanaceae sp. for example potatoes
  • Chenopodiaceae sp. for example, sugar beet, fodder beet, Swiss chard, beet
  • the treatment method according to the invention can be used for the treatment of genetically modified organisms (GMOs), eg. As plants or seeds are used.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • the term "heterologous gene” essentially refers to a gene which is provided or assembled outside the plant and which, when introduced into the nuclear genome, chloroplast genome or hypochondriacal genome, imparts new or improved agronomic or other properties to the transformed plant Expressing protein or polypeptide or that it is downregulating or shutting down another gene present in the plant or other genes present in the plant (for example by antisense technology, cosuppression technology or RNAi technology [RNA Interference]).
  • a heterologous gene present in the genome is also referred to as a transgene.
  • a transgene defined by its specific presence in the plant genome is referred to as a transformation or transgenic event.
  • the treatment according to the invention can also lead to superadditive (“synergistic") effects.
  • the following effects are possible, which go beyond the expected effects: reduced application rates and / or extended spectrum of action and / or increased efficacy of the active ingredients and compositions that can be used according to the invention, better plant growth, increased tolerance to high or low
  • Temperatures increased tolerance to drought or water or soil salinity, increased flowering, harvest relief, ripening, higher yields, larger fruits, greater plant height, intense green color of the leaf, earlier flowering, higher quality and / or higher nutritional value of the harvested products, higher sugar concentration in the fruits, better storage and / or processability of the harvested products.
  • the active compound combinations according to the invention can also exert a strengthening effect on plants. They are therefore suitable for mobilizing the plant defense system against attack by undesirable phytopathogenic fungi and / or microorganisms and / or viruses. This may possibly be one of the reasons for the increased Effectiveness of the combinations according to the invention, for example against fungi.
  • Plant-strengthening (resistance-inducing) substances in the present context should also mean those substances or combinations of substances which are able to stimulate the plant defense system such that the treated plants, when subsequently inoculated with undesirable phytopathogenic fungi and / or microorganisms and / or viruses a considerable degree of resistance to these unwanted phytopathogenic fungi and / or microorganisms and / or viruses.
  • phytopathogenic fungi, bacteria and viruses are understood to be undesirable phytopathogenic fungi and / or microorganisms and / or viruses.
  • the substances according to the invention can therefore be employed for the protection of plants against attack by the mentioned pathogens within a certain period of time after the treatment.
  • the period of time over which a protective effect is achieved generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active substances.
  • Plants and plant varieties which are preferably treated according to the invention include all plants which have genetic material conferring on these plants particularly advantageous, useful features (whether obtained by breeding and / or biotechnology).
  • Plants and plant varieties which are also preferably treated according to the invention are resistant to one or more biotic stressors, i. H. These plants have an improved defense against animal and microbial pests such as nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and / or viroids.
  • Plants and plant varieties which can also be treated according to the invention are those plants which are resistant to one or more abiotic stress factors.
  • Abiotic stress conditions may include, for example, drought, cold and heat conditions, osmotic stress, waterlogging, increased soil salinity, increased exposure to minerals, ozone conditions, high light conditions, limited availability of nitrogen nutrients, limited availability of phosphorous nutrients, or avoidance of shade.
  • Plants and plant varieties which can also be treated according to the invention are those plants which are characterized by increased yield properties.
  • An increased yield can in these plants z. B. based on improved plant physiology, improved plant growth and improved plant development, such as water efficiency, water retention efficiency, improved nitrogen utilization, increased carbon assimilation, improved photosynthesis, increased germination and accelerated Abreife.
  • Yield can be further influenced by improved plant architecture (under stress and non-stress conditions), including early flowering, control of flowering for the production of hybrid seed, seedling vigor, plant size, internode count and distance, rooting, seed size, fruit size, pod size, pod or ear number, number of seeds per pod or ear, seed mass, increased seed filling, reduced seed drop , reduced pod popping and stability.
  • Other yield-related traits include seed composition such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction of nontoxic compounds, improved processability, and improved shelf life.
  • Plants which can be treated according to the invention are hybrid plants which already express the properties of heterosis or hybrid effect, which generally leads to higher yield, higher vigor, better health and better resistance to biotic and abiotic stress factors.
  • Such plants are typically produced by crossing an inbred male sterile parental line (the female crossover partner) with another inbred male fertile parent line (the male crossbred partner).
  • the hybrid seed is typically harvested from the male sterile plants and sold to propagators.
  • Pollen sterile plants can sometimes be produced (eg in maize) by delaving (ie mechanical removal of the male reproductive organs or the male flowers); however, it is more common for male sterility to be due to genetic determinants in the plant genome.
  • cytoplasmic male sterility have been described, for example, for Brassica species (WO 1992/005251, WO 1995/009910, WO 1998/27806, WO 2005/002324, WO 2006/021972 and US 6,229,072).
  • pollen sterile plants can also be obtained using plant biotechnology methods such as genetic engineering.
  • a particularly convenient means of producing male-sterile plants is described in WO 89/10396, wherein, for example, a ribonuclease such as a barnase is selectively expressed in the tapetum cells in the stamens. The fertility can then be restorated by expression of a ribonuclease inhibitor such as barstar in the tapetum cells (eg WO 1991/002069).
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering which can be treated according to the invention are herbicidally tolerant plants, ie plants that have been tolerated to one or more given herbicides. Such plants can be obtained either by genetic transformation or by selection of plants containing a mutation conferring such herbicide tolerance.
  • Herbicide-tolerant plants are, for example, glyphosate-tolerant plants, i. H. Plants tolerant to the herbicide glyphosate or its salts.
  • glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • AroA gene mutant CT7 of the bacterium Salmonella typhimurium (Comai et al., Science (1983), 221, 370-371)
  • the CP4 gene of the bacterium Agrobacterium sp. Barry et al., Curr Topics Plant Physiol.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene coding for a glyphosate oxidoreductase enzyme as described in US 5,776,760 and US 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene encoding a glyphosate acetyltransferase enzyme as described in, e.g. As WO 2002/036782, WO 2003/092360, WO 2005/012515 and WO 2007/024782 is encoded. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described, for example, in WO 2001/024615 or WO 2003/013226.
  • herbicide-resistant plants are, for example, plants which have been tolerated to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate. Such plants can be obtained by expressing an enzyme which detoxifies the herbicide or a mutant of the enzyme glutamine synthase, which is resistant to inhibition.
  • an effective detoxifying enzyme is, for example, an enzyme encoding a phosphinotricin acetyltransferase (such as the bar or pat protein of Streptomyces species).
  • Plants expressing an exogenous phosphinotricin acetyltransferase are described, for example, in US 5,561,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 and US 7,112,665.
  • Further herbicide-tolerant plants are also plants tolerant to the herbicides which inhibit the enzyme hydroxyphenylpyruvate dioxygenase (HPPD).
  • HPPD hydroxyphenylpyruvate dioxygenases
  • the hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted to homogentisate.
  • Plants tolerant of HPPD inhibitors may be treated with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutant HPPD enzyme as described in WO 1996/038567, WO 1999/024585 and WO 1999 / 024586, are transformed. Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes encoding certain enzymes that allow the formation of homogentisate despite inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants and genes are described in WO 1999/034008 and WO 2002/36787.
  • the tolerance of plants to HPPD inhibitors can also be improved by transforming plants in addition to a gene coding for an HPPD-tolerant enzyme with a gene coding for a prephenate dehydrogenase enzyme, as described in WO 2004 / 024928 is described.
  • ALS inhibitors include sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or sulfonylaminocarbonyltriazolinone herbicides.
  • ALS also known as acetohydroxy acid synthase, AHAS
  • AHAS acetohydroxy acid synthase
  • plants which are tolerant to imidazolinone and / or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or by mutation breeding, as for example for the soybean in US 5,084,082, for rice in WO 1997/41218, for the sugar beet in US 5,773,702 and WO 1999/057965, for salad in US 5,198,599 or for the sunflower in WO 2001/065922.
  • Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering
  • Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such insect resistance.
  • insect-resistant transgenic plant includes any plant containing at least one transgene comprising a coding sequence encoding: 1) an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof, such as the insecticidal crystal proteins by Crickmore et al., Microbiology and Molecular Biology Reviews (1998), 62, 807-813, by Crickmore et al. (2005) in the Bacillus thuringiensis toxin nomenclature, online at: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal parts thereof, e.g. Proteins of the cry protein classes CrylAb, CrylAc, CrylF, Cry2Ab, Cry3Ae or Cry3Bb or insecticidal parts thereof; or
  • a crystal protein from Bacillus thuringiensis or a part thereof which is insecticidal in the presence of a second, different crystal protein than Bacillus thuringiensis or a part thereof, such as the binary toxin consisting of the crystal proteins Cy34 and Cy35 (Moellenbeck et al., Nat Biotechnol. (2001), 19, 668-72; Schnepf et al., Applied Environment Microb. (2006), 71, 1765-1774); or
  • an insecticidal hybrid protein comprising parts of two different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g. The protein Cryl A.105 produced by the corn event MON98034 (WO 2007/027777); or
  • a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin consisting of the proteins VIPlA and VIP2A (WO 1994/21795); or
  • a hybrid insecticidal protein comprising parts of various secreted proteins of Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins of 1) or a
  • 8) a protein according to any one of items 1) to 3) above, in which some, in particular 1 to 10, amino acids have been replaced by another amino acid in order to achieve a higher insecticidal activity against a target insect species and / or the spectrum of the corresponding To expand target insect species and / or due to alterations induced in the coding DNA during cloning or transformation (preserving coding for an insecticidal protein) such as protein VIP3Aa in cotton event COT 102.
  • insect-resistant transgenic plants in the present context also include any plant comprising a combination of genes encoding the proteins of any of the above classes 1 to 8.
  • an insect-resistant plant contains more than one transgene encoding a protein of any one of the above 1 to 8 in order to extend the spectrum of the corresponding target insect species or to delay the development of resistance of the insects to the plants by use different proteins which are insecticidal for the same target insect species, but have a different mode of action, such as binding to different receptor binding sites in the insect.
  • Plants or plant varieties which can also be treated according to the invention, are tolerant of abiotic stressors. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such stress resistance. Particularly useful plants with stress tolerance include the following: a. Plants which contain a transgene capable of reducing the expression and / or activity of the gene for the poly (ADP-ribose) polymerase (PARP) in the plant cells or plants, as described in WO 2000/004173 or EP 04077984.5 or EP 06009836.5 is described. b.
  • PARP ADP-ribose polymerase
  • Plants which contain a stress tolerance-promoting transgene capable of reducing the expression and / or activity of the PARG-encoding genes of the plants or plant cells as described, for example, in WO 2004/090140; c. Plants containing a stress tolerance enhancing transgene encoding a plant functional enzyme of the nicotinamide adenine dinucleotide salvage biosynthetic pathway, including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyltransferase, nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosyltransferase, as described e.g. In EP 04077624.7 or WO 2006/133827 or in PCT / EP07 / 002433.
  • Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering which can also be treated according to the invention have a changed quantity, quality and / or shelf life of the harvested product and / or altered characteristics of certain components of the harvested product, such as:
  • Transgenic plants which synthesize a modified starch with respect to their chemical-physical properties, in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior, the gel strength, the starch grain size and / or starch grain morphology is altered in comparison to the synthesized starch in wild-type plant cells or plants, so that this modified starch is better suited for certain applications.
  • transgenic plants which synthesize a modified starch are described, for example, in EP 0571427, WO 1995/004826, EP 0719338, WO 1996/15248, WO 1996/19581, WO 1996/27674, WO 1997/11188, WO 1997/26362 WO 1997/32985, WO 1997/42328, WO 1997/44472, WO 1997/45545, WO 1998/27212, WO 1998/40503, WO 99/58688, WO 1999/58690, WO 1999/58654, WO 2000/008184 WO 2000/008185, WO 2000/28052, WO 2000/77229, WO 2001/12782, WO 2001/12826, WO 2002/101059, WO 2003/071860, WO 2004/056999, WO 2005/030942, WO 2005/030941 WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927, WO 2006
  • Examples are plants which produce polyfructose, in particular of the inulin and levan type, as described in EP 0663956, WO 1996/001904, Wo 1996/021023, WO 1998/039460 and WO 1999/024593, plants which are alpha-1 To produce 4-glucans, as described in WO 1995/031553, US 2002/031826, US 6,284,479, US 5,712,107, WO 1997/047806, WO 1997/047807, WO 1997/047808 and WO 2000/14249, plants which alpha-1, 6-branched alpha-1,4-glucans, as described in WO 2000/73422, and plants producing alternan, as described in WO 2000/047727, EP 06077301.7, US 5,908,975 and EP 0728213 is.
  • Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering), which can also be treated according to the invention, are plants such as cotton plants with altered fiber properties. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered fiber properties; These include: a) plants such as cotton plants containing an altered form of cellulose synthase genes, as described in WO 1998/000549; b) plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in U.S.
  • Pat WO 2004/053219 is described; c) plants such as cotton plants having increased expression of sucrose phosphate synthase as described in WO 2001/017333; d) plants such as cotton plants with an increased expression of sucrose synthase, as described in WO 02/45485; e) plants such as cotton plants in which the timing of the passage control of the Plasmodesmen is changed at the base of the fiber cell, z.
  • plants By down-regulating the fiber-selective ⁇ -l, 3-glucanase, as described in WO 2005/017157; f) plants such as cotton plants with modified reactivity fibers, e.g.
  • Plants or plant varieties which can also be treated according to the invention are plants such as oilseed rape or related Brassica plants with altered oil composition properties. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered oil properties; These include: a) plants such as rape plants that produce high oleic oil, as described, for example, in US 5,969,169, US 5,840,946 or US 6,323,392 or US 6,063,947; b) plants such as oilseed rape plants which produce low linolenic acid oil, as described in US 6,270,828, US 6,169,190 or US 5,965,755. c) plants such as oilseed rape plants which produce oil with a low saturated fatty acid content, such as e.g. As described in US 5,434,283.
  • transgenic plants which can be treated according to the invention are plants having one or more genes which code for one or more toxins, the transgenic plants offered under the following commercial names: YIELD
  • GARD® for example corn, cotton, soybeans
  • KnockOut® for example corn
  • BiteGard® for example corn
  • BT-Xtra® for example maize
  • StarLink® for example corn
  • Herbicide-tolerant crops to be mentioned include, for example, corn, cotton and soybean varieties sold under the following tradenames: Roundup Ready® (glyphosate tolerance, for example corn, cotton, soybean), Liberty Link® (phosphinotricin tolerance, for example corn, cotton, soybean), Liberty Link® (phosphinotricin tolerance, for example corn, cotton, soybean), Liberty Link® (phosphinotricin tolerance, for example corn, cotton, soybean), Liberty Link® (phosphinotricin tolerance, for example
  • Example rapeseed IMI® (imidazolinone tolerance) and SCS® (Sylfonylurea tolerance), for example maize.
  • IMI® imidazolinone tolerance
  • SCS® Sylfonylurea tolerance
  • transgenic plants that can be treated according to the invention are plants that contain transformation events, or a combination of transformation events, and that are listed, for example, in the files of various national or regional authorities (see, for example, http: // /gmoinfo.jrc.it/gmp_browse.aspx and http://www.agbios.com/dbase.php).
  • the active compound combinations according to the invention are suitable for the treatment of seed.
  • a large part of the damage to crops caused by phytopathogenic fungi and / or animal pests already occurs through the infestation of the seed during storage and after introduction of the seed into the soil and during and immediately after germination of the plants.
  • This phase is particularly critical, as the roots and shoots of the growing plant are particularly sensitive and even minor damage can lead to the death of the entire plant.
  • suitable agents There is therefore a particular interest in protecting the seed and the germinating plant by the use of suitable agents.
  • the present invention therefore also relates in particular to a method for protecting seed and germinating plants from infestation by phytopathogenic fungi and / or animal pests by treating the seed with a combination of active substances according to the invention.
  • the inventive method for the protection of seeds and germinating plants from attack by phytopathogenic fungi and / or animal pests comprises a method in which the seed at the same time with a compound of formula (I) and a Active ingredient from the groups listed above (2) to (27) is treated. It also comprises a process in which the seed is treated at different times with a compound of formula (I) and an active ingredient from groups (2) to (27) listed above.
  • the invention also relates to the use of the active compound combinations according to the invention for the treatment of seed for the protection of the seed and the germinating plant from phytopathogenic fungi and / or by phytopathogenic fungi and / or animal pests.
  • the invention relates to seed which has been treated with a combination of active substances according to the invention for protection against phytopathogenic fungi and / or animal pests.
  • the invention also relates to seed treated at the same time with a compound of the formula (I) and an active ingredient from the groups (2) to (27) listed above.
  • the invention further relates to seed which has been treated at different times with a compound of formula (I) and an active ingredient from groups (2) to (27) listed above.
  • the individual active compounds of the active ingredient combination according to the invention may be present in different layers on the seed.
  • the layers which comprise a compound of the formula (I) and an active compound from the abovementioned groups (2) to (27) may optionally be separated by an intermediate layer.
  • the invention also relates to seed in which a compound of the formula (I) and an active compound from the abovementioned groups (2) to (27) are applied as a constituent of a coating or as a further layer or further layers in addition to a coating.
  • An advantage of the present invention is the synergistic increase in the insecticidal activity of the active compound combinations according to the invention over the insecticidal single active substance, which goes beyond the expected efficacy of the two individually applied active ingredients. Also advantageous is the synergistic increase in the fungicidal activity of the active compound combinations according to the invention compared with the fungicidal single active substance, which goes beyond the expected effectiveness of the individually applied active ingredient. This allows optimization of the amount of active ingredients used. Likewise, it is considered to be advantageous that the active compound combinations according to the invention can be used in particular also in transgenic seed.
  • the active compound combinations according to the invention are suitable for the protection of seed of any plant variety as already mentioned above, which are used in agriculture, in the greenhouse, in Forests or horticulture is used.
  • these are corn, peanut, canola, rapeseed, poppy, soybean, cotton, turnip (eg sugarbeet and fodder beet), rice, millet, wheat, barley, oats, rye, sunflower, tobacco, potatoes or vegetables ( eg tomatoes, cabbages, lettuce, etc.).
  • the active compound combinations according to the invention are likewise suitable for the treatment of the seed of fruit plants and vegetables as already mentioned above. Of particular importance is the treatment of the seeds of maize, soya, cotton, rice, wheat and canola or rapeseed.
  • the active ingredient combination according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is treated in a state where it is so stable that no damage occurs during the treatment.
  • the treatment of the seed can be done at any time between harvesting and sowing.
  • seed is used which has been separated from the plant and freed from flasks, shells, stems, hull, wool or pulp.
  • seed may be used which has been harvested, cleaned and dried to a moisture content below 15% by weight.
  • seed may also be used which, after drying, e.g. treated with water and then dried again.
  • compositions according to the invention can be applied directly, ie without containing further components and without being diluted.
  • suitable formulations and methods for seed treatment are known to those skilled in the art and are described e.g. in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.
  • the active compounds which can be used according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other seed coating compositions, as well as ULV formulations.
  • formulations are prepared in a known manner by mixing the active ingredients with conventional additives, such as conventional extenders and solution or Diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also water.
  • conventional additives such as conventional extenders and solution or Diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also water.
  • Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, CI. Pigment Red 112 and CI. Solvent Red 1 known dyes.
  • Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all wetting-promoting substances customary for the formulation of agrochemical active compounds.
  • Preferably usable are alkylnaphthalene sulfonates such as diisopropyl or diisobutylnaphthalene sulfonates.
  • Suitable dispersants and / or emulsifiers which may be present in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active compounds.
  • Preferably usable are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants.
  • Particularly suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide, block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
  • Defoamers which may be present in the seed-dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
  • Preferably usable are silicone defoamers and magnesium stearate.
  • all substances which can be used for such purposes in agrochemical compositions can be present in the seed dressing formulations which can be used according to the invention.
  • examples include dichlorophen and Benzylalkoholhemiformal.
  • Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly dispersed silicic acid.
  • Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents. Preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose.
  • the gibberellins are known (see R. Wegler "Chemie der convinced- und Swdlingsbekungsstoff", Vol. 2, Springer Verlag, 1970, pp. 401-412).
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of various kinds, including seed of transgenic plants. In this case, additional synergistic effects may occur in interaction with the substances formed by expression.
  • the seed dressing formulations which can be used according to the invention or the preparations prepared therefrom by the addition of water
  • all mixing devices customarily usable for the dressing can be considered. Specifically, in the pickling procedure, the seed is placed in a mixer which adds either desired amount of seed dressing formulations either as such or after prior dilution with water and mixes until evenly distributed the formulation on the seed.
  • a drying process follows.
  • the active compound combinations according to the invention are also suitable for increasing crop yield. They are also low toxicity and have good plant tolerance.
  • the active compound combinations according to the invention also have a strong tonic effect in plants. They are therefore suitable for mobilizing plant-own defenses against attack by unwanted microorganisms.
  • plant-strengthening (resistance-inducing) substances are to be understood as meaning those substances which are capable of stimulating the defense system of plants in such a way that the treated plants exhibit extensive resistance to these microorganisms with subsequent inoculation with undesired microorganisms.
  • Undesirable microorganisms in the present case are phytopathogenic fungi, bacteria and viruses.
  • the substances according to the invention can therefore be used to
  • the period within which protection is provided generally extends from 1 to 10 days, preferably 1 to 7 days after treatment of the plants with the active ingredients.
  • the plants listed can be treated particularly advantageously erf ⁇ ndungshack with the erfindungsgemasigem drug mixtures.
  • the preferred ranges given above for the active substance combinations also apply to the treatment of these plants.
  • Particularly emphasized is the plant treatment with the active ingredient combinations specifically mentioned in the present text.
  • a synergistic effect is always present in the case of insecticides and fungicides whenever the insecticidal or fungicidal action of the active substance combinations is greater than the sum of the effects of the individually applied active substances.
  • the expected insecticidal or fungicidal activity for a given combination of two drugs can be calculated as follows, according to S. Colby ("Calculating Synergistic and Antagonistic Responses of Herbicide Combinations", Weeds 1967.15, 20-22):
  • X denotes the degree of destruction or efficiency, expressed in% of the untreated control, when using the active compound A at a rate of application of mppm or g / ha,
  • Y means the degree of destruction or efficiency, expressed in% of the untreated control, when using the active substance B in an application rate of nppm or g / ha, and
  • E is the degree of kill or efficiency expressed as% of untreated control
  • the degree of kill or efficiency is determined in%. It means 0% a degree of kill or efficiency equal to that of the control, while a kill rate of 100% means that all animals are dead and an efficiency of 100% means that no infestation is observed. If the actual fungicidal or insecticidal effect is greater than calculated, the combination is over-additive in its effect, ie there is a synergistic effect. In this case, the actual observed efficiency must be greater than the expected efficiency value (E) calculated from the above formula.
  • dimethylformamide emulsifier 1.5 parts by weight of dimethylformamide emulsifier: 0.5 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Cabbage leaves (Brassica oleraceä) which are heavily infested with the green peach aphid ⁇ Myzus persicae) are treated by spraying with the preparation of active compound in the desired concentration.
  • the kill is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
  • the determined kill values are calculated according to the Colby formula. In this test, z. B. the following drug combinations according to the present application a synergistically enhanced efficacy compared to the individually applied drugs:
  • dimethylformamide emulsifier 1.5 parts by weight of dimethylformamide emulsifier: 0.5 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Cabbage leaves (Brassica olerace ⁇ ) are treated by being dipped into the preparation of active compound of the desired concentration and are populated with larvae of the horseradish leaf beetle ⁇ Phaedon cochleariae) while the leaves are still moist.
  • the kill is determined in%. 100% means that all beetle larvae have been killed; 0% means that no beetle larvae have been killed.
  • the determined kill values are calculated according to the Colby formula (see page 1). In this test, z. B. the following drug combinations according to the present application a synergistically enhanced efficacy compared to the individually applied drugs:
  • dimethylformamide emulsifier 1.5 parts by weight of dimethylformamide emulsifier: 0.5 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Bean leaf discs Phaseolus vulgaris
  • Triticae Tricholine
  • the effect is determined in%. 100% means that all spider mites have been killed; 0% means that no spider mites have been killed.
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Cabbage leaves (ßrassica oleraceä) are treated by spraying with the preparation of active compound in the desired concentration and populated with larvae of the armyworm ⁇ Spodoptera frugiperda) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • the determined kill values are calculated according to the Colby formula.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft neue Wirkstoffkombinationen, die mindestens eine bekannte Verbindung der Formel (I) worin R1 und R2 die in der Beschreibung angegebenen Bedeutungen haben, einerseits und mindestens einen weiteren bekannten Wirkstoff aus den in der Beschreibung aufgeführten Gruppen (2) bis (27) enthalten und sehr gut zur Bekämpfung von tierischen Schädlingen wie Insekten und unerwünschten Akariden sowie pflanzenpathogener Pilze geeignet sind.

Description

Svnergistische Wirkstoffkombinationen mit Phenyltriazolen
Die vorliegende Erfindung betrifft neue Wirkstofϊkombinationen, die eine bekannte Verbindung der Formel (I) einerseits und mindestens einen bekannten fungiziden Wirkstoff andererseits enthalten und sehr gut zur Bekämpfung von unerwünschten tierischen Schädlingen wie Insekten sowie unerwünschten phytopathogenen Pilzen geeignet sind.
Es ist bereits bekannt, dass Verbindungen der Formel (I)
in welcher
R1 für H oder NH2 steht, R2 für CH3 oder F steht, insektizide Wirkung aufweisen (vgl. WO 1999/055668 und WO 2006/043635).
Ferner ist schon bekannt, dass zahlreiche Triazol-Derivate, Anilin-Derivate, Dicarboximide und andere Heterocyclen zur Bekämpfung von Pilzen eingesetzt werden können (vgl. EP-A 0040345, DE-A 22 01 063, DE-A 23 24 010, Pesticide Manual, 9th. Edition (1991), Seiten 249 und 827, EP-A 0 382 375, EP-A 0 515 901, DE-B2 2732257). Die Wirkung dieser Stoffe ist aber bei niedrigen Aufwandmengen nicht immer ausreichend.
Ferner ist bereits bekannt, dass l-(3,5-Dimethyl-isoxazol-4-sulfonyl)-2-chlor-6,6-difluor-[l,3]- dioxolo-[4,5f]-benzimidazol fungizide Eigenschaften besitzt (vgl. WO 97/06171).
Schließlich ist auch bekannt, dass substituierte Halogenpyrimidine fungizide Eigenschaften besitzen (vgl. DE-Al-196 46 407, EP-B-712 396).
Die Verbindungen der Formel (I) besitzen eine chirale Sulfoxid-Gruppe, so dass sie bei Abwesenheit weiterer Chiralitätszentren zwei Enantiomere mit R- oder S- Konfiguration am Schwefel bilden: (I-A), R-Enantiomere,
(I-B), S-Enantiomere,
Wobei R ( 1 , τ R> 2 die oben angegebenen Bedeutungen haben.
Bei der Synthese aus achiralen Ausgangsstoffen entstehen beide Enantiomere in gleichen Mengen, so dass ein Racemat vorliegt. Die Trennung des literaturbekannten Racemats (vgl. WO
1999/055668 und WO 2006/043635) in die einzelnen Enantiomere kann durch präparative HPLC an einer chiralen stationären Phase erfolgen. Beispiels weise kann die Trennung an einer Daical
Chiralpak AD-H 250 mm x 30 mm- Säule erfolgen mit einem Elutionsmittel aus n-
Heptan/Ethanol/Methanol 60:20:20 (v/v/V), einer Flussrate von 30 ml/min und einer UV- Detektion bei 220 nm. Anschließend können die beiden Enantiomere mit literaturbekannten
Methoden, z. B. durch Röntgenstrukturanalyse oder Drehwertbestimmung charakterisiert werden.
Gegenstand der vorliegenden Erfindung sind daher auch neue Wirkstoffkombinationen, welche die R- oder S-Enantiomere der Verbindungen der Formel (I) enthalten und mindestens einen weiteren fungiziden Wirkstoff. Es wurde nun gefunden, dass Wirkstoffkombinationen von mindestens einer Verbindung der Formel (I) und mindestens einem Wirkstoff, der aus den im Folgenden genannten Gruppen (2) bis (27) ausgewählt ist, synergistisch wirksam sind und sehr gute insektizide und fungizide Eigenschaften aufweisen.
Ebenfalls wurde gefunden, dass Wirkstoffkombinationen enthaltend mindestens ein R-Enantiomer der Verbindungen der Formel (I) und mindestens einem Wirkstoff, der aus den im Folgenden genannten Gruppen (2) bis (27) ausgewählt ist, synergistisch wirksam sind und besonders gute insektizide und fungizide Eigenschaften aufweisen. Gruppe (2) Strobilurine der allgemeinen Formel (II)
in welcher
A1 für eine der Gruppen
steht,
A2 für NH oder O steht,
A3 für N oder CH steht,
L für eine der Gruppen
steht, wobei die Bindung, die mit einem Stern (*) markiert ist, an den Phenylring gebunden ist,
R11 für jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Chlor, Cyano, Methyl oder Trifluormethyl substituiertes Phenyl, Phenoxy oder Pyridinyl, oder für l-(4- Chlorphenyl)-pyrazol-3-yl oder für l,2-Propandion-bis(O-methyloxim)-l-yl steht, R12 für Wasserstoff oder Fluor steht;
Gruppe (3) Triazole der allgemeinen Formel (HD in welcher für Wasserstoff oder SH steht, m für 0 oder 1 steht, R13 für Wasserstoff, Fluor, Chlor, Phenyl oder 4-Chlor-phenoxy steht, R14 für Wasserstoff oder Chlor steht,
A4 für eine direkte Bindung, -CH2-, -(CH2)2-, -O-, für *-CH2-CHR17- oder *-CH=CR17- steht, wobei die mit * markierte Bindung mit dem Phenylring verknüpft ist, und
R15 und R17 dann zusammen für -CH2-CH2-CH[CH(CHj)2]- oder -CH2-CHrC(CH3)2- stehen, für C oder Si (Silizium) steht,
A4 außerdem für -N(R17)- steht und A5 außerdem zusammen mit R15 und R16 für die Gruppe
C=N-R18 steht, wobei R17 und R18 dann zusammen für die Gruppe
stehen, wobei die mit * markierte Bindung mit R17 verbunden ist,
R15 für Wasserstoff, Hydroxy oder Cyano steht, R16 für 1-Cyclopropylethyl, 1-Chlorcyclopropyl, CrC4-Alkyl, CrC6-Hydroxyalkyl, C1-C4- Alkylcarbonyl, CrC2-Halogenalkoxy-Ci-C2-alkyl, Trimethylsilyl-CrC2-alkyl, Monofluor- phenyl, oder Phenyl steht,
R15 und R16 außerdem zusammen für -0-CH2-CH(R18)-O-, -0-CH2-CH(R18)-CH2-, oder -O-CH-(2-Chloφhenyl)- stehen, R18 für Wasserstoff, C1-C4-AIlCyI oder Brom steht; Gruppe (4) Sulfenamide der allgemeinen Formel (IV)
in welcher R19 für Wasserstoff oder Methyl steht; Gruppe (5) Valinamide ausgewählt aus (5-1) Iprovalicarb
(5-2) N^2-(4-{[3-(4-chlorophenyl)-2-propynyl]oxy}-3-methoxyphenyl)ethyl]-N2- (methylsulfonyl)-D-valinamid (5-3) Benthiavalicarb (5-4) Valiphenal 1 Gruppe (6) Carboxamide der allgemeinen Formel (V)
in welcher
X für 2-Chlor-3-pyridinyl, für l-Methylpyrazol-4-yl, welches in 3-Position durch Methyl, Trifluor- methyl oder Difluorethyl und in 5-Position durch WasserstofF, Fluor oder Chlor substituiert ist, für 4-Ethyl-2-ethylamino-l,3-thiazol-5-yl, für 1-Methyl-cyclohexyl, für 2,2-Dichlor-l-ethyl-3- methyl-cyclopropyl, für 2-Fluor-2-propyl, 3,4-Dichlor-isothiazol-5-yl, 5,6-Dihydro-2-methyl- l,4-oxathiin-3-yl, 4-Methyl-l,2,3-thiadiazol-5-yl, 4,5-Dimethyl-2-trimethylsilyl-thiophen-3-yl, l-Methylpyrrol-3-yl, welches in 4-Position durch Methyl oder Trifluormethyl und in 5-Position durch Wasserstoff oder Chlor substituiert ist, oder für Phenyl steht, welches einfach bis dreifach, gleich oder verschieden durch Chlor, Methyl oder Trifluormethyl substituiert ist, steht, für eine direkte Bindung, gegebenenfalls durch Chlor, Cyano oder Oxo substituiertes Cp C6-Alkandiyl (Alkylen), für C2-C6-Alkendiyl (Alkenylen) oder Thiophendiyl steht, für Wasserstoff, CrC6-Alkyl oder die Gruppe
steht, in welcher
A6 für CH oder N steht,
R20 für Wasserstoff, Chlor, Cyano, Ci-C6-Alkyl, durch gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Chlor oder Di(Ci-C3-alkyl)aminocarbonyl substituiertes
Phenyl oder für einen Rest aus der Reihe
R21 für Wasserstoff, Chlor oder Isopropoxy steht,
R22 für Wasserstoff, Chlor, Hydroxy, Methyl, Trifluormethyl oder Di(Ci-C3-alkyl)aminocarbo- nyl steht,
R20 und R21 außerdem gemeinsam für *-CH(CH3)-CH2-C(CH3)2- oder *-CH(CH3)-O-C(CH3)2- stehen, wobei die mit * markierte Bindung mit R20 verknüpft ist oder für einen Rest aus der Reihe steht;
Gruppe (7) Dithiocarbamate ausgewählt aus
(7-1) Mancozeb
(7-2) Maneb (7-3) Metiram (7-4) Propineb (7-5) Thiram (7-6) Zineb (7-7) Ziram Gruppe (8) Acylalanine der allgemeinen Formel (VI)
in welcher
* ein Kohlenstoffatom in der (R)- oder der ^-Konfiguration, bevorzugt in der (φ-Konfϊgu- ration, kennzeichnet, R23 für Benzyl, Furyl oder Methoxymethyl steht; Gruppe (9): Anilino-pyrimidine der allgemeinen Formel (VII)
in welcher
R24 für Methyl, Cyclopropyl oder 1-Propinyl steht;
Gruppe (10): Benzimidazole der allgemeinen Formel (VIII)
in welcher
R25 und R26 jeweils für Wasserstoff oder zusammen für -0-CF2-O- stehen,
R27 für Wasserstoff, Ci-Gi-Alkylaminocarbonyl oder für 3,5-Dimethylisoxazol-4-ylsulfonyl steht,
R28 für Chlor, Methoxycarbonylamino, Chlorphenyl, Furyl oder Thiazolyl steht; Gruppe (11): Carbamate der allgemeinen Formel (DO
in welcher R für n- oder iso-Propyl steht,
R für Di(CrC2-alkyl)amino-C2-C4-alkyl oder Diethoxyphenyl steht, wobei auch Salze dieser Verbindungen eingeschlossen sind; sowie das Carbamat Pyribencarb.
Gruppe (12): Dicarboximide ausgewählt aus
(12-1) Captafol
(12-2) Captan
(12-3) Folpet
(12-4) Iprodione
(12-5) Procymidone
(12-6) Vinclozolin
Gruppe (13): Guanidine ausgewählt aus
(13-1) Dodine
(13-2) Guazatine
(13-3) Iminoctadine triacetate
(13-4) Iminoctadine tris(albesilate)
Gruppe (14): Imidazole ausgewählt aus
(14-1) Cyazofamid
(14-2) Prochloraz
(14-3) Triazoxide
(14-4) Pefurazoate
(14-5) Fenamidone
Gruppe (15): Morpholine der allgemeinen Formel (X) in welcher
R und R unabhängig voneinander für Wasserstoff oder Methyl stehen,
R33 für CrC14-Alkyl (bevorzugt C]2-C14-Alkyl), C5-Ci2-Cycloalkyl (bevorzugt Ci0-Ci2-Cycloal- kyl), Phenyl-Ci-C4-alkyl, welches im Phenylteil durch Halogen oder CpGi-Alkyl substituiert sein kann, oder für Acrylyl, welches durch Chlorphenyl und Dimethoxyphenyl substituiert ist, steht;
Gruppe (16): Pyrrole der allgemeinen Formel (XD
in welcher
R34 für Chlor oder Cyano steht, R35 für Chlor oder Nitro steht,
Rj für Chlor steht,
R und R außerdem gemeinsam für -0-CF2-O- stehen; Gruppe (17): (Thio)Phosphonate ausgewählt aus
(17-1) Fosetyl-Al,
(17-2) Phosphonsäure,
(17-3) Tolclophos-methyl;
Gruppe (18): Phenvlethanamide der allgemeinen Formel (Xu) in welcher
R37 für unsubstituiertes oder durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Phe- nyl, 2-Naphthyl, 1,2,3,4-Tetrahydronaphthyl oder Indanyl steht; Gruppe (19): Fungizide ausgewählt aus
(19-1) Acibenzolar-S-methyl
(19-2) Chlorothalonil
(19-3) Cymoxanil
(19-4) Edifenphos (19-5) Famoxadone
(19-6) Fluazinam
(19-7) Kupferoxychlorid
(19-8) Kupferhydroxid
(19-9) Oxadixyl (19-10) Spiroxamine
(19-l l) Dithianon
(19-12) Metrafenone
(19-14) 2,3-Dibutyl-6-chlor-thieno[2,3-d]pyrimidin-4(3H)on
(19-15) Probenazole (19-16) Isoprothiolane (19-17) Kasugamycin
(19-18) Phthalide
(19-19) Ferimzone
(19-20) Tricyclazole
(19-21) Cyprosulfamide
(19-22) Mandipropamid
(19-23) Quinoxyfen (bekannt aus EP-A 326 330) der Formel
(19-24) Proquinazid (bekannt aus WO 94/26722) der Formel
Gruppe (20): (Thio)Harnstoff-Derivate ausgewählt aus
(20-1) Pencycuron
(20-2) Thiophanate-methyl
(20-3) Thiophanate-ethyl
Gruppe (21): Amide der allgemeinen Formel CXIID in welcher
A7 für eine direkte Bindung oder -O- steht, für -C(=O)NH- oder -NHC(=O)- steht,
R >3ό8* für Wasserstoff oder CrC4-Alkyl steht,
R >3y9 für Ci-C6-Alkyl steht;
Gruppe (22): Triazolopyrimidine der allgemeinen Formel (XIV)
in welcher R für Ci-Q-Alkyl oder C2-C6-Alkenyl steht, R41 für CrC6-Alkyl steht,
R40 und R41 außerdem gemeinsam für C4-C5-Alkandiyl (Alkylen) stehen, welches einfach oder zweifach durch Q-Ce-Alkyl substituiert ist,
R42 für Brom oder Chlor steht, R und R unabhängig voneinander für Wasserstoff, Fluor, Chlor oder Methyl stehen,
R und R unabhängig voneinander für Wasserstoff oder Fluor stehen, R45 für Wasserstoff, Fluor oder Methyl steht, Gruppe (23): Iodochromone der allgemeinen Formel (XV)
in welcher
R"5 für CrC6-Alkyl steht,
K >4^9 für Ci-Cβ-Alkyl, C2-C6-Alkenyl oder C2-C6-Alkinyl steht;
Gruppe (24): Biphenylcarboxamide der allgemeinen Formel (XVI)
in welcher
R für Wasserstoff oder Fluor steht, R51 für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Trifluormethoxy, -CH=N-OMe oder -C(Me)=N-OMe steht,
R52 für Wasserstoff, Fluor, Chlor, Brom, Methyl oder Trifluormethyl steht, Het für einen der folgenden Reste Hetl bis Het7 steht:
Hetl Het2 Het3 Het4 Het5 Het6 Het7 R53 für Iod, Methyl, Difluormethyl oder Trifluormethyl steht, R54 für Wasserstoff, Fluor, Chlor oder Methyl steht, R55 für Methyl, Difluormethyl oder Trifluormethyl steht, R56 für Chlor, Brom, Iod, Methyl, Difluormethyl oder Trifluormethyl steht, R57 für Methyl oder Trifluormethyl steht. Gruppe (25): Sulfonamide (25-1) Amisulbrom Gruppe (26): Thiazolidine (26-1) Flutianil Gruppe (27): Dinitrophenole (27-1) Meptyldinocap
Überraschenderweise ist die fungizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen wesentlich höher als die Summe der Wirkungen der einzelnen Wirkstoffe. Es liegt also ein nicht vorhersehbarer, echter synergistischer Effekt vor und nicht nur eine Wirkungsergänzung. Überraschenderweise ist die insektizide Wirkung der erfϊndungsgemäßen Wirkstoffkombinationen ebenfalls wesentlich höher als die Summe der Wirkungen der einzelnen Wirkstoffe. Es liegt also ein nicht vorhersehbarer, echter synergistischer Effekt vor und nicht nur eine Wirkungsergänzung.
Die erfϊndungsgemäßen Wirkstoffkombinationen enthalten neben mindestens einer Verbindung der Formel (I) mindestens einen Wirkstoff der oben aufgeführten Gruppen (2) bis (27). Bevorzugt enthalten die erfindungsgemäßen Wirkstoffkombinationen genau eine Verbindung der Formel (I) und genau einen Wirkstoff der oben aufgeführten Gruppen (2) bis (27). Weiterhin bevorzugt sind Wirkstoffkombinationen, die eine Verbindung der Formel (I) und zwei Wirkstoffe der oben aufgeführten Gruppen (2) bis (27) enthalten. Weiterhin bevorzugt sind Wirkstoffkombinationen, die zwei Verbindungen der Formel (I) und einen Wirkstoff der oben aufgeführten Gruppen (2) bis (27) enthalten. Im Folgenden sind bevorzugte Untergruppen für die Verbindungen der oben erwähnten Formel (I) in den erfindungsgemäßen Wirkstoffkombinationen mit mindestens einem Wirkstoff der oben aufgeführten Gruppen (2) bis (27) aufgeführt.
In einer hervorgehobenen Gruppe von Verbindungen der Formel (I) steht R1 für Wasserstoff. hi einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht R1 für NH2. Li einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht R2 für Methyl. In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht R2 für Fluor.
Die oben aufgeführten allgemeinen oder in Vorzugsbereiche aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Vorzugsbereichen, beliebig kombiniert werden.
Eine bevorzugte Untergruppe der Verbindungen der Formel (I) sind solche der Formel (I- 1)
Eine weitere bevorzugte Untergruppe der der Verbindungen der Formel (I) sind solche der Formel (1-2)
Eine weitere bevorzugte Untergruppe der der Verbindungen der Formel (I) sind solche der Formel (1-3)
(1-3). Eine weitere bevorzugte Untergruppe der der Verbindungen der Formel (I) sind solche der Formel (1-4)
Besonders bevorzugte Untergruppen der Verbindungen der Formel (I) sind die jeweiligen R- oder S-Enantiomere der Formeln (I-1A), (MB), (I-2A), (I-2B), (I-3A), (I-3B), (1-4A),(I-4B):
(I-2B), Ganz besonderrs bevorzugte Untergruppen der Verbindungen der Formel (I) sind die R- Enantiomere der Formeln (I-1A), (I-2A), (I-3A) und (I-4A).
Insbesondere bevorzugt ist l-{2,4-dimethyl-5-[(R)-(2,2,2-trifluorethyl)sulfinyl]phenyl}-3- (trifluormethyl)-lH-l,2,4-triazol (Formel (MA)).
Die Formel (II) umfasst folgende bevorzugte Kombinationspartner der Gruppe (2): (2- 1 ) Azoxystrobin (bekannt aus EP-A 0 382 375) der Formel
(2-2) Fluoxastrobin (bekannt aus DE-A 196 02 095) der Formel
(2-3) (2£)-2-(2-{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl)-2-(methoxy- imino)-N-methylethanamid (bekannt aus DE-A 196 46 407, EP-B 0 712 396) der Formel
(2-4) Trifloxystrobin (bekannt aus EP-A 0 460 575) der Formel
(2-5) (2JE)-2-(Methoxyimino)-N-methyl-2-(2-{[({(l£)-l-[3-(trifluormethyl)phenyl]ethyliden}- amino)oxy]methyl}phenyl)ethanamid (bekannt aus EP-A 0 569 384) der Formel
(2-6) (2£)-2-(Methoxyimino)-N-methyl-2- {2-[(E)-( { 1 -[3-(trifluormethyl)phenyl]ethoxy} imino)- methyl]phenyl}ethanamid (bekannt aus EP-A 0 596 254) der Formel
(2-7) Orysastrobin (bekannt aus DE-A 195 39 324) der Formel
(2-8) 5-Methoxy-2-methyl-4-(2-{[({(l£)-l-[3-(trifluormethyl)phenyl]ethyliden}amino)oxy]- methyl}phenyl)-2,4-dihydro-3H-l,2,4-triazol-3-on (bekannt aus WO 98/23155) der Formel
(2-9) Kresoxim-methyl (bekannt aus EP-A 0 253 213) der Formel
(2-10) Dimoxystrobin (bekannt aus EP-A 0 398 692) der Formel
(2-11) Picoxystrobin (bekannt aus EP-A 0 278 595) der Formel
(2-12) Pyraclostrobin (bekannt aus DE-A 44 23 612) der Formel
(2-13) Metominostrobin (bekannt aus EP-A 0 398 692) der Formel
Die Formel (HI) umfasst folgende bevorzugte Kombinationspartner der Gruppe (3):
(3-1) Azaconazole (bekannt aus DE-A 25 51 560) der Formel
(3-2) Etaconazole (bekannt aus DE-A 25 51 560) der Formel
(3-3) Propiconazole (bekannt aus DE-A 25 51 560) der Formel
(3-4) Difenoconazole (bekannt aus EP-A 0 112 284) der Formel
(3-5) Bromuconazole (bekannt aus EP-A 0 258 161) der Formel
(3-6) Cyproconazole (bekannt aus DE-A 34 06 993) der Formel
(3-7) Hexaconazole (bekannt aus DE-A 30 42 303) der Formel
(3-8) Penconazole (bekannt aus DE-A 27 35 872 ) der Formel
(3-9) Myclobutanil (bekannt aus EP-A 0 145 294) der Formel
(3-10) Tetraconazole (bekannt aus EP-A 0 234 242) der Formel
(3-11) Flutriafol (bekannt aus EP-A 0 015 756) der Formel
(3-12) Epoxiconazole (bekannt aus EP-A 0 196 038) der Formel
(3-13) Flusilazole (bekannt aus EP-A 0 068 813) der Formel
(3-14) Simeconazole (bekannt aus EP-A 0 537 957) der Formel
(3-15) Prothioconazole (bekannt aus WO 96/16048) der Formel
(3-16) Fenbuconazole (bekannt aus DE-A 37 21 786) der Formel
(3-17) Tebuconazole (bekannt aus EP-A 0 040 345) der Formel
(3-18) Ipconazole (bekannt aus EP-A 0 329 397) der Formel
(3-19) Metconazole (bekannt aus EP-A 0 329 397) der Formel
(3-20) Triticonazole (bekannt aus EP-A 0 378 953) der Formel
(3-21) Bitertanol (bekannt aus DE-A 23 24 010) der Formel
(3-22) Triadimenol (bekannt aus DE-A 23 24 010) der Formel
(3-23) Triadimefon (bekannt aus DE-A 22 01 063) der Formel
(3-24) Fluquinconazole (bekannt aus EP-A 0 183 458) der Formel (3-25) Quinconazole (bekannt aus EP-A 0 183 458) der Formel
Die Formel (IV) umfasst folgende bevorzugte Kombinationspartner der Gruppe (4):
(4-1) Dichlofluanid (bekannt aus DE-A 11 93 498) der Formel
(4-2) Tolylfluanid (bekannt aus DE-A 11 93 498) der Formel
Bevorzugte Kombinationspartner der Gruppe (5) sind
(5-1) Iprovalicarb (bekannt aus DE-A 40 26 966) der Formel
(5-3) Benthiavalicarb (bekannt aus WO 96/04252) der Formel
(5-4) Valiphenal (bekannt aus EP1028125) der Formel
Die Formel (V) umfasst folgende bevorzugte Kombinationspartner der Gruppe (6):
(6-1) 2-Chloro-N-(l,l,3-trimethyl-indan-4-yl>nicotinamid (bekannt aus EP-A 0256 503) der Formel
(6-2) Boscalid (bekannt aus DE-A 195 31 813) der Formel
(6-3) Furametpyr (bekannt aus EP-A 0 315 502) der Formel
(6-4) l-Methyl-3-trifluormethyl-lH-pyrazol-4-carbonsäure-(3-p-tolyl-thiophen-2-yl)-amid
(bekannt aus EP-A 0 737 682) der Formel
(6-5) Ethaboxam (bekannt aus EP-A 0 639 574) der Formel
(6-6) Fenhexamid (bekannt aus EP-A 0 339 418) der Formel
(6-7) Carpropamid (bekannt aus EP-A 0 341 475) der Formel (6-8) 2-Chlor-4-(2-fluor-2-methyl-propionylamino)-N,N-dimethyl-benzamid
(bekannt aus EP-A 0 600 629) der Formel
(6-9) Fluopicolid (bekannt aus WO 99/42447) der Formel
(6-10) Zoxamide (bekannt aus EP-A 0 604 019) der Formel
(6-11) Isotianil (ISO-proposed) (bekannt aus DE-OS 19750012) der Formel
(6-12) Carboxin (bekannt aus US 3,249,499) der Formel
(6-13) Tiadinil (bekannt aus US 6,616,054) der Formel
(6-14) Penthiopyrad (bekannt aus EP-A 0 737 682) der Formel
(6-15) Silthiofam (bekannt aus WO 96/18631) der Formel
(6- 16) N-[2-( 1 ,3-Dimethylbutyl)phenyl]- 1 -methyl-4-(trifluormethyl)- 1 H-pyrrol-3-carboxamid (bekannt aus WO 02/38542) der Formel
(6-17) Flutolanil (bekannt aus DE-A 27 31 522) der Formel
(6-18) N-[2-(l,3-dimethylbutyl)phenyl]-5-fluor-l,3-dimethyl-lH-pyrazol-4-carboxamid (bekannt aus EP-A 1 414 803) der Formel
(6-20) N-[2-(l,3-dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid (bekannt aus EP-A 1 519 913) der Formel
(6-21) N-[2-(l,3-dimethylbutyl)phenyl]-2-iodbenzamid (bekannt aus EP-A 1 519 913) der Formel
(6-22) N-(4I-chlor-3'-fluorbiphenyl-2-yl)-4-(difluormethyl)- 2-methyl-l ,3-thiazol-5-carboxamid (bekannt aus EP-A 1 404 407) der Formel
(6-23) N-[5-(4-chloφhenyl)pyrimidin-4-yl]-2-iod-N-(2-iodbenzoyl)benzamid der Formel
(6-24) N-(3',4'-dichlorbiphenyl-2-yl)-2-methyl-4-(trifluormethyl)- l,3-thiazol-5-carboxamid (bekannt aus EP-A 1 474 406) der Formel
(6-25) Fluopyram (ISO-proposed) N-[2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]ethyl]-2- (trifluoromethyl)benzarnide (bekannt aus WO 2004016088)
(6-26) Sedaxane (ISO-proposed) ein Gemisch aus 2 cw-Isomeren 2'-[(\RS,2RS)-l,l '-bicycloprop- 2-yl]-3-(difluoromethyl)-l-methylpyrazole-4-carboxanilide und 2 frvms-Isomeren 2'-[( 1RS,2SR)- l^'-bicycloprop^-y^-S^difluoromethyO-l-methylpyrazole^-carboxanilide (bekannt aus WO 2003/074491 Al)
(6-27) Isopyrazam (ISO-proposed) ein Gemisch aus 2 syw-Isomeren 3-(difluoromethyl)-l-methyl- N-[( 1 RS,4SR,9RS)- 1 ,2,3 ,4-tetrahydro-9-isopropyl- 1 ,4-methanonaphthalen-5-yl]pyrazole-4- carboxamide und 2 αn/z-Isomeren 3-(difluoromethyl)-l-methyl-N-[(lÄS',45'R,9S/?)-l,2,3,4- tetrahydro-9-isopropyl- 1 ,4-methanonaphthalen-5-yl]pyrazole-4-carboxamid (bekannt aus
WO 2004/035589 Al)
Bevorzugte Kombinationspartner der Gruppe (7) sind (7-1) Mancozeb (bekannt aus DE-A 12 34 704) mit dem IUPAC-Namen Manganese ethylenebis(dithiocarbamate) (polymeric) complex with zinc sah
(7-2) Maneb (bekannt aus US 2,504,404) der Formel (7-3) Metiram (bekannt aus DE-A 10 76 434) mit dem IUPAC-Namen
Zinc ammoniate ethylenebis(dithiocarbamate) - poly(ethylenethiuram disulfide)
(7-4) Propineb (bekannt aus GB 935 981 ) der Formel
(7-5) Thiram (bekannt aus US 1 ,972,961 ) der Formel
(7-6) Zineb (bekannt aus DE-A 10 81 446) der Formel
(7-7) Ziram (bekannt aus US 2,588,428) der Formel
Die Formel (VI) umfasst folgende bevorzugte Kombinationspartner der Gruppe (8):
(8- 1 ) Benalaxyl (bekannt aus DE-A 29 03 612) der Formel
(8-2) Furalaxyl (bekannt aus DE-A 25 13 732) der Formel
(8-3) Metalaxyl (bekannt aus DE-A 25 15 091 ) der Formel
(8-4) Metalaxyl-M (bekannt aus WO 96/01559) der Formel
(8-5) Benalaxyl-M der Formel
Die Formel (VII) umfasst folgende bevorzugte Kombinationspartner der Gruppe (9):
(9-1) Cyprodinil (bekannt aus EP-A 0 310 550) der Formel
(9-2) Mepanipyrim (bekannt aus EP-A 0 270 111 ) der Formel
(9-3 ) Pyrimethanil (bekannt aus DD 151 404) der Formel
Die Formel (VIII) umfasst folgende bevorzugte Kombinationspartner der Gruppe (10):
(10-1) 6-Chlor-5-[(3,5-dimethylisoxazol-4-yl)sulfonyl]-2,2-difluor-5H-[l,3]dioxolo[4,5-fj- benzimidazol (bekannt aus WO 97/06171) der Formel
( 10-2) Benomyl (bekannt aus US 3 ,631 , 176) der Formel
(10-3) Carbendazim (bekannt aus US 3,010,968) der Formel
(10-4) Chlorfenazole der Formel
(10-5) Fuberidazole (bekannt aus DE-A 12 09 799) der Formel
(10-6) Thiabendazole (bekannt aus US 3,206,468) der Formel
Die Formel (IX) umfasst folgende bevorzugte Kombinationspartner der Gruppe (11):
(11-1) Diethofencarb (bekannt aus EP-A 0 078 663) der Formel
(11-2) Propamocarb (bekannt aus US 3,513,241) der Formel
(11-3) Propamocarb-hydrochloride (bekannt aus US 3,513,241) der Formel
(11-4) Propamocarb-Fosetyl der Formel (11-5) Pyribencarb (ISO-proposed, KUF-1204) [[2-Chloro-5-[(l£)-l-[[(6-methyl-2- pyridinyl)methoxy]imino]ethyl]phenyl]methyl] carbamic acid methyl ester (bekannt aus WO 2001010825)
Bevorzugte Kombinationspartner der Gruppe (12) sind
(12-1) Captafol (bekannt aus US 3,178,447) der Formel
(12-2) Captan (bekannt aus US 2,553,770) der Formel
(12-3) Folpet (bekannt aus US 2,553,770) der Formel
(12-4) Iprodione (bekannt aus DE-A 21 49 923) der Formel
(12-5) Procymidone (bekannt aus DE-A 20 12 656) der Formel
(12-6) Vinclozolin (bekannt aus DE-A 22 07 576) der Formel
Bevorzugte Kombinationspartner der Gruppe (13) sind
(13-1) Dodine (bekannt aus GB 11 03 989) der Formel
(13-2) Guazatine (bekannt aus GB 11 14 155)
(13-3) Iminoctadine triacetate (bekannt aus EP-A 0 155 509) der Formel Bevorzugte Kombinationspartner der Gruppe (14) sind
(14-1) Cyazofamid (bekannt aus EP-A 0 298 196) der Formel
(14-2) Prochloraz (bekannt aus DE-A 24 29 523) der Formel
(14-3) Triazoxide (bekannt aus DE-A 28 02 488) der Formel
(14-4) Pefurazoate (bekannt aus EP-A 0 248 086) der Formel
(14-5) Fenamidone (bekannt aus EP-A 00629616) der Formel
Die Formel (X) umfasst folgende bevorzugte Kombinationspartner der Gruppe (15):
(15-1) Aldimorph (bekannt aus DD 140 041) der Formel
(15-2) Tridemorph (bekannt aus GB 988 630) der Formel
(15-3) Dodemorph (bekannt aus DE-A 25 432 79) der Formel
(15-4) Fenpropimorph (bekannt aus DE-A 26 56 747) der Formel
(15-5) Dimethomorph (bekannt aus EP-A 0 219 756) der Formel
(15-6) Flumorph (bekannt aus EP-A 0 860 438) der Formel
Die Formel (XI) umfasst folgende bevorzugte Kombinationspartner der Gruppe (16): (16-1) Fenpiclonil (bekannt aus EP-A 0 236 272) der Formel
(16-2) Fludioxonil (bekannt aus EP-A 0 206 999) der Formel
(16-3) Pyrrolnitrine (bekannt aus JP 65-25876) der Formel
Bevorzugte Kombinationspartner der Gruppe (17) sind (17-1) Fosetyl-Al (bekannt aus DE-A 24 56 627) der Formel (17-2) Phosphonic acid (bekannte Chemikalie) der Formel
(17-3) Tolclofos-methyl (bekannt aus DE-A 25 Ol 040) der Formel
Die Formel (XII) umfasst folgende bevorzugte Kombinationspartner der Gruppe (18), welche aus WO 96/23793 bekannt sind und jeweils als (E)- oder fZ^-Isomere vorliegen können. Verbindungen der Formel (XII) können daher als Gemisch von verschiedenen Isomeren oder auch in Form eines einzigen Isomeren vorliegen. Bevorzugt sind Verbindungen der Formel (XII) in Form ihres (E)- Isomers:
(18-1) die Verbindung 2-(2,3-Dihydro-lH-inden-5-yl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2- (methoxyimino)acetamid der Formel
(18-2) die Verbindung N-[2-(3,4-Dimethoxyphenyl)ethyl]-2-(methoxyimino)-2-(5,6,7,8- tetrahydronaphthalen-2-yl)acetamid der Formel
(18-3) die Verbindung 2-(4-Chloφhenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)- acetamid der Formel
(18-4) die Verbindung 2-(4-Bromphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)- acetamid der Formel
(18-5) die Verbindung 2-(4-Methylphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)- acetamid der Formel
(18-6) die Verbindung 2-(4-Ethylphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)- acetamid der Formel
Bevorzugte Kombinationspartner der Gruppe ( 19) sind
(19-1) Acibenzolar-S-methyl (bekannt aus EP-A O 313 512) der Formel
(19-2) Chlorothalonil (bekannt aus US 3,290,353) der Formel
(19-3) Cymoxanil (bekannt aus DE-A 23 12 956) der Formel
(19-4) Edifenphos (bekannt aus DE-A 14 93 736) der Formel
(19-5) Famoxadone (bekannt aus EP-A 0 393 911) der Formel
(19-6) Fluazinam (bekannt aus EP-A 0 031 257) der Formel
(19-7) Kupferoxychlorid
(19-9) Oxadixyl (bekannt aus DE-A 30 30 026) der Formel
(19-10) Spiroxamine (bekannt aus DE-A 37 35 555) der Formel
(19-11) Dithianon (bekannt aus JP-A 44-29464) der Formel
(19-12) Metrafenone (bekannt aus EP-A 0 897 904) der Formel
(19-13) 2,3-Dibutyl-6-chlor-thieno[2,3-d]pyrimidin-4(3H)on (bekannt aus WO 99/14202) der Formel
(19-14) Probenazole (bekannt aus US 3,629,428) der Formel
(19-15) Isoprothiolane (bekannt aus US 3,856,814) der Formel
(19-16) Kasugamycin (bekannt aus GB 1 094 567) der Formel
(19-17) Phthalide (bekannt aus JP-A 57-55844) der Formel
(19-18) Ferimzone (bekannt aus EP-A 0 019 450) der Formel
(19-19) Tricyclazole (bekannt aus DE-A 22 50 077) der Formel
(19-20) Cyprosulfamide der Formel (19-21) Mandipropamid (bekannt aus WO 01/87822) der Formel
Bevorzugte Kombinationspartner der Gruppe (20) sind
(20-1) Pencycuron (bekannt aus DE-A 27 32 257) der Formel
(20-2) Thiophanate-methyl (bekannt aus DE-A 18 06 123) der Formel
(20-3) Thiophanate-ethyl (bekannt aus DE-A 18 06 123) der Formel
Bevorzugte Kombinationspartner der Gruppe (21) sind
(21-1) Fenoxanil (bekannt aus EP-A 0 262 393) der Formel
(21-2) Diclocymet (bekannt aus JP-A 7-206608) der Formel
Bevorzugte Kombinationspartner der Gruppe (22) sind (22-1) 5-Chlor-N-[^S;-2,2,2-trifluor-l-methylethyl]-6-(2,4,6-trifluorphenyl)[l,2,4]triazolo[l,5-a]- pyrimidin-7-amin (bekannt aus US 5,986,135) der Formel
(22-2) 5-Chlor-N-[πR>l,2-dimethylpropyl]-6-(2,4,6-trifluoφhenyl)[l,2,4]triazolo[l,5-a]pyri- midin-7-amin (bekannt aus WO 02/38565) der Formel
(22-3) 5-Chlor-6-(2-chlor-6-fluorphenyl)-7-(4-methylpiperidin- 1 -yl)[ 1 ,2,4]triazolo[ 1 ,5-a]pyri- midin (bekannt aus US 5,593,996) der Formel
(22-4) 5-Chlor-6-(2,4,6-trifluoφhenyl)-7-(4-methylpiperidin-l-yl)[l,2,4]triazolo[l,5-a]pyrimidin (bekannt aus DE-A 101 24 208) der Formel
Bevorzugte Kombinationspartner der Gruppe (23) sind
(23- 1 ) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on (bekannt aus WO 03/014103) der Formel
(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on (bekannt aus WO 03/014103) der Formel
(23-3) 6-Iod-2-propoxy-3-propyl-benzopyran-4-on (bekannt aus WO 03/014103) der Formel
(23-4) 2-But-2-inyloxy-6-iod-3-propyl-benzopyran-4-on (bekannt aus WO 03/014103) der Formel
(23-5) 6-Iod-2-(l-methyl-butoxy)-3-propyl-benzopyran-4-on (bekannt aus WO 03/014103) der Formel
(23-6) 2-But-3-enyloxy-6-iod-benzopyran-4-on (bekannt aus WO 03/014103) der Formel
(23-7) 3-Butyl-6-iod-2-isopropoxy-benzopyran-4-on (bekannt aus WO 03/014103) der Formel
Bevorzugte Kombinationspartner der Gruppe (24) sind (24-1) N-CS'^'-Dichlor-S-fluor-lJ'-biphenyl-Z-yO-S-CdifluormethyO-l-methyl-lH-pyrazol^- carboxamid (bekannt aus WO 03/070705) der Formel
(24-2) 3-(Difluormethyl)-N-{3'-fluor-4'-[(JE0-(methoxyimino)methyl]-l,l'-biphenyl-2-yl}-l- methyl- 1 H-pyrazol-4-carboxamid (bekannt aus WO 02/08197) der Formel
(24-3 ) 3 -(Trifluormethy I)-N- { 3 '-fluor-4'-[CE)-(methoxy imino)methy 1] -1,1 '-bipheny 1-2-y 1 } - 1 - methyl- 1 H-pyrazol-4-carboxamid (bekannt aus WO 02/08197) der Formel
(24-4) N-(3',4'-Dichlor- 1 , 1 '-biphenyl-2-yl)-5-fluor-l ,3-dimethyl- lH-pyrazol-4-carboxamid (bekannt aus WO 00/14701) der Formel
(24-5) N-(4'-Chlor-3'-fluor- 1 , 1 '-biphenyl-2-yl)-2-methyl-4-(trifluormethyl)- 1 ,3-thiazol-5- carboxamid (bekannt aus WO 03/066609) der Formel
(24-6) N-(4'-Chlor- 1 , 1 '-biphenyl-2-yl)-4-(difluormethyl)-2-methyl- 1 ,3 -thiazol-5-carboxamid (bekannt aus WO 03/066610) der Formel
(24-7) N-(4'-Brom- 1 , 1 '-biphenyl-2-yl)-4-(difluormethyl)-2-methyl- 1 ,3-thiazol-5-carboxamid (bekannt aus WO 03/066610) der Formel
(24-8) 4-(Difluormethyl)-2-methyl-N-[4'-(trifluormethyl)- 1 , l'-biphenyl-2-yl]- 1 ,3-thiazol-5- carboxamid (bekannt aus WO 03/066610) der Formel
(24-9) Bixafen (ISO-proposed) N-(3',4'-dichloro-5-fluoro[l,l'-biphenyl]-2-yl)-3-(difluoromethyl)- l-methyl-lH-pyrazole-4-carboxamide (bekannt aus WO 2003070705)
Bevorzugter Kombinationspartner der Gruppe (25) ist
(25-1) Amisulbrom (ISO-proposed, ΝC-224) 3-[(3-Bromo-6-fluoro-2-methyl-lH-indol-l- yl)sulfonyl]-N,N-dimethyl- IH- 1,2,4-triazole-l -Sulfonamid (bekannt aus JP 2001187786)
Bevorzugter Kombinationspartner der Gruppe (26) ist
(26- 1 ) Flutianil (2)-[3 -(2-methoxyphenyl)- 1 ,3 -thiazolidin-2-ylidene](α,α,α,4-tetrafluoro-/w- tolylthio)acetonitrile (bekannt aus JP 2000319270 A)
Bevorzugter Kombinationspartner der Gruppe (27) ist
(27-1) Meptyldinocap (RS)-2-(l-methylheptyl)-4,6-dinitrophenyl crotonate (bekannt aus': Meptyldinocap : a new active substance for control of powdery mildew. Hufnagl, A. E.; Distler, B.; Bacci, L.; Valverde, P. Dow AgroSciences, Mougins, Fr. International Plant Protection Congress, Proceedings, 16th, Glasgow, United Kingdom, Oct. 15-18, 2007 (2007), 1 32-39. Publisher: British Crop Production Council, Alton, UK)
Die Verbindung (6-7) Carpropamid besitzt drei asymmetrische substituierte Kohlenstoffatome. Die Verbindung (6-7) kann daher als Gemisch von verschiedenen Isomeren oder auch in Form einer einzigen Komponente vorliegen. Besonders bevorzugt sind die Verbindungen
(lS,3i?)-2,2-Dichlor-N-[(lR)-l-(4-chlorphenyl)ethyl]-l-ethyl-3-methylcyclopropancarboxamid der Formel
( lR,3S)-2,2-Dichlor-N-[( IR)- 1 -(4-chlorphenyl)ethyl]- 1 -ethyl-3-methylcyclopropancarboxamid der Formel
Bevorzugt enthalten die erfindungsgemäßen Wirkstoffkombinationen eine der Verbindungen der Formel (I), die ausgewählt ist aus der Gruppe bestehend aus den Verbindungen der oben erwähnten Formeln (I- 1), (1-2), (1-3) oder (1-4), und einen Wirkstoff ausgewählt aus den oben genannten Gruppen (2) bis (27).
Besonders bevorzugt enthalten die erfindungsgemäßen Wirkstoffkombinationen weiterhin eine der Verbindungen der Formel (I), die ausgewählt ist aus der Gruppe bestehend aus den Verbindungen der oben erwähnten Formeln (I- 1) oder (1-4) und einen Wirkstoff ausgewählt aus den oben genannten Gruppen (2) bis (27).
Ganz besonders bevorzugt enthalten die erfindungsgemäßen Wirkstoffkombinationen die Verbindung der Formel (I- 1) und einen Wirkstoff ausgewählt aus den oben genannten Gruppen (2) bis (27).
Weiterhin ganz besonders bevorzugt enthalten die erfindungsgemäßen Wirkstoffkombinationen die Verbindung der Formel (1-4) und einen Wirkstoff ausgewählt aus den oben genannten Gruppen (2) bis (27). Als Kombinationspartner der Gruppen (2) bis (27) sind die folgenden Wirkstoffe besonders bevorzugt:
(2-1) Azoxystrobin (2-2) Fluoxastrobin (2-3) (2£)-2-(2-{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl)-2- (methoxyimino)-N-methylethanamid
(2-4) Trifloxystrobin
(2-5) (2£)-2-(Methoxyimino)-N-methyl-2-(2- { [( {( 1 E)- 1 -[3 -(trifluormethyl)phe- nyljethyliden} amino)oxy]methyl} phenyl)ethanamid (2-6) (2J£)-2-(Methoxyimino)-N-methyl-2-{2-[(£)-({ l-[3-(trifluormethyl)phenyl]- ethoxy} imino)methyl]phenyl} ethanamid
(2-8) 5-Methoxy-2-methyl-4-(2-{[({(l£)-l-[3-(trifluormethyl)phenyl]ethyliden}- amino)oxy]methyl}phenyl)-2,4-dihydro-3H-l,2,4-triazol-3-on
(2-9) Kresoxim-methyl (2-10) Dimoxystrobin
(2-11) Picoxystrobin
(2-12) Pyraclostrobin
(2-13) Metominostrobin
(3-3) Propiconazole (3-4) Difenoconazole
(3-6) Cyproconazole
(3-7) Ηexaconazole
(3-8) Penconazole
(3-9) Myclobutanil (3-10) Tetraconazole
(3-12) Epoxiconazole
(3-13) Flusilazole
(3-15) Prothioconazole (3-16) Fenbuconazole
(3-17) Tebuconazole
(3-18) Ipconazole
(3-19) Metconazole
(3-20) Triticonazole (3-21) Bitertanol
(3-22) Triadimenol
(3-23) Triadimefon
(3-24) Fluquinconazole
(4-1) Dichlofluanid (4-2) Tolylfluanid
(5-1) Iprovalicarb
(5-3) Benthiavalicarb
(5-4) Valiphenal
(6-2) Boscalid (6-5) Ethaboxam
(6-6) Fenhexamid
(6-7) Carpropamid (6-8) 2-Chlor-4-[(2-fluor-2-methylpropanoyl)amino]-N,N-dimethylbenzamid
(6-9) Fluopicolid
(6-10) Zoxamide
(6-11) Isotianil
(6-14) Penthiopyrad
(6-16) N-[2-(l,3-Dimethylbutyl)phenyl]-l-methyl-4-(trifluormethyl)-lH-pyrrol-3-carboxamid
(6-17) Flutolanil
(6-18) Ν-[2-( 1 ,3-dimethylbutyl)phenyl]-5-fluor- 1 ,3-dimethyl- 1 Η-pyrazol-4-carboxamid
(6-25) Fluopyram
(6-26) Sedaxane (ISO-proposed)
(6-27) Isopyrazam (ISO-proposed)
(7-1) Mancozeb
(7-2) Maneb
(7-4) Propineb
(7-5) Thiram
(7-6) Zineb
(8-1) Benalaxyl
(8-2) Furalaxyl
(8-3) Metalaxyl
(8-4) Metalaxyl-M
(8-5) Benalaxyl-M
(9-1) Cyprodinil (9-2) Mepanipyrim
(9-3) Pyrimethanil
(10-1) 6-Chlor-5-[(3,5-dimethylisoxazol-4-yl)sulfonyl]-2,2-difluor-5H-[ 1 ,3]dioxolo[4,5-f]benzimidazol
(10-3) Carbendazim
(11-1) Diethofencarb
(11-2) Propamocarb
(11-3) Propamocarb-hydrochloride
(11-4) Propamocarb-Fosetyl
(11-5) Pyribencarb
(12-2) Captan
(12-3) Folpet
(12-4) Iprodione
(12-5) Procymidone
(13-1) Dodine
(13-2) Guazatine
(13-3) Iminoctadine triacetate
(14-1) Cyazofamid
(14-2) Prochloraz
(14-3) Triazoxide
(14-5) Fenamidone
(15-4) Fenpropimoφh
(15-5) Dimethomorph (15-6) Flumorph
(16-2) Fludioxonil
(17-1) Fosetyl-Al
(17-2) Phosphonic acid (17-3) Tolclofos-methyl
(19-1) Acibenzolar-S-methyl
(19-2) Chlorothalonil
(19-3) Cymoxanil
(19-5) Famoxadone (19-6) Fluazinam
(19-7) Kupferoxychlorid
(19-9) Oxadixyl
(19-10) Spiroxamine
(19-21) Cyprosulfamide (19-22) Mandipropamid
(20-1) Pencycuron
(20-2) Thiophanate-methyl
(22-1) 5-Chlor-N-[^S>2,2,2-trifluor-l-methylethyl]-6-(2,4,6-trifluorphenyl)[l,2,4]triazolo[l,5-a]- pyrimidin-7-amin (22-2) 5-Chlor-N-[(7R> 1 ,2-dimethylpropyl]-6-(2,4,6-trifluorphenyl)[ 1 ,2,4]triazolo[ 1 ,5-a]pyri- midin-7-amin
(22-4) 5-Chlor-6-(2,4,6-trifluoφhenyl)-7-(4-methylpiperidin- 1 -yl)[ 1 ,2,4]triazolo[ 1 ,5-a]pyrimidin (23 - 1 ) 2-Butoxy-6-iod-3 -propyl-benzopyran-4-on (23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on (23-3) 6-Iod-2-propoxy-3-propyl-benzopyran-4-on
(24- 1 ) N-(3',4'-Dichlor-5-fluor- 1 , 1 '-biphenyl-2-yl)-3 -(difluormethyl)- 1 -methyl- 1 H-pyrazol-4- carboxamid (24-3) 3-(Trifluormethyl)-N-{3l-fluor-4'-[(£)-(methoxyimino)methyl]-l,l'-biphenyl-2-yl}-l- methyl-lH-pyrazol-4-carboxamid
(24-7) Ν-(4'-Brom- 1 , 1 '-biphenyl-2-yl)-4-(difluormethyl)-2-methyl- 1 ,3-thiazol-5-carboxamid
(24-9) Bixafen
(25-1) Amisulbrom (26-1) Flutianil
(27-1) Meptyldinocap
Als Kombinationspartner der Gruppen (2) bis (27) sind die folgenden Wirkstoffe ganz besonders bevorzugt:
(2-1) Azoxystrobin (2-2) Fluoxastrobin
(2-3 ) (2E)-2-(2- { [6-(3 -Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy} phenyl)-2- (methoxyimino)-N-methylethanamid
(2-4) Trifloxystrobin
(3-15) Prothioconazole (3-17) Tebuconazole
(3-18) Ipconazole
(3-20) Triticonazole
(3-21) Bitertanol
(3-22) Triadimenol (3-24) Fluquinconazole
(4-1) Dichlofluanid
(4-2) Tolylfluanid
(5-1) Iprovalicarb
(6-6) Fenhexamid
(6-7) Carpropamid
(6-9) Fluopicolid
(6-11) Isotianil
(6-14) Penthiopyrad
(6-17) Flutolanil
(6- 18) N-[2-( 1 ,3-dimethylbutyl)phenyl]-5-fluor-l ,3-dimethyl- lH-pyrazol-4-carboxamid
(6-25) Fluopyram
(7-4) Propineb
(7-5) Thiram
(8-3) Metalaxyl
(8-4) Metalaxyl-M
(8-5) Benalaxyl-M
(9-3) Pyrimethanil
(10-3) Carbendazim
(11-2) Propamocarb
(11-4) Propamocarb-Fosetyl
(11-5) Pyribencarb (12-4) Iprodione (14-2) Prochloraz (14-3) Triazoxide (14-5) Fenamidone (16-2) Fludioxonil (17-1) Fosetyl-Al (17-3) Tolclofos-methyl (19-10) Spiroxamine (19-21) Cyprosulfamide (19-22) Mandipropamid (20-1) Pencycuron (22-4) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin-l-yl)[l,2,4]triazolo[l,5-a]pyrimidin
(24- 1 ) N-(3',4'-Dichlor-5-fluor- 1 , 1 '-biphenyl-2-yl)-3-(difluormethyl)- 1 -methyl- 1 H-pyrazol-4- carboxamid (24-9) Bixafen
(25-1) Amisulbrom
Als Kombinationspartner der Gruppen (2) bis (27) sind die folgenden Wirkstoffe insbesondere bevorzugt:
(2-1) Azoxystrobin (2-2) Fluoxastrobin
(2-4) Trifloxystrobin
(3-15) Prothioconazole
(3-17) Tebuconazole (3-18) Ipconazole
(3-20) Triticonazole
(3-22) Triadimenol
(4-2) Tolylfluanid
(5-1) Iprovalicarb
(6-7) Carpropamid
(6-9) Fluopicolid
(6-11) Isotianil
(6-18) N-[2-(l,3-dimethylbutyl)phenyl]-5-fluor-l,3-dimethyl-lH-pyrazol-4-carboxamid (6-25) Fluopyram
(7-5) Thiram
(8-3) Metalaxyl
(8-4) Metalaxyl-M
(10-3) Carbendazim
(11-2) Propamocarb
(11-5) Pyribencarb
(12-4) Iprodione
(14-5) Fenamidone
(16-2) Fludioxonil
(17-1) Fosetyl-Al
(19-10) Spiroxamine
(19-21) Cyprosulfamide (20-1) Pencycuron
(24- 1 ) N-(3',4'-Dichlor-5-fluor- 1 , 1 '-biphenyl-2-yl)-3-(difluormethyl)- 1 -methyl- lH-pyrazol-4- carboxamid
(24-9) Bixafen (25-1) Amisulbrom
Damit erhält man die in Tabelle 1 aufgeführten Kombinationen, wobei jede Kombination für sich eine ganz besonders bevorzugte erfindungsgemäße Ausführungsform darstellt.
Ebenfalls ganz besonders bevorzugte erfindungsgemäße Ausfuhrungsformen stellen jeweils Kombinationen von enantiomerenreinen Verbindungen der Formel (I- 1), d.h. die Verbindungen der Formeln (I-1A) und (I-1B) mit einem Wirkstoff der Gruppen 2 bis 27 gemäß Tabelle 1 dar, insbesondere bevorzugte Ausführungsformen stellen solche Kombinationen dar, welche die Verbindung der Formel (I- IA) und einen Wirkstoff der Gruppen 2 bis 27 gemäß Tabelle 1 enthalten.
Weiterhin erhält man die in Tabelle 2 aufgeführten Kombinationen, wobei jede Kombination für sich eine bevorzugte erfindungsgemäße Ausführungsform darstellt.
Ebenfalls ganz besonders bevorzugte erfindungsgemäße Ausführungsformen stellen jeweils Kombinationen von enantiomerenreinen Verbindungen der Formel (1-2), d.h. die Verbindungen der Formeln (I-2A) und (I-2B) mit einem Wirkstoff der Gruppen 2 bis 27 gemäß Tabelle 2 dar, insbesondere bevorzugte Ausfuhrungsformen stellen solche Kombinationen dar, welche die Verbindung der Formel (I-2A) und einen Wirkstoff der Gruppen 2 bis 27 gemäß Tabelle 2 enthalten. Weiterhin erhält man die in Tabelle 3 aufgeführten Kombinationen, wobei jede Kombination für sich eine bevorzugte erfindungsgemäße Ausführungsform darstellt.
Ebenfalls ganz besonders bevorzugte erfindungsgemäße Ausführungsformen stellen jeweils Kombinationen von enantiomerenreinen Verbindungen der Formel (1-3), d.h. die Verbindungen der Formeln (I-3A) und (I-3B) mit einem Wirkstoff der Gruppen 2 bis 27 gemäß Tabelle 3 dar, insbesondere bevorzugte Ausführungsformen stellen solche Kombinationen dar, welche die Verbindung der Formel (I-3A) und einen Wirkstoff der Gruppen 2 bis 27 gemäß Tabelle 3 enthalten. Weiterhin erhält man die in Tabelle 4 aufgeführten Kombinationen, wobei jede Kombination für sich eine bevorzugte erfindungsgemäße Ausführungsform darstellt.
Ebenfalls ganz besonders bevorzugte erfindungsgemäße Ausführungsformen stellen jeweils Kombinationen von enantiomerenreinen Verbindungen der Formel (1-4), d.h. die Verbindungen der Formeln (I-4A) und (I-4B) mit einem Wirkstoff der Gruppen 2 bis 27 gemäß Tabelle 4 dar, insbesondere bevorzugte Ausführungsformen stellen solche Kombinationen dar, welche die Verbindung der Formel (I-4A) und einen Wirkstoff der Gruppen 2 bis 27 gemäß Tabelle 4 enthalten. Die erfindungsgemäßen Wirkstoffkombinationen enthalten neben einer Verbindung der Formel (I) mindestens einen Wirkstoff der Gruppen (2) bis (27). Sie können darüber hinaus auch weitere fungizid wirksame Zumischkomponenten enthalten.
Wenn die Wirkstoffe in den erfϊndungsgemäßen Wirkstoffkombinationen in bestimmten Ge- wichtsverhältnissen vorhanden sind, zeigt sich der synergistische Effekt besonders deutlich. Jedoch können die Gewichtsverhältnisse der Wirkstoffe in den Wirkstoffkombinationen in einem relativ großen Bereich variiert werden. Im Allgemeinen enthalten die erfϊndungsgemäßen Kombinationen Verbindungen der Formel (I) und einen Kombinationspartner aus einer der Gruppen (2) bis (27) in den in der nachfolgenden Tabelle beispielhaft angegebenen Mischungsverhältnisse. Die Mischungsverhältnisse basieren auf Gewichtsverhältnissen. Das Verhältnis ist zu verstehen als Verbindung der Formel (I) : Kombinationspartner
Kombinationspartner bevorzugtes besonders bevorzugtes
Mischungsverhältnis Mischungsverhältnis
Gruppe (2): Strobilurine 125: 1 bis 1 : 2000 50 : 1 bis 1 1000
Gruppe (3): Triazole 125: 1 bis 1 : 2000 50 : 1 bis 1 1000
Gruppe (4): Sulfenamide 500: 1 bis 1 : 100 250 : 1 bis 1 50
Gruppe (5): Valinamide 125: 1 bis 1 : 2000 50 : 1 bis 1 1000
Gruppe (6): Carboxamide ohne (6-6) 125: 1 bis 1 2000 50 : 1 bis 1 1000
(6-6): 500: 1 bis 1 100 250 : 1 bis 1 50
Gruppe (7): Dithiocarbamate 500: 1 bis 1 100 250 : 1 bis 1 50
Gruppe (8): Acylalanine 125: 1 bis 1 2000 50 : 1 bis 1 1000
Gruppe (9): Anilino-pyrimidine 500: 1 bis 1 100 250 : 1 bis 1 50
Gruppe (10): Benzimidazole 125: 1 bis 1 2000 50 : 1 bis 1 1000
Gruppe ( 11 ) : Carbamate 500: 1 bis 1 100 250 : 1 bis 1 50
Gruppe (12): Dicarboximide 500: 1 bis 1 100 250 : 1 bis 1 50
Gruppe (13): Guanidine 125: 1 bis 1 2000 50 : 1 bis 1 1000
Gruppe (14): Imidazole 125: 1 bis 1 2000 50 : 1 bis 1 1000
Gruppe (15): Morphol ine 125: 1 bis 1 2000 50 : 1 bis 1 1000
Gruppe (16): Pyrrole 125: 1 bis 1 2000 50 : 1 bis 1 1000
Gruppe (17): (Thio)Phosphonate 500: 1 bis 1 100 250 : 1 bis 1 50
Gruppe (18): Phenylethanamide 125: 1 bis 1 2000 50 : 1 bis 1 1000
(19-1): Acibenzolar-S-methyl 125: 1 bis 1 2000 50 : 1 bis 1 1000
(19-2): Chlorothalonil 500: 1 bis 1 100 250 : 1 bis 1 50
(19-3): Cymoxanil 125: 1 bis 1 . 2000 50 : 1 bis 1 : 1000 Kombinationspartner bevorzugtes besonders bevorzugtes
Mischungsverhältnis Mischungsverhältnis
(19-4): Edifenphos 125: 1 bis 1 2000 50 1 bis 1 1000
(19-5): Famoxadone 125: 1 bis 1 2000 50 1 bis 1 1000
(19-6): Fluazinam 125: 1 bis 1 2000 50 1 bis 1 1000
(19-7): Kupferoxychlorid 500: 1 bis 1 100 250 1 bis 1 50
(19-8): Kupferhydroxid 500: 1 bis 1 100 250 1 bis 1 50
(19-9): Oxadixyl 125: 1 bis 1 2000 50 1 bis 1 1000
(19-10): Spiroxamine 125: 1 bis 1 2000 50 1 bis 1 1000
(19-11) Dithianon 500: 1 bis 1 100 250 1 bis 1 50
(19-12) Metrafenone 125: 1 bis 1 2000 50 1 bis 1 1000
(19-14): 2,3 -Dibutyl-6-chlor-thieno-
125: 1 bis 1 2000 50 1 bis 1 1000 [2,3 -d] pyrimidin-4(3 H)on
(19-15): Probenazole 125: 1 bis 1 2000 50 1 bis 1 1000
(19-16): Isoprothiolane 125: 1 bis 1 2000 50 1 bis 1 1000
(19-17): Kasugamycin 125: 1 bis 1 2000 50 1 bis 1 1000
(19-18): Phthalide 125: 1 bis 1 2000 50 1 bis 1 1000
(19-19): Ferimzone 125: 1 bis 1 2000 50 1 bis 1 1000
(19-20): Tricyclazole 125: 1 bis 1 2000 50 1 bis 1 1000
(19-21): Cyprosulfamide 125: 1 bis 1 2000 50 1 bis 1 1000
(19-22) 2-(4-Chlorphenyl)-N-{2-[3- methoxy-4-(prop-2-in- 1 -yloxy)phenyl]ethyl} - 125: 1 bis 1 2000 50 1 bis 1 1000 2-(prop-2-in- 1 -yloxy)acetamid
Gruppe (20): (Thio)Harnstoff-Derivate 125: 1 bis 1 2000 50 1 bis 1 1000
Gruppe (21): Amide 125: 1 bis 1 2000 50 1 bis 1 1000
Gruppe (22): Triazolopyrimidine 125: 1 bis 1 2000 50 1 bis 1 1000
Gruppe (23): Iodochromone 125: 1 bis 1 2000 50 1 bis 1 1000
Gruppe (24): B ipheny lcarboxamide 125: 1 bis 1 : 2000 50 1 bis 1 1000
Die Verbindungen der Formel (I) oder die Wirkstoffe aus den oben aufgeführten Gruppen (2) bis (27) mit wenigstens einem basischen Zentrum sind dazu in der Lage, beispielsweise Säureadditionssalze zu bilden, z.B. mit starken anorganischen Säuren wie Mineralsäuren, z.B. Perchlorsäure, Schwefelsäure, Salpetersäure, salpetriger Säure, einer Phosphorsäure oder einer Halogenwasserstoffsäure, mit starken organischen Carbonsäuren wie unsubstituierten oder substituierten, z.B. halogensubstituierten, CrC4-Alkancarbonsäuren, z.B. Essigsäure, gesättigten oder ungesättigten Dicarbonsäuren, z.B. Oxalsäure, Malonsäure, Bernsteinsäure, Maleinsäure, Fumarsäure und Phthalsäure, Hydroxycarbonsäuren, z.B. Ascorbinsäure, Milchsäure, Äpfelsäure, Weinsäure und Citronensäure, oder Benzoesäure, oder mit organischen Sulfonsäuren wie unsubstituierten oder substituierten, z.B. halogensubstituierten, Ci-C4-Alkan- oder Arylsulfonsäuren, z.B. Methan- oder p-Toluolsulfonsäure. Die Verbindungen der Formel (I) oder die Wirkstoffe aus den oben aufgeführten Gruppen (2) bis (27) mit wenigstens einer sauren Gruppe sind dazu in der Lage, zum Beispiel Salze mit Basen zu bilden, z.B. Metallsalze wie Alkali- oder Erdalkalisalze, z.B. Natrium-, Kalium- oder Magnesiumsalze, oder Salze mit Ammoniak oder einem organischen Amin wie Morpholin, Piperidin, Pyrrolidin, einem niederen Mono-, Di- oder Trialkylamin, z.B. Ethyl-, Diethyl-, Triethyl- oder Dimethylpropylamin, oder einem niederen Mono-, Di- oder Trihydroxyalkylamin, z.B. Mono-, Di- oder Triethanolamin. Darüber hinaus können gegebenenfalls entsprechende innere Salze gebildet werden. Im Rahmen der Erfindung sind agrochemisch vorteilhafte Salze bevorzugt. Angesichts der engen Beziehung zwischen den Verbindungen der Formel (I) oder den Wirkstoffen aus den oben aufgeführten Gruppen (2) bis (27) in freier Form und in Form ihrer Salze sollte oben und im folgenden jeder Verweis auf die freien Verbindungen der Formel (I) oder auf freie Wirkstoffe aus den oben aufgeführten Gruppen (2) bis (27) oder auf ihre Salze so verstanden werden, dass auch die entsprechenden Salze bzw. die freien Verbindungen der Formel (I) oder die freien Wirkstoffe aus den oben aufgeführten Gruppen (2) bis (27) eingeschlossen sind, wenn dies angebracht und zweckmäßig ist. Dies trifft entsprechend auch auf Tautomere der Verbindungen der Formel (I) bzw. der Wirkstoffe aus den oben aufgeführten Gruppen (2) bis (27) und auf ihre Salze zu.
Im Rahmen der vorliegenden Erfindung steht der Begriff„Wirkstoffkombination" für verschiedene Kombinationen von Verbindungen der Formel (I) und Wirkstoffen aus den oben aufgeführten Gruppen (2) bis (27), z.B. in Form einer einzelnen Fertigmischung („Ready-Mix"), in einer kombinierten Spraymischung, die zusammengesetzt ist aus getrennten Formulierungen der einzelnen Wirkstoffe, z.B. einer Tankmischung („Tank-Mix") oder in einer kombinierten Verwendung der einzelnen Wirkstoffe, wenn diese sequentiell appliziert werden, z.B. nacheinander innerhalb eines angemessen kurzen Zeitraums, z.B. wenigen Stunden oder Tagen. Gemäß einer bevorzugten Ausführungsform ist die Reihenfolge der Applikation der Verbindungen der Formel (I) und der Wirkstoffe aus den oben aufgeführten Gruppen (2) bis (27) für die Ausführung der vorliegenden Erfindung nicht entscheidend.
Beim Einsatz der erfindungsgemäßen Wirkstoffkombinationen als Fungizide, Insektizide oder Akarizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Die Aufwandmenge der erfindungsgemäßen Wirkstoffkombinationen beträgt bei der Behandlung von Pflanzenteilen, z.B. Blättern von 0,1 bis 1000 g/ha, bevorzugt von 10 bis 500 g/ha, besonders bevorzugt von 50 bis 300 g/ha (bei Anwendung durch Gießen oder Tropfen kann die Aufwandmenge sogar verringert werden, vor allem wenn inerte Substrate wie Steinwolle oder Perlit verwendet werden); bei der Saatgutbehandlung von 1 bis 2000 g pro 100 kg Saatgut, bevorzugt von 2 bis 1000 g pro 100 kg Saatgut, besonders bevorzugt von 3 bis 750 g pro 100 kg Saatgut, ganz besonders bevorzugt von 5 bis 500 g pro 100 kg Saatgut; bei der Bodenbehandlung von 0,1 bis 5000 g/ha, bevorzugt von 1 bis 1000 g/ha.
Diese Aurwandmengen seien nur beispielhaft und nicht limitierend im Sinne der Erfindung genannt.
Die erfindungsgemäßen Wirkstoffkombinationen können eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch phytopathogene Pilze und/oder tierische Schädlinge zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im Allgemeinen auf 1 bis 28 Tage, bevorzugt auf 1 bis 14 Tage, besonders bevorzugt auf 1 bis 10 Tage, ganz besonders bevorzugt auf 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen bzw. auf bis zu 200 Tage nach einer Saatgutbehandlung. Die erfindungsgemäßen Wirkstoffkombinationen eignen sich bei guter Pflanzenverträglichkeit, günstiger Warmblütertoxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen, zur Steigerung der Ernteerträge, Verbesserung der Qualität des Erntegutes und zur Bekämpfung von phytopathogenen Pilzen wie Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes usw. und von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Helminthen, Nematoden und Mollusken, die in der Landwirtschaft, im Gartenbau, bei der Tierzucht, in Forsten, in Gärten und Freizeiteinrichtungen, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Die erfindungsgemäßen Wirkstoffkombinationen besitzen sehr gute fungizide Eigenschaften und lassen sich zur Bekämpfung von phytopathogenen Pilzen, wie Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes usw. einsetzen.
Die erfindungsgemäßen Wirkstoffkombinationen eignen sich besonders gut zur Bekämpfung Phytophthora infestans, Plasmopara viticola und Botrytis cinerea. Beispielhaft, aber nicht begrenzend, seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt: Fungizide lassen sich im Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.
Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.
Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Erkrankungen, hervorgerufen durch Erreger des Echten Mehltaus wie z.B.
Blumeria-Arten, wie beispielsweise Blumeria graminis; Podosphaera- Arten, wie beispielsweise Podosphaera leucotricha;
Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;
Uncinula-Arten, wie beispielsweise Uncinula necator;
Erkrankungen, hervorgerufen durch Erreger von Rostkrankheiten wie z.B.
Gymnosporangium-Arten, wie beispielsweise Gymnosporangium sabinae Hemileia-Arten, wie beispielsweise Hemileia vastatrix;
Phakopsora-Arten, wie beispielsweise Phakopsora pachyrhizi und Phakopsora meibomiae;
Puccinia-Arten, wie beispielsweise Puccinia recondita;
Uromyces-Arten, wie beispielsweise Uromyces appendicularus;
Erkrankungen, hervorgerufen durch Erreger der Gruppe der Oomyceten wie z.B. Bremia-Arten, wie beispielsweise Bremia lactucae;
Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;
Phytophthora-Arten, wie beispielsweise Phytophthora infestans;
Plasmopara-Arten, wie beispielsweise Plasmopara viticola;
Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis;
Pythium-Arten, wie beispielsweise Pythium ultimum;
Blattfleckenkrankheiten und Blattwelken, hervorgerufen durch z.B.
Alternaria-Arten, wie beispielsweise Alternaria solani;
Cercospora-Arten, wie beispielsweise Cercospora beticola;
Cladiosporum-Arten, wie beispielsweise Cladiosporium cucumerinum;
Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus
(Konidienform: Drechslera, Syn: Helminthosporium);
Colletotrichum-Arten, wie beispielsweise Colletotrichum lindemuthanium; Cycloconium-Arten, wie beispielsweise Cycloconium oleaginum;
Diaporthe-Arten, wie beispielsweise Diaporthe citri;
Elsinoe-Arten, wie beispielsweise Elsinoe fawcettii;
Gloeosporium-Arten, wie beispielsweise Gloeosporium laeticolor;
Glomerella-Arten, wie beispielsweise Glomerella cingulata;
Guignardia- Arten, wie beispielsweise Guignardia bidwelli;
Leptosphaeria-Arten, wie beispielsweise Leptosphaeria maculans;
Magnaporthe-Arten, wie beispielsweise Magnaporthe grisea;
Mycosphaerella-Arten, wie beispielsweise Mycosphaerelle graminicola;
Phaeosphaeria-Arten, wie beispielsweise Phaeosphaeria nodorum;
Pyrenophora-Arten, wie beispielsweise Pyrenophora teres;
Ramularia-Arten, wie beispielsweise Ramularia collo-cygni;
Rhynchosporium-Arten, wie beispielsweise Rhynchosporium secalis; Septoria-Arten, wie beispielsweise Septoria apii;
Typhula-Arten, wie beispielsweise Typhula incarnata;
Venturia-Arten, wie beispielsweise Venturia inaequalis;
Wurzel- und Stengelkrankheiten, hervorgerufen durch z.B.
Corticium-Arten, wie beispielsweise Corticium graminearum;
Fusarium-Arten, wie beispielsweise Fusarium oxysporum;
Gaeumannomyces-Arten, wie beispielsweise Gaeumannomyces graminis;
Rhizoctonia-Arten, wie beispielsweise Rhizoctonia solani;
Tapesia-Arten, wie beispielsweise Tapesia acuformis;
Thielaviopsis- Arten, wie beispielsweise Thielaviopsis basicola;
Ähren- und Rispenerkrankungen (inklusive Maiskolben), hervorgerufen durch z.B.
Alternaria- Arten, wie beispielsweise Alternaria spp.;
Aspergillus-Arten, wie beispielsweise Aspergillus flavus;
Cladosporium-Arten, wie beispielsweise Cladosporium spp.;
Claviceps-Arten, wie beispielsweise Claviceps purpurea;
Fusarium-Arten, wie beispielsweise Fusarium culmorum;
Gibberella-Arten, wie beispielsweise Gibberella zeae;
Monographella-Arten, wie beispielsweise Monographella nivalis;
Erkrankungen, hervorgerufen durch Brandpilze wie z.B.
Sphacelotheca-Arten, wie beispielsweise Sphacelotheca reiliana;
Tilletia-Arten, wie beispielsweise Tilletia caries;
Urocystis-Arten, wie beispielsweise Urocystis occulta; Ustilago-Arten, wie beispielsweise Ustilago nuda; Fruchtfaule hervorgerufen durch z.B. Aspergillus-Arten, wie beispielsweise Aspergillus flavus; Botrytis-Arten, wie beispielsweise Botrytis cinerea; Penicillium-Arten, wie beispielsweise Penicillium expansum; Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum; Verticilium-Arten, wie beispielsweise Verticilium alboatrum;
Samen- und bodenbürtige Fäulen und Welken, sowie Sämlingserkrankungen, hervorgerufen durch z.B. Fusarium- Arten, wie beispielsweise Fusarium culmorum;
Phytophthora Arten, wie beispielsweise Phytophthora cactorum;
Pythium-Arten, wie beispielsweise Pythium ultimum;
Rhizoctonia-Arten, wie beispielsweise Rhizoctonia solani;
Sclerotium-Arten, wie beispielsweise Sclerotium rolfsii; Krebserkrankungen, Gallen und Hexenbesen, hervorgerufen durch z.B.
Nectria-Arten, wie beispielsweise Nectria galligena;
Welkeerkrankungen hervorgerufen durch z.B.
Monilinia-Arten, wie beispielsweise Monilinia laxa;
Deformationen von Blättern, Blüten und Früchten, hervorgerufen durch z.B. Taphrina-Arten, wie beispielsweise Taphrina deformans;
Degenerationserkrankungen holziger pflanzen, hervorgerufen durch z.B.
Esca-Arten, wie beispielsweise Phaemoniella clamydospora;
Blüten- und Samenerkrankungen, hervorgerufen durch z.B. Botrytis-Arten, wie beispielsweise Botrytis cinerea; Erkrankungen von Pflanzenknollen, hervorgerufen durch z.B. Rhizoctonia-Arten, wie beispielsweise Rhizoctonia solani; Erkrankungen, hervorgerufen durch bakterielle Erreger wie z.B. Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae; Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans; Erwinia-Arten, wie beispielsweise Erwinia amylovora;
Bevorzugt können die folgenden Krankheiten von Soja-Bohnen bekämpft werden: Pilzkrankheiten an Blättern, Stängeln, Schoten und Samen verursacht durch z.B. Alternaria leaf spot (Alternaria spec. atrans tenuissima), Anthracnose (Colletotrichum gloeosporoides dematium var. truncatum), Brown spot (Septoria glycines), Cercospora leaf spot and blight (Cercospora kikuchii), Choanephora leaf blight (Choanephora infundibulifera trispora (Syn.)), Dactuliophora leaf spot (Dactuliophora glycines), Downy Mildew (Peronospora manshurica), Drechslera blight (Drechslera glycini), Frogeye Leaf spot (Cercospora sojina), Leptosphaerulina Leaf Spot (Leptosphaerulina trifolii), Phyllostica Leaf Spot (Phyllosticta sojaecola), Powdery Mildew (Microsphaera diffusa), Pyrenochaeta Leaf Spot (Pyrenochaeta glycines), Rhizoctonia Aerial, Foliage, and Web Blight (Rhizoctonia solani), Rust (Phakopsora pachyrhizi), Scab (Sphaceloma glycines), Stemphylium Leaf Blight (Stemphylium botryosum), Target Spot (Corynespora cassiicola). Pilzkrankheiten an Wurzeln und der Stängelbasis verursacht durch z.B.
Black Root Rot (Calonectria crotalariae), Charcoal Rot (Macrophomina phaseolina), Fusarium Blight or WiIt, Root Rot, and Pod and Collar Rot (Fusarium oxysporum, Fusarium orthoceras, Fusarium semitectum, Fusarium equiseti), Mycoleptodiscus Root Rot (Mycoleptodiscus terrestris), Neocosmospora (Neocosmopspora vasinfecta), Pod and Stern Blight (Diaporthe phaseolorum), Stem Canker (Diaporthe phaseolorum var. caulivora), Phytophthora Rot (Phytophthora megasperma), Brown Stem Rot (Phialophora gregata), Pythium Rot (Pythium aphanidermatum, Pythium irreguläre, Pythium debaryanum, Pythium myriotylum, Pythium ultimum), Rhizoctonia Root Rot, Stem Decay, and Damping-Off (Rhizoctonia solani), Sclerotinia Stem Decay (Sclerotinia sclerotiorum), Sclerotinia Southern Blight (Sclerotinia rolfsii), Thielaviopsis Root Rot (Thielaviopsis basicola).
Dabei lassen sich die erfindungsgemäßen Wirkstoffkombinationen mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie z.B. gegen Puccinia-Arten und von Krankheiten im Wein-, Obst- und Gemüseanbau, wie z.B. gegen Botrytis-, Venturia- oder Alternaria- Arten, einsetzen.
Darüber hinaus weisen die erfindungsgemäßen Wirkstoffkombinationen auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Mi- crosporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.
Darüber hinaus weisen die erfindungsgemäßen Wirkstoffkombinationen auch sehr gute insektizide Wirkungen auf. Sie besitzen ein sehr breites insektizies Wirkungsspektrum, insbesondere gegen folgende tierische Schädlinge:
Aus der Ordnung der Anoplura (Phthiraptera) z.B. Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Trichodectes spp.
Aus der Klasse der Arachnida z.B. Acarus siro, Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia praetiosa, Chorioptes spp., Dermanyssus gallinae, Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp., Eriophyes spp., Hemitarsonemus spp., Hyalomma spp., Ixodes spp., Latrodectus mactans, Metatetranychus spp., Oligonychus spp., Ornithodoros spp., Panonychus spp., Phyllocoptruta oleivora,
Polyphagotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Scorpio maurus, Stenotarsonemus spp., Tarsonemus spp., Tetranychus spp., Vasates lycopersici.
Aus der Klasse der Bivalva z.B. Dreissena spp.
Aus der Ordnung der Chilopoda z.B. Geophilus spp., Scutigera spp.
Aus der Ordnung der Coleoptera z.B. Acanthoscelides obtectus, Adoretus spp., Agelastica alni, Agriotes spp., Amphimallon solstitialis, Anobium punctatum, Anoplophora spp., Anthonomus spp., Anthrenus spp., Apogonia spp., Atomaria spp., Attagenus spp., Bruchidius obtectus, Bruchus spp., Ceuthorhynchus spp., Cleonus mendicus, Conoderus spp., Cosmopolites spp., Costelytra zea- landica, Curculio spp., Cryptorhynchus lapathi, Dermestes spp., Diabrotica spp., Epilachna spp., Faustinus cubae, Gibbium psylloides, Heteronychus arator, Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypothenemus spp., Lachnostema consanguinea, Leptinotarsa decemlineata, Lissorhoptrus oryzophilus, Lixus spp., Lyctus spp., Meligethes aeneus, Melolontha melolontha, Migdolus spp., Monochamus spp., Naupactus xanthographus, Niptus hololeucus, Oryctes rhinoceros, Oryzaephilus surinamensis, Otiorrhynchus sulcatus, Oxycetonia jucunda, Phaedon cochleariae, Phyllophaga spp., Popillia japonica, Premnotrypes spp., Psylliodes chryso- cephala, Ptinus spp., Rhizobius ventralis, Rhizopertha dominica, Sitophilus spp., Sphenophorus spp., Sternechus spp., Symphyletes spp., Tenebrio molitor, Tribolium spp., Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp.
Aus der Ordnung der Collembola z.B. Onychiurus armatus. Aus der Ordnung der Dermaptera z.B. Forficula auricularia. Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus. Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Bibio hortulanus, Calliphora erythrocephala, Ceratitis capitata, Chrysomyia spp., Cochliomyia spp., Cordylobia anthropophaga, Culex spp., Cuterebra spp., Dacus oleae, Dermatobia hominis, Drosophila spp., Fannia spp., Gastrophilus spp., Hylemyia spp., Hyppobosca spp., Hypoderma spp., Liriomyza spp.. Lucilia spp., Musca spp., Nezara spp., Oestrus spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Stomoxys spp., Tabanus spp., Tannia spp., Tipula paludosa, Wohlfahrtia spp.
Aus der Klasse der Gastropoda z.B. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Succinea spp.
Aus der Klasse der Helminthen z.B. Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris lubricoides, Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp, Dictyocaulus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa, Nematodirus spp., Oesophagostomum spp., Opisthorchis spp., Onchocerca volvulus, Ostertagia spp., Paragonimus spp., Schistosomen spp, Strongyloides fuelleborni, Strongyloides stercoralis, Stronyloides spp., Taenia saginata, Taenia solium, Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella nelsoni, Trichinella pseudopsiralis, Trichostrongulus spp., Trichuris trichuria, Wuchereria bancrofti.
Weiterhin lassen sich Protozoen, wie Eimeria, bekämpfen.
Aus der Ordnung der Heteroptera z.B. Anasa tristis, Antestiopsis spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., Eurygaster spp., Heliopeltis spp.,
Horcias nobilellus, Leptocorisa spp., Leptoglossus phyllopus, Lygus spp., Macropes excavatus,
Miridae, Nezara spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., Psallus seriatus, Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp.
Aus der Ordnung der Homoptera z.B. Acyrthosipon spp., Aeneolamia spp., Agonoscena spp., Aleurodes spp., Aleurolobus barodensis, Aleurothrixus spp., Amrasca spp., Anuraphis cardui, Aonidiella spp., Aphanostigma piri, Aphis spp., Arboridia apicalis, Aspidiella spp., Aspidiotus spp., Atanus spp., Aulacorthum solani, Bemisia spp., Brachycaudus helichrysii, Brachycolus spp., Brevicoryne brassicae, Calligypona marginata, Carneocephala fulgida, Ceratovacuna lanigera, Cercopidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chromaphis juglandicola, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp., Cryptomyzus ribis, Dalbulus spp., Dialeurodes spp., Diaphorina spp., Diaspis spp., Doralis spp., Drosicha spp., Dysaphis spp., Dysmicoccus spp., Empoasca spp., Eriosoma spp., Erythroneura spp., Euscelis bilobatus, Geococcus coffeae, Homalodisca coagulata, Hyalopterus arundinis, Icerya spp., Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecanium spp., Lepidosaphes spp., Lipaphis erysimi, Macrosiphum spp., Mahanarva fimbriolata, Melanaphis sacchari, Metcalfiella spp., Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., Nasonovia ribisnigri, Nephotettix spp., Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Parabemisia myricae, Paratrioza spp., Parlatoria spp., Pemphigus spp., Pere- grinus maidis, Phenacoccus spp., Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., Pinnaspis aspidistrae, Planococcus spp., Protopulvinaria pyriformis, Pseudaulacaspis pentagona, Pseudococcus spp., Psylla spp., Pteromalus spp., Pyrilla spp., Quadraspidiotus spp., Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., Saissetia spp., Scaphoides titanus, Schizaphis graminum, Selenaspidus articulatus, Sogata spp., Sogatella furcifera, Sogatodes spp., Stictocephala festina, Tenalaphara malayensis, Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., Tri- aleurodes vaporariorum, Trioza spp., Typhlocyba spp., Unaspis spp., Viteus vitifolii. Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
Aus der Ordnung der Isopoda z.B. Armadillidium vulgäre, Oniscus asellus, Porcellio scaber. Aus der Ordnung der Isoptera z.B. Reticulitermes spp., Odontotermes spp. Aus der Ordnung der Lepidoptera z.B. Acronicta major, Aedia leucomelas, Agrotis spp., Alabama argillacea, Anticarsia spp., Barathra brassicae, Bucculatrix thurberiella, Bupalus piniarius, Cacoecia podana, Capua reticulana, Carpocapsa pomonella, Cheimatobia brumata, Chilo spp., Choristoneura fumiferana, Clysia ambiguella, Cnaphalocerus spp., Earias insulana, Ephestia kuehniella, Euproctis chrysorrhoea, Euxoa spp., Feltia spp., Galleria mellonella, Helicoveφa spp., Heliothis spp., Hofmannophila pseudospretella, Homona magnanima, Hyponomeuta padella, La- phygma spp., Leucoptera spp., Lithocolletis blancardella, Lithophane antennata, Loxagrotis albicosta, Lymantria spp., Malacosoma neustria, Mamestra brassicae, Mocis repanda, Mythimna separata, Oria spp., Oulema oryzae, Panolis flammea, Pectinophora gossypiella, Phyllocnistis citrella, Pieris spp., Plutella xylostella, Prodenia spp., Pseudaletia spp., Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia ni, Spodoptera spp., Thermesia gemmatalis, Tinea pellionella, Tineola bisselliella, Tortrix viridana, Trichoplusia spp., Tuta spp.
Aus der Ordnung der Orthoptera z.B. Acheta domesticus, Blatta orientalis, Blattella germanica, Gryllotalpa spp., Leucophaea maderae, Locusta spp., Melanoplus spp., Periplaneta americana, Schistocerca gregaria. Aus der Ordnung der Siphonaptera z.B. Ceratophyllus spp., Xenopsylla cheopis. Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.
Aus der Ordnung der Thysanoptera z.B. Baliothrips biformis, Enneothrips flavens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Kakothrips spp., Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamoni, Thrips spp. Aus der Ordnung der Thysanura z.B. Lepisma saccharina.
Zu den pflanzenparasitären Nematoden gehören z.B. Anguina spp., Aphelenchoides spp., Belonoaimus spp., Bursaphelenchus spp., Ditylenchus dipsaci, Globodera spp., Heliocotylenchus spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus similis, Rotylenchus spp., Trichodorus spp., Tylenchorhynchus spp., Tylenchulus spp., Tylenchulus semipenetrans, Xiphinema spp. Im Materialschutz lassen sich die erfindungsgemäßen Wirkstoffkombinationen zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.
Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.
Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffkombinationen gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.
Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt: Alternaria, wie Alternaria tenuis,
Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus, Penicillium, wie Penicillium glaucum,
Polyporus, wie Polyporus versicolor,
Aureobasidium, wie Aureobasidium pullulans,
Sclerophoma, wie Sclerophoma pityophila, Trichoderma, wie Trichoderma viride, Escherichia, wie Escherichia coli, Pseudomonas, wie Pseudomonas aeruginosa, Staphylococcus, wie Staphylococcus aureus. Außerdem wurde gefunden, dass die erfindungsgemäßen Wirkstoffkombinationen eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.
Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:
Käfer wie Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.
Hautflügler wie Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.
Termiten wie Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
Borstenschwänze wie Lepisma saccharina.
Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel.
Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schützenden Material um Holz und Holzverarbeitungsprodukte.
Unter Holz und Holzverarbeitungsprodukten, welche durch die erfϊndungsgemäßen Wirkstoffkombinationen geschützt werden kann, ist beispielhaft zu verstehen: Bauholz, Holzbal- ken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzprodukte, die ganz allgemein beim Hausbau oder in der Bautischlerei Verwendung finden. Die WirkstoflEkombinationen können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.
Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungs- bzw. Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV- Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.
Die zum Schutz von Holz und Holzwerkstoffen verwendeten insektiziden Wirkstoffkombinationen oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.
Die Menge der eingesetzten Wirkstoffkombinationen bzw. Konzentrate ist von der Art und dem Vorkommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.
Die Wirkstoffkombinationen eignen sich auch zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen u.a. vorkommen. Sie können zur Bekämpfung dieser Schädlinge in Haushaltsinsektizid-Produkten verwendet werden. Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:
Aus der Ordnung der Scorpionidea z.B. Buthus occitanus.
Aus der Ordnung der Acarina z.B. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae.
Aus der Ordnung der Araneae z.B. Aviculariidae, Araneidae.
Aus der Ordnung der Opiliones z.B. Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium. Aus der Ordnung der Isopoda z.B. Oniscus asellus, Porcellio scaber. Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus, Polydesmus spp. Aus der Ordnung der Chilopoda z.B. Geophilus spp.
Aus der Ordnung der Zygentoma z.B. Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus. Aus der Ordnung der Blattaria z.B. Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa.
Aus der Ordnung der Saltatoria z.B. Acheta domesticus. Aus der Ordnung der Dermaptera z.B. Forfϊcula auricularia. Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp. Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp.
Aus der Ordnung der Coleptera z.B. Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum. Aus der Ordnung der Diptera z.B. Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysozona pluvialis, Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp., Stomoxys calcitrans, Tipula paludosa.
Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
Aus der Ordnung der Siphonaptera z.B. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis.
Aus der Ordnung der Hymenoptera z.B. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum. Aus der Ordnung der Anoplura z.B. Pediculus humanus capitis, Pediculus humanus coφoris, Phthirus pubis. Aus der Ordnung der Heteroptera z.B. Cimex hemipterus, Cimex lectularius, Rhodinus prolixus, Triatoma infestans.
Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampferprodukten mit Verdampferplättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel- und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Motten- säckchen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.
Die erfindungsgemäßen Wirkstoffkombinationen wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ek- toparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören:
Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp.
Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp.
Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp.
Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp.
Aus der Ordnung der Heteropterida z.B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.
Aus der Ordnung der Blattarida z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp.
Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie Mesostigmata z.B. Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp.
Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp.
Die erfindungsgemäßen Wirkstoffkombinationen eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfalle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so dass durch den Einsatz der erfindungsgemäßen Wirk- Stoffkombinationen eine wirtschaftlichere und einfachere Tierhaltung möglich ist.
Die Anwendung der erfindungsgemäßen Wirkstoffkombinationen geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln, Tränken, Drenchen, Granulaten, Pasten, BoIi, des feed-through- Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitonal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour- on und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw. Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffkombinationen als Formulierungen (beispielsweise Pulver, Emulsionen, fließfahige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.
Die erfindungsgemäßen Wirkstoffkombinationen können gegebenenfalls in bestimmten Kon- zentrationen bzw. Aufwandmengen auch als Herbizide, Safener, Wachstumsregulatoren oder
Mittel zur Verbesserung der Pflanzeneigenschaften, oder als Mikrobizide, beispielsweise als
Fungizide, Antimykotika, Bakterizide, Virizide (einschließlich Mittel gegen Viroide) oder als Mittel gegen MLO (Mycoplasma-like-organism) und RLO (Rickettsia-like-organism) verwendet werden.
Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, wasser- und ölbasierte Suspensionen, Pulver, Stäubemittel, Pasten, lös- liehe Pulver, lösliche Granulate, Streugranulate, Suspensions-Emulsions-Konzentrate, Wirkstoff- imprägnierte Naturstoffe, Wirkstoff-imprägnierte synthetische Stoffe, Düngemittel sowie Feinst- verkapselungen in polymeren Stoffen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Die Herstellung der Formulierungen erfolgt entweder in geeigneten Anlagen oder auch vor oder während der Anwendung.
Als Hilfsstoffe können solche Stoffe Verwendung finden, die geeignet sind, dem Mittel selbst oder und/oder davon abgeleitete Zubereitungen (z.B. Spritzbrühen, Saatgutbeizen) besondere Eigenschaften zu verleihen, wie bestimmte technische Eigenschaften und/oder auch besondere biologische Eigenschaften. Als typische Hilfsmittel kommen in Frage: Streckmittel, Lösemittel und Trägerstoffe.
Als Streckmittel eignen sich z.B. Wasser, polare und unpolare organische chemische Flüssigkeiten z.B. aus den Klassen der aromatischen und nicht-aromatischen Kohlenwasserstoffe (wie Paraffine, Alkylbenzole, Alkylnaphthaline, Chlorbenzole), der Alkohole und Polyole (die ggf. auch substituiert, verethert und/oder verestert sein können), der Ketone (wie Aceton, Cyclohexanon), Ester (auch Fette und Öle) und (poly-)Ether, der einfachen und substituierten Amine, Amide, Lactame (wie N-Alkylpyrrolidone) und Lactone, der Sulfone und Sulfoxide (wie Dimethylsulfoxid). Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösemittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösemittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylsulfoxid, sowie Wasser. Erfindungsgemäß bedeutet Trägerstoff eine natürliche oder synthetische, organische oder anorganische Substanz, welcher fest oder flüssig sein kann, mit welchen die Wirkstoffe zur besseren Anwendbarkeit, insbesondere zum Aufbringen auf Pflanzen oder Pflanzenteile oder Saatgut, gemischt oder verbunden sind. Der feste oder flüssige Trägerstoff ist im Allgemeinen inert und sollte in der Landwirtschaft verwendbar sein.
Als feste oder flüssige Trägerstoffe kommen in Frage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kom- men in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Papier, Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen- Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage nicht-ionische und/oder ionische Stoffe, z.B. aus den Klassen der Alkohol-POE- und/oder POP-Ether, Säure- und/oder POP- POE- Ester, Alkyl-Aryl- und/oder POP- POE-Ether, Fett- und/oder POP- POE-Addukte, POE- und/oder POP-Polyol Derivate, POE- und/oder POP-Sorbitan- oder Zucker-Addukte, Alky- oder Aryl- Sulfate, Sulfonate und Phosphate oder die entsprechenden PO-Ether-Addukte. Ferner geeignete Oligo- oder Polymere, z.B. ausgehend von vinylischen Monomeren, von Acrylsäure, aus EO und/oder PO allein oder in Verbindung mit z.B. (poly-) Alkoholen oder (poly-) Aminen. Ferner können Einsatz finden Lignin und seine Sulfonsäure-Derivate, einfache und modifizierte Cellulosen, aromatische und/oder aliphatische Sulfonsäuren sowie deren Addukte mit Formaldehyd.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummi- arabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden. Weitere Additive können Duftstoffe, mineralische oder vegetabile gegebenenfalls modifizierte Öle, Wachse und Nährstoffe (auch Spurennährstoffe), wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink sein.
Weiterhin enthalten sein können Stabilisatoren wie Kältestabilisatoren, Konservierungsmittel, Oxidationsschutzmittel, Lichtschutzmittel oder andere die chemische und/oder physikalische Stabilität verbessernde Mittel.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen liegt im Bereich von 0,00000001 bis 97 Gew.-% Wirkstoff, vorzugsweise im Bereich von 0,0000001 bis 97 Gew.-%, besonders bevorzugt im Bereich von 0,000001 bis 83 Gew.-% oder 0,000001 bis 5 Gew.-% und ganz besonders bevorzugt im Bereich von 0,0001 bis 1 Gew.-%.
Der erfindungsgemäßen Wirkstoffkombinationen können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen, Herbiziden, Safenern, Düngemitteln oder Semiochemicals vorliegen.
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden, Düngemitteln, Wachstumsregulatoren, Safenern, Semiochemicals, oder auch mit Mitteln zur Verbesserung der Pflanzeneigenschaften ist möglich. Die erfindungsgemäßen Wirkstoffkombinationen können ferner beim Einsatz als Fungizide und/oder Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne dass der zugesetzte Synergist selbst aktiv wirksam sein muss. Die erfindungsgemäßen Wirkstoffkombinationen können ferner beim Einsatz als Fungizide und/oder Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischungen mit Hemmstoffen vorliegen, die einen Abbau des Wirkstoffes nach Anwendung in der Umgebung der Pflanze, auf der Oberfläche von Pflanzenteilen oder in pflanzlichen Geweben vermindern. Die Anwendung geschieht in einer den Anwendungsformen angepassten üblichen Weise. Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Sproß, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Saatgut sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Früchte, Samen, Stecklinge, Knollen, Rhizome, Ableger, Saatgut, Brutzwiebeln, Absenker und Ausläufer.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffkombi- nationen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen, Injizieren und bei Vermehrungsmaterial, insbesondere bei Saatgut, weiterhin durch ein- oder mehrschichtiges Umhüllen. Dabei können die Wirkstoffkombinationen vor der Behandlung durch Mischen der einzelnen Wirkstoffe herstellt werden. Oder die Behandlung erfolgt nacheinander durch Einsatz zunächst einer Verbindung der Formel (I) gefolgt von der Behandlung mit einem Wirkstoff der Gruppen (2) bis (27). Es ist jedoch auch möglich die Pflanzen oder Pflanzenteile zunächst mit einem Wirkstoff der Gruppen (2) bis (27) zu behandeln und die Behandlung mit einer Verbindung der Formel I anzuschließen.
Als Pflanzen, welche erfindungsgemäß behandelt werden können, seien folgende erwähnt: Baumwolle, Flachs, Weinrebe, Obst, Gemüse, wie Rosaceae sp. (beispielsweise Kernfrüchte wie Apfel und Birne, aber auch Steinfrüchte wie Aprikosen, Kirschen, Mandeln und Pfirsiche und Beerenfrüchte wie
Erdbeeren), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp.,
Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (beispielsweise
Bananenbäume und -plantagen), Rubiaceae sp. (beispielsweise Kaffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (beispielsweise Zitronen, Organen und Grapefruit); Solanaceae sp. (beispielsweise
Tomaten), Liliaceae sp., Asteraceae sp. (beispielsweise Salat), Umbelliferae sp., Cruciferae sp.,
Chenopodiaceae sp., Cucurbitaceae sp. (beispielsweise Gurke), Alliaceae sp. (beispielsweise Lauch,
Zwiebel), Papilionaceae sp. (beispielsweise Erbsen); Hauptnutzpflanzen, wie Gramineae sp.
(beispielsweise Mais, Rasen, Getreide wie Weizen, Roggen, Reis, Gerste, Hafer, Hirse und Triticale), Asteraceae sp. (beispielsweise Sonnenblume), Brassicaceae sp. (beispielsweise Weißkohl, Rotkohl, Brokkoli, Blumenkohl, Rosenkohl, Pak Choi, Kohlrabi, Radieschen sowie Raps, Senf, Meerrettich und Kresse), Fabacae sp. (beispielsweise Bohne, Erdnüsse), Papilionaceae sp. (beispielsweise Sojabohne), Solanaceae sp. (beispielsweise Kartoffeln), Chenopodiaceae sp. (beispielsweise Zuckerrübe, Futterrübe, Mangold, Rote Rübe); Nutzpflanzen und Zierpflanzen in Garten und Wald; sowie jeweils genetisch modifizierte Arten dieser Pflanzen.
Das erfϊndungsgemäße Behandlungsverfahren kann für die Behandlung von genetisch modifizierten Organismen (GMOs), z. B. Pflanzen oder Samen, verwendet werden. Genetisch modifizierte Pflanzen (oder transgene Pflanzen) sind Pflanzen, bei denen ein heterologes Gen stabil in das Genom integriert worden ist. Der Begriff "heterologes Gen" bedeutet im wesentlichen ein Gen, das außerhalb der Pflanze bereitgestellt oder assembliert wird und das bei Einführung in das Zellkerngenom, das Chloroplastengenom oder das Hypochondriengenom der transformierten Pflanze dadurch neue oder verbesserte agronomische oder sonstige Eigenschaften verleiht, daß es ein interessierendes Protein oder Polypeptid exprimiert oder daß es ein anderes Gen, das in der Pflanze vorliegt bzw. andere Gene, die in der Pflanze vorliegen, herunterreguliert oder abschaltet (zum Beispiel mittels Antisense-Technologie, Cosuppressionstechnologie oder RNAi-Technologie [RNA Interference]). Ein heterologes Gen, das im Genom vorliegt, wird ebenfalls als Transgen bezeichnet. Ein Transgen, das durch sein spezifisches Vorliegen im Pflanzengenom definiert ist, wird als Transformations- bzw. transgenes Event bezeichnet.
In Abhängigkeit von den Pflanzenarten oder Pflanzensorten, ihrem Standort und ihren Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) kann die erfindungsgemäße Behandlung auch zu überadditiven ("synergistischen") Effekten führen. So sind zum Beispiel die folgenden Effekte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen: verringerte Aufwandmengen und/oder erweitertes Wirkungsspektrum und/oder erhöhte Wirksamkeit der Wirkstoffe und Zusammensetzungen, die erfindungsgemäß eingesetzt werden können, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen
Temperaturen, erhöhte Toleranz gegenüber Trockenheit oder Wasser- oder Bodensalzgehalt, erhöhte Blühleistung, Ernteerleichterung, Reifebeschleunigung, höhere Erträge, größere Früchte, größere Pflanzenhöhe, intensiver grüne Farbe des Blatts, frühere Blüte, höhere Qualität und/oder höherer Nährwert der Ernteprodukte, höhere Zuckerkonzentration in den Früchten, bessere Lagerfähigkeit und/oder Verarbeitbarkeit der Ernteprodukte.
In gewissen Aufwandmengen können die erfindungsgemäßen Wirkstofϊkombinationen auch eine stärkende Wirkung auf Pflanzen ausüben. Sie eignen sich daher für die Mobilisierung des pflanzlichen Abwehrsystems gegen Angriff durch unerwünschte phytopathogene Pilze und/oder Mikroorganismen und/oder Viren. Dies kann gegebenenfalls einer der Gründe für die erhöhte Wirksamkeit der erfindungsgemäßen Kombinationen sein, zum Beispiel gegen Pilze. Pflanzenstärkende (resistenzinduzierende) Substanzen sollen im vorliegenden Zusammenhang auch solche Substanzen oder Substanzkombinationen bedeuten, die fähig sind, das pflanzliche Abwehrsystem so zu stimulieren, daß die behandelten Pflanzen, wenn sie im Anschluß daran mit unerwünschten phytopathogenen Pilzen und/oder Mikroorganismen und/oder Viren inokkuliert werde, einen beträchtlichen Resistenzgrad gegen diese unerwünschten phytopathogenen Pilze und/oder Mikroorganismen und/oder Viren aufweisen. Im vorliegenden Fall versteht man unter unerwünschten phytopathogenen Pilzen und/oder Mikroorganismen und/oder Viren phytopathogene Pilze, Bakterien und Viren. Die erfindungsgemäßen Substanzen lassen sich daher zum Schutz von Pflanzen gegen Angriff durch die erwähnten Pathogene innerhalb eines gewissen Zeitraums nach der Behandlung einsetzen. Der Zeitraum, über den eine Schutzwirkung erzielt wird, erstreckt sich im allgemeinen von 1 bis 10 Tagen, vorzugsweise 1 bis 7 Tagen, nach der Behandlung der Pflanzen mit den Wirkstoffen.
Zu Pflanzen und Pflanzensorten, die vorzugsweise erfindungsgemäß behandelt werden, zählen alle Pflanzen, die über Erbgut verfügen, das diesen Pflanzen besonders vorteilhafte, nützliche Merkmale verleiht (egal, ob dies durch Züchtung und/oder Biotechnologie erzielt wurde).
Pflanzen und Pflanzensorten, die ebenfalls vorzugsweise erfindungsgemäß behandelt werden, sind gegen einen oder mehrere biotische Streßfaktoren resistent, d. h. diese Pflanzen weisen eine verbesserte Abwehr gegen tierische und mikrobielle Schädlinge wie Nematoden, Insekten, Milben, phytopathogene Pilze, Bakterien, Viren und/oder Viroide auf.
Pflanzen und Pflanzensorten, die ebenfalls erfindungsgemäß behandelt werden können, sind solche Pflanzen, die gegen einen oder mehrere abiotische Streßfaktoren resistent sind. Zu den abiotischen Streßbedingungen können zum Beispiel Dürre, Kälte- und Hitzebedingungen, osmotischer Streß, Staunässe, erhöhter Bodensalzgehalt, erhöhtes Ausgesetztsein an Mineralien, Ozonbedingungen, Starklichtbedingungen, beschränkte Verfügbarkeit von Stickstoffnährstoffen, beschränkte Verfügbarkeit von Phosphornährstoffen oder Vermeidung von Schatten zählen.
Pflanzen und Pflanzensorten, die ebenfalls erfindungsgemäß behandelt werden können, sind solche Pflanzen, die durch erhöhte Ertragseigenschaften gekennzeichnet sind. Ein erhöhter Ertrag kann bei diesen Pflanzen z. B. auf verbesserter Pflanzenphysiologie, verbessertem Pflanzenwuchs und verbesserter Pflanzenentwicklung, wie Wasserverwertungseffizienz, Wasserhalteeffizienz, verbesserter Stickstoffverwertung, erhöhter Kohlenstoffassimilation, verbesserter Photosynthese, verstärkter Keimkraft und beschleunigter Abreife beruhen. Der Ertrag kann weiterhin durch eine verbesserte Pflanzenarchitektur (unter Streß- und nicht-Streß-Bedingungen) beeinflußt werden, darunter frühe Blüte, Kontrolle der Blüte für die Produktion von Hybridsaatgut, Keimpflanzenwüchsigkeit, Pflanzengröße, Internodienzahl und -abstand, Wurzelwachstum, Samengröße, Fruchtgröße, Schotengröße, Schoten- oder Ährenzahl, Anzahl der Samen pro Schote oder Ähre, Samenmasse, verstärkte Samenfüllung, verringerter Samenausfall, verringertes Schotenplatzen sowie Standfestigkeit. Zu weiteren Ertragsmerkmalen zählen Samenzusammensetzung wie Kohlenhydratgehalt, Proteingehalt, Ölgehalt und Ölzusammensetzung, Nährwert, Verringerung der nährwidrigen Verbindungen, verbesserte Verarbeitbarkeit und verbesserte Lagerfähigkeit.
Pflanzen, die erfindungsgemäß behandelt werden können, sind Hybridpflanzen, die bereits die Eigenschaften der Heterosis bzw. des Hybrideffekts exprimieren, was im allgemeinen zu höherem Ertrag, höherer Wüchsigkeit, besserer Gesundheit und besserer Resistenz gegen biotische und abiotische Streßfaktoren führt. Solche Pflanzen werden typischerweise dadurch erzeugt, daß man eine ingezüchtete pollensterile Elternlinie (den weiblichen Kreuzungspartner) mit einer anderen ingezüchteten pollenfertilen Elternlinie (dem männlichen Kreuzungspartner) kreuzt. Das Hybridsaatgut wird typischerweise von den pollensterilen Pflanzen geerntet und an Vermehrer verkauft. Pollensterile Pflanzen können manchmal (z. B. beim Mais) durch Entfahnen (d. h. mechanischem Entfernen der männlichen Geschlechtsorgane bzw. der männlichen Blüten), produziert werden; es ist jedoch üblicher, daß die Pollensterilität auf genetischen Determinanten im Pflanzengenom beruht. In diesem Fall, insbesondere dann, wenn es sich bei dem gewünschten Produkt, da man von den Hybridpflanzen ernten will, um die Samen handelt, ist es üblicherweise günstig, sicherzustellen, daß die Pollenfertilität in Hybridpflanzen, die die für die Pollensterilität verantwortlichen genetischen Determinanten enthalten, völlig restoriert wird. Dies kann erreicht werden, indem sichergestellt wird, daß die männlichen Kreuzungspartner entsprechende Fertilitätsrestorergene besitzen, die in der Lage sind, die Pollenfertilität in Hybridpflanzen, die die genetischen Determinanten, die für die Pollensterilität verantwortlich sind, enthalten, zu restorieren. Genetische Determinanten für Pollensterilität können im Cytoplasma lokalisiert sein. Beispiele für cytoplasmatische Pollensterilität (CMS) wurden zum Beispiel für Brassica-Arten beschrieben (WO 1992/005251, WO 1995/009910, WO 1998/27806, WO 2005/002324, WO 2006/021972 und US 6,229,072). Genetische Determinanten für Pollensterilität können jedoch auch im Zellkerngenom lokalisiert sein. Pollensterile Pflanzen können auch mit Methoden der pflanzlichen Biotechnologie, wie Gentechnik, erhalten werden. Ein besonders günstiges Mittel zur Erzeugung von pollensterilen Pflanzen ist in WO 89/10396 beschrieben, wobei zum Beispiel eine Ribonuklease wie eine Barnase selektiv in den Tapetumzellen in den Staubblättern exprimiert wird. Die Fertilität kann dann durch Expression eines Ribonukleasehemmers wie Barstar in den Tapetumzellen restoriert werden (z. B. WO 1991/002069). Pflanzen oder Pflanzensorten (die mit Methoden der Pflanzenbiotechnologie, wie der Gentechnik, erhalten werden), die erfindungsgemäß behandelt werden können, sind herbizidtolerante Pflanzen, d. h. Pflanzen, die gegenüber einem oder mehreren vorgegebenen Herbiziden tolerant gemacht worden sind. Solche Pflanzen können entweder durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Herbizidtoleranz verleiht, erhalten werden.
Herbizidtolerante Pflanzen sind zum Beispiel glyphosatetolerante Pflanzen, d. h. Pflanzen, die gegenüber dem Herbizid Glyphosate oder dessen Salzen tolerant gemacht worden sind. So können zum Beispiel glyphosatetolerante Pflanzen durch Transformation der Pflanze mit einem Gen, das für das Enzym 5-Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) kodiert, erhalten werden. Beispiele für solche EPSPS-Gene sind das AroA-Gen (Mutante CT7) des Bakterium Salmonella typhimurium (Comai et al., Science (1983), 221, 370-371), das CP4-Gen des Bakteriums Agrobacterium sp. (Barry et al., Curr. Topics Plant Physiol. (1992), 7, 139-145), die Gene, die für eine EPSPS aus der Petunie (Shah et al., Science (1986), 233, 478-481), für eine EPSPS aus der Tomate (Gasser et al., J. Biol. Chem. (1988), 263, 4280-4289) oder für eine EPSPS aus Eleusine (WO 2001/66704) kodieren. Es kann sich auch um eine mutierte EPSPS handeln, wie sie zum Beispiel in EP-A 0837944, WO 2000/066746, WO 2000/066747 oder WO 2002/026995 beschrieben ist. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, daß man ein Gen exprimiert, das für ein Glyphosate-Oxidoreduktase-Enzym, wie es in US 5,776,760 und US 5,463,175 beschrieben ist, kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, daß man ein Gen exprimiert, das für ein Glyphosate-acetyltransferase-Enzym, wie es in z. B. WO 2002/036782, WO 2003/092360, WO 2005/012515 und WO 2007/024782 beschrieben ist, kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, daß man Pflanzen, die natürlich vorkommende Mutationen der oben erwähnten Gene, wie sie zum Beispiel in WO 2001/024615 oder WO 2003/013226 beschrieben sind, enthalten, selektiert.
Sonstige herbizidresistente Pflanzen sind zum Beispiel Pflanzen, die gegenüber Herbiziden, die das Enzym Glutaminsynthase hemmen, wie Bialaphos, Phosphinotricin oder Glufosinate, tolerant gemacht worden sind. Solche Pflanzen können dadurch erhalten werden, daß man ein Enzym exprimiert, das das Herbizid oder eine Mutante des Enzyms Glutaminsynthase, das gegenüber Hemmung resistent ist, entgiftet. Solch ein wirksames entgiftendes Enzym ist zum Beispiel ein Enzym, das für ein Phosphinotricin-acetyltransferase kodiert (wie zum Beispiel das bar- oder pat- Protein aus Streptomyces-Arten). Pflanzen, die eine exogene Phosphinotricin-acetyltransferase exprimieren, sind zum Beispiel in US 5,561,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 und US 7,112,665 beschrieben. Weitere herbizidtolerante Pflanzen sind auch Pflanzen, die gegenüber den Herbiziden, die das Enzym Hydroxyphenylpyruvatdioxygenase (HPPD) hemmen, tolerant gemacht worden sind. Bei den Hydroxyphenylpyruvatdioxygenasen handelt es sich um Enzyme, die die Reaktion, in der para-Hydroxyphenylpyruvat (HPP) zu Homogentisat umgesetzt wird, katalysieren. Pflanzen, die gegenüber HPPD-Hemmern tolerant sind, können mit einem Gen, das für ein natürlich vorkommendes resistentes HPPD-Enzym kodiert, oder einem Gen, das für ein mutiertes HPPD- Enzym gemäß WO 1996/038567, WO 1999/024585 und WO 1999/024586 kodiert, transformiert werden. Eine Toleranz gegenüber HPPD-Hemmern kann auch dadurch erzielt werden, daß man Pflanzen mit Genen transformiert, die für gewisse Enzyme kodieren, die die Bildung von Homogentisat trotz Hemmung des nativen HPPD-Enzyms durch den HPPD-Hemmer ermöglichen. Solche Pflanzen und Gene sind in WO 1999/034008 und WO 2002/36787 beschrieben. Die Toleranz von Pflanzen gegenüber HPPD-Hemmern kann auch dadurch verbessert werden, daß man Pflanzen zusätzlich zu einem Gen, das für ein HPPD-tolerantes Enzym kodiert, mit einem Gen transformiert, das für ein Prephenatdehydrogenase-Enzym kodiert, wie dies in WO 2004/024928 beschrieben ist.
Weitere herbizidresistente Pflanzen sind Pflanzen, die gegenüber Acetolactatsynthase (ALS)- Hemmern tolerant gemacht worden sind. Zu bekannten ALS-Hemmern zählen zum Beispiel Sulfonylharnstoff, Imidazolinon, Triazolopyrimidine, Pyrimidinyloxy(thio)benzoate und/oder Sulfonylaminocarbonyltriazolinon-Herbizide. Es ist bekannt, daß verschiedene Mutationen im Enzym ALS (auch als Acetohydroxysäure-Synthase, AHAS, bekannt) eine Toleranz gegenüber unterschiedlichen Herbiziden bzw. Gruppen von Herbiziden verleihen, wie dies zum Beispiel bei Tranel und Wright, Weed Science (2002), 50, 700-712, jedoch auch in US 5,605,011, US 5,378,824, US 5,141,870 und US 5,013,659, beschrieben ist. Die Herstellung von sulfonylharnstofftoleranten Pflanzen und imidazolinontoleranten Pflanzen ist in US 5,605,011; US 5,013,659; US 5,141,870; US 5,767,361; US 5,731,180; US 5,304,732; US 4,761,373; US 5,331,107; US 5,928,937; und US 5,378,824; sowie in der internationalen Veröffentlichung WO 1996/033270 beschrieben. Weitere imidazolinontolerante Pflanzen sind auch in z. B. WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351 und WO 2006/060634 beschrieben. Weitere sulfonylharnstoff- und imidazolinontolerante Pflanzen sind auch in z.B. WO 2007/024782 beschrieben.
Weitere Pflanzen, die gegenüber Imidazolinon und/oder Sulfonylharnstoff tolerant sind, können durch induzierte Mutagenese, Selektion in Zellkulturen in Gegenwart des Herbizids oder durch Mutationszüchtung erhalten werden, wie dies zum Beispiel für die Sojabohne in US 5,084,082, für Reis in WO 1997/41218, für die Zuckerrübe in US 5,773,702 und WO 1999/057965, für Salat in US 5,198,599 oder für die Sonnenblume in WO 2001/065922 beschrieben ist. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind insektenresistente transgene Pflanzen, d.h. Pflanzen, die gegen Befall mit gewissen Zielinsekten resistent gemacht wurden. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Insektenresistenz verleiht, erhalten werden.
Der Begriff "insektenresistente transgene Pflanze" umfaßt im vorliegenden Zusammenhang jegliche Pflanze, die mindestens ein Transgen enthält, das eine Kodiersequenz umfaßt, die für folgendes kodiert: 1) ein insektizides Kristallprotein aus Bacillus thuringiensis oder einen insektiziden Teil davon, wie die insektiziden Kristallproteine, die von Crickmore et al., Microbiology and Molecular Biology Reviews (1998), 62, 807-813, von Crickmore et al. (2005) in der Bacillus thuringiensis - Toxinnomenklatur aktualisiert, online bei: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), zusammengestellt wurden, oder insektizide Teile davon, z.B. Proteine der Cry-Proteinklassen CrylAb, CrylAc, CrylF, Cry2Ab, Cry3Ae oder Cry3Bb oder insektizide Teile davon; oder
2) ein Kristallprotein aus Bacillus thuringiensis oder einen Teil davon, der in Gegenwart eines zweiten, anderen Kristallproteins als Bacillus thuringiensis oder eines Teils davon insektizid wirkt, wie das binäre Toxin, das aus den Kristallproteinen Cy34 und Cy35 besteht (Moellenbeck et al., Nat. Biotechnol. (2001), 19, 668-72; Schnepf et al., Applied Environm. Microb. (2006), 71, 1765- 1774); oder
3) ein insektizides Hybridprotein, das Teile von zwei unterschiedlichen insektiziden Kristallproteinen aus Bacillus thuringiensis umfaßt, wie zum Beispiel ein Hybrid aus den Proteinen von 1) oben oder ein Hybrid aus den Proteinen von 2) oben, z. B. das Protein Cryl A.105, das von dem Mais-Event MON98034 produziert wird (WO 2007/027777); oder
4) ein Protein gemäß einem der Punkte 1) bis 3) oben, in dem einige, insbesondere 1 bis 10, Aminosäuren durch eine andere Aminosäure ersetzt wurden, um eine höhere insektizide Wirksamkeit gegenüber einer Zielinsektenart zu erzielen und/oder um das Spektrum der entsprechenden Zielinsektenarten zu erweitern und/oder wegen Veränderungen, die in die Kodier- DNA während der Klonierung oder Transformation induziert wurden, wie das Protein Cry3Bbl in Mais-Events MON863 oder MON88017 oder das Protein Cry3A im Mais-Event MIR 604; oder 5) ein insektizides sezerniertes Protein aus Bacillus thuringiensis oder Bacillus cereus oder einen insektiziden Teil davon, wie die vegetativ wirkenden insektentoxischen Proteine (vegetative insekticidal proteins, VIP), die unter http://www.lifesci.sussex.ac.uk/Home/Neil Crickmore/Bt/vip.html angeführt sind, z. B. Proteine der Proteinklasse VIP3Aa; oder
6) ein sezerniertes Protein aus Bacillus thuringiensis oder Bacillus cereus, das in Gegenwart eines zweiten sezernierten Proteins aus Bacillus thuringiensis oder B. cereus insektizid wirkt, wie das binäre Toxin, das aus den Proteinen VIPlA und VIP2A besteht (WO 1994/21795); oder
7) ein insektizides Hybridprotein, das Teile von verschiedenen sezernierten Proteinen von Bacillus thuringiensis oder Bacillus cereus umfaßt, wie ein Hybrid der Proteine von 1) oder ein
Hybrid der Proteine von 2) oben; oder
8) ein Protein gemäß einem der Punkte 1) bis 3) oben, in dem einige, insbesondere 1 bis 10, Aminosäuren durch eine andere Aminosäure ersetzt wurden, um eine höhere insektizide Wirksamkeit gegenüber einer Zielinsektenart zu erzielen und/oder um das Spektrum der entsprechenden Zielinsektenarten zu erweitern und/oder wegen Veränderungen, die in die Kodier- DNA während der Klonierung oder Transformation induziert wurden (wobei die Kodierung für ein insektizides Protein erhalten bleibt), wie das Protein VIP3Aa im Baumwoll-Event COT 102.
Natürlich zählt zu den insektenresistenten transgenen Pflanzen im vorliegenden Zusammenhang auch jegliche Pflanze, die eine Kombination von Genen umfaßt, die für die Proteine von einer der oben genannten Klassen 1 bis 8 kodieren. In einer Ausführungsform enthält eine insektenresistente Pflanze mehr als ein Transgen, das für ein Protein nach einer der oben genannten 1 bis 8 kodiert, um das Spektrum der entsprechenden Zielinsektenarten zu erweitern oder um die Entwicklung einer Resistenz der Insekten gegen die Pflanzen dadurch hinauszuzögern, daß man verschiedene Proteine einsetzt, die für dieselbe Zielinsektenart insektizid sind, jedoch eine unterschiedliche Wirkungsweise, wie Bindung an unterschiedliche Rezeptorbindungsstellen im Insekt, aufweisen.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind gegenüber abiotischen Streßfaktoren tolerant. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Streßresistenz verleiht, erhalten werden. Zu besonders nützlichen Pflanzen mit Streßtoleranz zählen folgende: a. Pflanzen, die ein Transgen enthalten, das die Expression und/oder Aktivität des Gens für die Poly(ADP-ribose)polymerase (PARP) in den Pflanzenzellen oder Pflanzen zu reduzieren vermag, wie dies in WO 2000/004173 oder EP 04077984.5 oder EP 06009836.5 beschrieben ist. b. Pflanzen, die ein streßtoleranzförderndes Transgen enthalten, das die Expression und/oder Aktivität der für PARG kodierenden Gene der Pflanzen oder Pflanzenzellen zu reduzieren vermag, wie dies z.B. in WO 2004/090140 beschrieben ist; c. Pflanzen, die ein streßtoleranzfbrderndes Transgen enthalten, das für ein in Pflanzen funktionelles Enzym des Nicotinamidadenindinukleotid-Salvage-Biosynthesewegs kodiert, darunter Nicotinamidase, Nicotinatphosphoribosyltransferase, Nicotinsäuremononukleotidadenyltransferase, Nicotinamidadenindinukleotidsynthetase oder Nicotinamidphosphoribosyltransferase, wie dies z. B. in EP 04077624.7 oder WO 2006/133827 oder in der PCT/EP07/002433 beschrieben ist.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfϊndungsgemäß behandelt werden können, weisen eine veränderte Menge, Qualität und/oder Lagerfähigkeit des Ernteprodukts und/oder veränderte Eigenschaften von bestimmten Bestandteilen des Ernteprodukts auf, wie zum Beispiel:
1) Transgene Pflanzen, die eine modifizierte Stärke synthetisieren, die bezüglich ihrer chemischphysikalischen Eigenschaften, insbesondere des Amylosegehalts oder des Amylose/Amylopektin- Verhältnisses, des Verzweigungsgrads, der durchschnittlichen Kettenlänge, der Verteilung der Seitenketten, des Viskositätsverhaltens, der Gelfestigkeit, der Stärkekorngröße und/oder Stärkekornmorphologie im Vergleich mit der synthetisierten Stärke in Wildtyppflanzenzellen oder -pflanzen verändert ist, so daß sich diese modifizierte Stärke besser für bestimmte Anwendungen eignet. Diese transgenen Pflanzen, die eine modifizierte Stärke synthetisieren, sind zum Beispiel in EP 0571427, WO 1995/004826, EP 0719338, WO 1996/15248, WO 1996/19581, WO 1996/27674, WO 1997/11 188, WO 1997/26362, WO 1997/32985, WO 1997/42328, WO 1997/44472, WO 1997/45545, WO 1998/27212, WO 1998/40503, WO 99/58688, WO 1999/58690, WO 1999/58654, WO 2000/008184, WO 2000/008185, WO 2000/28052, WO 2000/77229, WO 2001/12782, WO 2001/12826, WO 2002/101059, WO 2003/071860, WO 2004/056999, WO 2005/030942, WO 2005/030941, WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927, WO 2006/018319, WO 2006/103107, WO 2006/108702, WO 2007/009823, WO 2000/22140, WO 2006/063862, WO 2006/072603, WO 2002/034923, EP 06090134.5, EP 06090228.5, EP 06090227.7, EP 07090007.1, EP 07090009.7, WO 2001/14569, WO 2002/79410, WO 2003/33540, WO 2004/078983, WO 2001/19975, WO 1995/26407, WO 1996/34968, WO 1998/20145, WO 1999/12950, WO 1999/66050, WO 1999/53072, US 6,734,341, WO 2000/11192, WO 1998/22604, WO 1998/32326, WO 2001/98509, WO 2001/98509, WO 2005/002359, US 5,824,790, US 6,013,861, WO 1994/004693, WO 1994/009144, WO 1994/11520, WO 1995/35026 bzw. WO 1997/20936 beschrieben. 2) Transgene Pflanzen, die Nichtstärkekohlenhydratpolymere synthetisieren, oder Nichtstärkekohlenhydratpolymere, deren Eigenschaften im Vergleich zu Wildtyppflanzen ohne genetische Modifikation verändert sind. Beispiele sind Pflanzen, die Polyfructose, insbesondere des Inulin- und Levantyps, produzieren, wie dies in EP 0663956, WO 1996/001904, Wo 1996/021023, WO 1998/039460 und WO 1999/024593 beschrieben ist, Pflanzen, die alpha-1,4- Glucane produzieren, wie dies in WO 1995/031553, US 2002/031826, US 6,284,479, US 5,712,107, WO 1997/047806, WO 1997/047807, WO 1997/047808 und WO 2000/14249 beschrieben ist, Pflanzen, die alpha- 1 ,6-verzweigte alpha- 1,4-Glucane produzieren, wie dies in WO 2000/73422 beschrieben ist, und Pflanzen, die Alternan produzieren, wie dies in WO 2000/047727, EP 06077301.7, US 5,908,975 und EP 0728213 beschrieben ist. 3) Transgene Pflanzen, die Hyaluronan produzieren, wie dies zum Beispiel in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP 2006/304779 und WO 2005/012529 beschrieben ist.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Baumwollpflanzen mit veränderten Fasereigenschaften. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Fasereigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von Cellulosesynthasegenen enthalten, wie dies in WO 1998/000549 beschrieben ist, b) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von rsw2- oder rsw3-homologen Nukleinsäuren enthalten, wie dies in WO 2004/053219 beschrieben ist; c) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosephosphatsynthase, wie dies in WO 2001/017333 beschrieben ist; d) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosesynthase, wie dies in WO 02/45485 beschrieben ist; e) Pflanzen wie Baumwollpflanzen bei denen der Zeitpunkt der Durchlaßsteuerung der Plasmodesmen an der Basis der Faserzelle verändert ist, z. B. durch Herunterregulieren der faserselektiven ß-l,3-Glucanase, wie dies in WO 2005/017157 beschrieben ist; f) Pflanzen wie Baumwollpflanzen mit Fasern mit veränderter Reaktivität, z. B. durch Expression des N-Acetylglucosamintransferasegens, darunter auch nodC, und von
Chitinsynthasegenen, wie dies in WO 2006/136351 beschrieben ist.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften der Ölzusammensetzung. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Öleigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Rapspflanzen, die Öl mit einem hohen Ölsäuregehalt produzieren, wie dies zum Beispiel in US 5,969,169, US 5,840,946 oder US 6,323,392 oder US 6,063, 947 beschrieben ist; b) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen Linolensäuregehalt produzieren, wie dies in US 6,270828, US 6,169,190 oder US 5,965,755 beschrieben ist. c) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen gesättigten Fettsäuregehalt produzieren, wie dies z. B. in US 5,434,283 beschrieben ist.
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit einem oder mehreren Genen, die für ein oder mehrere Toxine kodieren, sind die transgenen Pflanzen, die unter den folgenden Handelsbezeichnungen angeboten werden: YIELD
GARD® (zum Beispiel Mais, Baumwolle, Sojabohnen), KnockOut® (zum Beispiel Mais),
BiteGard® (zum Beispiel Mais), BT-Xtra® (zum Beispiel Mais), StarLink® (zum Beispiel Mais),
Bollgard® (Baumwolle), Nucotn® (Baumwolle), Nucotn 33B® (Baumwolle), NatureGard® (zum Beispiel Mais), Protecta® und NewLeaf® (Kartoffel). Herbizidtolerante Pflanzen, die zu erwähnen sind, sind zum Beispiel Maissorten, Baumwollsorten und Sojabohnensorten, die unter den folgenden Handelsbezeichnungen angeboten werden: Roundup Ready® (Glyphosatetoleranz, zum Beispiel Mais, Baumwolle, Sojabohne), Liberty Link® (Phosphinotricintoleranz, zum
Beispiel Raps), IMI® (Imidazolinontoleranz) und SCS® (Sylfonylharnstofftoleranz), zum Beispiel Mais. Zu den herbizidresistenten Pflanzen (traditionell auf Herbizidtoleranz gezüchtete Pflanzen), die zu erwähnen sind, zählen die unter der Bezeichnung Clearfϊeld® angebotenen Sorten (zum
Beispiel Mais). Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen, die Transformations-Events, oder eine Kombination von Transformations-Events, enthalten und die zum Beispiel in den Dateien von verschiedenen nationalen oder regionalen Behörden angeführt sind (siehe zum Beispiel http://gmoinfo.jrc. it/gmp_browse.aspx und http://www.agbios.com/dbase.php).
Insbesondere eignen sich die erfϊndungsgemäßen Wirkstoffkombinationen zur Behandlung von Saatgut. Bevorzugt sind dabei die vorstehend als bevorzugt oder besonders bevorzugt genannten erfindungsgemäßen Kombinationen zu nennen. So entsteht ein großer Teil des durch phytopathogene Pilze und/oder tierische Schädlinge verursachten Schadens an Kulturpflanzen bereits durch den Befall des Saatguts während der Lagerung und nach dem Einbringen des Saatguts in den Boden sowie während und unmittelbar nach der Keimung der Pflanzen. Diese Phase ist besonders kritisch, da die Wurzeln und Sprosse der wachsenden Pflanze besonders empfindlich sind und bereits ein geringer Schaden zum Absterben der ganzen Pflanze führen kann. Es besteht daher ein insbesondere großes Interesse daran, das Saatgut und die keimende Pflanze durch den Einsatz geeigneter Mittel zu schützen.
Die Bekämpfung von phytopathogenen Pilzen und/oder tierischen Schädlingen durch die Behandlung des Saatguts von Pflanzen ist seit langem bekannt und ist Gegenstand ständiger Verbesserungen. Dennoch ergeben sich bei der Behandlung von Saatgut eine Reihe von Problemen, die nicht immer zufrieden stellend gelöst werden können. So ist es erstrebenswert, Verfahren zum Schutz des Saatguts und der keimenden Pflanze zu entwickeln, die das zusätzliche Ausbringen von Pflanzenschutzmitteln nach der Saat oder nach dem Auflaufen der Pflanzen überflüssig machen. Es ist weiterhin erstrebenswert, die Menge des eingesetzten Wirkstoffs dahingehend zu optimieren, dass das Saatgut und die keimende Pflanze vor dem Befall durch phytopathogene Pilze und/oder tierische Schädlinge bestmöglich geschützt werden, ohne jedoch die Pflanze selbst durch den eingesetzten Wirkstoff zu schädigen. Insbesondere sollten Verfahren zur Behandlung von Saatgut auch die intrinsischen fungiziden und/oder insektiziden Eigenschaften transgener Pflanzen einbeziehen, um einen optimalen Schutz des Saatguts und auch der keimenden Pflanze bei einem minimalen Aufwand an Pflanzenschutzmitteln zu erreichen.
Die vorliegende Erfindung bezieht sich daher insbesondere auch auf ein Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall durch phytopathogene Pilze und/oder tierische Schädlinge, indem das Saatgut mit einem erfϊndungsgemäßen Wirkstoffkombinationen behandelt wird. Das erfindungsgemäße Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall durch phytopathogene Pilze und/oder tierische Schädlinge umfasst ein Verfahren, in dem das Saatgut zur gleichen Zeit mit einer Verbindung der Formel (I) und einem Wirkstoff aus den oben aufgeführten Gruppen (2) bis (27) behandelt wird. Es umfasst auch ein Verfahren, in dem das Saatgut zu unterschiedlichen Zeiten mit einer Verbindung der Formel (I) und einem Wirkstoff aus den oben aufgeführten Gruppen (2) bis (27) behandelt wird.
Die Erfindung bezieht sich ebenfalls auf die Verwendung der erfindungsgemäßen Wirkstoffkombinationen zur Behandlung von Saatgut zum Schutz des Saatguts und der keimenden Pflanze vor phytopathogenen Pilzen und/oder durch phytopathogene Pilze und/oder tierischen Schädlingen.
Weiterhin bezieht sich die Erfindung auf Saatgut, welches zum Schutz vor phytopathogenen Pilzen und/oder tierischen Schädlingen mit einer erfindungsgemäßen Wirkstoffkombination behandelt wurde. Die Erfindung bezieht sich auch auf Saatgut, welches zur gleichen Zeit mit einer Verbindung der Formel (I) und einem Wirkstoff aus den oben aufgeführten Gruppen (2) bis (27) behandelt wurde. Die Erfindung bezieht sich weiterhin auf Saatgut, welches zu unterschiedlichen Zeiten mit einer Verbindung der Formel (I) und einem Wirkstoff aus den oben aufgeführten Gruppen (2) bis (27) behandelt wurde. Bei Saatgut, welches zu unterschiedlichen Zeiten mit einer Verbindung der Formel (I) und einem Wirkstoff aus den oben aufgeführten Gruppen (2) bis (27) behandelt wurde, können die einzelnen Wirkstoffe der erfindungsgemäßen Wirkstoffkombination in unterschiedlichen Schichten auf dem Saatgut enthalten sein. Dabei können die Schichten, die eine Verbindung der Formel (I) und einen Wirkstoff aus den oben aufgeführten Gruppen (2) bis (27) enthalten, gegebenenfalls durch eine Zwischenschicht getrennt sein. Die Erfindung bezieht sich auch auf Saatgut, bei dem eine Verbindung der Formel (I) und ein Wirkstoff aus den oben aufgeführten Gruppen (2) bis (27) als Bestandteil einer Umhüllung oder als weitere Schicht oder weitere Schichten zusätzlich zu einer Umhüllung aufgebracht sind.
Ein Vorteil der vorliegenden Erfindung besteht in der synergistischen Erhöhung der insektiziden Wirksamkeit der erfindungsgemäßen Wirkstoffkombinationen gegenüber dem insektiziden Einzelwirkstoff, die über die zu erwartende Wirksamkeit der beiden einzeln angewendeten Wirkstoffe hinausgeht. Vorteilhaft ist auch die synergistische Erhöhung der fungiziden Wirksamkeit der erfindungsgemäßen Wirkstoffkombinationen gegenüber dem fungiziden Einzelwirkstoff, die über die zu erwartende Wirksamkeit des einzeln angewendeten Wirkstoffs hinausgeht. Damit wird eine Optimierung der Menge der eingesetzten Wirkstoffe ermöglicht. Ebenso ist es als vorteilhaft anzusehen, dass die erfindungsgemäßen Wirkstoffkombinationen insbesondere auch bei transgenem Saatgut eingesetzt werden können.
Die erfindungsgemäßen Wirkstoffkombinationen eignen sich zum Schutz von Saatgut jeglicher Pflanzensorte wie bereits vorstehend genannt, die in der Landwirtschaft, im Gewächshaus, in Forsten oder im Gartenbau eingesetzt wird. Insbesondere handelt es sich dabei um Saatgut von Mais, Erdnuss, Canola, Raps, Mohn, Soja, Baumwolle, Rübe (z.B. Zuckerrübe und Futterrübe), Reis, Hirse, Weizen, Gerste, Hafer, Roggen, Sonnenblume, Tabak, Kartoffeln oder Gemüse (z.B. Tomaten, Kohlgewächse, Salat, usw.). Die erfindungsgemäßen Wirkstoffkombinationen eignen sich ebenfalls zur Behandlung des Saatguts von Obstpflanzen und Gemüse wie vorstehend bereits genannt. Besondere Bedeutung kommt der Behandlung des Saatguts von Mais, Soja, Baumwolle, Reis, Weizen und Canola oder Raps zu.
Im Rahmen der vorliegenden Erfindung wird die erfindungsgemäße Wirkstoffkombination alleine oder in einer geeigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem es so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen. Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet werden, das geerntet, gereinigt und bis zu einem Feuchtigkeitsgehalt von unter 15 Gew.-% getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z.B. mit Wasser behandelt und dann erneut getrocknet wurde.
Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge der auf das Saatgut aufgebrachten erfϊndungsgemäßen Wirkstoffkombination und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandmengen phytotoxische Effekte zeigen können.
Die erfϊndungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 Al, WO 2002/080675 Al, WO 2002/028186 A2.
Die erfϊndungsgemäß verwendbaren Wirkstoffe können in die üblichen Beizmittel-Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie ULV-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Wirkstoffe mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Lösungs- oder Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konservierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser.
Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, CI. Pigment Red 112 und CI. Solvent Red 1 bekannten Farbstoffe.
Als Netzmittel, die in den erfϊndungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin-Sulfonate, wie Diisopropyl- oder Diisobutylnaphthalin-Sulfonate.
Als Dispergiermittel und/oder Emulgatoren, die in den erfϊndungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vorzugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tristryrylphenolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Geeignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Arylsulfonat-Formaldehydkondensate.
Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat.
Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal.
Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäure- derivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure. Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose.
Als Gibberelline, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen vorzugsweise die Gibberelline Al, A3 (= Gibberellinsäure), A4 und A7 infrage, besonders bevorzugt verwendet man die Gibberellinsäure. Die Gibberelline sind bekannt (vgl. R. Wegler„Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel", Bd. 2, Springer Verlag, 1970, S. 401-412).
Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vorherigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art, auch von Saatgut transgener Pflanzen, eingesetzt werden. Dabei können im Zusammenwirken mit den durch Expression gebildeten Substanzen auch zusätzliche synergistische Effekte auftreten.
Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder den daraus durch Zugabe von Wasser hergestellten Zubereitungen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht. Im einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer gibt, die jeweils gewünschte Menge an Beizmittel-Formulierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formulierung auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungsvorgang an. Die erfindungsgemäßen Wirkstoffkombinationen eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.
Die erfindungsgemäßen Wirkstoffkombinationen weisen auch eine starke stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen. Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten.
Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um
Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im Allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.
Die aufgeführten Pflanzen können besonders vorteilhaft erfϊndungsgemäß mit den erfindungsge- mäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffkombinationen oben ange- gebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Wirkstoffkombinationen.
Die gute insektizide und fungizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen geht aus den nachfolgenden Beispielen hervor. Während die einzelnen Wirkstoffe in ihrer Wirkung Schwächen aufweisen, zeigen die Kombinationen eine Wirkung, die über eine einfache Wirkungssummierung hinausgeht.
Ein synergistischer Effekt liegt bei Insektiziden und Fungiziden immer dann vor, wenn die insektizide bzw. fungizide Wirkung der Wirkstofrkombinationen größer ist als die Summe der Wirkungen der einzeln applizierten Wirkstoffe. Die zu erwartende insektizide oder fungizide Wirkung für eine gegebene Kombination zweier Wirkstoffe kann nach S. R. Colby („Calculating Synergistic and Antagonistic Responses of Herbicide Combinations", Weeds 1967.15, 20-22) wie folgt berechnet werden:
Wenn
X den Abtöticngsgrad bzw. Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes A in einer Aufwandmenge von mppm bzw. g/ha bedeutet,
Y den Abtöticngsgrad bzw. Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes B in einer Aufwandmenge von nppm bzw. g/ha bedeutet und
E den Abtötungsgrad bzw. Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim
Einsatz der Wirkstoffe A und B in Aufwandmengen von m und nppm bzw. g/ha bedeutet, dann ist E = X + Y 'lH(f
Dabei wird der Abtötungsgrad bzw. Wirkungsgrad in % ermittelt. Es bedeutet 0 % ein Abtötungsgrad bzw. Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Abtötungsgrad von 100 % bedeutet, dass alle Tiere tot sind und ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Ist die tatsächliche fungizide oder insektizide Wirkung größer als berechnet, so ist die Kombination in ihrer Wirkung überadditiv, d.h. es liegt ein synergistischer Effekt vor. In diesem Fall muss der tatsächlich beobachtete Wirkungsgrad größer sein als der aus der oben angeführten Formel errechnete Wert für den erwarteten Wirkungsgrad (E).
Beispiel A
Myzus persicae -Test
Lösungsmittel: 78 Gewichtsteile Aceton
1,5 Gewichtsteile Dimethylformamid Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Kohlblätter (Brassica oleraceä), die stark von der Grünen Pfirsichblattlaus {Myzus persicae) befallen sind, werden durch Spritzen mit der Wirkstoffzubereitung in der gewünschten Konzentration behandelt.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel. Bei diesem Test zeigen z. B. die folgenden Wirkstoffkombinationen gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:
Tabelle A - 1 : Myzus persicae— Test
* gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung Tabelle A - 2: Myzus persicae - Test
* gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel B
Phaedon cochleariae -Test
Lösungsmittel: 78 Gewichtsteile Aceton
1,5 Gewichtsteile Dimethylformamid Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Kohlblätter (Brassica oleraceά) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven des Meerrettichblattkäfers {Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Blatt 1). Bei diesem Test zeigen z. B. die folgenden Wirkstoffkombinationen gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:
Tabelle B-I: Phaedon cochleariae Larven - Test
* gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung Tabelle B-2: Phaedon cochleariae Larven— Test
* gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel C
Tetranychus-Test (OP-resistent/Spritzbehandlung)
Lösungsmittel: 78 Gewichtsteile Aceton
1,5 Gewichtsteile Dimethylformamid Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Bohnenblattscheiben (Phaseolus vulgaris), die von allen Stadien der Gemeinen Spinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung in der gewünschten Konzentration gespritzt.
Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Spinnmilben abgetötet wurden; 0 % bedeutet, dass keine Spinnmilben abgetötet wurden.
Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:
Tabelle C - 1 : Tetranychus urticae - Test
Tabelle C - 2: Tetranychus urticae - Test
* gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Tabelle C-3:
* gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel D
Spodoptera frugiperda - Larven -Test
Lösungsmittel: 78 Gewichtsteile Aceton
1,5 Gewichtsteile Dimethylformamid
Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Kohlblätter (ßrassica oleraceä) werden durch Spritzen mit der Wirkstoffzubereitung in der gewünschten Konzentration behandelt und mit Larven des Heerwurms {Spodoptera frugiperda) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel.
Bei diesem Test zeigen die folgenden Wirkstoffkombinationen gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:
Tabelle D:
Verbindung (1-4) + Fluopyram (1 : gef. * ber.** 5) 100 + 500 33 0
Erfindungsgemäß
Fenamidone
500 0
Verbindung (1-4) + Fenamidone (1 gef. * ber.** : 5)
100 + 500 33 0
Erfindungsgemäß
Triadimenol
500 0
Verbindung (1-4) + Triadimenol (1 gef. * ber.** : 5)
100 + 500 33 0
Erfindungsgemäß
Carpropamid
500 0
Verbindung (1-4) + Carpropamid gef. * ber.** (1 : 5)
100 + 500 33 0
Erfindungsgemäß
* gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung

Claims

Patentansprüche
1. Wirkstoffkombinationen enthaltend mindestens einen Wirkstoff der Formel (I)
in welcher
R1 für H oder NH2 steht,
R2 für CH3 oder F steht,
und mindestens einen Wirkstoff der Gruppen (2) bis (27) ausgewählt aus
Gruppe (2) Strobilurine der allgemeinen Formel (II) in welcher
A1 für eine der Gruppen
steht,
A2 für NH oder O steht,
A3 für N oder CH steht,
L für eine der Gruppen steht, wobei die Bindung, die mit einem Stern (*) markiert ist, an den Phenylring gebunden ist,
R11 für jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Chlor, Cyano, Methyl oder Trifluormethyl substituiertes Phenyl, Phenoxy oder Pyridinyl, oder für l-(4-Chlorphenyl)-pyrazol-3-yl oder für 1 ,2-Propandion-bis(O- methyloxim)-l-yl steht,
R12 für Wasserstoff oder Fluor steht;
Gruppe (3) Triazole der allgemeinen Formel (HI)
in welcher für Wasserstoff oder SH steht, m für 0 oder 1 steht,
R13 für Wasserstoff, Fluor, Chlor, Phenyl oder 4-Chlor-phenoxy steht,
R14 für Wasserstoff oder Chlor steht,
A4 für eine direkte Bindung, -CH2-, -(CH2)2-, -O-, für *-CH2-CHR17- oder *-CH=CR17- steht, wobei die mit * markierte Bindung mit dem Phenylring verknüpft ist, und
R15 und R17 dann zusammen für -CH2-CH2-CH[CH(CHs)2]- oder -CH2-CH2-C(CH3)2- stehen, für C oder Si (Silizium) steht, A4 außerdem für -N(R17)- steht und A5 außerdem zusammen mit R15 und R16 für die Gruppe C=N-R18 steht, wobei R17 und R18 dann zusammen für die Gruppe
stehen, wobei die mit * markierte Bindung mit R17 verbunden ist,
R15 für Wasserstoff, Hydroxy oder Cyano steht,
R16 für 1-Cyclopropylethyl, 1 -Chlorcyclopropyl, Ci-C4-Alkyl, CrC6-Hydroxyalkyl, Q- Q-Alkylcarbonyl, Ci-C2-Halogenalkoxy-Ci-C2-alkyl, Trimethylsilyl-Ci-C2-alkyl, Monofluorphenyl, oder Phenyl steht,
R15 und R16 außerdem zusammen für -0-CH2-CH(R18)-O-, -0-CH2-CH(R18)-CH2-, oder -O-CH-(2-Chlorphenyl)- stehen, R18 für Wasserstoff, Ci-C4-Alkyl oder Brom steht; Gruppe (4) Sulfenamide der allgemeinen Formel (W)
in welcher R19 für Wasserstoff oder Methyl steht; Gruppe (5) Valinamide ausgewählt aus (5-1) Iprovalicarb
(5-2) N1-[2-(4-{[3-(4-chlorophenyl)-2-propynyl]oxy}-3-methoxyphenyl)ethyl]-N2- (methylsulfonyl)-D-valinamid
(5-3) Benthiavalicarb (5-4) Valiphenal Gruppe (6) Carboxamide der allgemeinen Formel (V)
in welcher
X für 2-Chlor-3-pyridinyl, für l-Methylpyrazol-4-yl, welches in 3 -Position durch Methyl, Trifluormethyl oder Difluorethyl und in 5-Position durch Wasserstoff, Fluor oder Chlor substituiert ist, für 4-Ethyl-2-ethylamino-l,3-thiazol-5-yl, für 1-Methyl-cyclohexyl, für 2,2-Dichlor-l-ethyl-3-methyl-cyclopropyl, für 2-Fluor-2-propyl, 3,4-Dichlor-isothiazol- 5-yl, 5,6-Dihydro-2-methyl-l,4-oxathiin-3-yl, 4-Methyl-l,2,3-thiadiazol-5-yl, 4,5- Dimethyl-2-trimethylsilyl-thiophen-3-yl, l-Methylpyrrol-3-yl, welches in 4-Position durch Methyl oder Trifluormethyl und in 5-Position durch Wasserstoff oder Chlor substituiert ist, oder für Phenyl steht, welches einfach bis dreifach, gleich oder verschieden durch Chlor, Methyl oder Trifluormethyl substituiert ist, steht,
Y für eine direkte Bindung, gegebenenfalls durch Chlor, Cyano oder Oxo substituiertes CrC6-Alkandiyl (Alkylen), für C2-C6-Alkendiyl (Alkenylen) oder Thiophendiyl steht,
Z für Wasserstoff, Ci-C6-Alkyl oder die Gruppe
steht, in welcher
A6 für CH oder N steht,
R20 für Wasserstoff, Chlor, Cyano, CrC6-Alkyl, durch gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Chlor oder Di(Ci-C3-alkyl)aminocarbonyl substituiertes Phenyl oder für einen Rest aus der Reihe
oder steht,
R21 für Wasserstoff, Chlor oder Isopropoxy steht,
R22 für Wasserstoff, Chlor, Hydroxy, Methyl, Trifluormethyl oder Di(CrC3-alkyl)- aminocarbonyl steht,
R20 und R21 außerdem gemeinsam für *-CH(CH3)-CH2-C(CH3)2- oder *-CH(CH3)-O- C(CH3)2- stehen, wobei die mit * markierte Bindung mit R20 verknüpft ist oder für einen Rest aus der Reihe
steht; Gruppe (7) Dithiocarbamate ausgewählt aus
(7-1) Mancozeb
(7-2) Maneb
(7-3) Metiram
(7-4) Propineb (7-5) Thiram
(7-6) Zineb
(7-7) Ziram
Gruppe (8") Acylalanine der allgemeinen Formel (VD in welcher
* ein Kohlenstoffatom in der (R)- oder der fSJ-Konfϊguration, bevorzugt in der (S)-
Konfiguration, kennzeichnet,
R23 für Benzyl, Furyl oder Methoxymethyl steht;
Gruppe (9): Anilino-pyrimidine der allgemeinen Formel (VII)
in welcher
R für Methyl, Cyclopropyl oder 1-Propinyl steht;
Gruppe (10): Benzimidazole der allgemeinen Formel (VIH)
in welcher
R und R jeweils für Wasserstoff oder zusammen für -0-CF2-O- stehen,
R27 für Wasserstoff, Ci-C4-Alkylaminocarbonyl oder für 3,5-Dimethylisoxazol-4- ylsulfonyl steht,
R für Chlor, Methoxycarbonylamino, Chlorphenyl, Furyl oder Thiazolyl steht; Gruppe (HV Carbamate der allgemeinen Formel (IX")
in welcher
R29 für n- oder iso-Propyl steht,
R30 für Di(CrC2-alkyl)amino-C2-C4-alkyl oder Diethoxyphenyl steht, wobei auch Salze dieser Verbindungen eingeschlossen sind;
sowie das Carbamat Pyribencarb.
Gruppe (12V Dicarboximide ausgewählt aus
(12-1) Captafol
(12-2) Captan
(12-3) Folpet
(12-4) Iprodione
(12-5) Procymidone
(12-6) Vinclozolin
Gruppe (13V Guanidine ausgewählt aus
(13-1) Dodine
(13-2) Guazatine
(13-3) Iminoctadine triacetate
(13-4) Iminoctadine tris(albesilate)
Gruppe (14): Imidazole ausgewählt aus
(14-1) Cyazofamid (14-2) Prochloraz
(14-3) Triazoxide
(14-4) Pefurazoate
(14-5) Fenamidone
Gruppe (15): Morpholine der allgemeinen Formel (X)
in welcher
R31 und R32 unabhängig voneinander für Wasserstoff oder Methyl stehen,
R33 für C1-C14-AIlCyI (bevorzugt C,2-Ci4-Alkyl), C5-Ci2-Cycloalkyl (bevorzugt C10-C12- Cycloalkyl), Phenyl-Q-Q-alkyl, welches im Phenylteil durch Halogen oder C1-C4-
Alkyl substituiert sein kann, oder für Acrylyl, welches durch Chlorphenyl und Dimethoxyphenyl substituiert ist, steht;
Gruppe (16): Pyrrole der allgemeinen Formel (XI)
in welcher
R34 für Chlor oder Cyano steht, R35 für Chlor oder Nitro steht,
R36 für Chlor steht,
R35 und R36 außerdem gemeinsam für -0-CF2-O- stehen; Gruppe (17): (Thio)Phosphonate ausgewählt aus (17-1) Fosetyl-Al, (17-2) Phosphonsäure, (17-3) Tolclophos-methyl;
Gruppe (18): Phenylethanamide der allgemeinen Formel (XII)
in welcher
R37 für unsubstituiertes oder durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Phenyl, 2-Naphthyl, 1,
2,3,4-Tetrahydronaphthyl oder Indanyl steht; Gruppe (19): Fungizide ausgewählt aus
(19-1) Acibenzolar-S-methyl
(19-2) Chlorothalonil
(19-3) Cymoxanil
(19-4) Edifenphos (19-5) Famoxadone
(19-6) Fluazinam
(19-7) Kupferoxychlorid
(19-8) Kupferhydroxid
(19-9) Oxadixyl (19-10) Spiroxamine
(19-l l) Dithianon (19-12) Metrafenone
(19-14) 2,3-Dibutyl-6-chlor-thieno[2,
3-d]pyrimidin-4(3H)on (19-15) Probenazole
(19-16) Isoprothiolane
(19-17) Kasugamycin
(19-18) Phthalide
(19-19) Ferimzone
(19-20) Tricyclazole
(19-21) Cyprosulfamide
(19-22) Mandipropamid
(19-23) Quinoxyfen (bekannt aus EP-A 326 330) der Formel
(19-24) Proquinazid (bekannt aus WO 94/26722) der Formel
Gruppe (20): (ThiolHarnstoff-Derivate ausgewählt aus
(20-1) Pencycuron
(20-2) Thiophanate-methyl (20-3) Thiophanate-ethyl
Gruppe (21V Amide der allgemeinen Formel (XIII")
in welcher
A7 für eine direkte Bindung oder -O- steht, für -C(=O)NH- oder -NHC(=O)- steht,
Rj8 für Wasserstoff oder CrC4-Alkyl steht,
Rj für CrC6-Alkyl steht;
Gruppe (22): Triazolopyrimidine der allgemeinen Formel (XIV)
in welcher
R4U für CrC6-Alkyl oder C2-C6-Alkenyl steht, R41 für CrC6-Alkyl steht,
R40 und R41 außerdem gemeinsam für C4-C5-Alkandiyl (Alkylen) stehen, welches einfach oder zweifach durch CrC6-Alkyl substituiert ist,
R für Brom oder Chlor steht,
R und R unabhängig voneinander für Wasserstoff, Fluor, Chlor oder Methyl stehen,
R und R unabhängig voneinander für Wasserstoff oder Fluor stehen, R45 für Wasserstoff, Fluor oder Methyl steht,
Gruppe (23): Iodochromone der allgemeinen Formel (XV)
in welcher
R4 für CrC6-Alkyl steht,
R ,449* für C,-C6-Alkyl, C2-C6-Alkenyl oder C2-C6-Alkinyl steht;
Gruppe (24): Biphenylcarboxamide der allgemeinen Formel (XVD
in welcher
R > 50 für Wasserstoff oder Fluor steht,
R51 für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Trifluormethoxy, -CH=N-OMe oder -C(Me)=N-OMe steht,
R » 52 für Wasserstoff, Fluor, Chlor, Brom, Methyl oder Trifluormethyl steht,
Het für einen der folgenden Reste Hetl bis Het7 steht:
Hetl Het2 Het3 Het4 Het5 Het6 Het7 R53 für Iod, Methyl, Difluormethyl oder Trifluormethyl steht, R54 für Wasserstoff, Fluor, Chlor oder Methyl steht,
R für Methyl, Difluormethyl oder Trifluormethyl steht,
R für Chlor, Brom, Iod, Methyl, Difluormethyl oder Trifluormethyl steht,
R57 für Methyl oder Trifluormethyl steht.
Gruppe (25): Sulfonamide
(25-1) Amisulbrom
Gruppe (26): Thiazolidine
(26-1) Flutianil
Gruppe (27): Dinitrophenole
(27- 1 )Meptyldinocap.
Wirkstoffkombination gemäß Anspruch 1, dadurch gekennzeichnet, dass die Verbindung der allgemeinen Formel (I) ausgewählt ist aus der Gruppe bestehend aus den Verbindungen der Formel (I- 1) und (1-4).
Wirkstoffkombination gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verbindung der allgemeinen Formel (I) die Verbindung der Formel (I- IA) ist.
4. Wirkstoffkombination gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die
Verbindung der allgemeinen Formel (I) die Verbindung der Formel (I-4A) ist.
5. Wirkstoffkombination gemäß einem der Ansprüche 1 bis 4 ,dadurch gekennzeichnet, dass der
Wirkstoff der Gruppen (2) bis (27) ausgewählt ist aus
(2-1 ) Azoxystrobin (2-2) Fluoxastrobin
(2-3) (2£)-2-(2-{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl)-2- (methoxyimino)-N-methylethanamid
(2-4) Trifloxystrobin
(2-5) (2£)-2-(Methoxyimino)-N-methyl-2-(2-{[({( l£)-l-[3-(trifluormethyl)phe- nyl]ethyliden}amino)oxy]methyl}phenyl)ethanamid
(2-6) (2£T)-2-(Methoxyimino)-yV-methyl-2-{2-[(£)-({ l -[3-(trifluoπτiethyl)phenyl]- ethoxy}imino)methyl]phenyl}ethanamid
(2-7) Orysastrobin
(2-8) 5-Methoxy-2-methyl-4-(2- { [( { ( 1 E)- 1 -[3-(trifluormethyl)phenyl]ethy 1 iden} - amino)oxy]methyl}phenyl)-2,4-dihydro-3H-l ,2,4-triazol-3-on
(2-9) Kresoxim-methyl (2-10) Dimoxystrobin (2-1 1 ) Picoxystrobin
(2-12) Pyraclostrobin
(2-13) Metominostrobin
(3-1 ) Azaconazole (3-2) Etaconazole
(3-3) Propiconazole
(3-4) Difenoconazole
(3-5) Bromuconazole
(3-6) Cyproconazole (3-7) Hexaconazole
(3-8) Penconazole
(3-9) Myclobutanil
(3-10) Tetraconazole
(3-1 1 ) Flutriafol (3- 12) Epoxiconazole
(3-13) Flusilazole
(3-14) Simeconazole
(3-15) Prothioconazole
(3-16) Fenbuconazole (3-17) Tebuconazole
(3-18) Ipconazole
(3-19) Metconazole (3-20) Triticonazole
(3-21 ) Bitertanol
(3-22) Triadimenol
(3-23) Triadimefon (3-24) Fluquinconazole
(3-25) Quinconazole
(4-1 ) Dichlofluanid
(4-2) Tolylfluanid
(5-1 ) Iprovalicarb (5-3) Benthiavalicarb
(5-4) Valiphenal
(6- 1 ) 2-Chloro-N-( 1 , 1 ,3-trimethyl-indan-4-yl)-nicotinamid
(6-2) Boscalid
(6-3) Furametpyr (6-4) l -Methyl-3-trifluormethyl-lH-pyrazol-4-carbonsäure-(3-p-tolyl-thiophen-2-yl)- amid
(6-5) Ethaboxam
(6-6) Fenhexamid
(6-7) Carpropamid (6-8) 2-Chlor-4-(2-fluor-2-methyl-propionylamino)-N,N-dimethyl-benzamid
(6-9) Fluopicolid
(6-10) Zoxamide
(6-1 1 ) Isotianil (ISO-proposed) (6-12) Carboxin
(6-13) Tiadinil
(6-14) Penthiopyrad
(6-15) Silthiofam (6- 16) N-[2-( 1 ,3-Dimethylbuty l)pheny I]- 1 -methy l-4-(trifluormethy I)- 1 H-pyrrol-3- carboxamid
(6-17) Flutolanil
(6-19) N-[2-(l ,3-dimethylbutyl)phenyl]-5-fluor-l ,3-dimethyl-lH-pyrazol-4-carboxamid
(6-20) N-[2-(l ,3-dimethylbutyl)phenyl]-2-(trifluormethyl)benzamid (6-21 ) N-[2-(l ,3-dimethylbutyl)phenyl]-2-iodbenzamid
(6-22) N-(4'-chlor-3'-fluorbiphenyl-2-yl)-4-(difluormethyl)-2-methyl- 1 ,3-thiazol-5- carboxamid
(6-23) N-[5-(4-chlorphenyl)pyrimidin-4-yl]-2-iod-N-(2-iodbenzoyl)benzamid
(6-24) N-(3',4'-dichlorbiphenyl-2-yl)-2-methyl-4-(trifluormethyl)- l ,3-thiazol-5-carboxamid
(6-25) Fluopyram (ISO-proposed) N-[2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]ethyl]- 2-(trifluoromethyl)benzamide
(6-26) Sedaxane (ISO-proposed) ein Gemisch aus 2 cw-Isomeren 2'-[(\RS,2RS)-\, l '- bicycloprop^-yl^-tdifluoromethyO-l-methylpyrazole^-carboxanilide und 2 rrα«s-Isomeren 24(l/tö,2S/?)-l, l '-bicycloprop-2-yl]-3-(difluoromethyl)-l - methylpyrazole-4-carboxanilide
(6-27) Isopyrazam (ISO-proposed) ein Gemisch aus 2 ^«-Isomeren 3-(difluoromethyl)-l- methyl-
N-[( 1 RS,4SR,9RS)- 1 ,2,3,4-tetrahydro-9-isopropyl- 1 ,4-methanonaphthalen-5-yl]pyrazole-4- carboxamide und 2 αn//-Isomeren 3-(difluoromethyl)-l -methyl-N-[( l ÄS,4SΛ,9SR)-l ,2,3,4- tetrahydro-9-isopropyl-l ,4-methanonaphthalen-5-yl]pyrazole-4-carboxamid
(7-1 ) Mancozeb mit dem IUPAC-Namen Manganese ethylenebis(dithiocarbamate) (Polymerie) complex with zinc salt
(7-2) Maneb (7-3) Metiram mit dem IUPAC-Namen
Zinc ammoniate ethylenebis(dithiocarbamate) - poly(ethylenethiuram disulfide)
(7-4) Propineb
(7-5) Thiram
(7-6) Zineb (7-7) Ziram
(8-1 ) Benalaxyl
(8-2) Furalaxyl
(8-3) Metalaxyl
(8-4) Metalaxyl-M (8-5) Benalaxyl-M
(9-1 ) Cyprodinil
(9-2) Mepanipyrim
(9-3) Pyrimethanil
(10-1 ) 6-Chlor-5-[(3,5-dimethylisoxazol-4-yl)sulfonyl]-2,2-difluor-5H- [ 1 ,3]dioxolo[4,5-f]benzimidazol
(10-2) Benomyl
( 10-3) Carbendazim
(10-4) Chlorfenazole (10-5) Fuberidazole
(10-6) Thiabendazole
(11-1) Diethofencarb
(11-2) Propamocarb (11-3) Propamocarb-hydrochloride
(11-4) Propamocarb-Fosetyl
(11-5) Pyribencarb (ISO-proposed, KUF-1204) [[2-Chloro-5-[(l£)-l-[[(6-methyl-2- pyridinyl)methoxy]imino]ethyl]phenyl]methyl] carbamic acid methyl ester
(12-1) Captafol (12-2) Captan
(12-3) Folpet
(12-4) Iprodione
(12-5) Procymidone
(12-6) Vinclozolin (13-1) Dodine
(13-2) Guazatine
(13-3) Iminoctadine triacetate
(14-1) Cyazofamid
(14-2) Prochloraz (14-3) Triazoxide
( 14-4) Pefurazoate
(14-6) Fenamidone
(15-1) Aldimorph (15-2) Tridemorph
(15-3) Dodemorph
( 15-4) Fenpropimorph
( 15-5) Dimethomorph ( 15-6) Flumorph
(16-1 ) Fenpiclonil
(16-2) Fludioxonil
(16-3) Pyrrolnitrine
( 17-1 ) Fosetyl-Al ( 17-2) Phosphonic acid
( 17-3) Tolclofos-methyl
(18-1 ) 2-(2,3-Dihydro-lH-inden-5-yl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxy- imino)acetamid
( 18-2) N-[2-(3,4-Dimethoxyphenyl)ethyl]-2-(methoxyimino)-2-(5,6,7,8-tetrahydro- naphthalen-2-yl)acetamid
( 18-3) 2-(4-Chloφhenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid
(18-4) 2-(4-Bromphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid
(18-5) 2-(4-Methylphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid
(18-6) 2-(4-Ethylphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-(methoxyimino)acetamid ( 19-1 ) Acibenzolar-S-methyl
( 19-2) Chlorothalonil
( 19-3) Cymoxanil
( 19-4) Edifenphos (19-5) Famoxadone
(19-6) Fluazinam
(19-7) Kupferoxychlorid
(19-9) Oxadixyl (19-10) Spiroxamine
(19-ll)Dithianon
(19-12) Metrafenone
(19-13) 2,3-Dibutyl-6-chlor-thieno[2,3-d]pyrimidin-4(3H)on
(19-14) Probenazole (19-15) Isoprothiolane
(19-16) Kasugamycin
(19-17) Phthalide
(19-18) Ferimzone
(19-19) Tricyclazole (19-20)Cyprosulfamide
( 19-21 ) Mandipropamid
(20-1) Pencycuron
(20-2) Thiophanate-methyl
(20-3) Thiophanate-ethyl (21-1) Fenoxanil
(21-2) Diclocymet
(22-1) 5-Chlor-N-[(7SJ-2,2,2-trifluor-l-methylethyl]-6-(2,4,6- trifluoφhenyl)[l,2,4]triazolo[l,5-a]pyrimidin-7-amin (22-2) 5-Ch\oτ-N-[(\ R)- 1 ,2-dimethylpropyl]-6-(2,4,6-trifluorphenyl)[ 1 ,2,4]triazolo[ 1 ,5-a]- pyrimidin-7-amin
(22-3) 5-Chlor-6-(2-chlor-6-fluorphenyl)-7-(4-methylpiperidin- 1 -yl)[ 1 ,2,4]triazolo[ 1 ,5-a]- pyrimidin (22-4) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin- 1 -yl)[ 1 ,2,4]triazolo[ 1 ,5-a]- pyrimidin
(23-1 ) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on
(23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
(23-3) 6-Iod-2-propoxy-3-propyl-benzopyran-4-on (23-4) 2-But-2-inyloxy-6-iod-3-propyl-benzopyran-4-on
(23-5) 6-Iod-2-( 1 -methyl-butoxy)-3-propyl-benzopyran-4-on
(23-6) 2-But-3-enyloxy-6-iod-benzopyran-4-on
(23-7) 3-Butyl-6-iod-2-isopropoxy-benzopyran-4-on
(24- 1 ) N-(3',4'-Dichlor-5-fluor- 1 , 1 '-biphenyl-2-yl)-3-(difluormethyl)- 1 -methyl- 1 H- pyrazol-4-carboxamid
(24-2) 3-(Difluormethyl)-N-{3'-fluor-4'-[(£)-(methoxyimino)methyl]-l ,l'-biphenyl-2-yl}- 1 -methyl- 1 H-pyrazol-4-carboxamid
(24-3) 3-(Trifluormethyl)-N-{3'-fluor-4'-[(F)-(methoxyimino)methyl]-l ,l '-biphenyl-2-yl}- 1 -methyl- 1 H-pyrazol-4-carboxamid (24-4) N-(3',4'-Dichlor- 1 , 1 '-biphenyl-2-yl)-5-fluor- 1 ,3-dimethyl- 1 H-pyrazol-4-carboxamid
(24-5) N^'-Chlor-S'-fluor-Ul '-biphenyl^-yO^-methyl^^trifluormethyO-l J-thiazol-S- carboxamid
(24-6) N-(4'-Chlor- 1 , 1 '-biphenyl-2-yl)-4-(difluormethyl)-2-methy 1- 1 ,3-thiazol-5- carboxamid (24-7) N-(4'-Brom- 1 , 1 '-biphenyl-2-yl)-4-(difluormethyl)-2-methyl- 1 ,3-thiazol-5- carboxamid (24-8) 4-(Difluormethyl)-2-methyl-N-[4'-(trifluormethyl)-l , r-biphenyl-2-yl]-l ,3-thiazol- 5-carboxamid
(24-9) Bixafen (ISO-proposed) N-(3',4'-dichloro-5-fluoro[l ,l'-biphenyl]-2-yl)-3- (difluoromethyl)-l -methyl-lH-pyrazole-4-carboxamide (25-1 ) Amisulbrom (ISO-proposed, ΝC-224) 3-[(3-Bromo-6-fluoro-2-methyl- l H-indol-l - yl)sulfonyl]-NN-dimethyl-l H- 1 ,2,4-triazole-l -Sulfonamid
(26-1) Flutianil, (Z)-[3-(2-methoxyphenyl)-l,3-thiazolidin-2-ylidene](α,α,α,4-tetrafluoro- /M-toly lth io)acetonitri Ie
(27- 1 ) Meptyldinocap, (RS)-2-( 1 -methylheptyl)-4,6-dinitrophenyl crotonate Wirkstoffkombination gemäß Anspruch einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Wirkstoff der Gruppen (2) bis (27) ausgewählt ist aus
(2-1 ) Azoxystrobin (2-2) Fluoxastrobin
(2-3) (2£)-2-(2-{[6-(3-Chlor-2-methylphenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl)-2- (methoxyimino)-N-methylethanamid
(2-4) Trifloxystrobin
(2-5) (2£)-2-(Methoxyimino)-N-methyl-2-(2-{[({(l£)-l-[3-(trifluormethyl)phe- nyl]ethyliden}amino)oxy]methyl}phenyl)ethanamid
(2-6) (2£>2-(Methoxyimino)-N-methyl-2-{2-[(£)-({ 1 -[3-(trifluormethyl)phenyl]- ethoxy}imino)methyl]phenyl}ethanamid
(2-8) 5-Methoxy-2-methyl-4-(2-{[({( l£)-l -[3-(trifluormethyl)phenyl]ethyliden}- amino)oxy]methyl}phenyl)-2,4-dihydro-3H-l ,2,4-triazol-3-on
(2-9) Kresoxim-methyl
(2-10) Dimoxystrobin (2-1 1 ) Picoxystrobin
(2-12) Pyraclostrobin (2-13) Metominostrobin
(3-3) Propiconazole
(3-4) Difenoconazole
(3-6) Cyproconazole (3-7) Hexaconazole
(3-8) Penconazole
(3-9) Myclobutanil
(3-10) Tetraconazole
(3-12) Epoxiconazole (3-13) Flusilazole
(3-15) Prothioconazole
(3-16) Fenbuconazole
(3-17) Tebuconazole
(3-18) Ipconazole (3-19) Metconazole
(3-20) Triticonazole
(3-21 ) Bitertanol
(3-22) Triadimenol
(3-23) Triadimefon (3-24) Fluquinconazole
(4-1 ) Dichlofluanid
(4-2) Tolylfluanid (5-1 ) Iprovalicarb
(5-3) Benthiavalicarb
(5-4) Valiphenal
(6-2) Boscalid (6-5) Ethaboxam
(6-6) Fenhexamid
(6-7) Carpropamid
(6-8) 2-ChIor-4-[(2-fluor-2-methylpropanoyl)amino]-N,N-dimethylbenzamid
(6-9) Fluopicolid (6-10) Zoxamide
(6-1 1 ) Isotianil
(6-14) Penthiopyrad
(6- 16) N-[2-( 1 ,3-Dimethylbutyl)phenyl]- 1 -methyl-4-(trifluormethyl)- 1 H-pyrrol-3- carboxamid (6-17) Flutolanil
(6-18) Ν-[2-(l,3-dimethylbutyl)phenyl]-5-fluor-l ,3-dimethyl-l Η-pyrazol-4-carboxamid
(6-25) Fluopyram
(6-26) Sedaxane (ISO-proposed)
(6-27) Isopyrazam (ISO-proposed) (7-1 ) Mancozeb
(7-2) Maneb
(7-4) Propineb
(7-5) Thiram (7-6) Zineb
(8-1) Benalaxyl
(8-2) Furalaxyl
(8-3) Metalaxyl (8-4) Metalaxyl-M
(8-5) Benalaxyl-M
(9-1) Cyprodinil
(9-2) Mepanipyrim
(9-3) Pyrimethanil (10-1) 6-Chlor-5-[(3,5-dimethylisoxazol-4-yl)sulfonyl]-2,2-difluor-5H-[ 1 ,3]dioxolo[4,5-f]- benzimidazol
(10-3) Carbendazim
(11-1) Diethofencarb
(11-2) Propamocarb (11-3) Propamocarb-hydrochloride
(11-4) Propamocarb-Fosetyl
(11-5) Pyribencarb
(12-2) Captan
(12-3) Folpet (12-4) Iprodione
(12-5) Procymidone
(13-1) Dodine
(13-2) Guazatine (13-3) Iminoctadine triacetate
(14-1) Cyazofamid
(14-2) Prochloraz
(14-3) Triazoxide
(14-5) Fenamidone
(15-4) Fenpropimorph
(15-5) Dimethomorph
(15-6) Flumorph
(16-2) Fludioxonil
(17-1) Fosetyl-Al
( 17-2) Phosphonic acid
(17-3) Tolclofos-methyl
(19-1) Acibenzolar-S-methyl
(19-2) Chlorothalonil (19-3) Cymoxanil
(19-5) Famoxadone
(19-6) Fluazinam
(19-7) Kupferoxychlorid
(19-9) Oxadixyl
(19-10) Spiroxamine
(19-21) Cyprosulfamide (19-22) Mandipropamid (20-1 ) Pencycuron (20-2) Thiophanate-methyl
(22- 1 ) 5-Chlor-N-[f 15>2,2,2-trifluor- 1 -methylethyl]-6-(2,4,6- trifluorphenyl)[ 1 ,2,4]triazolo[ 1 ,5-a]pyrimidin-7-amin (22-2) 5-Chlor-N-[^R;-l ,2-dimethylpropyl]-6-(2,4,6-trifluorphenyl)[l ,2,4]triazolo[l ,
5-a]- pyrimidin-7-amin
(22-4) 5-Chlor-6-(2,4,
6-trifluorphenyl)-7-(4-methylpiperidin-l -yl)[l ,2,4]triazolo[l ,5-a]- pyrimidin
(23- 1 ) 2-Butoxy-6-iod-3-propyl-benzopyran-4-on (23-2) 2-Ethoxy-6-iod-3-propyl-benzopyran-4-on
(23-3) 6-Iod-2-propoxy-3-propyl-benzopyran-4-on
(24- 1 ) N-(3',4'-Dichlor-5-fluor- 1 , 1 '-biphenyl-2-yl)-3-(difluormethyl)- 1 -methyl- 1 H- pyrazol-4-carboxamid
(24-3) 3-(Trifluormethyl)-N-{3'-fluor-4'-[(^)-(methoxyimino)methyl]-l ,l'-biphenyl-2-yl}- 1 -methyl- 1 H-pyrazol-4-carboxamid
(24-7) Ν-(4'-Brom- 1 , 1 '-biphenyl-2-yl)-4-(difluormethyl)-2-methyl- 1 ,3-thiazol-5- carboxamid
(24-9) Bixafen
(25-1 ) Amisulbrom (26-1 ) Flutianil
(27-1 ) Meptyldinocap.
7. Wirkstoffkombination gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Wirksoff der Gruppen (2) bis (27) ausgewählt ist aus
(2-1 ) Azoxystrobin (2-2) Fluoxastrobin (2-4) Trifloxystrobin
(3-15) Prothioconazole
(3-17) Tebuconazole
(3-18) Ipconazole
(3-20) Triticonazole
(3-22) Triadimenol
(4-2) Tolylfluanid
(5-1) Iprovalicarb
(6-7) Carpropamid
(6-9) Fluopicolid
(6-11) Isotianil
(6- 18) N-[2-( 1 ,3-dimethylbutyl)phenyl]-5-fluor- 1 ,3-dimethy 1- 1 H-pyrazol-4-carboxamid
(6-25) Fluopyram
(7-5) Thiram
(8-3) Metalaxyl
(8-4) Metalaxyl-M
(10-3) Carbendazim
(11-2) Propamocarb
(11-5) Pyribencarb
(12-4) Iprodione
(14-5) Fenamidone
(16-2) Fludioxonil ( 17- 1 ) Fosetyl-Al (19-10) Spiroxamine (19-21 )Cyprosulfamide (20-1 ) Pencycuron (24- 1 ) N-(3',4'-Dichlor-5-fluor- 1 , 1 '-biphenyl-2-yl)-3-(difluormethyl)- 1 -methyl- IH- pyrazol-4-carboxamid
(24-9) Bixafen (25-1 ) Amisulbrom
8. Agrochemische Zusammensetzung, dadruch gekennzeichnet, dass sie neben einer Wirkstoffkombination gemäß einem der Ansprüche 1 bis 7, Streckmittel und/oder oberflächenaktive Stoffe enthält.
9. Verwendung einer Wirkstoffkombiantion wie in einem der Ansprüche 1 bis 7 definiert oder einer Zusammensetzung gemäß Anspruch 8 zur Bekämpfung tierischer Schädlinge und/oder pflanzenpathogener Pilze.
10. Verfahren zur Bekämpfung tierischer Schädlinge und/oder pflanzenpathogener Pilze, dadurch gekennzeichnet, dass man eine Wirkstoffkombination, wie in einem der Ansprüche 1 bis 7 definiert, oder eine Zusammensetzung gemäß Anspruch 8, auf tierische Schädlinge und/oder pflanzenpathogene Pilze und/oder deren Lebensraum und/oder Saatgut einwirken lässt.
1 1. Verwendung einer Wirkstoffkombination gemäß einem der Ansprüche 1 bis 7 oder einer Zusammensetzung gemäß Anspruch 8 zur Behandlung von Saatgut.
12. Verwendung einer Wirkstoffkombination gemäß gemäß einem der Ansprüche 1 bis 7 oder einer Zusammensetzung gemäß Anspruch 8 zur Behandlung von transgenen Pflanzen.
13. Verwendung einer Wirkstoffkombination gemäß einem der Ansprüche 1 bis 7 oder einer Zusammensetzung gemäß Anspruch 8 zur Behandlung von Saatgut transgener Pflanzen.
EP10737493A 2009-07-16 2010-07-06 Synergistische wirkstoffkombinationen mit phenyltriazolen Withdrawn EP2453750A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009027772 2009-07-16
PCT/EP2010/004101 WO2011006603A2 (de) 2009-07-16 2010-07-06 Synergistische wirkstoffkombinationen mit phenyltriazolen

Publications (1)

Publication Number Publication Date
EP2453750A2 true EP2453750A2 (de) 2012-05-23

Family

ID=42735535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10737493A Withdrawn EP2453750A2 (de) 2009-07-16 2010-07-06 Synergistische wirkstoffkombinationen mit phenyltriazolen

Country Status (13)

Country Link
US (1) US20110166109A1 (de)
EP (1) EP2453750A2 (de)
JP (1) JP5642786B2 (de)
KR (1) KR20120051015A (de)
CN (3) CN104430378A (de)
AU (1) AU2010272872B2 (de)
BR (1) BR112012001080A2 (de)
CL (1) CL2012000077A1 (de)
CO (1) CO6491032A2 (de)
IN (1) IN2012DN01345A (de)
MX (1) MX2012000566A (de)
WO (1) WO2011006603A2 (de)
ZA (1) ZA201200309B (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045242A1 (de) * 2004-09-17 2006-03-23 Bayer Cropscience Ag Synergistische fungizide Wirkstoffkombinationen
DE102004049761A1 (de) * 2004-10-12 2006-04-13 Bayer Cropscience Ag Fungizide Wirkstoffkombinationen
KR20120060217A (ko) * 2009-08-20 2012-06-11 바이엘 크롭사이언스 아게 살비제 및 살충제로 사용하기 위한 3-트리아졸릴페닐-치환된 설파이드 유도체
ES2559012T3 (es) * 2009-08-20 2016-02-10 Bayer Intellectual Property Gmbh Derivados de 3-[1-(3-haloalquil)-triazolil]-fenil-sulfuro como acaricidas e insecticidas
CN102246807B (zh) * 2011-07-21 2013-06-12 青岛奥迪斯生物科技有限公司 一种含有四氟醚唑与硅氟唑的杀菌组合物
WO2013037955A1 (en) * 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
CN103651371B (zh) * 2012-09-07 2015-07-08 陕西美邦农药有限公司 一种含苯酰菌胺的高效杀菌组合物
AR093909A1 (es) 2012-12-12 2015-06-24 Bayer Cropscience Ag Uso de ingredientes activos para controlar nematodos en cultivos resistentes a nematodos
CN103044341B (zh) * 2012-12-20 2015-07-01 郑州大学 1,2,3-三唑-氨基二硫代甲酸酯-脲复合体、其制备方法及其应用
US9750248B2 (en) * 2012-12-31 2017-09-05 Dow Agrosciences Llc Synergistic fungicidal compositions
US9247742B2 (en) * 2012-12-31 2016-02-02 Dow Agrosciences Llc Synergistic fungicidal compositions
CN104557884A (zh) * 2013-10-13 2015-04-29 西北大学 苯醚甲环唑铜配合物及其制备方法和应用
BR102013027977A2 (pt) * 2013-10-30 2015-09-15 Rotam Agrochem Int Co Ltd método de aumentar rendimento por tratamento com composições fungicidas
WO2015135984A1 (de) * 2014-03-13 2015-09-17 Bayer Cropscience Ag Verfahren zur herstellung von chiralen 3-(5-aminotriazolyl)-sulfoxid-derivaten
CN106243087B (zh) * 2016-09-12 2018-10-09 三峡大学 一种三唑吡咯烷酮类杀菌剂,合成方法及其应用
CN109438322A (zh) * 2018-11-19 2019-03-08 广西中医药大学 一种4'-三氟甲基-3,5'-噁唑烷基螺环氧化吲哚化合物的手性制备方法

Family Cites Families (337)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1972961A (en) 1931-05-26 1934-09-11 Du Pont Disinfectant
US2588428A (en) 1945-04-02 1952-03-11 Goodrich Co B F Complex amine products with dialkyl zinc dithiocarbamates as pesticides
US2504404A (en) 1946-06-12 1950-04-18 Du Pont Manganous ethylene bis-dithiocarbamate and fungicidal compositions containing same
IT466555A (de) 1948-05-18
DE1081446B (de) 1955-09-20 1960-05-12 Montedison Spa Verfahren zur Herstellung von kristallinem Zinkaethylen-bisdithiocarbamat
DE1076434B (de) 1957-08-17 1960-02-25 Badische Anilin- S. Soda-Fabrik Aktiengesellschaft, Ludwigshafen/Rhein Fungizide Mittel
US3010968A (en) 1959-11-25 1961-11-28 Du Pont Process for manufacture of certain alkyl esters of benzimidazole carbamic acids
BE616336A (de) 1960-11-03
NL272405A (de) 1960-12-28
NL275086A (de) 1961-02-22
NL277376A (de) * 1961-05-09
NL129620C (de) 1963-04-01
US3206468A (en) 1963-11-15 1965-09-14 Merck & Co Inc Methods of preparing benzimidazoles
US3178447A (en) 1964-05-05 1965-04-13 California Research Corp N-polyhaloalkylthio compounds
DE1209799B (de) 1964-05-14 1966-01-27 Bayer Ag Saatgutbeizmittel gegen Fusariosen
GB1094567A (en) 1964-06-23 1967-12-13 Zh Biseibutsu Kagaku Kenkyukai Plant disease protective and curative compositions
GB1114155A (en) 1964-08-24 1968-05-15 Evans Medical Ltd Guanidino derivatives
US3249499A (en) 1965-04-26 1966-05-03 Us Rubber Co Control of plant diseases
IL26097A (en) * 1965-08-26 1970-01-29 Bayer Ag Dithiol phosphoric acid triesters and fungicidal compositions containing them
GB1103989A (en) 1967-02-10 1968-02-21 Union Carbide Corp Fungicidal concentrates
NL157191C (nl) 1966-12-17 Schering Ag Werkwijze voor het bereiden van een preparaat met fungicide en fungistatische werking.
US3629428A (en) 1967-09-07 1971-12-21 Meiji Seika Kaisha Pesticide for controlling bacterial and fungal diseases of rice plant
US3745187A (en) * 1967-10-30 1973-07-10 Nippon Soda Co Bis-thioureido-benzenes and preparation thereof
IL30778A (en) 1967-10-30 1972-10-29 Nippon Soda Co Bis-thioureido-benzenes,their preparation,and fungicidal compositions containing them
US3745170A (en) 1969-03-19 1973-07-10 Sumitomo Chemical Co Novel n-(3,5-dihalophenyl)-imide compounds
US3631176A (en) 1970-07-20 1971-12-28 Du Pont Carbamoyl substituted 2-aminobenzimidazoles
JPS5117536B2 (de) 1971-02-02 1976-06-03
BE789918A (fr) 1971-10-12 1973-04-11 Lilly Co Eli Benzothiazoles dans la lutte contre les organismes phytopathogenes
DE2207576C2 (de) 1972-02-18 1985-07-25 Basf Ag, 6700 Ludwigshafen Oxazolidinderivate
ZA731111B (en) 1972-03-15 1974-03-27 Du Pont 2-cyano-2-hydroxyiminoacetamides and acetates as plant disease control agents
DE2324010C3 (de) * 1973-05-12 1981-10-08 Bayer Ag, 5090 Leverkusen 1-Substituierte 2-Triazolyl-2-phenoxyäthanol-Verbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Pilzen
GB1469772A (en) 1973-06-21 1977-04-06 Boots Co Ltd Fungicidal imidazole derivatives
DE2456627C2 (de) 1973-12-14 1984-05-10 PEPRO - Société pour le Développement et la Vente de Spécialités Chimiques, Lyon Fungizide Mittel auf der Basis von Phosphonsäureestern
FR2254276B1 (de) * 1973-12-14 1977-03-04 Philagro Sa
AR205189A1 (es) 1974-04-02 1976-04-12 Ciba Geigy Ag Derivados de n-(1"-metoxi-carboniletil)-n-(furan-(2") carbonil) 2-6-dimetilanilina utiles como agentes microbicidas menos para usos farmaceuticos y procedimiento para su obtencion
US4151299A (en) * 1974-04-09 1979-04-24 Ciba-Geigy Corporation Certain aniline derivatives as microbicidal agents
OA04979A (fr) 1974-04-09 1980-11-30 Ciba Geigy Nouveaux dérivés de l'aniline utiles comme agents microbicides et leur procédé de préparation.
US4079062A (en) * 1974-11-18 1978-03-14 Janssen Pharmaceutica N.V. Triazole derivatives
NZ179111A (en) 1974-11-18 1978-03-06 Janssen Pharmaceutica Nv I-(aryl)-ethyl-1h-1,2,4-triazole ketals,anti-microbial and plant growth controlling compositions
DE2543279A1 (de) * 1975-09-27 1977-04-07 Basf Ag Verfahren zur herstellung von n-substituierten tetrahydro-1.4-oxazinen
NL169174C (nl) 1976-07-12 1982-06-16 Nihon Nohyaku Co Ltd Werkwijze voor het bereiden van een land- en tuinbouw fungicide preparaat, werkwijze voor het bestrijden van ziekten van land- en tuinbouwgewassen onder toepassing van dit preparaat, alsmede werkwijze voor het bereiden van een benzoezuuranilidederivaat.
JPS5312844A (en) 1976-07-20 1978-02-04 Nippon Tokushu Noyaku Seizo Kk Nn44halogenobenzyllnnmethyl*or nonsubstitutedd*cycloalkylln**phenylurea or thiourea compounds* their preparation and fungicides containing the same as active constituents
AU515134B2 (en) 1976-08-10 1981-03-19 Janssen Pharmaceutica N.V. 1-(2-aryl-2-r-ethyl)-1h-1,2,4-triazoles
DE2656747C2 (de) 1976-12-15 1984-07-05 Basf Ag, 6700 Ludwigshafen Morpholinderivate
US4598085A (en) * 1977-04-27 1986-07-01 Janssen Pharmaceutica N.V. Fungicidal 1-(2-aryl-2-R-ethyl)-1H-1,2,4-triazoles
DE2802488A1 (de) 1978-01-20 1979-07-26 Bayer Ag 3-azolyl-benzotriazine und -benzotriazin-1-oxide, verfahren zu ihrer herstellung, sowie ihre verwendung zur bekaempfung von pflanzenkrankheiten
BG28977A3 (en) 1978-02-02 1980-08-15 Montedison Spa Fungicide means and method for fungus fighting
DD140041B1 (de) 1978-08-22 1986-05-07 Gerhard Rieck Verfahren zur herstellung von langkettigen n-alkyldimethylmorpholinen
US4654332A (en) 1979-03-07 1987-03-31 Imperial Chemical Industries Plc Heterocyclic compounds
JPS55151570A (en) 1979-05-15 1980-11-26 Takeda Chem Ind Ltd Pyrimidine derivatives, their preparation and antimicrobial for agriculture
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
DE3042303A1 (de) 1979-11-13 1981-08-27 Sandoz-Patent-GmbH, 7850 Lörrach Organische verbindungen, deren herstellung und verwendung
JPS6052146B2 (ja) 1979-12-25 1985-11-18 石原産業株式会社 N−ピリジルアニリン系化合物、それらの製造方法及びそれらを含有する有害生物防除剤
AU542623B2 (en) * 1980-05-16 1985-02-28 Bayer Aktiengesellschaft 1-hydroxyethyl-azole derivatives
DD151404A1 (de) 1980-06-13 1981-10-21 Friedrich Franke Fungizide mittel
US4432989A (en) * 1980-07-18 1984-02-21 Sandoz, Inc. αAryl-1H-imidazole-1-ethanols
DE3030026A1 (de) 1980-08-08 1981-03-26 Sandoz-Patent-GmbH, 79539 Lörrach Fungizide
JPS6020257B2 (ja) 1980-09-11 1985-05-21 東和精工株式会社 ラベラ−のラベルテ−プ送り機構
BR8203631A (pt) 1981-06-24 1983-06-14 Du Pont Composto agricola processo para sua preparacao e composicao para controlar molestias causadas por fungos
OA07237A (en) 1981-10-29 1984-04-30 Sumitomo Chemical Co Fungicidical N-phenylcarbamates.
FI834141A (fi) 1982-11-16 1984-05-17 Ciba Geigy Ag Foerfarande foer framstaellning av nya arylfenyleterderivat.
CH658654A5 (de) * 1983-03-04 1986-11-28 Sandoz Ag Azolderivate, verfahren zu ihrer herstellung und mittel die diese verbindungen enthalten.
CA1227801A (en) 1983-11-10 1987-10-06 Ted T. Fujimoto .alpha.-ALKYL-.alpha.-(4-HALOPHENYL)-1H-1,2,4-TRIAZOLE-1- PROPANENITRILES
JPS60178801A (ja) 1984-02-24 1985-09-12 Dainippon Ink & Chem Inc グアニジン系農園芸用殺菌剤
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
US5331107A (en) 1984-03-06 1994-07-19 Mgi Pharma, Inc. Herbicide resistance in plants
US5304732A (en) 1984-03-06 1994-04-19 Mgi Pharma, Inc. Herbicide resistance in plants
GB8429739D0 (en) 1984-11-24 1985-01-03 Fbc Ltd Fungicides
IL78175A (en) 1985-03-29 1989-10-31 Basf Ag Azolylmethyloxiranes,their preparation and their use as fungicide crop protection agents
DE3511411A1 (de) * 1985-03-29 1986-10-02 Basf Ag, 6700 Ludwigshafen Verwendung von azolylmethyloxiranen zur bekaempfung von viralen erkrankungen
US4705800A (en) 1985-06-21 1987-11-10 Ciba-Geigy Corporation Difluorbenzodioxyl cyanopyrrole microbicidal compositions
DE3689506D1 (de) * 1985-10-09 1994-02-17 Shell Int Research Neue Acrylsäureamide.
EP0248086B1 (de) 1985-12-12 1993-03-17 Ube Industries, Ltd. Imidazolabkömmlinge, bakterizide, die diese enthalten und herstellungsverfahren
IT1204773B (it) 1986-01-23 1989-03-10 Montedison Spa Azolilderivati fungicidi
EP0236272B1 (de) * 1986-03-04 1991-06-12 Ciba-Geigy Ag Fungizide Verwendung eines Cyanopyrrol-Derivates
EP0242236B2 (de) 1986-03-11 1996-08-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
CA1321588C (en) 1986-07-02 1993-08-24 Katherine Eleanor Flynn Alpha-aryl-alpha-phenylethyl-1h-1,2,4-triazole-1- propanenitriles
US5087635A (en) * 1986-07-02 1992-02-11 Rohm And Haas Company Alpha-aryl-alpha-phenylethyl-1H-1,2,4-triazole-1-propanenitriles
DE3623921A1 (de) * 1986-07-16 1988-01-21 Basf Ag Oximether und diese enthaltende fungizide
ES2011602T3 (es) 1986-08-12 1994-07-16 Mitsubishi Chem Ind Derivados de piridinacarboxamida y su uso como fungicidas.
FR2603039B1 (fr) 1986-08-22 1990-01-05 Rhone Poulenc Agrochimie Derives de 2,5-dihydrofuranne a groupe triazole ou imidazole, procede de preparation, utilisation comme fongicide
US5637489A (en) 1986-08-23 1997-06-10 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5276268A (en) 1986-08-23 1994-01-04 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5273894A (en) 1986-08-23 1993-12-28 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5605011A (en) 1986-08-26 1997-02-25 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5378824A (en) 1986-08-26 1995-01-03 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
DE3783415D1 (de) 1986-08-29 1993-02-18 Shell Int Research Aryloxycarbonsaeurederivate, ihre herstellung und verwendung.
JPH0784445B2 (ja) 1986-12-03 1995-09-13 クミアイ化学工業株式会社 ピリミジン誘導体および農園芸用殺菌剤
GB2201152B (en) 1987-02-09 1991-08-14 Ici Plc Fungicidal propenoic acid derivatives
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
DE3735555A1 (de) 1987-03-07 1988-09-15 Bayer Ag Aminomethylheterocyclen
CA1339133C (en) 1987-03-13 1997-07-29 Rikuo Nasu Imidazole compounds and biocidal composition comprising the same for controlling harmful organisms
EP0313512B1 (de) * 1987-08-21 1992-11-25 Ciba-Geigy Ag Benzothiadiazole und ihre Verwendung in Verfahren und Mitteln gegen Pflanzenkrankheiten
EP0310550B1 (de) * 1987-09-28 1993-05-26 Ciba-Geigy Ag Schädlingsbekämpfungsmittel
US4877441A (en) 1987-11-06 1989-10-31 Sumitomo Chemical Company Ltd. Fungicidal substituted carboxylic acid derivatives
US5638637A (en) 1987-12-31 1997-06-17 Pioneer Hi-Bred International, Inc. Production of improved rapeseed exhibiting an enhanced oleic acid content
IL89029A (en) 1988-01-29 1993-01-31 Lilly Co Eli Fungicidal quinoline and cinnoline derivatives, compositions containing them, and fungicidal methods of using them
JPH0762001B2 (ja) 1988-02-16 1995-07-05 呉羽化学工業株式会社 アゾリルメチルシクロアルカノール誘導体の製造法
GB8810120D0 (en) 1988-04-28 1988-06-02 Plant Genetic Systems Nv Transgenic nuclear male sterile plants
DE3814505A1 (de) 1988-04-29 1989-11-09 Bayer Ag Substituierte cycloalkyl- bzw. heterocyclyl-carbonsaeureanilide
DE3815728A1 (de) 1988-05-07 1989-11-16 Bayer Ag Stereoisomere von n-(r)-(1-aryl-ethyl)-1-alkyl-2,2-dichlor- cyclopropancarbonsaeureamiden
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
CA2006309C (fr) 1988-12-29 2001-12-18 Jean Hutt Azolylmethylcyclopentane benzylidene fongicide
GB8903019D0 (en) 1989-02-10 1989-03-30 Ici Plc Fungicides
EP0469061A1 (de) 1989-04-21 1992-02-05 E.I. Du Pont De Nemours And Company Fungizide oxazolidinone
US5185342A (en) 1989-05-17 1993-02-09 Shionogi Seiyaku Kabushiki Kaisha Alkoxyiminoacetamide derivatives and their use as fungicides
US6013861A (en) 1989-05-26 2000-01-11 Zeneca Limited Plants and processes for obtaining them
HU214927B (hu) 1989-08-10 1998-07-28 Plant Genetic Systems N.V. Eljárás módosított virággal rendelkező növények előállítására
US5908810A (en) 1990-02-02 1999-06-01 Hoechst Schering Agrevo Gmbh Method of improving the growth of crop plants which are resistant to glutamine synthetase inhibitors
US5739082A (en) 1990-02-02 1998-04-14 Hoechst Schering Agrevo Gmbh Method of improving the yield of herbicide-resistant crop plants
ATE152572T1 (de) 1990-04-04 1997-05-15 Pioneer Hi Bred Int Herstellung von rapssamen mit verringertem gehalt an gesättigten fettsäuren
PH11991042549B1 (de) * 1990-06-05 2000-12-04
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
JP3173784B2 (ja) 1990-06-25 2001-06-04 モンサント カンパニー グリホセート耐性植物
DE4026966A1 (de) 1990-08-25 1992-02-27 Bayer Ag Substituierte valinamid-derivate
FR2667078B1 (fr) 1990-09-21 1994-09-16 Agronomique Inst Nat Rech Sequence d'adn conferant une sterilite male cytoplasmique, genome mitochondrial, mitochondrie et plante contenant cette sequence, et procede de preparation d'hybrides.
EP0569384B2 (de) 1991-01-30 2000-10-04 Zeneca Limited Fungizide
DE4104782B4 (de) 1991-02-13 2006-05-11 Bayer Cropscience Gmbh Neue Plasmide, enthaltend DNA-Sequenzen, die Veränderungen der Karbohydratkonzentration und Karbohydratzusammensetzung in Pflanzen hervorrufen, sowie Pflanzen und Pflanzenzellen enthaltend dieses Plasmide
DE4117371A1 (de) 1991-05-28 1992-12-03 Basf Ag Antimykotische mittel, die phenylessigsaeurederivate enthalten
US5731180A (en) 1991-07-31 1998-03-24 American Cyanamid Company Imidazolinone resistant AHAS mutants
US6270828B1 (en) 1993-11-12 2001-08-07 Cargrill Incorporated Canola variety producing a seed with reduced glucosinolates and linolenic acid yielding an oil with low sulfur, improved sensory characteristics and increased oxidative stability
JPH0768251B2 (ja) 1991-10-09 1995-07-26 三共株式会社 含ケイ素アゾール化合物
FR2706456B1 (fr) 1993-06-18 1996-06-28 Rhone Poulenc Agrochimie Dérivés optiquement actifs de 2-imidazoline-5-ones et 2-imidazoline-5-thiones fongicides.
US6002016A (en) * 1991-12-20 1999-12-14 Rhone-Poulenc Agrochimie Fungicidal 2-imidazolin-5-ones and 2-imidazoline-5-thiones
US5593996A (en) 1991-12-30 1997-01-14 American Cyanamid Company Triazolopyrimidine derivatives
DE4227061A1 (de) 1992-08-12 1994-02-17 Inst Genbiologische Forschung DNA-Sequenzen, die in der Pflanze die Bildung von Polyfructanen (Lävanen) hervorrufen, Plasmide enthaltend diese Sequenzen sowie Verfahren zur Herstellung transgener Pflanzen
GB9218185D0 (en) 1992-08-26 1992-10-14 Ici Plc Novel plants and processes for obtaining them
JP2783130B2 (ja) 1992-10-02 1998-08-06 三菱化学株式会社 メトキシイミノ酢酸誘導体およびこれを有効成分とする農園芸用殺菌剤
EP0664835B1 (de) 1992-10-14 2004-05-19 Syngenta Limited Pflanzen und verfahren zu ihrer herstellung
GB9223454D0 (en) 1992-11-09 1992-12-23 Ici Plc Novel plants and processes for obtaining them
US5304572A (en) 1992-12-01 1994-04-19 Rohm And Haas Company N-acetonylbenzamides and their use as fungicides
US5254584A (en) 1992-12-18 1993-10-19 Rohm And Haas Company N-acetonylbenzamides and their use as fungicides
EP1471145A2 (de) 1993-03-25 2004-10-27 Syngenta Participations AG Pestizid-Proteine und Stämme
AU695940B2 (en) 1993-04-27 1998-08-27 Cargill Incorporated Non-hydrogenated canola oil for food applications
WO1994026722A1 (en) 1993-05-12 1994-11-24 E.I. Du Pont De Nemours And Company Fungicidal fused bicyclic pyrimidinones
WO1995004826A1 (en) 1993-08-09 1995-02-16 Institut Für Genbiologische Forschung Berlin Gmbh Debranching enzymes and dna sequences coding them, suitable for changing the degree of branching of amylopectin starch in plants
ZW8594A1 (en) 1993-08-11 1994-10-12 Bayer Ag Substituted azadioxacycbalkenes
US5514643A (en) 1993-08-16 1996-05-07 Lucky Ltd. 2-aminothiazolecarboxamide derivatives, processes for preparing the same and use thereof for controlling phytopathogenic organisms
DE4330960C2 (de) 1993-09-09 2002-06-20 Aventis Cropscience Gmbh Kombination von DNA-Sequenzen, die in Pflanzenzellen und Pflanzen die Bildung hochgradig amylosehaltiger Stärke ermöglichen, Verfahren zur Herstellung dieser Pflanzen und die daraus erhaltbare modifizierte Stärke
CN1066487C (zh) 1993-10-01 2001-05-30 三菱商事株式会社 鉴定植物不育细胞质的基因及用其生产杂交植物的方法
AU692791B2 (en) 1993-10-12 1998-06-18 Agrigenetics, Inc. Brassica napus variety AG019
CA2176109A1 (en) 1993-11-09 1995-05-18 Perry Girard Caimi Transgenic fructan accumulating crops and methods for their production
JP3517976B2 (ja) 1993-12-03 2004-04-12 住友化学工業株式会社 イネいもち病防除剤およびそれを用いる防除方法
EP0754235A1 (de) 1994-03-25 1997-01-22 National Starch and Chemical Investment Holding Corporation Verfahren zur herstellung veränderten stärke aus kartoffelpflanzen
AU699552B2 (en) 1994-05-18 1998-12-10 Bayer Cropscience Aktiengesellschaft DNA sequences coding for enzymes capable of facilitating the synthesis of linear alpha-1,4 glucans in plants, fungi and microorganisms
JPH10507622A (ja) 1994-06-21 1998-07-28 ゼネカ・リミテッド 新規植物およびその入手法
US5824790A (en) 1994-06-21 1998-10-20 Zeneca Limited Modification of starch synthesis in plants
DE4423612A1 (de) 1994-07-06 1996-01-11 Basf Ag 2-[(Dihydro)pyrazolyl-3'-oxymethylen]-anilide, Verfahren zu ihrer Herstelung und ihre Verwendung
NL1000064C1 (nl) 1994-07-08 1996-01-08 Stichting Scheikundig Onderzoe Produktie van oligosacchariden in transgene planten.
US5723491A (en) 1994-07-11 1998-03-03 Novartis Corporation Fungicidal composition and method of controlling fungus infestation
ES2148518T3 (es) 1994-08-03 2000-10-16 Kumiai Chemical Industry Co Derivado amida de aminoacido, procedimiento para su produccion, fungicida agrohorticola y metodo fungicida.
DE4441408A1 (de) 1994-11-10 1996-05-15 Inst Genbiologische Forschung DNA-Sequenzen aus Solanum tuberosum kodierend Enzyme, die an der Stärkesynthese beteiligt sind, Plasmide, Bakterien, Pflanzenzellen und transgene Pflanzen enhaltend diese Sequenzen
DE19528046A1 (de) 1994-11-21 1996-05-23 Bayer Ag Triazolyl-Derivate
US5486621A (en) 1994-12-15 1996-01-23 Monsanto Company Fungicides for the control of take-all disease of plants
DE4447387A1 (de) 1994-12-22 1996-06-27 Inst Genbiologische Forschung Debranching-Enzyme aus Pflanzen und DNA-Sequenzen kodierend diese Enzyme
US5578725A (en) 1995-01-30 1996-11-26 Regents Of The University Of Minnesota Delta opioid receptor antagonists
DE19509695A1 (de) 1995-03-08 1996-09-12 Inst Genbiologische Forschung Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke
US5747518A (en) 1995-04-11 1998-05-05 Mitsui Toatsu Chemicals, Inc. Substituted thiophene derivative and agricultural and horticultural fungicide containing the same as active ingredient
CA2218526C (en) 1995-04-20 2012-06-12 American Cyanamid Company Structure-based designed herbicide resistant products
US5853973A (en) 1995-04-20 1998-12-29 American Cyanamid Company Structure based designed herbicide resistant products
WO1996034968A2 (en) 1995-05-05 1996-11-07 National Starch And Chemical Investment Holding Corporation Improvements in or relating to plant starch composition
FR2734842B1 (fr) 1995-06-02 1998-02-27 Rhone Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
US6284479B1 (en) 1995-06-07 2001-09-04 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
US5712107A (en) 1995-06-07 1998-01-27 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
GB9513881D0 (en) 1995-07-07 1995-09-06 Zeneca Ltd Improved plants
FR2736926B1 (fr) * 1995-07-19 1997-08-22 Rhone Poulenc Agrochimie 5-enol pyruvylshikimate-3-phosphate synthase mutee, gene codant pour cette proteine et plantes transformees contenant ce gene
EP0844998B1 (de) 1995-08-10 2003-04-23 Bayer CropScience AG Halogenbenzimidazole und ihre verwendung als mikrobizide
DE19531813A1 (de) 1995-08-30 1997-03-06 Basf Ag Bisphenylamide
ATE332382T1 (de) * 1995-09-19 2006-07-15 Bayer Bioscience Gmbh Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
DE19539324A1 (de) 1995-10-23 1997-04-24 Basf Ag Phenylessigsäurederivate, Verfahren und Zwischenprodukte zu ihrer Herstellung und sie enthaltende Mittel
GB9524938D0 (en) 1995-12-06 1996-02-07 Zeneca Ltd Modification of starch synthesis in plants
DE19601365A1 (de) 1996-01-16 1997-07-17 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle aus Pflanzen codierend Enzyme, die an der Stärkesynthese beteiligt sind
DE19602095A1 (de) 1996-01-22 1997-07-24 Bayer Ag Halogenpyrimidine
DE19608918A1 (de) 1996-03-07 1997-09-11 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle, die neue Debranching-Enzyme aus Mais codieren
US5773704A (en) 1996-04-29 1998-06-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
DE19618125A1 (de) 1996-05-06 1997-11-13 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle, die neue Debranching-Enzyme aus Kartoffel codieren
DE19619918A1 (de) 1996-05-17 1997-11-20 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle codierend lösliche Stärkesynthasen aus Mais
EP1681352B1 (de) 1996-05-29 2010-09-01 Bayer CropScience AG Nukleinsäuren, die für Enzyme aus Weizen kodieren, welche an der Stärkesynthese beteiligt sind
EP0904452A1 (de) 1996-06-12 1999-03-31 Pioneer Hi-Bred International, Inc. Ersatzmaterial für modifizierte stärke in der papierherstellung
JP2000512349A (ja) 1996-06-12 2000-09-19 パイオニア ハイ―ブレッド インターナショナル,インコーポレイテッド 製紙における改変澱粉の代用品
WO1997047807A1 (en) 1996-06-12 1997-12-18 Pioneer Hi-Bred International, Inc. Substitutes for modified starch in paper manufacture
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
AUPO069996A0 (en) 1996-06-27 1996-07-18 Australian National University, The Manipulation of plant cellulose
US5850026A (en) 1996-07-03 1998-12-15 Cargill, Incorporated Canola oil having increased oleic acid and decreased linolenic acid content
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
GB9623095D0 (en) 1996-11-05 1997-01-08 Nat Starch Chem Invest Improvements in or relating to starch content of plants
DE19646407A1 (de) * 1996-11-11 1998-05-14 Bayer Ag Halogenpyrimidine
US6232529B1 (en) 1996-11-20 2001-05-15 Pioneer Hi-Bred International, Inc. Methods of producing high-oil seed by modification of starch levels
WO1998023155A1 (en) 1996-11-26 1998-06-04 E.I. Du Pont De Nemours And Company Arthropodicidal and fungicidal cyclic amides
DE19653176A1 (de) 1996-12-19 1998-06-25 Planttec Biotechnologie Gmbh Neue Nucleinsäuremoleküle aus Mais und ihre Verwendung zur Herstellung einer modifizierten Stärke
CA2193938A1 (en) 1996-12-24 1998-06-24 David G. Charne Oilseed brassica containing an improved fertility restorer gene for ogura cytoplasmic male sterility
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
EP0860438B1 (de) 1997-02-21 2003-01-08 Shenyang Research Institute of Chemical Industry Fluorine enthaltende Diphenylacrylamid Microbizide
DE19708774A1 (de) 1997-03-04 1998-09-17 Max Planck Gesellschaft Nucleinsäuremoleküle codierend Enzyme die Fructosylpolymeraseaktivität besitzen
DE19709775A1 (de) 1997-03-10 1998-09-17 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle codierend Stärkephosphorylase aus Mais
ES2172864T3 (es) 1997-08-20 2002-10-01 Basf Ag 2-metoxibenzofenonas fungicidas.
GB9718863D0 (en) 1997-09-06 1997-11-12 Nat Starch Chem Invest Improvements in or relating to stability of plant starches
GB9719411D0 (en) 1997-09-12 1997-11-12 Ciba Geigy Ag New Pesticides
DE19749122A1 (de) 1997-11-06 1999-06-10 Max Planck Gesellschaft Nucleinsäuremoleküle codierend Enzyme, die Fructosyltransferaseaktivität besitzen
US6245968B1 (en) * 1997-11-07 2001-06-12 Aventis Cropscience S.A. Mutated hydroxyphenylpyruvate dioxygenase, DNA sequence and isolation of plants which contain such a gene and which are tolerant to herbicides
FR2770854B1 (fr) 1997-11-07 2001-11-30 Rhone Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un tel gene, tolerantes aux herbicides
DE19750012A1 (de) 1997-11-12 1999-05-20 Bayer Ag Isothiazolcarbonsäureamide
FR2772789B1 (fr) 1997-12-24 2000-11-24 Rhone Poulenc Agrochimie Procede de preparation enzymatique d'homogentisate
TW575562B (en) 1998-02-19 2004-02-11 Agrevo Uk Ltd Fungicides
BR9908858A (pt) 1998-04-09 2000-12-19 Du Pont Fragmento de ácido nucléico isolado, gene quimérico, célula hospedeira transformada, polipeptìdio, método de alteração do nìvel de expressão de uma proteìna, método de obtenção de um fragmento de ácido nucléico e produto.
JP4209995B2 (ja) * 1998-04-27 2009-01-14 クミアイ化学工業株式会社 3−アリールフェニルスルフィド誘導体及び殺虫、殺ダニ剤
EP1076053B1 (de) * 1998-04-27 2006-11-29 Kumiai Chemical Industry Co., Ltd. 3-arylphenylsulfid-derivate und insektizide und mitizide
DE19820607A1 (de) 1998-05-08 1999-11-11 Hoechst Schering Agrevo Gmbh Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
DE19820608A1 (de) 1998-05-08 1999-11-11 Hoechst Schering Agrevo Gmbh Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
EP1078088B1 (de) 1998-05-13 2006-07-26 Bayer BioScience GmbH Transgene pflanzen mit veränderter aktivität eines plastidären adp/atp - translokators
DE19821614A1 (de) 1998-05-14 1999-11-18 Hoechst Schering Agrevo Gmbh Sulfonylharnstoff-tolerante Zuckerrübenmutanten
US6635756B1 (en) 1998-06-15 2003-10-21 National Starch And Chemical Investment Holding Corporation Starch obtainable from modified plants
US6693185B2 (en) 1998-07-17 2004-02-17 Bayer Bioscience N.V. Methods and means to modulate programmed cell death in eukaryotic cells
DE19836098A1 (de) 1998-07-31 2000-02-03 Hoechst Schering Agrevo Gmbh Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke
DE19836099A1 (de) 1998-07-31 2000-02-03 Hoechst Schering Agrevo Gmbh Nukleinsäuremoleküle kodierend für eine ß-Amylase, Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke
CA2341078A1 (en) 1998-08-25 2000-03-02 Pioneer Hi-Bred International, Inc. Plant glutamine: fructose-6-phosphate amidotransferase nucleic acids
CA2342124A1 (en) 1998-09-02 2000-03-16 Planttec Biotechnologie Gmbh Nucleic acid molecules encoding an amylosucrase
US6056554A (en) 1998-09-09 2000-05-02 Samole; Sidney Apparatus and method for finding and identifying nighttime sky objects
US5986135A (en) 1998-09-25 1999-11-16 American Cyanamid Company Fungicidal trifluoromethylalkylamino-triazolopyrimidines
CZ20011125A3 (cs) * 1998-10-09 2001-10-17 Planttec Biotechnologie Gmbh Forschung & Entwicklung Molekuly nukleových kyselin, které kódují rozvětvovací enzym z bakterie rodu Neisseria, a způsob výroby alfa-1,6- rozvětvených alfa-1,4 glukanů
DE19924342A1 (de) * 1999-05-27 2000-11-30 Planttec Biotechnologie Gmbh Genetisch modifizierte Pflanzenzellen und Pflanzen mit erhöhter Aktivität eines Amylosucraseproteins und eines Verzweigungsenzyms
AU773808B2 (en) 1998-11-09 2004-06-10 Bayer Cropscience Aktiengesellschaft Nucleic acid molecules from rice and their use for the production of modified starch
US6503904B2 (en) 1998-11-16 2003-01-07 Syngenta Crop Protection, Inc. Pesticidal composition for seed treatment
IT1303800B1 (it) 1998-11-30 2001-02-23 Isagro Ricerca Srl Composti dipeptidici aventi elevata attivita' fungicida e loroutilizzo agronomico.
US6531648B1 (en) 1998-12-17 2003-03-11 Syngenta Participations Ag Grain processing method and transgenic plants useful therein
DE19905069A1 (de) 1999-02-08 2000-08-10 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle codierend Alternansucrase
US6323392B1 (en) 1999-03-01 2001-11-27 Pioneer Hi-Bred International, Inc. Formation of brassica napus F1 hybrid seeds which exhibit a highly elevated oleic acid content and a reduced linolenic acid content in the endogenously formed oil of the seeds
JP3864298B2 (ja) 1999-03-11 2006-12-27 大塚化学ホールディングス株式会社 シアノメチレン化合物及び農園芸用殺菌剤
BR0010169A (pt) 1999-04-29 2002-02-05 Syngenta Ltd Polinucleotìdeo isolado, vetor, material de planta, plantas completas férteis, morfologicamente normais, plantas de milho, trigo e arroz, métodos para controlar seletivamente ervas daninhas no campo, para produzir plantas que são substancialmente tolerantes ou substancialmente resistentes a glifosato, para selecionar material biológico e para regenerar uma planta transformada fértil para conter dna estranho, e, uso do polinucleotìdeo
CZ20013856A3 (cs) 1999-04-29 2002-04-17 Syngenta Ltd. Herbicidně rezistentní rostliny
DE19926771A1 (de) 1999-06-11 2000-12-14 Aventis Cropscience Gmbh Nukleinsäuremoleküle aus Weizen, transgene Pflanzenzellen und Pflanzen und deren Verwendung für die Herstellung modifizierter Stärke
UA73307C2 (uk) 1999-08-05 2005-07-15 Куміаі Кемікал Індастрі Ко., Лтд. Похідна карбамату і фунгіцид сільськогосподарського/садівницького призначення
DE19937348A1 (de) 1999-08-11 2001-02-22 Aventis Cropscience Gmbh Nukleinsäuremoleküle aus Pflanzen codierend Enzyme, die an der Stärkesynthese beteiligt sind
DE19937643A1 (de) 1999-08-12 2001-02-22 Aventis Cropscience Gmbh Transgene Zellen und Pflanzen mit veränderter Aktivität des GBSSI- und des BE-Proteins
US6423886B1 (en) 1999-09-02 2002-07-23 Pioneer Hi-Bred International, Inc. Starch synthase polynucleotides and their use in the production of new starches
US6472588B1 (en) 1999-09-10 2002-10-29 Texas Tech University Transgenic cotton plants with altered fiber characteristics transformed with a sucrose phosphate synthase nucleic acid
GB9921830D0 (en) 1999-09-15 1999-11-17 Nat Starch Chem Invest Plants having reduced activity in two or more starch-modifying enzymes
CA2317778A1 (en) * 1999-09-29 2001-03-29 Vivienne E. Harris Synergistic insecticidal formulations of pyridaben and strobilurins
AR025996A1 (es) 1999-10-07 2002-12-26 Valigen Us Inc Plantas no transgenicas resistentes a los herbicidas.
JP2001187786A (ja) 1999-10-19 2001-07-10 Nissan Chem Ind Ltd トリアゾール化合物およびその製造法
US6803501B2 (en) 2000-03-09 2004-10-12 Monsanto Technology, Llc Methods for making plants tolerant to glyphosate and compositions thereof using a DNA encoding an EPSPS enzyme from Eleusine indica
US6822146B2 (en) 2000-03-09 2004-11-23 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower line M7
JP4429464B2 (ja) 2000-03-27 2010-03-10 株式会社小松製作所 流体−機械動力変換機器の内圧検出装置及びそれを具えたトルクコンバータ
GB0011944D0 (en) 2000-05-17 2000-07-05 Novartis Ag Organic compounds
WO2002008197A1 (de) 2000-07-24 2002-01-31 Bayer Cropscience Ag Biphenylcarboxamide
AU8786201A (en) 2000-09-29 2002-04-08 Syngenta Ltd Herbicide resistant plants
US6660690B2 (en) 2000-10-06 2003-12-09 Monsanto Technology, L.L.C. Seed treatment with combinations of insecticides
US6734340B2 (en) 2000-10-23 2004-05-11 Bayer Cropscience Gmbh Monocotyledon plant cells and plants which synthesise modified starch
AU2004260931B9 (en) 2003-04-29 2012-01-19 E.I. Du Pont De Nemours And Company Novel glyphosate-N-acetyltransferase (GAT) genes
UA86918C2 (ru) 2000-10-30 2009-06-10 Вердиа, Инк. Изолированный или рекомбинантный полинуклеотид, кодирующий полипептид, имеющий активность глифосат-n-ацетилтрансферазы (gat)
FR2815969B1 (fr) 2000-10-30 2004-12-10 Aventis Cropscience Sa Plantes tolerantes aux herbicides par contournement de voie metabolique
CA2426033A1 (en) 2000-11-08 2002-05-16 Syngenta Participations Ag Pyrrolcarboxamides and pyrrolcarbothioamides and their agrochemical uses
AU2002221831A1 (en) 2000-11-13 2002-05-21 Basf Aktiengesellschaft 7-(r)-amino-triazolopyrimidines, the production thereof and use of the same for combating phytopathogenic fungi
BR0115782A (pt) 2000-12-08 2004-01-20 Commonwealh Scient And Ind Res Modificação de expressão de gene de sacarose sintase em tecido de planta e usos
US20020134012A1 (en) 2001-03-21 2002-09-26 Monsanto Technology, L.L.C. Method of controlling the release of agricultural active ingredients from treated plant seeds
US20040107461A1 (en) 2001-03-30 2004-06-03 Padma Commuri Glucan chain length domains
DE10124208A1 (de) 2001-05-18 2002-11-21 Bayer Ag Verwendung von Triazolopyrimidin-Derivaten als Mikrobizide
ATE394497T1 (de) 2001-06-12 2008-05-15 Bayer Cropscience Ag Transgene pflanzen die stärke mit hohem amylosegehalt herstellen
US6616054B1 (en) 2001-07-02 2003-09-09 Bellsouth Intellectual Property Corporation External power supply system, apparatus and method for smart card
IES20010651A2 (en) 2001-07-12 2003-01-22 Bmr Res & Dev Ltd A method and apparatus for applying electrical stimulation to a human or animal subject
DE10136065A1 (de) * 2001-07-25 2003-02-13 Bayer Cropscience Ag Pyrazolylcarboxanilide
FR2828196A1 (fr) 2001-08-03 2003-02-07 Aventis Cropscience Sa Derives de chromone a action fongicide, procede de preparation et application dans le domaine de l'agriculture
WO2003013226A2 (en) 2001-08-09 2003-02-20 Cibus Genetics Non-transgenic herbicide resistant plants
CN100509853C (zh) 2001-10-17 2009-07-08 巴斯福种植科学有限公司 淀粉
DE10204390A1 (de) 2002-02-04 2003-08-14 Bayer Cropscience Ag Disubstituierte Thiazolylcarboxanilide
DE10204391A1 (de) 2002-02-04 2003-08-14 Bayer Cropscience Ag Difluormethylthiazolylcarboxanilide
DE10215292A1 (de) * 2002-02-19 2003-08-28 Bayer Cropscience Ag Disubstitutierte Pyrazolylcarbocanilide
DE10208132A1 (de) 2002-02-26 2003-09-11 Planttec Biotechnologie Gmbh Verfahren zur Herstellung von Maispflanzen mit erhöhtem Blattstärkegehalt und deren Verwendung zur Herstellung von Maissilage
EP1829865A3 (de) 2002-03-05 2007-09-19 Syngeta Participations AG O-Cyclopropyl-carboxanilide und ihre Verwendung als Fungizide
AU2003210408B2 (en) * 2002-03-08 2008-05-29 Basf Aktiengesellschaft Fungicidal mixtures based on prothioconazole and containing an insecticide
WO2003092360A2 (en) 2002-04-30 2003-11-13 Verdia, Inc. Novel glyphosate-n-acetyltransferase (gat) genes
DE10229595A1 (de) * 2002-07-02 2004-01-15 Bayer Cropscience Ag Phenylbenzamide
RU2316548C2 (ru) 2002-08-12 2008-02-10 Байер Кропсайенс С.А. Новое производное 2-пиридилэтилбензамида, способ его получения, фунгицидная композиция, способ профилактического или лечебного подавления фитопатогенных грибков
FR2844142B1 (fr) 2002-09-11 2007-08-17 Bayer Cropscience Sa Plantes transformees a biosynthese de prenylquinones amelioree
GB0224316D0 (en) 2002-10-18 2002-11-27 Syngenta Participations Ag Chemical compounds
WO2004040012A2 (en) 2002-10-29 2004-05-13 Basf Plant Science Gmbh Compositions and methods for identifying plants having increased tolerance to imidazolinone herbicides
US20040110443A1 (en) 2002-12-05 2004-06-10 Pelham Matthew C. Abrasive webs and methods of making the same
ATE405653T1 (de) 2002-12-19 2008-09-15 Bayer Cropscience Ag Pflanzenzellen und pflanzen, die eine stärke mit erhöhter endviskosität synthetisieren
CA2517879A1 (en) 2003-03-07 2004-09-16 Basf Plant Science Gmbh Enhanced amylose production in plants
WO2004090140A2 (en) 2003-04-09 2004-10-21 Bayer Bioscience N.V. Methods and means for increasing the tolerance of plants to stress conditions
BRPI0410544A (pt) 2003-05-22 2006-06-20 Syngenta Participations Ag amido modificado usos, processos para a produção do mesmo
CA2527115C (en) 2003-05-28 2019-08-13 Basf Aktiengesellschaft Wheat plants having increased tolerance to imidazolinone herbicides
EP1493328A1 (de) 2003-07-04 2005-01-05 Institut National De La Recherche Agronomique Verfahren zur Herstellung von doppel null fertilität-restaurations Linien von B. napus mit guter agromomischer Qualität
DE602004030345D1 (de) 2003-07-31 2011-01-13 Toyo Boseki Hyaluronsäure produzierende pflanze
WO2005017157A1 (en) 2003-08-15 2005-02-24 Commonwealth Scientific And Industrial Research Organisation (Csiro) Methods and means for altering fiber characteristics in fiber-producing plants
WO2005020673A1 (en) 2003-08-29 2005-03-10 Instituto Nacional De Technologia Agropecuaria Rice plants having increased tolerance to imidazolinone herbicides
DE10341945A1 (de) * 2003-09-11 2005-04-21 Bayer Cropscience Ag Verwendung von fungiziden Mitteln zur Beizung von Saatgut
WO2005030941A1 (en) 2003-09-30 2005-04-07 Bayer Cropscience Gmbh Plants with increased activity of a class 3 branching enzyme
DE602004030613D1 (de) 2003-09-30 2011-01-27 Bayer Cropscience Ag Pflanzen mit reduzierter aktivität eines klasse-3-verzweigungsenzyms
DE10347090A1 (de) * 2003-10-10 2005-05-04 Bayer Cropscience Ag Synergistische fungizide Wirkstoffkombinationen
AR048024A1 (es) 2004-03-05 2006-03-22 Bayer Cropscience Gmbh Plantas con actividad aumentada de distintas enzimas fosforilantes del almidon
AR048026A1 (es) 2004-03-05 2006-03-22 Bayer Cropscience Gmbh Procedimientos para la identificacion de proteinas con actividad enzimatica fosforiladora de almidon
AR048025A1 (es) 2004-03-05 2006-03-22 Bayer Cropscience Gmbh Plantas con actividad aumentada de una enzima fosforilante del almidon
EP1725666B1 (de) 2004-03-05 2012-01-11 Bayer CropScience AG Pflanzen mit reduzierter aktivität des stärkephosphorylierenden enzyms phosphoglucan-wasser-dikinase
US7432082B2 (en) 2004-03-22 2008-10-07 Basf Ag Methods and compositions for analyzing AHASL genes
DE102004020840A1 (de) * 2004-04-27 2005-11-24 Bayer Cropscience Ag Verwendung von Alkylcarbonsäureamiden als Penetrationsförderer
AU2005262525A1 (en) 2004-06-16 2006-01-19 Basf Plant Science Gmbh Polynucleotides encoding mature AHASL proteins for creating imidazolinone-tolerant plants
DE102004029972A1 (de) * 2004-06-21 2006-01-05 Bayer Cropscience Ag Beizmittel zur Bekämpfung von phytopathogenen Pilzen
DE102004029763A1 (de) 2004-06-21 2006-01-05 Bayer Cropscience Gmbh Pflanzen, die Amylopektin-Stärke mit neuen Eigenschaften herstellen
TR200900517T2 (tr) 2004-07-30 2009-03-23 Basf Agrochemical Products B.V. Herbisitlere dayanıklı ayçiçeği bitkileri herbisitlere dayanıklı asetohidroksiasit sintaz geniş altünite proteinlerini kodla yan polinükleotidler ve kullanma metotları.
EP1776462A4 (de) 2004-08-04 2010-03-10 Basf Plant Science Gmbh Monokotyledon-ahass-sequenzen und verwendungsverfahren
PT1786908E (pt) 2004-08-18 2010-04-29 Bayer Cropscience Ag Plantas com um aumento da actividade da enzima de fosforilação do amido r3 nos plastídeos
CA2578187C (en) 2004-08-26 2015-08-04 Dhara Vegetable Oil And Foods Company Limited A novel cytoplasmic male sterility system for brassica species and its use for hybrid seed production in indian oilseed mustard brassica juncea
DE602005015473D1 (de) 2004-09-23 2009-08-27 Bayer Cropscience Ag Verfahren und mittel zur herstellung von hyaluronan
KR101310073B1 (ko) * 2004-10-20 2013-09-24 이하라케미칼 고교가부시키가이샤 3-트리아졸릴페닐설파이드 유도체 및 그것을유효성분으로서 함유하는 살충·살진드기·살선충제
AR051690A1 (es) 2004-12-01 2007-01-31 Basf Agrochemical Products Bv Mutacion implicada en el aumento de la tolerancia a los herbicidas imidazolinona en las plantas
EP1672075A1 (de) 2004-12-17 2006-06-21 Bayer CropScience GmbH Transformierte Pflanzen, die Dextransucrase exprimieren und eine veränderte Stärke synthetisieren
EP1679374A1 (de) 2005-01-10 2006-07-12 Bayer CropScience GmbH Transformierte Pflanzen, die Mutansucrase exprimieren und eine veränderte Stärke synthetisieren
JP2006304779A (ja) 2005-03-30 2006-11-09 Toyobo Co Ltd ヘキソサミン高生産植物
EP1707632A1 (de) 2005-04-01 2006-10-04 Bayer CropScience GmbH Phosphorylierte waxy-Kartoffelstärke
EP1710315A1 (de) 2005-04-08 2006-10-11 Bayer CropScience GmbH Hoch Phosphat Stärke
CN104170838B (zh) * 2005-06-09 2016-03-30 拜尔农作物科学股份公司 活性物质结合物
PT1893759E (pt) 2005-06-15 2009-10-29 Bayer Bioscience Nv Métodos para aumentar a resistência de plantas a condições hipóxicas
ES2461593T3 (es) 2005-06-24 2014-05-20 Bayer Cropscience Nv Métodos para alterar la reactividad de paredes de células vegetales
AR054174A1 (es) 2005-07-22 2007-06-06 Bayer Cropscience Gmbh Sobreexpresion de sintasa de almidon en vegetales
EA201000757A1 (ru) 2005-08-24 2010-12-30 Пайонир Хай-Бред Интернэшнл, Инк. Способы борьбы с сорными растениями на возделываемой посевной площади
CA2617803C (en) 2005-08-31 2012-05-29 Monsanto Technology Llc Nucleotide sequences encoding insecticidal proteins
AU2006298963A1 (en) 2005-10-05 2007-04-12 Bayer Cropscience Ag Improved methods and means for producings hyaluronan
EP1951878B1 (de) 2005-10-05 2015-02-25 Bayer Intellectual Property GmbH Pflanzen mit verstärkter hyaluronanproduktion
AU2006298962A1 (en) 2005-10-05 2007-04-12 Bayer Cropscience Ag Plants with an increased production of hyaluronan II
JP2007308485A (ja) * 2006-04-18 2007-11-29 Kumiai Chem Ind Co Ltd フェニルトリアゾール誘導体及びそれを有効成分として含有する殺虫・殺ダニ・殺線虫剤
BR122019020347B1 (pt) * 2007-02-06 2020-08-11 Basf Se Misturas, composição pesticida e métodos para controlar fungos nocivos fitopatogênicos, para proteger plantas do ataque ou infestação pelos insetos, acarídeos ou nematódeos e para proteger semente
EP2174547B1 (de) * 2007-08-10 2017-01-18 Kumiai Chemical Industry CO., LTD. Zusammensetzung für ein schädlingsbekämpfungsmittel und schädlingsbekämpfungsverfahren
EP2036438A1 (de) * 2007-09-12 2009-03-18 Bayer CropScience AG Nachernte-behandlung
US20120035165A1 (en) * 2008-09-03 2012-02-09 Bayer Cropscience Ag Use of fungicidal compound compositions for controlling certain rust fungi
EP2204094A1 (de) * 2008-12-29 2010-07-07 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
EP2269454A1 (de) * 2009-06-24 2011-01-05 Bayer CropScience AG Kombinationen fugizidwirksamer Hefe und Fungizide
EP2272345A1 (de) * 2009-07-07 2011-01-12 Bayer CropScience AG Verfahren für erhöhtes Wachstum von Setzlingen und/oder frühes Aufgehen von Saat
CN102472567B (zh) 2009-07-10 2014-06-04 松下电器产业株式会社 冰箱
EP2274982A1 (de) * 2009-07-16 2011-01-19 Bayer CropScience AG Verwendung von Phenyltriazolen zur Bekämpfung von Insekten und Spinnmilben durch Angiessen, Tröpfchen- oder Tauchapplikation oder durch Behandlung von Saatgut
ES2559012T3 (es) * 2009-08-20 2016-02-10 Bayer Intellectual Property Gmbh Derivados de 3-[1-(3-haloalquil)-triazolil]-fenil-sulfuro como acaricidas e insecticidas
KR20120060217A (ko) * 2009-08-20 2012-06-11 바이엘 크롭사이언스 아게 살비제 및 살충제로 사용하기 위한 3-트리아졸릴페닐-치환된 설파이드 유도체
WO2011051243A1 (en) * 2009-10-29 2011-05-05 Bayer Cropscience Ag Active compound combinations
WO2011080044A2 (en) * 2009-12-16 2011-07-07 Bayer Cropscience Ag Active compound combinations
WO2012004293A2 (de) * 2010-07-08 2012-01-12 Bayer Cropscience Ag Insektizide und fungizide wirkstoffkombinationen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011006603A2 *

Also Published As

Publication number Publication date
CN103548836A (zh) 2014-02-05
IN2012DN01345A (de) 2015-06-05
CN102510721A (zh) 2012-06-20
KR20120051015A (ko) 2012-05-21
WO2011006603A2 (de) 2011-01-20
CN104430378A (zh) 2015-03-25
JP5642786B2 (ja) 2014-12-17
CO6491032A2 (es) 2012-07-31
MX2012000566A (es) 2012-03-06
AU2010272872B2 (en) 2014-08-28
US20110166109A1 (en) 2011-07-07
AU2010272872A1 (en) 2012-02-02
CN102510721B (zh) 2014-11-19
BR112012001080A2 (pt) 2015-09-01
ZA201200309B (en) 2013-03-27
WO2011006603A3 (de) 2011-07-28
CL2012000077A1 (es) 2012-10-05
JP2012532904A (ja) 2012-12-20

Similar Documents

Publication Publication Date Title
AU2009342807B2 (en) Synergistic combinations of active ingredients
AU2010272872B2 (en) Synergistic active substance combinations containing phenyl triazoles
EP2205081B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
DE102007045920B4 (de) Synergistische Wirkstoffkombinationen
US8993480B2 (en) Active ingredient combinations with insecticidal properties
WO2010108505A1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
WO2010108508A2 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
DE102007045953B4 (de) Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045919B4 (de) Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
AU2013203789B2 (en) Active substance combinations with insecticidal properties
CN104255733A (zh) 具有协同作用的活性成分结合物
DE102007045957A1 (de) Wirkstoffkombinationen mit insektiziden und akarziden Eigenschaften

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130430

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151014