DE19619918A1 - Nucleinsäuremoleküle codierend lösliche Stärkesynthasen aus Mais - Google Patents

Nucleinsäuremoleküle codierend lösliche Stärkesynthasen aus Mais

Info

Publication number
DE19619918A1
DE19619918A1 DE19619918A DE19619918A DE19619918A1 DE 19619918 A1 DE19619918 A1 DE 19619918A1 DE 19619918 A DE19619918 A DE 19619918A DE 19619918 A DE19619918 A DE 19619918A DE 19619918 A1 DE19619918 A1 DE 19619918A1
Authority
DE
Germany
Prior art keywords
nucleic acid
starch
plant
acid molecules
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19619918A
Other languages
English (en)
Inventor
Jens Dr Kosmann
Claus Dr Frohberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Bioscience GmbH
Original Assignee
Planttec Biotechnologie GmbH Forschung and Entwicklung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Planttec Biotechnologie GmbH Forschung and Entwicklung filed Critical Planttec Biotechnologie GmbH Forschung and Entwicklung
Priority to DE19619918A priority Critical patent/DE19619918A1/de
Priority to CA002255538A priority patent/CA2255538A1/en
Priority to EP97923925A priority patent/EP0904389A1/de
Priority to AU29569/97A priority patent/AU725197C/en
Priority to JP09541510A priority patent/JP2000511049A/ja
Priority to KR1019980709492A priority patent/KR20000011160A/ko
Priority to PCT/EP1997/002527 priority patent/WO1997044472A1/de
Publication of DE19619918A1 publication Critical patent/DE19619918A1/de
Priority to US09/192,909 priority patent/US6307124B1/en
Priority to US09/931,297 priority patent/US6635804B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

Die vorliegende Erfindung betrifft Nucleinsäuremoleküle, die eine Form der löslichen Stärkesynthase aus Mais codieren.
Weiterhin betrifft diese Erfindung Vektoren, Bakterien, sowie mit den beschriebenen Nucleinsäuremolekülen transformierte Pflanzenzellen und aus diesen regenerierbare Pflanzen.
Ferner werden Verfahren zur Herstellung transgener Pflanzen beschrieben, die aufgrund der Einführung von DNA-Molekülen, die eine lösliche Stärkesynthase aus Mais codieren, eine in ihren Eigenschaften veränderte Stärke synthetisieren.
Im Hinblick auf die zunehmende Bedeutung, die pflanzlichen In­ haltsstoffen als erneuerbaren Rohstoffquellen in letzter Zeit beigemessen wird, ist es eine der Aufgaben der biotechnologi­ schen Forschung, sich um eine Anpassung dieser pflanzlichen Rohstoffe an die Anforderungen der verarbeitenden Industrie zu bemühen. Um eine Anwendung von nachwachsenden Rohstoffen in möglichst vielen Einsatzgebieten zu ermöglichen, ist es dar­ über hinaus erforderlich, eine große Stoffvielfalt zu errei­ chen.
Neben Ölen, Fetten und Proteinen stellen Polysaccharide die wesentlichen nachwachsenden Rohstoffe aus Pflanzen dar. Eine zentrale Stellung bei den Polysacchariden nimmt neben Cellu­ lose die Stärke ein, die einer der wichtigsten Speicherstoffe in höheren Pflanzen ist. Hierbei ist Mais eine der interessan­ testen Pflanzen, da sie die weltweit für die Stärkeproduktion wichtigste Kulturpflanze ist.
Das Polysaccharid Stärke ist ein Polymer aus chemisch einheit­ lichen Grundbausteinen, den Glucosemolekülen. Es handelt sich dabei jedoch um ein sehr komplexes Gemisch aus unterschiedli­ chen Molekülformen, die sich hinsichtlich ihres Polymerisa­ tionsgrades und des Auftretens von Verzweigungen der Glucose­ ketten unterscheiden. Daher stellt Stärke keinen einheitlichen Rohstoff dar. Man unterscheidet insbesondere die Amylose-Stärke, ein im wesentlichen unverzweigtes Polymer aus α-1,4- glycosidisch verknüpften Glucosemolekülen, von der Amylopek­ tin-Stärke, die ihrerseits ein komplexes Gemisch aus unter­ schiedlich verzweigten Glucoseketten darstellt. Die Verzwei­ gungen kommen dabei durch das Auftreten von zusätzlichen α-1,6-glycosidischen Verknüpfungen zustande. In typischen für die Stärkeproduktion verwendeten Pflanzen, wie z. B. Mais oder Kartoffel, besteht die synthetisierte Stärke zu ca. 25% aus Amylose-Stärke und zu ca. 75% aus Amylopektin-Stärke.
Um eine möglichst breite Anwendung von Stärke zu ermöglichen, erscheint es wünschenswert, Pflanzen zur Verfügung zu stellen, die in der Lage sind, modifizierte Stärke zu synthetisieren, die sich für verschiedene Verwendungszwecke besonders eignet. Eine Möglichkeit, derartige Pflanzen bereitzustellen, besteht - neben züchterischen Maßnahmen - in der gezielten genetischen Veränderung des Stärkemetabolismus stärkeproduzierender Pflan­ zen durch gentechnologische Methoden. Voraussetzung hierfür ist jedoch die Identifizierung und Charakterisierung der an der Stärkesynthese und/oder -modifikation beteiligten Enzyme sowie die Isolierung der entsprechenden, diese Enzyme codie­ rende DNA-Moleküle.
Die biochemischen Synthesewege, die zum Aufbau von Stärke füh­ ren, sind im wesentlichen bekannt. Die Stärkesynthese in pflanzlichen Zellen findet in den Plastiden statt. In photo­ synthetisch aktiven Geweben sind dies die Chloroplasten, in photosynthetisch inaktiven, stärkespeichernden Geweben die Amyloplasten.
Die wichtigsten an der Stärkesynthese beteiligten Enzyme sind die Stärkesynthasen sowie die Verzweigungsenzyme. Bei den Stärkesynthasen sind verschiedene Isoformen beschrieben, die alle eine Polymerisierungsreaktion durch Übertragung eines Glucosylrestes von ADP-Glucose auf α-1,4-Glucane katalysieren. Verzweigungsenzyme katalysieren die Einführung von α-1,6-Ver­ zweigungen in lineare α-1,4-Glucane.
Stärkesynthasen können in zwei Klassen eingeteilt werden: die Stärkekorn-gebundenen Stärkesynthasen ("granule-bound starch synthases"; GBSS) und die löslichen Stärkesynthasen ("soluble starch synthases"; SSS). Diese Unterscheidung ist nicht in je­ dem Fall eindeutig zu treffen, da einige der Stärkesynthasen sowohl stärkekorngebunden als auch in löslicher Form vorliegen (Denyer et al., Plant J. 4 (1993), 191-198; Mu et al., Plant J. 6 (1994), 151-159). Für verschiedene Pflanzenspezies werden innerhalb dieser Klassen wiederum verschiedene Isoformen be­ schrieben, die sich hinsichtlich ihrer Abhängigkeit von Star­ termolekülen unterscheiden (sogenannte "primer dependent" (Typ II) und "primer independent" (Typ I) starch synthases).
Lediglich für die Isoform GBSS I gelang es bisher, die genaue Funktion bei der Stärkesynthese zu ermitteln. Pflanzen, in de­ nen diese Enzymaktivität stark oder vollkommen reduziert ist, synthetisieren eine amylosefreie (sogenannte "waxy") Stärke (Shure et al., Cell 35 (1983), 225-233; Visser et al., Mol. Gen. Genet. 225 (1991), 289-296; WO 92/11376), so daß diesem Enzym eine entscheidende Rolle bei der Synthese der Amylose- Stärke zugesprochen wird. Dieses Phänomen wird ebenfalls in Zellen der Grünalge Chlamydomonas reinhardtii beobachtet (Delrue et al., J. Bacteriol. 174 (1992), 3612-3620). Bei Chlamydomonas konnte darüber hinaus gezeigt werden, daß GBSS I nicht nur an der Synthese der Amylose beteiligt ist, sondern auch einen Einfluß auf die Amylopektinsynthese besitzt. In Mu­ tanten, die keine GBSS I-Aktivität aufweisen, fehlt eine be­ stimmte Fraktion des normalerweise synthetisierten Amylopek­ tins, die längerkettige Glucane aufweist.
Die Funktionen der anderen Isoformen der Stärkekorn-gebundenen Stärkesynthasen, insbesondere der GBSS II, und der löslichen Stärkesynthasen sind bisher unklar. Es wird angenommen, daß die löslichen Stärkesynthasen zusammen mit Verzweigungsenzymen an der Synthese des Amylopektins beteiligt sind (siehe z. B. Ponstein et al., Plant Physiol. 92 (1990), 234-241) und daß sie eine wichtige Funktion bei der Regulation der Stärkesyn­ theserate spielen.
Bei Mais wurden zwei Isoformen der Stärkekorn-gebundenen, so­ wie zwei bzw. drei Isoformen der löslichen Stärkesynthasen identifiziert (Hawker et al., Arch. Biochem. Biophys. 160 (1974), 530-551; Pollock und Preiss, Arch. Biochem. Biophys. 204 (1980), 578-588; MacDonald und Preiss, Plant Physiol. 78 (1985), 849-852; Mu et al., Plant J. 6 (1994) , 151-159).
Eine GBSS I aus Mais codierende cDNA sowie eine genomische DNA sind bereits beschrieben (Shure et al., Cell 35 (1983), 225-233; Kloesgen et al., Mol. Gen. Genet. 203 (1986), 237-244). Weiterhin ist ein sogenannter "Expressed Sequence Tag (EST) beschrieben worden (Shen et al., 1994, GenBank Nr.: T14684), dessen abgeleitete Aminosäuresequenz eine starke Ähnlichkeit zur abgeleiteten Aminosäuresequenz der GBSS II aus Erbse (Dry et al., Plant J. 2 (1992), 193-202) und Kartoffel (Edwards et al., Plant J. 8 (1995), 283-294) aufweist. Nucleinsäuresequen­ zen, die weitere Stärkesynthase-Isoformen aus Mais codieren, lagen jedoch bisher noch nicht vor. cDNA-Sequenzen, die für andere Stärkesynthasen als für die GBSS I codieren, wurden bisher lediglich für Erbse (Dry et al., Plant J. 2 (1992), 193-202), Reis (Baba et al., Plant Physiol. 103 (1993), 565-573) und Kartoffel (Edwards et al., Plant J. 8 (1995), 283-294) beschrieben.
Außer beim Mais wurden lösliche Stärkesynthasen auch in einer Reihe weiterer Pflanzenarten identifiziert. Lösliche Stärke­ synthasen sind beispielsweise bis zur Homogenität aus Erbse (Denyer und Smith, Planta 186 (1992), 609-617) und Kartoffel (Edwards et al., Plant J. 8 (1995), 283-294) isoliert worden. In diesen Fällen stellte sich heraus, daß die als SSS II iden­ tifizierte Isoform der löslichen Stärkesynthase identisch ist mit der Stärkekorn-gebundenen Stärkesynthase GBSS II (Denyer et al., Plant J. 4 (1993), 191-198; Edwards et al., Plant J. 8 (1995), 283-294). Für einige weitere Pflanzenspezies wurde das Vorhandensein mehrerer SSS-Isoformen mit Hilfe chromatographi­ scher Methoden beschrieben, beispielsweise bei Gerste (Tyynelä und Schulman, Physiologia Plantarum 89 (1993) 835-841; Kreis, Planta 148 (1980), 412-416) und Weizen (Rÿven, Plant Physiol. 81 (1986), 448-453). DNA-Sequenzen, die diese Proteine codie­ ren, wurden jedoch bisher nicht beschrieben.
Um weitere Möglichkeiten bereitzustellen, beliebige stärke­ speichernde Pflanzen dahingehend zu verändern, daß sie eine mo­ difizierte Stärke synthetisieren, ist es erforderlich, jeweils DNA-Sequenzen zu identifizieren, die weitere Isoformen der Stärkesynthasen codieren.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, Nucleinsäuremoleküle zur Verfügung zu stellen, die an der Stärkebiosynthese beteiligte Enzyme codieren und mit deren Hilfe es möglich ist, gentechnisch veränderte Pflanzen herzu­ stellen, die eine erhöhte oder erniedrigte Aktivität dieser Enzyme aufweisen, wodurch es zu einer Veränderung der chemi­ schen und/oder physikalischen Eigenschaften der in diesen Pflanzen synthetisierten Stärke kommt.
Diese Aufgabe wird durch die Bereitstellung der in den Patent­ ansprüchen bezeichneten Ausführungsformen gelöst.
Die vorliegende Erfindung betrifft daher Nucleinsäuremoleküle, die Proteine mit der biologischen Aktivität einer löslichen Stärkesynthase des Typs I aus Mais codieren, wobei derartige Moleküle vorzugsweise Proteine codieren, die die unter Seq ID No. 2 angegebenen Aminosäuresequenz umfassen. Insbesondere betrifft die Erfindung Nucleinsäuremoleküle, die die unter Seq ID No. 1 angegebene Nucleotidsequenz oder einen Teil davon enthalten, bevorzugt Moleküle, die die in Seq ID No. 1 angege­ bene codierende Region umfassen bzw. entsprechende Ribo­ nucleotidsequenzen.
Die Erfindung betrifft auch Nucleinsäuremoleküle, die eine Se­ quenz aufweisen, die zu der gesamten oder einem Teil der unter Seq ID No. 1 dargestellten Sequenz komplementär ist.
Ferner betrifft die vorliegende Erfindung Nucleinsäuremole­ küle, die eine lösliche Stärkesynthase aus Mais codieren und deren einer Strang mit einem der oben beschriebenen Moleküle hybridisiert.
Gegenstand der Erfindung sind ebenfalls Nucleinsäuremoleküle, die eine lösliche Stärkesynthase des Typs I aus Mais codieren und deren Sequenz aufgrund der Degeneration des genetischen Codes von den Nucleotidsequenzen der oben beschriebenen Mole­ küle abweicht.
Bei den erfindungsgemäßen Nucleinsäuremolekülen kann es sich sowohl um DNA- als auch RNA-Moleküle handeln. Entsprechende DNA-Moleküle sind beispielsweise genomische oder cDNA-Mole­ küle.
Der Begriff "Hybridisierung" bedeutet im Rahmen dieser Erfin­ dung eine Hybridisierung unter konventionellen Hybridisie­ rungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrock et al., Molecular Cloning, A Laboratory Manual, 2. Aufl. (1989) Cold Spring Harbor Labo­ ratory Press, Cold Spring Harbor, NY) beschrieben sind. Nucleinsäuremoleküle, die mit den erfindungsgemäßen Nuclein­ säuremolekülen hybridisieren, können prinzipiell aus jeder be­ liebigen Maispflanze stammen, die derartige Moleküle besitzt.
Nucleinsäuremoleküle, die mit den erfindungsgemäßen Molekülen hybridisieren, können z. B. aus genomischen oder aus cDNA-Bi­ bliotheken von Maispflanzen oder Maispflanzengewebe isoliert werden. Alternativ können sie durch gentechnische Methoden oder durch chemische Synthese hergestellt sein.
Die Identifizierung und Isolierung derartiger Nucleinsäuremo­ leküle kann dabei unter Verwendung der erfindungsgemäßen Mole­ küle oder Teile dieser Moleküle bzw. der reversen Komplemente dieser Moleküle erfolgen, z. B. mittels Hybridisierung nach Standardverfahren (siehe z. B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor La­ boratory Press, Cold Spring Harbor, NY).
Als Hybridisierungsprobe können z . B. Nucleinsäuremoleküle ver­ wendet werden, die exakt die oder im wesentlichen die unter Seq ID No. 1 angegebene Nucleotidsequenz oder Teile dieser Se­ quenz aufweisen. Bei den als Hybridisierungsprobe verwendeten Fragmenten kann es sich auch um synthetische Fragmente han­ deln, die mit Hilfe der gängigen Synthesetechniken hergestellt wurden und deren Sequenz im wesentlichen mit der eines erfin­ dungsgemäßen Nucleinsäuremoleküls übereinstimmt. Hat man Gene identifiziert und isoliert, die mit den erfindungsgemäßen Nucleinsäuresequenzen hybridisieren, ist eine Bestimmung der Sequenz und eine Analyse der Eigenschaften der von dieser Se­ quenz codierten Proteine erforderlich.
Die mit den erfindungsgemäßen Nucleinsäuremolekülen hybridi­ sierenden Moleküle umfassen auch Fragmente, Derivate und alle­ lische Varianten der oben beschriebenen Nucleinsäuremoleküle, die eine erfindungsgemäße lösliche Stärkesynthase aus Mais co­ dieren. Unter Fragmenten werden dabei Teile der Nucleinsäure­ moleküle verstanden, die lang genug sind, um eines der be­ schriebenen Proteine zu codieren. Der Ausdruck Derivat bedeu­ tet in diesem Zusammenhang, daß die Sequenzen dieser Moleküle sich von den Sequenzen der oben beschriebenen Nucleinsäuremo­ leküle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Homologie zu diesen Sequenzen aufweisen. Homologie bedeutet dabei eine Sequenzidentität von mindestens 40%, insbesondere eine Identität von mindestens 60%, vor­ zugsweise über 80% und besonders bevorzugt über 90%. Die Ab­ weichungen zu den oben beschriebenen Nucleinsäuremolekülen können dabei durch Deletion, Substitution, Insertion oder Re­ kombination entstanden sein.
Homologie bedeutet ferner, daß funktionelle und/oder struktu­ relle Äquivalenz zwischen den betreffenden Nucleinsäuremolekü­ len oder den durch sie codierten Proteinen, besteht. Bei den Nucleinsäuremolekülen, die homolog zu den oben beschriebenen Molekülen sind und Derivate dieser Moleküle darstellen, han­ delt es sich in der Regel um Variationen dieser Moleküle, die Modifikationen darstellen, die dieselbe biologische Funktion ausüben. Es kann sich dabei sowohl um natürlicherweise auftre­ tende Variationen handeln, beispielsweise um Sequenzen aus an­ deren Maissorten, oder um Mutationen, wobei diese Mutationen auf natürliche Weise aufgetreten sein können oder durch ge­ zielte Mutagenese eingeführt wurden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln. Bei den allelischen Varianten kann es sich sowohl um natürlich auftretende Varianten handeln, als auch um synthetisch herge­ stellte oder durch rekombinante DNA-Techniken erzeugte Varian­ ten.
Die von den verschiedenen Varianten der erfindungsgemäßen Nucleinsäuremoleküle codierten Proteine weisen bestimmte ge­ meinsame Charakteristika auf. Dazu können z. B. Enzymaktivität, Molekulargewicht, immunologische Reaktivität, Konformation etc. gehören, sowie physikalische Eigenschaften wie z. B. das Laufverhalten in Gelelektrophoresen, chromatographisches Ver­ halten, Sedimentationskoeffizienten, Löslichkeit, spektrosko­ pische Eigenschaften, Stabilität; pH-Optimum, Temperatur-Opti­ mum etc.
Wichtige Charakteristika einer Stärkesynthase sind: i) ihre Lokalisation im Stroma der Plastiden pflanzlicher Zellen; ii) ihre Fähigkeit zur Synthese linearer α-1,4-verknüpfter Poly­ glucane unter Verwendung von ADP-Glucose als Substrat. Diese Aktivität kann wie in Denyer und Smith (Planta 186 (1992), 606-617) oder wie in den Beispielen beschrieben bestimmt wer­ den.
Bei den durch die erfindungsgemäßen Nucleinsäuremolekülen co­ dierten Proteine handelt es sich um eine bisher nicht identi­ fizierte und charakterisierte Form einer löslichen Stärke­ synthase aus Mais, die dem Typ I ("primer independent") zuge­ ordnet werden kann. Derartige Stärkesynthasen bzw. Nucleinsäu­ remoleküle, die derartige Proteine codieren, sind bisher aus Mais nicht beschrieben. Das codierte Protein weist eine ge­ wisse Homologie zu einer löslichen Stärkesynthase aus Reis auf (Baba et al., Plant Physiol. 103 (1993), 565-573).
Gegenstand der Erfindung sind auch Oligonucleotide, die spezi­ fisch mit einem erfindungsgemäßen Nucleinsäuremolekül hybridi­ sieren. Derartige Oligonucleotide haben vorzugsweise eine Länge von mindestens 10, insbesondere von mindestens 15 und besonders bevorzugt von mindestens 50 Nucleotiden. Sie sind dadurch gekennzeichnet, daß sie spezifisch mit erfindungsge­ mäßen Nucleinsäuremolekülen hybridisieren, d. h. nicht oder nur in sehr geringem Ausmaß mit Nucleinsäuresequenzen, die andere Proteine, insbesondere andere Stärkesynthasen codieren. Die erfindungsgemäßen Oligonucleotide können beispielsweise als Primer für eine PCR-Reaktion verwendet werden. Ebenso können sie Bestandteile von antisense-Konstrukten sein oder von DNA-Molekülen, die für geeignete Ribozyme codieren.
Ferner betrifft die Erfindung Vektoren, insbesondere Plasmide, Cosmide, Viren, Bacteriophagen und andere in der Gentechnik gängige Vektoren, die die oben beschriebenen erfindungsgemäßen Nucleinsäuremoleküle enthalten.
In einer bevorzugten Ausführungsform sind die in den Vektoren enthaltenen Nucleinsäuremoleküle verknüpft mit regulatorischen Elementen, die die Transkription und Synthese einer transla­ tierbaren RNA in prokaryontischen oder eukaryontischen Zellen gewährleisten.
Die Expression der erfindungsgemäßen Nucleinsäuremoleküle in prokaryontischen Zellen, beispielsweise in Escherichia coli, ist insofern interessant, als daß auf diese Weise eine ge­ nauere Charakterisierung der enzymatischen Aktivitäten der En­ zyme, für die diese Moleküle codieren, ermöglicht wird. Es ist insbesondere möglich, das Produkt, das von den entsprechenden Enzymen in Abwesenheit anderer, in der pflanzlichen Zelle an der Stärkesynthese beteiligter Enzyme synthetisiert wird, zu charakterisieren. Dies läßt Rückschlüsse zu auf die Funktion, die das entsprechende Protein bei der Stärkesynthese in der Pflanzenzelle ausübt.
Darüber hinaus ist es möglich, mittels gängiger molekularbio­ logischer Techniken (siehe z. B. Sambrook et al., 1989, Molecu­ lar Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) verschiedenartige Mutationen in die erfindungsgemäßen Nucleinsäuremoleküle ein­ zuführen, wodurch es zur Synthese von Proteinen mit eventuell veränderten biologischen Eigenschaften kommt. Hierbei ist zum einen die Erzeugung von Deletionsmutanten möglich, bei denen durch fortschreitende Deletionen vom 5′- oder vom 3′- Ende der codierenden DNA-Sequenz Nucleinsäuremoleküle erzeugt werden, die zur Synthese entsprechend verkürzter Proteine führen. Durch derartige Deletionen am 5′-Ende der Nucleotidsequenz ist es beispielsweise möglich, Aminosäuresequenzen zu identifizie­ ren, die für die Translokation des Enzyms in die Plastiden verantwortlich sind (Transitpeptide). Dies erlaubt es, gezielt Enzyme herzustellen, die durch Entfernen der entsprechenden Sequenzen nicht mehr in den Plastiden, sondern im Cytosol lo­ kalisiert sind, oder aufgrund der Addition von anderen Si­ gnalsequenzen in anderen Kompartimenten lokalisiert sind.
Andererseits ist auch die Einführung von Punktmutationen denk­ bar an Positionen, bei denen eine Veränderung der Aminosäure­ sequenz einen Einfluß beispielweise auf die Enzymaktivität oder die Regulierung des Enzyms hat. Auf diese Weise können z. B. Mutanten hergestellt werden, die einen veränderten Km- Wert besitzen oder nicht mehr den normalerweise in der Zelle vorliegenden Regulationsmechanismen über allosterische Regula­ tion oder kovalente Modifizierung unterliegen.
Des weiteren können Mutanten hergestellt werden, die eine ver­ änderte Substrat- oder Produktspezifität aufweisen, wie z. B. Mutanten, die als Substrat ADP-Glucose-6-Phosphat anstatt ADP-Glucose verwenden. Weiterhin können Mutanten hergestellt wer­ den, die ein verändertes Aktivitäts-Temperatur-Profil aufwei­ sen.
Für die gentechnische Manipulation in prokaryontischen Zellen können die erfindungsgemäßen Nucleinsäuremoleküle oder Teile dieser Moleküle in Plasmide eingebracht werden, die eine Muta­ genese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von Standardverfahren (vgl. Sambrook et al., 1989, Molecular Cloning: A laboratory manual, 2. Aufl., Cold Spring Harbor Laboratory Press, NY, USA) können Basenaustausche vorgenommen oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Frag­ mente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden. Ferner können Manipulationen, die passende Restriktionsschnittstellen zur Verfügung stellen oder die überflüssige DNA oder Restriktionsschnittstellen entfer­ nen, eingesetzt werden. Wo Insertionen, Deletionen oder Sub­ stitutionen in Frage kommen, können in vitro-Mutagenese, "primer repair", Restriktion oder Ligation verwendet werden. Als Analysemethode werden im allgemeinen eine Sequenzanalyse, eine Restriktionsanalyse und weitere biochemisch-molekularbio­ logische Methoden durchgeführt.
In einer weiteren Ausführungsform betrifft die Erfindung Wirtszellen, insbesondere prokaryontische oder eukaryontische Zellen, die mit einem oben beschriebenen erfindungsgemäßen Nucleinsäuremolekül oder einem erfindungsgemäßen Vektor trans­ formiert sind, sowie Zellen, die von derart transformierten Zellen abstammen und ein erfindungsgemäßes Nucleinsäuremolekül oder einen Vektor enthalten. Dabei handelt es sich vorzugs­ weise um bakterielle Zellen oder pflanzliche Zellen.
Gegenstand der Erfindung sind ferner die Proteine, die durch die erfindungsgemäßen Nucleinsäuremoleküle codiert werden, so­ wie Verfahren zu deren Herstellung, wobei eine erfindungsge­ mäße Wirtszelle unter Bedingungen kultiviert wird, die die Synthese des Proteins erlauben, und anschließend das Protein aus den kultivierten Zellen und/oder dem Kulturmedium isoliert wird.
Durch die Bereitstellung der erfindungsgemäßen Nucleinsäuremo­ leküle ist es nun möglich, mit Hilfe gentechnischer Methoden in den Stärkemetabolismus von Pflanzen einzugreifen, wie es bisher nicht möglich war, und ihn dahingehend zu verändern, daß es zur Synthese einer modifizierten Stärke kommt, die bei­ spielsweise in ihren physikalisch-chemischen Eigenschaften, insbesondere dem Amylose/Amylopektin-Verhältnis, dem Verzwei­ gungsgrad, der durchschnittlichen Kettenlänge, dem Phosphatge­ halt, dem Verkleisterungsverhalten, der Stärkekorngröße und/oder der Stärkekornform im Vergleich zu in Wildtyp-Pflan­ zen synthetisierter Stärke verändert ist. Durch eine Erhöhung der Aktivität der erfindungsgemäßen Proteine, beispielsweise durch Überexpression entsprechender Nucleinsäuremoleküle, oder durch die Bereitstellung von Mutanten, die nicht mehr den zelleigenen Regulationsmechanismen unterliegen und/oder unter­ schiedliche Temperaturabhängigkeiten in bezug auf ihre Aktivi­ tät besitzen, besteht die Möglichkeit der Ertragssteigerung in entsprechend gentechnisch veränderten Pflanzen. Die wirt­ schaftliche Bedeutung der Möglichkeit des Eingriffs in die Stärkesynthese allein bei Mais ist offensichtlich: Mais ist weltweit die wichtigste Pflanze zur Stärkegewinnung. Ca. 80% der weltweit jährlich produzierten Stärke wird aus Mais gewon­ nen.
Möglich ist somit die Expression der erfindungsgemäßen Nucleinsäuremoleküle in pflanzlichen Zellen, um die Aktivität der entsprechenden löslichen Stärkesynthase zu erhöhen. Ferner ist es möglich, die erfindungsgemäßen Nucleinsäuremoleküle nach dem Fachmann bekannten Methoden zu modifizieren, um er­ findungsgemäß Stärkesynthasen zu erhalten, die nicht mehr den zelleigenen Regulationsmechanismen unterliegen, bzw. verän­ derte Temperaturabhängigkeiten oder Substrat- bzw. Pro­ duktspezifitäten aufweisen.
Bei der Expression der erfindungsgemäßen Nucleinsäuremoleküle in Pflanzen besteht grundsätzlich die Möglichkeit, daß das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein kann. Um die Lokalisation in einem bestimmten Kompartiment zu erreichen, muß die die Lo­ kalisation in Plastiden gewährleistende Sequenz deletiert wer­ den und die verbleibende codierende Region gegebenenfalls mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in dem jeweiligen Kompartiment gewährleisten. Derartige Sequenzen sind bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).
Die vorliegende Erfindung betrifft somit auch transgene Pflan­ zenzellen, die mit einem erfindungsgemäßen Nucleinsäuremolekül transformiert wurden, sowie transgene Pflanzenzellen, die von derartig transformierten Zellen abstammen. Derartige Zellen enthalten ein erfindungsgemäßes Nucleinsäuremolekül, wobei dieses vorzugsweise mit regulatorischen DNA-Elementen ver­ knüpft ist, die die Transkription in pflanzlichen Zellen ge­ währleisten, insbesondere mit einem Promotor. Derartige Zellen lassen sich von natürlicherweise vorkommenden Pflanzenzellen dadurch unterscheiden, daß sie ein erfindungsgemäßes Nuclein­ säuremolekül enthalten, das natürlicherweise in diesen Zellen nicht vorkommt oder dadurch, daß ein solches Molekül an einem Ort im Genom der Zelle integriert vorliegt, an dem es sonst nicht vorkommt, d. h. in einer anderen genomischen Umgebung.
Die transgenen Pflanzenzellen können nach dem Fachmann bekann­ ten Techniken zu ganzen Pflanzen regeneriert werden. Die durch Regeneration der erfindungsgemäßen transgenen Pflanzenzellen erhältlichen Pflanzen sind ebenfalls Gegenstand der vorliegen­ den Erfindung. Ferner sind Gegenstand der Erfindung Pflanzen, die die obenbeschriebenen transgenen Pflanzenzellen enthalten. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflan­ zen jeder beliebigen Pflanzenspezies handeln, d. h. sowohl monokotyle als auch dikotyle Pflanzen. Bevorzugt handelt es sich um Nutzpflanzen, insbesondere um stärkesynthetisierende bzw. stärkespeichernde Pflanzen, wie z. B. Getreidearten (Roggen, Gerste Hafer, Weizen etc.), Reis, Mais, Erbse, Maniok oder Kartoffel.
Die Erfindung betrifft ebenfalls Vermehrungsmaterial der er­ findungsgemäßen Pflanzen, beispielsweise Früchte, Samen, Knol­ len, Wurzelstöcke, Sämlinge, Stecklinge etc.
Die erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen synthetisieren aufgrund der Expression bzw. zusätzlichen Ex­ pression eines erfindungsgemäßen Nucleinsäuremoleküls eine Stärke, die beispielsweise in ihren physikalisch-chemischen Eigenschaften, insbesondere dem Amylose/Amylopektin-Verhält­ nis, dem Verzweigungsgrad, der durchschnittlichen Kettenlänge, dem Phosphatgehalt, dem Verkleisterungsverhalten, der Stärke­ korngröße und/oder der Stärkekornform im Vergleich zu in Wild­ typ-Pflanzen synthetisierter Stärke verändert ist. Insbeson­ dere kann eine solche Stärke im Hinblick auf die Viskosität und/oder die Gelbildungseigenschaften von Kleistern dieser Stärke im Vergleich zu Wildtypstärke verändert sein.
Gegenstand der vorliegenden Erfindung ist somit auch die aus den erfindungsgemäßen transgenen Pflanzenzellen, Pflanzen so­ wie Vermehrungsmaterial erhältliche Stärke.
Ferner ist es möglich, mit Hilfe der erfindungsgemäßen Nucleinsäuremoleküle Maispflanzenzellen und Maispflanzen zu erzeugen, bei denen die Aktivität eines erfindungsgemäßen Pro­ teins verringert ist. Dies führt ebenfalls zur Synthese einer Stärke mit veränderten chemischen und/oder physikalischen Eigenschaften verglichen mit Stärke aus Wildtyp-Pflanzenzel­ len.
Ein weiterer Gegenstand der Erfindung sind somit auch trans­ gene Maispflanzenzellen, in denen die Aktivität eines erfin­ dungsgemäßen Proteins verringert ist im Vergleich zu nicht­ transformierten Zellen.
Die Herstellung von Maispflanzenzellen mit einer verringerten Aktivität eines erfindungsgemäßen Proteins kann beispielsweise erzielt werden durch die Expression einer entsprechenden anti­ sense-RNA, einer sense-RNA zur Erzielung eines Cosuppressions­ effektes oder die Expression eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte spaltet, die eines der erfindungsgemäßen Proteine codieren, unter Verwendung der er­ findungsgemäßen Nucleinsäuremoleküle.
Vorzugsweise wird zur Reduzierung der Aktivität eines erfin­ dungsgemäßen Proteins in pflanzlichen Zellen eine antisense- RNA exprimiert.
Hierzu kann zum einen ein DNA-Molekül verwendet werden, das die gesamte für ein erfindungsgemäßes Protein codierende Se­ quenz einschließlich eventuell vorhandener flankierender Se­ quenzen umfaßt, als auch DNA-Moleküle, die nur Teile der co­ dierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Es können im allgemeinen Sequenzen bis zu einer Mindestlänge von 15 bp, vorzugsweise einer Länge von 100-500 bp, für eine effiziente antisense-Inhibition insbesondere Sequenzen mit einer Länge über 500 bp verwendet werden. In der Regel werden DNA-Moleküle verwendet, die kürzer als 5000 bp, vorzugsweise Sequenzen, die kürzer als 2500 bp sind.
Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den Sequenzen der erfindungsgemäßen DNA-Moleküle aufweisen, aber nicht vollkommen identisch sind. Die minimale Homologie sollte größer als ca. 65% sein. Die Verwendung von Sequenzen mit Homologien zwischen 95 und 100% ist zu bevorzugen.
Gegenstand der Erfindung sind auch Maispflanzen, die erfin­ dungsgemäße transgene Maispflanzenzellen enthalten. Die Er­ findung betrifft ebenfalls Vermehrungsmaterial der erfin­ dungsgemäßen Pflanzen, insbesondere Samen.
Die erfindungsgemäßen transgenen Maispflanzenzellen und Mais­ pflanzen synthetisieren aufgrund der Verringerung der Aktivi­ tät eines der erfindungsgemäßen Proteine eine Stärke, die bei­ spielsweise in ihren physikalisch-chemischen Eigenschaften, insbesondere dem Amylose/Amylopektin-Verhältnis, dem Verzwei­ gungsgrad, der durchschnittlichen Kettenlänge, dem Phosphatge­ halt, dem Verkleisterungsverhalten, der Stärkekorngröße und/oder der Stärkekornform im Vergleich zu in Wildtyp-Pflan­ zen synthetisierter Stärke verändert ist. Diese Stärke kann beispielsweise veränderte Viskositäten und/oder Gelbil­ dungseigenschaften ihrer Kleister zeigen im Vergleich zu Stärke aus Wildtyp-Pflanzen.
Gegenstand der Erfindung ist somit auch die aus den vorgehend beschriebenen transgenen Maispflanzenzellen, Maispflanzen so­ wie Vermehrungsmaterial erhältliche Stärke.
Die erfindungsgemäßen Stärken können nach dem Fachmann bekann­ ten Verfahren modifiziert werden und eignen sich in unmodifi­ zierter oder modifizierter Form für verschiedene Verwendungen im Nahrungsmittel- oder Nicht-Nahrungsmittelbereich.
Grundsätzlich läßt sich die Einsatzmöglichkeit der Stärke in zwei große Bereiche unterteilen. Der eine Bereich umfaßt die Hydrolyseprodukte der Stärke, hauptsächlich Glucose und Glucanbausteine, die über enzymatische oder chemische Verfah­ ren erhalten werden. Sie dienen als Ausgangsstoff für weitere chemische Modifikationen und Prozesse, wie Fermentation. Für eine Reduktion der Kosten kann hierbei die Einfachheit und ko­ stengünstige Ausführung eines Hydrolyseverfahrens von Bedeu­ tung sein. Gegenwärtig verläuft es im wesentlichen enzymatisch unter Verwendung von Amyloglucosidase. Vorstellbar wäre eine Kosteneinsparung durch einen geringeren Einsatz von Enzymen. Eine Strukturveränderung der Stärke, z. B. Oberflächenvergröße­ rung des Korns, leichtere Verdaulichkeit durch geringeren Ver­ zweigungsgrad oder eine sterische Struktur, die die Zugäng­ lichkeit für die eingesetzten Enzyme begrenzt, könnte dies be­ wirken.
Der andere Bereich, in dem die Stärke wegen ihrer polymeren Struktur als sogenannte native Stärke verwendet wird, gliedert sich in zwei weitere Einsatzgebiete:
1. Nahrungsmittelindustrie
Stärke ist ein klassischer Zusatzstoff für viele Nah­ rungsmittel, bei denen sie im wesentlichen die Funktion des Bindens von wäßrigen Zusatzstoffen übernimmt bzw. eine Erhöhung der Viskosität oder aber eine erhöhte Gel­ bildung hervorruft. Wichtige Eigenschaftsmerkmale sind das Fließ- und Sorptionsverhalten, die Quell- und Ver­ kleisterungstemperatur, die Viskosität und Dickungslei­ stung, die Löslichkeit der Stärke, die Transparenz und Kleisterstruktur, die Hitze-, Scher- und Säurestabilität, die Neigung zur Retrogradation, die Fähigkeit zur Film­ bildung, die Gefrier/Taustabilität, die Verdaulichkeit sowie die Fähigkeit zur Komplexbildung mit z. B. anorgani­ schen oder organischen Ionen.
2. Nicht-Nahrungsmittelindustrie
In diesem großen Bereich kann die Stärke als Hilfsstoff für unterschiedliche Herstellungsprozesse bzw. als Zu­ satzstoff in technischen Produkten eingesetzt. Bei der Verwendung der Stärke als Hilfsstoffist hier insbeson­ dere die Papier- und Pappeindustrie zu nennen. Die Stärke dient dabei in erster Linie zur Retardation (Zurückhaltung von Feststoffen), der Abbindung von Füll­ stoff- und Feinstoffteilchen, als Festigungsstoff und zur Entwässerung. Darüber hinaus werden die günstigen Eigen­ schaften der Stärke in bezug auf die Steifigkeit, die Härte, den Klang, den Griff, den Glanz, die Glätte, die Spaltfestigkeit sowie die Oberflächen ausgenutzt.
2.1 Papier- und Pappeindustrie
Innerhalb des Papierherstellungsprozesses sind vier An­ wendungsbereiche, nämlich Oberfläche, Strich, Masse und Sprühen, zu unterscheiden.
Die Anforderungen an die Stärke in bezug auf die Oberflä­ chenbehandlung sind im wesentlichen ein hoher Weißegrad, eine angepaßte Viskosität, eine hohe Viskositätsstabili­ tät, eine gute Filmbildung sowie eine geringe Staubbil­ dung. Bei der Verwendung im Strich spielt der Feststoff­ gehalt, eine angepaßte Viskosität, ein hohes Bindevermö­ gen sowie eine hohe Pigmentaffinität eine wichtige Rolle. Als Zusatz zur Masse ist eine rasche, gleichmäßige, ver­ lustfreie Verteilung, eine hohe mechanische Stabilität und eine vollständige Zurückhaltung im Papierfließ von Bedeutung. Beim Einsatz der Stärke im Sprühbereich sind ebenfalls ein angepaßter Feststoffgehalt, hohe Viskosität sowie ein hohes Bindevermögen von Bedeutung.
2.2 Klebstoffindustrie
Ein großer Einsatzbereich der Stärken besteht in der Klebstoffindustrie, wo man die Einsatzmöglichkeiten in vier Teilbereiche gliedert: die Verwendung als reinem Stärkeleim, die Verwendung bei mit speziellen Chemikalien aufbereiteten Stärkeleimen, die Verwendung von Stärke als Zusatz zu synthetischen Harzen und Polymerdispersionen sowie die Verwendung von Stärken als Streckmittel für synthetische Klebstoffe. 90% der Klebstoffe auf Stärke­ basis werden in den Bereichen Wellpappenherstellung, Her­ stellung von Papiersäcken, Beuteln und Tüten, Herstellung von Verbundmaterialien für Papier und Aluminium, Herstel­ lung von Kartonagen und Wiederbefeuchtungsleim für Brief­ umschläge, Briefmarken usw. eingesetzt.
2.3 Textil- und Textilpflegemittelindustrie
Ein großes Einsatzfeld für die Stärken als Hilfmittel und Zusatzstoff ist der Bereich Herstellung von Textilien und Textilpflegemitteln. Innerhalb der Textilindustrie sind die folgenden vier Einsatzbereiche zu unterscheiden: Der Einsatz der Stärke als Schlichtmittel, d. h. als Hilfs­ stoff zur Glättung und Stärkung des Klettverhaltens zum Schutz gegen die beim Weben angreifenden Zugkräfte sowie zur Erhöhung der Abriebfestigkeit beim Weben, Stärke als Mittel zur Textilaufrüstung vor allem nach qualitätsver­ schlechternden Vorbehandlungen, wie Bleichen, Färben usw., Stärke als Verdickungsmittel bei der Herstellung von Farbpasten zur Verhinderung von Farbstoffdiffusionen sowie Stärke als Zusatz zu Kettungsmitteln für Nähgarne.
2.4 Baustoffindustrie
Der vierte Einsatzbereich ist die Verwendung der Stärken als Zusatz bei Baustoffen. Ein Beispiel ist die Herstel­ lung von Gipskartonplatten, bei der die im Gipsbrei ver­ mischte Stärke mit dem Wasser verkleistert, an die Ober­ fläche der Gipsplatte diffundiert und dort den Karton an die Platte bindet. Weitere Einsatzbereiche sind die Bei­ mischung zu Putz- und Mineralfasern. Bei Transportbeton werden Stärkeprodukte zur Verzögerung der Abbindung ein­ gesetzt.
2.5 Bodenstabilisation
Ein weiterer Markt für die Stärke bietet sich bei der Herstellung von Mitteln zur Bodenstabilisation an, die bei künstlichen Erdbewegungen zum temporären Schutz der Bodenpartikel gegenüber Wasser eingesetzt werden. Kombi­ nationsprodukte aus der Stärke und Polymeremulsionen sind nach heutiger Kenntnis in ihrer Erosions- und ver­ krustungsmindernden Wirkung den bisher eingesetzten Pro­ dukten gleichzusetzen, liegen preislich aber deutlich un­ ter diesen.
2.6 Einsatz bei Pflanzenschutz- und Düngemitteln
Ein Einsatzbereich liegt bei der Verwendung der Stärke in Pflanzenschutzmitteln zur Veränderung der spezifischen Eigenschaften der Präparate. So kann die Stärke zur Ver­ besserung der Benetzung von Pflanzenschutz- und Düngemit­ teln, zur dosierten Freigabe der Wirkstoffe, zur Umwand­ lung flüssiger, flüchtiger und/oder übelriechender Wirk­ stoffe in mikrokristalline, stabile, formbare Substanzen, zur Mischung inkompatibler Verbindungen und zur Verlänge­ rung der Wirkdauer durch Verminderung der Zersetzung ein­ gesetzt werden.
2.7 Pharmaka, Medizin und Kosmetikindustrie
Ein weiteres Einsatzgebiet besteht im Bereich der Phar­ maka, Medizin und Kosmetikindustrie. In der pharmazeuti­ schen Industrie kann die Stärke als Bindemittel für Ta­ bletten oder zur Bindemittelverdünnung in Kapseln einge­ setzt werden. Weiterhin kann die Stärke als Tabletten­ sprengmittel dienen, da sie nach dem Schlucken Flüssig­ keit absorbieren und nach kurzer Zeit soweit quellen, daß der Wirkstoff freigesetzt wird. Medizinische Gleit- und Wundpuder basieren aus qualitativen Gründen auf Stärke. Im Bereich der Kosmetik werden Stärken beispielsweise als Träger von Puderzusatzstoffen, wie Düften und Salicyl­ säure eingesetzt. Ein relativ großer Anwendungsbereich für die Stärke liegt bei Zahnpasta.
2.8 Stärkezusatz zu Kohlen und Briketts
Einen Einsatzbereich bietet die Stärke als Zusatzstoff zu Kohle und Brikett. Kohle kann mit einem Stärkezusatz quantitativ hochwertig agglomeriert bzw. brikettiert wer­ den, wodurch ein frühzeitiges Zerfallen der Briketts ver­ hindert wird. Der Stärkezusatz liegt bei Grillkohle zwi­ schen 4 und 6%, bei kalorierter Kohle zwischen 0,1 und 0,5%. Des weiteren gewinnen Stärken als Bindemittel an Bedeutung, da durch ihren Zusatz zu Kohle und Brikett der Ausstoß schädlicher Stoffe deutlich vermindert werden kann.
2.9 Erz- und Kohleschlammaufbereitung
Die Stärke kann ferner bei der Erz- und Kohleschlammauf­ bereitung als Flockungsmittel eingesetzt werden.
2.10 Gießereihilfsstoff
Ein weiterer Einsatzbereich besteht als Zusatz zu Gieße­ reihilfsstoffen. Bei verschiedenen Gußverfahren werden Kerne benötigt, die aus Bindemittel-versetzten Sänden hergestellt werden. Als Bindemittel wird heute überwie­ gend Bentonit eingesetzt, das mit modifizierten Stärken, meist Quellstärken, versetzt ist.
Zweck des Stärkezusatzes ist die Erhöhung der Fließfe­ stigkeit sowie die Verbesserung der Bindefestigkeit. Dar­ über hinaus können die Quellstärken weitere produk­ tionstechnische Anforderungen, wie im kalten Wasser dis­ pergierbar, rehydratisierbar, gut in Sand mischbar und hohes Wasserbindungsvermögen, aufweisen.
2.11 Einsatz in der Kautschukindustrie
In der Kautschukindustrie kann die Stärke zur Verbesse­ rung der technischen und optischen Qualität eingesetzt werden. Gründe sind dabei die Verbesserung des Oberflä­ chenglanzes, die Verbesserung des Griffs und des Ausse­ hens, dafür wird Stärke vor der Kaltvulkanisation auf die klebrigen gummierten Flächen von Kautschukstoffen ge­ streut, sowie die Verbesserung der Bedruckbarkeit des Kautschuks.
2.12 Herstellung von Lederersatzstoffen
Eine weitere Absatzmöglichkeit der modifizierten Stärken besteht bei der Herstellung von Lederersatzstoffen.
2.13 Stärke in synthetischen Polymeren
Auf dem Kunststoffsektor zeichnen sich folgende Einsatz­ gebiete ab: die Einbindung von Stärkefolgeprodukten in den Verarbeitungsprozeß (Stärke ist nur Füllstoff, es besteht keine direkte Bindung zwischen synthetischem Po­ lymer und Stärke) oder alternativ die Einbindung von Stärkefolgeprodukten in die Herstellung von Polymeren (Stärke und Polymer gehen eine feste Bindung ein).
Die Verwendung der Stärke als reinem Füllstoff ist verglichen mit den anderen Stoffen wie Talkum nicht wettbewerbsfähig. An­ ders sieht es aus, wenn die spezifischen Stärkeeigenschaften zum Tragen kommen und hierdurch das Eigenschaftsprofil der Endprodukte deutlich verändert wird. Ein Beispiel hierfür ist die Anwendung von Stärkeprodukten bei der Verarbeitung von Thermoplasten, wie Polyäthylen. Hierbei werden die Stärke und das synthetische Polymer durch Koexpression im Verhältnis von 1 : 1 zu einem ′master batch′ kombiniert, aus dem mit granu­ liertem Polyäthylen unter Anwendung herkömmlicher Verfah­ renstechniken diverse Produkte hergestellt werden. Durch die Einbindung von Stärke in Polyäthylenfolien kann eine erhöhte Stoffdurchlässigkeit bei Hohlkörpern, eine verbesserte Wasser­ dampfdurchlässigkeit, ein verbessertes Antistatikverhalten, ein verbessertes Antiblockverhalten sowie eine verbesserte Be­ druckbarkeit mit wäßrigen Farben erreicht werden.
Eine andere Möglichkeit ist die Anwendung der Stärke in Po­ lyurethanschäumen. Mit der Adaption der Stärkederivate sowie durch die verfahrenstechnische Optimierung ist es möglich, die Reaktion zwischen synthetischen Polymeren und den Hydroxygrup­ pen der Stärken gezielt zu steuern. Das Ergebnis sind Poly­ urethanfolien, die durch die Anwendung von Stärke folgende Eigenschaftsprofile erhalten: eine Verringerung des Wärmeaus­ dehnungskoeffizienten, Verringerung des Schrumpfverhaltens, Verbesserung des Druck/Spannungsverhaltens, Zunahme der Was­ serdampfdurchlässigkeit ohne Veränderung der Wasseraufnahme, Verringerung der Entflammbarkeit und der Aufrißdichte, kein Abtropfen brennbarer Teile, Halogenfreiheit und verminderte Alterung. Nachteile, die gegenwärtig noch vorhanden sind, sind verringerte Druckfestigkeit sowie eine verringerte Schlagfe­ stigkeit.
Die Produktentwicklung beschränkt sich inzwischen nicht mehr nur auf Folien. Auch feste Kunststoffprodukte, wie Töpfe, Platten und Schalen, sind mit einem Stärkegehalt von über 50% herzustellen. Des weiteren sind Stärke/ Polymermischungen gün­ stig zu beurteilen, da sie eine sehr viel höhere biologische Abbaubarkeit aufweisen.
Außerordentliche Bedeutung haben weiterhin auf Grund ihres ex­ tremen Wasserbindungsvermögen Stärkepfropfpolymerisate gewon­ nen. Dies sind Produkte mit einem Rückgrat aus Stärke und einer nach dem Prinzip des Radikalkettenmechanismus aufge­ pfropften Seitengitters eines synthetischen Monomers. Die heute verfügbaren Stärkepfropfpolymerisate zeichnen sich durch ein besseres Binde- und Rückhaltevermögen von bis zu 1000 g Wasser pro g Stärke bei hoher Viskosität aus. Die Anwendungs­ bereiche für diese Superabsorber haben sich in den letzten Jahren stark ausgeweitet und liegen im Hygienebereich mit Pro­ dukten wie Windeln und Unterlagen sowie im landwirtschaftlichen Sektor, z. B. bei Saatgutpillierungen.
Entscheidend für den Einsatz der neuen, gentechnisch veränder­ ten Stärken sind zum einen die Struktur, Wassergehalt, Pro­ teingehalt, Lipidgehalt, Fasergehalt, Asche/Phosphatgehalt, Amylose/Amylopektinverhältnis, Molmassenverteilung, Verzwei­ gungsgrad, Korngröße und -form sowie Kristallinität, zum ande­ ren auch die Eigenschaften, die in folgende Merkmale münden: Fließ- und Sorptionsverhalten, Verkleisterungstemperatur, Vis­ kosität, Dickungsleistung, Löslichkeit, Kleisterstruktur und -transparenz, Hitze-, Scher- und Säurestabilität, Retrograda­ tionsneigung, Gelbildung, Gefrier/Taustabilität, Komplexbil­ dung, Jodbindung, Filmbildung, Klebekraft, Enzymstabilität, Verdaulichkeit und Reaktivität.
Die Erzeugung modifizierter Stärken mittels gentechnischer Eingriffe in einer transgenen Pflanze kann zum einen die Eigenschaften der aus der Pflanze gewonnenen Stärke dahinge­ hend verändern, daß weitere Modifikationen mittels chemischer oder physikalischer Verfahren nicht mehr notwendig erscheinen. Zum anderen können die durch gentechnische Verfahren verän­ derte Stärken weiteren chemischen Modifikationen unterworfen werden, was zu weiteren Verbesserungen der Qualität für be­ stimmte der oben beschriebenen Einsatzgebiete führt. Diese chemischen Modifikationen sind grundsätzlich bekannt. Insbe­ sondere handelt es sich dabei um Modifikationen durch
  • - Hitzebehandlung,
  • - Säurebehandlung,
  • - Oxidation und
  • - Veresterungen,
welche zur Entstehung von Phosphat-, Nitrat-, Sulfat-, Xanthat-, Acetat- und Citratstärken führen. Weitere organische Säuren können ebenfalls zur Veresterung eingesetzt werden:
  • - Erzeugung von Stärkeethern Stärke-Alkylether, O-Allylether, Hydroxylalkylether, O-Carboxylmethylether, N-haltige Stärkeether, P-haltige Stärkeether, S-haltige Stärkeether
  • - Erzeugung von vernetzten Stärken
  • - Erzeugung von Stärke-Pfropf-Polymerisaten.
Zur Expression der erfindungsgemäßen Nucleinsäuremoleküle in sense- oder antisense-Orientierung in pflanzlichen Zellen wer­ den diese mit regulatorischen DNA-Elementen verknüpft, die die Transkription in pflanzlichen Zellen gewährleisten. Hierzu zählen insbesondere Promotoren. Generell kommt für die Ex­ pression jeder in pflanzlichen Zellen aktive Promotor in Frage.
Der Promotor kann dabei so gewählt sein, daß die Expression konstitutiv erfolgt oder nur in einem bestimmten Gewebe, zu einem bestimmten Zeitpunkt der Pflanzenentwicklung oder zu einem durch äußere Einflüsse determinierten Zeitpunkt. In Be­ zug auf die Pflanze kann der Promotor homolog oder heterolog sein. Sinnvolle Promotoren sind z. B. der Promotor der 35S RNA des Cauliflower Mosaic Virus und der Ubiquitin-Promotor aus Mais für eine konstitutive Expression, der Patatingen-Promotor B33 (Rocha-Sosa et al., EMBO J. 8 (1989), 23-29) für eine knollenspezifische Expression in Kartoffeln oder ein Promotor, der eine Expression lediglich in photosynthetisch aktiven Ge­ weben sicherstellt, z. B. der ST-LS1-Promotor (Stockhaus et al., Proc. Natl. Acad. Sci. USA 84 (1987), 7943-7947; Stock­ haus et al., EMBO J. 8 (1989), 2445-2451) oder für eine en­ dosperm-spezifische Expression der HMG-Promotor aus Weizen, der USP-Promotor, der Phaseolinpromotor oder Promotoren von Zein-Genen aus Mais.
Ferner kann eine Terminationssequenz vorhanden sein, die der korrekten Beendigung der Transkription dient sowie der Addi­ tion eines Poly-A-Schwanzes an das Transkript, dem eine Funk­ tion bei der Stabilisierung der Transkripte beigemessen wird. Derartige Elemente sind in der Literatur beschrieben (vgl. Gielen et al., EMBO J. 8 (1989), 23-29) und sind beliebig aus­ tauschbar.
Die vorliegende Erfindung stellt Nucleinsäuremoleküle zur Ver­ fügung, die eine neue in Mais identifizierte Form einer lösli­ chen Stärkesynthase codieren. Dies erlaubt nun sowohl die Identifizierung der Funktion dieser Stärkesynthase bei der Stärkebiosynthese, als auch die Herstellung gentechnisch ver­ änderter Pflanzen, bei denen die Aktivität dieses Enzyms ver­ ändert ist. Dies ermöglicht die Synthese einer Stärke mit ver­ änderter Struktur und somit veränderten physikalisch-chemi­ schen Eigenschaften in derartig manipulierten Pflanzen.
Die erfindungsgemäßen Nucleinsäuremoleküle können prinzipiell auch dazu verwendet werden, Pflanzen herzustellen, bei denen die Aktivität der erfindungsgemäßen Stärkesynthase erhöht oder verringert ist und gleichzeitig die Aktivitäten anderer, an der Stärkebiosynthese beteiligter Enzyme verändert sind. Dabei sind alle Kombinationen und Permutationen denkbar. Durch die Veränderung der Aktivitäten einer oder mehrerer Isoformen der Stärkesynthasen in Pflanzen kommt es zur Synthese einer in ih­ rer Struktur veränderten Stärke. Durch die Steigerung der Ak­ tivität einer oder mehrerer Isoformen der Stärkesynthasen in den Zellen der stärkespeichernden Gewebe transformierter Pflanzen wie z. B. in dem Endosperm von Mais oder Weizen oder in der Knolle bei der Kartoffel kann es darüber hinaus zu einer Ertragssteigerung kommen. Beispielsweise können Nuclein­ säuremoleküle, die für ein erfindungsgemäßes Protein codieren oder entsprechende antisense-Konstrukte, in Pflanzenzellen eingebracht werden, bei denen bereits die Synthese endogener GBSS I-, SSS- oder GBSS II-Proteine aufgrund eines antisense-Effektes oder einer Mutation inhibiert ist oder die Synthese des Verzweigungsenzyms inhibiert ist (wie z. B. beschrieben in WO92/14827 oder der ae-Mutante (Shannon und Garwood, 1984, in Whistler, BeMiller und Paschall, Starch:Chemistry and Techno­ logy, Academic Press, London, 2nd Edition: 25-86)).
Soll die Inhibierung der Synthese mehrerer Stärke-Synthasen in transformierten Pflanzen erreicht werden, so können DNA-Mole­ küle zur Transformation verwendet werden, die gleichzeitig mehrere, die entsprechenden Stärkesynthasen codierenden Regio­ nen in antisense-Orientierung unter der Kontrolle eines geeig­ neten Promotors enthalten. Hierbei kann alternativ jede Se­ quenz unter der Kontrolle eines eigenen Promotors stehen, oder die Sequenzen können als Fusion von einem gemeinsamen Promotor transkribiert werden. Letztere Alternative wird in der Regel vorzuziehen sein, da in diesem Fall die Synthese der entspre­ chenden Proteine in etwa gleichem Maße inhibiert werden sollte.
Weiterhin ist die Konstruktion von DNA-Molekülen möglich, bei denen neben DNA-Sequenzen, die Stärkesynthasen codieren, wei­ tere DNA-Sequenzen, die andere Proteine, die an der Stärkesyn­ these oder -modifikation beteiligt sind, in antisense-Orien­ tierung an einen geeigneten Promotor gekoppelt sind. Die Se­ quenzen können hierbei wiederum hintereinandergeschaltet sein und von einem gemeinsamen Promotor transkribiert werden. Für die Länge der einzelnen codierenden Regionen, die in einem derartigen Konstrukt verwendet werden, gilt das, was oben be­ reits für die Herstellung von antisense-Konstrukten ausgeführt wurde. Eine obere Grenze für die Anzahl der in einem derarti­ gen DNA-Molekül von einem Promotor aus transkribierten anti­ sense-Fragmente gibt es nicht. Das entstehende Transkript sollte aber in der Regel eine Länge von 10 kb, vorzugsweise von 5 kb nicht überschreiten.
Codierende Regionen, die in derartigen DNA-Molekülen in Kombi­ nation mit anderen codierenden Regionen in antisense-Orientie­ rung hinter einem geeigneten Promotor lokalisiert sind, können aus DNA-Sequenzen stammen, die für folgende Proteine codieren: Stärkekorn-gebundene (GBSS I und II) und lösliche Stärke­ synthasen (SSS I und II), Verzweigungsenzyme, "Debranching"- Enzyme, Disproportionierungsenzyme und Stärkephosphorylasen. Dies ist nur eine beispielhafte Aufzählung. Auch die Verwen­ dung anderer DNA-Sequenzen im Rahmen einer derartigen Kombina­ tion ist denkbar.
Mit Hilfe derartiger Konstrukte ist es möglich, in Pflanzen­ zellen, die mit diesen transformiert wurden, die Synthese meh­ rerer Enzyme gleichzeitig zu inhibieren.
Weiterhin können die Konstrukte in klassische Mutanten einge­ bracht werden, die für ein oder mehrere Gene der Stärkebiosyn­ these defekt sind (Shannon und Garwood, 1984, in Whistler, BeMiller und Paschall, Starch:Chemistry and Technology, Aca­ demic Press, London, 2nd Edition: 25-86). Diese Defekte können sich auf folgende Proteine beziehen: Stärkekorn-gebundene (GBSS I und II) und lösliche Stärkesynthasen (SSS I und II), Verzweigungsenzyme (BE I und II), "Debranching"-Enzyme (R-En­ zyme), Disproportionierungsenzyme und Stärkephosphorylasen. Dies ist nur eine beispielhafte Aufzählung.
Mit Hilfe einer derartigen Vorgehensweise ist es weiterhin möglich, in Pflanzenzellen, die mit diesen transformiert wur­ den, die Synthese mehrerer Enzyme gleichzeitig zu inhibieren.
Zur Vorbereitung der Einführung fremder Gene in höhere Pflan­ zen stehen eine große Anzahl von Clonierungsvektoren zur Ver­ fügung, die ein Replikationssignal für E.coli und ein Marker­ gen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-Serien, M13mp-Serien, pACYC184 usw. Die gewünschte Sequenz kann an einer passenden Restriktionsschnittstelle in den Vektor einge­ führt werden. Das erhaltene Plasmid wird für die Transforma­ tion von E.coli-Zellen verwendet. Transformierte E.coli-Zellen werden in einem geeigneten Medium gezüchtet, anschließend ge­ erntet und lysiert. Das Plasmid wird wiedergewonnen. Als Ana­ lysemethode zur Charakterisierung der gewonnenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch-molekularbiologische Methoden einge­ setzt. Nach jeder Manipulation kann die Plasmid-DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA-Sequenzen ver­ knüpft werden. Jede Plasmid-DNA-Sequenz kann in den gleichen oder anderen Plasmiden cloniert werden.
Für die Einführung von DNA in eine pflanzliche Wirtszelle ste­ hen eine Vielzahl von Techniken zur Verfügung. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA un­ ter Verwendung von Agrobacterium tumefaciens oder Agrobacte­ rium rhizogenes als Transformationsmittel, die Fusion von Pro­ toplasten, die Injektion, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten.
Bei der Injektion und Elektroporation von DNA in Pflanzenzel­ len werden an sich keine speziellen Anforderungen an die ver­ wendeten Plasmide gestellt. Es können einfache Plasmide wie z. B. pUC-Derivate verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens notwendig.
Je nach Einführungsmethode gewünschter Gene in die Pflanzen­ zelle können weitere DNA-Sequenzen erforderlich sein. Werden z. B. für die Transformation der Pflanzenzelle das Ti- oder Ri- Plasmid verwendet, so muß mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der Ti- und Ri- Plasmid T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden.
Werden für die Transformation Agrobakterien verwendet, muß die einzuführende DNA in spezielle Plasmide cloniert werden, und zwar entweder in einen intermediären Vektor oder in einen bi­ nären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobak­ terien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir-Region. Intermediäre Vekto­ ren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation). Binäre Vektoren können sowohl in E.coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA Grenzre­ gion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden (Holsters et al. Mol. Gen. Genet. 163 (1978), 181-187). Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine vir-Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet.
Die Verwendung von T-DNA für die Transformation von Pflanzen­ zellen ist intensiv untersucht und ausreichend in EP 120 516; Hoekema, In: The Binary Plant Vector System Offsetdrukkerÿ Kanters B.V., Alblasserdam (1985), Chapter V; Fraley et al., Crit. Rev. Plant. Sci., 4, 1-46 und An et al. EMBO J. 4 (1985), 277-287 beschrieben worden.
Für den Transfer der DNA in die Pflanzenzelle können Pflanzen- Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kokultiviert werden. Aus dem infizierten Pflanzenmaterial (z. B. Blattstücke, Stengelsegmen­ te, Wurzeln, aber auch Protoplasten oder Suspensions-kulti­ vierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert wer­ den. Die so erhaltenen Pflanzen können dann auf Anwesenheit der eingeführten DNA untersucht werden. Andere Möglichkeiten der Einführung fremder DNA unter Verwendung des biolistischen Verfahrens oder durch Protoplastentransformation sind bekannt (vgl. z. B. Willmitzer, L., 1993 Transgenic plants. In: Bio­ technology, A Multi-Volume Comprehensive Treatise (H.J. Rehm, G. Reed, A. Pühler, P. Stadler, eds.), Vol. 2, 627-659, VCH Weinheim-New York-Basel-Cambridge).
Während die Transformation dikotyler Pflanzen über Ti-Plasmid- Vektorsysteme mit Hilfe von Agrobacterium tumefaciens wohl etabliert ist, weisen neuere Arbeiten darauf hin, daß auch monokotyle Pflanzen der Transformation mittels Agrobacterium basierender Vektoren sehr wohl zugänglich sind (Chan et al., Plant Mol. Biol. 22 (1993), 491-506; Hiei et al., Plant J. 6 (1994), 271-282).
Alternative Systeme zur Transformation von monokotylen Pflan­ zen sind die Transformation mittels des biolistischen An­ satzes, die Protoplastentransformation, die Elektroporation von partiell permeabilisierten Zellen, die Einbringung von DNA mittels Glasfasern.
Spezifisch die Transformation von Mais wird in der Literatur verschiedentlich beschrieben (vgl. z. B. WO 95/06128, EP 0 513 849; EP 0 465 875) . In EP 292 435 wird ein Verfahren be­ schrieben, mit Hilfe dessen, ausgehend von einem schleimlosen, weichen (friable) granulösen Mais-Kallus, fertile Pflanzen er­ halten werden können. Shillito et al. (Bio/Technology 7 (1989), 581) haben in diesem Zusammenhang beobachtet, daß es ferner für die Regenerierbarkeit zu fertilen Pflanzen notwen­ dig ist, von Kallus-Suspensionskulturen auszugehen, aus denen eine sich teilende Protoplastenkultur, mit der Fähigkeit zu Pflanzen zu regenerieren, herstellbar ist. Nach einer in vitro Kultivierungszeit von 7 bis 8 Monaten erhalten Shillito et al. Pflanzen mit lebensfähigen Nachkommen, die jedoch Abnormalitä­ ten in der Morphologie und der Reproduktivität aufweisen.
Prioli und Söndahl (Bio/Technology 7 (1989), 589) beschreiben die Regeneration und die Gewinnung fertiler Pflanzen aus Mais- Protoplasten der Cateto Mais-Inzuchtlinie Cat 100-1. Die Auto­ ren vermuten, daß die Protoplasten-Regeneration zu fertilen Pflanzen abhängig ist von einer Anzahl verschiedener Faktoren, wie z. B. von Genotyp, vom physiologischen Zustand der Donor-Zellen und von den Kultivierungsbedingungen.
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle in­ tegriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle er­ halten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomy­ cin, Hygromycin oder Phosphinotricin u. a. vermittelt. Der in­ dividuelle gewählte Marker sollte daher die Selektion trans­ formierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten.
Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise (siehe auch McCormick et al., Plant Cell Reports 5 (1986), 81-84). Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, ge­ kreuzt werden. Die daraus entstehenden hybriden Individuen ha­ ben die entsprechenden phänotypischen Eigenschaften. Von den Pflanzenzellen können Samen gewonnen werden.
Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibe­ halten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind.
Die Beispiele erläutern die Erfindung.
In den Beispielen verwendete Medien und Lösungen:
20 × SSC:
175,3 g NaCl
88,2 g Natrium-Citrat
ad 1000 ml mit ddH₂O
pH 7,0 mit 10 N NaOH
YT:
8 g Bacto-Yeast extract
5 g Bacto-Tryptone
5 g NaCl
ad 1000 ml mit ddH₂O
Protoplastenisolierungsmedium (100 ml):
Cellulase Onozuka R S (Meÿi Seika, Japan)|800 mg
Pectolyase Y 23 40 mg
KNO₃ 200 mg
KH₂PO₄ 136 mg
K₂HPO₄ 47 mg
CaCl₂ 2H₂O 147 mg
MgSO₄ 7H₂O 250 mg
Rinderserumalbumin (BSA) 20 mg
Glucose 4000 mg
Fructose 4000 mg
Saccharose 1000 mg
pH 5,8
Osmolarität 660 mosm
Protoplastenwaschlösung 1: wie Protoplastenisolierlösung, aber ohne Cellulase, Pectolyase und BSA
Transformationspuffer:
a) Glucose|0,5 M
MES 0,1%
MgCl₂ 6 H₂O 25 mM
pH 5,8
auf 600 mosm. einstellen @ b) PEG 6000-Lösung: @ Glucose 0,5 M
MgCl₂ 6 H₂O 100 mM
Hepes 20 mM
pH 6,5
Dem obigen Puffer unter b) wird PEG 6000 kurz vor Gebrauch der Lösung zugesetzt (40 Gew.-% PEG). Die Lösung wird durch ein 0,45 µm Sterilfilter filtriert.
W5 Lösung:
CaCl₂|125 mM
NaCl 150 mM
KCl 5 mM
Glucose 50 mM
Protoplasten-Kulturmedium (Angaben in mg/l):
KNO₃
3000
(NH₄)₂SO₄ 500
MgSO₄ 7 H₂O 350
KH₂PO₄ 400
CaCl₂ 2 H₂O 300
Fe-EDTA und Spurenelemente wie im Murashige-Skoog-Medium (Physiol. Plant, 15 (1962), 473).
m-Inosit
100
Thiamin HCl 1,0
Nicotinsäureamid 0,5
Pyridoxin HCl 0,5
Glycin 2,0
Glucuronsäure 750
Galacturonsäure 750
Galactose 500
Maltose 500
Glucose 36 000
Fructose 36 000
Saccharose 30 000
Asparagin 500
Glutamin 100
Prolin 300
Caseinhydrolysat 500
2,4-Dichlorphenoxyessigsäure (2,4-D) 0,5
pH 5,8
Osmolarität 600 mosm
In den Beispielen werden die folgenden Methoden verwendet:
1. Clonierungsverfahren
Zur Clonierung in E.coli wurde der Vektor pBluescript II SK (Stratagene) verwendet.
2. Bakterienstämme
Für den Bluescript-Vektor und für die pUSP-Konstrukte wurde der E.coli-Stamm DH5α (Bethesda Research Laborato­ ries, Gaithersburgh, USA) verwendet. Für die in vivo excision wurde der E.coli-Stamm XL1-Blue verwendet.
3. Transformation von Mais (a) Herstellung von Protoplasten der Zellinie DSM 6009 Protoplastenisolierung
2-4 Tage, vorzugsweise 3 Tage nach dem letzten Me­ diumswechsel einer Protoplastensuspensionskultur wird das Flüssigmedium abgesaugt und die zurückbleibenden Zellen mit 50 ml Protoplastenwaschlösung 1 gespült und nochmals trockengesaugt. Zu jeweils 2 g der geernteten Zellmasse wird 10 ml Protoplastenisolierungsmedium ge­ geben. Die resuspendierten Zellen und Zellaggregate werden bei 27 ± 2°C unter leichtem Schütteln (30 bis 40 rpm) 4 bis 6 h im Dunkeln inkubiert.
Protoplastenreinigung
Sobald die Freisetzung von mindestens 1 Mio. Protopla­ sten/ml erfolgt ist (mikroskopische Beobachtung), wird die Suspension durch ein Edelstahl- und Nylonsieb von 200 bzw. 45 µm Maschenwerte gesiebt. Die Kombination eines 100 µm und eines 60 µm Siebs ermöglicht die Ab­ trennung der Zellaggregate genauso gut. Das protopla­ stenhaltige Filtrat wird mikroskopisch beurteilt. Üb­ licherweise enthält es 98-99% Protoplasten. Der Rest sind unverdaute Einzelzellen. Protoplastenpräpa­ rationen mit diesem Reinheitsgrad werden ohne zusätz­ liche Gradientenzentrifugation für Transformationsex­ perimente verwendet. Durch Zentrifugation (100 UpM im Aufschwingrotor (100 × g, 3 min) werden die Protopla­ sten sedimentiert. Der Überstand wird verworfen und die Protoplasten in Waschlösung 1 resuspendiert. Die Zentrifugation wird wiederholt und die Protoplasten danach im Transformationspuffer resuspendiert.
(b) Protoplastentransformation
Die in Transformationspuffer resuspendierten Protopla­ sten werden bei einem Titer von 0,5-1×10⁶ Proto­ plasten/ml in 10 ml Portionen in 50 ml Polyallomer-Röhrchen eingefüllt. Die zur Transformation verwendete DNA wird in Tris-EDTA (TE) Puffer gelöst. Pro ml Pro­ toplastensuspension werden 20 µg Plasmid-DNA zugege­ ben. Als Vektor wird dabei ein Phosphinotricinresi­ stenz vermittelndes Plasmid verwendet (vgl. z. B. EP 0 513 849). Nach der DNA-Zugabe wird die Protopla­ stensuspension vorsichtig geschüttelt, um die DNA ho­ mogen in der Lösung zu verteilen. Sofort danach wird tropfenweise 5 ml PEG-Lösung zugetropft.
Durch vorsichtiges Schwenken der Röhrchen wird die PEG-Lösung homogen verteilt. Danach werden nochmals 5 ml PEG-Lösung zugegeben und das homogene Durchmischen wiederholt. Die Protoplasten verbleiben 20 min der PEG-Lösung bei ± 2°C. Danach werden die Protoplasten durch 3-minütiges Zentrifugieren (100 g; 1000 Upm) se­ dimentiert. Der Überstand wird verworfen. Die Proto­ plasten werden durch vorsichtiges Schütteln in 20 ml W5-Lösung gewaschen und danach erneut zentrifugiert. Danach werden sie in 20 ml Protoplastenkulturmedium resuspendiert, nochmals zentrifugiert und erneut in Kulturmedium resuspendiert. Der Titer wird auf 6 - 8 × 10⁵ Protoplasten/ml eingestellt und die Protoplasten in 3 ml Portionen in Petrischalen (⌀ 60 mm, Höhe 15 mm) kultiviert. Die mit Parafilm versiegelten Petri­ schalen werden bei 25 ± 2°C im Dunkeln aufgestellt.
(c) Protoplastenkultur
Während der ersten 2-3 Wochen nach der Protopla­ stenisolierung und -transformation werden die Proto­ plasten ohne Zugabe von frischem Medium kultiviert. Sobald sich die aus den Protoplasten regenerierten Zellen zu Zellaggregaten mit mehr als 20-50 Zellen entwickelt haben, wird 1 ml frisches Protoplastenkul­ turmedium zugegeben, das als Osmoticum Saccharose (90 g/l) enthält.
(d) Selektion transformierter Maiszellen und Pflanzenrege­ neration
3-10 Tage nach der Zugabe von frischem Medium können die aus Protoplasten entstandenen Zellaggregate auf Agar-Medien mit 100 mg/1 L-Phosphinothricin plattiert werden. N6-Medium mit den Vitaminen des Protoplasten­ kulturmediums, 90 g/l Saccharose und 1,0 mg/l 2,4D ist ebenso geeignet wie ein analoges Medium beispielsweise mit den Makro- und Mikronährsalzen des MS-Mediums (Murashige und Skoog (1962), siehe oben).
Auf dem Selektivmedium können die aus stabil transfor­ mierten Protoplasten hervorgegangenen Kalli ungehin­ dert weiterwachsen. Nach 3-5 Wochen, vorzugsweise 4 Wochen können die transgenen Kalli auffrisches Selek­ tionsmedium transferiert werden, welches ebenfalls 100 mg/l L-Phosphinothricin enthält, das aber kein Auxin mehr enthält. Innerhalb von 3-5 Wochen differenzie­ ren ca. 50% der transgenen Maiskalli, die das L-Phos­ phinothricinacetyltransferase-Gen in ihr Genom inte­ griert haben, auf diesem Medium in Gegenwart von L-Phosphinothricin erste Pflanzen.
(e) Aufzucht transgener Regeneratpflanzen
Das embryogene transformierte Maisgewebe wird auf hor­ monfreiem N6-Medium (Chu C.C. et al., Sci. Sin. 16 (1975) , 659) in Gegenwart von 5×10-4 M L-Phosphinothri­ cin kultiviert. Auf diesem Medium entwickeln sich Maisembryonen, die das Phsphinothricinacetyltransfe­ rase-Gen (PAT-Gen) hinreichend stark exprimieren, zu Pflanzen. Nicht transformierte Embryonen oder solche mit nur sehr schwacher PAT-Aktivität sterben ab. So­ bald die Blätter der in vitro-Pflanzen eine Länge von 4-6 mm erreicht haben, können diese in Erde transfe­ riert werden. Nach Abwaschen von Agarresten an den Wurzeln werden die Pflanzen in ein Gemisch von Lehm, Sand, Vermiculit und Einheitserde im Verhältnis 3 : 1:1 : 1 gepflanzt und während der ersten 3 Tage nach dem Verpflanzen bei 90-100% relativer Luft feuchte an die Erdkultur adaptiert. Die Anzucht erfolgt in einer Klimakammer mit 14 h Lichtperiode ca. 25000 Lux in Pflanzenhöhe bei einer Tag/Nachttemperatur von 23 ± 1/17 ± 1°C. Die adaptierten Pflanzen werden bei einer Luftfeuchte von 65 ± 5% kultiviert.
4. Radioaktive Markierung von DNA-Fragmenten
Die radioaktive Markierung von DNA-Fragmenten wurde mit Hilfe eines DNA-Random Primer Labelling Kits der Firma Boehringer (Deutschland) nach den Angaben des Herstellers durchgeführt.
Beispiel 1 Identifizierung, Isolierung und Charakterisierung einer cDNA, die eine neue Isoform einer Stärkesynthase aus Zea mays co­ diert
Um eine neue lösliche Stärkesynthase aus Mais zu isolieren, wurden polyclonale Antikörper gegen Peptid 1 hergestellt.
Peptid 1: NH₂-GTGGLRDTVENC-COOH (Seq. ID No. 3)
Dieses Peptid wurde an den KLH-Carrier ("keyhole limpet ho­ mocyanin") gekoppelt und anschließend zur Herstellung polyclo­ naler Antikörper in Kaninchen verwendet (Eurogentec, Seraing, Belgien).
Der resultierende Antikörper wurde als anti-SSI bezeichnet. Der Antikörper anti-SSI wurde anschließend verwendet, um eine cDNA-Bibliothek aus Mais nach Sequenzen durchzumustern, die lösliche Stärkesynthasen aus Mais codieren. Hierfür wurde eine cDNA-Bibliothek aus Endosperm-polyA⁺ RNA, angelegt im Vektor λ-ZAP, verwendet. Zur Analyse der Phagenplaques wurden diese auf Nitrozellulosefilter übertragen, die vorher für 30-60 min. in einer 10 mM IPTG-Lösung inkubiert und anschließend auf Filter­ papier getrocknet wurden. Der Transfer erfolgte für 3 h bei 37°C. Anschließend wurden die Filter für 30 min. bei Raumtem­ peratur in Blockreagenz inkubiert und zweimal für 5-10 min. in TBST-Puffer gewaschen. Die Filter wurden mit dem polyclonalen Antikörper anti-SS1 in geeigneter Verdünnung für 1 h bei Raum­ temperatur oder für 16 h bei 4°C geschüttelt. Die Identifizie­ rung von Plaques, die ein Protein exprimierten, das von dem Antikörper anti-SS1 erkannt wurde, erfolgte mit Hilfe des "Blotting detection kit for rabbit antibodies RPN 23" (Amersham UK) nach den Angaben des Herstellers. Phagenclone der cDNA-Bibliothek, die ein Protein exprimierten, das von dem Antikörper anti-SS1 erkannt wurde, wurden unter Anwendung von Standardverfahren weiter gereinigt. Mit Hilfe der in vivo excision-Methode (Stratagene) wurden von positiven Phagenclonen E.coli-Clone gewonnen, die ein doppelsträngiges pBlueskript II SK-Plasmid mit der jeweiligen cDNA-Insertion zwischen der EcoRI- und der Xho I-Schnittstelle des Polylinkers enthalten. Nach Überprüfung der Größe und des Restriktionsmu­ sters der Insertionen wurde ein geeigneter Clon einer Sequenz­ analyse unterzogen.
Beispiel 2 Sequenzanalyse der cDNA-Insertion des Plasmids pSSS1
Aus einem entsprechend Beispiel 1 erhaltenen E. coli-Clon wurde das Plasmid pSSS1 isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxynucleotidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist 2383 bp lang und stellt eine partielle cDNA dar. Die Nucleotidsequenz ist unter Seq ID No. 1 angegeben. Die korrespondierende Aminosäuresequenz ist unter Seq ID No. 2 dargestellt.
Eine Sequenzanalyse und ein Sequenzvergleich mit bekannten Se­ quenzen zeigte, daß die unter Seq ID No. 1 dargestellte Se­ quenz neu ist und eine neue lösliche Stärkesynthase des Typs I Aus Mais codiert. Die partielle codierende Region weist Homo­ logie zu Stärkesynthasen aus verschiedenen Organismen auf, insbesondere zu einer Stärksynthase aus Reis. Das durch diese cDNA-Insertion oder durch hybridisierende Sequenzen codierte Protein wird im Rahmen dieser Anmeldung als SSS1Zm bezeichnet. Mit Hilfe dieser partiellen cDNA-Sequenz ist es für eine in der Molekularbiologie erfahrene Person ohne weiteres möglich, die gesamte codierende Region enthaltende Vollängenclone zu isolieren und ihre Sequenzen zu bestimmen. Dazu wird z. B. eine blattspezifische cDNA-Expressionsbank aus Zea mays, Linie B73 (Stratagene GmbH, Heidelberg), nach Standardverfahren mittels Hybridisierung mit einem 5′-Fragment der cDNA-Insertion des Plasmids pSSS1 (200 bp) auf Vollängen-Clone hin durchgemustert. So erhaltene Clone werden sodann sequenziert. Eine andere Möglichkeit zum Erhalt der noch fehlenden 5′-ter­ minal gelegenen Sequenzen besteht in der Anwendung der 5′-Race Methode (Stratagene o. vgl. Hersteller).
SEQUENZPROTOKOLL

Claims (22)

1. Nucleinsäuremolekül, codierend ein Protein aus Mais mit der biologischen Aktivität einer Stärkesynthase des Typs I, ausgewählt aus der Gruppe bestehend aus
  • (a) Nucleinsäuremolekülen, die ein Protein codieren, das die unter Seq ID No. 2 angegebene Aminosäuresequenz umfaßt;
  • (b) Nucleinsäuremolekülen, die die unter Seq ID No. 1 dar­ gestellte Nucleotidsequenz umfassen oder eine komple­ mentäre Sequenz oder eine korrespondierende Ribonucleo­ tidsequenz;
  • (c) Nucleinsäuremolekülen, deren einer Strang mit den unter (a) oder (b) genannten Nucleinsäuremolekülen hybridi­ siert; und
  • (d) Nucleinsäuremolekülen, deren Nucleotidsequenz aufgrund der Degeneration des genetisches Codes von der Sequenz der unter (a), (b) oder (c) genannten Nucleinsäuremole­ küle abweicht.
2. Nucleinsäuremolekül nach Anspruch 1, das ein DNA-Molekül ist.
3. DNA-Molekül nach Anspruch 2, das ein cDNA-Molekül ist.
4. Nucleinsäuremolekül nach Anspruch 1, das ein RNA-Molekül ist.
5. Oligonucleotid, das spezifisch mit einem Nucleinsäuremole­ kül nach einem der Ansprüche 1 bis 4 hybridisiert.
6. Vektor, enthaltend ein DNA-Molekül nach einem der Ansprüche 1 bis 3.
7. Vektor nach Anspruch 6, wobei das DNA-Molekül in sense- Orientierung mit regulatorischen Elementen verknüpft ist, die die Transkription und Synthese einer translatierbaren RNA in pro- oder eukaryontischen Zellen gewährleisten.
8. Wirtszelle, die mit einem Nucleinsäuremolekül nach einem der Ansprüche 1 bis 4 oder einem Vektor nach Anspruch 6 oder 7 transformiert ist oder von einer solchen Zelle ab­ stammt.
9. Protein oder biologisch aktives Fragment davon, codiert durch ein Nucleinsäuremolekül nach einem der Ansprüche 1 bis 4.
10. Verfahren zur Herstellung eines Proteins nach Anspruch 9 oder eines biologisch aktiven Fragmentes davon, bei dem eine Wirtszelle nach Anspruch 8 unter Bedingungen kulti­ viert wird, die die Synthese des Proteins erlauben, und das Protein aus den kultivierten Zellen und/oder dem Kul­ turmedium isoliert wird.
11. Transgene Pflanzenzelle, die mit einem Nucleinsäuremolekül nach einem der Ansprüche 1 bis 4 oder einem Vektor nach Anspruch 6 oder 7 transformiert wurde oder die von einer solchen Zelle abstammt, wobei das Nucleinsäuremolekül, das das Protein mit der biologischen Aktivität einer Stärke­ synthase codiert, unter der Kontrolle regulatorischer Ele­ mente steht, die die Transkription einer translatierbaren mRNA in pflanzlichen Zellen erlauben.
12. Pflanze, enthaltend Pflanzenzellen nach Anspruch 11.
13. Pflanze nach Anspruch 12, die eine Nutzpflanze ist.
14. Pflanze nach Anspruch 13, die eine stärkespeichernde Pflanze ist.
15. Pflanze nach Anspruch 14, die eine Maispflanze ist.
16. Vermehrungsmaterial einer Pflanze nach einem der Ansprüche 12 bis 15, enthaltend Pflanzenzellen nach Anspruch 11.
17. Stärke, erhältlich aus einer Pflanze nach einem der Ansprüche 12 bis 15 oder aus Vermehrungsmaterial nach Anspruch 16.
18. Transgene Maispflanzenzelle, dadurch gekennzeichnet, daß in dieser Pflanzenzelle die Aktivität eines Proteins nach Anspruch 9 verringert ist.
19. Maispflanzenzelle nach Anspruch 18, wobei die Reduktion der Aktivität in dieser Zelle durch die Expression einer antisense-RNA zu Transkripten eines DNA-Moleküls nach An­ spruch 1 erreicht wird.
20. Maispflanze, enthaltend Pflanzenzellen nach Anspruch 18 oder 19.
21. Vermehrungsmaterial einer Maispflanze nach Anspruch 20, enthaltend Zellen nach Anspruch 18 oder 19.
22. Stärke, erhältlich aus Maispflanzen nach Anspruch 20 oder aus Vermehrungsmaterial nach Anspruch 21.
DE19619918A 1996-05-17 1996-05-17 Nucleinsäuremoleküle codierend lösliche Stärkesynthasen aus Mais Withdrawn DE19619918A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE19619918A DE19619918A1 (de) 1996-05-17 1996-05-17 Nucleinsäuremoleküle codierend lösliche Stärkesynthasen aus Mais
CA002255538A CA2255538A1 (en) 1996-05-17 1997-05-16 Nucleic acid molecules coding soluble maize starch synthases
EP97923925A EP0904389A1 (de) 1996-05-17 1997-05-16 Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais
AU29569/97A AU725197C (en) 1996-05-17 1997-05-16 Nucleic acid molecules encoding soluble starch synthases from maize
JP09541510A JP2000511049A (ja) 1996-05-17 1997-05-16 トウモロコシ由来可溶性デンプン合成酵素をコードする核酸分子
KR1019980709492A KR20000011160A (ko) 1996-05-17 1997-05-16 가용성 옥수수 전분 신타아제를 코딩하는 핵산분자
PCT/EP1997/002527 WO1997044472A1 (de) 1996-05-17 1997-05-16 Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais
US09/192,909 US6307124B1 (en) 1996-05-17 1998-11-16 Nucleic acid molecules encoding soluble starch synthases from maize
US09/931,297 US6635804B2 (en) 1996-05-17 2001-08-16 Nucleic acid molecules encoding soluble starch synthases from maize

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19619918A DE19619918A1 (de) 1996-05-17 1996-05-17 Nucleinsäuremoleküle codierend lösliche Stärkesynthasen aus Mais

Publications (1)

Publication Number Publication Date
DE19619918A1 true DE19619918A1 (de) 1997-11-20

Family

ID=7794573

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19619918A Withdrawn DE19619918A1 (de) 1996-05-17 1996-05-17 Nucleinsäuremoleküle codierend lösliche Stärkesynthasen aus Mais

Country Status (7)

Country Link
US (2) US6307124B1 (de)
EP (1) EP0904389A1 (de)
JP (1) JP2000511049A (de)
KR (1) KR20000011160A (de)
CA (1) CA2255538A1 (de)
DE (1) DE19619918A1 (de)
WO (1) WO1997044472A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19820607A1 (de) * 1998-05-08 1999-11-11 Hoechst Schering Agrevo Gmbh Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
DE19937348A1 (de) * 1999-08-11 2001-02-22 Aventis Cropscience Gmbh Nukleinsäuremoleküle aus Pflanzen codierend Enzyme, die an der Stärkesynthese beteiligt sind

Families Citing this family (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69737448T2 (de) * 1996-05-29 2007-11-15 Bayer Cropscience Ag Nukleinsäuremoleküle, die für enzyme aus weizen kodieren, welche an der stärkesynthese beteiligt sind
US6635756B1 (en) 1998-06-15 2003-10-21 National Starch And Chemical Investment Holding Corporation Starch obtainable from modified plants
US6392120B1 (en) 1998-07-28 2002-05-21 E. I. Du Pont De Nemours And Company Modification of starch biosynthetic enzyme gene expression to produce starches in grain crops
DE19836098A1 (de) 1998-07-31 2000-02-03 Hoechst Schering Agrevo Gmbh Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke
CL2007003743A1 (es) * 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende fenamidona y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
CL2007003744A1 (es) * 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende un derivado 2-piridilmetilbenzamida y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
EP1969929A1 (de) 2007-03-12 2008-09-17 Bayer CropScience AG Substituierte Phenylamidine und deren Verwendung als Fungizide
BRPI0808786A2 (pt) 2007-03-12 2014-09-16 Bayer Cropscience Ag Di-halogenofenoxifenilamidinas e seu uso como fungicidas
EP1969930A1 (de) 2007-03-12 2008-09-17 Bayer CropScience AG Phenoxyphenylamidine und deren Verwendung als Fungizide
US20100167926A1 (en) 2007-03-12 2010-07-01 Bayer Cropscience Ag 3-substituted phenoxyphenylamidines and use thereof as fungicides
EP1969934A1 (de) 2007-03-12 2008-09-17 Bayer CropScience AG 4-Cycloalkyl-oder 4-arylsubstituierte Phenoxyphenylamidine und deren Verwendung als Fungizide
EP1969931A1 (de) * 2007-03-12 2008-09-17 Bayer CropScience Aktiengesellschaft Fluoalkylphenylamidine und deren Verwendung als Fungizide
BRPI0808798A2 (pt) * 2007-03-12 2014-10-07 Bayer Cropscience Ag Fenoxifenilamidinas 3,5-dissubstituídas e seu uso como fungicidas
JP2010524869A (ja) * 2007-04-19 2010-07-22 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト チアジアゾリルオキシフェニルアミジンおよび殺菌剤としてのこれらの使用
EP2036983A1 (de) 2007-09-12 2009-03-18 Bayer CropScience AG Pflanzen, die erhöhte Mengen an Glucosaminglycanen synthetisieren
DE102007045953B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045920B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistische Wirkstoffkombinationen
DE102007045922A1 (de) 2007-09-26 2009-04-02 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045919B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045956A1 (de) 2007-09-26 2009-04-09 Bayer Cropscience Ag Wirkstoffkombination mit insektiziden und akariziden Eigenschaften
EP2090168A1 (de) 2008-02-12 2009-08-19 Bayer CropScience AG Methode zur Verbesserung des Pflanzenwachstums
EP2072506A1 (de) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine oder Thiadiazolyloxyphenylamidine und deren Verwendung als Fungizide
EP2168434A1 (de) 2008-08-02 2010-03-31 Bayer CropScience AG Verwendung von Azolen zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress
KR20110044900A (ko) 2008-08-14 2011-05-02 바이엘 크롭사이언스 아게 살충성 4-페닐-1h-피라졸
DE102008041695A1 (de) * 2008-08-29 2010-03-04 Bayer Cropscience Ag Methoden zur Verbesserung des Pflanzenwachstums
EP2201838A1 (de) 2008-12-05 2010-06-30 Bayer CropScience AG Wirkstoff-Nützlings-Kombinationen mit insektiziden und akariziden Eigenschaften
EP2198709A1 (de) 2008-12-19 2010-06-23 Bayer CropScience AG Verfahren zur Bekämpfung resistenter tierischer Schädlinge
EP2223602A1 (de) 2009-02-23 2010-09-01 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials genetisch modifizierter Pflanzen
WO2010075966A1 (de) 2008-12-29 2010-07-08 Bayer Cropscience Ag Verfahren zur verbesserten nutzung des produktionspotentials genetisch modifizierter pflanzen
EP2204094A1 (de) 2008-12-29 2010-07-07 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
EP2039770A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039771A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039772A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
KR20110106448A (ko) 2009-01-19 2011-09-28 바이엘 크롭사이언스 아게 사이클릭 디온 및 살충제, 살비제 및/또는 살진균제로서의 그의 용도
EP2227951A1 (de) 2009-01-23 2010-09-15 Bayer CropScience AG Verwendung von Enaminocarbonylverbindungen zur Bekämpfung von durch Insekten übertragenen Viren
ES2406131T3 (es) 2009-01-28 2013-06-05 Bayer Intellectual Property Gmbh Derivados fungicidas de N-cicloalquil-N-biciclometileno-carboxamina
AR075126A1 (es) 2009-01-29 2011-03-09 Bayer Cropscience Ag Metodo para el mejor uso del potencial de produccion de plantas transgenicas
EP2218717A1 (de) 2009-02-17 2010-08-18 Bayer CropScience AG Fungizide N-((HET)Arylethyl)Thiocarboxamid-Derivative
CN102317259B (zh) 2009-02-17 2015-12-02 拜尔农科股份公司 杀真菌n-(苯基环烷基)羧酰胺,n-(苄基环烷基)羧酰胺和硫代羧酰胺衍生物
TW201031331A (en) 2009-02-19 2010-09-01 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
DE102009001469A1 (de) 2009-03-11 2009-09-24 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001681A1 (de) 2009-03-20 2010-09-23 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001730A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001732A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001728A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EA020314B9 (ru) 2009-03-25 2015-03-31 Байер Кропсайенс Аг Пестицидная комбинация биологически активных веществ
EP2232995A1 (de) 2009-03-25 2010-09-29 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
JP5462354B2 (ja) 2009-03-25 2014-04-02 バイエル・クロップサイエンス・アーゲー 殺虫特性及び殺ダニ特性を有する活性成分組合せ
EP2239331A1 (de) 2009-04-07 2010-10-13 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
JP5771189B2 (ja) 2009-05-06 2015-08-26 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH シクロペンタンジオン化合物、ならびにこの殺虫剤、殺ダニ剤および/または抗真菌剤としての使用
EP2251331A1 (de) 2009-05-15 2010-11-17 Bayer CropScience AG Fungizide Pyrazolcarboxamid-Derivate
AR076839A1 (es) 2009-05-15 2011-07-13 Bayer Cropscience Ag Derivados fungicidas de pirazol carboxamidas
EP2255626A1 (de) 2009-05-27 2010-12-01 Bayer CropScience AG Verwendung von Succinat Dehydrogenase Inhibitoren zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress
PL2437595T3 (pl) * 2009-06-02 2019-05-31 Bayer Cropscience Ag Zastosowanie fluopyramu do zwalczania Sclerotinia ssp.
EP2453750A2 (de) 2009-07-16 2012-05-23 Bayer CropScience AG Synergistische wirkstoffkombinationen mit phenyltriazolen
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
EP2292094A1 (de) 2009-09-02 2011-03-09 Bayer CropScience AG Wirkstoffkombinationen
EP2343280A1 (de) 2009-12-10 2011-07-13 Bayer CropScience AG Fungizid-Chinolinderivate
BR112012012340A2 (pt) 2009-12-28 2015-09-08 Bayer Cropscience Ag composto, composição fungicida e método para o controle de fungo fitopatogênico de culturas
JP5782658B2 (ja) 2009-12-28 2015-09-24 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 殺菌剤ヒドロキシモイル−テトラゾール誘導体
TWI528898B (zh) 2009-12-28 2016-04-11 拜耳知識產權公司 殺真菌劑肟醯基(hydroximoyl)-雜環衍生物
WO2011089071A2 (de) 2010-01-22 2011-07-28 Bayer Cropscience Ag Akarizide und/oder insektizide wirkstoffkombinationen
US20110218103A1 (en) 2010-03-04 2011-09-08 Bayer Cropscience Ag Fluoroalkyl-substituted 2-amidobenzimidazoles
EP2555619A2 (de) 2010-04-06 2013-02-13 Bayer Intellectual Property GmbH Verwendung der 4-phenylbuttersäure und/oder ihrer salze zur steigerung der stresstoleranz in pflanzen
BR112012025848A2 (pt) 2010-04-09 2015-09-08 Bayer Ip Gmbh uso de derivados do ácido (1-cianociclopropil) fenilfosfínico, os ésteres do mesmo e/ou os sais do mesmo para aumentar a tolerância de plantas a estresse abiótico.
WO2011134913A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
JP2013525400A (ja) 2010-04-28 2013-06-20 バイエル・クロップサイエンス・アーゲー 殺菌剤ヒドロキシモイル−複素環誘導体
ES2532971T3 (es) 2010-06-03 2015-04-06 Bayer Intellectual Property Gmbh N-[(het)arilalquil)]pirazol (tio)carboxamidas y sus análogos heterosustituidos
JP5730992B2 (ja) 2010-06-03 2015-06-10 バイエル・クロップサイエンス・アーゲーBayer Cropscience Ag N−[(ヘタ)アリールエチル)]ピラゾール(チオ)カルボキサミド類及びそれらのヘテロ置換された類似体
UA110703C2 (uk) 2010-06-03 2016-02-10 Байєр Кропсайнс Аг Фунгіцидні похідні n-[(тризаміщений силіл)метил]-карбоксаміду
AU2011264075B2 (en) 2010-06-09 2015-01-29 Bayer Cropscience Nv Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
EP2580336B1 (de) 2010-06-09 2017-05-10 Bayer CropScience NV Verfahren und vorrichtung zur modifizierung eines pflanzengenoms bei einer häufig für pflanzengenommanipulation verwendeten nukleotidsequenz
WO2012010579A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
PL2611300T3 (pl) 2010-09-03 2016-10-31 Podstawione skondensowane pochodne dihydropirymidynonów
BR112013006612A2 (pt) 2010-09-22 2017-10-24 Bayer Ip Gmbh uso de agentes de controle biológico ou químico para controle de insetos e nematódeos em culturas resistentes
EP2460406A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Verwendung von Fluopyram zum Steuern von Nematoden in nematodresistentem Pflanzen
CN103338638B (zh) 2010-10-07 2016-04-06 拜尔农科股份公司 包含四唑基肟衍生物和噻唑基哌啶衍生物的杀真菌剂组合物
UA107865C2 (ru) 2010-10-21 2015-02-25 Байєр Інтелекчуал Проперті Гмбх Гетероциклические карбоксамиды
KR20130132816A (ko) 2010-10-21 2013-12-05 바이엘 인텔렉쳐 프로퍼티 게엠베하 1-(헤테로시클릭 카르보닐) 피페리딘
MX2013004878A (es) 2010-11-02 2013-07-02 Bayer Ip Gmbh N-hetarilmetil pirazolilcarboxamidas.
EP2640191A1 (de) 2010-11-15 2013-09-25 Bayer Intellectual Property GmbH 5-halogenopyrazol(thio)carboxamide
MX2013005258A (es) 2010-11-15 2013-07-05 Bayer Ip Gmbh N-aril pirazol(tio)carboxamidas.
CN107266368A (zh) 2010-11-15 2017-10-20 拜耳知识产权有限责任公司 5‑卤代吡唑甲酰胺
EP2460407A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Wirkstoffkombinationen umfassend Pyridylethylbenzamide und weitere Wirkstoffe
EP2645856A1 (de) 2010-12-01 2013-10-09 Bayer Intellectual Property GmbH Verwendung von fluopyram zur bekämpfung von nematoden bei kulturpflanzen und zur erhöhung des ernteertrags
EP2474542A1 (de) 2010-12-29 2012-07-11 Bayer CropScience AG Fungizide Hydroximoyl-Tetrazol-Derivate
EP2658853A1 (de) 2010-12-29 2013-11-06 Bayer Intellectual Property GmbH Hydroximoyl-tetrazol-derivate als fungizide
EP2471363A1 (de) 2010-12-30 2012-07-04 Bayer CropScience AG Verwendung von Aryl-, Heteroaryl- und Benzylsulfonamidocarbonsäuren, -carbonsäureestern, -carbonsäureamiden und -carbonitrilen oder deren Salze zur Steigerung der Stresstoleranz in Pflanzen
EP2494867A1 (de) 2011-03-01 2012-09-05 Bayer CropScience AG Halogen-substituierte Verbindungen in Kombination mit Fungiziden
CA2823999C (en) 2011-03-10 2020-03-24 Bayer Intellectual Property Gmbh Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
BR112013023502A2 (pt) 2011-03-14 2016-08-02 Bayer Ip Gmbh composto fórmula (i), composição fungicida, método para o controle de fungos fitopatogênicos de culturas, utilização dos compostos de fórmula (i) e processo para a produção das composições
JP2014512358A (ja) 2011-04-08 2014-05-22 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 殺菌剤ヒドロキシモイル−テトラゾール誘導体
AR085585A1 (es) 2011-04-15 2013-10-09 Bayer Cropscience Ag Vinil- y alquinilciclohexanoles sustituidos como principios activos contra estres abiotico de plantas
EP2511255A1 (de) 2011-04-15 2012-10-17 Bayer CropScience AG Substituierte Prop-2-in-1-ol- und Prop-2-en-1-ol-Derivate
AR085568A1 (es) 2011-04-15 2013-10-09 Bayer Cropscience Ag 5-(biciclo[4.1.0]hept-3-en-2-il)-penta-2,4-dienos y 5-(biciclo[4.1.0]hept-3-en-2-il)-pent-2-en-4-inos sustituidos como principios activos contra el estres abiotico de las plantas
AR090010A1 (es) 2011-04-15 2014-10-15 Bayer Cropscience Ag 5-(ciclohex-2-en-1-il)-penta-2,4-dienos y 5-(ciclohex-2-en-1-il)-pent-2-en-4-inos sustituidos como principios activos contra el estres abiotico de las plantas, usos y metodos de tratamiento
HUE043158T2 (hu) 2011-04-22 2019-08-28 Bayer Cropscience Ag (Tio)karboxamid-származékot és fungicid vegyületet tartalmazó hatóanyag készítmények
WO2012168124A1 (en) 2011-06-06 2012-12-13 Bayer Cropscience Nv Methods and means to modify a plant genome at a preselected site
JP2014520776A (ja) 2011-07-04 2014-08-25 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 植物における非生物的ストレスに対する活性薬剤としての置換されているイソキノリノン類、イソキノリンジオン類、イソキノリントリオン類およびジヒドロイソキノリノン類または各場合でのそれらの塩の使用
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
BR122014004140B8 (pt) 2011-08-22 2023-03-28 Bayer Cropscience Ag Vetor recombinante ou construção recombinante, bem como métodos para obter e produzir uma planta de algodão ou célula vegetal tolerante a um inibidor de hppd, e para cultivar um campo de plantas de algodão
EP2748161A1 (de) 2011-08-22 2014-07-02 Bayer Intellectual Property GmbH Hydroximoyl-tetrazol-derivate als fungizide
EP2561759A1 (de) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoralkyl-substituierte 2-amidobenzimidazole und ihre Wirkung auf das Pflanzenwachstum
WO2013034621A1 (en) 2011-09-09 2013-03-14 Bayer Intellectual Property Gmbh Acyl-homoserine lactone derivatives for improving plant yield
CN103874681B (zh) 2011-09-12 2017-01-18 拜耳知识产权有限责任公司 杀真菌性4‑取代的‑3‑{苯基[(杂环基甲氧基)亚氨基]甲基}‑1,2,4‑噁二唑‑5(4h)‑酮衍生物
AR087874A1 (es) 2011-09-16 2014-04-23 Bayer Ip Gmbh Uso de acilsulfonamidas para mejorar el rendimiento de las plantas
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
BR112014005990B1 (pt) 2011-09-16 2019-12-31 Bayer Ip Gmbh método para induzir uma resposta específica de regulação do crescimento de plantas
EP2757886A1 (de) 2011-09-23 2014-07-30 Bayer Intellectual Property GmbH Verwendung 4-substituierter 1-phenyl-pyrazol-3-carbonsäurederivate als wirkstoffe gegen abiotischen pflanzenstress
EP2764101B1 (de) 2011-10-04 2017-03-29 Bayer Intellectual Property GmbH Rnai zur bekämpfung von pilzen und eipilzen durch hemmung des saccharopin-dehydrogenase-gens
WO2013050324A1 (de) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Abiotischen pflanzenstress-reduzierende kombination enthaltend 4- phenylbuttersäure (4-pba) oder eines ihrer salze (komponente (a)) und eine oder mehrere ausgewählte weitere agronomisch wirksame verbindungen (komponente(n) (b)
EP2782920B1 (de) 2011-11-21 2016-12-21 Bayer Intellectual Property GmbH Fungizide n-[(trisubstituiertsilyl)methyl]-carboxamid-derivate
CN105906567B (zh) 2011-11-30 2019-01-22 拜耳知识产权有限责任公司 杀真菌的n-二环烷基和n-三环烷基(硫代)羧酰胺衍生物
AU2012357896B9 (en) 2011-12-19 2016-12-15 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
KR102028903B1 (ko) 2011-12-29 2019-10-07 바이엘 인텔렉쳐 프로퍼티 게엠베하 살진균 3-[(피리딘-2-일메톡시이미노)(페닐)메틸]-2-치환-1,2,4-옥사디아졸-5(2h)-온 유도체
CN104039769B (zh) 2011-12-29 2016-10-19 拜耳知识产权有限责任公司 杀真菌的3-[(1,3-噻唑-4-基甲氧基亚氨基)(苯基)甲基]-2-取代的-1,2,4-噁二唑-5(2h)-酮衍生物
PT2816897T (pt) 2012-02-22 2018-04-02 Bayer Cropscience Ag Utilização de fluopiram para controlar doenças da madeira em uvas
UA113198C2 (xx) 2012-02-27 2016-12-26 Комбінації активних сполук
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
US9357778B2 (en) 2012-04-12 2016-06-07 Bayer Cropscience Ag N-acyl-2-(cyclo)alkypyrrolidines and piperidines useful as fungicides
JP2015516396A (ja) 2012-04-20 2015-06-11 バイエル・クロップサイエンス・アーゲーBayer Cropscience Ag N−シクロアルキル−n−[(三置換シリルフェニル)メチレン]−(チオ)カルボキサミド誘導体
KR102062517B1 (ko) 2012-04-20 2020-01-06 바이엘 크롭사이언스 악티엔게젤샤프트 N-시클로알킬-n-[(헤테로시클릴페닐)메틸렌]-(티오)카르복사미드 유도체
WO2013160230A1 (en) 2012-04-23 2013-10-31 Bayer Cropscience Nv Targeted genome engineering in plants
EP2662362A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
EP2662361A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
EP2662364A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Tetrahydronaphthyl-Carboxamide
EP2662363A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Biphenyl-Carboxamide
EP2662370A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Benzofuranyl-Carboxamide
EP2662360A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Indanyl-Carboxamide
BR112014027644A2 (pt) 2012-05-09 2017-06-27 Bayer Cropscience Ag 5-halogenopirazol-indanil-carboxamidas
EP2847170B1 (de) 2012-05-09 2017-11-08 Bayer CropScience AG Pyrazol-indanyl-carboxamide
AR091104A1 (es) 2012-05-22 2015-01-14 Bayer Cropscience Ag Combinaciones de compuestos activos que comprenden un derivado lipo-quitooligosacarido y un compuesto nematicida, insecticida o fungicida
EP2871958A1 (de) 2012-07-11 2015-05-20 Bayer CropScience AG Verwendung von fungiziden kombinationen zur erhöhung der toleranz von pflanzen gegenüber abiotischem stress
EA201590482A1 (ru) 2012-09-05 2015-07-30 Байер Кропсайенс Аг Применение замещенных 2-амидобензимидазолов, 2-амидобензоксазолов и 2-амидобензотиазолов или их солей в качестве биологически активных веществ против абиотического стресса растений
MX363731B (es) 2012-10-19 2019-04-01 Bayer Cropscience Ag Metodo para tratar plantas frente a hongos resistentes a fungicidas usando derivados de carboxamida o tiocarboxamida.
MX2015004778A (es) 2012-10-19 2015-08-14 Bayer Cropscience Ag Metodo para mejorar la tolerancia al estres abiotico en plantas usando derivados de carboxamida o tiocarboxamida.
JP6153619B2 (ja) 2012-10-19 2017-06-28 バイエル・クロップサイエンス・アクチェンゲゼルシャフト カルボキサミド誘導体を含む活性化合物の組み合わせ
MX2015004773A (es) 2012-10-19 2015-08-14 Bayer Cropscience Ag Metodo de promocion de crecimiento de planta usando derivados de carboxamida.
EP2735231A1 (de) 2012-11-23 2014-05-28 Bayer CropScience AG Wirkstoffkombinationen
WO2014079957A1 (de) 2012-11-23 2014-05-30 Bayer Cropscience Ag Selektive inhibition der ethylensignaltransduktion
MX2015006327A (es) 2012-11-30 2015-10-05 Bayer Cropscience Ag Mezclas fungicidas ternarias.
BR112015012473A2 (pt) 2012-11-30 2017-07-11 Bayer Cropscience Ag misturas binárias pesticidas e fungicidas
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
JP6367214B2 (ja) 2012-11-30 2018-08-01 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 二成分殺菌剤混合物又は二成分殺害虫剤混合物
EA201500580A1 (ru) 2012-11-30 2016-01-29 Байер Кропсайенс Акциенгезельшафт Двойные фунгицидные смеси
EP2740356A1 (de) 2012-12-05 2014-06-11 Bayer CropScience AG Substituierte (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-insäure-Derivate
BR112015012926A2 (pt) 2012-12-05 2017-07-11 Bayer Cropscience Ag uso de 1-(aril etinil)-, 1-(heteroaril etinil)-, 1-(heterociclil etinil)- substituído e 1-(cicloalquenil etinil)-ciclohexanóis como agentes ativos contra o estresse abiótico da planta
EP2740720A1 (de) 2012-12-05 2014-06-11 Bayer CropScience AG Substituierte bicyclische- und tricyclische Pent-2-en-4-insäure -Derivate und ihre Verwendung zur Steigerung der Stresstoleranz in Pflanzen
AR093909A1 (es) 2012-12-12 2015-06-24 Bayer Cropscience Ag Uso de ingredientes activos para controlar nematodos en cultivos resistentes a nematodos
AR093996A1 (es) 2012-12-18 2015-07-01 Bayer Cropscience Ag Combinaciones bactericidas y fungicidas binarias
US9428459B2 (en) 2012-12-19 2016-08-30 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2014135608A1 (en) 2013-03-07 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives
US20160053274A1 (en) 2013-04-02 2016-02-25 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
MX2015014365A (es) 2013-04-12 2015-12-07 Bayer Cropscience Ag Derivados de triazol novedosos.
JP2016522800A (ja) 2013-04-12 2016-08-04 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 新規トリアゾリンチオン誘導体
CA2909725A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Aktiengesellschaft Method for improved utilization of the production potential of transgenic plants
EP2986117A1 (de) 2013-04-19 2016-02-24 Bayer CropScience Aktiengesellschaft Binäre insektizide oder pestizide mischung
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
TW201507722A (zh) 2013-04-30 2015-03-01 Bayer Cropscience Ag 做為殺線蟲劑及殺體內寄生蟲劑的n-(2-鹵素-2-苯乙基)-羧醯胺類
EP3013802B1 (de) 2013-06-26 2019-08-14 Bayer Cropscience AG N-cycloalkyl-n-[(bicyclylphenyl)methylen]-(thio)carboxamid-derivate
AU2014289341A1 (en) 2013-07-09 2016-01-28 Bayer Cropscience Aktiengesellschaft Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
CA2932484A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
AR101214A1 (es) 2014-07-22 2016-11-30 Bayer Cropscience Ag Ciano-cicloalquilpenta-2,4-dienos, ciano-cicloalquilpent-2-en-4-inas, ciano-heterociclilpenta-2,4-dienos y ciano-heterociclilpent-2-en-4-inas sustituidos como principios activos contra el estrés abiótico de plantas
AR103024A1 (es) 2014-12-18 2017-04-12 Bayer Cropscience Ag Piridoncarboxamidas seleccionadas o sus sales como sustancias activas contra estrés abiótico de las plantas
EP3283476B1 (de) 2015-04-13 2019-08-14 Bayer Cropscience AG N-cycloalkyl-n-[(biheterocyclylmethylen)-(thio)carboxamid-fungizide
AU2016279062A1 (en) 2015-06-18 2019-03-28 Omar O. Abudayyeh Novel CRISPR enzymes and systems
RU2019104918A (ru) 2016-07-29 2020-08-28 Байер Кропсайенс Акциенгезельшафт Комбинации активных соединений и способы защиты материала размножения растений
BR112019005668A2 (pt) 2016-09-22 2019-06-04 Bayer Ag novos derivados de triazol
WO2018054829A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives and their use as fungicides
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
US20190261630A1 (en) 2016-10-26 2019-08-29 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications
US20190387661A1 (en) 2016-12-08 2019-12-26 Bayer Cropscience Aktiengesellschaft Use of insecticides for controlling wireworms
WO2018108627A1 (de) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Verwendung substituierter indolinylmethylsulfonamide oder deren salze zur steigerung der stresstoleranz in pflanzen
EP3332645A1 (de) 2016-12-12 2018-06-13 Bayer Cropscience AG Verwendung substituierter pyrimidindione oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress
US11591601B2 (en) 2017-05-05 2023-02-28 The Broad Institute, Inc. Methods for identification and modification of lncRNA associated with target genotypes and phenotypes
WO2019025153A1 (de) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Verwendung von substituierten n-sulfonyl-n'-aryldiaminoalkanen und n-sulfonyl-n'-heteroaryldiaminoalkanen oder deren salzen zur steigerung der stresstoleranz in pflanzen
CA3073848A1 (en) 2017-09-21 2019-03-28 The Broad Institute, Inc. Systems, methods, and compositions for targeted nucleic acid editing
US10968257B2 (en) 2018-04-03 2021-04-06 The Broad Institute, Inc. Target recognition motifs and uses thereof
US20210323950A1 (en) 2018-06-04 2021-10-21 Bayer Aktiengesellschaft Herbicidally active bicyclic benzoylpyrazoles
CA3124110A1 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof
GB2608970A (en) * 2020-04-21 2023-01-18 Baker Hughes Oilfield Operations Llc Contact or proximity pad mounted sensor system for imaging cavity defects and delamination defects between layers in multilayered cylindrical structures
CN111848804A (zh) * 2020-07-15 2020-10-30 四川农业大学 玉米淀粉合成酶ssⅲ的多克隆抗体的制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349123A (en) * 1990-12-21 1994-09-20 Calgene, Inc. Glycogen biosynthetic enzymes in plants
SE467358B (sv) 1990-12-21 1992-07-06 Amylogene Hb Genteknisk foeraendring av potatis foer bildning av staerkelse av amylopektintyp
CA2061443C (en) 1992-02-18 2001-04-10 Richard G. F. Visser Potato plant producing essentially amylose-free starch
JP3495749B2 (ja) * 1992-07-07 2004-02-09 三井化学株式会社 可溶性のイネ澱粉合成酵素遺伝子及びその使用法
US5300145B1 (en) 1992-08-28 1995-11-28 Nat Starch Chem Invest Low amylopectin starch
DK0664835T3 (da) * 1992-10-14 2004-09-27 Syngenta Ltd Nye planter og fremgangsmåde til opnåelse af dem
GB9223454D0 (en) 1992-11-09 1992-12-23 Ici Plc Novel plants and processes for obtaining them
DE4330960C2 (de) * 1993-09-09 2002-06-20 Aventis Cropscience Gmbh Kombination von DNA-Sequenzen, die in Pflanzenzellen und Pflanzen die Bildung hochgradig amylosehaltiger Stärke ermöglichen, Verfahren zur Herstellung dieser Pflanzen und die daraus erhaltbare modifizierte Stärke
US5824790A (en) * 1994-06-21 1998-10-20 Zeneca Limited Modification of starch synthesis in plants
DE4441408A1 (de) * 1994-11-10 1996-05-15 Inst Genbiologische Forschung DNA-Sequenzen aus Solanum tuberosum kodierend Enzyme, die an der Stärkesynthese beteiligt sind, Plasmide, Bakterien, Pflanzenzellen und transgene Pflanzen enhaltend diese Sequenzen
GB9524938D0 (en) * 1995-12-06 1996-02-07 Zeneca Ltd Modification of starch synthesis in plants
GB9525353D0 (en) 1995-12-12 1996-02-14 Nat Starch Chem Invest Potato soluble starch synthase
DE19601365A1 (de) 1996-01-16 1997-07-17 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle aus Pflanzen codierend Enzyme, die an der Stärkesynthese beteiligt sind

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19820607A1 (de) * 1998-05-08 1999-11-11 Hoechst Schering Agrevo Gmbh Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
DE19937348A1 (de) * 1999-08-11 2001-02-22 Aventis Cropscience Gmbh Nukleinsäuremoleküle aus Pflanzen codierend Enzyme, die an der Stärkesynthese beteiligt sind
US6590141B1 (en) 1999-08-11 2003-07-08 Aventis Cropscience Gmbh Nucleic acid molecules from plants encoding enzymes which participate in starch synthesis

Also Published As

Publication number Publication date
AU725197B2 (en) 2000-10-05
US20020088023A1 (en) 2002-07-04
AU2956997A (en) 1997-12-09
EP0904389A1 (de) 1999-03-31
US6635804B2 (en) 2003-10-21
CA2255538A1 (en) 1997-11-27
WO1997044472A1 (de) 1997-11-27
KR20000011160A (ko) 2000-02-25
JP2000511049A (ja) 2000-08-29
US6307124B1 (en) 2001-10-23

Similar Documents

Publication Publication Date Title
EP0874908B1 (de) Nucleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
DE19619918A1 (de) Nucleinsäuremoleküle codierend lösliche Stärkesynthasen aus Mais
DE69737448T2 (de) Nukleinsäuremoleküle, die für enzyme aus weizen kodieren, welche an der stärkesynthese beteiligt sind
DE19709775A1 (de) Nucleinsäuremoleküle codierend Stärkephosphorylase aus Mais
EP1200615B8 (de) Nukleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
EP0791066B1 (de) Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle
EP1088082B1 (de) Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
DE69737507T2 (de) Neue nukleinsäuremoleküle aus mais und deren verwendung zur herstellung modifizierter stärke
EP0851934B1 (de) Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
DE19608918A1 (de) Nucleinsäuremoleküle, die neue Debranching-Enzyme aus Mais codieren
WO1999058688A2 (de) Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
WO1997042328A1 (de) Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren
EP1100931A2 (de) NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE $g(a)-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE
WO2000008184A1 (de) Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zur herstellung der pflanzen, ihre verwendung sowie die modifizierte stärke
DE19836099A1 (de) Nukleinsäuremoleküle kodierend für eine ß-Amylase, Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke
EP0813605A1 (de) Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung
DE19636917A1 (de) Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
DE19621588A1 (de) Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee