EP0904389A1 - Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais - Google Patents

Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais

Info

Publication number
EP0904389A1
EP0904389A1 EP97923925A EP97923925A EP0904389A1 EP 0904389 A1 EP0904389 A1 EP 0904389A1 EP 97923925 A EP97923925 A EP 97923925A EP 97923925 A EP97923925 A EP 97923925A EP 0904389 A1 EP0904389 A1 EP 0904389A1
Authority
EP
European Patent Office
Prior art keywords
nucleic acid
starch
plant
gly
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97923925A
Other languages
English (en)
French (fr)
Inventor
Jens Kossmann
Claus Frohberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Bioscience GmbH
Original Assignee
Planttec Biotechnologie GmbH Forschung and Entwicklung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Planttec Biotechnologie GmbH Forschung and Entwicklung filed Critical Planttec Biotechnologie GmbH Forschung and Entwicklung
Publication of EP0904389A1 publication Critical patent/EP0904389A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis

Definitions

  • the present invention relates to nucleic acid molecules that encode a form of soluble corn starch synthase. Furthermore, this invention relates to vectors, bacteria, and plant cells transformed with the nucleic acid molecules described, and plants regenerable therefrom. Furthermore, methods for the production of transgenic plants are described which, due to the introduction of DNA molecules which encode a soluble starch synthase from corn, synthesize a starch which has changed its properties.
  • the polysaccharide starch is a polymer made up of chemically uniform basic building blocks, the glucose molecules. However, this is a very complex mixture of different molecular forms which differ in their degree of polymerization and the occurrence of branches in the glucose chains. Starch is therefore not a uniform raw material.
  • amylose and Starch an essentially unbranched polymer of ⁇ -1,4-glycosidically linked glucose molecules, of the amylopectin starch, which in turn is a complex mixture of differently branched glucose chains.
  • the branches come about through the occurrence of additional ⁇ -1,6-glycosidic linkages.
  • the synthesized starch consists of approx.
  • the biochemical synthetic routes that lead to the build-up of starch are essentially known.
  • the starch synthesis in plant cells takes place in the plastids.
  • photosynthetically active tissues these are the chloroplasts, in photosynthetically inactive, starch-storing tissues, the amyloplasts.
  • starch synthases The most important enzymes involved in starch synthesis are starch synthases and branching enzymes. Various isoforms are described for starch synthases, all of which catalyze a polymerization reaction by transferring a glucosyl residue from ADP-glucose to ⁇ -1,4-glucans. Branching enzymes catalyze the introduction of ⁇ -1,6-branches into linear ⁇ -1,4-glucans.
  • Starch synthases can be divided into two classes: the starch-grain-bound starch synthases ("granule-bound starch synthases”; GBSS ⁇ and the soluble starch synthases ("soluble starch synthases”; SSS). This distinction cannot be clearly made in each case because some of the starch synthases 2> are both starch-bound and in soluble form (Denyer et al., Plant J. 4 (1993), 191-198; Mu et al., Plant J. 6 (1994), 151-159). Within these classes, different isoforms are described for different plant species, which differ in terms of their dependence on starter molecules (so-called “primer dependent” (type II) and “primer independent” (type I) starch synthases).
  • GBSS I is not only involved in the synthesis of amylose, but also has an influence on amylopectin synthesis.
  • mutants that have no GBSS I activity a certain fraction of the normally synthesized amylopectin, which has longer-chain glucans, is missing.
  • Gen Genet 203 (1986) 237-244) has been described (Shen et al, 1994, GenBank No. T14684), the derived amino acid sequence of which is very similar to the derived ammosaic sequence of GBSS II from pea (Dry et al., Plant J 2 (1992), 193-202) and » (Edwards et al., Plant J 8 (1995), 283-294) has nuclear acid sequences which code for further starch synthase isoforms from maize, however, have not yet been available.
  • cDNA sequences coding for starch synthases other than GBSS I have so far only been used for pea (Dry et al., Plant J. 2 (1992), 193-202), rice (Baba et al., Plant Physiol 103 ( 1993), 565-573) and potato (Edwards et al., Plant J. 8 (1995), 283-294)
  • soluble starch synthases have also been identified in a number of other plant species. Soluble starch synthases are, for example, homogeneous from pea (Denyer and Smith, Planta 186 (1992), 609-617) and potato (Edwards et al., Plant J 8 (1995), 283-294) In these cases it was found that the isoform of soluble starch synthase identified as SSS II is identical to the starch synthase-bound starch synthase GBSS II (Denyer et al., Plant J. 4 ( 1993), 191-198; Edwards et al., Plant J. 8 (1995), 283-294).
  • the present invention is therefore based on the object of making available nucleic acid molecules which encode enzymes involved in starch biosynthesis and with them s
  • the present invention therefore relates to nucleic acid molecules which encode proteins with the biological activity of a soluble starch synthase of type I from maize, such molecules preferably encoding proteins which have the Seq ID no. 2 given amino acid sequence include.
  • the invention relates to nucleic acid molecules which are listed under Seq ID No. 1 or a part thereof, preferably molecules which contain the nucleotide sequence specified in Seq ID No. 1 indicated coding region comprise or corresponding ribonucleotide sequences.
  • the present invention further relates to nucleic acid molecules which encode a soluble starch synthase from maize and whose one strand hybridizes with one of the molecules described above or with a complementary strand of these molecules.
  • the invention also relates to nucleic acid molecules which encode a soluble starch synthase of type I from maize and whose sequence deviates from the nucleotide sequences of the molecules described above due to the degeneration of the genetic code.
  • the invention also relates to nucleic acid molecules which have a sequence which is complementary to all or part of the sequence of the abovementioned molecules.
  • the nucleic acid molecules according to the invention can be both DNA and RNA molecules.
  • Corresponding DNA molecules are, for example, genomic or cDNA molecules.
  • hybridization means hybridization under conventional hybridization conditions, preferably under stringent conditions, as described, for example, in Sambrock et al. , Molecular Cloning, A Laboratory Manual, 2nd ed. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).
  • nucleic acid molecules which hybridize with the nucleic acid molecules according to the invention can originate from any maize plant which has such molecules.
  • Nucleic acid molecules that hybridize with the molecules according to the invention can be isolated, for example, from genomic or from cDNA libraries of maize plants or maize plant tissue. Alternatively, they can be produced by genetic engineering methods or by chemical synthesis.
  • nucleic acid molecules can be identified and isolated using the molecules according to the invention or parts of these molecules or the reverse complements of these molecules, e.g. by means of hybridization according to standard methods (see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd edition Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).
  • hybridization sample e.g. Nucleic acid molecules are used which exactly or essentially those under Seq ID No. 1 indicated nucleotide sequence or parts of this sequence.
  • the fragments used as the hybridization sample can also be synthetic fragments which were produced with the aid of the usual synthetic techniques and whose sequence essentially corresponds to that of a nucleic acid molecule according to the invention. If genes which hybridize with the nucleic acid sequences according to the invention have been identified and isolated, a determination of the sequence and an analysis of the properties of the proteins coded by this sequence are necessary.
  • the molecules hybridizing with the nucleic acid molecules according to the invention also include fragments, derivatives and all variants of the nucleic acid molecules described above, which encode a soluble starch synthase according to the invention from maize. Fragments are understood to mean parts of the nucleic acid molecules that are long enough to encode one of the proteins described.
  • the term derivative in this context means that the sequences of these molecules are different differ from the sequences of the nucleic acid molecules described above at one or more positions and have a high degree of homology to these sequences.
  • Homology means a sequence identity of at least 40%, in particular an identity of at least 60%, preferably over 80% and particularly preferably over 90%.
  • the deviations from the nucleic acid molecules described above may have resulted from deletion, substitution, insertion or recombination.
  • nucleic acid molecules in question or the proteins encoded by them are usually variations of these molecules which are modifications which have the same biological function.
  • These can be both naturally occurring variations, for example sequences from other maize varieties, or mutations, wherein these mutations can have occurred naturally or have been introduced by targeted mutagenesis.
  • the variations can be synthetically produced sequences.
  • allelic variants can be both naturally occurring variants and synthetically produced variants or those produced by recombinant DNA techniques.
  • the proteins encoded by the different variants of the nucleic acid molecules according to the invention have certain common characteristics. For this, e.g. Enzyme activity, molecular weight, immunological reactivity, conformation etc. include, as well as physical properties such as the running behavior in gel electrophoresis, chromatographic behavior, sedimentation coefficient, solubility, spectroscopic properties, stability; pH optimum, temperature optimum, etc.
  • a starch synthase Important characteristics of a starch synthase are: i) its localization in the stroma of plastids in plant cells; ii) their ability to synthesize linear ⁇ -1,4 linked polyglucans using ADP-glucose as a substrate. This Q
  • the proteins encoded by the nucleic acid molecules according to the invention are a previously unidentified and characterized form of a soluble starch synthase from maize, which can be assigned to type I ("primer independent"). Such starch synthases or nucleic acid molecules which encode such proteins have not previously been described in maize.
  • the encoded protein has a certain homology to a soluble starch synthase from rice (Baba et al., Plant Physiol. 103 (1993), 565-573).
  • the invention also relates to oligonucleotides which hybridize specifically with a nucleic acid molecule according to the invention.
  • Such oligonucleotides preferably have a length of at least 10, in particular at least 15 and particularly preferably at least 50 nucleotides. They are characterized in that they hybridize specifically with nucleic acid molecules according to the invention, i.e. not or only to a very small extent with nucleic acid sequences that encode other proteins, in particular other starch synthases.
  • the oligonucleotides according to the invention can be used, for example, as primers for a PCR reaction. They can also be components of antisense constructs or of DNA molecules which code for suitable ribozymes.
  • the invention further relates to vectors, in particular plasmids, cosmids, viruses, bacteriophages and other vectors which are common in genetic engineering and which contain the nucleic acid molecules according to the invention described above.
  • the nucleic acid molecules contained in the vectors are linked to regulatory elements which ensure the transcription and synthesis of a translatable RNA in prokaryotic or eukaryotic cells.
  • nucleic acid molecules according to the invention in prokaryotic cells, for example in Escherichia coli, is interesting in that it is more accurate in this way 3
  • nucleic acid molecules according to the invention which results in the synthesis of proteins with possibly changed biological properties.
  • deletion mutants in which nucleic acid molecules are generated by progressive deletions from the 5 'or 3' end of the coding DNA sequence, which lead to the synthesis of correspondingly shortened proteins.
  • deletions at the 5 'end of the nucleotide sequence make it possible, for example, to identify amino acid sequences which are responsible for the translocation of the enzyme into the plastids (transit peptides). This makes it possible to specifically produce enzymes which are no longer localized in the plastids but instead in the cytosol by removing the corresponding sequences, or which are localized in other compartments due to the addition of other signal sequences.
  • the introduction of point mutations is also conceivable at positions in which a change in the amino acid sequence has an influence, for example on the enzyme activity or the regulation of the enzyme. In this way it is possible, for example, to produce mutants which have a changed K m value or which are no longer subject to the regulatory mechanisms normally present in the cell via allosteric regulation or covalent modification.
  • mutants can be produced which have a changed substrate or product specificity, such as, for example, mutants which use ADP-glucose-6-phosphate as the substrate instead of ADP-glucose. Mutants can also be produced Those who have a changed activity-temperature profile.
  • the nucleic acid molecules according to the invention or parts of these molecules can be introduced into plasmids which permit mutagenesis or a sequence change by recombination of DNA sequences.
  • base exchanges can be carried out or natural or synthetic sequences can be added.
  • adapters or linkers can be attached to the fragments.
  • Manipulations which provide suitable restriction sites or which remove superfluous DNA or restriction sites can also be used. Where insertions, deletions or substitutions are possible, in vitro mutagenesis, "primer repair", restriction or ligation can be used. Sequence analysis, restriction analysis and other biochemical-molecular-biological methods are generally carried out as the analysis method.
  • the invention relates to host cells, in particular prokaryotic or eukaryotic cells, which are transformed with a nucleic acid molecule according to the invention or a vector according to the invention described above, and cells which are derived from cells transformed in this way and contain a nucleic acid molecule or a vector according to the invention.
  • host cells in particular prokaryotic or eukaryotic cells, which are transformed with a nucleic acid molecule according to the invention or a vector according to the invention described above, and cells which are derived from cells transformed in this way and contain a nucleic acid molecule or a vector according to the invention.
  • host cells in particular prokaryotic or eukaryotic cells, which are transformed with a nucleic acid molecule according to the invention or a vector according to the invention described above, and cells which are derived from cells transformed in this way and contain a nucleic acid molecule or a vector according to the invention.
  • These are preferably bacterial cells or plant cells.
  • the invention further relates to the proteins which are encoded by the nucleic acid molecules according to the invention, and to processes for their production, a host cell according to the invention being cultivated under conditions which allow the synthesis of the protein, and then the protein from the cultivated cells and / or the culture medium is isolated.
  • the present invention thus also relates to transgenic plant cells which transform with a nucleic acid molecule according to the invention, i.e. were genetically modified, as well as transgenic plant cells derived from such transformed cells and containing nucleic acid molecules according to the invention.
  • nucleic acid molecules according to the invention it is now possible, using genetic engineering methods, to intervene in the starch metabolism of plants, as was previously not possible, and to change it in such a way that a modified starch is synthesized, for example in its physicochemical properties, in particular the amylose / amylopectin ratio, the degree of branching, the average chain length, the phosphate content, the gelatinization behavior, the starch grain size and / or the starch grain shape is changed compared to starch synthesized in wild-type plants.
  • a modified starch for example in its physicochemical properties, in particular the amylose / amylopectin ratio, the degree of branching, the average chain length, the phosphate content, the gelatinization behavior, the starch grain size and / or the starch grain shape is changed compared to starch synthesized in wild-type plants.
  • nucleic acid molecules according to the invention by methods known to the person skilled in the art in order to obtain starch synthases according to the invention which are no longer subject to the cell's own regulatory mechanisms or which have changed temperature dependencies or substrate or product specificities.
  • the cells according to the invention contain one according to the invention
  • Nucleic acid molecule this being preferably linked to regulatory DNA elements which ensure transcription in plant cells, in particular to a promoter.
  • Such cells can be distinguished from naturally occurring plant cells in that they contain a nucleic acid molecule according to the invention which does not naturally occur in these cells or in that such a molecule is integrated at a location in the genome of the cell where it does not otherwise occur , ie in a different genomic environment.
  • the nucleic acid molecules according to the invention are expressed in plants, there is in principle the possibility that the synthesized protein can be localized in any compartment of the plant cell.
  • sequence ensuring localization in plastids must be deleted and the remaining coding region may have to be linked to DNA sequences which ensure localization in the respective compartment.
  • sequences are known (see for example Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al ., Plant J. 1 (1991), 95-106).
  • the present invention also relates to plants which contain cells according to the invention. These can be obtained, for example, by regeneration of the transgenic plant cells according to the invention using methods known to the person skilled in the art.
  • the transgenic plants can in principle be plants of any plant species, i.e. both monocot and dicot plants. They are preferably useful plants, in particular starch-synthesizing or starch-storing plants, such as e.g. Cereals (rye, barley oats, wheat etc.), rice, corn, peas, cassava or potatoes.
  • the invention also relates to propagation material of the plants according to the invention which contains cells according to the invention, for example fruits, seeds, tubers, rhizomes, seedlings, cuttings, callus cultures, cell cultures etc.
  • the present invention also relates to the starch obtainable from the transgenic plant cells, plants and propagation material according to the invention.
  • the transgenic plant cells and plants according to the invention synthesize a starch which has, for example, its physicochemical properties, in particular the amylose / amylopectin ratio, the degree of branching, the average chain length, the phosphate content, the Gelatinization behavior, the starch grain size and / or the starch grain shape is changed in comparison to starch synthesized in wild type plants.
  • a starch can be changed with regard to the viscosity and / or the gel formation properties of paste of this starch compared to wild-type starch.
  • Another object of the invention are transgenic maize plant cells in which the activity of a protein according to the invention is reduced compared to non-transformed cells.
  • nucleic acid molecules according to the invention With the aid of the nucleic acid molecules according to the invention, it is possible to produce maize plant cells and maize plants in which the activity of a protein according to the invention is reduced. This also leads to the synthesis of a starch with changed chemical and / or physical properties compared to starch from wild-type plant cells.
  • the production of maize plant cells with a reduced activity of a protein according to the invention can be achieved, for example, by the expression of a corresponding antisense RNA, a sense RNA to achieve a cosuppression effect or the expression of a correspondingly constructed ribozyme which specifically cleaves transcripts which encode one of the proteins according to the invention using the nucleic acid molecules according to the invention.
  • ribozymes for reducing the activity of certain enzymes in cells is also known to the person skilled in the art and is described, for example, in EP-Bl 0 321 201.
  • the expression of ribozymes in plant cells was described, for example, in Feyter et al. (Mol. Gen. Genet. 250 (1996), 329-338).
  • an antisense RNA is preferably expressed in plant cells.
  • a DNA molecule can be used that comprises the entire sequence coding for a protein according to the invention, including any flanking sequences that may be present, as well as DNA molecules that only comprise parts of the coding sequence, these parts having to be long enough to be able to to cause the cells an antisense effect.
  • sequences up to a minimum length of 15 bp, preferably a length of 100-500 bp can be used for an efficient antisense inhibition, in particular sequences with a length of more than 500 bp.
  • DNA molecules are used that are shorter than 5000 bp, preferably sequences that are shorter than 2500 bp.
  • DNA sequences which have a high degree of homology to the sequences of the DNA molecules according to the invention, but which are not completely identical.
  • the minimum homology should be greater than approximately 65%.
  • sequences with homologies between 95 and 100% is preferred.
  • the invention also relates to maize plants which contain transgenic maize plant cells according to the invention.
  • the invention also relates to propagation material of the plants according to the invention, in particular seeds.
  • the invention also relates to the starch obtainable from the transgenic maize plant cells, maize plants and propagation material described above.
  • the transgenic maize plant cells and maize plants synthesize a starch which has, for example, its physicochemical properties, in particular the amylose / amylopectin ratio, the degree of branching, the average chain length, the Phosphate content, the gelatinization behavior, the starch grain size and / or the starch grain shape is changed compared to starch synthesized in wild-type plants.
  • This starch can show, for example, changed viscosities and / or gelation properties of its paste in comparison to starch from wild-type plants.
  • starches according to the invention can be modified by methods known to those skilled in the art and are suitable in unmodified or modified form for various uses in the food or non-food sector.
  • the use of starch can be divided into two large areas.
  • One area comprises the hydrolysis products of starch, mainly glucose and glucan building blocks, which are obtained via enzymatic or chemical processes. They serve as the starting material for further chemical modifications and processes, such as fermentation.
  • the simplicity and cost-effective implementation of a hydrolysis process can be important for reducing the costs.
  • it is essentially enzymatic using amyloglucosidase. It would be conceivable to save costs by using fewer enzymes.
  • a structural change in strength e.g. This could result in an increase in the surface area of the grain, easier digestibility due to a lower degree of branching or a steric structure which limits the accessibility for the enzymes used.
  • Starch is a classic additive for many foodstuffs, in which it essentially takes on the function of binding aqueous additives or causes an increase in viscosity or increased gel formation. Important characteristics are the flow and sorption behavior, the swelling and gelatinization temperature, the viscosity and thickening performance, the solubility of the starch, the transparency and paste structure, the heat, shear and acid stability, the tendency to retrogradation, the ability for film formation, freeze / thaw stability, digestibility and the ability to form complexes with, for example inorganic or organic ions.
  • the starch can be used as an auxiliary for different manufacturing processes or as an additive in technical products.
  • starch When using starch as an auxiliary, the paper and cardboard industry should be mentioned in particular.
  • the starch primarily serves for retardation (retention of solids), the setting of filler and fine particles, as a strengthening agent and for drainage.
  • the favorable properties of the starch in terms of rigidity, hardness, sound, feel, gloss, smoothness, splitting resistance and surfaces are used.
  • the requirements on starch with regard to the Oberflä ⁇ chen accent are essentially a high degree of brightness, corresponding viscosity, a high Viskosticiansstabili- ty, good film formation as well as low Staubbil ⁇ dung.
  • the solid content, an adapted viscosity, a high binding capacity and a high pigment affinity play an important role.
  • a rapid, uniform, loss-free distribution, high mechanical stability and complete restraint in the paper flow are important.
  • an adapted solids content, high viscosity and high binding capacity are also important.
  • starches A large area of use of the starches is in the adhesive industry, where the possible uses are divided into four areas: use as pure starch glue, use with starch glues prepared with special chemicals, use of starch as an additive to synthetic resins and polymer dispersions, and use of starches as an extender for synthetic adhesives.
  • 90% of the starch-based adhesives are used in the fields of corrugated cardboard manufacture, manufacture of paper sacks, bags and pouches, manufacture of composite materials for paper and aluminum, manufacture of cardboard packaging and rewetting glue for envelopes, stamps etc.
  • a large area of application for the strengths as an auxiliary and additive is the area of manufacture of textiles and textile care products.
  • the following four areas of application can be distinguished within the textile industry: the use of starch as a sizing agent, that is to say as an auxiliary for smoothing and strengthening the hook-and-loop behavior to protect against the tensile forces acting during weaving and for increasing the abrasion resistance during weaving, starch as a means of textile finishing especially after pre-treatments that deteriorate quality, such as bleaching, dyeing, etc., starch as a thickening agent in the manufacture of color pastes to prevent dye diffusion, and starch as an additive to chaining agents for sewing threads.
  • the fourth area of application is the use of starches as an additive in building materials.
  • One example is the production of gypsum plasterboard, in which the starch mixed in the gypsum slurry gelatinizes with the water, diffuses to the surface of the gypsum board and binds the cardboard to the board there. Further areas of application are admixing to plaster and mineral fibers. In ready-mixed concrete, starch products are used to delay the setting.
  • starch Another market for starch is in the manufacture of soil stabilizers that are used to temporarily protect soil particles from water during artificial earthmoving. Combination products made from starch and polymer emulsions are, according to current knowledge, equivalent in their erosion and incrustation-reducing effect to the products used hitherto, but are significantly lower in price.
  • starch in crop protection agents to change the specific properties of the preparations.
  • the starch can be used to improve the wetting of crop protection agents and fertilizers, for the metered release of the active substances, for converting liquid, volatile and / or malodorous substances into microcrystalline, stable, moldable substances, for mixing incompatible compounds and to extend the duration of action by reducing the decomposition.
  • starch can be used as a binder for tablets or for binder dilution in capsules. »9 sets.
  • the starch can furthermore serve as a tablet disintegrant, since after swallowing it absorbs liquid and swells to such an extent after a short time that the active substance is released.
  • Medical lubricant and wound powders are based on starch for qualitative reasons.
  • starches are used, for example, as carriers for powder additives such as fragrances and salicylic acid.
  • a relatively large area of application for starch is toothpaste.
  • Starch is used as an additive to coal and briquette. Coal can be agglomerated or briquetted with a high-quality addition of starch, thereby preventing the briquettes from disintegrating prematurely.
  • the starch addition is between 4 and 6% for barbecued coal and between 0.1 and 0.5% for calorized coal. Furthermore, starches are becoming increasingly important as binders, since their addition to coal and briquette can significantly reduce the emissions of harmful substances.
  • the starch can also be used as a flocculant in ore and coal sludge processing.
  • Another area of application is as an additive to casting auxiliaries.
  • Various casting processes require cores that are made from binder-mixed sands. Bentonite, which is mixed with modified starches, mostly swelling starches, is predominantly used today as a binder.
  • starch addition is to increase the flow resistance and to improve the binding strength.
  • swelling starches can have other production requirements, such as dispersible in cold water, rehydratable, good miscibility in sand and high water-binding capacity.
  • the starch can be used to improve the technical and optical quality.
  • the reasons for this are the improvement of the surface gloss, the improvement of the handle and the appearance, for this reason starch is sprinkled on the sticky rubberized surfaces of rubber materials before the cold vulcanization, and the improvement of the printability of the rubber.
  • Another way of selling the modified starches is in the production of leather substitutes.
  • starch secondary products in the processing process (starch is only filler, there is no direct link between synthetic polymer and starch) or, alternatively, the integration of starch secondary products in the production of polymers (starch and polymer form a firm bond).
  • starch as a pure filler is not competitive compared to other substances such as talc. It looks different if the specific starch properties come into play and the property profile of the end products is thereby significantly changed.
  • An example of this is the use of starch products in the processing of thermoplastics, such as polyethylene.
  • starch and the synthetic polymer are combined by coexpression in the ratio of 1: 1 combined to form a 'master batch 1, from the liertem with granulocytes polyethylene using conventional procedural ⁇ renstechniken various products are produced.
  • the integration of starch in polyethylene films an increased substance permeability in hollow bodies, improved water vapor permeability can ⁇ , improved antistatic behavior, improved anti-block behavior as well as improved printability Be ⁇ be achieved with aqueous dyes. 2 ⁇
  • starch in polyurethane foams.
  • starch derivatives By adapting the starch derivatives and by optimizing the process, it is possible to control the reaction between synthetic polymers and the hydroxyl groups of the starches.
  • the result is polyurethane films which, through the use of starch, obtain the following property profiles: a reduction in the coefficient of thermal expansion, reduction in shrinkage behavior, improvement in pressure / stress behavior, increase in water vapor permeability without changing the water absorption, reduction in flammability and tear density , no dripping of flammable parts, freedom from halogen and reduced aging.
  • Disadvantages that are currently still present are reduced compressive strength and reduced impact resistance.
  • Solid plastic products such as pots, plates and bowls can also be manufactured with a starch content of over 50%.
  • starch / polymer mixtures are to be judged favorably, since they have a much higher biodegradability.
  • starch graft polymers Because of their extreme water-binding capacity, starch graft polymers have also become extremely important. These are products with a backbone made of starch and a side grid of a synthetic monomer grafted on according to the principle of the radical chain mechanism.
  • the starch graft polymers available today are characterized by better binding and retention properties of up to 1000 g of water per g of starch with high viscosity.
  • the areas of application for these superabsorbents have expanded considerably in recent years and are in the hygiene sector with products such as diapers and pads as well as in the agricultural sector, e.g. seed pilling.
  • modified starches by means of genetic engineering interventions in a transgenic plant can on the one hand change the properties of the starch obtained from the plant in such a way that further modifications by means of chemical or physical processes no longer appear to be necessary.
  • the starches modified by genetic engineering processes can be subjected to further chemical modifications, which leads to further improvements in quality for certain of the fields of application described above.
  • nucleic acid molecules according to the invention in sense or antisense orientation in plant cells, which is linked to regulatory DNA elements that ensure transcription in plant cells.
  • regulatory DNA elements that ensure transcription in plant cells.
  • These include promoters in particular.
  • any promoter active in plant cells is suitable for expression.
  • the promoter can be selected so that the expression is constitutive or only in a certain tissue, at a certain time in plant development or at a time determined by external influences.
  • the promoter can be homologous or heterologous to the plant.
  • Suitable promoters for constitutive expression are, for example, the 35S RNA promoter of the Cauliflower Mosaic Virus and the ubiquitin promoter from maize, for tuber-specific expression in potatoes the patatin gene promoter B33 (Rochasosa et al., EMBO J. 8 (1989 ), 23-29) or a promoter which ensures expression only in photosynthetically active tissues, for example the ST-LSI promoter (Stockhaus et al., Proc. Natl. Acad. Sci. USA 84 (1987), 7943-7947 ; Stockhaus et al., EMBO J. 8 (1989), 2445-2451) or for endosperm-specific expression, the HMG promoter from wheat, the USP promoter, the phaseolin promoter or promoters of zein genes from maize.
  • the present invention provides nucleic acid molecules which encode a new form of a soluble starch synthase identified in maize. This now allows both the identification of the function of this starch synthase in starch biosynthesis and the production of genetically modified plants in which the activity of this enzyme is changed. This enables the synthesis of a starch with a changed structure and thus changed physicochemical properties in plants manipulated in this way.
  • the nucleic acid molecules according to the invention can also be used to produce plants in which the activity of the starch synthase according to the invention increases or is reduced and at the same time the activities of other enzymes involved in starch biosynthesis are changed. All combinations and permutations are conceivable.
  • the change in the activities of one or more isoforms of the starch synthases in plants leads to the synthesis of a starch which has a different structure.
  • Increasing the activity of one or more isoforms of the starch synthases in the cells of the starch-storing tissue of transformed plants, for example in the endosperm of maize or wheat or in the tuber of the potato, can also increase the yield.
  • nucleic acid molecules which code for a protein according to the invention or corresponding antisense constructs can be introduced into plant cells in which the synthesis of endogenous GBSS I, SSS or GBSS II proteins is already inhibited due to an antisense effect or a mutation or the synthesis of the branching enzyme is inhibited (as described, for example, in W092 / 14827 or the ae mutant (Shannon and Garwood, 1984, in Whistler, BeMiller and Paschall, Starch: Chemistry and Technology, Academic Press, London, 2nd Edition: 25-86)).
  • DNA molecules can be used for the transformation which simultaneously have several regions coding for the corresponding starch synthases in antisense orientation under the control of a suitable promoter contain.
  • each sequence can be under the control of its own promoter, or the sequences can be transcribed as a fusion from a common promoter. The latter alternative will generally be preferable, since in this case the synthesis of the corresponding proteins should be inhibited to approximately the same extent.
  • molecules which, in addition to sequences coding for starch synthases, contain further DNA sequences which code for other proteins involved in starch synthesis or modification. These are each coupled in an antisense orientation to a suitable promoter.
  • the sequences can in turn be connected in series and can be transcribed by a common promoter or else can be transcribed by separate promoters.
  • the length of the individual coding regions that are used in such a construct applies to what has already been stated above for the production of antisense constructs. There is no upper limit on the number of antisense fragments transcribed from a promoter in such a DNA molecule. However, the resulting transcript should generally not exceed a length of 10 kb, preferably 5 kb.
  • Coding regions which are located in such DNA molecules in combination with other coding regions in antisense orientation behind a suitable promoter can originate from DNA sequences which code for the following proteins: starch-grain-bound (GBSS I and II) and soluble starch synthases (SSS I and II), branching enzymes, "debranching" enzymes, disproportionation enzymes and starch phosphorylases. This is only an example. The use of other DNA sequences in the context of such a combination is also conceivable.
  • the constructs can furthermore be introduced into classic mutants which are defective for one or more genes of starch biosynthesis (Shannon and Garwood, 1984, in Whistler, BeMiller and Paschall, Starch: Chemistry and Technology, Academic Press, London , 2nd Edition: 25-86). These defects can relate to the following proteins: starch-bound (GBSS I and II) and soluble starch synthases (SSS I and II), branching enzymes (BE I and II), "debranching" enzymes (R-enzymes), disproportionation enzymes and starch phosphorylases. This is only an example.
  • a large number of cloning vectors are available to prepare the introduction of foreign genes into higher plants, which contain a replication signal for E. coli and a marker gene for the selection of transformed bacterial cells.
  • examples of such vectors are pBR322, pUC series, M13mp series, pACYC184 etc.
  • the desired sequence can be inserted into the vector at a suitable restriction site.
  • the plasmid obtained is used for the transformation of E. coli cells.
  • Transformed E. coli cells are grown in a suitable medium, then harvested and lysed. The plasmid is recovered.
  • Restriction analyzes, gel electrophoresis and other biochemical-molecular biological methods are generally used as the analysis method for characterizing the plasmid DNA obtained.
  • the plasmid DNA can be cleaved and DNA fragments obtained can be linked to other DNA sequences.
  • Each plasmid DNA sequence can be cloned into the same or different plasmids.
  • a large number of techniques are available for introducing DNA into a plant host cell. These techniques include the transformation of plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as the transformation agent, the fusion of protoplasts, the injection, the electroporation of DNA, the introduction of DNA using the biolistic method and other possibilities.
  • plasmids When DNA is injected and electroporated into plant cells, there are no special requirements for the plasmids used. Simple plasmids such as e.g. pUC derivatives can be used. However, if whole plants are to be regenerated from such transformed cells, a selectable marker gene should advantageously be present.
  • the Ti or Ri plasmid is used for the transformation of the plant cell, at least the right boundary, but advantageously the right and left boundary of the Ti and Ri plasmid T-DNA should be connected as a flank region to the genes to be introduced.
  • the DNA to be introduced should be cloned into special plasmids, either in an intermediate vector or in a binary vector.
  • the intermediate vectors can be due to Sequences that are homologous to sequences in the T-DNA can be integrated into the Ti or Ri plasmid of the agrobacteria by homologous recombination. This also contains the vir region necessary for the transfer of the T-DNA. Intermediate vectors cannot replicate in agrobacteria. Using a helper plasmid, the intermediate vector can be transferred to Agrobacterium tumefaciens (conjugation). Binary vectors can replicate in both E. coli and agrobacteria.
  • the agrobacterium serving as the host cell should contain a plasmid carrying a vir region.
  • the vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present.
  • the agrobacterium transformed in this way is used to transform plant cells.
  • T-DNA for the transformation of plant cells has been intensively investigated and is sufficient in EP 120 516; Hoekema, In: The Binary Plant Vector System Offsetdrukkerij Kanters B.V., Alblasserdam (1985), Chapter V; Fraley et al. , Crit. Rev. Plant. Sci., 4, 1-46 and An et al. EMBO J. 4 (1985), 277-287.
  • plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • Whole plants can then be regenerated from the infected plant material (for example leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which may contain antibiotics or biocides for the selection of transformed cells .
  • the plants thus obtained can then be examined for the presence of the introduced DNA.
  • suitable medium which may contain antibiotics or biocides for the selection of transformed cells
  • EP 292 435 describes a method by means of which fertile plants can be obtained starting from a slimy, soft (friable) granular corn callus.
  • Shillito et al. Bio / Technology 7 (1989), 581) have observed in this connection that for the regenerability to fertile plants it is also necessary to start from callus suspension cultures from which a dividing protoplast culture, with the ability to regenerate plants, can be produced. After an in vitro cultivation time of 7 to 8 months, Shillito et al.
  • the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and remains in the offspring of the originally transformed cell. It usually contains a selection marker, the resistance to a biocide or an antibiotic such as kanamycin, G 418, bleomycin, hygromycin or phosphinotricin, among others, is imparted to the transformed plant cells.
  • the individually selected marker should therefore allow the selection of transformed cells over cells which lack the inserted DNA.
  • the transformed cells grow within the plant in the usual way (see also McCormick et al., Plant Cell Reports 5 (1986), 81-84).
  • the resulting plants can be grown normally and crossed with plants which have the same transformed genetic makeup or other genetic makeup.
  • the resulting hybrid individuals have the corresponding phenotypic properties. Seeds can be obtained from the plant cells.
  • Two or more generations should be attracted to ensure that the phenotypic trait is stable and inherited. Seeds should also be harvested to ensure that the appropriate phenotype or other characteristics have been preserved.
  • Figure 1 schematically shows the vector pUBIbar.
  • FIG. 2 schematically shows the vector pUBI-bar-aMasy
  • Ubiquitin-Pro Ubiquitin promoter
  • tumefaciens 35S 35S promoter of the CaMV
  • T35S 35S terminator of the CaMV
  • This vector contains, in antisense orientation to the ubiquitin promoter, the cDNA described in Example 1, which encodes a corn starch synthase. 2 > o
  • Protoplast isolation medium (100 ml)
  • Bovine Serum Albumin 20 mg
  • Protoplast washing solution 1 like protoplast isolation solution, but without cellulase, pectolyase and BSA
  • PEG 6000 is added to the above buffer under b) shortly before use of the solution (40% by weight PEG).
  • the solution is filtered through a 0.45 ⁇ m sterile filter.
  • Protoplast culture medium (in mg / 1)
  • the vector pBluescript II SK (Stratagene) was used for cloning in E. coli.
  • E.coli strain DH5 ⁇ (Bethesda Research Laboratories, Gaithersburgh, USA) was used for the Bluescript vector and for the pUSP constructs.
  • the E.coli strain XLl-Blue was used for in vivo excision.
  • the suspension is sieved through a stainless steel and nylon sieve with mesh sizes of 200 and 45 ⁇ m, respectively.
  • the combination of a 100 ⁇ m and a 60 ⁇ m sieve enables the cell aggregates to be separated just as well.
  • the filtrate-containing filtrate is assessed microscopically. It usually contains 98-99% protoplasts. The rest are undigested single cells.
  • Protoplast preparations with this degree of purity are used for transformation experiments without additional gradient centrifugation.
  • the protoplasts are sedimented by centrifugation (100 rpm in the oscillating rotor (100 ⁇ g, 3 min). The supernatant is discarded and the protoplasts are resuspended in washing solution 1. The centrifugation is repeated and the protoplasts are then resuspended in the transformation buffer.
  • the protoplasts resuspended in transformation buffer are filled into 50 ml polyallomer tubes with a titer of 0.5-1 ⁇ 10 protoplasts / ml in 10 ml portions.
  • the DNA used for the transformation is dissolved in Tris-EDTA (TE) buffer. 20 ⁇ g of plasmid DNA are added per ml of protoplast suspension. A plasmid imparting resistance to phosphinotricin is used as the vector (cf., for example, EP 0 513 849).
  • TE Tris-EDTA
  • a plasmid imparting resistance to phosphinotricin is used as the vector (cf., for example, EP 0 513 849).
  • the protoplast suspension is carefully shaken in order to distribute the DNA homogeneously in the solution. Immediately afterwards, 5 ml of PEG solution is added dropwise.
  • the PEG solution is distributed homogeneously by carefully swirling the tubes. Then another 5 ml of PEG solution are added and the homogeneous mixing is repeated. The protoplasts remain at ⁇ 2 ° C for 20 min of the PEG solution. The protoplasts are then passed through Centrifuged for 3 minutes (100 g; 1000 rpm). The supernatant is discarded. The protoplasts are washed by shaking gently in 20 ml of W5 solution and then centrifuged again. Then they are resuspended in 20 ml protoplast culture medium, centrifuged again and resuspended in culture medium.
  • the titer is set to 6 - 8 x 10 5 protoplasts / ml and the protoplasts are cultivated in 3 ml portions in petri dishes (0 60 mm, height 15 mm).
  • the petri dishes sealed with Parafilm are set up in the dark at 25 ⁇ 2 ° C.
  • the protoplasts are cultivated without the addition of fresh medium. As soon as the cells regenerated from the protoplasts have developed into cell aggregates with more than 20-50 cells, 1 ml of fresh protoplast culture medium which contains sucrose as an osmoticum (90 g / l) is added.
  • the cell aggregates formed from protoplasts can be plated on agar media with 100 mg / 1 L-phosphinothricin.
  • N6 medium with the vitamins of the protoplast culture medium, 90 g / 1 sucrose and 1.0 mg / 1 2, 4D is just as suitable as an analog medium, for example with the macro and micronutrient salts of the MS medium (Murashige and Skoog (1962 ) , see above) .
  • the calli resulting from stably transformed protoplasts can continue to grow unhindered on the selective medium.
  • the transgenic calli can be transferred to fresh selection medium, which is also 100 IS contains mg / 1 L-phosphinothricin, but no longer contains auxin.
  • fresh selection medium which is also 100 IS contains mg / 1 L-phosphinothricin, but no longer contains auxin.
  • the embryogenic transformed maize tissue is cultivated on hormone-free N6 medium (Chu CC et al., Sei. Sin. 16 (1975), 659) in the presence of 5 ⁇ 10 4 M L-phosphinothricin.
  • Maize embryos develop on this medium plants that express the phsphinothricin acetyltransferase gene (PAT gene) sufficiently strongly, untransformed embryos or those with only very weak PAT activity die as soon as the leaves of the in vitro plants have a length of 4-6 mm
  • PAT gene phsphinothricin acetyltransferase gene
  • the plants are planted in a mixture of clay, sand, vermiculite and common earth in a ratio of 3: 1: 1: 1 and during the first 3 days after transplanting adapted to the soil culture at 90 - 100% relative humidity
  • the cultivation takes place in a climatic chamber with 14 h light period approx. 25000 lux at plant height at a day /
  • Peptide 1 NH 2 -GTGGLRDTVENC-COOH (Seq. ID No. 3) This peptide was coupled to the KLH carrier ("keyhole limpet homocyanin") and then used to produce polyclonal antibodies in rabbits (Eurogentec, Seraing , Belgium).
  • the resulting antibody was named anti-SSI.
  • the anti-SSI antibody was then used to screen a maize cDNA library for sequences encoding soluble maize starch synthases.
  • a cDNA library from Endosperm-polyA + RNA created in the vector ⁇ -ZAP, was used.
  • To analyze the phage plaques these were transferred to nitrocellulose filters, which had previously been used for 30-60 min. were incubated in a 10 mM IPTG solution and then dried on filter paper. The transfer took place at 37 ° C. for 3 h. The filters were then for 30 min. incubated at room temperature in block reagent and twice for 5-10 min. washed in TBST buffer.
  • the filters were shaken with the polyelonal anti-SSI antibody in a suitable dilution for 1 h at room temperature or for 16 h at 4 ° C. Plaques which expressed a protein which was recognized by the antibody anti-SSI were identified using the "Blotting detection kit for rabbit antibodies RPN 23" (Amersham UK) according to the manufacturer's instructions.
  • Phage clones from the cDNA library expressing a protein recognized by the anti-SSI antibody were further purified using standard procedures. With the aid of the in vivo excision method (Stratagene), E. coli clones were obtained from positive phage clones which contain a double-stranded pBluescript II SK plasmid with the respective cDNA insert between the EcoRI and the Xho I interface of the polylinker. After checking the size and the restriction A suitable clone was subjected to a sequence analysis after the insertions.
  • the plasmid pSSS1 was isolated from an E. coli clone obtained according to Example 1 and its cDNA insertion by standard methods using the dideoxynucleotide method (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) certainly.
  • the insertion is 2383 bp long and represents a partial cDNA.
  • the nucleotide sequence is shown under Seq ID No. 1 specified.
  • the corresponding amino acid sequence is under Seq ID No. 2 shown.
  • the vector pUBIbar (see FIG. 1) was linearized with the restriction enzyme Hpal and dephosphorylated with alkaline phosphatase.
  • the cDNA (approx. 2.4 kb) isolated according to Example 1, which had been obtained as an EcoRV / Smal fragment from the pBluescriptSK plasmid, was cloned into the linearized vector.
  • a plasmid was identified by restriction analysis which contained the cDNA encoding the corn starch synthase in antisense orientation in relation to the promoter. This plasmid was called pUBI-bar-aMasy.
  • This vector contains an ubiquitin promoter and an intron from maize (Christensen et al., Plant Mol. Biol. 18 (1992), 675-689), the transcription termination signal of the nopaline synthase gene from A. tumefaciens (Depicker et al., J Mol. Appl. Genet. 1 (1982), 561-573), the bar marker gene (Thompson et al., EMBO J.
  • the plasmid between the intron and the nos terminator in anti-sense orientation to the ubiquitin promoter contains the cDNA encoding the corn starch synthase.
  • the plasmid is shown in Figure 2.
  • the vector pUBI-bar-aMasy was introduced into maize protoplasts using the method described above. 4.8 ⁇ 10 7 protoplasts and 100 ⁇ g plasmid DNA were used.
  • GGT TCC ATC GAT AAC ACA GTA GTT GTG GCA AGT GAG CAA GAT TCT GAG 382
  • GGT CTC AAT CAG CTA TAT GCT ATG CAG TAT GGC ACA GTT CCT GTT GTC 1678 Gly Leu Asn Gin Leu Tyr Ala Met Gin Tyr Gly Thr Val Pro Val Val 545 550 555

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Es werden Nucleinsäuremoleküle beschrieben, die Enzyme codieren, die an der Stärkesynthese in Pflanzen beteiligt sind. Bei diesen Enzymen handelt es sich um eine neue Isoform der löslichen Stärkesynthase aus Mais. Weiterhin betrifft diese Erfindung Vektoren, die derartige Nucleinsäuremoleküle enthalten, und Wirtszellen, die mit den beschriebenen Nucleinsäuremolekülen transformiert wurden, insbesondere transformierte Pflanzenzellen und aus diesen regenerierbare Pflanzen, die eine gesteigerte oder verringerte Aktivität der beschriebenen Proteine aufweisen.

Description

NucleinsäuremolekUle codierend lösliche Stärkesynthasen aus
Mais
Die vorliegende Erfindung betrifft NucleinsäuremolekUle, die eine Form der löslichen Stärkesynthase aus Mais codieren. Weiterhin betrifft diese Erfindung Vektoren, Bakterien, sowie mit den beschriebenen Nucleinsäuremolekülen transformierte Pflanzenzellen und aus diesen regenerierbare Pflanzen. Ferner werden Verfahren zur Herstellung transgener Pflanzen beschrieben, die aufgrund der Einführung von DNA-Molekülen, die eine lösliche Stärkesynthase aus Mais codieren, eine in ihren Eigenschaften veränderte Stärke synthetisieren.
Im Hinblick auf die zunehmende Bedeutung, die pflanzlichen In¬ haltsstoffen als erneuerbaren Rohstoffquellen in letzter Zeit beigemessen wird, ist es eine der Aufgaben der biotechnologi- sehen Forschung, sich um eine Anpassung dieser pflanzlichen Rohstoffe an die Anforderungen der verarbeitenden Industrie zu bemühen. Um eine Anwendung von nachwachsenden Rohstoffen in möglichst vielen Einsatzgebieten zu ermöglichen, ist es darüber hinaus erforderlich, eine große Stoffvielfalt zu erreichen. Neben Ölen, Fetten und Proteinen stellen Polysaccharide die wesentlichen nachwachsenden Rohstoffe aus Pflanzen dar. Eine zentrale Stellung bei den Polysacchariden nimmt neben Cellulose die Stärke ein, die einer der wichtigsten Speicherstoffe in höheren Pflanzen ist . Hierbei ist Mais eine der interessan¬ testen Pflanzen, da sie die weltweit für die Stärkeproduktion wichtigste Kulturpflanze ist.
Das Polysaccharid Stärke ist ein Polymer aus chemisch einheit¬ lichen Grundbausteinen, den Glucosemolekülen. Es handelt sich dabei jedoch um ein sehr komplexes Gemisch aus unterschiedli¬ chen Molekülformen, die sich hinsichtlich ihres Polymerisa¬ tionsgrades und des Auftretens von Verzweigungen der Glucose- ketten unterscheiden. Daher stellt Stärke keinen einheitlichen Rohstoff dar. Man unterscheidet insbesondere die Amylose- Stärke, ein im wesentlichen unverzweigtes Polymer aus α-1, 4- glycosidisch verknüpften Glucosemolekülen, von der Amylopektin- Stärke, die ihrerseits ein komplexes Gemisch aus unter¬ schiedlich verzweigten Glucoseketten darstellt. Die Verzwei¬ gungen kommen dabei durch das Auftreten von zusätzlichen α- 1, 6-glycosidischen Verknüpfungen zustande. In typischen für die St.ärkeproduktion verwendeten Pflanzen, wie z.B. Mais oder Kartoffel, besteht die synthetisierte Stärke zu ca. 25 % aus Amylose-Stärke und zu ca. 75 % aus Amylopektin-Stärke. Um eine möglichst breite Anwendung von Stärke zu ermöglichen, erscheint es wünschenswert, Pflanzen zur Verfügung zu stellen, die in der Lage sind, modifizierte Stärke zu synthetisieren, die sich für verschiedene Verwendungszwecke besonders eignet. Eine Möglichkeit, derartige Pflanzen bereitzustellen, besteht - neben züchterischen Maßnahmen - in der gezielten genetischen Veränderung des Stärkemetabolismus stärkeproduzierender Pflan¬ zen durch gentechnologische Methoden. Voraussetzung hierfür ist jedoch die Identifizierung und Charakterisierung der an der Stärkesynthese und/oder -modifikation beteiligten Enzyme sowie die Isolierung der entsprechenden, diese Enzyme codierende DNA- Moleküle .
Die biochemischen Synthesewege, die zum Aufbau von Stärke füh¬ ren, sind im wesentlichen bekannt. Die Stärkesynthese in pflanzlichen Zellen findet in den Piastiden statt. In photo¬ synthetisch aktiven Geweben sind dies die Chloroplasten, in photosynthetisch inaktiven, stärkespeichernden Geweben die Amyloplasten.
Die wichtigsten an der Stärkesynthese beteiligten Enzyme sind die Stärkesynthasen sowie die Verzweigungsenzyme . Bei den Stärkesynthasen sind verschiedene Isoformen beschrieben, die alle eine Polymerisierungsreaktion durch Übertragung eines Glucosylrestes von ADP-Glucose auf α-1,4-Glucane katalysieren. Verzweigungsenzyme katalysieren die Einführung von α-1, 6-Ver¬ zweigungen in lineare α-1, 4-Glucane .
Stärkesynthasen können in zwei Klassen eingeteilt werden: die Stärkekorn-gebundenen Stärkesynthasen ("granule-bound starch synthases"; GBSS} und die löslichen Stärkesynthasen ("soluble starch synthases"; SSS) . Diese Unterscheidung ist nicht in je¬ dem Fall eindeutig zu treffen, da einige der Stärkesynthasen 2> sowohl stärkekorngebunden als auch in löslicher Form vorliegen (Denyer et al . , Plant J. 4 (1993) , 191-198; Mu et al . , Plant J. 6 (1994) , 151-159) . Für verschiedene Pflanzenspezies werden innerhalb dieser Klassen wiederum verschiedene Isoformen be¬ schrieben, die sich hinsichtlich ihrer Abhängigkeit von Star¬ termolekülen unterscheiden (sogenannte "primer dependent" (Typ II) und "primer independent" (Typ I) starch synthases) . Lediglich für die Isoform GBSS I gelang es bisher, die genaue Funktion bei der Stärkesynthese zu ermitteln. Pflanzen, in de¬ nen diese Enzymaktivität stark oder vollkommen reduziert ist, synthetisieren eine amylosefreie (sogenannte "waxy") Stärke (Shure et al . , Cell 35 (1983) , 225-233; Visser et al . , Mol. Gen. Genet . 225 (1991) , 289-296; WO 92/11376) , so daß diesem Enzym eine entscheidende Rolle bei der Synthese der Amylose- Stärke zugesprochen wird. Dieses Phänomen wird ebenfalls in Zellen der Grünalge Chlamydomonas reinhardtii beobachtet (Delrue et al . , J. Bacteriol . 174 (1992) , 3612-3620) . Bei Chlamydomonas konnte darüber hinaus gezeigt werden, daß GBSS I nicht nur an der Synthese der Amylose beteiligt ist, sondern auch einen Einfluß auf die Amylopektinsynthese besitzt . In Mu¬ tanten, die keine GBSS I-Aktivität aufweisen, fehlt eine be¬ stimmte Fraktion des normalerweise synthetisierten Amylopek- tins, die längerkettige Glucane aufweist.
Die Funktionen der anderen Isoformen der Stärkekorn-gebundenen Stärkesynthasen, insbesondere der GBSS II, und der löslichen Stärkesynthasen sind bisher unklar. Es wird angenommen, daß die löslichen Stärkesynthasen zusammen mit Verzweigungsenzymen an der Synthese des Amylopektins beteiligt sind (siehe z.B. Ponstein et al . , Plant Physiol. 92 (1990) , 234-241) und daß sie eine wichtige Funktion bei der Regulation der Stärkesyn¬ theserate spielen.
Bei Mais wurden zwei Isoformen der Stärkekorn-gebundenen, sowie zwei bzw. drei Isoformen der löslichen Stärkesynthasen identifiziert (Hawker et al . , Arch. Biochem. Biophys. 160 (1974) , 530-551; Pollock und Preiss, Arch. Biochem. Biophys. 204 (1980) , 578-588; MacDonald und Preiss, Plant Physiol. 78 (1985) , 849-852; Mu et al. , Plant J. 6 (1994) , 151-159) . Eine GBSS I aus Mais codierende cDNA sowie eine genomische DNA sind bereits beschrieben (Shure et al . , Cell 35 (1983) , 225- 233, Kloesgen et al , Mol. Gen Genet 203 (1986) , 237-244) . Weiterhin ist ein sogenannter "Expressed Sequence Tag" (EST) beschrieben worden (Shen et al , 1994, GenBank Nr. T14684) , dessen abgeleitete Aminosäuresequenz eine starke Ähnlichkeit zur abgeleiteten Ammosauresequenz der GBSS II aus Erbse (Dry et al., Plant J 2 (1992) , 193-202) und Kartoffel (Edwards et al., Plant J 8 (1995) , 283-294) aufweist Nuclemsauresequen- zen, die weitere Stärkesynthase-Isoformen aus Mais codieren, lagen jedoch bisher noch nicht vor. cDNA-Sequenzen, die für andere Stärkesynthasen als für die GBSS I codieren, wurden bisher lediglich für Erbse (Dry et al . , Plant J. 2 (1992) , 193- 202) , Reis (Baba et al . , Plant Physiol 103 (1993) , 565-573) und Kartoffel (Edwards et al . , Plant J. 8 (1995) , 283-294) beschrieben
Außer beim Mais wurden lösliche Stärkesynthasen auch in einer Reihe weiterer Pflanzenarten identifiziert Losliche Stärke¬ synthasen sind beispielsweise bis zur Homogenitat aus Erbse (Denyer und Smith, Planta 186 (1992) , 609-617) und Kartoffel (Edwards et al . , Plant J 8 (1995) , 283-294) isoliert worden In diesen Fällen stellte sich heraus, daß die als SSS II iden¬ tifizierte Isoform der löslichen Stärkesynthase identisch ist mit der Starkekorn-gebundenen Stärkesynthase GBSS II (Denyer et al., Plant J. 4 (1993) , 191-198; Edwards et al . , Plant J. 8 (1995) , 283-294) . Für einige weitere Pflanzenspezies wurde das Vorhandensein mehrerer SSS-Isoformen mit Hilfe chromatographi¬ scher Methoden beschrieben, beispielsweise bei Gerste (Tyynela und Schulman, Physiologia Plantarum 89 (1993) 835-841; Kreis, Planta 148 (1980) , 412-416) und Weizen (Rijven, Plant Physiol. 81 (1986) , 448-453) DNA-Sequenzen, die diese Proteine codie¬ ren, wurden jedoch bisher nicht beschrieben.
Um weitere Möglichkeiten bereitzustellen, beliebige starke- speicherde Pflanzen dahingehend zu verandern, daß sie eine mo¬ difizierte Starke synthetisieren, ist es erforderlich, jeweils DNA-Sequenzen zu identifizieren, die weitere Isoformen der Stärkesynthasen codieren.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, NucleinsäuremolekUle zur Verfügung zu stellen, die an der Starkebiosynthese beteiligte Enzyme codieren und mit deren s
Hilfe es möglich ist, gentechnisch veränderte Pflanzen herzu¬ stellen, die eine erhöhte oder erniedrigte Aktivität dieser Enzyme aufweisen, wodurch es zu einer Veränderung der chemi¬ schen und/oder physikalischen Eigenschaften der in diesen Pflanzen synthetisierten Stärke kommt.
Diese Aufgabe wird durch die Bereitstellung der in den Patent¬ ansprüchen bezeichneten Ausführungsformen gelöst .
Die vorliegende Erfindung betrifft daher NucleinsäuremolekUle, die Proteine mit der biologischen Aktivität einer löslichen Stärkesynthase des Typs I aus Mais codieren, wobei derartige Moleküle vorzugsweise Proteine codieren, die die unter Seq ID No. 2 angegebenen Aminosäuresequenz umfassen. Insbesondere betrifft die Erfindung NucleinsäuremolekUle, die die unter Seq ID No. 1 angegebene Nucleotidsequenz oder einen Teil davon enthalten, bevorzugt Moleküle, die die in Seq ID No. 1 angege¬ bene codierende Region umfassen bzw. entsprechende Ribo- nucleotidsequenzen.
Ferner betrifft die vorliegende Erfindung NucleinsäuremolekUle, die eine lösliche Stärkesynthase aus Mais codieren und deren einer Strang mit einem der oben beschriebenen Moleküle hybridisiert oder mit einem komplementären Strang dieser Moleküle .
Gegenstand der Erfindung sind ebenfalls NucleinsäuremolekUle, die eine lösliche Stärkesynthase des Typs I aus Mais codieren und deren Sequenz aufgrund der Degeneration des genetischen Codes von den Nucleotidsequenzen der oben beschriebenen Mole¬ küle abweicht .
Die Erfindung betrifft auch NucleinsäuremolekUle, die eine Se¬ quenz aufweisen, die zu der gesamten oder einem Teil der Sequenz der obengenannten Moleküle komplementär ist .
Bei den erfindungsgemäßen Nucleinsäuremolekülen kann es sich sowohl um DNA- als auch RNA-Moleküle handeln. Entsprechende DNA-Moleküle sind beispielsweise genomische oder cDNA-Moleküle . Der Begriff "Hybridisierung" bedeutet im Rahmen dieser Erfin¬ dung eine Hybridisierung unter konventionellen Hybridisie- rungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrock et al . , Molecular Cloning, A Laboratory Manual, 2. Aufl. (1989) Cold Spring Harbor Labo- ratory Press, Cold Spring Harbor, NY) beschrieben sind. NucleinsäuremolekUle, die mit den erfindungsgemäßen Nuclein- säuremolekülen hybridisieren, können prinzipiell aus jeder be¬ liebigen Maispflanze stammen, die derartige Moleküle besitzt. NucleinsäuremolekUle, die mit den erfindungsgemäßen Molekülen hybridisieren, können z.B. aus genomischen oder aus cDNA-Bi- bliotheken von Maispflanzen oder Maispflanzengewebe isoliert werden. Alternativ können sie durch gentechnische Methoden oder durch chemische Synthese hergestellt sein.
Die Identifizierung und Isolierung derartiger Nucleinsäuremo¬ lekUle kann dabei unter Verwendung der erfindungsgemäßen Mole¬ küle oder Teile dieser Moleküle bzw. der reversen Komplemente dieser Moleküle erfolgen, z.B. mittels Hybridisierung nach Standardverfahren (siehe z.B. Sambrook et al . , 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor La¬ boratory Press, Cold Spring Harbor, NY) .
Als Hybridisierungsprobe können z.B. NucleinsäuremolekUle ver¬ wendet werden, die exakt die oder im wesentlichen die unter Seq ID No. 1 angegebene Nucleotidsequenz oder Teile dieser Sequenz aufweisen. Bei den als Hybridisierungsprobe verwendeten Fragmenten kann es sich auch um synthetische Fragmente handeln, die mit Hilfe der gängigen Synthesetechniken hergestellt wurden und deren Sequenz im wesentlichen mit der eines erfin¬ dungsgemäßen Nucleinsäuremoleküls übereinstimmt. Hat man Gene identifiziert und isoliert, die mit den erfindungsgemäßen Nucleinsäuresequenzen hybridisieren, ist eine Bestimmung der Sequenz und eine Analyse der Eigenschaften der von dieser Se¬ quenz codierten Proteine erforderlich.
Die mit den erfindungsgemäßen Nucleinsäuremolekülen hybridi¬ sierenden Moleküle umfassen auch Fragmente, Derivate und alle- lische Varianten der oben beschriebenen NucleinsäuremolekUle, die eine erfindungsgemäße lösliche Stärkesynthase aus Mais co¬ dieren. Unter Fragmenten werden dabei Teile der Nucleinsäure¬ molekUle verstanden, die lang genug sind, um eines der be¬ schriebenen Proteine zu codieren. Der Ausdruck Derivat bedeutet in diesem Zusammenhang, daß die Sequenzen dieser Moleküle sich von den Sequenzen der oben beschriebenen NucleinsäuremolekUle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Homologie zu diesen Sequenzen aufweisen. Homologie bedeutet dabei eine Sequenzidentität von mindestens 40 %, insbesondere eine Identität von mindestens 60 %, vorzugsweise über 80 % und besonders bevorzugt über 90 %. Die Abweichungen zu den oben beschriebenen Nucleinsäuremolekülen können dabei durch Deletion, Substitution, Insertion oder Rekombination entstanden sein.
Homologie bedeutet ferner, daß funktioneile und/oder struktu¬ relle Äquivalenz zwischen den betreffenden Nucleinsäuremolekü¬ len oder den durch sie codierten Proteinen, besteht. Bei den Nucleinsäuremolekülen, die homolog zu den oben beschriebenen Molekülen sind und Derivate dieser Moleküle darstellen, handelt es sich in der Regel um Variationen dieser Moleküle, die Modifikationen darstellen, die dieselbe biologische Funktion ausüben. Es kann sich dabei sowohl um natürlicherweise auftre¬ tende Variationen handeln, beispielsweise um Sequenzen aus an¬ deren Maissorten, oder um Mutationen, wobei diese Mutationen auf natürliche Weise aufgetreten sein können oder durch ge¬ zielte Mutagenese eingeführt wurden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln. Bei den allelischen Varianten kann es sich sowohl um natürlich auftretende Varianten handeln, als auch um synthetisch herge¬ stellte oder durch rekombinante DNA-Techniken erzeugte Varian¬ ten.
Die von den verschiedenen Varianten der erfindungsgemäßen NucleinsäuremolekUle codierten Proteine weisen bestimmte ge¬ meinsame Charakteristika auf. Dazu können z.B. Enzymaktivität, Molekulargewicht, immunologische Reaktivität, Konformation etc. gehören, sowie physikalische Eigenschaften wie z.B. das Laufverhalten in Gelelektrophoresen, chromatographisches Ver¬ halten, Sedimentationskoeffizienten, Löslichkeit, spektrosko¬ pische Eigenschaften, Stabilität; pH-Optimum, Temperatur-Opti¬ mum etc .
Wichtige Charakteristika einer Stärkesynthase sind: i) ihre Lokalisation im Stroma der Piastiden pflanzlicher Zellen; ii) ihre Fähigkeit zur Synthese linearer α-1,4-verknüpfter Poly- glucane unter Verwendung von ADP-Glucose als Substrat. Diese Q
Aktivität kann wie in Denyer und Smith (Planta 186 (1992) , 606- 617) oder wie in den Beispielen beschrieben bestimmt werden. Bei den durch die erfindungsgemäßen Nucleinsäuremolekülen co¬ dierten Proteine handelt es sich um eine bisher nicht identi¬ fizierte und charakterisierte Form einer löslichen Stärke¬ synthase aus Mais, die dem Typ I ("primer independent" ) zuge¬ ordnet werden kann. Derartige Stärkesynthasen bzw. Nucleinsäu¬ remolekUle, die derartige Proteine codieren, sind bisher aus Mais nicht beschrieben. Das codierte Protein weist eine gewisse Homologie zu einer löslichen Stärkesynthase aus Reis auf (Baba et al., Plant Physiol. 103 (1993) , 565 - 573) .
Gegenstand der Erfindung sind auch Oligonucleotide, die spezi¬ fisch mit einem erfindungsgemäßen Nucleinsäuremolekül hybridi¬ sieren. Derartige Oligonucleotide haben vorzugsweise eine Länge von mindestens 10, insbesondere von mindestens 15 und besonders bevorzugt von mindestens 50 Nucleotiden. Sie sind dadurch gekennzeichnet, daß sie spezifisch mit erfindungsgemäßen Nucleinsäuremolekülen hybridisieren, d.h. nicht oder nur in sehr geringem Ausmaß mit Nucleinsäuresequenzen, die andere Proteine, insbesondere andere Stärkesynthasen codieren. Die erfindungsgemäßen Oligonucleotide können beispielsweise als Primer für eine PCR-Reaktion verwendet werden. Ebenso können sie Bestandteile von antisense-Konstrukten sein oder von DNA- Molekülen, die für geeignete Ribozyme codieren.
Ferner betrifft die Erfindung Vektoren, insbesondere Plasmide, Cosmide, Viren, Bacteriophagen und andere in der Gentechnik gängige Vektoren, die die oben beschriebenen erfindungsgemäßen NucleinsäuremolekUle enthalten.
In einer bevorzugten Ausführungsform sind die in den Vektoren enthaltenen NucleinsäuremolekUle verknüpft mit regulatorischen Elementen, die die Transkription und Synthese einer transla- tierbaren RNA in prokaryontischen oder eukaryontischen Zellen gewährleisten.
Die Expression der erfindungsgemäßen NucleinsäuremolekUle in prokaryontischen Zellen, beispielsweise in Escherichia coli, ist insofern interessant, als daß auf diese Weise eine genauere 3
Charakterisierung der enzymatischen Aktivitäten der Enzyme, für die diese Moleküle codieren, ermöglicht wird. Es ist insbesondere möglich, das Produkt, das von den entsprechenden Enzymen in Abwesenheit anderer, in der pflanzlichen Zelle an der Stärkesynthese beteiligter Enzyme synthetisiert wird, zu charakterisieren. Dies läßt Rückschlüsse zu auf die Funktion, die das entsprechende Protein bei der Stärkesynthese in der Pflanzenzelle ausübt.
Darüber hinaus ist es möglich, mittels gängiger molekularbio¬ logischer Techniken (siehe z.B. Sambrook et al . , 1989, Molecu¬ lar Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) verschiedenartige Mutationen in die erfindungsgemäßen NucleinsäuremolekUle ein¬ zuführen, wodurch es zur Synthese von Proteinen mit eventuell veränderten biologischen Eigenschaften kommt . Hierbei ist zum einen die Erzeugung von Deletionsmutanten möglich, bei denen durch fortschreitende Deletionen vom 5 ' - oder vom 3 ' - Ende der codierenden DNA-Sequenz NucleinsäuremolekUle erzeugt werden, die zur Synthese entsprechend verkürzter Proteine führen. Durch derartige Deletionen am 5 ' -Ende der Nucleotidsequenz ist es beispielsweise möglich, Aminosäuresequenzen zu identifizieren, die für die Translokation des Enzyms in die Piastiden verantwortlich sind (Transitpeptide) . Dies erlaubt es, gezielt Enzyme herzustellen, die durch Entfernen der entsprechenden Sequenzen nicht mehr in den Piastiden, sondern im Cytosol lo¬ kalisiert sind, oder aufgrund der Addition von andereren Si¬ gnalsequenzen in anderen Kompartimenten lokalisiert sind. Andererseits ist auch die Einführung von Punktmutationen denk¬ bar an Positionen, bei denen eine Veränderung der Aminosäure- sequenz einen Einfluß beispielweise auf die Enzymaktivität oder die Regulierung des Enzyms hat. Auf diese Weise können z.B. Mutanten hergestellt werden, die einen veränderten Km-Wert besitzen oder nicht mehr den normalerweise in der Zelle vorliegenden Regulationsmechanismen über allosterische Regula¬ tion oder kovalente Modifizierung unterliegen.
Des weiteren können Mutanten hergestellt werden, die eine ver¬ änderte Substrat- oder Produktspezifität aufweisen, wie z.B. Mutanten, die als Substrat ADP-Glucose-6-Phosphat anstatt ADP- Glucose verwenden. Weiterhin können Mutanten hergestellt wer- lO den, die ein verändertes Aktivitäts-Temperatur-Profil aufwei¬ sen.
Für die gentechnische Manipulation in prokaryontischen Zellen können die erfindungsgemäßen NucleinsäuremolekUle oder Teile dieser Moleküle in Plasmide eingebracht werden, die eine Muta- genese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von Standardverfahren (vgl. Sambrook et al. , 1989, Molecular Cloning: A laboratory manual, 2. Aufl., Cold Spring Harbor Laboratory Press, NY, USA) können Basenaustausche vorgenommen oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Frag¬ mente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden. Ferner können Manipulationen, die passende Restriktionsschnittstellen zur Verfügung stellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Sub¬ stitutionen in Frage kommen, können in vitro-Mutagenese, "primer repair" , Restriktion oder Ligation verwendet werden. Als Analysemethode werden im allgemeinen eine Sequenzanalyse, eine Restriktionsanalyse und weitere biochemisch-molekularbio- logische Methoden durchgeführt.
In einer weiteren Ausführungsform betrifft die Erfindung Wirtszellen, insbesondere prokaryontische oder eukaryontische Zellen, die mit einem oben beschriebenen erfindungsgemäßen Nucleinsäuremolekül oder einem erfindungsgemäßen Vektor trans¬ formiert sind, sowie Zellen, die von derart transformierten Zellen abstammen und ein erfindungsgemäßes Nucleinsäuremolekül oder einen Vektor enthalten. Dabei handelt es sich vorzugsweise um bakterielle Zellen oder pflanzliche Zellen.
Gegenstand der Erfindung sind ferner die Proteine, die durch die erfindungsgemäßen NucleinsäuremolekUle codiert werden, so¬ wie Verfahren zu deren Herstellung, wobei eine erfindungsgemäße Wirtszelle unter Bedingungen kultiviert wird, die die Synthese des Proteins erlauben, und anschließend das Protein aus den kultivierten Zellen und/oder dem Kulturmedium isoliert wird. ll
Die vorliegende Erfindung betrifft somit auch transgene Pflan¬ zenzellen, die mit einem erfindungsgemäßen Nucleinsäuremolekül transformiert, d.h. genetisch modifiziert, wurden, sowie transgene Pflanzenzellen, die von derartig tranformierten Zellen abstammen und erfindungsgemaße NucleinsäuremolekUle enthalten.
Durch die Bereitstellung der erfindungsgemäßen Nucleinsäuremo¬ lekUle ist es nun möglich, mit Hilfe gentechnischer Methoden in den Stärkemetabolismus von Pflanzen einzugreifen, wie es bisher nicht möglich war, und ihn dahingehend zu verändern, daß es zur Synthese einer modifizierten Stärke kommt, die beispielsweise in ihren physikalisch-chemischen Eigenschaften, insbesondere dem Amylose/Amylopektin-Verhältnis, dem Verzweigungsgrad, der durchschnittlichen Kettenlänge, dem Phosphatgehalt, dem Verkleisterungsverhalten, der Stärkekorngröße und/oder der Stärkekornform im Vergleich zu in Wildtyp-Pflanzen synthetisierter Stärke verändert ist. Durch eine Erhöhung der Aktivität der erfindungsgemäßen Proteine, beispielsweise durch Uberexpression entsprechender NucleinsäuremolekUle, oder durch die Bereitstellung von Mutanten, die nicht mehr den zelleigenen Regulationsmechanismen unterliegen und/oder unterschiedliche Temperaturabhängigkeiten in bezug auf ihre Aktivität besitzen, besteht die Möglichkeit der Ertragssteigerung in entsprechend gentechnisch veränderten Pflanzen. Die wirtschaftliche Bedeutung der Möglichkeit des Eingriffs in die Stärkesynthese allein bei Mais ist offensichtlich: Mais ist weltweit die wichtigste Pflanze zur Stärkegewinnung. Ca. 80% der weltweit jährlich produzierten Stärke wird aus Mais gewonnen. Möglich ist somit die Expression der erfindungsgemäßen NucleinsäuremolekUle in pflanzlichen Zellen, um die Aktivität der entsprechenden löslichen Stärkesynthase zu erhöhen. Ferner ist es möglich, die erfindungsgemäßen NucleinsäuremolekUle nach dem Fachmann bekannten Methoden zu modifizieren, um er¬ findungsgemäß Stärkesynthasen zu erhalten, die nicht mehr den zelleigenen Regulationsmechanismen unterliegen, bzw. veränderte Temperaturabhängigkeiten oder Substrat- bzw. Pro- duktspezifitäten aufweisen. Die erfindungsgemäßen Zellen enthalten ein erfindungsgemäßes
Nucleinsäuremolekül, wobei dieses vorzugsweise mit regulatorischen DNA-Elementen verknüpft ist, die die Transkription in pflanzlichen Zellen gewährleisten, insbesondere mit einem Promotor. Derartige Zellen lassen sich von natürlicherweise vorkommenden Pflanzenzellen dadurch unterscheiden, daß sie ein erfindungsgemäßes Nuclein¬ säuremolekül enthalten, das natürlicherweise in diesen Zellen nicht vorkommt oder dadurch, daß ein solches Molekül an einem Ort im Genom der Zelle integriert vorliegt, an dem es sonst nicht vorkommt, d.h. in einer andereren genomischen Umgebung. Bei der Expression der erfindungsgemäßen NucleinsäuremolekUle in Pflanzen besteht grundsätzlich die Möglichkeit, daß das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein kann. Um die Lokalisation in einem bestimmten Kompartiment zu erreichen, muß die die Lo¬ kalisation in Piastiden gewährleistende Sequenz deletiert wer¬ den und die verbleibende codierende Region gegebenenfalls mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in dem jeweiligen Kompartiment gewährleisten. Derartige Sequenzen sind bekannt (siehe beispielsweise Braun et al . , EMBO J. 11 (1992) , 3219-3227; Wolter et al . , Proc. Natl . Acad. Sei. USA 85 (1988) , 846-850; Sonnewald et al . , Plant J. 1 (1991) , 95-106) .
Gegenstand der vorliegenden Erfindung sind ferner auch Pflanzen, die erfindungsgemäße Zellen enthalten. Diese können z.B durch Regeneration der erfindungsgemäßen transgenen Pflanzenzellen nach dem Fachmann bekannten Methoden erhalten werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen. Bevorzugt handelt es sich um Nutzpflanzen, insbesondere um stärkesynthetisierende bzw. stärkespeichernde Pflanzen, wie z.B. Getreidearten (Roggen, Gerste Hafer, Weizen etc.) , Reis, Mais, Erbse, Maniok oder Kartoffel.
Die Erfindung betrifft ebenfalls Vermehrungsmaterial der er¬ findungsgemäßen Pflanzen, das erfindungsgemäße Zellen enthält, beispielsweise Früchte, Samen, Knollen, Wurzelstöcke, Sämlinge, Stecklinge, Calluskulturen, Zellkulturen etc. Gegenstand der vorliegenden Erfindung ist auch die aus den erfindungsgemäßen transgenen Pflanzenzellen, Pflanzen sowie Vermehrungsmaterial erhältliche Stärke.
Die erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen synthetisieren aufgrund der Expression bzw. zusätzlichen Ex¬ pression eines erfindungsgemäßen Nucleinsäuremoleküls eine Stärke, die beispielsweise in ihren physikalisch-chemischen Eigenschaften, insbesondere dem Amylose/Amylopektin-Verhältnis, dem Verzweigungsgrad, der durchschnittlichen Kettenlänge, dem Phosphatgehalt, dem Verkleisterungsverhalten, der Stärke¬ korngröße und/oder der Stärkekornform im Vergleich zu in Wild¬ typ-Pflanzen synthetisierter Stärke verändert ist. Insbesondere kann eine solche Stärke im Hinblick auf die Viskosität und/oder die Gelbildungseigenschaften von Kleistern dieser Stärke im Vergleich zu Wildtypstärke verändert sein.
Ein weiterer Gegenstand der Erfindung sind transgene Maispflanzenzellen, in denen die Aktivität eines erfindungs¬ gemäßen Proteins verringert ist im Vergleich zu nicht-trans- formierten Zellen.
Mit Hilfe der erfindungsgemäßen NucleinsäuremolekUle ist es möglich, Maispflanzenzellen und Maispflanzen zu erzeugen, bei denen die Aktivität eines erfindungsgemäßen Proteins verringert ist. Dies führt ebenfalls zur Synthese einer Stärke mit veränderten chemischen und/oder physikalischen Eigenschaften verglichen mit Stärke aus Wildtyp-Pflanzenzellen. Die Herstellung von Maispflanzenzellen mit einer verringerten Aktivität eines erfindungsgemäßen Proteins kann beispielsweise erzielt werden durch die Expression einer entsprechenden anti- sense-RNA, einer sense-RNA zur Erzielung eines Cosuppressions- effektes oder die Expression eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte spaltet, die eines der erfindungsgemäßen Proteine codieren, unter Verwendung der er¬ findungsgemäßen NucleinsäuremolekUle.
Das Verfahren zur Verringerung der Aktivität erfindungsgemäßer Enzyme in den Pflanzenzellen durch einen Cosuppressionseffekt ist dem Fachmann bekannt und ist beispielsweise in Jorgensen (Trends Biotechnol . 8 (1990) , 340-344) , Niebel et al . , (Curr. Top. Microbiol. Immunol . 197 (1995) , 91-103) , Flavell et al . (Curr. Top. Microbiol . Immunol . 197 (1995) , 43-46) , Palaqui und Vaucheret (Plant. Mol. Biol . 29 (1995) , 149-159) , Vaucheret et al . , (Mol. Gen. Genet . 248 (1995) , 311-317) , de Borne et al . (Mol. Gen. Genet. 243 (1994) , 613-621) und anderen Quellen. Die Expression von Ribozymen zur Verringerung der Aktivität von bestimmten Enzymen in Zellen ist dem Fachmann ebenfalls bekannt und ist beispielsweise beschrieben in EP-Bl 0 321 201. Die Expression von Ribozymen in pflanzlichen Zellen wurde z.B. beschrieben in Feyter et al . (Mol. Gen. Genet. 250 (1996) , 329- 338) .
Vorzugsweise wird zur Reduzierung der Aktivität eines erfin¬ dungsgemäßen Proteins in pflanzlichen Zellen eine antisense-RNA exprimiert .
Hierzu kann zum einen ein DNA-Molekül verwendet werden, das die gesamte ein erfindungsgemäßes Protein codierende Sequenz einschließlich eventuell vorhandener flankierender Sequenzen umfaßt, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Es können im allgemeinen Sequenzen bis zu einer Mindestlänge von 15 bp, vorzugsweise einer Länge von 100-500 bp, für eine effiziente antisense-Inhibition insbesondere Sequenzen mit einer Länge über 500 bp verwendet werden. In der Regel werden DNA-Moleküle verwendet, die kürzer als 5000 bp, vorzugsweise Sequenzen, die kürzer als 2500 bp sind.
Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den Sequenzen der erfindungsgemäßen DNA-Moleküle aufweisen, aber nicht vollkommen identisch sind. Die minimale Homologie sollte größer als ca. 65 % sein. Die Verwendung von Sequenzen mit Homologien zwischen 95 und 100 % ist zu bevorzugen.
Gegenstand der Erfindung sind auch Maispflanzen, die erfin¬ dungsgemäße transgene Maispflanzenzellen enthalten. Die Er¬ findung betrifft ebenfalls Vermehrungsmaterial der erfin¬ dungsgemäßen Pflanzen, insbesondere Samen. Gegenstand der Erfindung ist auch die aus den vorgehend beschriebenen transgenen Maispflanzenzellen, Maispflanzen sowie Vermehrungsmaterial erhältliche Stärke.
Die erfindungsgemäßen transgenen Maispflanzenzellen und Mais- pflanzen synthetisieren aufgrund der Verringerung der Aktivität eines der erfindungsgemäßen Proteine eine Stärke, die bei¬ spielsweise in ihren physikalisch-chemischen Eigenschaften, insbesondere dem Amylose/Amylopektin-Verhältnis, dem Verzwei¬ gungsgrad, der durchschnittlichen Kettenlänge, dem Phosphatge¬ halt, dem Verkleisterungsverhalten, der Stärkekorngröße und/oder der Stärkekornform im Vergleich zu in Wildtyp-Pflanzen synthetisierter Stärke verändert ist . Diese Stärke kann beispielsweise veränderte Viskositäten und/oder Gelbil¬ dungseigenschaften ihrer Kleister zeigen im Vergleich zu Stärke aus Wildtyp-Pflanzen.
Die erfindungsgemäßen Stärken können nach dem Fachmann bekann¬ ten Verfahren modifiziert werden und eignen sich in unmodifi- zierter oder modifizierter Form für verschiedene Verwendungen im Nahrungsmittel- oder Nicht-Nahrungsmittelbereich. Grundsätzlich läßt sich die Einsatzmöglichkeit der Stärke in zwei große Bereiche unterteilen. Der eine Bereich umfaßt die Hydrolyseprodukte der Stärke, hauptsächlich Glucose und Glucanbausteine, die über enzymatische oder chemische Verfahren erhalten werden. Sie dienen als Ausgangsstoff für weitere chemische Modifikationen und Prozesse, wie Fermentation. Für eine Reduktion der Kosten kann hierbei die Einfachheit und ko¬ stengünstige Ausführung eines Hydrolyseverfahrens von Bedeutung sein. Gegenwärtig verläuft es im wesentlichen enzymatisch unter Verwendung von Amyloglucosidase . Vorstellbar wäre eine Kosteneinsparung durch einen geringeren Einsatz von Enzymen. Eine Strukturveränderung der Stärke, z.B. Oberflächenvergröße¬ rung des Korns, leichtere Verdaulichkeit durch geringeren Ver¬ zweigungsgrad oder eine sterische Struktur, die die Zugäng¬ lichkeit für die eingesetzten Enzyme begrenzt, könnte dies be¬ wirken.
Der andere Bereich, in dem die Stärke wegen ihrer polymeren Struktur als sogenannte native Stärke verwendet wird, gliedert sich in zwei weitere Einsatzgebiete: lέ
1. Nahrungsmittelindustrie
Stärke ist ein klassischer Zusatzstoff für viele Nah¬ rungsmittel, bei denen sie im wesentlichen die Funktion des Bindens von wäßrigen Zusatzstoffen übernimmt bzw. eine Erhöhung der Viskosität oder aber eine erhöhte Gelbildung hervorruft. Wichtige Eigenschaftsmerkmale sind das Fließ- und Sorptionsverhalten, die Quell- und Ver- kleisterungstemperatur, die Viskosität und Dickungslei¬ stung, die Löslichkeit der Stärke, die Transparenz und Kleisterstruktur, die Hitze-, Scher- und Säurestabilität, die Neigung zur Retrogradation, die Fähigkeit zur Film¬ bildung, die Gefrier/Taustabilität, die Verdaulichkeit sowie die Fähigkeit zur Komplexbildung mit z.B. anorgani¬ schen oder organischen Ionen.
2. Nicht-Nahrungmittelindustrie
In diesem großen Bereich kann die Stärke als Hilfsstoff für unterschiedliche Herstellungsprozesse bzw. als Zu¬ satzstoff in technischen Produkten eingesetzt. Bei der Verwendung der Stärke als Hilfsstoff ist hier insbesondere die Papier- und Pappeindustrie zu nennen. Die Stärke dient dabei in erster Linie zur Retardation (Zurückhaltung von Feststoffen) , der Abbindung von Füllstoff- und Feinstoffteilchen, als Festigungsstoff und zur Entwässerung. Darüber hinaus werden die günstigen Eigen¬ schaften der Stärke in bezug auf die Steifigkeit, die Härte, den Klang, den Griff, den Glanz, die Glätte, die Spaltfestigkeit sowie die Oberflächen ausgenutzt.
2.1 Papier- und Pappeindustrie
Innerhalb des Papierherstellungsprozesses sind vier An¬ wendungsbereiche, nämlich Oberfläche, Strich, Masse und Sprühen, zu unterscheiden.
Die Anforderungen an die Stärke in bezug auf die Oberflä¬ chenbehandlung sind im wesentlichen ein hoher Weißegrad, eine angepaßte Viskosität, eine hohe Viskositätsstabili- tät, eine gute Filmbildung sowie eine geringe Staubbil¬ dung. Bei der Verwendung im Strich spielt der Feststoff- gehalt, eine angepaßte Viskosität, ein hohes Bindevermögen sowie eine hohe Pigmentaffinität eine wichtige Rolle. Als Zusatz zur Masse ist eine rasche, gleichmäßige, ver¬ lustfreie Verteilung, eine hohe mechanische Stabilität und eine vollständige Zurückhaltung im Papierfließ von Bedeutung. Beim Einsatz der Stärke im Sprühbereich sind ebenfalls ein angepaßter Feststoffgehalt, hohe Viskosität sowie ein hohes Bindevermögen von Bedeutung.
2.2 Klebstoffindustrie
Ein großer Einsatzbereich der Stärken besteht in der Klebstoffindustrie, wo man die Einsatzmöglichkeiten in vier Teilbereiche gliedert: die Verwendung als reinem Stärkeleim, die Verwendung bei mit speziellen Chemikalien aufbereiteten Stärkeleimen, die Verwendung von Stärke als Zusatz zu synthetischen Harzen und Polymerdispersionen sowie die Verwendung von Stärken als Streckmittel für synthetische Klebstoffe. 90 % der Klebstoffe auf Stärke¬ basis werden in den Bereichen Wellpappenherstellung, Her¬ stellung von Papiersäcken, Beuteln und Tüten, Herstellung von Verbundmaterialien für Papier und Aluminium, Herstel¬ lung von Kartonagen und Wiederbefeuchtungsleim für Brief¬ umschläge, Briefmarken usw. eingesetzt.
2.3 Textil- und Textilpflegemittelindustrie
Ein großes Einsatzfeld für die Stärken als Hilfmittel und Zusatzstoff ist der Bereich Herstellung von Textilien und Textilpflegemitteln. Innerhalb der Textilindustrie sind die folgenden vier Einsatzbereiche zu unterscheiden: Der Einsatz der Stärke als Schlichtmittel, d.h. als Hilfsstoff zur Glättung und Stärkung des Klettverhaltens zum Schutz gegen die beim Weben angreifenden Zugkräfte sowie zur Er¬ höhung der Abriebfestigkeit beim Weben, Stärke als Mittel zur Textilaufrüstung vor allem nach qualitätsverschlech- ternden Vorbehandlungen, wie Bleichen, Färben usw., Stärke als Verdickungsmittel bei der Herstellung von Farbpasten zur Verhinderung von Farbstoffdiffusionen sowie Stärke als Zusatz zu Kettungsmitteln für Nähgarne. l8
2.4 Baustoffindustrie
Der vierte Einsatzbereich ist die Verwendung der Stärken als Zusatz bei Baustoffen. Ein Beispiel ist die Herstel¬ lung von Gipskartonplatten, bei der die im Gipsbrei ver¬ mischte Stärke mit dem Wasser verkleistert, an die Ober¬ fläche der Gipsplatte diffundiert und dort den Karton an die Platte bindet. Weitere Einsatzbereiche sind die Bei¬ mischung zu Putz- und Mineralfasern. Bei Transportbeton werden Stärkeprodukte zur Verzögerung der Abbindung ein¬ gesetzt .
2.5 Bodenstabilisation
Ein weiterer Markt für die Stärke bietet sich bei der Herstellung von Mitteln zur Bodenstabilisation an, die bei künstlichen Erdbewegungen zum temporären Schutz der Bodenpartikel gegenüber Wasser eingesetzt werden. Kombi- nationsprodukte aus der Stärke und Polymeremulsionen sind nach heutiger Kenntnis in ihrer Erosions- und ver- krustungsmindernden Wirkung den bisher eingesetzten Pro¬ dukten gleichzusetzen, liegen preislich aber deutlich un¬ ter diesen.
2.6 Einsatz bei Pflanzenschutz- und Düngemitteln
Ein Einsatzbereich liegt bei der Verwendung der Stärke in Pflanzenschutzmitteln zur Veränderung der spezifischen Eigenschaften der Präparate. So kann die Stärke zur Ver¬ besserung der Benetzung von Pflanzenschutz- und Düngemit¬ teln, zur dosierten Freigabe der Wirkstoffe, zur Umwand¬ lung flüssiger, flüchtiger und/oder übelriechender Wirk¬ stoffe in mikrokristalline, stabile, formbare Substanzen, zur Mischung inkompatibler Verbindungen und zur Verlänge¬ rung der Wirkdauer durch Verminderung der Zersetzung ein¬ gesetzt werden.
2.7 Pharmaka, Medizin und Kosmetikindustrie
Ein weiteres Einsatzgebiet besteht im Bereich der Phar¬ maka, Medizin und Kosmetikindustrie. In der pharmazeuti¬ schen Industrie kann die Stärke als Bindemittel für Ta¬ bletten oder zur Bindemittelverdünnung in Kapseln einge- »9 setzt werden. Weiterhin kann die Stärke als Tabletten- sprengmittel dienen, da sie nach dem Schlucken Flüssigkeit absorbieren und nach kurzer Zeit soweit quellen, daß der Wirkstoff freigesetzt wird. Medizinische Gleit- und Wundpuder basieren aus qualitativen Gründen auf Stärke. Im Bereich der Kosmetik werden Stärken beispielsweise als Träger von Puderzusatzstoffen, wie Düften und Salicylsäure eingesetzt. Ein relativ großer Anwendungsbereich für die Stärke liegt bei Zahnpasta.
2.8 Stärkezusatz zu Kohlen und Briketts
Einen Einsatzbereich bietet die Stärke als Zusatzstoff zu Kohle und Brikett . Kohle kann mit einem Stärkezusatz quantitativ hochwertig agglomeriert bzw. brikettiert wer¬ den, wodurch ein frühzeitiges Zerfallen der Briketts ver¬ hindert wird. Der Stärkezusatz liegt bei Grillkohle zwi¬ schen 4 und 6 %, bei kalorierter Kohle zwischen 0,1 und 0,5 %. Des weiteren gewinnen Stärken als Bindemittel an Bedeutung, da durch ihren Zusatz zu Kohle und Brikett der Ausstoß schädlicher Stoffe deutlich vermindert werden kann.
2.9 Erz- und Kohleschlammaufbereitung
Die Stärke kann ferner bei der Erz- und Kohleschlammauf¬ bereitung als Flockungsmittel eingesetzt werden.
2.10 Gießereihilfsstoff
Ein weiterer Einsatzbereich besteht als Zusatz zu Gieße¬ reihilfsstoffen. Bei verschiedenen Gußverfahren werden Kerne benötigt, die aus Bindemittel-versetzten Sänden hergestellt werden. Als Bindemittel wird heute überwiegend Bentonit eingesetzt, das mit modifizierten Stärken, meist Quellstärken, versetzt ist.
Zweck des Stärkezusatzes ist die Erhöhung der Fließfe¬ stigkeit sowie die Verbesserung der Bindefestigkeit. Dar¬ über hinaus können die Quellstärken weitere produk¬ tionstechnische Anforderungen, wie im kalten Wasser dis- pergierbar, rehydratisierbar, gut in Sand mischbar und hohes Wasserbindungsvermögen, aufweisen. 2.11 Einsatz in der Kautschukindustrie
In der Kautschukindustrie kann die Stärke zur Verbesserung der technischen und optischen Qualität eingesetzt werden. Gründe sind dabei die Verbesserung des Oberflächenglanzes, die Verbesserung des Griffs und des Aussehens, dafür wird Stärke vor der Kaltvulkanisation auf die klebrigen gummierten Flächen von Kautschukstoffen gestreut, sowie die Verbesserung der Bedruckbarkeit des Kautschuks.
2.12 Herstellung von Lederersatzstoffen
Eine weitere Absatzmöglichkeit der modifizierten Stärken besteht bei der Herstellung von Lederersatzstoffen.
2.13 Stärke in synthetischen Polymeren
Auf dem Kunststoffsektor zeichnen sich folgende Einsatz¬ gebiete ab: die Einbindung von Stärkefolgeprodukten in den Verarbeitungsprozess (Stärke ist nur Füllstoff, es besteht keine direkte Bindung zwischen synthetischem Polymer und Stärke) oder alternativ die Einbindung von Stärkefolgeprodukten in die Herstellung von Polymeren (Stärke und Polymer gehen eine feste Bindung ein) .
Die Verwendung der Stärke als reinem Füllstoff ist verglichen mit den anderen Stoffen wie Talkum nicht wettbewerbsfähig. An¬ ders sieht es aus, wenn die spezifischen Stärkeeigenschaften zum Tragen kommen und hierdurch das Eigenschaftsprofil der Endprodukte deutlich verändert wird. Ein Beispiel hierfür ist die Anwendung von Stärkeprodukten bei der Verarbeitung von Thermoplasten, wie Polyäthylen. Hierbei werden die Stärke und das synthetische Polymer durch Koexpression im Verhältnis von 1 : 1 zu einem 'master batch1 kombiniert, aus dem mit granu¬ liertem Polyäthylen unter Anwendung herkömmlicher Verfah¬ renstechniken diverse Produkte hergestellt werden. Durch die Einbindung von Stärke in Polyäthylenfolien kann eine erhöhte Stoffdurchlässigkeit bei Hohlkörpern, eine verbesserte Wasser¬ dampfdurchlässigkeit, ein verbessertes Antistatikverhalten, ein verbessertes Antiblockverhalten sowie eine verbesserte Be¬ druckbarkeit mit wäßrigen Farben erreicht werden. 2ι
Eine andere Möglichkeit ist die Anwendung der Stärke in Po¬ lyurethanschäumen. Mit der Adaption der Stärkederivate sowie durch die verfahrenstechnische Optimierung ist es möglich, die Reaktion zwischen synthetischen Polymeren und den Hydroxygrup- pen der Stärken gezielt zu steuern. Das Ergebnis sind Poly¬ urethanfolien, die durch die Anwendung von Stärke folgende Eigenschaftsprofile erhalten: eine Verringerung des Wärmeaus¬ dehnungskoeffizienten, Verringerung des SchrumpfVerhaltens, Verbesserung des Druck/Spannungsverhaltens, Zunahme der Was¬ serdampfdurchlässigkeit ohne Veränderung der Wasseraufnähme, Verringerung der Entflammbarkeit und der Aufrißdichte, kein Abtropfen brennbarer Teile, Halogenfreiheit und verminderte Alterung. Nachteile, die gegenwärtig noch vorhanden sind, sind verringerte Druckfestigkeit sowie eine verringerte Schlagfe¬ stigkeit .
Die Produktentwicklung beschränkt sich inzwischen nicht mehr nur auf Folien. Auch feste Kunststoffprodukte, wie Töpfe, Platten und Schalen, sind mit einem Stärkegehalt von über 50 % herzustellen. Des weiteren sind Stärke/ Polymermischungen gün¬ stig zu beurteilen, da sie eine sehr viel höhere biologische Abbaubarkeit aufweisen.
Außerordentliche Bedeutung haben weiterhin auf Grund ihres ex¬ tremen Wasserbindungsvermögen Stärkepfropfpolymerisate gewon¬ nen. Dies sind Produkte mit einem Rückgrat aus Stärke und einer nach dem Prinzip des Radikalkettenmechanismus aufgepfropften Seitengitters eines synthetischen Monomers. Die heute verfügbaren Stärkepfropfpolymerisate zeichnen sich durch ein besseres Binde- und Rückhaltevermögen von bis zu 1000 g Wasser pro g Stärke bei hoher Viskosität aus . Die Anwendungsbereiche für diese Superabsorber haben sich in den letzten Jahren stark ausgeweitet und liegen im Hygienebereich mit Produkten wie Windeln und Unterlagen sowie im landwirtschaftlichen Sektor, z.B. bei Saatgutpillierungen.
Entscheidend für den Einsatz der neuen, gentechnisch veränder¬ ten Stärken sind zum einen die Struktur, Wassergehalt, Pro¬ teingehalt, Lipidgehalt, Fasergehalt, Asche/Phosphatgehalt, Amylose/Amylopektinverhältnis, Molmassenverteilung, Verzwei¬ gungsgrad, Korngröße und -form sowie Kristallinität, zum ande- 12 ren auch die Eigenschaften, die in folgende Merkmale münden:
Fließ- und Sorptionsverhalten, Verkleisterungstemperatur, Vis¬ kosität, Dickungsleistung, Löslichkeit, Kleisterstruktur und - transparenz, Hitze-, Scher- und Säurestabilität, Retrograda- tionsneigung, Gelbildung, Gefrier/Taustabilität, Komplexbil¬ dung, Jodbindung, Filmbildung, Klebekraft, Enzymstabilität, Verdaulichkeit und Reaktivität.
Die Erzeugung modifizierter Stärken mittels gentechnischer Eingriffe in einer transgenen Pflanze kann zum einen die Eigenschaften der aus der Pflanze gewonnenen Stärke dahingehend verändern, daß weitere Modifikationen mittels chemischer oder physikalischer Verfahren nicht mehr notwendig erscheinen. Zum anderen können die durch gentechnische Verfahren veränderte Stärken weiteren chemischen Modifikationen unterworfen werden, was zu weiteren Verbesserungen der Qualität für bestimmte der oben beschriebenen Einsatzgebiete führt . Diese chemischen Modifikationen sind grundsätzlich bekannt. Insbesondere handelt es sich dabei um Modifikationen durch
- Hitzebehandlung,
- Säurebehandlung,
- Oxidation und
- Veresterungen,
welche zur Entstehung von Phosphat-, Nitrat-, Sulfat-, Xanthat- , Acetat- und Citratstärken führen. Weitere organische Säuren können ebenfalls zur Veresterung eingesetzt werden:
- Erzeugung von Stärkeethern Stärke-Alkylether, O-Allylether, Hydroxylalkylether, O-Carboxylmethylether, N-haltige Stärkeether, P-haltige Stärkeether, S-haltige Stärkeether
- Erzeugung von vernetzten Stärken
- Erzeugung von Stärke-Pfropf-Polymerisaten
Zur Expression der erfindungsgemäßen NucleinsäuremolekUle in sense- oder antisense-Orientierung in pflanzlichen Zellen wer- den diese mit regulatorischen DNA-Elementen verknüpft, die die Transkription in pflanzlichen Zellen gewährleisten. Hierzu zählen insbesondere Promotoren. Generell kommt für die Ex¬ pression jeder in pflanzlichen Zellen aktive Promotor in Frage. Der Promotor kann dabei so gewählt sein, daß die Expression konstitutiv erfolgt oder nur in einem bestimmten Gewebe, zu einem bestimmten Zeitpunkt der Pflanzenentwicklung oder zu einem durch äußere Einflüsse determinierten Zeitpunkt. In Bezug auf die Pflanze kann der Promotor homolog oder heterolog sein. Geeignete Promotoren für eine konstitutive Expression sind z.B. der Promotor der 35S RNA des Cauliflower Mosaic Virus und der Ubiquitin-Promotor aus Mais, für eine knollenspezifische Expression in Kartoffeln der Patatingen-Promotor B33 (Rocha- Sosa et al . , EMBO J. 8 (1989) , 23-29) oder ein Promotor, der eine Expression lediglich in photosynthetisch aktiven Geweben sicherstellt, z.B. der ST-LSl-Promotor (Stockhaus et al . , Proc. Natl. Acad. Sei. USA 84 (1987) , 7943-7947; Stockhaus et al. , EMBO J. 8 (1989) , 2445-2451) oder für eine endosperm- spezifische Expression der HMG-Promotor aus Weizen, der USP- Promotor, der Phaseolinpromotor oder Promotoren von Zein-Genen aus Mais.
Ferner kann eine Terminationssequenz vorhanden sein, die der korrekten Beendigung der Transkription dient sowie der Addition eines Poly-A-Schwanzes an das Transkript, dem eine Funktion bei der Stabilisierung der Transkripte beigemessen wird. Derartige Elemente sind in der Literatur beschrieben (vgl. Gielen et al . , EMBO J. 8 (1989) , 23-29) und sind beliebig austauschbar. Die vorliegende Erfindung stellt NucleinsäuremolekUle zur Ver¬ fügung, die eine neue in Mais identifizierte Form einer lösli¬ chen Stärkesynthase codieren. Dies erlaubt nun sowohl die Iden¬ tifizierung der Funktion dieser Stärkesynthase bei der Stärkebiosynthese, als auch die Herstellung gentechnisch ver¬ änderter Pflanzen, bei denen die Aktivität dieses Enzyms ver¬ ändert ist. Dies ermöglicht die Synthese einer Stärke mit ver¬ änderter Struktur und somit veränderten physikalisch-chemischen Eigenschaften in derartig manipulierten Pflanzen. Die erfindungsgemäßen NucleinsäuremolekUle können prinzipiell auch dazu verwendet werden, Pflanzen herzustellen, bei denen die Aktivität der erfindungsgemäßen Stärkesynthase erhöht oder verringert ist und gleichzeitig die Aktivitäten anderer, an der Stärkebiosynthese beteiligter Enzyme verändert sind. Dabei sind alle Kombinationen und Permutationen denkbar. Durch die Veränderung der Aktivitäten einer oder mehrerer Isoformen der Stärkesynthasen in Pflanzen kommt es zur Synthese einer in ih¬ rer Struktur veränderten Stärke. Durch die Steigerung der Ak¬ tivität einer oder mehrerer Isoformen der Stärkesynthasen in den Zellen der stärkespeichernden Gewebe transformierter Pflanzen wie z.B. in dem Endosperm von Mais oder Weizen oder in der Knolle bei der Kartoffel kann es darüber hinaus zu einer Ertragssteigerung kommen. Beispielsweise können Nuclein¬ säuremolekUle, die für ein erfindungsgemäßes Protein codieren oder entsprechende antisense-Konstrukte, in Pflanzenzellen eingebracht werden, bei denen bereits die Synthese endogener GBSS I-, SSS- oder GBSS II-Proteine aufgrund eines antisense- Effektes oder einer Mutation inhibiert ist oder die Synthese des Verzweigungsenzyms inhibiert ist (wie z.B. beschrieben in W092/14827 oder der ae-Mutante (Shannon und Garwood, 1984, in Whistler, BeMiller und Paschall, Starch:Chemistry and Techno¬ logy, Academic Press, London, 2nd Edition: 25-86)) . Soll die Inhibierung der Synthese mehrerer Stärke-Synthasen in transformierten Pflanzen erreicht werden, so können DNA-Mole¬ küle zur Transformation verwendet werden, die gleichzeitig mehrere, die entsprechenden Stärkesynthasen codierenden Regio¬ nen in antisense-Orientierung unter der Kontrolle eines geeig¬ neten Promotors enthalten. Hierbei kann alternativ jede Sequenz unter der Kontrolle eines eigenen Promotors stehen, oder die Sequenzen können als Fusion von einem gemeinsamen Promotor transkribiert werden. Letztere Alternative wird in der Regel vorzuziehen sein, da in diesem Fall die Synthese der entspre¬ chenden Proteine in etwa gleichem Maße inhibiert werden sollte. Weiterhin ist die Konstruktion von Molekülen möglich, die neben Stärkesynthasen codierenden Sequenzen weitere DNA-Sequenzen enthalten, die andere an der Stärkesynthese oder -modifikation beteiligte Proteine codieren. Diese sind jeweils in antisense- Orientierung an einen geeigneten Promotor gekoppelt. Die Se¬ quenzen können hierbei wiederum hintereinandergeschaltet sein und von einem gemeinsamen Promotor transkribiert werden oder aber von getrennten Promotoren transkribiert werden. Für die Länge der einzelnen codierenden Regionen, die in einem derar¬ tigen Konstrukt verwendet werden, gilt das, was oben bereits für die Herstellung von antisense-Konstrukten ausgeführt wurde. Eine obere Grenze für die Anzahl der in einem derartigen DNA- Molekül von einem Promotor aus transkribierten antisense- Fragmente gibt es nicht . Das entstehende Transkript sollte aber in der Regel eine Länge von 10 kb, vorzugsweise von 5 kb nicht überschreiten.
Codierende Regionen, die in derartigen DNA-Molekülen in Kombi¬ nation mit anderen codierenden Regionen in antisense-Orientie¬ rung hinter einem geeigneten Promotor lokalisiert sind, können aus DNA-Sequenzen stammen, die für folgende Proteine codieren: Stärkekorn-gebundene (GBSS I und II) und lösliche Stärke¬ synthasen (SSS I und II) , Verzweigungsenzyme, "Debranching"- Enzyme, Disproportionierungsenzyme und Stärkephosphorylasen. Dies ist nur eine beispielhafte Aufzählung. Auch die Verwendung anderer DNA-Sequenzen im Rahmen einer derartigen Kombination ist denkbar.
Mit Hilfe derartiger Konstrukte ist es möglich, in Pflanzen¬ zellen, die mit diesen transformiert wurden, die Synthese meh¬ rerer Enzyme gleichzeitig zu inhibieren.
Weiterhin können die Konstrukte in klassische Mutanten einge¬ bracht werden, die für ein oder mehrere Gene der Stärkebiosyn- these defekt sind (Shannon und Garwood, 1984, in Whistler, BeMiller und Paschall, Starch:Chemistry and Technology, Aca- demic Press, London, 2nd Edition: 25-86) . Diese Defekte können sich auf folgende Proteine beziehen: Stärkekorn-gebundene (GBSS I und II) und lösliche Stärkesynthasen (SSS I und II) , Verzweigungsenzyme (BE I und II) , "Debranching"-Enzyme (R-En- zyme) , Disproportionierungsenzyme und Stärkephosphorylasen. Dies ist nur eine beispielhafte Aufzählung.
Mit Hilfe einer derartigen Vorgehensweise ist es weiterhin möglich, in Pflanzenzellen, die mit diesen transformiert wur¬ den, die Synthese mehrerer Enzyme gleichzeitig zu inhibieren. Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen stehen eine große Anzahl von Clonierungsvektoren zur Verfügung, die ein Replikationssignal für E.coli und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-Serien, M13mp-Serien, pACYC184 usw.. Die gewünschte Sequenz kann an einer passenden Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird für die Transformation von E.coli-Zellen verwendet. Transformierte E.coli-Zellen werden in einem geeigneten Medium gezüchtet, anschließend geerntet und lysiert . Das Plasmid wird wiedergewonnen. Als Analysemethode zur Charakterisierung der gewonnenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch-molekularbiologische Methoden eingesetzt. Nach jeder Manipulation kann die Plasmid-DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA-Sequenzen verknüpft werden. Jede Plasmid-DNA-Sequenz kann in den gleichen oder anderen Plasmiden cloniert werden.
Für die Einführung von DNA in eine pflanzliche Wirtszelle ste¬ hen eine Vielzahl von Techniken zur Verfügung. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmittel, die Fusion von Pro¬ toplasten, die Injektion, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten.
Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden an sich keine speziellen Anforderungen an die ver¬ wendeten Plasmide gestellt. Es können einfache Plasmide wie z.B. pUC-Derivate verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, sollte vorteilhafterweise ein selektierbares Markergen anwesend sein.
Je nach Einführungsmethode gewünschter Gene in die Pflanzen¬ zelle können gegebenenfalls weitere DNA-Sequenzen erforderlich sein. Werden z.B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so sollte mindestens die rechte Begrenzung, vorteilhafterweise jedoch die rechte und linke Begrenzung der Ti- und Ri-Plasmid T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden.
Werden für die Transformation Agrobakterien verwendet, sollte die einzuführende DNA in spezielle Plasmide cloniert werden, und zwar entweder in einen intermediären Vektor oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobak- terien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir-Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation) . Binäre Vektoren können sowohl in E.coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden (Holsterε et al . Mol. Gen. Genet. 163
(1978) , 181-187) . Das als Wirtszelle dienende Agrobakterium sollte ein Plasmid, das eine vir-Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet.
Die Verwendung von T-DNA für die Transformation von Pflanzen¬ zellen ist intensiv untersucht und ausreichend in EP 120 516; Hoekema, In: The Binary Plant Vector System Offsetdrukkerij Kanters B.V., Alblasserdam (1985) , Chapter V; Fraley et al . , Crit. Rev. Plant. Sei., 4, 1-46 und An et al . EMBO J. 4 (1985) , 277-287 beschrieben worden.
Für den Transfer der DNA in die Pflanzenzelle können Pflanzen- Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kokultiviert werden. Aus dem infizierten Pflanzenmaterial (z.B. Blattstücke, Stengelsegmen¬ te, Wurzeln, aber auch Protoplasten oder Suspensions-kulti- vierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert wer¬ den. Die so erhaltenen Pflanzen können dann auf Anwesenheit der eingeführten DNA untersucht werden. Andere Möglichkeiten der Einführung fremder DNA unter Verwendung des biolistischen Verfahrens oder durch Protoplastentransformation sind bekannt
(vgl. z.B. Willmitzer, L., 1993 Transgenic plants. In: Bio- technology, A Multi-Volume Comprehensive Treatise (H.J. Rehm, 2<9
G. Reed, A. Pühler, P. Stadler, eds.) , Vol. 2, 627-659, VCH Weinheim-New York-Basel-Cambridge) .
Während die Transformation dikotyler Pflanzen über Ti-Plasmid- Vektorsysteme mit Hilfe von Agrobacterium tumefaciens wohl etabliert ist, weisen neuere Arbeiten darauf hin, daß auch monokotyle Pflanzen der Transformation mittels Agrobacterium basierender Vektoren sehr wohl zugänglich sind (Chan et al . , Plant Mol. Biol . 22 (1993) , 491-506; Hiei et al . , Plant J. 6 (1994) , 271-282) .
Alternative Systeme zur Transformation von monokotylen Pflanzen sind die Transformation mittels des biolistischen Ansatzes, die Protoplastentransformation, die Elektroporation von partiell permeabilisierten Zellen, die Einbringung von DNA mittels Glasfasern.
Spezifisch die Transformation von Mais wird in der Literatur verschiedentlich beschrieben (vgl. z.B. WO95/06128, EP 0 513 849; EP 0 465 875) . In EP 292 435 wird ein Verfahren be¬ schrieben, mit Hilfe dessen, ausgehend von einem schleimlosen, weichen (friable) granulösen Mais-Kallus, fertile Pflanzen er¬ halten werden können. Shillito et al . (Bio/Technology 7 (1989) , 581) haben in diesem Zusammenhang beobachtet, daß es ferner für die Regenerierbarkeit zu fertilen Pflanzen notwendig ist, von Kallus-Suspensionskulturen auszugehen, aus denen eine sich teilende Protoplastenkultur, mit der Fähigkeit zu Pflanzen zu regenerieren, herstellbar ist. Nach einer in vitro Kultivierungszeit von 7 bis 8 Monaten erhalten Shillito et al . Pflanzen mit lebensfähigen Nachkommen, die jedoch Abnormalitä- ten in der Morphologie und der Reproduktivität aufweisen. Prioli und Söndahl (Bio/Technology 7 (1989) , 589) beschreiben die Regeneration und die Gewinnung fertiler Pflanzen aus Mais- Protoplasten der Cateto Mais-Inzuchtlinie Cat 100-1. Die Auto¬ ren vermuten, daß die Protoplasten-Regeneration zu fertilen Pflanzen abhängig ist von einer Anzahl verschiedener Faktoren, wie z.B. von Genotyp, vom physiologischen Zustand der Donor- Zellen und von den Kultivierungsbedingungen.
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle in¬ tegriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle er¬ halten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin u.a. vermittelt. Der in¬ dividuelle gewählte Marker sollte daher die Selektion trans¬ formierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten.
Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise (siehe auch McCormick et al . , Plant Cell Reports 5 (1986) , 81-84) . Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, ge¬ kreuzt werden. Die daraus entstehenden hybriden Individuen ha¬ ben die entsprechenden phänotypischen Eigenschaften. Von den Pflanzenzellen können Samen gewonnen werden.
Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibe¬ halten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind.
Figur 1 zeigt schematisch den Vektor pUBIbar. Ubiquitin-Pro = Ubiquitinpromotor Intron = Intron aus Mais nos = Terminationssignal des Nopalinsynthase-Gens aus A. tumefaciens 35S = 35S-Promotor des CaMV T35S = 35S-Terminator des CaMV
Figur 2 zeigt schematisch den Vektor pUBI-bar-aMasy Ubiquitin-Pro = Ubiquitinpromotor Intron = Intron aus Mais nos = Terminationssignal des Nopalinsynthase-Gens aus A. tumefaciens 35S = 35S-Promotor des CaMV T35S = 35S-Terminator des CaMV
Dieser Vektor enthält in antisense-Orientierung zum Ubiquitinpromotor die in Beispiel 1 beschriebene cDNA, die eine Stärkesynthase aus Mais codiert. 2>o
Die Beispiele erläutern die Erfindung.
In den Beispielen verwendete Medien und Lösungen:
20 x SSC 175,3 g NaCl
88,2 g Natrium-Citrat ad 1000 ml mit ddH20 pH 7, 0 mit 10 N NaOH
YT 8 g Bacto-Yeast extract
5 g Bacto-Tryptone 5 g NaCl ad 1000 ml mit ddH20
Protoplastenisolierungsmedium (100 ml)
Cellulase Onozuka R S (Meiji Seika, Japan) 800 mg
Pectolyase Y 23 40 mg
KN03 200 mg
KH2P04 136 mg
K2HP04 47 mg
CaCl2 2H20 147 mg
MgS04 7H20 250 mg
Rinderserumalbumin (BSA) 20 mg
Glucose 4000 mg
Fructose 4000 mg
Saccharose 1000 mg pH 5,8
Osmolarität 660 mosm.
Protoplastenwaschlösung 1: wie Protoplastenisolierlosung, aber ohne Cellulase, Pectolyase und BSA
Transformationspuffer
a) Glucose 0,5 M
MES 0,1 %
MgCl2 6H20 25 mM pH 5,8 auf 600 mosm. einstellen
PEG 6000-Lösung
Glucose 0, 5 M
MgCl2 6H20 100 mM
Hepes 20 mM
PH 6,5
Dem obigen Puffer unter b) wird PEG 6000 kurz vor Gebrauch der Lösung zugesetzt (40 Gew.-% PEG) . Die Lösung wird durch ein 0,45 μm Sterilfilter filtriert.
W5 Lösung
CaCl2 125 mM
NaCl 150 mM
KC1 5 mM
Glucose 50 mM
Protoplasten-Kulturmedium (Angaben in mg/1)
KN03 3000
(NH4)2S04 ' 500
MgS04 7H20 350
KH2P04 400
CaCl2 2H20 300
Fe-EDTA und Spurenelemente wie im Murashige-Skoog-Medium (Physiol. Plant, 15 (1962) , 473) .
m-Inosit 100
Thiamin HCl 1, 0
Nicotinsäureamid 0,5
Pyridoxin HCl 0 , 5
Glycin 2,0
Glucuronsäure 750
Galacturonsäure 750
Galactose 500
Maltose 500 3
Glucose 36 .000
Fructose 36 .000
Saccharose 30 .000
Asparagin 500
Glutamin 100
Prolin 300
Caseinhydrolysat 500
2, 4 Dichlorphenoxyessigsäure (2,4-D) 0,5 pH 5,8
Osmolarität 600 mosm
In den Beispielen werden die folgenden Methoden verwendet :
1. Clonierungsverfahren
Zur Clonierung in E.coli wurde der Vektor pBluescript II SK (Stratagene) verwendet.
2. Bakterienstämme
Für den Bluescript-Vektor und für die pUSP-Konstrukte wurde der E.coli-Stamm DH5α (Bethesda Research Laboratories, Gaithersburgh, USA) verwendet. Für die in vivo excision wurde der E.coli-Stamm XLl-Blue verwendet.
3. Transformation von Mais
(a) Herstellung von Protoplasten der Zellinie DSM 6009
Protoplastenisolierung
2 - 4 Tage, vorzugsweise 3 Tage nach dem letzten Me¬ diumswechsel einer Protoplastensuspensionskultur wird das Flüssigmedium abgesaugt und die zurückbleibenden Zellen mit 50 ml Protoplastenwaschlösung 1 gespült und nochmals trockengesaugt. Zu jeweils 2 g der geernteten Zellmasse wird 10 ml Protoplastenisolierungsmedium ge¬ geben. Die resuspendierten Zellen und Zellaggregate werden bei 27 ± 2° C unter leichtem Schütteln (30 bis 40 rpm) 4 bis 6 h im Dunkeln inkubiert. Protoplastenreinigung
Sobald die Freisetzung von mindestens 1 Mio. Protopla¬ sten/ml erfolgt ist (mikroskopische Beobachtung) , wird die Suspension durch ein Edelstahl- und Nylonsieb von 200 bzw. 45 um Maschenwerte gesiebt. Die Kombination eines 100 um und eines 60 μm Siebs ermöglicht die Ab¬ trennung der Zellaggregate genauso gut. Das protopla- stenhaltige Filtrat wird mikroskopisch beurteilt . Üb¬ licherweise enthält es 98 - 99 % Protoplasten. Der Rest sind unverdaute Einzelzellen. Protoplastenpräparationen mit diesem Reinheitsgrad werden ohne zusätzliche Gradientenzentrifugation für Transformationsexperimente verwendet. Durch Zentrifugation (100 UpM im Aufschwingrotor (100 x g, 3 min) werden die Protopla¬ sten sedimentiert . Der Überstand wird verworfen und die Protoplasten in Waschlösung 1 resuspendiert . Die Zentrifugation wird wiederholt und die Protoplasten danach im Transformationspuffer resuspendiert.
(b) Protoplastentransformation
Die in Tranformationspuffer resuspendierten Protopla¬ sten werden bei einem Titer von 0,5 - 1 x 10 Proto¬ plasten/ml in 10 ml Portionen in 50 ml Polyallomer- Röhrchen eingefüllt. Die zur Transformation verwendete DNA wird in Tris-EDTA (TE) Puffer gelöst. Pro ml Pro- toplastensuspension werden 20 μg Plasmid-DNA zugegeben. Als Vektor wird dabei ein Phosphinotricinresistenz vermittelndes Plasmid verwendet (vgl. z.B. EP 0 513 849) . Nach der DNA-Zugabe wird die Protopla- stensuspension vorsichtig geschüttelt, um die DNA ho¬ mogen in der Lösung zu verteilen. Sofort danach wird tropfenweise 5 ml PEG-Lösung zugetropft . Durch vorsichtiges Schwenken der Röhrchen wird die PEG- Lösung homogen verteilt. Danach werden nochmals 5 ml PEG-Lösung zugegeben und das homogene Durchmischen wiederholt. Die Protoplasten verbleiben 20 min der PEG- Lösung bei ± 2° C. Danach werden die Protoplasten durch 3-minütiges Zentrifugieren (100 g; 1000 Upm) se- dimentiert. Der Überstand wird verworfen. Die Proto¬ plasten werden durch vorsichtiges Schütteln in 20 ml W5-Lösung gewaschen und danach erneut zentrifugiert . Danach werden sie in 20 ml Protoplastenkulturmedium resuspendiert, nochmals zentrifugiert und erneut in Kulturmedium resuspendiert . Der Titer wird auf 6 - 8 x 105 Protoplasten/ml eingestellt und die Protoplasten in 3 ml Portionen in Petrisehalen (0 60 mm, Höhe 15 mm) kultiviert. Die mit Parafilm versiegelten Petrisehalen werden bei 25 ± 2° C im Dunkeln aufgestellt.
(c) Protoplastenkultur
Während der ersten 2 - 3 Wochen nach der Protopla- stenisolierung und -transformation werden die Proto¬ plasten ohne Zugabe von frischem Medium kultiviert . Sobald sich die aus den Protoplasten regenerierten Zellen zu Zellaggregaten mit mehr als 20 - 50 Zellen entwickelt haben, wird 1 ml frisches Protoplastenkul¬ turmedium zugegeben, das als Osmoticum Saccharose (90 g/1) enthält.
(d) Selektion transformierter Maiszellen und Pflanzenrege¬ neration
3 - 10 Tage nach der Zugabe von frischem Medium können die aus Protoplasten entstandenen Zellaggregate auf Agar-Medien mit 100 mg/1 L-Phosphinothricin plattiert werden. N6-Medium mit den Vitaminen des Protoplasten- kulturmediums, 90 g/1 Saccharose und 1,0 mg/1 2 , 4D ist ebenso geeignet wie ein analoges Medium beispielsweise mit den Makro- und Mikronährsalzen des MS-Mediums (Murashige und Skoog (1962) , siehe oben) . Auf dem Selektivmedium können die aus stabil transfor¬ mierten Protoplasten hervorgegangenen Kalli ungehindert weiterwachsen. Nach 3 - 5 Wochen, vorzugsweise 4 Wochen können die transgenen Kalli auf frisches Selek- tionsmedium transferiert werden, welches ebenfalls 100 IS mg/1 L-Phosphinothricin enthält, das aber kein Auxin mehr enthält. Innerhalb von 3 - 5 Wochen differenzieren ca. 50 % der transgenen Maiskalli, die das L-Phos- phinothricinacetyltransferase-Gen in ihr Genom inte¬ griert haben, auf diesem Medium in Gegenwart von L- Phosphinothricin erste Pflanzen.
(e) Aufzucht transgener Regeneratpflanzen
Das embryogene transformierte Maisgewebe wird auf hor¬ monfreiem N6-Medium (Chu C.C. et al . , Sei. Sin. 16 (1975) , 659) in Gegenwart von 5xl0"4 M L-Phosphinothri¬ cin kultiviert. Auf diesem Medium entwickeln sich Maisembryonen, die das Phsphinothricinacetyltransfe- rase-Gen (PAT-Gen) hinreichend stark exprimieren, zu Pflanzen. Nicht transformierte Embryonen oder solche mit nur sehr schwacher PAT-Aktivität sterben ab. Sobald die Blätter der in vitro-Pflanzen eine Länge von 4 - 6 mm erreicht haben, können diese in Erde transferiert werden. Nach Abwaschen von Agarresten an den Wurzeln werden die Pflanzen in ein Gemisch von Lehm, Sand, Vermiculit und Einheitserde im Verhältnis 3:1:1:1 gepflanzt und während der ersten 3 Tage nach dem Verpflanzen bei 90 - 100 % relativer Luftfeuchte an die Erdkultur adaptiert. Die Anzucht erfolgt in einer Klimakammer mit 14 h Lichtperiode ca. 25000 Lux in Pflanzenhöhe bei einer Tag/Nachttemperatur von 23 ± 1/17 + 1° C. Die adaptierten Pflanzen werden bei einer Luftfeuchte von 65 + 5 % kultiviert.
4. Radioaktive Markierung von DNA-Fragmenten
Die radioaktive Markierung von DNA-Fragmenten wurde mit Hilfe eines DNA-Random Primer Labelling Kits der Firma Boehringer (Deutschland) nach den Angaben des Herstellers durchgeführt . Beispiel 1
Identifizierung, Isolierung und Charakterisierung einer cDNA, die eine neue Isoform einer Stärkesynthase aus Zea mays codiert
Um eine neue lösliche Stärkesynthase aus Mais zu isolieren, wurden polyclonale Antikörper gegen Peptid 1 hergestellt. Peptid 1: NH2-GTGGLRDTVENC-COOH (Seq. ID No. 3) Dieses Peptid wurde an den KLH-Carrier ("keyhole limpet ho- mocyanin") gekoppelt und anschließend zur Herstellung polyclo- naler Antikörper in Kaninchen verwendet (Eurogentec, Seraing, Belgien) .
Der resultierende Antikörper wurde als anti-SSI bezeichnet. Der Antikörper anti-SSI wurde anschließend verwendet, um eine cDNA-Bibliothek aus Mais nach Sequenzen durchzumustern, die lösliche Stärkesynthasen aus Mais codieren. Hierfür wurde eine cDNA-Bibliothek aus Endosperm-polyA+ RNA, angelegt im Vektor λ- ZAP, verwendet. Zur Analyse der Phagenplaques wurden diese auf Nitrozellulosefilter übertragen, die vorher für 30-60 min. in einer 10 mM IPTG-Lösung inkubiert und anschließend auf Filter¬ papier getrocknet wurden. Der Transfer erfolgte für 3 h bei 37°C. Anschließend wurden die Filter für 30 min. bei Raumtem¬ peratur in Blockreagenz inkubiert und zweimal für 5-10 min. in TBST-Puffer gewaschen. Die Filter wurden mit dem polyelonalen Antikörper anti-SSI in geeigneter Verdünnung für 1 h bei Raum¬ temperatur oder für 16 h bei 4°C geschüttelt. Die Identifizie¬ rung von Plaques, die ein Protein exprimierten, das von dem Antikörper anti-SSI erkannt wurde, erfolgte mit Hilfe des "Blotting detection kit for rabbit antibodies RPN 23" (Amersham UK) nach den Angaben des Herstellers.
Phagenclone der cDNA-Bibliothek, die ein Protein exprimierten, das von dem Antikörper anti-SSI erkannt wurde, wurden unter Anwendung von Standardverfahren weiter gereinigt. Mit Hilfe der in vivo excision-Methode (Stratagene) wurden von positiven Phagenclonen E.coli-Clone gewonnen, die ein doppelsträngiges pBlueskript II SK-Plasmid mit der jeweiligen cDNA-Insertion zwischen der EcoRI- und der Xho I-Schnittstelle ds Polylinkers enthalten. Nach Überprüfung der Größe und des Restriktionsmu- sters der Insertionen wurde ein geeigneter Clon einer Sequenz¬ analyse unterzogen.
Beispiel 2
Sequenzanalyse der cDNA-Insertion des Plasmids pSSSl
Aus einem entsprechend Beispiel 1 erhaltenen E. coli-Clon wurde das Plasmid pSSSl isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxynucleotidmethode (Sanger et al., Proc. Natl . Acad. Sei. USA 74 (1977) , 5463-5467) bestimmt. Die Insertion ist 2383 bp lang und stellt eine partielle cDNA dar. Die Nucleotidsequenz ist unter Seq ID No. 1 angegeben. Die korrespondierende Aminosäuresequenz ist unter Seq ID No. 2 dargestellt.
Eine Sequenzanalyse und ein Sequenzvergleich mit bekannten Se¬ quenzen zeigte, daß die unter Seq ID No. 1 dargestellte Sequenz neu ist und eine neue lösliche Stärkesynthase des Typs I aus Mais codiert. Die partielle codierende Region weist Homologie zu Stärkesynthasen aus verschiedenen Organismen auf, insbeson¬ dere zu einer Stärksynthase aus Reis. Das durch diese cDNA- Insertion oder durch hybridisierende Sequenzen codierte Protein wird im Rahmen dieser Anmeldung als SSSIZm bezeichnet. Mit Hilfe dieser partiellen cDNA-Sequenz ist es für eine in der Molekularbiologie erfahrene Person ohne weiteres möglich, die gesamte codierende Region enthaltende Vollängenclone zu isolieren und ihre Sequenzen zu bestimmen. Dazu wird z.B. eine blattspezifische cDNA-Expressionsbank aus Zea mays, Linie B73
(Stratagene GmbH, Heidelberg) , nach Standardverfahren mittels Hybridisierung mit einem 5 '-Fragment der cDNA-Insertion des Plasmids pSSSl (200 bp) auf Vollängen-Clone hin durchgemustert. So erhaltene Clone werden sodann sequenziert. Eine andere Möglichkeit zum Erhalt der noch fehlenden 5'-terminal gelegenen Sequenzen besteht in der Anwendung der 5'-Race Methode
(Stratagene o.vgl. Hersteller) . Beispiel 3
Konstruktion des Pflanzentransformationsvektor pUBI-bar-aMASY und Herstellung transgener Maispflanzen
Zur Herstellung eines Pflanzentransformationsvektors, der eine antisense-RNA zu einem erfindungsgemäßen Nucleinsäuremolekül codiert, wurde der Vektor pUBIbar (siehe Figur 1) mit dem Restriktionsenzym Hpal linearisiert und mit alkalischer Phosphatase dephosphoryliert . In den linearisierten Vektor wurde die gemäß Beispiel 1 isolierte cDNA (ca. 2,4 kb) cloniert, die als EcoRV/Smal-Fragment aus dem pBluescriptSK- Plasmid gewonnen worden war. Durch Restriktionsanalyse wurde ein Plasmid identifiziert, das die die Stärkesynthase aus Mais coierende cDNA in antisense-Orientierung im Verhältnis zum Promotor enthielt. Dieses Plasmid wurde pUBI-bar-aMasy genannt. Dieser Vektor enthält einen Ubiquitin-Promotor und ein Intron aus Mais (Christensen et al . , Plant Mol. Biol . 18 (1992) , 675- 689) , das Transkriptionsterminationssignal des Nopalinsynthase- Gens aus A. tumefaciens (Depicker et al . , J. Mol. Appl . Genet. 1 (1982) , 561-573) , das bar-Markergen (Thompson et al . , EMBO J. 6 (1987) , 2519-2523) , das die codierende Region des Bialaphos- Resistenzgens aus Streptomyces hygroscopicus umfaßt, sowie den 35S-Promotor und -Terminator des CaMV (Franck et al . , Cell 21 (1980) , 285-294) in Verbindung mit dem bar-Gen. Ferner enthält das Plasmid zwischen dem Intron und dem nos-Terminator in anti¬ sense-Orientierung zum Ubiquitin-Promotor die cDNA codierend die Stärkesynthase aus Mais . Das Plasmid ist in Figur 2 dargestellt.
Der Vektor pUBI-bar-aMasy wurde mittels der oben beschriebenen Methode in Maisprotoplasten eingeführt. Es wurden dabei 4,8 x 107 Protoplasten verwendet und 100 μg Plasmid-DNA.
Es wurden 408 Phosphinothricin-resistente Clone erhalten. Von diesen wurden 40 hinsichtlich der Expression der einge-brachten DNA analysiert. Dies ergab, daß 12 der erhaltenen Clone, die eingebrachte DNA exprimierten. Sechs dieser Clone wurden zu ganzen Pflanzen regeneriert und ins Gewächshaus transferiert. SEQUENZPROTOKOLL
(1) ALLGEMEINE ANGABEN:
( i ) ANMELDER :
(A) NAME : PlantTec Biotechnologie GmbH , Forschung & Entwicklung
( B ) STRASSE : Hermannswerder 14
( C) ORT : Potsdam
(E) LAND: Deutschland
(F) POSTLEITZAHL: 14473
(G) TELEFON: +49 331 275670 (H) TELEFAX: +49 331 2756777
(ii) BEZEICHNUNG DER ERFINDUNG: Nucleinsaeuremolekuele codierend loesliche Staerkesynthase aus Mais
(iii) ANZAHL DER SEQUENZEN: 3
(iv) COMPUTER-LESBARE FASSUNG:
(A) DATENTRÄGER: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPA)
(2) ANGABEN ZU SEQ ID NO: 1:
(i) SEQUENZKENNZEICHEN:
(A) LANGE: 2383 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Doppelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: cDNA zu mRNA
(iii) HYPOTHETISCH: NEIN
(iv) ANTISENSE: NEIN
(vi) URSPRÜNLICHE HERKUNFT:
(A) ORGANISMUS : Zea mays (F) GEWEBETYP: Endosperm
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:2..1950
(D) SONSTIGE ANGABEN: /Funktion= "Staerkesynthese" /Produkt= "loesliche Staerkesynthase"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
G GCA CGA GGT CTG CTC TCC CTC TCC GCA ATG GCG ACG CCC TCG GCC 46
Ala Arg Gly Leu Leu Ser Leu Ser Ala Met Ala Thr Pro Ser Ala 1 5 10 15
GTG GGC GCC GCG TGC CTC CTC CTC GCG CGG GCC GCC TGG CCG GCC GCC 94 Val Gly Ala Ala Cys Leu Leu Leu Ala Arg Ala Ala Trp Pro Ala Ala 20 25 30 GTC GGC GAC CGG GCG CGC CCG CGG CGG CTC CAG CGC GTG CTG CGC CGC 142
Val Gly Asp Arg Ala Arg Pro Arg Arg Leu Gin Arg Val Leu Arg Arg 35 40 45
CGG TGC GTC GCG GAG CTG AGC AGG GAG GGC CCC GCG CCG CGC CCG ATG 190
Arg Cys Val Ala Glu Leu Ser Arg Glu Gly Pro Ala Pro Arg Pro Met 50 55 60
CCA CCC GCG CTG CTG GCG CCC CCG CTC GTG CCC GGC TTC CTC GCG CCG 238
Pro Pro Ala Leu Leu Ala Pro Pro Leu Val Pro Gly Phe Leu Ala Pro 65 70 75
CCG GCC GAG CCC ACG GGT GAG CCG GCA TTG ACG CCG CCG CCC GTG CCC 286
Pro Ala Glu Pro Thr Gly Glu Pro Ala Leu Thr Pro Pro Pro Val Pro
80 85 90 95
GAC GCC GGC CTG GGG GTC CTC GGT GTC GAA CCT GAA GGG ATT GCT GAA 334
Asp Ala Gly Leu Gly Val Leu Gly Val Glu Pro Glu Gly lle Ala Glu 100 105 110
GGT TCC ATC GAT AAC ACA GTA GTT GTG GCA AGT GAG CAA GAT TCT GAG 382
Gly Ser lle Asp Asn Thr Val Val Val Ala Ser Glu Gin Asp Ser Glu 115 120 125
ATT GTG GTT GGA AAG GAG CAA GCT CGA GCT AAA GTA ACA CAA AAC ATT 430 lle Val Val Gly Lys Glu Gin Ala Arg Ala Lys Val Thr Gin Asn lle 130 135 140
GTC TTT GTA ACT GGC GAA GCT TCT CCT TAT GCA AAG TCT GGG GGT CTA 478
Val Phe Val Thr Gly Glu Ala Ser Pro Tyr Ala Lys Ser Gly Gly Leu 145 150 155
GGA GAT GTT TGT GGT TCA TTG CCA GTT GCT CTT GCT GCT CGT GGT CAC 526
Gly Asp Val Cys Gly Ser Leu Pro Val Ala Leu Ala Ala Arg Gly His
160 165- 170 175
CGT GTG ATG GTT GTA ATG CCC AGA TAT TTA AAT GGT ACC TCC GAT AAG 574
Arg Val Met Val Val Met Pro Arg Tyr Leu Asn Gly Thr Ser Asp Lys 180 185 190
AAT TAT GCA AAT GCA TTT TAC ACA GAA AAA CAC ATT CGG ATT CCA TGC 622
Asn Tyr Ala Asn Ala Phe Tyr Thr Glu Lys His lle Arg lle Pro Cys 195 200 205
TTT GGC GGT GAA CAT GAA GTT ACC TTC TTC CAT GAG TAT AGA GAT TCA 670
Phe Gly Gly Glu His Glu Val Thr Phe Phe His Glu Tyr Arg Asp Ser 210 215 220
GTT GAC TGG GTG TTT GTT GAT CAT CCC TCA TAT CAC AGA CCT GGA AAT 718 Val Asp Trp Val Phe Val Asp His Pro Ser Tyr His Arg Pro Gly Asn 225 230 235 H l
TTA TAT GGA GAT AAG TTT GGT GCT TTT GGT GAT AAT CAG TTC AGA TAC 766
Leu Tyr Gly Asp Lys Phe Gly Ala Phe Gly Asp Asn Gin Phe Arg Tyr 240 245 250 255
ACA CTC CTT TGC TAT GCT GCA TGT GAG GCT CCT TTG GTC CTT GAA TTG 814
Thr Leu Leu Cys Tyr Ala Ala Cys Glu Ala Pro Leu Val Leu Glu Leu 260 265 270
GGA GGA TAT ATT TAT GGA CAG AAT TGC ATG TTT GTT GTC AAT GAT TGG 862
Gly Gly Tyr lle Tyr Gly Gin Asn Cys Met Phe Val Val Asn Asp Trp
275 280 285
CAT GCC AGT CTA GTG CCA GTC CTT CTT GCT GCA AAA TAT AGA CCA TAT 910
His Ala Ser Leu Val Pro Val Leu Leu Ala Ala Lys Tyr Arg Pro Tyr 290 295 300
GGT GTT TAT AAA GAC TCC CGC AGC ATT CTT GTA ATA CAT AAT TTA GCA 958
Gly Val Tyr Lys Asp Ser Arg Ser lle Leu Val lle His Asn Leu Ala 305 310 315
CAT CAG GGT GTA GAG CCT GCA AGC ACA TAT CCT GAC CTT GGG TTG CCA 1006
His Gin Gly Val Glu Pro Ala Ser Thr Tyr Pro Asp Leu Gly Leu Pro 320 325 330 335
CCT GAA TGG TAT GGA GCT CTG GAG TGG GTA TTC CCT GAA TGG GCG AGG 1054
Pro Glu Trp Tyr Gly Ala Leu Glu Trp Val Phe Pro Glu Trp Ala Arg 340 345 350
AGG CAT GCC CTT GAC AAG GGT GAG GCA GTT AAT TTT TTG AAA GGT GCA 1102
Arg His Ala Leu Asp Lys Gly Glu Ala Val Asn Phe Leu Lys Gly Ala
355 360 365
GTT GTG ACA GCA GAT CGA ATC GTG ACT GTC AGT AAG GGT TAT TCA TGG 1150
Val Val Thr Ala Asp Arg lle Val Thr Val Ser Lys Gly Tyr Ser Trp 370 375 380
GAG GTC ACA ACT GCT GAA GGT GGA CAG GGC CTC AAT GAG CTC TTA AGC 1198
Glu Val Thr Thr Ala Glu Gly Gly Gin Gly Leu Asn Glu Leu Leu Ser 385 390 395
TCC AGA AAG AGT GTA TTA AAC GGA ATT GTA AAT GGA ATT GAC ATT AAT 1246
Ser Arg Lys Ser Val Leu Asn Gly lle Val Asn Gly lle Asp lle Asn 400 405 410 415
GAT TGG AAC CCT GCC ACA GAC AAA TGT ATC CCC TGT CAT TAT TCT GTT 1294
Asp Trp Asn Pro Ala Thr Asp Lys Cys lle Pro Cys His Tyr Ser Val 420 425 430
GAT GAC CTC TCT GGA AAG GCC AAA TGT AAA GGT GCA TTG CAG AAG GAG 1342
Asp Asp Leu Ser Gly Lys Ala Lys Cys Lys Gly Ala Leu Gin Lys Glu
435 440 445
CTG GGT TTA CCT ATA AGG CCT GAT GTT CCT CTG ATT GGC TTT ATT GGA 1390 Leu Gly Leu Pro lle Arg Pro Asp Val Pro Leu lle Gly Phe lle Gly 450 455 460 HZ
AGA TTG GAT TAT CAG AAA GGC ATT GAT CTC ATT CAA CTT ATC ATA CCA 1438 Arg Leu Asp Tyr Gin Lys Gly lle Asp Leu lle Gin Leu lle lle Pro 465 470 475
GAT CTC ATG CGG GAA GAT GTT CAA TTT GTC ATG CTT GGA TCT GGT GAC 1486 Asp Leu Met Arg Glu Asp Val Gin Phe Val Met Leu Gly Ser Gly Asp 480 485 490 495
CCA GAG CTT GAA GAT TGG ATG AGA TCT ACA GAG TCG ATC TTC AAG GAT 1534 Pro Glu Leu Glu Asp Trp Met Arg Ser Thr Glu Ser lle Phe Lys Asp 500 505 510
AAA TTT CGT GGA TGG GTT GGA TTT AGT GTT CCA GTT TCC CAC CGA ATA 1582 Lys Phe Arg Gly Trp Val Gly Phe Ser Val Pro Val Ser His Arg lle 515 520 525
ACT GCC GGC TGC GAT ATA TTG TTA ATG CCA TCC AGA TTC GAA CCT TGT 1630 Thr Ala Gly Cys Asp lle Leu Leu Met Pro Ser Arg Phe Glu Pro Cys 530 535 540
GGT CTC AAT CAG CTA TAT GCT ATG CAG TAT GGC ACA GTT CCT GTT GTC 1678 Gly Leu Asn Gin Leu Tyr Ala Met Gin Tyr Gly Thr Val Pro Val Val 545 550 555
CAT GCA ACT GGG GGC CTT AGA GAT ACC GTG GAG AAC TTC AAC CCT TTC 1726 His Ala Thr Gly Gly Leu Arg Asp Thr Val Glu Asn Phe Asn Pro Phe 560 565 570 575
GGT GAG AAT GGA GAG CAG GGT ACA GGG TGG GCA TTC GCA CCC CTA ACC 1774 Gly Glu Asn Gly Glu Gin Gly Thr Gly Trp Ala Phe Ala Pro Leu Thr 580 585 590
ACA GAA AAC ATG TTG TGG ACA TTG CGA ACT GCA ATA TCT ACA TAC AGG 1822 Thr Glu Asn Met Leu Trp Thr Leu Arg Thr Ala lle Ser Thr Tyr Arg 595 600 605
GAA CAC AAG TCC TCC TGG GAA GGG CTA ATG AAG CGA GGC ATG TCA AAA 1870 Glu His Lys Ser Ser Trp Glu Gly Leu Met Lys Arg Gly Met Ser Lys 610 615 620
GAC TTC ACG TGG GAC CAT GCC GCT GAA CAA TAC GAA CAA ATC TTC CAG 1918 Asp Phe Thr Trp Asp His Ala Ala Glu Gin Tyr Glu Gin lle Phe Gin 625 630 635
TGG GCC TTC ATC GAT CGA CCC TAT GTC ATG TA AAAAAGGACC AAAGTGGTGG 1970 Trp Ala Phe lle Asp Arg Pro Tyr Val Met 640 645
TTCCTTGAAG ATCATCAGTT CATCATCCTA TAGTAAGCTG AATGATGAAA GAAAACCCCT 2030
GTACATTACA TGGAAGGCAG ACCGGCTATT GGCTCCATTG CTCCAATGTC TGCTTTGGCT 2090
GCCTTGCCTC GATGGACCGG ATGCAGTGAG GAATCCAGCC GAACGACAGT TTTGAAGGAT 2150
AGGAAGGGGA GCTGGAAGCA GTCACGCAGG CAGCCTCGCC GTGATTCATA TGGAACAAGC 2210
TGGAGTCAGT TTCTGCTGTG CCACTCACTG TTTACCTTAA GATTATTACC TGTGTTGTTG 2270
TCCTTTGCTC GTTAGGGCTG ATAACATAAT GACTCATTAG AAAATCATGC CTCGTTTTTA 2330 TTAACTGAAG TGGACACTTC GCATTCTTGC CCGTTTAAAA AAAAAAAAAA AAA 2383
(2) ANGABEN ZU SEQ ID NO: 2:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 649 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:
Ala Arg Gly Leu Leu Ser Leu Ser Ala Met Ala Thr Pro Ser Ala Val 1 5 10 15
Gly Ala Ala Cys Leu Leu Leu Ala Arg Ala Ala Trp Pro Ala Ala Val 20 25 30
Gly Asp Arg Ala Arg Pro Arg Arg Leu Gin Arg Val Leu Arg Arg Arg 35 40 45
Cys Val Ala Glu Leu Ser Arg Glu Gly Pro Ala Pro Arg Pro Met Pro 50 55 60
Pro Ala Leu Leu Ala Pro Pro Leu Val Pro Gly Phe Leu Ala Pro Pro 65 70 75 80
Ala Glu Pro Thr Gly Glu Pro Ala Leu Thr Pro Pro Pro Val Pro Asp 85 90 95
Ala Gly Leu Gly Val Leu Gly Val Glu Pro Glu Gly lle Ala Glu Gly 100 105 110
Ser lle Asp Asn Thr Val Val Val Ala Ser Glu Gin Asp Ser Glu lle 115 120 125
Val Val Gly Lys Glu Gin Ala Arg Ala Lys Val Thr Gin Asn lle Val 130 135 140
Phe Val Thr Gly Glu Ala Ser Pro Tyr Ala Lys Ser Gly Gly Leu Gly 145 150 155 160
Asp Val Cys Gly Ser Leu Pro Val Ala Leu Ala Ala Arg Gly His Arg 165 170 175
Val Met Val Val Met Pro Arg Tyr Leu Asn Gly Thr Ser Asp Lys Asn 180 185 190
Tyr Ala Asn Ala Phe Tyr Thr Glu Lys His lle Arg lle Pro Cys Phe 195 200 205
Gly Gly Glu His Glu Val Thr Phe Phe His Glu Tyr Arg Asp Ser Val 210 215 220 MM
Asp Trp Val Phe Val Asp His Pro Ser Tyr His Arg Pro Gly Asn Leu
225 230 235 240
Tyr Gly Asp Lys Phe Gly Ala Phe Gly Asp Asn Gin Phe Arg Tyr Thr 245 250 255
Leu Leu Cys Tyr Ala Ala Cys Glu Ala Pro Leu Val Leu Glu Leu Gly 260 265 270
Gly Tyr lle Tyr Gly Gin Asn Cys Met Phe Val Val Asn Asp Trp His 275 280 285
Ala Ser Leu Val Pro Val Leu Leu Ala Ala Lys Tyr Arg Pro Tyr Gly 290 295 300
Val Tyr Lys Asp Ser Arg Ser lle Leu Val lle His Asn Leu Ala His 305 310 315 320
Gin Gly Val Glu Pro Ala Ser Thr Tyr Pro Asp Leu Gly Leu Pro Pro 325 330 335
Glu Trp Tyr Gly Ala Leu Glu Trp Val Phe Pro Glu Trp Ala Arg Arg 340 345 350
His Ala Leu Asp Lys Gly Glu Ala Val Asn Phe Leu Lys Gly Ala Val 355 360 365
Val Thr Ala Asp Arg lle Val Thr Val Ser Lys Gly Tyr Ser Trp Glu 370 375 380
Val Thr Thr Ala Glu Gly Gly Gin Gly Leu Asn Glu Leu Leu Ser Ser 385 390 395 400
Arg Lys Ser Val Leu Asn Gly lle Val Asn Gly lle Asp lle Asn Asp 405 410 415
Trp Asn Pro Ala Thr Asp Lys Cys lle Pro Cys His Tyr Ser Val Asp 420 425 430
Asp Leu Ser Gly Lys Ala Lys Cys Lys Gly Ala Leu Gin Lys Glu Leu 435 440 445
Gly Leu Pro lle Arg Pro Asp Val Pro Leu lle Gly Phe lle Gly Arg 450 455 460
Leu Asp Tyr Gin Lys Gly lle Asp Leu lle Gin Leu lle lle Pro Asp 465 470 475 480
Leu Met Arg Glu Asp Val Gin Phe Val Met Leu Gly Ser Gly Asp Pro 485 490 495
Glu Leu Glu Asp Trp Met Arg Ser Thr Glu Ser lle Phe Lys Asp Lys 500 505 510
Phe Arg Gly Trp Val Gly Phe Ser Val Pro Val Ser His Arg lle Thr 515 520 525 Ala Gly Cys Asp lle Leu Leu Met Pro Ser Arg Phe Glu Pro Cys Gly 530 535 540
Leu Asn Gin Leu Tyr Ala Met Gin Tyr Gly Thr Val Pro Val Val His 545 550 555 560
Ala Thr Gly Gly Leu Arg Asp Thr Val Glu Asn Phe Asn Pro Phe Gly 565 570 575
Glu Asn Gly Glu Gin Gly Thr Gly Trp Ala Phe Ala Pro Leu Thr Thr 580 585 590
Glu Asn Met Leu Trp Thr Leu Arg Thr Ala lle Ser Thr Tyr Arg Glu 595 600 605
His Lys Ser Ser Trp Glu Gly Leu Met Lys Arg Gly Met Ser Lys Asp 610 615 620
Phe Thr Trp Asp His Ala Ala Glu Gin Tyr Glu Gin lle Phe Gin Trp 625 630 635 640
Ala Phe lle Asp Arg Pro Tyr Val Met 645
(2) ANGABEN ZU SEQ ID NO: 3:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 12 Aminosäuren
(B) ART: Aminosäure
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE : linear
(ii) ART DES MOLEKÜLS: Peptid
(iii) HYPOTHETISCH: JA
(iv) ANTISENSE: NEIN
(v) ART DES FRAGMENTS : inneres Fragment
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:
Gly Thr Gly Gly Leu Arg Asp Thr Val Glu Asn Cys 1 5 10

Claims

Patentansprüche
1. Nucleinsäuremolekül, codierend ein Protein aus Mais mit der biologischen Aktivität einer Stärkesynthase des Typs I, ausgewählt aus der Gruppe bestehend aus
(a) Nucleinsäuremolekülen, die ein Protein codieren, das die unter Seq ID No . 2 angegebene Aminosäuresequenz umfaßt ;
(b) Nucleinsäuremolekülen, die die unter Seq ID No . 1 dar¬ gestellte Nucleotidsequenz umfassen oder eine komple¬ mentäre Sequenz oder eine korrespondierende Ribonucleo- tidsequenz;
(c) Nucleinsäuremolekülen, deren einer Strang mit den unter
(a) oder (b) genannten Nucleinsäuremolekülen hybridi¬ siert; und
(d) Nucleinsäuremolekülen, deren Nucleotidsequenz aufgrund der Degeneration des genetisches Codes von der Sequenz der unter (a) , (b) oder (c) genannten Nucleinsäuremole¬ kUle abweicht .
2. Nucleinsäuremolekül nach Anspruch 1, das ein DNA-Molekül ist .
3. DNA-Molekül nach Anspruch 2, das ein cDNA-Molekül ist.
4. Nucleinsäuremolekül nach Anspruch 1, das ein RNA-Molekül ist .
5. Oligonucleotid, das spezifisch mit einem Nucleinsäuremole¬ kül nach einem der Ansprüche 1 bis 4 hybridisiert.
6. Vektor, enthaltend ein DNA-Molekül nach einem der Ansprüche 1 bis 3.
7. Vektor nach Anspruch 6, wobei das DNA-Molekül in sense- Orientierung mit regulatorischen Elementen verknüpft ist, die die Transkription und Synthese einer translatierbaren RNA in pro- oder eukaryontischen Zellen gewährleisten.
8. Wirtszelle, die mit einem Nucleinsäuremolekül nach einem der Ansprüche 1 bis 4 oder einem Vektor nach Anspruch 6 oder 7 genetisch modifiziert ist.
9. Protein codiert durch ein Nucleinsäuremolekül nach einem der Ansprüche 1 bis 4.
10. Verfahren zur Herstellung eines Proteins nach Anspruch 9 oder eines biologisch aktiven Fragmentes davon, bei dem eine Wirtszelle nach Anspruch 8 unter Bedingungen kulti¬ viert wird, die die Synthese des Proteins erlauben, und das Protein aus den kultivierten Zellen und/oder dem Kul¬ turmedium isoliert wird.
11. Transgene Pflanzenzelle, die mit einem Nucleinsäuremolekül nach einem der Ansprüche 1 bis 4 oder einem Vektor nach Anspruch 6 oder 7 modifiziert ist, wobei das Nucleinsäuremolekül, das das Protein mit der biologischen Aktivität einer Stärkesynthase codiert, unter der Kontrolle regulatorischer Elemente steht, die die Transkription einer translatierbaren mRNA in pflanzlichen Zellen erlauben.
12. Pflanze, enthaltend Pflanzenzellen nach Anspruch 11.
13. Pflanze nach Anspruch 12, die eine Nutzpflanze ist.
14. Pflanze nach Anspruch 13, die eine stärkespeichernde Pflanze ist.
15. Pflanze nach Anspruch 14, die eine Maispflanze ist.
16. Vermehrungsmaterial einer Pflanze nach einem der Ansprüche 12 bis 15, enthaltend Pflanzenzellen nach Anspruch 11.
17. Transgene Maispflanzenzelle, die im Vergleich zu den nicht- transformierten Zellen eine Verringerung der Aktivität eines Proteins nach Anspruch 9 aufweist und die stabil in ihr Genom integriert ein rekombinantes Molekül aufweist bestehend aus MS
(a) einem in pflanzlichen Zellen aktiven Promotor; und
(b) einer Nuelemsäuresequenz ausgewählt aus der Gruppe bestehend aus
(i) Nucleinsäuresequenzen, die eine antisense-RNA zu einem Nucleinsäuremolekül nach einem der Ansprüche 1 bis 3 codieren;
(ii) Nucleinsäuresequenzen, die ein Ribozym codieren, das spezifisch RNA-Moleküle nach Anspruch 4 spaltet; und
(iii) Nucleinsäuresequenzen, die eine sense-RNA für ein Protein nach Anspruch 9 codieren, deren Expression zu einem Cosuppressionseffekt führt.
18. Maispflanze, enthaltend Pflanzenzellen nach Anspruch 17.
19. Vermehrungsmaterial einer Maispflanze nach Anspruch 18, enthaltend Zellen nach Anspruch 17.
EP97923925A 1996-05-17 1997-05-16 Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais Withdrawn EP0904389A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19619918 1996-05-17
DE19619918A DE19619918A1 (de) 1996-05-17 1996-05-17 Nucleinsäuremoleküle codierend lösliche Stärkesynthasen aus Mais
PCT/EP1997/002527 WO1997044472A1 (de) 1996-05-17 1997-05-16 Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais

Publications (1)

Publication Number Publication Date
EP0904389A1 true EP0904389A1 (de) 1999-03-31

Family

ID=7794573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97923925A Withdrawn EP0904389A1 (de) 1996-05-17 1997-05-16 Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais

Country Status (7)

Country Link
US (2) US6307124B1 (de)
EP (1) EP0904389A1 (de)
JP (1) JP2000511049A (de)
KR (1) KR20000011160A (de)
CA (1) CA2255538A1 (de)
DE (1) DE19619918A1 (de)
WO (1) WO1997044472A1 (de)

Families Citing this family (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL127246A0 (en) * 1996-05-29 1999-09-22 Hoechst Schering Agrevo Gmbh Nucleic acid molecules encoding enzymes from wheat which are involved in starch synthesis
DE19820607A1 (de) * 1998-05-08 1999-11-11 Hoechst Schering Agrevo Gmbh Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
CA2331300C (en) 1998-06-15 2009-01-27 National Starch And Chemical Investment Holding Corporation Improvements in or relating to plants and plant products
US6392120B1 (en) * 1998-07-28 2002-05-21 E. I. Du Pont De Nemours And Company Modification of starch biosynthetic enzyme gene expression to produce starches in grain crops
DE19836098A1 (de) 1998-07-31 2000-02-03 Hoechst Schering Agrevo Gmbh Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke
DE19937348A1 (de) 1999-08-11 2001-02-22 Aventis Cropscience Gmbh Nukleinsäuremoleküle aus Pflanzen codierend Enzyme, die an der Stärkesynthese beteiligt sind
CL2007003744A1 (es) * 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende un derivado 2-piridilmetilbenzamida y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
CL2007003743A1 (es) * 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende fenamidona y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
WO2008110279A1 (de) 2007-03-12 2008-09-18 Bayer Cropscience Ag Dihalogenphenoxyphenylamidine und deren verwendung als fungizide
EP1969930A1 (de) 2007-03-12 2008-09-17 Bayer CropScience AG Phenoxyphenylamidine und deren Verwendung als Fungizide
EP1969931A1 (de) * 2007-03-12 2008-09-17 Bayer CropScience Aktiengesellschaft Fluoalkylphenylamidine und deren Verwendung als Fungizide
EP1969934A1 (de) 2007-03-12 2008-09-17 Bayer CropScience AG 4-Cycloalkyl-oder 4-arylsubstituierte Phenoxyphenylamidine und deren Verwendung als Fungizide
WO2008110280A2 (de) 2007-03-12 2008-09-18 Bayer Cropscience Ag Phenoxy-substitutierte phenylamidin-derivativen und deren verwendung als fungiziden
EP1969929A1 (de) 2007-03-12 2008-09-17 Bayer CropScience AG Substituierte Phenylamidine und deren Verwendung als Fungizide
WO2008110281A2 (de) * 2007-03-12 2008-09-18 Bayer Cropscience Ag 3,4-disubstituierte phenoxyphenylamidine und deren verwendung als fungizide
JP2010524869A (ja) * 2007-04-19 2010-07-22 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト チアジアゾリルオキシフェニルアミジンおよび殺菌剤としてのこれらの使用
EP2036983A1 (de) 2007-09-12 2009-03-18 Bayer CropScience AG Pflanzen, die erhöhte Mengen an Glucosaminglycanen synthetisieren
DE102007045922A1 (de) 2007-09-26 2009-04-02 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045919B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045920B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistische Wirkstoffkombinationen
DE102007045956A1 (de) 2007-09-26 2009-04-09 Bayer Cropscience Ag Wirkstoffkombination mit insektiziden und akariziden Eigenschaften
DE102007045953B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
EP2090168A1 (de) 2008-02-12 2009-08-19 Bayer CropScience AG Methode zur Verbesserung des Pflanzenwachstums
EP2072506A1 (de) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine oder Thiadiazolyloxyphenylamidine und deren Verwendung als Fungizide
EP2168434A1 (de) 2008-08-02 2010-03-31 Bayer CropScience AG Verwendung von Azolen zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress
JP2011530548A (ja) 2008-08-14 2011-12-22 バイエル・クロップサイエンス・アーゲー 殺虫性4−フェニル−1h−ピラゾール類
DE102008041695A1 (de) 2008-08-29 2010-03-04 Bayer Cropscience Ag Methoden zur Verbesserung des Pflanzenwachstums
EP2201838A1 (de) 2008-12-05 2010-06-30 Bayer CropScience AG Wirkstoff-Nützlings-Kombinationen mit insektiziden und akariziden Eigenschaften
EP2198709A1 (de) 2008-12-19 2010-06-23 Bayer CropScience AG Verfahren zur Bekämpfung resistenter tierischer Schädlinge
EP2223602A1 (de) 2009-02-23 2010-09-01 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials genetisch modifizierter Pflanzen
AU2009335333B2 (en) 2008-12-29 2015-04-09 Bayer Intellectual Property Gmbh Method for improved use of the production potential of genetically modified plants
EP2204094A1 (de) 2008-12-29 2010-07-07 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
EP2039771A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039770A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039772A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
KR20110106448A (ko) 2009-01-19 2011-09-28 바이엘 크롭사이언스 아게 사이클릭 디온 및 살충제, 살비제 및/또는 살진균제로서의 그의 용도
EP2227951A1 (de) 2009-01-23 2010-09-15 Bayer CropScience AG Verwendung von Enaminocarbonylverbindungen zur Bekämpfung von durch Insekten übertragenen Viren
JP5592398B2 (ja) 2009-01-28 2014-09-17 バイエル・クロップサイエンス・アーゲー 殺菌剤n−シクロアルキル−n−二環式メチレン−カルボキサミド誘導体
AR075126A1 (es) 2009-01-29 2011-03-09 Bayer Cropscience Ag Metodo para el mejor uso del potencial de produccion de plantas transgenicas
EP2218717A1 (de) 2009-02-17 2010-08-18 Bayer CropScience AG Fungizide N-((HET)Arylethyl)Thiocarboxamid-Derivative
BRPI1006006B1 (pt) 2009-02-17 2018-05-22 Bayer Intellectual Property Gmbh Compostos, composição fungicida e método para o controle de fungos fitopatogênicos de culturas
TW201031331A (en) 2009-02-19 2010-09-01 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
DE102009001469A1 (de) 2009-03-11 2009-09-24 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001681A1 (de) 2009-03-20 2010-09-23 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001732A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001730A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001728A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2410847A1 (de) 2009-03-25 2012-02-01 Bayer CropScience AG Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
US9012360B2 (en) 2009-03-25 2015-04-21 Bayer Intellectual Property Gmbh Synergistic combinations of active ingredients
EP2232995A1 (de) 2009-03-25 2010-09-29 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2239331A1 (de) 2009-04-07 2010-10-13 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
BRPI1015543A8 (pt) 2009-05-06 2016-05-24 Bayer Cropscience Ag Compostos de ciclopentanodiona e seu uso como inseticidas, acaricidas e/ou fungicidas.
AR076839A1 (es) 2009-05-15 2011-07-13 Bayer Cropscience Ag Derivados fungicidas de pirazol carboxamidas
EP2251331A1 (de) 2009-05-15 2010-11-17 Bayer CropScience AG Fungizide Pyrazolcarboxamid-Derivate
EP2255626A1 (de) 2009-05-27 2010-12-01 Bayer CropScience AG Verwendung von Succinat Dehydrogenase Inhibitoren zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress
BRPI1011983A2 (pt) * 2009-06-02 2015-09-22 Bayer Cropscience Ag utilização de inibidores de succinato desidrogenase para o controle sclerotinia ssp.
AU2010272872B2 (en) 2009-07-16 2014-08-28 Bayer Intellectual Property Gmbh Synergistic active substance combinations containing phenyl triazoles
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
EP2292094A1 (de) * 2009-09-02 2011-03-09 Bayer CropScience AG Wirkstoffkombinationen
EP2343280A1 (de) 2009-12-10 2011-07-13 Bayer CropScience AG Fungizid-Chinolinderivate
TW201141381A (en) 2009-12-28 2011-12-01 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
BR112012012107B1 (pt) 2009-12-28 2019-08-20 Bayer Cropscience Ag Composto, composição fungicida e método para controlar fungos fitopatogênico de culturas
CN105399666A (zh) 2009-12-28 2016-03-16 拜尔农科股份公司 杀真菌剂肟基-杂环衍生物
RS55986B1 (sr) 2010-01-22 2017-09-29 Bayer Ip Gmbh Akaricidne i/ili insekticidne kombinacije aktivnih supstanci
WO2011107504A1 (de) 2010-03-04 2011-09-09 Bayer Cropscience Ag Fluoralkyl- substituierte 2 -amidobenzimidazole und deren verwendung zur steigerung der stresstoleranz in pflanzen
WO2011124554A2 (de) 2010-04-06 2011-10-13 Bayer Cropscience Ag Verwendung der 4-phenylbuttersäure und/oder ihrer salze zur steigerung der stresstoleranz in pflanzen
CN102933083B (zh) 2010-04-09 2015-08-12 拜耳知识产权有限责任公司 (1-氰基环丙基)苯基次膦酸或其酯的衍生物和/或其盐提高植物对非生物胁迫耐受性的用途
JP2013525400A (ja) 2010-04-28 2013-06-20 バイエル・クロップサイエンス・アーゲー 殺菌剤ヒドロキシモイル−複素環誘導体
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
US20130116287A1 (en) 2010-04-28 2013-05-09 Christian Beier Fungicide hydroximoyl-heterocycles derivatives
UA110703C2 (uk) 2010-06-03 2016-02-10 Байєр Кропсайнс Аг Фунгіцидні похідні n-[(тризаміщений силіл)метил]-карбоксаміду
US8999956B2 (en) 2010-06-03 2015-04-07 Bayer Intellectual Property Gmbh N-[(het)arylalkyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
CA2796191A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
US9574201B2 (en) 2010-06-09 2017-02-21 Bayer Cropscience Nv Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
AU2011264074B2 (en) 2010-06-09 2015-01-22 Bayer Cropscience Nv Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
CA2803083A1 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
RU2013114710A (ru) 2010-09-03 2014-10-10 Байер Интеллектуэль Проперти Гмбх Замещенные конденсированные пиримидиноны и дигидропиримидиноны
EP2460406A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Verwendung von Fluopyram zum Steuern von Nematoden in nematodresistentem Pflanzen
WO2012038480A2 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of biological or chemical control agents for controlling insects and nematodes in resistant crops
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
UA107865C2 (ru) 2010-10-21 2015-02-25 Байєр Інтелекчуал Проперті Гмбх Гетероциклические карбоксамиды
CA2815114A1 (en) 2010-10-21 2012-04-26 Juergen Benting 1-(heterocyclic carbonyl) piperidines
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
BR112013012080A2 (pt) 2010-11-15 2016-07-19 Bayer Ip Gmbh n-aril pirazol (tio) carboxamidas
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
AR083874A1 (es) 2010-11-15 2013-03-27 Bayer Cropscience Ag 5-halogenopirazol(tio)carboxamidas
EP3372081A3 (de) 2010-12-01 2018-10-24 Bayer CropScience Aktiengesellschaft Verwendung von fluopyram zur bekämpfung von nematoden bei kulturpflanzen
EP2460407A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Wirkstoffkombinationen umfassend Pyridylethylbenzamide und weitere Wirkstoffe
US20130289077A1 (en) 2010-12-29 2013-10-31 Juergen Benting Fungicide hydroximoyl-tetrazole derivatives
EP2474542A1 (de) 2010-12-29 2012-07-11 Bayer CropScience AG Fungizide Hydroximoyl-Tetrazol-Derivate
EP2471363A1 (de) 2010-12-30 2012-07-04 Bayer CropScience AG Verwendung von Aryl-, Heteroaryl- und Benzylsulfonamidocarbonsäuren, -carbonsäureestern, -carbonsäureamiden und -carbonitrilen oder deren Salze zur Steigerung der Stresstoleranz in Pflanzen
EP2494867A1 (de) 2011-03-01 2012-09-05 Bayer CropScience AG Halogen-substituierte Verbindungen in Kombination mit Fungiziden
CA2823999C (en) 2011-03-10 2020-03-24 Bayer Intellectual Property Gmbh Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
BR112013023502A2 (pt) 2011-03-14 2016-08-02 Bayer Ip Gmbh composto fórmula (i), composição fungicida, método para o controle de fungos fitopatogênicos de culturas, utilização dos compostos de fórmula (i) e processo para a produção das composições
US20140051575A1 (en) 2011-04-08 2014-02-20 Juergen Benting Fungicide hydroximoyl-tetrazole derivatives
EP2511255A1 (de) 2011-04-15 2012-10-17 Bayer CropScience AG Substituierte Prop-2-in-1-ol- und Prop-2-en-1-ol-Derivate
AR085568A1 (es) 2011-04-15 2013-10-09 Bayer Cropscience Ag 5-(biciclo[4.1.0]hept-3-en-2-il)-penta-2,4-dienos y 5-(biciclo[4.1.0]hept-3-en-2-il)-pent-2-en-4-inos sustituidos como principios activos contra el estres abiotico de las plantas
AR085585A1 (es) 2011-04-15 2013-10-09 Bayer Cropscience Ag Vinil- y alquinilciclohexanoles sustituidos como principios activos contra estres abiotico de plantas
AR090010A1 (es) 2011-04-15 2014-10-15 Bayer Cropscience Ag 5-(ciclohex-2-en-1-il)-penta-2,4-dienos y 5-(ciclohex-2-en-1-il)-pent-2-en-4-inos sustituidos como principios activos contra el estres abiotico de las plantas, usos y metodos de tratamiento
DK2997825T3 (en) 2011-04-22 2019-03-11 Bayer Ip Gmbh COMPOSITIONS OF ACTIVE COMPOUNDS CONTAINING A (THIO) CARBOXAMIDE DERIVATIVE AND A FUNGICID COMPOUND
TR201802544T4 (tr) 2011-06-06 2018-03-21 Bayer Cropscience Nv Önceden seçilmiş bir bölgede bir bitki genomunu modifiye için yöntemler ve araçlar.
EP2729007A1 (de) 2011-07-04 2014-05-14 Bayer Intellectual Property GmbH Verwendung substituierter isochinolinone, isochinolindione, isochinolintrione und dihydroisochinolinone oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress
WO2013020985A1 (en) 2011-08-10 2013-02-14 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
JP2014524455A (ja) 2011-08-22 2014-09-22 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 殺真菌性ヒドロキシモイル−テトラゾール誘導体
BR112014003919A2 (pt) 2011-08-22 2017-03-14 Bayer Cropscience Ag métodos e meios para modificar um genoma de planta
EP2561759A1 (de) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoralkyl-substituierte 2-amidobenzimidazole und ihre Wirkung auf das Pflanzenwachstum
JP2014530173A (ja) 2011-09-09 2014-11-17 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 植物の収量を改善するためのアシル−ホモセリンラクトン誘導体
US9090600B2 (en) 2011-09-12 2015-07-28 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4H)-one derivatives
AR087874A1 (es) 2011-09-16 2014-04-23 Bayer Ip Gmbh Uso de acilsulfonamidas para mejorar el rendimiento de las plantas
US20140378306A1 (en) 2011-09-16 2014-12-25 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
CN103781352A (zh) 2011-09-16 2014-05-07 拜耳知识产权有限责任公司 苯基吡唑啉-3-甲酸酯类用于提高植物产量的用途
JP2014527973A (ja) 2011-09-23 2014-10-23 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 非生物的な植物ストレスに対する作用剤としての4−置換1−フェニルピラゾール−3−カルボン酸誘導体の使用
AU2012320554B2 (en) 2011-10-04 2017-11-09 Bayer Intellectual Property Gmbh RNAi for the control of fungi and oomycetes by inhibiting saccharopine dehydrogenase gene
WO2013050324A1 (de) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Abiotischen pflanzenstress-reduzierende kombination enthaltend 4- phenylbuttersäure (4-pba) oder eines ihrer salze (komponente (a)) und eine oder mehrere ausgewählte weitere agronomisch wirksame verbindungen (komponente(n) (b)
MX2014005976A (es) 2011-11-21 2014-08-27 Bayer Ip Gmbh Derivados de n-[(silil trisustituido)metil]-carboxamida fungicidas.
CN105906567B (zh) 2011-11-30 2019-01-22 拜耳知识产权有限责任公司 杀真菌的n-二环烷基和n-三环烷基(硫代)羧酰胺衍生物
BR112014015002A2 (pt) 2011-12-19 2017-06-13 Bayer Cropscience Ag uso de derivados de diamida de ácido antranílico para o controle de pragas em culturas transgênicas
KR102028903B1 (ko) 2011-12-29 2019-10-07 바이엘 인텔렉쳐 프로퍼티 게엠베하 살진균 3-[(피리딘-2-일메톡시이미노)(페닐)메틸]-2-치환-1,2,4-옥사디아졸-5(2h)-온 유도체
BR112014015993A8 (pt) 2011-12-29 2017-07-04 Bayer Ip Gmbh composto, composição, método para o controle dos fungos, utilização dos compostos e processo para a produção das composições
PT2816897T (pt) 2012-02-22 2018-04-02 Bayer Cropscience Ag Utilização de fluopiram para controlar doenças da madeira em uvas
EP2819518B1 (de) 2012-02-27 2017-09-06 Bayer Intellectual Property GmbH Wirkstoffkombinationen enthaltend ein thiazoylisoxazolin und ein fungizid
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
CN104428294B (zh) 2012-04-20 2017-07-14 拜尔农科股份公司 N‑环烷基‑n‑[(杂环基苯基)亚甲基]‑(硫代)羧酰胺衍生物
US20150080337A1 (en) 2012-04-20 2015-03-19 Bayer Cropscience N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
EP2841581B2 (de) 2012-04-23 2023-03-08 BASF Agricultural Solutions Seed US LLC Gezielte genomische veränderungen in pflanzen
EP2847170B1 (de) 2012-05-09 2017-11-08 Bayer CropScience AG Pyrazol-indanyl-carboxamide
EP2662364A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Tetrahydronaphthyl-Carboxamide
EP2662362A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
EP2662361A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
EP2662360A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Indanyl-Carboxamide
EP2662363A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Biphenyl-Carboxamide
EP2662370A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Benzofuranyl-Carboxamide
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
AR091104A1 (es) 2012-05-22 2015-01-14 Bayer Cropscience Ag Combinaciones de compuestos activos que comprenden un derivado lipo-quitooligosacarido y un compuesto nematicida, insecticida o fungicida
EP2871958A1 (de) 2012-07-11 2015-05-20 Bayer CropScience AG Verwendung von fungiziden kombinationen zur erhöhung der toleranz von pflanzen gegenüber abiotischem stress
CA2883574A1 (en) 2012-09-05 2014-03-13 Bayer Cropscience Ag Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress
PL2908642T3 (pl) 2012-10-19 2022-06-13 Bayer Cropscience Ag Sposób wzmacniania tolerancji roślin na stres abiotyczny z zastosowaniem pochodnych karboksyamidowych lub tiokarboksyamidowych
US9668480B2 (en) 2012-10-19 2017-06-06 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
US9801374B2 (en) 2012-10-19 2017-10-31 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
CN105357967B (zh) 2012-10-19 2019-02-19 拜尔农科股份公司 使用羧酰胺衍生物促进植物生长的方法
WO2014079957A1 (de) 2012-11-23 2014-05-30 Bayer Cropscience Ag Selektive inhibition der ethylensignaltransduktion
EP2735231A1 (de) 2012-11-23 2014-05-28 Bayer CropScience AG Wirkstoffkombinationen
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
UA117820C2 (uk) 2012-11-30 2018-10-10 Байєр Кропсайєнс Акцієнгезелльшафт Подвійна фунгіцидна або пестицидна суміш
BR112015012519A2 (pt) 2012-11-30 2017-07-11 Bayer Cropscience Ag misturas ternárias fungicidas e pesticidas
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
BR112015012473A2 (pt) 2012-11-30 2017-07-11 Bayer Cropscience Ag misturas binárias pesticidas e fungicidas
EP2740356A1 (de) 2012-12-05 2014-06-11 Bayer CropScience AG Substituierte (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-insäure-Derivate
EP2740720A1 (de) 2012-12-05 2014-06-11 Bayer CropScience AG Substituierte bicyclische- und tricyclische Pent-2-en-4-insäure -Derivate und ihre Verwendung zur Steigerung der Stresstoleranz in Pflanzen
EP2928296A1 (de) 2012-12-05 2015-10-14 Bayer CropScience AG Verwendung substituierter 1-(arylethinyl)-, 1-(heteroarylethinyl)-, 1-(heterocyclylethinyl)- und 1-(cyloalkenylethinyl)-cyclohexanole als wirkstoffe gegen abiotischen pflanzenstress
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
AR093996A1 (es) 2012-12-18 2015-07-01 Bayer Cropscience Ag Combinaciones bactericidas y fungicidas binarias
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
JP2016515100A (ja) 2013-03-07 2016-05-26 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 殺菌性3−{フェニル[(ヘテロシクリルメトキシ)イミノ]メチル}−ヘテロ環誘導体
CA2908403A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
MX2015014365A (es) 2013-04-12 2015-12-07 Bayer Cropscience Ag Derivados de triazol novedosos.
US9550752B2 (en) 2013-04-12 2017-01-24 Bayer Cropscience Aktiengesellschaft Triazolinthione derivatives
US9554573B2 (en) 2013-04-19 2017-01-31 Bayer Cropscience Aktiengesellschaft Binary insecticidal or pesticidal mixture
CA2909725A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Aktiengesellschaft Method for improved utilization of the production potential of transgenic plants
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
TW201507722A (zh) 2013-04-30 2015-03-01 Bayer Cropscience Ag 做為殺線蟲劑及殺體內寄生蟲劑的n-(2-鹵素-2-苯乙基)-羧醯胺類
CN105636939B (zh) 2013-06-26 2018-08-31 拜耳作物科学股份公司 N-环烷基-n-[(二环基苯基)亚甲基]-(硫代)甲酰胺衍生物
AR096827A1 (es) 2013-07-09 2016-02-03 Bayer Cropscience Ag Uso de piridoncarboxamidas seleccionadas o sus sales como ingredientes activos contra estrés abiótico en plantas
CN105873907B (zh) 2013-12-05 2019-03-12 拜耳作物科学股份公司 N-环烷基-n-{[2-(1-取代的环烷基)苯基]亚甲基}-(硫代)甲酰胺衍生物
AU2014359208B2 (en) 2013-12-05 2018-10-04 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-N-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
AR101214A1 (es) 2014-07-22 2016-11-30 Bayer Cropscience Ag Ciano-cicloalquilpenta-2,4-dienos, ciano-cicloalquilpent-2-en-4-inas, ciano-heterociclilpenta-2,4-dienos y ciano-heterociclilpent-2-en-4-inas sustituidos como principios activos contra el estrés abiótico de plantas
AR103024A1 (es) 2014-12-18 2017-04-12 Bayer Cropscience Ag Piridoncarboxamidas seleccionadas o sus sales como sustancias activas contra estrés abiótico de las plantas
BR112017022000A2 (pt) 2015-04-13 2018-07-03 Bayer Cropscience Ag derivados de n-cicloalquil-n-(biheterocicliletileno)-(tio)carboxamida.
AU2016279062A1 (en) 2015-06-18 2019-03-28 Omar O. Abudayyeh Novel CRISPR enzymes and systems
CA3032030A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
BR112019005668A2 (pt) 2016-09-22 2019-06-04 Bayer Ag novos derivados de triazol
US20190281828A1 (en) 2016-09-22 2019-09-19 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
US20190261630A1 (en) 2016-10-26 2019-08-29 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications
RU2755433C2 (ru) 2016-12-08 2021-09-16 Байер Кропсайенс Акциенгезельшафт Применение инсектицидов для борьбы с проволочниками
EP3332645A1 (de) 2016-12-12 2018-06-13 Bayer Cropscience AG Verwendung substituierter pyrimidindione oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress
WO2018108627A1 (de) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Verwendung substituierter indolinylmethylsulfonamide oder deren salze zur steigerung der stresstoleranz in pflanzen
US11591601B2 (en) 2017-05-05 2023-02-28 The Broad Institute, Inc. Methods for identification and modification of lncRNA associated with target genotypes and phenotypes
WO2019025153A1 (de) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Verwendung von substituierten n-sulfonyl-n'-aryldiaminoalkanen und n-sulfonyl-n'-heteroaryldiaminoalkanen oder deren salzen zur steigerung der stresstoleranz in pflanzen
AU2018338318B2 (en) 2017-09-21 2022-12-22 Massachusetts Institute Of Technology Systems, methods, and compositions for targeted nucleic acid editing
US10968257B2 (en) 2018-04-03 2021-04-06 The Broad Institute, Inc. Target recognition motifs and uses thereof
BR112020024615A2 (pt) 2018-06-04 2021-03-02 Bayer Aktiengesellschaft benzoilpirazóis bicíclicos de ação herbicida
WO2020131862A1 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof
WO2021216694A1 (en) * 2020-04-21 2021-10-28 Baker Hughes Oilfield Operations Llc Contact or proximity pad mounted sensor system for imaging cavity defects and delamination defects between layers in multilayered cylindrical structures in subsurface wells
CN111848804A (zh) * 2020-07-15 2020-10-30 四川农业大学 玉米淀粉合成酶ssⅲ的多克隆抗体的制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349123A (en) * 1990-12-21 1994-09-20 Calgene, Inc. Glycogen biosynthetic enzymes in plants
SE467358B (sv) 1990-12-21 1992-07-06 Amylogene Hb Genteknisk foeraendring av potatis foer bildning av staerkelse av amylopektintyp
CA2061443C (en) 1992-02-18 2001-04-10 Richard G. F. Visser Potato plant producing essentially amylose-free starch
JP3495749B2 (ja) * 1992-07-07 2004-02-09 三井化学株式会社 可溶性のイネ澱粉合成酵素遺伝子及びその使用法
US5300145B1 (en) 1992-08-28 1995-11-28 Nat Starch Chem Invest Low amylopectin starch
DK0664835T3 (da) * 1992-10-14 2004-09-27 Syngenta Ltd Nye planter og fremgangsmåde til opnåelse af dem
GB9223454D0 (en) 1992-11-09 1992-12-23 Ici Plc Novel plants and processes for obtaining them
DE4330960C2 (de) 1993-09-09 2002-06-20 Aventis Cropscience Gmbh Kombination von DNA-Sequenzen, die in Pflanzenzellen und Pflanzen die Bildung hochgradig amylosehaltiger Stärke ermöglichen, Verfahren zur Herstellung dieser Pflanzen und die daraus erhaltbare modifizierte Stärke
US5824790A (en) * 1994-06-21 1998-10-20 Zeneca Limited Modification of starch synthesis in plants
DE4441408A1 (de) 1994-11-10 1996-05-15 Inst Genbiologische Forschung DNA-Sequenzen aus Solanum tuberosum kodierend Enzyme, die an der Stärkesynthese beteiligt sind, Plasmide, Bakterien, Pflanzenzellen und transgene Pflanzen enhaltend diese Sequenzen
GB9524938D0 (en) * 1995-12-06 1996-02-07 Zeneca Ltd Modification of starch synthesis in plants
GB9525353D0 (en) 1995-12-12 1996-02-14 Nat Starch Chem Invest Potato soluble starch synthase
DE19601365A1 (de) 1996-01-16 1997-07-17 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle aus Pflanzen codierend Enzyme, die an der Stärkesynthese beteiligt sind

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9744472A1 *

Also Published As

Publication number Publication date
AU725197B2 (en) 2000-10-05
US6635804B2 (en) 2003-10-21
WO1997044472A1 (de) 1997-11-27
AU2956997A (en) 1997-12-09
US20020088023A1 (en) 2002-07-04
DE19619918A1 (de) 1997-11-20
KR20000011160A (ko) 2000-02-25
JP2000511049A (ja) 2000-08-29
CA2255538A1 (en) 1997-11-27
US6307124B1 (en) 2001-10-23

Similar Documents

Publication Publication Date Title
EP0874908B1 (de) Nucleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
EP0791066B1 (de) Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle
EP0904389A1 (de) Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais
EP1200615B8 (de) Nukleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
DE69737448T2 (de) Nukleinsäuremoleküle, die für enzyme aus weizen kodieren, welche an der stärkesynthese beteiligt sind
EP1088082B1 (de) Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
DE19709775A1 (de) Nucleinsäuremoleküle codierend Stärkephosphorylase aus Mais
DE69737507T2 (de) Neue nukleinsäuremoleküle aus mais und deren verwendung zur herstellung modifizierter stärke
EP0851934B1 (de) Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
WO1997032985A1 (de) Nucleinsäuremoleküle, codierend debranching-enzyme aus mais
WO1999058688A2 (de) Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
WO1997042328A1 (de) Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren
EP1100931A2 (de) NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE $g(a)-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE
EP1100939A1 (de) Nukleinsäuremoleküle kodierend für beta-amylase, pflanzen, die eine modifizierte stärke synthetisieren, herstellungsverfahren und verwendungen
WO2000008184A1 (de) Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zur herstellung der pflanzen, ihre verwendung sowie die modifizierte stärke
DE19636917A1 (de) Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
DE19621588A1 (de) Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE

17Q First examination report despatched

Effective date: 20030604

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER BIOSCIENCE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031216