EP2405552B1 - Adpativ induktives netzteil - Google Patents

Adpativ induktives netzteil Download PDF

Info

Publication number
EP2405552B1
EP2405552B1 EP11183065.9A EP11183065A EP2405552B1 EP 2405552 B1 EP2405552 B1 EP 2405552B1 EP 11183065 A EP11183065 A EP 11183065A EP 2405552 B1 EP2405552 B1 EP 2405552B1
Authority
EP
European Patent Office
Prior art keywords
power supply
tank circuit
characteristic
inductive power
operating parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP11183065.9A
Other languages
English (en)
French (fr)
Other versions
EP2405552A2 (de
EP2405552A3 (de
Inventor
David W. Baarman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips IP Ventures BV
Original Assignee
Philips IP Ventures BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips IP Ventures BV filed Critical Philips IP Ventures BV
Publication of EP2405552A2 publication Critical patent/EP2405552A2/de
Publication of EP2405552A3 publication Critical patent/EP2405552A3/de
Application granted granted Critical
Publication of EP2405552B1 publication Critical patent/EP2405552B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00024Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission by means of mobile telephony
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/01Resonant DC/DC converters
    • H02M3/015Resonant DC/DC converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/246Home appliances the system involving the remote operation of lamps or lighting equipment

Definitions

  • This invention relates generally to contactless power supplies, and more specifically to inductively coupled contactless power supplies.
  • CEETS Contactless energy transmission systems
  • CEETS are composed of power supplies and remote devices.
  • the remote devices could be chargeable, such as batteries, micro-capacitors, or any other chargeable energy source.
  • CEETS could directly power the devices.
  • CEETS uses magnetic induction to transfer energy. Energy from a primary winding in the power supply is transferred inductively to a secondary winding in the chargeable device. Because the secondary winding is physically spaced from the primary winding, the inductive coupling occurs through the air.
  • CEETS dedicated to one type of device.
  • a CEETS for a rechargeable toothbrush is designed only for recharging a toothbrush, while a CEETS for a rechargeable telephone works only with a specific type of telephone. While this solution allows the CEET to operate effectively with one particular device, it fails to be sufficiently flexible to allow the power supply to operate with different rechargeable devices.
  • Prior art includes WO 02/37641 which discloses a charging device for a portable device; and, more particularly, to a noncontact charging device for charging a rechargeable battery of a portable device by the induction coupling between a charger and the rechargeable battery.
  • an inductive power supply for supplying power to a remote device according to claim 3.
  • a contactless power supply inductively couples by way of a tank circuit to a device.
  • the power supply has a controller for dynamically adjusting the resonant frequency of the tank circuit.
  • the tank circuit could have either a variable capacitor or a variable inductor, or both.
  • the power supply also may have an inverter.
  • a drive circuit connected to the inverter controls the frequency of the inverter and the duty cycle of the inverter.
  • a controller with an attached memory directs the operation of the inverter by way of the drive circuit.
  • the inverter may also be connected to a DC power source. The controller could then change the rail voltage of the DC power source.
  • the contactless power supply can energize a variety of different devices.
  • the power supply can even energize several different devices at the same time. This ability to power a multitude of different devices overcomes many of the limitations previously associated with CEETS. Further, because the power supply can energize a variety of different devices, a central single source for supply power to a variety of small electronic devices is possible.
  • a sensor may also coupled to the tank circuit. It would monitor various operational characteristics of the tank circuit, such as the phase of the current within the tank circuit. These operation characteristics are indicative of the total load energized by the power supply. When the operational characteristics indicate that the power supply is not efficiently supplying power to the load, the controller causes the power supply to seek an improved configuration.
  • the process of seeking an improved configuration may include one or more of the following steps.
  • the power supply could automatically attempt to compensate by changing the frequency of the inverter and the duty cycle of the inverter. If this sufficiently correct the efficiency of the power supply, the controller causes the tank circuit to change its resonant frequency.
  • the resonant frequency of a tank circuit is in fact a range centered about a frequency.
  • the tank circuit will resonate at frequencies which are approximately the resonant frequency.
  • the adaptive power supply described herein reconfigures the tank circuit to have a substantially different resonant frequency.
  • the tank circuit may consist of either a variable inductor or a variable capacitor or both.
  • the controller would then change the inductance of the variable inductor or the capacitance of the variable capacitor, or both, thus causing the tank circuit to have a different resonant frequency.
  • the controller may also establish a new rail voltage for the DC power source. It also sets a new inverter frequency and a new duty cycle for the inverter. The adaptive power supply then operates with the new configuration.
  • the power supply will once again attempt to rectify the problem by changing the frequency of the inverter and the duty cycle of the inverter. If the problem is still not corrected, then the power supply will repeat the process of reconfiguring the tank circuit, setting a new inverter frequency and setting a new duty cycle.
  • This power supply continually searches for the most efficient settings to deliver power to the devices. However, if none of the various settings delivers power efficiently to the devices, then the power supply will select the most efficient of the previous configurations and operate the power supply with those settings.
  • the power supply efficiently powers a variety of loads. Further, because the power supply is contactless, a user does not need to have a multitude of different power supplies or connectors.
  • the present invention provides an adaptive inductive ballast circuit in which the inductance and/or the capacitance of the power supply circuit is variable to provide a broad range of adaptability, thereby permitting the ballast circuit to power a variety of inductively powered devices with widely differing load characteristics.
  • FIG. 1 A block diagram showing the general construction of an adaptive inductive ballast 10 in accordance with one embodiment of the present invention is shown in FIG. 1 .
  • the adaptive inductive ballast 10 generally includes a microprocessor 12 that controls operation of the circuit, a multi-tap primary 14 for generating a magnetic field, a wave shaper and drive subcircuit 16 that generates the signal applied to the primary 14, a current sense subcircuit 18 that monitors the signal applied to the primary 14 and provides corresponding feedback to the microprocessor 12, a capacitance switch 20 for adjusting the capacitance values in the wave shaper and drive subcircuit 16, and an inductance switch 22 for adjusting the inductance of the multi-tap primary 14.
  • the microprocessor is a conventional microprocessor widely available from a variety of suppliers.
  • the capacitance switch 20 generally includes two banks of capacitors and a plurality of switches, such as transistors, that are selectively actuatable by the microprocessor 12 to control the values of the two capacitor banks.
  • the capacitors in each bank can be arranged in series or parallel depending on the desired range and distribution of possible capacitance values.
  • the first bank of capacitors replace capacitor 271 of the pre-existing resonance-seeking ballast shown in the above referenced application.
  • the second back of capacitors replace capacitor 272 of the pre-existing resonance-seeking ballast shown in the above referenced patent application.
  • the capacitance switch 20 makes capacitors 271 and 272 from the pre-existing resonance-seeking ballast into variable capacitors, the values of which are controlled by the microprocessor 12.
  • the described capacitance switch 20 can be replaced by other circuitry capable of providing variable capacitance.
  • the inductance switch 22 generally includes a multi-tap primary 14 and a plurality of switches, such as transistors, that are selectively actuatable by the microprocessor 12 to control the values of the inductance of the primary 14.
  • the multi-tap primary 14 replaces primary 270 of the pre-existing resonance-seeking ballast shown in the attached patent application.
  • the inductance switch 22 makes primary 270 from the pre-existing resonance-seeking ballast into a variable inductance coil by varying the number of turns in the primary 14, the value of which is controlled by the microprocessor 12.
  • the described inductance switch 22 can be replaced by other circuitry capable of providing variable inductance.
  • the microprocessor 12 is programmed to receive input from the current sense subcircuit 18, which is indicative of the current applied to the primary 14.
  • the microprocessor 12 is programmed to separately adjust the capacitance switch 20 and the inductance switch 22 to cycle through the range of capacitance values and inductance values available to the circuit.
  • the microprocessor 12 continues to monitor the input from the current sense circuit 18 while adjusting the capacitance and inductance values to determine which values provide optimum current to the primary 14.
  • the microprocessor 12 then locks the adaptive ballast into the optimum settings.
  • a ballast feedback circuit is connected at point A and a control circuit is connected at point B.
  • Oscillator 144 provides half bridge inverter 148 with an alternating signal by way of drive 146.
  • Half bridge inverter powers tank circuit 150.
  • Current sensing circuit 218 provides feedback to oscillator 144.
  • the feedback circuit, control circuit, oscillator, half bridge inverter, drive and current sensing circuit 218 as well as other supporting circuitry is more fully described in the above referenced patent application.
  • a phase delay could be inserted at E and can be controlled as a delay line or even DSP (Digital Signal Processing) could be used to delay this signal. This delay can be used to throttle the phase and control secondary amplitude.
  • switched capacitance can adjust the resonant frequency based on the adjustable primary inductance. Simple transistors can be used to switch in and out capacitance. The capacitance is changed when the primary inductor changes as to match load.
  • primary inductance can be switched to adjust the power required by the secondary circuit With that load information, the control processor can adjust the inductance as needed to provide the power required.
  • the inductance can be switched using transistors and multiple taps from the primary inductor controlled by the microprocessor.
  • the illustrated system waits until it determines that a load is present before applying power to the primary 14. This will save power and may be done by providing each inductively powered device with a magnet that actuates a reed switch adjacent to the primary. Alternatively, a user-actuated switch (not shown) may be provided so that the user can engage the power supply when an inductively powered device is present. As another alternative, the inductively powered device may be configured to mechanically actuate a switch when it is placed into located by the primary to signal its presence. As a further alternative, the switching mechanism can be eliminated and the ballast circuit can provide power to the primary 14 regardless of the presence of a load.
  • the circuit adjusts its frequency to optimize the current applied to the primary.
  • the microprocessor locks the ballast circuit into the operating frequency and then begins to cycle through the range of inductance values available through the multi-tap primary. After each change in inductance value, the microprocessor unlocks the operating frequency and permits the ballast circuit to seek resonance, settling at a frequency that provides optimal current to the primary. The microprocessor continues cycling through the available inductance values until it has determined which value provides optimal current to the primary. In one embodiment, a progressive scanning process is used to determine the appropriate inductance value.
  • the microprocessor can step through each inductance value to determine the corresponding current, and after stepping through each value, return to the inductance value that provided the greatest current to the primary.
  • the microprocessor locks the circuit at the determined inductance value and begins to cycle through the capacitance values.
  • the microprocessor uses a progressive scanning technique to determine the capacitance that provides the primary with the greatest current. The scanning process may progress upwardly from the lowest capacitance value or downwardly from the highest capacitance value, as described above in connection with the scanning process for the inductance value.
  • the microprocessor can step through each capacitance value to determine the corresponding current, and after stepping through each value, return to the capacitance value that provided the greatest current to the primary.
  • the frequency of the ballast circuit is not permitted to vary once the appropriate inductance value has been determined.
  • the microprocessor can, alternatively, be programmed to permit the ballast circuit to seek resonance after each change in capacitance value.
  • the microprocessor may be programmed to provide adjustment of only the capacitance value or only the inductance value of the power supply circuit.
  • the multi-tap primary can be replaced by a conventional single-tap primary and the inductance switch can be eliminated.
  • the capacitor bank can be replaced by a single set of capacitors and the capacitance switch can be eliminated.
  • the microprocessor can be programmed to adjust the capacitance before adjusting the inductance.
  • the adaptive inductive ballast 10 may include phase delay circuitry (not shown) that permits the ballast 10 to throttle the phase and control secondary amplitude.
  • the phase delay circuitry may include a delay line or a Digital Signal Processor (DSP) that is connected to the wave shaper and drive circuit 16 following the operational amplifier 210.
  • DSP Digital Signal Processor
  • an additional embodiment for an adaptive contactless energy transmission system is shown in the block diagram of FIG. 4 .
  • the adaptive contactless energy transmission system is comprised of adaptive inductive power supply 305 and remote device 307.
  • power source 310 is a DC power source providing DC (direct current) power to inverter 312.
  • Inverter 312 converts the DC power to AC (alternating current) power.
  • Inverter 312 acts as an AC power source supplying the AC power to tank circuit 314.
  • Tank circuit 314 is inductively coupled to secondary winding 316 of remote device 307.
  • Secondary winding 316 of remote device 307 has no core.
  • Line 322 indicates an air gap between remote device 307 and adaptive inductive power supply 305.
  • Remote device 307 has a load 320.
  • Load 320 could include a rechargeable device, such as a micro-capacitor or a rechargeable battery.
  • load 320 could be a lamp, radio or any other electrical device adapted to receive power from adaptive inductive power supply 305 whenever remote device 307 is placed in proximity of adaptive inductive power supply 305.
  • Circuit sensor 324 is coupled to the tank circuit 314 and inverter 312. Circuit sensor 324 is also coupled to controller 326. Circuit sensor 324 provides information regarding the operational parameters of adaptive inductive power supply 305. For example, circuit sensor 324 could be a current sensor used to provide controller 326 information regarding the phase, frequency and amplitude of the current in tank circuit 314.
  • Controller 326 could be any one of a multitude of commonly available microcontrollers programmed to perform the functions hereinafter described, such as the Intel 8051 or the Motorola 6811, or any of the many variants of those microcontrollers. Controller 326 could have a ROM (read only memory) and RAM (random access memory) on the chip. Controller 326 could have a series of analog and digital outputs for controlling the various functions within the adaptive inductive power supply.
  • Controller 326 is connected to memory 327. Controller 326 is also coupled to drive circuit 328.
  • Drive circuit 328 regulates the operation of inverter 312, such as the frequency and timing of inverter 312.
  • Drive circuit 328 could be constructed in a number of different manners.
  • driver circuit 328 could be constructed of discrete components such as transistors, resistors and capacitors; it could be a discrete integrated circuit designed to drive inverters; or it could be a functional component of controller 326 if controller 326 were a microcontroller.
  • Controller 326 is also coupled to power source 310. Controller 326 can manipulate the rail voltage of power source 310. As is well known, by altering the rail voltage of power source 310, the amplitude of the output of inverter 312 is also altered.
  • controller 326 is coupled to variable inductor 330 and variable capacitor 332 of tank circuit 314.
  • Controller 326 could be a microcontroller, such as an 8051-type microcontroller.
  • controller 326 could be a microprocessor with additional supporting circuitry.
  • Controller 326 can modify the inductance of variable inductor 330 or the capacitance of variable capacitor 332. This could be done, e.g., by switching in or out additional capacitor or inductors or by changing the physical characteristics of variable inductor 330 or variable capacitor 332. By modifying the inductance of variable inductor 330 and the capacitance of variable capacitor 332, the resonant frequency of tank circuit 314 can be changed.
  • tank circuit 314 may have a first resonant frequency and a second resonant frequency.
  • Tank circuit 314 could also have several resonant frequencies.
  • the term "resonant frequency” refers to a band of frequencies within which tank circuit 314 will resonate. As is well known, a tank circuit will have a resonant frequency, but will continue to resonate within a range of frequencies.
  • Variable inductor 330 could be a thyristor controlled variable inductor, a compressible variable inductor, parallel laminated core variable inductor, a series of inductors and switches capable of placing select fixed inductors into tank circuit 314, or any other controllable variable inductor.
  • Variable capacitor 332 could be a switched capacitor array, a series of fixed capacitors and switches capable of placing select fixed capacitors into tank circuit 314, or any other controllable variable capacitor.
  • Tank circuit 314 also includes primary winding 334.
  • Primary winding 334 and variable inductor 330 are shown separate. Alternatively, primary winding 334 and variable inductor 330 could be combined into a single element.
  • Tank circuit 314 is shown as a series resonant tank circuit. A parallel resonant tank circuit could also be used.
  • FIGs. 5A and 5B show a flow chart showing the operation of adaptive inductive power supply 305 of adaptive contactless energy transmission system shown in FIG. 4 .
  • controller 326 When turned on (step 400), controller 326 initializes the resonant frequency of tank circuit 314 by setting the inductance of variable inductor 330 and the capacitance variable capacitor 332 so that tank circuit 314 operates at a pre-selected initial resonant frequency. Step 402. Controller 326 initializes drive circuit 328 to operate at a pre-selected frequency with a pre-selected phase offset. Controller 326 initializes power source 310 to operate at a predetermined rail voltage. Step 402.
  • adaptive inductive power supply 305 when adaptive inductive power supply 305 is initially energized, adaptive inductive power supply 305 might be initialized to supply power at a very low level. Alternatively, adaptive inductive power supply 305 might be initialized to supply power at a more moderate level to accommodate some common remote devices.
  • the operating parameters for the power supply are various measures of current and voltage throughout the system.
  • the peak to peak inverter voltage, the RMS current flowing through the primary winding, and the phase offset of the current flowing through the primary winding are all operating parameters.
  • the operating range could include a range of the phase offset between the inverter voltage and the voltage current, a range for the current amplitude, and a range for the inverter output voltage.
  • an operating range could be an inverter voltage from 5 Volts to 5.3 volts, with a current phase offset of no more than 20 degrees, and a current amplitude of between 1 ⁇ 2 and 1 amp.
  • the nominal range is the acceptable range of possible values for the operating parameters. If an operating parameter are not within the nominal range, then the power supply is not operating efficiently.
  • Controller 326 continually monitors the operating parameters of adaptive inductive power supply 305. If the operating parameters fall within the nominal range, then the circuit continues to idle. Step 408.
  • controller 326 reconfigures adaptive inductive power supply 305.
  • adaptive inductive power supply 305 had an initially low power setting, adaptive inductive power supply 305 would thus sense the presence of the remote device, and automatically increase power to a more moderate level.
  • reconfiguration of adaptive inductive power supply 305 could be triggered by one operating parameter falling outside of the nominal range, or reconfiguration of adaptive inductive power supply 305 could be triggered by a combination of operating parameters falling outside of the nominal range. It is satisfactory to monitor only the phase of the current flowing through the primary winding. However, various enhancements where other operating parameters are measured and weighted together could be readily conceived.
  • controller 326 causes drive circuit 328 to alter the duty cycle of inverter 312. Step 410.
  • the duty cycle of inverter 312 is altered, and the altered duty cycle is stored in memory 327.
  • Step 412 If the operating parameters are still outside of the nominal range, then a 'best known setting' flag is checked. Step 414. The 'best known setting' flag is discussed below.
  • controller 326 determines whether the inverter frequency can be adjusted and still maintain resonance within tank circuit 314. Step 418. Controller 326 first finds the maximum and minimum resonant frequency of tank circuit 314.
  • the maximum and minimum resonant frequency of tank circuit 314 for any particular configuration of variable inductor 330 and variable capacitor 332 could be stored in memory 327.
  • the maximum and minimum resonant frequency of tank circuit 314 could be calculated from the inductance of primary winding 334, the inductance of variable inductor 330, and the capacitance of variable capacitor 332. Controller 326 then compares the maximum and minimum resonant frequency of tank circuit 314 with the current operating frequency of inverter 312.
  • controller 326 causes drive circuit 328 to adjust the inverter frequency and stores the new inverter frequency in memory 327. Step 420. The circuit returns to the idle state. Step 406. If the inverter frequency cannot be adjusted within the resonant frequency of the current configuration of tank circuit 314, then controller 326 determines whether the configuration of tank circuit 314 can be modified. Step 422.
  • controller 326 stores the current frequency, duty cycle, rail voltage, tank circuit configuration, and operating parameters in memory 327. Step 424. It then adjust the tank circuit resonant frequency. Step 426. Adjustment of the tank circuit resonant frequency is accomplished by changing the inductance of variable inductor 330 and the capacitance of variable capacitor 332.
  • Step 428 Since the resonant frequency of tank circuit 314 has been altered, a new nominal range for the operating parameters is calculated or loaded from memory 327. Step 430. The power supply then returns to idle. Step 406.
  • controller 326 searches for the best prior configuration. Step 432. Controller 326 compares the operating parameters previously stored and selects the best configuration.
  • controller 326 retrieves various settings of adaptive inductive power supply 305 from memory for that configuration. Step 433. Controller 326 then sets the configuration of tank circuit 314 by setting the inductance of adjustable inductor 30 and capacitance of adjustable capacitor 32. Step 434. Controller 326 then sets the frequency of inverter 312. Step 436. Controller 326 then sets the duty cycle of inverter 312. Step 438. Controller 326 sets the rail voltage of power source 310. Step 440.
  • Controller 326 then stores the expected operating parameters in memory 327. Step 442. Alternatively, controller 326 could set a pointer to the expecting operating parameters in memory 327. Controller 326 then sets the 'best known setting' flag. Step 444. The power supply then returns to the idle state. Step 406. The 'best known setting' flag is an indication to controller 326 that the current settings being used by adaptive inductive power supply 305 are the best available.
  • the system checks if the operating parameters are approximately equal to the expected operating parameters.
  • controller 326 checks whether the current operating parameters are approximately the same as the expected operating parameters. Step 446. If so, then further adjustments to power supply will not result in any improved performance, and therefore the system merely returns to the idle state. Step 406.
  • Step 448 The process of reconfiguring adaptive inductive power supply 305 continues. Step 422.
  • Adaptive inductive power supply 305 automatically adjusts to different devices with different loads, and continually determines and optimal operating configuration for the power supply.
  • adaptive inductive power supply 305 more than a single device can be simultaneously powered by adaptive inductive power supply 305.
  • controller 326 continually adjusts the operating parameters of adaptive inductive power supply 305 to maintain efficiency. This allows for one single power supply to provide power to a multitude of different devices.
  • the devices need not be located immediately adjacent adaptive inductive power supply 305. That can be spaced at different distances away from adaptive inductive power supply 305. For example, it is possible to construct a power supply whereby sealed lights are stacked near adaptive inductive power supply 305 and each light will be illuminated even though the distance from adaptive inductive power supply 305 is different for each light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inverter Devices (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Toxicology (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Control Of Electrical Variables (AREA)

Claims (6)

  1. Verfahren zum Betreiben eines induktiven Netzteils für eine entfernte Vorrichtung (307), wobei das Verfahren die folgenden Schritte aufweist:
    Zuführen von Strom zu einem Schwingkreis (314) innerhalb des induktiven Netzteils, wobei der dem Schwingkreis zugeführte Strom eine Betriebsfrequenz, eine Betriebsspannung, eine relative Einschaltdauer hat und der Schwingkreis (314) eine einstellbare Resonanzfrequenz hat;
    Herstellen einer induktiven Kopplung zwischen dem induktiven Netzteil und der entfernten Vorrichtung (307) mit anfänglicher Betriebsfrequenz, Betriebsspannung, relativer Einschaltdauer und einstellbarer Resonanzfrequenz des Schwingkreises (314) und Eintritt in einen Bereitschaftszustand;
    wiederholtes Überwachen zumindest eines Betriebsparameters des induktiven Netzteils nach Herstellen der induktiven Kopplung und, entsprechend dieser Überwachung:
    a) wenn der zumindest eine Betriebsparameter des induktiven Netzteils innerhalb eines Nennbereichs ist, Rückkehr zu dem Bereitschaftszustand,
    b) wenn der zumindest eine Betriebsparameter des induktiven Netzteils nicht innerhalb eines Nennbereichs ist, Neukonfigurieren des induktiven Netzteils durch:
    - Einstellen zumindest einer ersten Eigenschaft des Netzteils, wobei die erste Eigenschaft eines von der Betriebsfrequenz, der Betriebsspannung oder der relativen Einschaltdauer ist;
    - Einstellen einer zweiten Einstellen des Netzteils, wobei die zweite Eigenschaft die Resonanzfrequenz des Schwingkreises (314) ist;
    - wenn nach dem Einstellen der zweiten Eigenschaft der zumindest eine Betriebsparameter innerhalb des Nennbereichs ist, Speichern und Verwenden der Einstellungen, welche von der zumindest einen ersten Eigenschaft, der zweiten Eigenschaft und dem zumindest einem Betriebsparameter definiert werden; und
    - wenn nach dem Einstellen der zweiten Eigenschaft der zumindest eine Betriebsparameter nicht innerhalb des Nennbereichs ist, Suchen und Verwenden der besten gespeicherten vorherigen Einstellung.
  2. Verfahren nach Anspruch 1, wobei der Schritt des wiederholten Überwachens zumindest eines Betriebsparameters des induktiven Netzteils weiter als Abtasten zumindest eines Betriebsparameters des Schwingkreises definiert ist.
  3. Induktives Netzteil zum Versorgen einer entfernten Vorrichtung (307) mit Strom, umfassend:
    einen Schwingkreis (314) mit einer Primärseite zum drahtlosen Übertragen von Strom an eine entfernte Vorrichtung (307) durch eine induktive Kopplung, wobei der Schwingkreis (314) eine einstellbare Resonanzfrequenz hat;
    einen Wechselrichter (148, 312) zum Zuführen von Strom zu dem Schwingkreis (314), wobei der Wechselrichter (148, 312) Strom zu dem Schwingkreis (314) bei einer Betriebsfrequenz und einer relativen Einschaltdauer zuführt;
    eine Gleichstromquelle (310), welche mit dem Wechselrichter (148, 312) gekoppelt ist, um den Wechselrichter (148, 312) mit Gleichstrom zu versorgen, wobei die Gleichstromquelle (310) eine Betriebsspannung hat;
    eine Treiberschaltung (328), welche mit dem Wechselrichter (148, 312) gekoppelt ist, wobei die Treiberschaltung (328) die Betriebsfrequenz und die relative Einschaltdauer vorgibt; und
    eine Steuerung (326) zum dynamischen Neukonfigurieren des induktiven Netzteils, wobei die Steuerung konfiguriert ist für:
    Herstellen einer induktiven Kopplung zwischen dem induktiven Netzteil und der entfernten Vorrichtung (307) mit anfänglicher Betriebsfrequenz, Betriebsspannung, relativer Einschaltdauer und einstellbarer Resonanzfrequenz des Schwingkreises (314) und Eintritt in einen Bereitschaftszustand;
    wiederholtes Überwachen zumindest eines Betriebsparameters des induktiven Netzteils nach Herstellen der induktiven Kopplung und, entsprechend dieser Überwachung:
    a) wenn der zumindest eine Betriebsparameter des induktiven Netzteils innerhalb eines Nennbereichs ist, Rückkehr zu dem Bereitschaftszustand,
    b) wenn der zumindest eine Betriebsparameter des induktiven Netzteils nicht innerhalb eines Nennbereichs ist, Neukonfigurieren des induktiven Netzteils durch:
    - Einstellen zumindest einer ersten Eigenschaft des Netzteils, wobei die erste Eigenschaft eines von der Betriebsfrequenz, der Betriebsspannung oder einerder relativen Einschaltdauer ist;
    - Einstellen einer zweiten Eigenschaft des Netzteils, wobei die zweite Eigenschaft einedie Resonanzfrequenz des Schwingkreises (314) ist;
    - wenn nach dem Einstellen der zweiten Eigenschaft der zumindest eine Betriebsparameter innerhalb des Nennbereichs ist, Speichern und Verwenden der Einstellungen, welche von der zumindest einen ersten Eigenschaft oder Eigenschaften, der zweiten Eigenschaft und dem zumindest einen Betriebsparameter definiert werden; und
    - wenn nach dem Einstellen der zweiten Eigenschaft der zumindest eine Betriebsparameter nicht innerhalb des Nennbereichs ist, Suchen und Verwenden der besten gespeicherten vorherigen Einstellung.
  4. Induktives Netzteil nach Anspruch 3, wobei das induktive Netzteil zumindest eines von einem variablen Kondensator (332) und einer variablen Induktivität (330) beinhaltet, wobei die Steuerung (326) konfiguriert ist, zumindest eines von dem variablen Kondensator (332) und der variablen Induktivität (330) zu variieren, um die Resonanzfrequenz einzustellen.
  5. Induktives Netzteil nach Anspruch 3, weiter einen Schaltungssensor (324) beinhaltend, welcher an den Schwingkreis (314) und an die Steuerung (326) gekoppelt ist, wobei der Schaltungssensor (324) für die Steuerung (326) zumindest einen Betriebsparameter des Schwingkreises (314) angibt.
  6. Induktives Netzteil oder das Verfahren, je nach Fall, nach einem der Ansprüche 2 oder 5, wobei der zumindest eine Betriebsparameter des Schwingkreises (314) Strom ist.
EP11183065.9A 2003-02-04 2004-01-22 Adpativ induktives netzteil Expired - Lifetime EP2405552B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US44479403P 2003-02-04 2003-02-04
US10/689,499 US7212414B2 (en) 1999-06-21 2003-10-20 Adaptive inductive power supply
PCT/US2004/001758 WO2004073150A1 (en) 2003-02-04 2004-01-22 Adaptive inductive power supply
EP04704453A EP1590877A1 (de) 2003-02-04 2004-01-22 Adaptive induktive stromversorgung

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP04704453.2 Division 2004-01-22
EP04704453A Division EP1590877A1 (de) 2003-02-04 2004-01-22 Adaptive induktive stromversorgung

Publications (3)

Publication Number Publication Date
EP2405552A2 EP2405552A2 (de) 2012-01-11
EP2405552A3 EP2405552A3 (de) 2015-05-06
EP2405552B1 true EP2405552B1 (de) 2019-10-09

Family

ID=32871931

Family Applications (4)

Application Number Title Priority Date Filing Date
EP04704453A Ceased EP1590877A1 (de) 2003-02-04 2004-01-22 Adaptive induktive stromversorgung
EP20110183064 Withdrawn EP2405564A3 (de) 2003-02-04 2004-01-22 Adaptiv induktives Netzteil
EP11183065.9A Expired - Lifetime EP2405552B1 (de) 2003-02-04 2004-01-22 Adpativ induktives netzteil
EP11183066.7A Withdrawn EP2405553A3 (de) 2003-02-04 2004-01-22 Adaptiv induktives Netzteil

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP04704453A Ceased EP1590877A1 (de) 2003-02-04 2004-01-22 Adaptive induktive stromversorgung
EP20110183064 Withdrawn EP2405564A3 (de) 2003-02-04 2004-01-22 Adaptiv induktives Netzteil

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11183066.7A Withdrawn EP2405553A3 (de) 2003-02-04 2004-01-22 Adaptiv induktives Netzteil

Country Status (8)

Country Link
US (8) US7212414B2 (de)
EP (4) EP1590877A1 (de)
JP (2) JP2006518179A (de)
KR (5) KR101231324B1 (de)
CN (2) CN101951036A (de)
MY (3) MY137175A (de)
TW (2) TWI326147B (de)
WO (1) WO2004073150A1 (de)

Families Citing this family (397)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212414B2 (en) 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
US7522878B2 (en) * 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US7065658B1 (en) 2001-05-18 2006-06-20 Palm, Incorporated Method and apparatus for synchronizing and recharging a connector-less portable computer system
EP1634366B1 (de) * 2003-05-23 2017-05-03 Auckland Uniservices Limited Frequenzgeregelter resonanzwandler
EP1634355B1 (de) * 2003-05-23 2018-10-10 Auckland Uniservices Limited Verfahren und vorrichtungen zur steuerung induktiv gekoppelter energietransfersysteme
JP4036813B2 (ja) * 2003-09-30 2008-01-23 シャープ株式会社 非接触電力供給システム
GB2414120B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
GB2414121B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
KR20040072581A (ko) * 2004-07-29 2004-08-18 (주)제이씨 프로텍 전자기파 증폭중계기 및 이를 이용한 무선전력변환장치
US7462951B1 (en) * 2004-08-11 2008-12-09 Access Business Group International Llc Portable inductive power station
NZ535390A (en) 2004-09-16 2007-10-26 Auckland Uniservices Ltd Inductively powered mobile sensor system
JP4318044B2 (ja) * 2005-03-03 2009-08-19 ソニー株式会社 電力供給システム、電力供給装置および方法、受電装置および方法、記録媒体、並びにプログラム
DE102005022352A1 (de) * 2005-05-13 2006-11-23 BSH Bosch und Siemens Hausgeräte GmbH Energieübertragungsvorrichtung
AU2006269374C1 (en) 2005-07-12 2010-03-25 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US7352567B2 (en) * 2005-08-09 2008-04-01 Apple Inc. Methods and apparatuses for docking a portable electronic device that has a planar like configuration and that operates in multiple orientations
US7382636B2 (en) * 2005-10-14 2008-06-03 Access Business Group International Llc System and method for powering a load
US20070109819A1 (en) * 2005-11-17 2007-05-17 Powell George L Modulated tuned L/C transmitter circuits
EP1962365A1 (de) * 2005-12-12 2008-08-27 Matsushita Electric Industrial Co., Ltd. Batteriesystem mit kontaktloser ladung, ladegerät und batteriepack
JP4813171B2 (ja) * 2005-12-16 2011-11-09 株式会社豊田自動織機 ステータの製造方法及び製造装置
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US8447234B2 (en) * 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
US8169185B2 (en) 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US7952322B2 (en) 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
US11201500B2 (en) 2006-01-31 2021-12-14 Mojo Mobility, Inc. Efficiencies and flexibilities in inductive (wireless) charging
US7355150B2 (en) 2006-03-23 2008-04-08 Access Business Group International Llc Food preparation system with inductive power
US7989986B2 (en) 2006-03-23 2011-08-02 Access Business Group International Llc Inductive power supply with device identification
US11245287B2 (en) 2006-03-23 2022-02-08 Philips Ip Ventures B.V. Inductive power supply with device identification
US7948208B2 (en) 2006-06-01 2011-05-24 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
US11329511B2 (en) 2006-06-01 2022-05-10 Mojo Mobility Inc. Power source, charging system, and inductive receiver for mobile devices
JP4855150B2 (ja) * 2006-06-09 2012-01-18 株式会社トプコン 眼底観察装置、眼科画像処理装置及び眼科画像処理プログラム
US9022293B2 (en) 2006-08-31 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and power receiving device
US8013473B2 (en) * 2006-09-01 2011-09-06 Atmel Corporation Detector based combination regulator
US9129741B2 (en) 2006-09-14 2015-09-08 Qualcomm Incorporated Method and apparatus for wireless power transmission
TWI339471B (en) * 2006-12-27 2011-03-21 Ind Tech Res Inst Non-contact power supply having built-in coupling detection device and coupling detection method thereof
DK176584B1 (da) * 2007-01-04 2008-10-06 Gn Netcom As Hovedsæt med genopladeligt batteri, baseenhed indrettet til at oplade et genopladeligt batteri samt en kommunikationsenhed
US7821208B2 (en) * 2007-01-08 2010-10-26 Access Business Group International Llc Inductively-powered gas discharge lamp circuit
RU2498541C2 (ru) * 2007-01-08 2013-11-10 Эксесс Бизнесс Груп Интернешнл Ллс Цепь индуктивного питания газоразрядной лампы
CA2676799C (en) 2007-01-29 2016-07-12 Powermat Ltd. Pinless power coupling
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
HRP20211554T1 (hr) * 2007-03-22 2021-12-24 Powermat Technologies Ltd. Nadzorni uređaj učinkovitosti za induktivni prijenos snage
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
KR100814097B1 (ko) * 2007-06-25 2008-03-14 일신하이텍 주식회사 비접촉 급전장치를 포함하는 엘시디 에이징 시스템
KR20100057632A (ko) * 2007-08-09 2010-05-31 퀄컴 인코포레이티드 공진기의 q 팩터 증가
US10069341B2 (en) 2007-08-21 2018-09-04 Auckland Uniservices Limited Inductively powered mobile sensor system
GB0716679D0 (en) * 2007-08-28 2007-10-03 Fells J Inductive power supply
EP2188863A1 (de) 2007-09-13 2010-05-26 QUALCOMM Incorporated Maximierung des pulverertrags aus drahtlosen leistungsmagnetresonatoren
EP2201641A1 (de) * 2007-09-17 2010-06-30 Qualcomm Incorporated Sender und empfänger für drahtlosen energietransfer
US8742625B2 (en) * 2007-09-28 2014-06-03 Access Business Group International Llc Multiphase inductive power supply system
KR101606664B1 (ko) * 2007-10-11 2016-03-25 퀄컴 인코포레이티드 자기 기계 시스템을 이용하는 무선 전력 전송
US8729734B2 (en) 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
US9293927B2 (en) 2007-12-21 2016-03-22 Cynetic Designs Ltd. Inductively coupled power and data transmission system
CA2709860A1 (en) 2007-12-21 2009-07-02 Access Business Group International Llc Inductive power transfer
US9472971B2 (en) 2007-12-21 2016-10-18 Cynetic Designs Ltd. Wireless inductive charging of weapon system energy source
AU2009204283B2 (en) * 2008-01-07 2013-08-22 Access Business Group International Llc Inductive power supply with duty cycle control
KR20100095006A (ko) * 2008-01-07 2010-08-27 액세스 비지니스 그룹 인터내셔날 엘엘씨 컴퓨터용 무선 전력 어댑터
US9128687B2 (en) * 2008-01-10 2015-09-08 Qualcomm Incorporated Wireless desktop IT environment
NZ565234A (en) * 2008-01-18 2010-11-26 Telemetry Res Ltd Selectable resonant frequency transcutaneous energy transfer system
JP5543378B2 (ja) * 2008-02-22 2014-07-09 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 誘導結合のための磁気的な位置決定
US8344552B2 (en) * 2008-02-27 2013-01-01 Qualcomm Incorporated Antennas and their coupling characteristics for wireless power transfer via magnetic coupling
US8855554B2 (en) * 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US8421267B2 (en) * 2008-03-10 2013-04-16 Qualcomm, Incorporated Packaging and details of a wireless power device
TWI488400B (zh) * 2008-03-13 2015-06-11 Access Business Group Int Llc 具有多重線圈之初級線圈的感應式電源供應系統及其感應式電源供應器與方法
KR20100130215A (ko) 2008-03-17 2010-12-10 파우워매트 엘티디. 유도송전장치
US8629576B2 (en) * 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
JP2011518540A (ja) 2008-04-21 2011-06-23 クゥアルコム・インコーポレイテッド 短距離の効率的な無線電力伝送
US20110050164A1 (en) * 2008-05-07 2011-03-03 Afshin Partovi System and methods for inductive charging, and improvements and uses thereof
US9130407B2 (en) * 2008-05-13 2015-09-08 Qualcomm Incorporated Signaling charging in wireless power environment
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
AU2009246310B9 (en) * 2008-05-14 2015-04-02 Massachusetts Institute Of Technology Wireless energy transfer, including interference enhancement
US20090299918A1 (en) * 2008-05-28 2009-12-03 Nigelpower, Llc Wireless delivery of power to a mobile powered device
ES2326780B2 (es) * 2008-05-29 2010-06-16 Fundacion Circe - Centro De Investigacion De Recursos Y Consumos Energeticos Metodo automatico de control de un sistema de transferencia de potencia con acoplamiento inductivo en alta frecuencia.
CN102113068A (zh) * 2008-06-02 2011-06-29 普迈公司 设备安装的功率出口
JP5559048B2 (ja) * 2008-06-03 2014-07-23 株式会社村田製作所 コンデンサ回路および電力変換回路
US8981598B2 (en) 2008-07-02 2015-03-17 Powermat Technologies Ltd. Energy efficient inductive power transmission system and method
US11979201B2 (en) 2008-07-02 2024-05-07 Powermat Technologies Ltd. System and method for coded communication signals regulating inductive power transmissions
US8188619B2 (en) * 2008-07-02 2012-05-29 Powermat Technologies Ltd Non resonant inductive power transmission system and method
AU2009269574A1 (en) * 2008-07-08 2010-01-14 Powermat Technologies Ltd. Display device
US7893564B2 (en) * 2008-08-05 2011-02-22 Broadcom Corporation Phased array wireless resonant power delivery system
USD640976S1 (en) 2008-08-28 2011-07-05 Hewlett-Packard Development Company, L.P. Support structure and/or cradle for a mobile computing device
JP4911148B2 (ja) * 2008-09-02 2012-04-04 ソニー株式会社 非接触給電装置
US8868939B2 (en) 2008-09-26 2014-10-21 Qualcomm Incorporated Portable power supply device with outlet connector
US8850045B2 (en) 2008-09-26 2014-09-30 Qualcomm Incorporated System and method for linking and sharing resources amongst devices
US8712324B2 (en) 2008-09-26 2014-04-29 Qualcomm Incorporated Inductive signal transfer system for computing devices
US8234509B2 (en) * 2008-09-26 2012-07-31 Hewlett-Packard Development Company, L.P. Portable power supply device for mobile computing devices
US8401469B2 (en) * 2008-09-26 2013-03-19 Hewlett-Packard Development Company, L.P. Shield for use with a computing device that receives an inductive signal transmission
US8527688B2 (en) * 2008-09-26 2013-09-03 Palm, Inc. Extending device functionality amongst inductively linked devices
US8385822B2 (en) * 2008-09-26 2013-02-26 Hewlett-Packard Development Company, L.P. Orientation and presence detection for use in configuring operations of computing devices in docked environments
US20110106954A1 (en) * 2008-09-26 2011-05-05 Manjirnath Chatterjee System and method for inductively pairing devices to share data or resources
US8688037B2 (en) * 2008-09-26 2014-04-01 Hewlett-Packard Development Company, L.P. Magnetic latching mechanism for use in mating a mobile computing device to an accessory device
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8497601B2 (en) * 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8304935B2 (en) * 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8772973B2 (en) * 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US8324759B2 (en) * 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8692410B2 (en) * 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US8461720B2 (en) * 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US8723366B2 (en) * 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
EP3544196B1 (de) * 2008-09-27 2023-09-13 WiTricity Corporation Drahtlose stromübertragungssysteme
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US8587155B2 (en) * 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US8552592B2 (en) * 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
WO2010039967A1 (en) * 2008-10-01 2010-04-08 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9083686B2 (en) * 2008-11-12 2015-07-14 Qualcomm Incorporated Protocol for program during startup sequence
EP2331173A2 (de) * 2008-12-05 2011-06-15 Mallinckrodt Inc. Induktiv gekoppelte injektor-stirnplatte
US8233301B1 (en) 2008-12-20 2012-07-31 Sensorlink Corporation Impedance dropping dc power supply having an impedance controlled converter
CN102356624B (zh) * 2009-01-05 2015-01-14 高通股份有限公司 为带有可移除外壳段的移动计算设备配备附件的内部连接器方案
TWI600348B (zh) 2009-01-06 2017-09-21 通路實業集團國際公司 智慧型烹飪用具
KR101737132B1 (ko) 2009-01-06 2017-05-29 액세스 비지니스 그룹 인터내셔날 엘엘씨 동적 부하를 갖는 유도성 링크를 통한 통신
US20100177478A1 (en) 2009-01-09 2010-07-15 Lucius Chidi Akalanne Cooling arrangement for an equipment assembly
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US20100201312A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
TW201042880A (en) * 2009-02-10 2010-12-01 Qualcomm Inc Wireless power transfer for furnishings and building elements
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US9735583B2 (en) * 2009-02-27 2017-08-15 Koninklijke Philips N.V. Methods, transmission devices and transmission control system for transmitting power wirelessly
US9117586B2 (en) * 2009-03-09 2015-08-25 Infineon Technologies Austria Ag Trimmable transformer arrangement
US8803474B2 (en) * 2009-03-25 2014-08-12 Qualcomm Incorporated Optimization of wireless power devices
US9231411B2 (en) * 2009-04-08 2016-01-05 Access Business Group International Llc Selectable coil array
JP4865001B2 (ja) * 2009-04-13 2012-02-01 株式会社日本自動車部品総合研究所 非接触給電設備、非接触受電装置および非接触給電システム
US9124308B2 (en) 2009-05-12 2015-09-01 Kimball International, Inc. Furniture with wireless power
US8061864B2 (en) * 2009-05-12 2011-11-22 Kimball International, Inc. Furniture with wireless power
US10312750B2 (en) * 2009-05-25 2019-06-04 Koninklijke Philips N.V. Method and device for detecting a device in a wireless power transmission system
ES2688444T3 (es) 2009-06-26 2018-11-02 Cj Cheiljedang Corporation Método de fabricación de un artículo a partir de una composición que comprende PHA y PBS
US9395827B2 (en) * 2009-07-21 2016-07-19 Qualcomm Incorporated System for detecting orientation of magnetically coupled devices
US8954001B2 (en) * 2009-07-21 2015-02-10 Qualcomm Incorporated Power bridge circuit for bi-directional wireless power transmission
US8437695B2 (en) * 2009-07-21 2013-05-07 Hewlett-Packard Development Company, L.P. Power bridge circuit for bi-directional inductive signaling
RU2540896C2 (ru) * 2009-07-24 2015-02-10 Эксесс Бизнесс Груп Интернешнл Ллс Источник питания
CN109703393A (zh) * 2009-08-07 2019-05-03 奥克兰联合服务有限公司 感应电力传递装置
CN102474195B (zh) * 2009-08-07 2015-11-25 三菱电机株式会社 逆变器系统以及逆变器
US8755815B2 (en) 2010-08-31 2014-06-17 Qualcomm Incorporated Use of wireless access point ID for position determination
US8395547B2 (en) 2009-08-27 2013-03-12 Hewlett-Packard Development Company, L.P. Location tracking for mobile computing device
US20110049997A1 (en) * 2009-09-03 2011-03-03 Tdk Corporation Wireless power feeder and wireless power transmission system
US8290463B2 (en) * 2009-09-14 2012-10-16 ConvenientPower HK Ltd. Universal demodulation and modulation for data communication in wireless power transfer
CA2715706C (en) * 2009-09-24 2017-07-11 Byrne Electrical Specialists, Inc. Worksurface power transfer
KR101059657B1 (ko) * 2009-10-07 2011-08-25 삼성전기주식회사 무선 전력 송수신 장치 및 그 방법
US8174233B2 (en) 2009-10-08 2012-05-08 Etymotic Research, Inc. Magnetically coupled battery charging system
US8022775B2 (en) 2009-10-08 2011-09-20 Etymotic Research, Inc. Systems and methods for maintaining a drive signal to a resonant circuit at a resonant frequency
US8174234B2 (en) * 2009-10-08 2012-05-08 Etymotic Research, Inc. Magnetically coupled battery charging system
US8460816B2 (en) 2009-10-08 2013-06-11 Etymotic Research, Inc. Rechargeable battery assemblies and methods of constructing rechargeable battery assemblies
US8237402B2 (en) 2009-10-08 2012-08-07 Etymotic Research, Inc. Magnetically coupled battery charging system
EP2502124B1 (de) 2009-11-17 2020-02-19 Apple Inc. Drathlosleistungsnutzung in einer lokalen datenverarbeitungsumgebung
USD674391S1 (en) 2009-11-17 2013-01-15 Hewlett-Packard Development Company, L.P. Docking station for a computing device
WO2011063108A2 (en) 2009-11-19 2011-05-26 Access Business Group International Llc Multiple use wireless power systems
JP5077340B2 (ja) * 2009-12-25 2012-11-21 トヨタ自動車株式会社 非接触受電装置およびその製造方法
US20110164471A1 (en) * 2010-01-05 2011-07-07 Access Business Group International Llc Integrated wireless power system
JP5016069B2 (ja) * 2010-01-12 2012-09-05 トヨタ自動車株式会社 電力伝送システムおよび車両用給電装置
JP2011147271A (ja) * 2010-01-14 2011-07-28 Sony Corp 給電装置、受電装置、およびワイヤレス給電システム
WO2011089776A1 (ja) * 2010-01-21 2011-07-28 シャープ株式会社 非接触給電装置
TWI636634B (zh) * 2010-02-08 2018-09-21 荷蘭商飛利浦智財投資公司 置入之寄生金屬檢測及其相關方法
KR101438294B1 (ko) 2010-02-10 2014-09-04 후지쯔 가부시끼가이샤 자계 공명형 전력 전송 시스템에 있어서의 공진 주파수 제어 방법, 송전 장치, 및 수전 장치
WO2011122003A1 (ja) * 2010-03-30 2011-10-06 パナソニック株式会社 無線電力伝送システム
WO2011127334A2 (en) 2010-04-08 2011-10-13 Access Business Group International Llc Point of sale inductive systems and methods
US8427014B2 (en) 2010-05-11 2013-04-23 The Invention Science Fund I, Llc System including wearable power receiver and wearable power-output device
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
TWI527331B (zh) 2010-06-10 2016-03-21 通路實業集團國際公司 感應式電力傳輸之線圈結構及其相關系統與裝置
WO2011156768A2 (en) 2010-06-11 2011-12-15 Mojo Mobility, Inc. System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith
US8866495B2 (en) 2010-06-30 2014-10-21 Access Business Group International Llc Spatial tracking system and method
JP5736991B2 (ja) * 2010-07-22 2015-06-17 Tdk株式会社 ワイヤレス給電装置およびワイヤレス電力伝送システム
KR101184503B1 (ko) * 2010-08-13 2012-09-20 삼성전기주식회사 무선 전력 전송 장치 및 그 전송 방법
KR101726195B1 (ko) * 2010-08-25 2017-04-13 삼성전자주식회사 공진 전력 전달 시스템에서 공진 임피던스 트래킹 장치 및 방법
US9209627B2 (en) 2010-08-25 2015-12-08 Access Business Group International Llc Wireless power supply system and multi-layer shim assembly
JP2012049434A (ja) * 2010-08-30 2012-03-08 Sony Corp 電子部品、給電装置、受電装置、およびワイヤレス給電システム
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
WO2012050948A1 (en) 2010-09-29 2012-04-19 Hewlett-Packard Development Company, L.P. Location tracking for mobile computing device
JP5674013B2 (ja) * 2010-10-08 2015-02-18 ソニー株式会社 給電装置および給電システム
JP5694753B2 (ja) * 2010-12-16 2015-04-01 キヤノン株式会社 送電装置、電力伝送システム、送電装置の制御方法およびプログラム
US20120152934A1 (en) * 2010-12-20 2012-06-21 Samsung Electronics Co., Ltd. Induction heating fuser unit and image forming apparatus including the same
KR101672768B1 (ko) * 2010-12-23 2016-11-04 삼성전자주식회사 무선 전력 및 데이터 송수신 시스템
US9088307B2 (en) * 2010-12-29 2015-07-21 National Semiconductor Corporation Non-resonant and quasi-resonant system for wireless power transmission to multiple receivers
US9178369B2 (en) 2011-01-18 2015-11-03 Mojo Mobility, Inc. Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
US10115520B2 (en) 2011-01-18 2018-10-30 Mojo Mobility, Inc. Systems and method for wireless power transfer
US11342777B2 (en) 2011-01-18 2022-05-24 Mojo Mobility, Inc. Powering and/or charging with more than one protocol
US9496732B2 (en) 2011-01-18 2016-11-15 Mojo Mobility, Inc. Systems and methods for wireless power transfer
EP2677628B1 (de) * 2011-02-18 2018-05-02 LG Electronics Inc. Vorrichtung für drahtloses laden
JP5821216B2 (ja) * 2011-03-01 2015-11-24 ソニー株式会社 情報処理装置、情報処理装置の電源制御方法およびプログラム
WO2012125813A1 (en) 2011-03-16 2012-09-20 Access Business Group International Llc Humidifier with ultraviolet disinfection
KR101267076B1 (ko) 2011-03-24 2013-05-24 주식회사 한림포스텍 무선 전력 전송 어셈블리에서의 전력 제어 방법 및 무선 전력 전송 어셈블리
JP5403288B2 (ja) * 2011-03-30 2014-01-29 株式会社エクォス・リサーチ 電力伝送システム
US9496081B2 (en) * 2011-04-08 2016-11-15 Access Business Group International Llc Counter wound inductive power supply
US9094055B2 (en) 2011-04-19 2015-07-28 Qualcomm Incorporated Wireless power transmitter tuning
US20120311363A1 (en) * 2011-05-31 2012-12-06 Nam Yun Kim Wireless power transmission and charging system, and communication method of wireless power transmission and charging system
US8678346B2 (en) * 2011-06-06 2014-03-25 Automatic Switch Company Near-field wireless powered solenoid valve
NZ593764A (en) * 2011-06-27 2013-12-20 Auckland Uniservices Ltd Load control for bi-directional inductive power transfer systems
JP2013017256A (ja) * 2011-06-30 2013-01-24 Sekisui Chem Co Ltd 電力伝送システム、その制御方法、及び電力供給装置
JP2013017257A (ja) * 2011-06-30 2013-01-24 Sekisui Chem Co Ltd 電力伝送システム、その制御方法、及び電力供給装置
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
JP5899490B2 (ja) * 2011-07-20 2016-04-06 パナソニックIpマネジメント株式会社 非接触給電システム
EP3435389A1 (de) 2011-08-04 2019-01-30 WiTricity Corporation Abstimmbare drahtlosleistungsarchitekturen
US8909149B2 (en) * 2011-08-26 2014-12-09 Hewlett-Packard Development Company, L.P. Media module of a device
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
JP5010061B1 (ja) * 2011-09-21 2012-08-29 パイオニア株式会社 非接触電力送電装置、非接触電力受電装置、及び非接触給電システム
KR20130033837A (ko) 2011-09-27 2013-04-04 엘지이노텍 주식회사 무선 전력 전송 기기 및 그 방법
KR101241481B1 (ko) * 2011-09-27 2013-03-11 엘지이노텍 주식회사 무선 전력 전송 기기 및 그 방법
KR20130033867A (ko) * 2011-09-27 2013-04-04 삼성전기주식회사 무선 전력 전송 시스템
US8742823B2 (en) 2011-10-05 2014-06-03 Texas Instruments Incorporated Driver output pad leakage current compensation
TW201337955A (zh) 2011-10-13 2013-09-16 Access Business Group Int Llc 複合金屬表面
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
KR101349551B1 (ko) * 2011-11-02 2014-01-08 엘지이노텍 주식회사 무선 전력 송신 장치 및 그 방법
WO2013067484A1 (en) 2011-11-04 2013-05-10 Witricity Corporation Wireless energy transfer modeling tool
EP2595294A1 (de) * 2011-11-17 2013-05-22 Lite-On It Corporation Drahtloses Ladesystem und Vorrichtung und Steuerverfahren dafür
US9079043B2 (en) 2011-11-21 2015-07-14 Thoratec Corporation Transcutaneous power transmission utilizing non-planar resonators
DE102011086904A1 (de) * 2011-11-23 2013-05-23 Robert Bosch Gmbh Vorrichtung und Verfahren zur induktiven Energieübertragung
CN107276447B (zh) 2011-11-28 2019-07-26 飞利浦知识产权企业有限公司 多桥拓扑
US9653923B2 (en) * 2011-12-12 2017-05-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Resonant power management architectures
US9087638B2 (en) 2011-12-13 2015-07-21 Texas Instruments Incorporated Wireless power system and method
CN103999323B (zh) 2011-12-27 2017-04-12 富士机械制造株式会社 无线供电系统
DE112011106065B4 (de) * 2011-12-29 2018-06-07 Intel Corporation Plattformenenergiemanagement für eine gebäudeweite Steuerung von Leistungsfaktor und Oberwellen
WO2013103749A2 (en) 2012-01-06 2013-07-11 Access Business Group International Llc Print media with inductive secondary
CN104025468B (zh) 2012-01-08 2016-11-02 捷通国际有限公司 用于多个感应系统的干扰缓解
WO2013103939A1 (en) 2012-01-08 2013-07-11 Access Business Group International Llc Inductive cooking system
WO2013113017A1 (en) 2012-01-26 2013-08-01 Witricity Corporation Wireless energy transfer with reduced fields
US20130271069A1 (en) 2012-03-21 2013-10-17 Mojo Mobility, Inc. Systems and methods for wireless power transfer
US9722447B2 (en) 2012-03-21 2017-08-01 Mojo Mobility, Inc. System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment
KR101844422B1 (ko) 2012-04-19 2018-04-03 삼성전자주식회사 무선 에너지 전송 장치 및 방법, 무선 에너지 수신 장치
DE102012103942A1 (de) * 2012-05-04 2013-11-07 Wittenstein Ag Energieübertragungssystem
DE102012207585A1 (de) * 2012-05-08 2013-11-14 Robert Bosch Gmbh Drahtlose Energieübertragung
WO2013184822A1 (en) 2012-06-05 2013-12-12 Metabolix, Inc. Biobased rubber modified biodegradable polymer blends
JP5906418B2 (ja) * 2012-06-15 2016-04-20 パナソニックIpマネジメント株式会社 電力変換装置
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9859956B2 (en) * 2012-08-24 2018-01-02 Qualcomm Incorporated Power supply control in wireless power transfer systems
US20140080409A1 (en) * 2012-09-17 2014-03-20 Qualcomm Incorporated Static tuning of wireless transmitters
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
TWI565176B (zh) * 2012-09-28 2017-01-01 Wow Tech Corp Non - contact induction transmission equipment
EP4145671A1 (de) 2012-10-19 2023-03-08 WiTricity Corporation Fremdkörpererkennung in drahtlosen energieübertragungssystemen
CN102969801B (zh) * 2012-11-01 2014-08-06 重庆大学 电流型无线供电系统负载识别方法
US11616520B2 (en) 2012-11-09 2023-03-28 California Institute Of Technology RF receiver
CN108390160B (zh) 2012-11-09 2021-04-27 加州理工学院 智能rf透镜效应:高效、动态和移动无线功率传输
US11843260B2 (en) 2012-11-09 2023-12-12 California Institute Of Technology Generator unit for wireless power transfer
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
CN103036282A (zh) * 2012-12-06 2013-04-10 捷普科技(上海)有限公司 一种电压自适应无线充电装置及方法
US8837173B2 (en) 2013-01-02 2014-09-16 Chicony Power Technology Co., Ltd DC to DC power converting device
TW201434063A (zh) 2013-02-25 2014-09-01 Access Business Group Int Llc 變距螺旋線圈
US9667084B2 (en) 2013-03-13 2017-05-30 Nxp Usa, Inc. Wireless charging systems, devices, and methods
JP2014204469A (ja) * 2013-04-01 2014-10-27 日東電工株式会社 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
CA2908702C (en) * 2013-04-05 2021-04-13 Cynetic Designs Ltd. Wireless inductive charging of weapon system energy source
US9837846B2 (en) 2013-04-12 2017-12-05 Mojo Mobility, Inc. System and method for powering or charging receivers or devices having small surface areas or volumes
CN103316369B (zh) * 2013-06-15 2016-04-27 浙江金兆丰光电科技有限公司 高能紫外线杀菌电路装置
GB2517679A (en) 2013-06-25 2015-03-04 Bombardier Transp Gmbh Object detection system and method for operating an object detection system
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
CN103346627B (zh) * 2013-07-31 2015-09-16 哈尔滨工业大学 原端电感选频的多负载无线能量传输装置
EP3032698B1 (de) 2013-07-31 2018-10-24 Panasonic Corporation Drahtloses stromübertragungssystem und stromübertragungsvorrichtung
CN104113098B (zh) * 2013-08-04 2017-09-08 深圳市兴龙辉科技有限公司 无线充电拓扑结构及扫频算法
WO2015023899A2 (en) 2013-08-14 2015-02-19 Witricity Corporation Impedance tuning
CN104426246B (zh) 2013-09-04 2019-04-19 恩智浦美国有限公司 具有宽输入电压范围的无线电力发射器及其操作方法
CN104518570A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 一种电动车无线电能传输系统的控制方法及装置
CA2865739C (en) 2013-09-30 2018-12-04 Norman R. Byrne Wireless power for portable articles
CA2865457C (en) 2013-09-30 2019-01-22 Norman R. Byrne Articles with electrical charging surfaces
US9735584B2 (en) 2013-10-17 2017-08-15 Access Business Group International Llc Wireless power communication
US20190089183A9 (en) * 2013-10-23 2019-03-21 Apple Inc. Transmitter and receiver communication for inductive power transfer systems
US9673784B2 (en) 2013-11-21 2017-06-06 Apple Inc. Using pulsed biases to represent DC bias for charging
KR102280756B1 (ko) 2013-11-22 2021-07-21 캘리포니아 인스티튜트 오브 테크놀로지 무선 전력 송신을 위한 생성기 유닛
WO2015084587A1 (en) * 2013-12-03 2015-06-11 Massachusetts Institute Of Technology Method and apparatus for wirelessly charging portable electronic devices
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
WO2015123614A2 (en) 2014-02-14 2015-08-20 Witricity Corporation Object detection for wireless energy transfer systems
US9716861B1 (en) 2014-03-07 2017-07-25 Steelcase Inc. Method and system for facilitating collaboration sessions
US10664772B1 (en) 2014-03-07 2020-05-26 Steelcase Inc. Method and system for facilitating collaboration sessions
US10027172B2 (en) 2014-03-24 2018-07-17 L&P Property Management Company Maintaining continuous power charge in an inductive-coupling system
JP6588190B2 (ja) * 2014-03-28 2019-10-09 株式会社デンソー 無線給電装置
CN106464030B (zh) 2014-04-16 2019-09-13 无线电力公司 用于移动设备应用的无线能量传输
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
EP3140680B1 (de) 2014-05-07 2021-04-21 WiTricity Corporation Fremdkörpererkennung in systemen zur drahtlosen energieübertragung
US9369183B2 (en) * 2014-05-15 2016-06-14 Qualcomm Incorporated Systems and methods for measuring power and impedance in wireless power charging systems
US9380682B2 (en) 2014-06-05 2016-06-28 Steelcase Inc. Environment optimization for space based on presence and activities
US9955318B1 (en) 2014-06-05 2018-04-24 Steelcase Inc. Space guidance and management system and method
US9766079B1 (en) 2014-10-03 2017-09-19 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US11744376B2 (en) 2014-06-06 2023-09-05 Steelcase Inc. Microclimate control systems and methods
US10614694B1 (en) 2014-06-06 2020-04-07 Steelcase Inc. Powered furniture assembly
US10433646B1 (en) 2014-06-06 2019-10-08 Steelcaase Inc. Microclimate control systems and methods
KR101861889B1 (ko) * 2014-06-10 2018-05-28 엘에스산전 주식회사 인버터의 순간 정전 보상 방법
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
CN107258046B (zh) 2014-07-08 2020-07-17 无线电力公司 无线电力传送系统中的谐振器均衡
CN104079079B (zh) * 2014-07-14 2018-02-23 南京矽力杰半导体技术有限公司 谐振型非接触供电装置、集成电路和恒压控制方法
CN104135086A (zh) * 2014-07-28 2014-11-05 中国科学院电工研究所 一种谐振式无线能量传输装置
KR20210100213A (ko) 2014-08-19 2021-08-13 캘리포니아 인스티튜트 오브 테크놀로지 무선 전력 전달
RU2681311C2 (ru) 2014-09-03 2019-03-06 Конинклейке Филипс Н.В. Беспроводная индукционная передача электроэнергии
JP6386312B2 (ja) 2014-09-09 2018-09-05 ルネサスエレクトロニクス株式会社 半導体装置
CN105471222B (zh) * 2014-09-11 2017-12-01 华为技术有限公司 一种谐振驱动电路和电源系统
US9852388B1 (en) 2014-10-03 2017-12-26 Steelcase, Inc. Method and system for locating resources and communicating within an enterprise
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10181735B2 (en) 2015-03-11 2019-01-15 Norman R. Byrne Portable electrical power unit
JP2016220421A (ja) * 2015-05-21 2016-12-22 トヨタ自動車株式会社 非接触送電装置及び電力伝送システム
US10733371B1 (en) 2015-06-02 2020-08-04 Steelcase Inc. Template based content preparation system for use with a plurality of space types
WO2016194202A1 (ja) * 2015-06-04 2016-12-08 富士通株式会社 受電器、及び、電力伝送システム
EP3107176B1 (de) * 2015-06-18 2018-04-04 STMicroelectronics (Grand Ouest) SAS Verfahren zur verwaltung eines kontaktlosen energietransfers von einem sender zu einem empfänger, und entsprechender sender
US10498160B2 (en) 2015-08-03 2019-12-03 Massachusetts Institute Of Technology Efficiency maximization for device-to-device wireless charging
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
KR101771812B1 (ko) * 2015-10-28 2017-09-05 삼성전기주식회사 무선 전력 송신 장치 및 그의 제어 방법
US10536035B2 (en) 2015-11-02 2020-01-14 Koninklijke Philips N.V. Wireless inductive power transfer
US11091632B2 (en) 2015-11-17 2021-08-17 Cj Cheiljedang Corporation Polymer blends with controllable biodegradation rates
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
CN108702096B (zh) * 2015-12-22 2022-01-11 色玛图尔公司 用于加热工件的具有高度稳定输出的高频电源系统
KR20180101618A (ko) 2016-02-02 2018-09-12 위트리시티 코포레이션 무선 전력 전송 시스템 제어
JP6888017B2 (ja) 2016-02-08 2021-06-16 ワイトリシティ コーポレーションWitricity Corporation Pwmコンデンサの制御
EP3420629B1 (de) * 2016-02-24 2019-06-19 Koninklijke Philips N.V. Drahtlose induktive stromübertragung
CA2960239A1 (en) 2016-03-11 2017-09-11 Norman R. Byrne Furniture-mounted charging station
US9921726B1 (en) 2016-06-03 2018-03-20 Steelcase Inc. Smart workstation method and system
US10988940B2 (en) 2016-06-03 2021-04-27 Norman R. Byrne Surface-mounted resonators for wireless power
KR102561180B1 (ko) * 2016-08-23 2023-07-28 주식회사 위츠 무선 전력 송신 장치
WO2018048312A1 (en) 2016-09-06 2018-03-15 Powerbyproxi Limited An inductive power transmitter
US10601250B1 (en) 2016-09-22 2020-03-24 Apple Inc. Asymmetric duty control of a half bridge power converter
US10615613B2 (en) * 2016-11-09 2020-04-07 Thames Technology Holdings, Inc. Controllable charging systems and methods
US10264213B1 (en) 2016-12-15 2019-04-16 Steelcase Inc. Content amplification system and method
JP6856833B2 (ja) * 2017-01-25 2021-04-14 日本電波株式会社 高電圧制御装置
US10978899B2 (en) 2017-02-02 2021-04-13 Apple Inc. Wireless charging system with duty cycle control
US11437923B2 (en) * 2017-02-13 2022-09-06 Hamilton Sundstrand Corporation—Pcss Variable resonant power converter with tunable inductor
WO2018218252A1 (en) * 2017-05-26 2018-11-29 California Institute Of Technology Method and apparatus for dynamic rf lens focusing and tracking of wireless power recovery unit
WO2019006376A1 (en) 2017-06-29 2019-01-03 Witricity Corporation PROTECTION AND CONTROL OF WIRELESS POWER SYSTEMS
CA3012546C (en) 2017-07-24 2023-04-18 Norman R. Byrne Furniture-mounted electrical charging station
DE102017131101B4 (de) * 2017-12-22 2023-04-20 Bürkert Werke GmbH & Co. KG Ventilbaugruppe
EP3511927A1 (de) * 2018-01-15 2019-07-17 InterDigital CE Patent Holdings Adaptives netzteil
FR3077439B1 (fr) * 2018-01-31 2020-11-20 Valeo Equip Electr Moteur Dispositif de transmission de puissance sans contact par couplage inductif a resonance pour recharger un vehicule automobile
US10651687B2 (en) 2018-02-08 2020-05-12 Massachusetts Institute Of Technology Detuning for a resonant wireless power transfer system including cryptography
US11018526B2 (en) 2018-02-08 2021-05-25 Massachusetts Institute Of Technology Detuning for a resonant wireless power transfer system including cooperative power sharing
US10784044B2 (en) 2018-04-30 2020-09-22 Integrated Device Technology, Inc. Optimization of transmit and transmit/receive (TRX) coils for wireless transfer of power
WO2020002219A1 (de) * 2018-06-29 2020-01-02 Brusa Elektronik Ag Basisstation für ein energieübertragungssystem
US10840707B2 (en) 2018-08-06 2020-11-17 Robert M. Lyden Utility pole with solar modules and wireless device and method of retrofitting existing utility pole
US11207988B2 (en) 2018-08-06 2021-12-28 Robert M. Lyden Electric or hybrid vehicle with wireless device and method of supplying electromagnetic energy to vehicle
CN109301904A (zh) * 2018-11-02 2019-02-01 东南大学 一种高阶复合式补偿网络的电池无线充电系统
CN109515220B (zh) * 2018-12-16 2024-09-27 中国电建集团华东勘测设计研究院有限公司 一种应用于电动汽车双负载的无线充电装置及无线充电方法
US11444485B2 (en) 2019-02-05 2022-09-13 Mojo Mobility, Inc. Inductive charging system with charging electronics physically separated from charging coil
JP7369940B2 (ja) * 2019-03-28 2023-10-27 パナソニックIpマネジメント株式会社 電力変換装置
JP6698193B2 (ja) * 2019-04-01 2020-05-27 株式会社デンソー 無線給電装置
JP6773257B1 (ja) * 2019-04-26 2020-10-21 三菱電機株式会社 エレベータ
US11056930B2 (en) * 2019-05-31 2021-07-06 Sigmasense, Llc. Wireless power transfer and communications
EP3754187B1 (de) * 2019-06-18 2023-12-13 ThrustMe Hochfrequenzgenerator für eine plasmaquelle und verfahren zu dessen einstellung
TWI688195B (zh) * 2019-06-19 2020-03-11 宏碁股份有限公司 電源供應器
CA3150169A1 (en) * 2019-08-07 2021-02-11 Stryker Corporation Foreign object detection for wireless charging systems
US11588421B1 (en) 2019-08-15 2023-02-21 Robert M. Lyden Receiver device of energy from the earth and its atmosphere
CN110994799A (zh) * 2019-12-16 2020-04-10 广州市科士达电源设备有限公司 智能配电柜
US12118178B1 (en) 2020-04-08 2024-10-15 Steelcase Inc. Wayfinding services method and apparatus
US11984739B1 (en) 2020-07-31 2024-05-14 Steelcase Inc. Remote power systems, apparatus and methods
GB2597735B (en) * 2020-07-31 2024-06-26 Energy Res Lab Ltd Power supply apparatus
WO2022023778A1 (en) 2020-07-31 2022-02-03 Energy Research Lab Ltd An inverter
US11476712B2 (en) * 2021-02-01 2022-10-18 Nucurrent, Inc. Wirelessly powered sensor system
US11794915B2 (en) * 2021-04-27 2023-10-24 Beta Air, Llc Method and system for a two-motor propulsion system for an electric aircraft
JP7731222B2 (ja) * 2021-05-26 2025-08-29 オムロン株式会社 共振型電力変換回路及び非接触給電システム
US12077306B2 (en) 2022-06-29 2024-09-03 Beta Air Llc Apparatus and method for optimizing motor performance in an electric aircraft
CN115648959B (zh) * 2022-10-26 2024-06-18 西南交通大学 轨道交通非接触式供电系统
US20240429749A1 (en) * 2023-06-21 2024-12-26 Molex, Llc Wireless power transfer with selectable frequency
CN118501766B (zh) * 2024-07-17 2024-09-20 深圳市嘉力电气技术有限公司 一种智能uv变频电源的数据采集分析系统
CN119881650B (zh) * 2024-12-17 2025-11-18 赣州康晋储能技术有限公司 基于人工智能的储能电池组故障监测诊断系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054498A1 (en) * 2000-03-23 2002-05-09 Hisanori Cho Switching power supply unit

Family Cites Families (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590382A (en) * 1967-12-20 1971-06-29 Frank M Kenney Wireless stereo sound speaker system and modulator-oscillator circuit
US6452482B1 (en) 1999-12-30 2002-09-17 Ambient Corporation Inductive coupling of a data signal to a power transmission cable
US3949268A (en) 1971-02-11 1976-04-06 Burkhard Von Mangoldt Ballast unit for gas discharge lamps such as fluorescent tubes or the like
GB1542662A (en) 1975-09-12 1979-03-21 Matsushita Electric Industrial Co Ltd Power supply
US5446346A (en) 1978-03-20 1995-08-29 Nilssen; Ole K. Electronic ballast with controlled DC supply voltage
US5757144A (en) 1980-08-14 1998-05-26 Nilssen; Ole K. Gas discharge lamp ballasting means
JPS5978496A (ja) 1982-06-01 1984-05-07 コントロ−ル・ロジツク(プロプライエトリ−)リミテイド ガス放電バラストランプの高調波成分を減少させる方法とガス放電バラストランプ
US4511823A (en) 1982-06-01 1985-04-16 Eaton William L Reduction of harmonics in gas discharge lamp ballasts
US4675648A (en) 1984-04-17 1987-06-23 Honeywell Inc. Passive signal coupler between power distribution systems for the transmission of data signals over the power lines
US6075340A (en) 1985-11-12 2000-06-13 Intermec Ip Corp. Battery pack having memory
US6472827B1 (en) 1984-10-05 2002-10-29 Ole K. Nilssen Parallel-resonant inverter-type fluorescent lamp ballast
CA1333408C (en) 1984-10-16 1994-12-06 Calvin E. Grubbs Electronic ballast circuit for fluorescent lamps
US4644321A (en) 1984-10-22 1987-02-17 Westinghouse Electric Corp. Wireless power line communication apparatus
US4641126A (en) 1984-12-07 1987-02-03 Ferranti-Subsea Systems, Ltd. Multiple-mode electrical power and communications interface
US4639714A (en) 1984-12-21 1987-01-27 Ferranti Subsea Systems, Ltd. Combined power and control signal transmission system
US4818855A (en) 1985-01-11 1989-04-04 Indala Corporation Identification system
US4800328A (en) 1986-07-18 1989-01-24 Inductran Inc. Inductive power coupling with constant voltage output
GB2197107B (en) 1986-11-03 1990-12-12 Mars Inc Data-storing devices
ZA892468B (en) * 1988-04-11 1989-12-27 Uniscan Ltd Improvements in or relating to cutting elements foactuator and communication system r rotary drill bits
US5187414A (en) 1988-07-15 1993-02-16 North American Philips Corporation Fluorescent lamp controllers
JP2820706B2 (ja) 1989-03-02 1998-11-05 株式会社日本自動車部品総合研究所 電磁結合用のコイルを有する電力供給装置
US4914539A (en) * 1989-03-15 1990-04-03 The Boeing Company Regulator for inductively coupled power distribution system
US5818127A (en) 1989-04-28 1998-10-06 Videocom, Inc. Transmission of FM video signals over various lines
JP2548415B2 (ja) 1990-01-08 1996-10-30 シャープ株式会社 電力供給装置
JP2934689B2 (ja) 1990-11-16 1999-08-16 本田技研工業株式会社 インバータ装置
US5241160A (en) 1990-12-28 1993-08-31 On Track Innovations Ltd. System and method for the non-contact transmission of data
US5266926A (en) 1991-05-31 1993-11-30 Avid Marketing, Inc. Signal transmission and tag power consumption measurement circuit for an inductive reader
US5814900A (en) 1991-07-30 1998-09-29 Ulrich Schwan Device for combined transmission of energy and electric signals
US5450305A (en) 1991-08-12 1995-09-12 Auckland Uniservices Limited Resonant power supplies
DE4128314A1 (de) 1991-08-27 1993-03-04 Diehl Gmbh & Co Stromversorgungsschaltung
NL9101590A (nl) * 1991-09-20 1993-04-16 Ericsson Radio Systems Bv Stelsel voor het laden van een oplaadbare accu van een draagbare eenheid in een rek.
US5341280A (en) 1991-09-27 1994-08-23 Electric Power Research Institute Contactless coaxial winding transformer power transfer system
EP0596124B2 (de) 1991-12-04 2001-12-19 Citizen Watch Co. Ltd. Datenträger
US5325046A (en) 1991-12-18 1994-06-28 Apple Computer, Inc. Inductive wireless data connection
GB2262634B (en) 1991-12-18 1995-07-12 Apple Computer Power connection scheme
GB9204200D0 (en) 1992-02-27 1992-04-08 Goble Nigel M An inductive loop power transmission system
EP0561309B1 (de) 1992-03-16 1997-05-28 Eastman Kodak Company Vorrichtung zur Übertragung von elektrischen Signalen und elektrischer Energie zur Datenspeichervorrichtung einer Kassette
US5229652A (en) 1992-04-20 1993-07-20 Hough Wayne E Non-contact data and power connector for computer based modules
US5272615A (en) * 1992-05-01 1993-12-21 Wert Harry E Digital controlled inverter and method
CA2105781C (en) 1992-09-14 2000-07-11 Alton B. Otis, Jr. Contactless communication system
JP3197625B2 (ja) 1992-09-29 2001-08-13 三洋電機株式会社 誘導式インバータ回路を有する充電装置
DE4233861A1 (de) 1992-10-08 1994-04-14 Aqua Signal Ag Einrichtung zur Ansteuerung von Hochspannungsentladungslampen sowie ein Verfahren hierfür
JP3344593B2 (ja) 1992-10-13 2002-11-11 株式会社ソニー木原研究所 無線式電力供給装置
US5434396A (en) 1992-11-10 1995-07-18 Xicor Inc. Wireless powering and communication system for communicating data between a host system and a stand-alone device
EP0601739B1 (de) 1992-11-25 2001-05-30 Simmonds Precision Products Inc. Datenverarbeitungsstrukturen und Methoden
US5406174A (en) 1992-12-16 1995-04-11 U. S. Philips Corporation Discharge lamp operating circuit with frequency control of dimming and lamp electrode heating
US5374875A (en) 1993-02-16 1994-12-20 Motorola Lighting, Inc. High-power factor circuit for energizing gas discharge lamps
US5434477A (en) 1993-03-22 1995-07-18 Motorola Lighting, Inc. Circuit for powering a fluorescent lamp having a transistor common to both inverter and the boost converter and method for operating such a circuit
GB9310545D0 (en) 1993-05-21 1993-07-07 Era Patents Ltd Power coupling
TW302591B (de) 1993-06-24 1997-04-11 Samsung Electronics Co Ltd
US5796216A (en) * 1993-07-16 1998-08-18 Delta Power Supply, Inc. Electronic ignition enhancing circuit having both fundamental and harmonic resonant circuits as well as a DC offset
JP3409145B2 (ja) 1993-07-26 2003-05-26 任天堂株式会社 小型電気機器
US5455466A (en) 1993-07-29 1995-10-03 Dell Usa, L.P. Inductive coupling system for power and data transfer
JP2733817B2 (ja) 1993-08-30 1998-03-30 昌和 牛嶋 放電管用インバーター回路
JP3399630B2 (ja) 1993-09-27 2003-04-21 株式会社日立製作所 バスシステム
US5644286A (en) 1993-10-04 1997-07-01 Lockheed Martin Corporation Power bus digital communication system
JPH07153577A (ja) 1993-11-26 1995-06-16 Tokin Corp 照明装置
US5476488A (en) 1993-12-15 1995-12-19 Pacesetter, Inc. Telemetry system power control for implantable medical devices
TW307980B (de) 1994-04-28 1997-06-11 Toshiba Light Technic Kk
DE4418518A1 (de) 1994-05-27 1995-11-30 Philips Patentverwaltung Leistungsgenerator mit einem Transformator
JP2671809B2 (ja) 1994-06-30 1997-11-05 日本電気株式会社 非接触型充電装置
GB9416411D0 (en) 1994-08-13 1994-10-05 Cheltenham Induction Heating L Driving apparatus
GB9424051D0 (en) 1994-11-29 1995-01-18 Cheltenham Induction Heating L Induction heating coil
US5686887A (en) * 1994-12-07 1997-11-11 Schoeferisch Aeusserung Anstalt Electronic locating device
US5567746A (en) * 1994-12-16 1996-10-22 General Motors Corporation Moldable ferromagnetic particles and method
JPH08214473A (ja) 1995-02-02 1996-08-20 Technova:Kk 非接触送電装置
JP3487387B2 (ja) 1995-02-28 2004-01-19 東芝ライテック株式会社 電源装置、放電灯点灯装置および照明装置
US5596567A (en) * 1995-03-31 1997-01-21 Motorola, Inc. Wireless battery charging system
US5982764A (en) 1995-05-18 1999-11-09 Aura Communications, Inc. Time-multiplexed short-range magnetic communications
JP3391149B2 (ja) 1995-06-09 2003-03-31 株式会社ダイフク 移動体の無接触給電設備
JPH09149565A (ja) * 1995-09-22 1997-06-06 Hitachi Maxell Ltd 非接触転送電源装置
JPH09103037A (ja) 1995-10-05 1997-04-15 Nippon Ido Tsushin Kk 給電装置、被給電装置および給電システム
US5646835A (en) * 1995-11-20 1997-07-08 General Electric Company Series resonant converter
JP3687177B2 (ja) 1996-03-29 2005-08-24 東芝ライテック株式会社 放電灯点灯装置及び照明装置
US5808422A (en) * 1996-05-10 1998-09-15 Philips Electronics North America Lamp ballast with lamp rectification detection circuitry
US6472346B1 (en) * 2000-01-25 2002-10-29 University Of Central Florida Photocatalytic nuisance organism inhibitor agents
DE19621076C2 (de) 1996-05-24 2001-06-28 Siemens Ag Vorrichtung und Verfahren zum kontaktlosen Übertragen von Energie oder Daten
JPH09326736A (ja) 1996-06-03 1997-12-16 Mitsubishi Electric Corp ワイヤレス送受信システム用2次側回路装置およびワイヤレス送受信システム用誘導コイル
JPH1014139A (ja) 1996-06-17 1998-01-16 Nec Corp 電力伝送装置
JPH1012197A (ja) 1996-06-17 1998-01-16 Toshiba Lighting & Technol Corp 無電極放電ランプ、無電極放電ランプ装置、無電極放電ランプ点灯装置、紫外線照射装置及び流体処理装置
JPH1041089A (ja) 1996-07-18 1998-02-13 Tec Corp 放電灯点灯装置
JP3351255B2 (ja) 1996-08-29 2002-11-25 株式会社豊田自動織機 通信用アンテナユニット及び移動体の通信システム
SG54559A1 (en) 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
US5777860A (en) * 1996-10-16 1998-07-07 Branson Ultrasonics Corporation Ultrasonic frequency power supply
US7158012B2 (en) 1996-11-01 2007-01-02 Foster-Miller, Inc. Non-invasive powerline communications system
US5734254A (en) * 1996-12-06 1998-03-31 Hewlett-Packard Company Battery pack and charging system for a portable electronic device
FR2756953B1 (fr) 1996-12-10 1999-12-24 Innovatron Ind Sa Objet portatif telealimente pour la communication sans contact avec une borne
JPH10215530A (ja) 1997-01-28 1998-08-11 Matsushita Electric Works Ltd 非接触電力伝送装置
JPH10225020A (ja) 1997-02-03 1998-08-21 Sony Corp 無接点電力供給装置
CN1105414C (zh) 1997-02-03 2003-04-09 索尼公司 电能传送装置和电能传送方法
JPH10225129A (ja) * 1997-02-13 1998-08-21 Ishikawajima Harima Heavy Ind Co Ltd 非接触給電設備
JP4067595B2 (ja) 1997-02-20 2008-03-26 富士通株式会社 複数の機器に対応した非接触型充電装置
US5889384A (en) 1997-02-20 1999-03-30 Ericsson Inc. Power transfer and voltage level conversion for a battery-powered electronic device
JP3595646B2 (ja) 1997-03-19 2004-12-02 株式会社カージオペーシングリサーチ・ラボラトリー 生体植え込み装置
US5929604A (en) 1997-06-18 1999-07-27 Ericsson, Inc. Battery-discharge-protection system for electronic accessories used in vehicles containing a battery
JP2934758B2 (ja) 1997-07-03 1999-08-16 株式会社セイバン 背負い鞄の肩掛けベルト上端取付具
JP2001509634A (ja) 1997-07-09 2001-07-24 アドバンスト・エナジー・インダストリーズ・インコーポレイテッド 周波数選択型可変出力誘導ヒータシステムおよび方法
DE19735624C1 (de) 1997-08-18 1998-12-10 Daimler Benz Ag Verfahren und Anordnung zur induktiven Übertragung elektrischer Leistung auf mehrere bewegte Verbraucher
DE19735685A1 (de) 1997-08-19 1999-02-25 Wampfler Ag Vorrichtung zur berührungslosen Übertragung elektrischer Energie
US5872703A (en) * 1997-08-25 1999-02-16 The Charles Machine Works, Inc. System and method for regulating power in tank circuits having a bridge configuration
DE19836401A1 (de) * 1997-09-19 2000-02-17 Salcomp Oy Salo Vorrichtung zum Aufladen von Akkumulatoren
US6211799B1 (en) * 1997-11-06 2001-04-03 Massachusetts Institute Of Technology Method and apparatus for transbody transmission of power and information
JP3840765B2 (ja) 1997-11-21 2006-11-01 神鋼電機株式会社 非接触給電搬送システムにおける1次給電側電源装置
JP3247328B2 (ja) 1997-12-09 2002-01-15 浩 坂本 非接触電力伝達装置
US5905372A (en) 1997-12-17 1999-05-18 Motorola, Inc. Apparatus and method for delivering power to a contactless portable data device
JPH11188113A (ja) 1997-12-26 1999-07-13 Nec Corp 電力伝送システムおよび電力伝送方法ならびにその電力伝送システムを備えた電気刺激装置
US20030030342A1 (en) 1998-02-10 2003-02-13 Chen James C. Contactless energy transfer apparatus
US6273022B1 (en) 1998-03-14 2001-08-14 Applied Materials, Inc. Distributed inductively-coupled plasma source
US6348679B1 (en) 1998-03-17 2002-02-19 Ameritherm, Inc. RF active compositions for use in adhesion, bonding and coating
US6173899B1 (en) 1998-04-03 2001-01-16 Alexander Rozin Method and system for contactless energy transmission and data exchange between a terminal and IC card
US5982276A (en) 1998-05-07 1999-11-09 Media Fusion Corp. Magnetic field based power transmission line communication method and system
JPH11341711A (ja) 1998-05-21 1999-12-10 Sony Corp 無接点電源回路
JP3531477B2 (ja) 1998-06-05 2004-05-31 株式会社日立製作所 非接触カードの通信方法及び該通信に用いる集積回路
FI107655B (fi) 1998-06-11 2001-09-14 Innoware Oy Elektroninen ohjauspiiri
US6255635B1 (en) * 1998-07-10 2001-07-03 Ameritherm, Inc. System and method for providing RF power to a load
US6072362A (en) 1998-07-10 2000-06-06 Ameritherm, Inc. System for enabling a full-bridge switch-mode amplifier to recover all reactive energy
US5963012A (en) * 1998-07-13 1999-10-05 Motorola, Inc. Wireless battery charging system having adaptive parameter sensing
US6704608B1 (en) 1998-07-31 2004-03-09 Matsushita Electric Industrial Co., Ltd. Portable body used in two way, communication system, communication method, terminal, computer-readable recorded medium on which program is recorded
DE19837675A1 (de) * 1998-08-19 2000-02-24 Nokia Technology Gmbh Ladevorrichtung für Akkumulatoren in einem mobilen elektrischen Gerät mit induktiver Energieübertragung
ES2212824T3 (es) 1998-09-15 2004-08-01 Quality Light Electronics S.A.S. Di Francesco Celso E C. Dispositivo de ignicion de resonancia para lamparas de descarga.
DE29816725U1 (de) 1998-09-17 1999-01-14 Chao, Wen-Chung, Yungho, Taipeh Ladungsvorrichtung für mobile Telefone
US6181082B1 (en) 1998-10-15 2001-01-30 Electro-Mag International, Inc. Ballast power control circuit
GB9823356D0 (en) 1998-10-27 1998-12-23 Philips Electronics Nv Data transfer
US6415388B1 (en) 1998-10-30 2002-07-02 Intel Corporation Method and apparatus for power throttling in a microprocessor using a closed loop feedback system
US6151222A (en) 1999-03-02 2000-11-21 Delco Electronics Corp. Dual voltage automotive electrical system with sub-resonant DC-DC converter
GB9905539D0 (en) * 1999-03-10 1999-05-05 Ea Tech Ltd Battery chargers
AU2930900A (en) 1999-03-10 2000-09-28 Ea Technology Limited Battery chargers
US6157258A (en) 1999-03-17 2000-12-05 Ameritherm, Inc. High frequency power amplifier
TW463399B (en) 1999-03-19 2001-11-11 Seiko Epson Corp Electronic device
JP3494067B2 (ja) 1999-03-19 2004-02-03 日本電信電話株式会社 基地局通信装置、及び携帯無線通信装置への電力供給方法
FI107580B (fi) 1999-03-30 2001-08-31 Innoware Oy Loistelampun syöttökytkentä
JP2000295796A (ja) 1999-04-02 2000-10-20 Tokin Corp 非接触電力供給装置
US6212430B1 (en) 1999-05-03 2001-04-03 Abiomed, Inc. Electromagnetic field source with detection of position of secondary coil in relation to multiple primary coils
US6127799A (en) 1999-05-14 2000-10-03 Gte Internetworking Incorporated Method and apparatus for wireless powering and recharging
GB2350733B (en) 1999-06-03 2003-02-12 Cheltenham Induction Heating L Power supply
EP1190476B1 (de) 1999-06-11 2010-02-24 ABB Research Ltd. System für eine eine vielzahl von aktoren aufweisende maschine
US6436299B1 (en) 1999-06-21 2002-08-20 Amway Corporation Water treatment system with an inductively coupled ballast
US6825620B2 (en) 1999-06-21 2004-11-30 Access Business Group International Llc Inductively coupled ballast circuit
US7212414B2 (en) * 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
CN1303002C (zh) 1999-06-21 2007-03-07 通达商业集团国际公司 流体处理系统
US7385357B2 (en) * 1999-06-21 2008-06-10 Access Business Group International Llc Inductively coupled ballast circuit
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US7612528B2 (en) 1999-06-21 2009-11-03 Access Business Group International Llc Vehicle interface
US6307468B1 (en) 1999-07-20 2001-10-23 Avid Identification Systems, Inc. Impedance matching network and multidimensional electromagnetic field coil for a transponder interrogator
US6323775B1 (en) 1999-08-10 2001-11-27 Telefonaktiebolaget Im Ericsson (Publ) Method, system and apparatus for proximity-based recharge notification
US6374169B1 (en) 1999-09-23 2002-04-16 Caterpillar Inc. Apparatus and method for conserving power on an earth moving machine having a mobile communicator
US6649888B2 (en) 1999-09-23 2003-11-18 Codaco, Inc. Radio frequency (RF) heating system
US6442434B1 (en) * 1999-10-19 2002-08-27 Abiomed, Inc. Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system
JP2001128375A (ja) * 1999-10-29 2001-05-11 Matsushita Electric Ind Co Ltd 非接触給電装置
TW507414B (en) 1999-10-29 2002-10-21 Sony Corp Switching power circuit with secondary side parallel and series resonance
US6664881B1 (en) 1999-11-30 2003-12-16 Ameritherm, Inc. Efficient, low leakage inductance, multi-tap, RF transformer and method of making same
JP2001210532A (ja) 2000-01-27 2001-08-03 Toshiba Lighting & Technology Corp 不飽和形変圧器、電源装置、放電ランプ装置および電球形放電ランプ
DE60109504T2 (de) 2000-01-28 2006-03-16 Densei-Lambda K.K. Resonanter Leistungsumwandler
US6301128B1 (en) 2000-02-09 2001-10-09 Delta Electronics, Inc. Contactless electrical energy transmission system
US6615023B1 (en) 2000-02-18 2003-09-02 Cypak Ab System for wireless, bi-directional transfer of electric signals
JP3488166B2 (ja) 2000-02-24 2004-01-19 日本電信電話株式会社 非接触icカードシステムとそのリーダライタおよび非接触icカード
EP1130752B1 (de) 2000-02-24 2005-05-11 Matsushita Electric Works, Ltd. Kontaktloses elektrische Leistung übertragendes System mit Konstanthaltefunktion für die Lastspannung
US6184651B1 (en) * 2000-03-20 2001-02-06 Motorola, Inc. Contactless battery charger with wireless control link
JP3860035B2 (ja) 2000-04-13 2006-12-20 株式会社マキタ 充電装置用のアダプタ
US6359267B1 (en) 2000-05-31 2002-03-19 Ameritherm, Inc. Induction heating system
US6455466B1 (en) * 2000-07-17 2002-09-24 The Regents Of The University Of California Compositions and methods for preventing leaf yellowing in plants
US6285567B1 (en) 2000-09-14 2001-09-04 Honeywell International Inc. Methods and apparatus for utilizing the transformer leakage energy in a power supply
KR20020035242A (ko) * 2000-11-06 2002-05-11 조규형 유도 결합에 의한 휴대 이동 장치용 축전지의 비접촉식충전 장치
US6429622B1 (en) 2000-11-14 2002-08-06 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for authenticating a charging unit by a portable battery-operated electronic device
FI20002493A7 (fi) * 2000-11-14 2002-05-15 Salcomp Oy Teholähdejärjestely ja induktiivisesti kytketty akkulaturi, jossa on langattomasti kytketty ohjaus, ja menetelmä teholähdejärjestelyn ja induktiivisesti kytketyn akkulaturin ohjaamiseksi langattomasti
JP2002199718A (ja) 2000-12-22 2002-07-12 Sony Corp 共振型スイッチング電源装置
JP2002199062A (ja) 2000-12-25 2002-07-12 Hitachi Ltd 携帯端末装置
US6791302B2 (en) 2001-03-21 2004-09-14 Primarion, Inc. Methods and apparatus for open-loop enhanced control of power supply transients
WO2002071423A1 (en) 2001-03-02 2002-09-12 Koninklijke Philips Electronics N.V. Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
JP2002272134A (ja) 2001-03-08 2002-09-20 Mitsubishi Heavy Ind Ltd 高周波電力の非接触給電装置及び非接触給電方法
DE10119283A1 (de) * 2001-04-20 2002-10-24 Philips Corp Intellectual Pty System zur drahtlosen Übertragung elektrischer Leistung, ein Kleidungsstück, ein System von Kleidungsstücken und Verfahren zum Übertragen von Signalen und/oder elektrischer Leistung
JP2003011734A (ja) 2001-04-26 2003-01-15 Denso Corp 車両用電気機器取付構造
US7065658B1 (en) 2001-05-18 2006-06-20 Palm, Incorporated Method and apparatus for synchronizing and recharging a connector-less portable computer system
JP2003018847A (ja) 2001-06-29 2003-01-17 Aichi Electric Co Ltd 制御用非接触電源装置
US6430064B1 (en) 2001-06-29 2002-08-06 Aichi Electric Co. Ltd. Non-contact power supply device
DE10158794B4 (de) 2001-11-30 2008-05-29 Friwo Gerätebau Gmbh Induktiver kontaktloser Leistungsübertrager
US7180503B2 (en) 2001-12-04 2007-02-20 Intel Corporation Inductive power source for peripheral devices
US6807070B2 (en) 2001-12-12 2004-10-19 International Rectifier Corporation Resonant converter with phase delay control
US6812445B2 (en) 2002-03-18 2004-11-02 Codaco, Inc. Electrode apparatus for stray field radio frequency heating
US6548985B1 (en) 2002-03-22 2003-04-15 General Motors Corporation Multiple input single-stage inductive charger
US6861629B2 (en) 2002-05-09 2005-03-01 Ameritherm, Inc. Induction furnace for heating a workpiece in an inert atmosphere or vacuum
GB2388716B (en) 2002-05-13 2004-10-20 Splashpower Ltd Improvements relating to contact-less power transfer
AU2003233895B2 (en) 2002-05-13 2008-09-25 Access Business Group International Llc Contact-less power transfer
US6906495B2 (en) 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
US6844702B2 (en) * 2002-05-16 2005-01-18 Koninklijke Philips Electronics N.V. System, method and apparatus for contact-less battery charging with dynamic control
US6983076B2 (en) * 2002-07-01 2006-01-03 Xerox Corporation Control system for digital de-screening of documents
US6772011B2 (en) 2002-08-20 2004-08-03 Thoratec Corporation Transmission of information from an implanted medical device
US8183827B2 (en) 2003-01-28 2012-05-22 Hewlett-Packard Development Company, L.P. Adaptive charger system and method
US7054965B2 (en) 2003-03-18 2006-05-30 Oqo Incorporated Component for use as a portable computing device and pointing device
US6934167B2 (en) 2003-05-01 2005-08-23 Delta Electronics, Inc. Contactless electrical energy transmission system having a primary side current feedback control and soft-switched secondary side rectifier
US20040228153A1 (en) 2003-05-14 2004-11-18 Cao Xiao Hong Soft-switching techniques for power inverter legs
EP1634355B1 (de) 2003-05-23 2018-10-10 Auckland Uniservices Limited Verfahren und vorrichtungen zur steuerung induktiv gekoppelter energietransfersysteme
EP1634366B1 (de) 2003-05-23 2017-05-03 Auckland Uniservices Limited Frequenzgeregelter resonanzwandler
WO2006138477A2 (en) 2005-06-15 2006-12-28 Ameritherm, Inc. High voltage full bridge circuit and method for operating the same
US7551011B2 (en) 2006-08-10 2009-06-23 Ameritherm, Inc. Constant phase angle control for frequency agile power switching systems
US7626463B2 (en) 2006-08-25 2009-12-01 Ameritherm, Inc. Automatic frequency compensation for pulse width modulated RF level control
US7804045B2 (en) 2006-08-28 2010-09-28 Ameritherm, Inc. Portable food heater
JP4835697B2 (ja) 2009-01-08 2011-12-14 パナソニック電工株式会社 非接触電力伝送回路
US8674544B2 (en) * 2009-01-26 2014-03-18 Geneva Cleantech, Inc. Methods and apparatus for power factor correction and reduction of distortion in and noise in a power supply delivery network
EP3178852A1 (de) 2015-12-11 2017-06-14 Agrana Stärke GmbH Polysaccharid-klebstoff

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054498A1 (en) * 2000-03-23 2002-05-09 Hisanori Cho Switching power supply unit

Also Published As

Publication number Publication date
MY137175A (en) 2009-01-30
KR101239041B1 (ko) 2013-03-04
US20110175458A1 (en) 2011-07-21
TWI367615B (en) 2012-07-01
KR20120112856A (ko) 2012-10-11
CN1768467B (zh) 2010-11-10
KR20110071031A (ko) 2011-06-27
US20160134132A1 (en) 2016-05-12
TW200423515A (en) 2004-11-01
KR20050103488A (ko) 2005-10-31
KR20110074795A (ko) 2011-07-01
US10505385B2 (en) 2019-12-10
US20040130916A1 (en) 2004-07-08
EP2405564A2 (de) 2012-01-11
EP2405553A3 (de) 2014-01-22
CN101951036A (zh) 2011-01-19
KR101047702B1 (ko) 2011-07-08
KR101231324B1 (ko) 2013-02-07
EP2405553A2 (de) 2012-01-11
WO2004073150A1 (en) 2004-08-26
US20180019597A1 (en) 2018-01-18
KR101239004B1 (ko) 2013-03-04
KR20110026027A (ko) 2011-03-14
US7212414B2 (en) 2007-05-01
TW201014108A (en) 2010-04-01
US9036371B2 (en) 2015-05-19
JP2007228794A (ja) 2007-09-06
US9013895B2 (en) 2015-04-21
JP4644691B2 (ja) 2011-03-02
EP1590877A1 (de) 2005-11-02
US9906049B2 (en) 2018-02-27
MY173598A (en) 2020-02-07
KR101117369B1 (ko) 2012-03-07
TWI326147B (en) 2010-06-11
US7639514B2 (en) 2009-12-29
US20110278950A1 (en) 2011-11-17
JP2006518179A (ja) 2006-08-03
EP2405564A3 (de) 2015-04-29
MY144505A (en) 2011-09-30
US9190874B2 (en) 2015-11-17
EP2405552A2 (de) 2012-01-11
US20120249097A1 (en) 2012-10-04
US20070171681A1 (en) 2007-07-26
CN1768467A (zh) 2006-05-03
US20100103702A1 (en) 2010-04-29
US9246356B2 (en) 2016-01-26
EP2405552A3 (de) 2015-05-06

Similar Documents

Publication Publication Date Title
EP2405552B1 (de) Adpativ induktives netzteil
EP2161807B1 (de) Einstellbare Induktionsstromversorgung in Kommunikationsanwendungen
HK1152801A (en) Adaptive inductive power supply
HK1138947B (en) Adaptive inductive power supply with communication related applications
HK1083708B (en) Adaptive inductive power supply with communication
HK1147852B (en) Adaptive inductive power supply with communication related applications

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20110928

AC Divisional application: reference to earlier application

Ref document number: 1590877

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H02M 3/335 20060101ALI20150327BHEP

Ipc: H02J 5/00 20060101AFI20150327BHEP

Ipc: H02J 13/00 20060101ALI20150327BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170322

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS IP VENTURES B.V.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602004054300

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H02J0005000000

Ipc: H02J0050120000

RIC1 Information provided on ipc code assigned before grant

Ipc: H02J 50/40 20160101ALI20190307BHEP

Ipc: H02M 3/335 20060101ALI20190307BHEP

Ipc: H05B 37/03 20060101ALN20190307BHEP

Ipc: H02J 7/00 20060101ALN20190307BHEP

Ipc: H02J 50/80 20160101ALI20190307BHEP

Ipc: H05B 41/36 20060101ALN20190307BHEP

Ipc: H02J 50/12 20160101AFI20190307BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 1590877

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004054300

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1189958

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191009

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1189958

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004054300

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200710

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230124

Year of fee payment: 20

Ref country code: DE

Payment date: 20220628

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004054300

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240121