CN102823101B - 输入寄生金属检测 - Google Patents

输入寄生金属检测 Download PDF

Info

Publication number
CN102823101B
CN102823101B CN201180016987.0A CN201180016987A CN102823101B CN 102823101 B CN102823101 B CN 102823101B CN 201180016987 A CN201180016987 A CN 201180016987A CN 102823101 B CN102823101 B CN 102823101B
Authority
CN
China
Prior art keywords
unit
primary
power
electric power
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180016987.0A
Other languages
English (en)
Other versions
CN102823101A (zh
Inventor
D.W.巴曼
J.K.施万內克
N.W.库伊文霍文
E.E.乌梅內
D.R.利夫
A.C.蔡克
M.A.布拉哈
J.L.阿米斯塔迪
R.D.克瑞奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHILPS intellectual property Enterprise Co., Ltd.
Original Assignee
Access Business Group International LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Access Business Group International LLC filed Critical Access Business Group International LLC
Priority to CN201510251612.2A priority Critical patent/CN105048643B/zh
Publication of CN102823101A publication Critical patent/CN102823101A/zh
Application granted granted Critical
Publication of CN102823101B publication Critical patent/CN102823101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Abstract

本发明提供了一种控制感应电力传输系统中的感应电力传输的系统和方法以及一种用于设计带有电力统计的感应电力传输系统的方法。所述控制感应电力传输的方法包括测量输入电力的特征、振荡电路中的电力的特征以及接收来自次级装置的信息。基于所测量的振荡电路电力的特征和所接收的信息估计电力消耗并且比较所测量的输入电力的特征、来自所述次级装置的信息以及所估计的电力消耗来确定存在不可接受的电力损失。所述用于设计带有电力统计的感应电力传输系统的方法包括改变初级侧与次级侧之间的距离以及改变所述次级侧的负载。对于所述初级侧与所述次级侧之间的每个距离以及对于每个负载,测量在非接触式能量的传输期间的所述振荡电路中的初级侧的电路参数和所述次级侧的电路参数。所述方法还包括基于系数和所述电路参数选择公式来描述在非接触式能量的传输期间的所述系统中的电力消耗,以及使用所测量的电路参数来确定所述系数。

Description

输入寄生金属检测
技术领域
本发明涉及用于非接触式电力供应系统的电力损失统计。
背景技术
例如通过利用感应耦合,将非接触式电力传送至便携式电子装置变得更为普遍。适于向便携式装置提供电力的许多感应电力供应系统包括两个主要部件:(1)具有至少一个初级线圈的感应电源或初级单元,其通过所述至少一个初级线圈来驱动交流电,产生时变电磁场;以及(2)便携式电子装置或次级装置,其可与初级单元分开并且包括次级线圈,当其被放置在所述时变场附近时,该场在次级线圈中感应交流电,由此将电力从初级单元传输至次级单元。
非接触式电力供应系统不是100%有效的。也就是说,一些能量被损失以便将电力从初级单元传输至次级单元。例如,一些损失可由切换电路部件引起,而其他损失可由初级线圈引起,这有时被称为欧姆损失,其与部件中的欧姆电阻成比例并且与流过它们的电流的平方成比例。异物,尤其是金属异物,也可影响效率并且在一些情况下引起安全顾虑。放置在场中的金属有时被称为寄生金属。场中的一些寄生金属可以是可接受的,例如许多便携式装置,甚至是由非接触式电力供应系统提供电力的装置有时包括金属。可接受的金属有时被称为已知的或友好的寄生金属。
已经开发了一些系统和技术来试图检测在场中是否存在不可接受量的寄生金属。一个基本系统包括在电力发送终端的电路中的电力消耗检测器。当一块金属被放置在电力发送终端上而不是在便携式装置上时,在电力发送终端处所消耗的电力量异常地增加。为了防止这种异常,电力消耗检测器测量由电力发送终端消耗的电力量。当所测量的消耗电力量达到预定上阈值时,所确定的是存在不寻常的情况并且电力传输被抑制。尽管诸如此类的系统提供了基本的寄生金属检测,但其仍有缺陷。例如,系统不能够计及(1)友好的寄生金属,(2)消耗不同量的电力的便携式装置,或(3)由于电力发送终端与便携式装置的未对准而引起的电力损失。
也已经开发了其他寄生金属检测技术。例如,一些系统可以计及(1)被供应给次级装置的实际负载的电力,(2)次级装置的友好寄生,(3)其中在初级单元与次级装置之间不存在简单的1:1关系的情况,或(4)其中次级装置的存在不一定在物理上排斥所有异物的情况。这些技术中的一些涉及断开次级负载或从次级装置向初级单元传送信息。许多这些技术在于2005年5月11日提交的、题为“控制感应电力传输系统”的授予Stevens的美国专利公开2007/0228833中被描述,通过引用将其全部内容并入本文。
尽管一些在先的系统能够提供寄生金属检测,但在一些情况下这些系统可能是不够的。例如,已知系统没有足够准确地计及已知的损失并且因此引发导致系统限制或关闭的过多误报。换言之,一些已知的寄生金属检测系统的一个问题在于它们的分辨率过于模糊以致于一块金属可能变热至所不期望的水平。利用具有改进的分辨率或准确度的方法来检测损失可以解决这个及其他问题。
发明内容
本发明提供了非接触式电力供应系统,其包括初级单元和次级装置,其中可以通过计及已知电力损失在操作期间的变化来更准确地检测初级单元附近的寄生金属。在感应电力供应系统中的感应电力供应传输期间的电力损失的量可根据初级单元与次级装置的对准而变化。此外,感应电力供应传输期间的电力损失的量也可作为初级单元中的切换电路的操作频率的变化的函数或作为次级装置负载的变化的函数而变化。通过计及已知电力损失在操作期间的变化,可对未知电力损失的量进行更准确的确定。此外,次级测量结果和初级测量结果可以被同步以提高准确度。对未知电力损失的确定越准确,就可以越多地避免误报的寄生金属检测。此外,也可以越早地(在时间和电力阈值两方面)检测正确的肯定结果。
在一个实施例中,本发明提供了一种非接触式电力供应系统,其中可以通过将预期的输入与所测量的输入进行比较来检测寄生金属。在当前实施例中,预期的输入被确定为系统中的各种已知损失的函数,包括由于初级单元与次级单元的未对准而引起的损失。预期的输入没有计及场中的任何寄生金属,所以如果在场中存在寄生金属,则预期的输入将不同于所测量的输入。
在一个实施例中,用于控制非接触式电力传输系统的系统和方法被提供。所述非接触式电力供应系统包括带有切换电路和振荡电路的初级单元以及至少一个次级装置,所述初级单元可操作用于产生电磁场,所述至少一个次级装置可与所述初级单元分开并且适于在所述次级装置处于所述初级单元附近时与所述场耦合使得电力能够在没有直接电接触的情况下由所述次级装置从所述初级单元感应地接收。除了其他电路之外,所述初级单元包括控制器、位于所述切换电路之前的输入测量单元以及位于所述切换电路之后的振荡测量单元。除了其他电路之外,所述便携式装置包括次级测量单元和控制器。不时地,将测量结果从所述次级装置传送至所述非接触式电源,在所述非接触式电源处它们与来自线圈测量单元的测量结果一起被控制器用于确定预期的输入。可以例如通过计及取得和发送所述测量结果所花费的时间、对所述测量结果加时间戳或者利用加权平均或其他同步技术来同步所述初级和次级测量结果。将预期的输入与实际的输入进行比较来确定存在于所述场中的寄生金属的量。所述非接触式电力供应系统可响应于寄生金属的检测而采取各种行动,例如限制或停止非接触式电力的供应。
在由于未对准而引起的增加的欧姆损失所导致的损失与由于场中的寄生金属而引起的损失之间进行区分可能是困难的。这通常是因为输入电流典型地受这两者影响。然而,由耦合降低所导致的损失和由于寄生金属而引起的损失不以相同的方式影响初级线圈电流。利用这个差别,包括输入电力的特征和初级单元线圈电力的特征两者的预测函数可以确定是否有异物存在于所述初级单元附近。本发明的一个优势在于其可以在由于耦合而引起的损失与由于寄生金属而引起的损失之间进行区分,从而使避免在一些情况下的寄生金属检测的误报成为可能。
本发明的这些及其他特征将通过参考对实施例的说明以及附图而被更充分地理解和领会。
附图说明
图1示出了能够进行输入寄生金属检测的非接触式电力供应系统的框图的一个实施例。
图2示出了输入寄生金属检测的方法的一个实施例。
图3是显示输入电力和电力消耗在各种不同场景中的代表性图表的图。
图4是供校准输入寄生金属检测系统所使用的几何定位系统的代表性的图。
在详细解释本发明的各实施例之前,应理解的是,本发明的应用不限于在下面的说明中所陈述的或在附图中所示出的结构细节和部件布置。本发明能够实现其他实施例并且能够以各种方式来实践或实施。并且,应理解的是,在本文中所使用的措辞和术语是为了说明的目的而不应被认为是限制性的。对“包括”和“包含”及其变体的使用意在涵盖其后所列的各项及其等同以及额外的项及其等同。
具体实施方式
本发明针对用于计及系统中的电力损失并且理解未计及的损失是否对操作有害的系统和方法。例如,它们可以是寄生金属、损坏的部件或电磁场中引起电力损失的其他事物。在一个实施例中,初级线圈电流、次级电流和次级电压被用于确定预期的初级输入电流。当预期的初级输入电流被适当地确定时,可以将其与所测量的初级输入电流进行比较以便检测是否存在未计及的电力损失并且在一些实施例中检测存在多少未计及的电力损失。
输入电流随着在非接触式电力供应系统中损失或消耗的电力而变化。例如,输入电流受寄生金属损失、传递到负载的电力的量、初级和次级整流损失、初级切换损失、振荡电路中的损失、由于任何共振电容器的等效串联电阻而引起的损失、由于便携式装置与非接触式电源的未对准所导致的不良耦合而引起的损失以及系统中的其他损失影响。初级线圈电流、来自整流器的次级电流以及从整流器到地的次级电压的测量结果可与其他信息一起被用于估计系统中不是由于寄生金属而引起的各种损失。然后,如果预期的初级输入电流与所测量的输入电流不匹配,则系统知道存在非期望的电力损失并且可以推断存在损坏的部件、寄生金属或在场中导致电力损失的其他事物。寄生金属或损坏的电容器、线圈或场效应晶体管可以使得其变热的方式被损坏。在一些实施例中,预期的初级输入电流可计及友好寄生,而在其他实施例中其可能不计及友好寄生。在可替代的实施例中,电力的其他特征可被测量以便准确地估计预期输入电流或估计将在寄生金属检测中有用的输入电力的不同的预期特征。
确定某些电力损失是由于未对准而引起的还是由于寄生金属而引起的可能是困难的,这是因为对输入电流的变化是由于被放置在场中的寄生金属而引起的还是由于初级单元与次级装置之间的对准的变化所导致的增加的损失而引起的进行区分可能是困难的。输入电流可相对地保持相同,这是因为耦合随寄生金属被添加到场中而同时发生改变。例如,次级装置可能由于用户将他们的钥匙扔到次级装置旁边而被微移为失准。钥匙中的寄生金属可抵消可能由未对准所导致的一些或所有的输入电流变化。非接触式电力供应系统通常不知道初级单元10与次级装置30之间的特定对准。代替地,系统通过将所传送的电力的量与所接收的电力的量进行比较并且减去已知的可接受损失来计算电力损失。通过利用线圈电流,由于未对准而引起的额外的已知可接受损失可以被计及。
当存在由于场中的寄生金属而引起的损失时,输入电力与预期电力之间的关系不同于在初级单元与次级单元未对准时输入电力与预期电力之间的关系。也就是说,可以在公式中捕捉由于未对准而引起的输入电力与预期电力之间的关系,使得如果当被测量时,如果所测量的数据不符合该公式,则可以确定存在例如由于寄生金属而引起的额外的未知电力损失。这同样可适用于输入电力和预期电力的特征。例如,当存在由于场中的寄生金属而引起的损失时,输入电流与线圈电流之间的关系不同于在存在由于不良耦合而引起的损失时输入电流与线圈电流之间的关系。因此,通过将预期输入电流确定为线圈电流的函数的,可以提高寄生金属检测的准确度。在当前实施例中,由于不良耦合而引起的损失通过执行数据的最佳拟合分析来估计,所述数据通过在初级单元与次级装置之间的耦合发生改变时取得测量结果而被捕捉。在可替代的实施例中,可以计算而不是估计由于不良耦合而引起的损失。例如,在初级单元与次级装置的相对位置已知的情况下,计算由于未对准而引起的电力损失可以是有可能的。值得注意的是,在一些系统中,响应于未对准,初级单元可诸如通过增加初级电流而相对于给定的负载电流增加其电力,这可能使取决于初级线圈电流的损失增加。这可能包括初级电损失、线圈损失、初级和次级磁损失以及友好寄生损失。由于电力水平变化而引起的这些损失变化可以在映射关系的公式中被计及。此外,当对准发生改变时,不仅次级线圈相对于初级线圈的位置发生改变,而且任何友好寄生金属在次级装置上的位置也发生改变。当与次级屏蔽体或其他友好寄生相交的电磁场的量发生改变时,友好寄生电力损失的量也发生改变。所有这些由于增加电力而引起的变化、对准的变化、频率的变化均可以在校准方法期间被计及。
图1示出了实施本发明的一个实施例的感应电力传输系统的各个部分。系统100包括初级单元10和至少一个次级装置30。感应电力传输系统可具有许多适当的构造。一个适当的构造是可以放置一个或多个次级装置30的电力传输表面。
仍然参考图1,初级单元10能够产生用于向一个或多个次级装置的传输的无线电力。初级单元10一般可以包括AC/DC整流器11、控制器16、切换电路14、振荡电路23、输入检测器电路24以及振荡检测器电路26。在这个实施例中,振荡电路23包括初级线圈12和电容器15;然而,振荡电路23的构造可随着应用的不同而变化。初级线圈12可以是金属丝线圈或者本质上是能够产生可被另一电感器接收的电磁场的任何其他电感器。在由交流电源提供电力的实施例中,来自交流电源的电力被AC/DC整流器11整流并且被用于向初级单元中的各种电路提供电力,而且与控制器16以及切换电路14结合被用于在振荡电路23中产生交流电。尽管没有显示,但初级单元10在其中需要转换的那些实施例中也可包括DC-DC转换器。可替代地,系统可不与交流电源连接。例如,在一个实施例中,系统可以在没有转换器的情况下接受纯直流输入。控制器16被构造为控制切换电路14的定时以在振荡电路23中产生交流电。在一些实施例中,切换电路14的定时可被控制为至少部分地基于来自次级装置30的反馈来改变切换电路的操作频率。控制器16可包括通信电路以实现与次级装置30的通信。控制器16可通过利用电感耦合,例如通过使用反向散射调制方案,或通过诸如RF收发器的外部通信路径来进行通信。
在当前实施例中,控制单元16包括微处理器。微处理器具有内置的数模转换器(没有显示)将输出驱动至切换电路14。可替代地,ASIC可以被用于实现控制单元16以及初级单元的一些或所有其他电路元件。尽管为了简化起见,与控制器块结合地显示了通信电路,但应理解的是,通信电路可与控制器电路分开。此外,通信电路可以利用初级线圈来进行通信,或者利用独立的通信路径,诸如RF收发器。
在一个实施例中,系统可以包括校准单元。例如,初级单元10可包括在控制器16中的或位于系统中别处的校准单元。当在特定的初级单元与次级单元之间传输电力时,校准数字或系数可以被存储在控制器16中的初级侧以及次级侧两者上,校准数据可以在公式中被结合在一起以便预测在操作期间是否存在任何未计及的损失,诸如场中的寄生金属。
校准单元可以存储关于系统中的损失的信息,例如在初级单元、次级单元或这两个之间的耦合中的损失。根据设计,在制造时和/或在此之后周期性地,可在校准单元内校准和存储初级单元中的损失。校准单元将所存储的信息提供给控制单元16以使控制单元16能够在确定场中是否存在寄生金属时使用所述信息。这种校准单元可改变补偿信息来应对初级单元中的可变损失。校准单元可包含与初级和次级之间的电损失和磁损失有关的数据。例如,校准单元可包含从经初级单元上的一系列不同位置扫描次级装置的最佳拟合分析导出的数据。这种最佳拟合可以被提取成为用于公式的系数以确定预期的输入电流。例如,在一个实施例中,用于预期的输入电流的公式是:
预期的初级输入电流=.5*isec+(.052*isec*Vsec)+(.018*icoil)-.009
通过利用代表系统中的各种损失的多个不同项来确定预期的初级输入电流。例如,在这个实施例中,.5*isec项计及次级整流损失,(.052*isec*Vsec)项计及传递到负载的电力,而(.018*icoil)项计及在振荡电路中损失的电力,并且.009项是偏移值。
在当前实施例中,isec和Vsec值是在次级AC/DC整流之后的瞬时电流和电压的相应的测量结果或者是在相似的预定长度的时间内的平均电流和电压。在这个实施例中,icoil值是初级线圈中的峰值电流的测量结果。可替代地,icoil值可以是RMS、峰间值或一种组合(即波峰因子或电压测量结果可代替地被使用。在当前实施例中,所有这三个测量结果被同步以便确定在特定时间的预期输入电流。基于利用外部电流和电压读数所收集的数据导出各种系数。特别地,当通过改变对准而改变初级与次级之间的耦合时,基于以电压和电流读数的数据为基础的最佳拟合分析来选择系数。在当前实施例中,预期输入电流对于17V-24V的次级电桥电压和范围在0-60瓦特的电力是有效的。线圈驱动电压假定为19V。
一般而言,预期的初级输入电流公式能够计及耦合损失,这是因为初级线圈电流随着线圈与线圈的间隔而变化。当x和z间隔发生改变时,系数有助于跟踪线圈电流。也就是说,当线圈变得更多地在水平方向上偏移、在垂直方向上偏移以及更多或更少地平行时,系数有助于跟踪线圈电流。本质上,当耦合变差时,输入电流上升并且线圈电流上升,但当寄生金属被放置在场中时,输入电流上升,但线圈电流可能不同样地上升。换言之,当耦合变差时,输入电流与线圈电流之间或输入电力与预期电力之间或输入电力的特征与预期电力的特征之间的关系遵照预期的关系。但当寄生金属被添加到场中时,输入电流与线圈电流之间的关系偏离该预期的关系。在一些实施例中,可被用于导出系数的一些或所有系数或信息可从次级装置被传送至初级单元。这个数据的传输允许初级单元前向兼容可在未来出现的装置,其中不同的系数是适当的。
图1系统中的初级单元10包括连接到控制单元16的输入检测器电路24。输入检测器电路24响应于由控制单元16提供的信号或内部时钟信号而执行对由切换电路14提取的电力的特征的测量。输入检测器电路24将代表由切换电路14提取的电力的特征的输出提供给控制单元16。在当前实施例中,输入检测器电路24是能够感测输入电流的瞬时电流传感器。一般而言,输入检测器电路24可位于初级单元中在切换电路14之前的任何地方。在可替代的实施例中,输入检测器电路本质上可包括能够测量输入电力的一个或多个特征的任何一个或多个传感器,其可以被用于确定输入电力或确定寄生金属是否存在于场中或另外的不期望的损失是否已经出现。输入检测器电路向初级控制器16传送其输出。可对输入检测器电路输出加时间戳并且在输入检测器电路24、控制器16或初级单元10中的别处对其进行缓存,以在适当的情况下协助其他测量结果的同步。此外,输出可以被平滑或对其应用可构造的加权平均。在一个实施例中,在数据中可存在间隙,这是因为处理器不能采样,所以那些项可以用0或可忽略的权重来加权。在一些实施例中,次级装置可提供同步信息或同步标准可被预编程到初级单元中,其描述了次级装置怎样或何时采样数据,使得初级单元可以同步其测量结果。例如,次级装置可不对其数据加时间戳,而是以数据按相对于其被接收的时间的特定时间被采样的预期向初级单元提供测量结果。
图1系统中的初级单元10包括连接到控制单元16的振荡检测器电路26。振荡检测器电路26响应于由控制单元16提供的信号或内部时钟信号而执行对由振荡电路23提取的电力的特征的测量。振荡检测器电路26向控制单元16提供代表由振荡电路23提取的电力的特征的输出。在当前实施例中,振荡检测器电路26是峰值电流检测器。一般而言,振荡检测器电路26可位于切换电路14之后的任何地方,包括振荡电路23的输入端、振荡电路23的初级线圈12与电容器15之间或在振荡电路23之后。在其他实施例中,振荡检测器电路26本质上可包括能够测量振荡电路电力的一个或多个特征的任何一个或多个传感器,其可以被用于确定振荡电路电力或确定寄生金属是否存在于场中。振荡电路检测器26向初级控制器16传送其输出。可对振荡检测器电路输出加时间戳并且在振荡检测器电路24、控制器16或在初级单元10中的别处对其进行缓存,以在适当的情况下协助其他测量结果的同步。
次级装置30可与初级单元10分开并且具有次级线圈32,其在次级装置30处于初级单元10附近时与由初级单元10产生的电磁场耦合。按照这种方式,可以在没有直接导电接触的情况下将电力从初级单元10感应地传输至次级装置30。
图1显示了能够从初级单元10接收非接触式电力的次级装置30的一个实施例。当其涉及非接触式电力的接收时,次级装置30一般包括次级线圈32、整流器34、次级检测电路36、控制器38和负载40。次级线圈32可以是金属丝线圈或者本质上是能够响应于由初级单元10产生的变化的电磁场而产生电力的任何其他电感器。整流器34将交流电力转换成直流电力。尽管没有显示,但装置30在其中需要转换的那些实施例中也可包括DC-DC转换器。控制器38被构造为向负载40施加经整流的电力。在这个实施例中,负载40代表装置30的电子器件。在一些应用中,负载40可包括电池或能够管理对装置30的电子器件的电力供应的其他电力管理电路。在可替代的实施例中,控制器38可包括电力管理电路。控制器38可包括通信电路来实现与初级单元10的通信。控制器38可通过利用电感耦合,例如通过使用反向散射调制方案,或通过诸如RF收发器的外部通信路径来进行通信。
图1系统中的次级装置30包括连接到控制单元38的次级检测器电路36。次级检测器电路36响应于由控制单元38提供的信号或内部时钟信号而执行对传递到负载40的电力的特征的测量。次级检测器电路36向控制单元38提供代表被传递到负载40的电力的特征的输出。在当前实施例中,次级检测器电路36包括瞬时电流传感器和瞬时电压传感器两者。一般而言,次级检测电路36可位于次级装置中在AC/DC整流器34之后的任何地方。在其他实施例中,次级检测器电路26本质上可包括能够测量传递到负载的电力的一个或多个特征的任何一个或多个传感器,其可以被用于确定传递到负载的电力。次级检测器36向次级控制器38传送其输出。可对次级检测器电路输出加时间戳并且在次级检测器电路36、控制器38或在次级单元10中的别处对其进行缓存,以在适当的情况下协助其他测量结果的同步。
输入检测器电路24、振荡检测器电路26和次级检测器电路36(统称为检测器电路)可包括布置为产生与输入电力中的电流直接成正比的输出信号的放大器。检测器电路也可包括用于去除输出信号中的变化的带通电路。检测器电路也可包括用于放大经滤波的信号的放大器。检测器电路也可包括用于将放大器输出转换为高或低信号的比较器。各种检测器电路,无论它们是电压传感器还是电流传感器,一般都是常规的并且本质上可以是获得所需的测量结果的任何类型的传感器。例如,在一些实施例中,电流传感器是电流感测变压器。可替代地,它们可以是分流电阻器、基于霍尔效应的集成传感器或者是将电流转换成可由微控制器测量的电压的任何其他装置。在一个实施例中,检测器可以是电阻器/电容器分压器。
存在初级单元可限制或停止从初级单元的感应电力供应的多种情况。那些条件中的一些包括在初级单元附近检测到可观的寄生负载、在初级单元10附近不存在系统的次级装置30、存在次级装置30但其当前不需要电力。例如,当负载被关断时或在可再充电的蓄电池或电池的情况下当蓄电池或电池被充满电时,负载不需要电力。
在一个实施例中,在预期输入电流与所测量的输入电流相差100mA的情况下发现可观的寄生负载。可以通过更改预期输入电流与所测量的输入电流之间的阈值差来改变对寄生金属的容限。较高的阈值指示场中的寄生金属的较高水平的容限,而较低的阈值指示场中的寄生金属的较低水平的容限。在当前实施例中,100mA的阈值被选择以确保如果超过1.9瓦特被浪费在寄生金属内,则系统限制或停止感应电力供应。
在其他实施例中,友好寄生可以被用在预期输入电流的计算中并且进而将不是确定寄生金属是否存在的因素。在计算预期输入电流时考虑友好寄生的可替代的实施例中,用于宣告可观的寄生负载的标准可以是不同的。
图2是用于解释根据本发明的用于检测可观的寄生负载在初级单元附近的存在的方法的流程图。
在当前实施例中,次级装置不时地将寄生金属检测包(在本文中为PMD包)发送到初级单元使得初级单元可确定在场中是否存在任何寄生金属。在当前实施例中,每隔250ms向初级单元发送一次PMD包。在可替代的实施例中,PMD包可以更高或更低的频率被发送,或者根据来自初级单元的请求,或者本质上在适于确定在由初级单元产生的场中是否存在寄生金属的任何其他场景中被发送。
当是时候发送PMD包202时,次级检测电路36在AC/DC整流之后发起电压测量和电流测量,可替代地,可使用不同的传感器系统来取得电力测量结果。在可替代的实施例中,代替这些测量结果或除了这些测量结果之外,可在次级装置内的不同位置上取得不同的测量结果。
用于PMD包的任何测量结果连同可对初级单元中的寄生金属检测有用的任何其他信息一起被装配成包的有效负载。例如,PMD包可包括时间戳信息,其为了同步的目的而指示测量结果被取得的时间。此外,PMD包可包括关于缺失的数据点的信息或者关于是否已经存在任何平滑、求平均或其他加权函数的信息。PMD包也可包括关于装置的识别信息,例如使得各种信息可以在存储在初级单元上的查找表中被查找。例如,一些初级单元可包括与各种次级装置相关联的友好寄生的表。在一些其他实施例中,次级装置可直接传送其友好寄生。尽管在PMD包的背景下被描述,但应理解的是信息被发送到初级单元所采用的格式并不重要,非分包通信技术也是可行的。在当前实施例中,所述包包含3个字节的有效负载(总共5个字节),包括两个10比特的变量,来自这两个变量的最高有效位共享最后一个字节。在当前实施例中,PMD包不包括任何时间戳信息,而代替地,初级单元通过假定从其接收PMD包的时间到次级测量结果被取得的时间存在9ms的延迟来进行同步。
一旦PMD包被装配,其就被发送到初级单元208。一收到PMD包,当前实施例中的初级单元就获得存储在缓存中的初级线圈电流测量结果,其对应于PMD包被接收之前的9ms。这个固定的9ms延迟计及发送PMD包时的滞后时间并且确保初级侧和次级侧的测量结果被同步。
初级单元控制器利用从次级装置接收的信息和来自初级单元的适当的测量结果来确定预期的输入电流212。如上所述,可基于通过最佳拟合分析计及系统中的许多不同损失的预定义公式来执行这种确定。
初级单元也测量同步时间上的初级输入电流214。如同线圈电流一样,初级输入电流可被保持在缓存中来协助同步。
将初级的所测量的输入电流与初级的所预期或计算的输入电流进行比较以确定在场中是否存在任何寄生金属216。所测量的输入电流与所确定的输入电流之间的差代表系统中任何未被计及的损失。在当前实施例中,数字可简单地相减并且如果差大于阈值,则系统确定在场中存在显著量的寄生金属并且非接触式电源可采取许多不同的行动。例如,系统可关闭、降低输出电力或打开警报灯218。如果差小于阈值,则系统确定在场中没有显著量的寄生金属并且系统或者什么也不做或者指示不存在寄生金属。系统进而可等待直到是时候发送另一个PMD包。
在一个实施例中,如果检测到寄生金属,则初级单元将保持处于关闭模式直到它以某种方式被复位。这样的复位可由初级单元的用户手动发起,或者可替代地,控制单元16可周期性地再次开始供应感应电力并且重复寄生金属检测以确定是否保持处于关闭模式。
上面结合图2所描述的寄生金属检测技术可由其他不同的寄生金属检测技术来补充。例如,一些寄生金属检测在次级负载可以周期性地被断开并且允许系统在衰荡(ring down)状态下被观察的情况下更可靠。为了执行衰荡寄生金属检测,初级单元附近的所有次级装置均有意地被设置为无负载状态。在这种无负载状态下,由次级装置感应地接收的任何电力向其实际负载的供应被防止。这允许系统获得关于场中的寄生金属的信息而无需考虑次级装置负载。将衰荡寄生金属检测与输入电力寄生金属检测结合的能力虑及在一些情况下更准确的寄生金属检测。
在衰荡的一个实施例中,存在开路次级电路,其中线圈具有其自身的电感值和等效串联电阻。这意味着它将以可知的方式响应于各种激励。如果脉冲被提供,则在结果得到的R(ESR)L(线圈)C(振荡电容)电路中的电压同时以公知的时间常数衰减。如果其衰减得更快,则或者意味着L下降,或者意味着ESR上升,这暗示了存在寄生金属。如果我们代替地以某一频率接通线圈,则同样地,RLC电路应具有可预测的电压或电流。同样地,寄生金属将使响应远离预期偏移(更高的电流、更低的电压等等)。
图3显示了输入电力与在非接触式电力供应系统中消耗的电力之间的关系的三个有代表性的场景300、302、304。在第一场景300中,初级单元和次级装置对准并且没有不友好的寄生金属存在于场中。换言之,在第一场景中没有未计及的损失。在这个场景中,结合的初级电力损失306、次级电力损失308和被负载310消耗的电力等于或大体上与输入电力312相同。在当前实施例中,初级电力损失306可以包括初级单元磁性元件314的电力损失(诸如初级单元屏蔽体损失)、初级单元电子器件316的电力损失(诸如整流、切换、调节和滤波损失)以及初级线圈318的电力损失(诸如I2R损失)。在当前实施例中,次级电力损失308包括友好寄生320的电力损失(诸如次级装置损失中的寄生金属)、次级磁性元件322的电力损失(诸如次级装置屏蔽体损失)、次级线圈324的电力损失(诸如I2R损失)和次级电子器件326的电力损失(诸如整流、调节和滤波损失)。当包括由负载使用的电力和系统中的电力损失在内的已知电力消耗大体上与输入电力相同时,则在系统中没有未计及的损失,诸如未知的寄生金属。
在第二场景302中,初级单元和次级装置未对准。当次级装置与感应电源未对准时,耦合降低。这可以导致初级向线圈传递更多电力以将相同量的电力传递到次级。由于更多电力被传递,因此在当前实施例中损失增加。例如,在初级中存在更多电子器件损失(I2R、如果应用则存在整流、切换、操作频率可能已经偏移),有更多的电力由于更高的线圈电流而在线圈中被损失,有更多的电力由于由初级线圈产生的更大的场而在磁性元件中被损失,有更多的电力由于更大的场而在友好寄生和异质寄生两者中被损失,并且在一些情况下,如果操作频率偏移则次级损失可增加,这可导致次级整流和次级线圈中的损失微小地增加。在一些实施例中,这些次级损失中的变化可以被忽略。一般而言,负载中和次级中(除了整流和线圈)的电力损失没有发生改变,这是因为其仍然(试图)提取相同量的电力。在所示出的实施例中,额外的输入电力312(或者通过调整操作频率、共振频率、占空比、干线电压,或者通过调整一些其他参数)被提供以便将与在第一场景中的相同的量的电力传递到负载310(因为负载没有发生改变)。然而,由于初级单元和次级装置未对准,因此可存在额外的初级单元损失306和次级装置损失308。在当前实施例中,在初级单元磁性元件315、初级单元电子器件317、初级线圈319、次级装置友好寄生321和次级装置磁性元件323中存在增加的损失。在当前实施例中,次级线圈324、次级装置电子器件326和负载310中的电力损失保持不变。如果输入电力312大体上等于结合的电力损失306、308和由负载310消耗的电力,则在场中没有未知的电力损失,诸如未知的寄生金属。
在第三场景304中,初级单元和次级装置对准,但一块寄生金属被放置在场中。额外的输入电力312(或者通过调整操作频率、共振频率、占空比、干线电压,或者通过调整一些其他参数)被提供以便将与在第一和第二场景中相同的量的电力传递到负载310(因为负载在所有三个场景中都是相同的)。然而,由于在场中存在一块未知的寄生金属,因此可存在额外的初级单元损失306、额外的次级装置损失308和一些未计及的电力损失328。在当前实施例中,在初级单元磁性元件315、初级单元电子器件317、初级线圈319、次级装置友好寄生321和次级装置磁性元件323中存在增加的损失。在当前实施例中,次级线圈324、次级装置电子器件326和负载310中的电力损失保持不变。由于在输入电力312与结合的已知电力损失306、308和被负载310消耗的电力之间存在显著的差,因此系统可以假定在场中存在未知的电力损失,诸如未知的寄生金属。响应于检测到这种未知的电力损失,非接触式电力传输系统可限制或停止电力传输。
图3中的场景没有按比例绘制,并且仅作为示例被提供以协助解释。进一步地,在这三个场景300、302、304中所显示的电力损失和被负载使用的电力的相对量仅是代表性的。在一些实施例中,可存在额外的或更少类型的电力损失。例如,如果次级装置不包括任何友好寄生,则将没有任何相关联的电力损失。图3中的各种损失被夸大以示出系统可如何辨别初级单元与次级装置之间未对准与寄生金属被放置在场中这两者之间的差别。仅将输入电力的量与被传递到负载的电力的量进行比较不允许系统在场景二302与场景三304之间进行区分。即使系统计及初级单元与次级单元对准时的各种损失,除非系统计及由于未对准而出现的电力损失的变化,否则仍然存在由于未对准而引起大量误报的可能性。如果系统可以计及电力损失在操作期间的变化,诸如未对准,则系统将引发较少的误报。
如上文所提到的那样,系统可能难以在由于未对准而引起的电力损失与由于寄生金属而引起的电力损失之间进行区分,或者没有足够的分辨率可以触发误报,导致对次级装置的非接触式电力供应的限制或停止。在当前实施例中,预期的输入电流或预期的输入电力与所测量的输入电流或预期的输入电力匹配,这是因为公式计及了在操作期间由于未对准而引起的损失。
除了有未对准或添加到场中的寄生金属之外,同时具有这两者也是有可能的。例如,用户可偶然地将他的钥匙仍到充电表面上,使次级装置微移而不在原位。在这些情况下,由于寄生金属而引起的损失和由于未对准而引起的损失两者同时增加。由于系统正在寻找输入电力与已知损失之间的关系,因此系统仍然可以识别出在场中存在寄生金属。
在当前实施例中,将初级线圈电流、次级电流和次级电压代入被导出并且在制造时被编码在控制器中的公式。基于与初级单元相关联的固定阻抗和电阻值通过考虑已知损失而导出所述公式。
下面将描述控制诸如上面结合图1所描述的感应电力传输系统中的感应电力传输的方法的可替代的实施例。感应电力传输系统100包括初级单元10和次级装置30。初级单元10包括振荡电路23和切换电路14,它们一起可操作用于产生电磁场。该系统也包括次级装置30,其可与初级单元分开并且适于在次级装置处于初级单元附近时与所述场耦合,使得电力在所述次级装置与所述初级单元之间没有直接导电接触的情况下由次级装置从初级单元感应地接收。
在一个实施例中,切换电路在操作期间以在一系列不同操作频率之间变化的操作频率操作。在一些实施例中,可响应于负载的变化或来自负载的请求而调整操作频率或初级单元的一些其他参数。例如,如果次级装置需要额外的电力,则初级单元可调整操作频率、占空比、共振频率或干线电压来增加它的电力输出。一个这样的初级单元的示例在于2003年10月20日提交的授予Baarman的美国专利7,212,414中被描述,并且通过引用将其全部内容并入本文。除了由于初级单元与次级装置的未对准而引起的电力损失改变之外,电力损失可作为切换电路的操作频率或与次级装置相关联的负载的电力需求的函数发生改变。例如,可编程的电子负载可被用于在恒定电压下测试不同电流或在恒定电流下测试不同电压。
所述方法包括测量初级单元中的输入电力的特征、测量初级单元的振荡电路中的电力的特征,在初级单元中接收来自至少一个次级装置的信息,将感应电力传输系统中的电力消耗估计为至少是所测量的初级单元的振荡电路中的电力的特征的函数,比较所测量的初级单元中的输入电力的特征、来自至少一个次级装置的信息以及所估计的电力消耗以确定有不可接受量的寄生金属存在于初级单元附近,以及响应于不可接受量的寄生金属存在于初级单元附近的确定而限制或停止从初级单元的感应电力传输。
估计所消耗的电力可包括估计感应电力传输系统中的电力损失、估计由次级装置的负载提取的电力或这两者。感应电力传输系统中的电力损失的估计可以是所测量的初级单元的振荡电路中的电力的特征和来自次级装置的信息的函数。例如,电力损失估计可包括估计初级单元磁滞电力损失、初级单元磁涡电流电力损失、初级单元电压电力损失、初级单元电阻电力损失和次级装置电力损失。关于次级装置电力损失的信息可由次级装置部分地或完全地提供。例如,信息可以为下列形式:次级装置ID、次级装置中的电力的特征的测量结果、次级装置中的电力损失的估计、一个或多个电力损失系数(包括表征磁滞和磁涡流损失的系数)或其组合。可以就次级装置涡电流电力损失、次级磁滞损失、次级装置电压电力损失以及次级装置电阻电力损失而言来描述次级装置电力损失。
额外的传感器可以被包括在初级单元和次级单元中以更准确地测量操作期间系统中的各种电力损失。然而,额外的传感器可能增加初级单元和次级装置的成本和尺寸。因此,在一些实施例中,曲线拟合分析可以被用于基于实验数据来估计电力损失。例如,在一个实施例中,可以对初级单元、次级装置、电力负载、次级装置位置(包括定位和方向)、频率和友好寄生的各种组合收集实验数据。可通过实验被收集的数据类型本质上可包括任何类型的测量结果。在一个实施例中,所收集的数据可包括输入电压、输入电流、输入电力计算结果、初级线圈电压、初级线圈电流、传送电力计算结果、次级线圈电压、次级线圈电流、接收电力计算结果、输出电压、电桥电压、输出电流。在可替代的实施例中,额外的、不同的或更少的测量结果或计算结果可被收集。用于取得测量结果的任何技术可被使用,包括但不限于平均值、RMS值、功率因子、波峰因子、峰值以及电压/电流之间相位。
在一个实施例中,所测量的初级单元中的输入电力的特征、来自次级装置的信息以及所估计的电力消耗可以被比较以确定有不可接受量的寄生金属存在于初级单元附近或有其他未计及的电力损失,诸如故障部件。这种比较可在不同实施例中包括各种不同的技术。在一个实施例中,该比较需要基于初级单元中的输入电力的特征、振荡电路电力的特征、操作频率和来自次级装置的信息计算总电力消耗并且通过检测所计算的总电力消耗与所估计的电力消耗之间的差来确定有异物存在于初级单元附近。
在一个实施例中,可以通过取得所测量的总电力消耗与所测量的电力消耗之间的差并且将该值与阈值进行比较来确定是否有不可接受量的寄生金属存在于初级单元附近。所述阈值可以是动态的并且基于系统的操作点或基于各种其他因素。如果该值超过所计算的阈值,则存在不可接受量的寄生金属,如果其没有超过阈值,则存在的寄生金属的量是可接受的。
如上所述,最佳拟合分析有时被称为曲线拟合,其可以通过经相对于初级单元的一系列不同位置(定位和方向)扫描次级装置来执行。这种曲线拟合可以被提取成为用于公式或一组公式的系数以确定在场中是否存在不可接受量的寄生金属。用于这个目的的一组公式的一个示例为:
P Measured = C 0 + ( C 1 + C 2 ) · i tx _ coil · f + ( C 3 + C 4 ) · ( i tx _ coil · f ) 2 + C 5 · i tx _ input + C 6 · i tx _ coil 2 + C 7 · i rx _ rectified + C 8 · i rx _ rectified 2 + C 10 P Calc = Pin tx - C 9 · P rx _ rectified P Foriegn = P Calc - P Measured
每个系数均可以通过实验来确定。可以通过对系统中的部件的物理观察基于各个类型的电力损失单独地确定系数,或者可执行曲线拟合以同时获得所有系数。在一个实施例中,对给定的公式使用已知的多元多项式回归技术或拟合所观察的数据的其他方法的强力曲线拟合可被用于确定系数。这些技术一般被称为曲线拟合。在另一个实施例中,通过收集数据作为对诸如等效串联电阻和电压降等经台架试验所测量的参数的核对而通过实验确定系数。可以针对初级单元、次级装置、负载、位置、友好寄生的各种不同组合来收集数据。Tx指初级单元或发射器,而Rx指次级装置或接收器。itx_coil指初级单元线圈电流,itx_input指初级单元输入电力,而irx_rectified指次级装置中在整流之后的电流。在当前实施例中,系数对于所有负载而言是相同的。
尽管当前实施例包括10个系数,但在可替代的实施例中可使用额外的、不同的或更少的系数。例如,系数C7和C8可在不显著影响寄生金属检测成功率的情况下被消除。进一步地,尽管在上文中提供了一组公式来帮助理解方法,但也可通过代入而产生单个公式。所述公式比较输入电力、输出电力和系统中的各种损失以便确定在初级单元附近是否存在任何寄生金属。Tx指初级单元或发射器,而Rx指次级装置或接收器。itx_coil指初级单元线圈电流,itx_input指初级单元输入电力,而irx_rectified指次级装置中在整流器之后的电流,举例来说如在图1的电流传感器中所显示的那样。
在一个实施例中,可以通过计及频率变化而使电力损失估计变得更准确。例如,一些感应电源改变初级单元的切换电路在操作期间的操作频率。操作频率的这种变化可以对在系统中存在多少电力损失产生影响。为了更准确地估计系统中的电力损失,对于每个操作频率而言,可以确定初级线圈的等效串联电阻值。可以曲线拟合等效串联电阻的数据点以便确定用于估计初级单元涡电流电力损失的涡电流电力损失系数。也就是说,可能难以在任何给定频率上对于任何给定的初级单元和次级装置计算出现的涡电流电力损失。通过在实验上确定涡电流电力损失在多个频率上对于初级单元和次级装置的组合是多少,预期多少损失的一般化的函数可以作为频率的函数被开发。这种相同的技术可以被用于系统中取决于频率的任何电力损失。也就是说,通过收集关于在各种频率上出现在初级单元与次级装置的各种组合中的不同类型的电力损失的数据,如果电力损失基于频率变化,那么曲线拟合可以有助于开发一组系数用于可在操作期间被使用的公式,以便更好地估计电力损失。所有10个系数可以通过实验被确定使得它们可在制造期间被存储在初级单元或次级装置中。一般而言,初级参数被硬编码到初级单元中,而次级装置参数在操作期间或在初始校准例程期间被传送。要清楚,这种校准例程可以是与在本文中所描述的用于确定系数的校准过程分开的过程。代替地,这种校准例程可以被用于确保最终确定在场中是否存在寄生金属的处理单元可以访问所有适当的系数。
函数可以基于用于系统的某些部分的传统上已知的损失模型。例如,磁性材料具有由于磁滞而引起的与i*f有关的损失(对于初级材料为C1,对次级材料为C2),磁性材料具有代表那些材料中的涡电流损失的与(i*f)^2有关的损失(对于初级为C3,对于次级为C4),电容器、线圈和FET具有与i^2有关的“电阻损失”(C6、C8),由于次级上的总电力损失可以被近似为接收电力的线性函数,因此我们可以使用接收电力的标量函数(C9、C10)来近似额外的损失。由于我们知道这些是所有这些主要电路部件的物理损失模式,因此我们可以对所有我们收集的数据进行多元多项式回归以找到这些系数中的每一个可能是多少。找到系数的可替代的方法是在系统中递增地测量它们并且确定它们的值。进而可对照所观察(收集)的数据对其进行验证。
参考上面的公式,C0代表初级单元偏移,其可在曲线拟合过程中被用于代表所有不取决于电流的损失。如在上文中所提到的那样,包括C0在内的所有系数可同时被最佳拟合(多元多项式回归)。或者,如果通过测量ESR、电压降等的值而通过实验被确定,则C0将是剩下的无论什么。这代表不随负载变化的电力(微处理器所使用的电力等等)的基准电平。
C1和C2是系统中分别代表初级单元和次级装置磁滞损失的系数。在一些实施例中,用于磁滞损失的系数可被假定为0或接近0并且因此从计算中被消除。初级单元和次级装置可以被设计成使磁滞损失最小化并且由此简化计算。如果C3和C4如下面所描述的那样不是相对于频率为常数,则C1和C2可被认为是非0的。当ESR被测量时,用I^2*R损失模型进行假定。如果它符合函数(I*f)^2*R,则意味着当我们在许多频率上测量ESR并且除以f^2时,对于ESR的所有测量结果而言结果应彼此相等(或非常接近)。如果它们不是这样,则不同的损失模式被考虑并且可对(i*f)执行多项式回归。
C3和C4分别代表初级单元磁性元件涡电流损失和次级单元磁性元件涡电流损失。为了确定C3和C4,初级和次级线圈的等效串联电阻(“ESR”)独立于任何磁性材料被测量。这被称为裸线圈ESR。可以在一系列频率上测量裸线圈ESR,例如在当前实施例中,在110kHz到205kHz的频率范围上测量裸线圈ESR。
为了确定C3,测量初级线圈、初级单元屏蔽体(如果有的话)和初级单元磁体(如果有的话)的等效串联电阻(“ESR”)。这被称为初级线圈组件ESR。从初级线圈组件ESR中减去裸线圈ESR以便提供仅初级单元屏蔽体和初级单元磁体的ESR,这有时被称为初级磁性元件ESR。当然,除了当前实施例的方法之外,可以不同的方式获得这些ESR值。在一个实施例中,通过将初级磁性元件ESR除以在其上取得测量结果的频率的平方来确定C3。在可替代的实施例中,为了提高C3的准确度,可以在预期的操作范围内在不同频率上取得多个测量结果。在这种情况下,将每个频率上的初级磁性元件ESR除以频率平方并且取所有那些值的平均来计及实验误差并且该平均被视为C3。
为了确定C4,测量系统的ESR。在当前实施例中,在初级单元与次级装置对准的同时并且当系统包括初级线圈、初级单元屏蔽体、初级单元磁体、初级单元与次级装置之间的间隙、次级装置线圈、次级装置屏蔽体、次级装置磁体以及任何友好寄生金属时,测量系统ESR。在当前实施例中,当系统ESR被测量时,从初级线圈的角度对其进行观察。从系统ESR中减去初级单元组件ESR(有磁体和初级屏蔽体存在的初级线圈)来获得次级装置组件ESR。在一个实施例中,通过将次级装置组件ESR除以在其上取得测量结果的频率的平方来确定C4。在可替代的实施例中,为了提高C4的准确度,可以在预期的操作范围内在不同频率上取得多个测量结果。在这种情况下,将每个频率上的次级装置组件ESR除以频率的平方并且取所有那些值的平均来计及实验误差并且该平均被视为C4。
在一个实施例中,也可通过在各种不同对准下获得次级装置组件ESR而更准确地确定C4。也就是说,次级装置可在空间中自动地四处移动,例如利用带旋转的X、Y、Z工作台或XYZ工作台来获得在精确定位和方向上的ESR测量结果。在当前实施例中,操作频率和位置的每个组合的所有ESR/f^2值可被平均以获得用于特定次级装置的C4值,例如带有用于接收电磁场的次级线圈、磁屏蔽体以及诸如外壳、电子器件和电池的友好寄生的手机。
在图4中显示了几何定位系统的一个实施例,并且其被指定为400。几何定位系统400可以被用于移动初级和次级线圈的相对位置。在当前实施例中,几何定位系统400包括基部402和定位器404。基部402可与初级单元或初级单元的诸如初级线圈406的部分集成,或者在一些实施例中初级线圈406或初级单元可被可移除地附接于基部402。可通过堆叠不影响感应电力传输的各种不同尺寸的间隔物来提供可变间隙408。可替代地,定位器404可提供在空间中准确的x、y和z定位来提供间隙408而不是使用间隔物。异物410、次级线圈412、友好寄生414及其他项可被可移除地附接于定位器404。由于当前实施例使用圆形线圈,因此定位器404仅提供沿单个方向的移动,通过增加间隔物的尺寸,可以改变垂直位置。在可替代的实施例中,可以使用多轴工作台来移动线圈。即使采用单方向定位器,也可以三元的形式提供移动的定位,X和Y值始终相同,这是因为移动相对于初级线圈在XY轴上是沿对角线的。由间隙408的厚度来提供三元的Z分量。
尽管在上文中描述了确定C3和C4的一个方法,但也可采用其他方法。任何已知技术可以被用于解决或估计公式中的C3和C4:
Itx 2*ESRtx-bare+Irx 2*ESRrx-bare+(C3+C4)*(itx*f)2=Inputpower-(TXpower+RXpower+Foreign Objectpower)
这个公式应在所有位置上对所有负载均保持适用。
重新参考用于确定在场中是否存在不可接受量的寄生金属的一般化的方程,C5和C6代表初级单元上的电子器件损失。一般可通过从输入电力的量中减去初级单元线圈中的电力的量来计算初级单元损失。然而,在操作期间,包括硬件来取得这些电力测量结果可能是昂贵的。此外,在一些实施例中,可以利用一些曲线拟合系数、初级单元输入电流和初级单元线圈电流来准确地估计初级单元电子器件电力损失。在可替代的实施例中,不同的测量结果可被用于估计初级单元电子器件损失。例如,在一些实施例中,损失可以被拟合为仅基于初级单元线圈电流的二阶方程。在那个实施例中,C5是一阶项而C6是二阶项加上初级单元裸线圈ESR。
C7和C8代表次级装置整流器中的损失。这些损失可以被曲线拟合为Precieved-Prectified=C7*irx-rect+C8*irx-rect 2.的二阶多项式方程。
在当前实施例中,为了简化起见,可以通过将次级装置裸线圈ESR加入C8而将次级装置线圈中的损失包括在C8中。在可替代的实施例中,次级装置线圈中的损失可以是独立的项。值得注意的是如果在次级装置上使用斜率截距电阻器网络,则可以假定C7和C8为0并且系数C9和C10可代替地被使用。为了在当前实施例中利用C7和C8项,次级线圈电流在操作期间的测量结果是必需的。通过去除那些项,计算值仍可以是足够准确的,但可以消除硬件设计中额外的复杂度。代替C7和C8,可使用系数C9来估计次级装置电力损失的量。
C9和C10可以一起被计算。在一个实施例中,对照负载绘制Preceived-Pdelivered,允许穿过曲线来近似损失的直线被画出。截距是C10并且代表次级装置电力损失偏移。由于C9项也计及传递到负载的电力,因此C9是1+斜率。
下面描述利用校准系统来校准感应电力传输系统的方法的一个实施例。
校准系统可包括用于执行电力测试和热测试的测试设备。电力测试设备可包括几何定位系统400、两个AC电流探针、两个DC电流探针以及具有10个10MHZ+12比特+采样的信道的模数转换器。模数转换器可以位于电路中的各种定位上以用于足够快地进行采样并且具有足够的分辨率来确定所需的信息。测试设备可包括经几何定位系统上的多个位置进行扫描并且对所有数据点进行采样的软件。可以1秒的速率或一些其他速率对数据点进行采样。原始数据可以被保存,或者在可替代的方案中,一旦获得某些所计算的值,原始数据就可被丢弃。在上文中讨论了可在校准期间被记录的各种值,简单地说所述值可以包括贯穿系统的各种电压、电流、频率和相位测量结果。热测试设备可被用于确定用于可接受寄生金属的量的阈值。
在校准方法的一个实施例中,可以测试接收器线圈、负载、友好寄生、定位和发射器的不同组合。例如,可以校准被设计用于特定量的电力的次级线圈的各种不同形状和尺寸。可以测试各种不同的负载,例如在每个定位上测试.2、.4、.6,、.8、1、2、3、4、5W的静态负载。可替代地或附加地,诸如特定型号的手机或其他次级装置的实际的操作装置可被测试。此外,可以测试空载的构造。可以测试各种不同的友好寄生。举例来说,材料诸如为铝板、铜板、不锈钢板、蓝钢板或手机的特定机身等。在当前实施例中,每个友好寄生比次级线圈大25%,这意味着其在每个方向上延伸超过次级线圈的边缘25%。可以测量空间中的或者分开和未对准的各种不同位置。在当前实施例中,方向保持不变,但5个不同定位被测量。可以测试各种不同初级单元或初级单元内的初级线圈。
校准的方法包括将次级装置放置在相对于初级单元的多个不同位置上,以多个不同负载操作初级单元,对于每个位置和负载组合,确定次级装置的等效串联电阻值,对于每个负载操作频率和负载组合,确定初级单元的等效串联电阻值,曲线拟合次级装置的所确定的等效串联电阻值来确定用于估计次级装置涡电流电力损失的次级装置涡电流电力损失系数,以及曲线拟合初级单元的所确定的等效串联电阻值来确定用于估计初级单元涡电流电力损失的初级单元涡电流电力损失系数。值得注意的是,由于当前实施例中的初级单元根据存在于系统中的负载来调整操作频率,因此通过改变负载或负载的位置,初级单元改变频率。频率的这些变化可能影响系统中的电力损失。
尽管结合单个次级装置描述了上面的实施例,但在操作或校准期间可计及多个次级装置。也就是说,公式和系数可以被扩展以计及系统中所有已知的次级装置和与那些次级装置相关联的损失。对于每个次级装置,所述次级装置电力损失中的每一个被重复。
上述说明是对本发明当前实施例的说明。可以进行各种改动和变化而不背离如在所附权利要求中限定的本发明的精神和更广泛的方面,这将依照包括等同原则在内的专利法原理来解读。以单数形式对权利要求的元素的提及,例如使用冠词“一”、“一个”、“该”或“所述”不应被理解为将该元素限制为单个。应理解的是,在本文中所公开和限定的本发明扩展到所提到的或从文本和/或附图中显而易见的单独的特征中的两个或更多个的所有可替代的组合。所有这些不同组合构成本发明的各个可替代的方面。

Claims (43)

1.一种控制感应电力传输系统中的感应电力传输的方法,所述系统包括初级单元和至少一个次级装置,所述初级单元具有振荡电路和切换电路并且可操作用于产生电磁场,所述至少一个次级装置与所述初级单元分开并且适于在所述次级装置处于所述初级单元附近时与所述场耦合使得电力在所述次级装置与所述初级单元之间没有直接导电接触的情况下由所述次级装置从所述初级单元感应地接收,所述方法包括:
测量所述初级单元中的输入电力的特征;
测量所述初级单元的振荡电路中的电力的特征;
在所述初级单元中接收来自所述至少一个次级装置的信息;
将所述感应电力传输系统中的电力消耗估计为至少是所测量的所述初级单元的振荡电路中的电力的特征的函数;
比较所测量的所述初级单元中的输入电力的特征、来自所述至少一个次级装置的信息以及所估计的电力消耗以通过与阈值比较确定有不可接受量的寄生金属存在于所述初级单元附近;以及
响应于所述不可接受量的寄生金属存在于所述初级单元附近的确定而限制或停止从所述初级单元的感应电力传输;
其中,来自所述至少一个次级装置的信息包括次级装置ID、所述次级装置中的电力的特征的测量结果、所述次级装置中的电力损失的估计、一个或多个电力损失系数或其组合。
2.根据权利要求1所述的方法,其中估计电力消耗包括估计所述感应电力传输系统中的电力损失、估计由所述次级装置的负载使用的电力中的至少一个或其组合。
3.根据权利要求1所述的方法,其中估计电力消耗包括将所述感应电力传输系统中的电力损失估计为所测量的所述初级单元的振荡电路中的电力的特征和来自所述次级装置的信息的函数。
4.根据权利要求1所述的方法,其中所述切换电路在操作期间以在一系列不同操作频率之间变化的操作频率操作并且估计电力消耗包括将所述感应电力传输系统中的电力损失估计为所测量的所述初级单元的振荡电路中的电力的特征、来自所述次级装置的信息以及所述切换电路的操作频率的函数。
5.根据权利要求1所述的方法,其中估计电力消耗包括
估计初级单元磁滞电力损失;
估计初级单元涡电流电力损失;
估计初级单元电压电力损失;
估计初级单元电阻电力损失;以及
估计次级装置电力消耗。
6.根据权利要求5所述的方法,其中估计次级装置电力消耗包括:
估计次级装置涡电流电力损失;
估计次级装置电压电力损失;以及
估计次级装置电阻电力损失。
7.根据权利要求5所述的方法,其中估计次级装置电力损失包括估计次级装置涡电流电力损失以及将次级装置磁滞估计为所测量的所述初级单元的振荡电路中的电力的特征的函数。
8.根据权利要求1所述的方法,其中来自所述至少一个次级装置的信息包括用于同步所测量的所述初级单元中的输入电力的特征、来自所述至少一个次级装置的信息以及所估计的电力消耗的比较的同步信息。
9.根据权利要求1所述的方法,其中所述输入电力的特征包括所述初级单元中在所述切换电路和所述振荡电路之前的电流或电压。
10.根据权利要求1所述的方法,其中所述振荡电路中的电力的特征包括所述振荡电路中的电流或电压。
11.根据权利要求1所述的方法,其中比较所测量的所述初级单元中的输入电力的特征、来自所述至少一个次级装置的信息以及所估计的电力消耗以确定有不可接受量的寄生金属存在于所述初级单元附近包括:
基于所述初级单元中的输入电力的特征和来自所述至少一个次级装置的信息计算总电力消耗;以及
通过检测所计算的总电力消耗与所估计的电力消耗之间的差来确定有异物存在于所述初级单元附近。
12.根据权利要求1所述的方法,其包括在所计算的总电力消耗与所估计的电力消耗之间的差超过所述阈值时确定不可接受量的寄生金属存在于所述初级单元附近。
13.根据权利要求1所述的方法,其包括:
将所述次级装置放置在相对于所述初级单元的多个不同位置上;
对于每个位置,确定所述次级装置的等效串联电阻值;
基于所述次级装置的等效串联电阻值确定用于估计次级装置涡电流电力损失的涡电流电力损失系数。
14.根据权利要求1所述的方法,其包括:
将所述次级装置放置在相对于所述初级单元的多个不同位置上并且以多个不同操作频率操作所述初级单元;
对于每个位置和操作频率的组合,确定所述次级装置的等效串联电阻值;
基于所述次级装置的等效串联电阻值确定用于估计次级装置涡电流电力损失的涡电流电力损失系数。
15.根据权利要求14所述的方法,其中确定所述次级装置的等效串联电阻值包括单独测量所述初级单元的等效串联电阻,测量所述感应电力传输系统的等效串联电阻,以及从所述感应电力传输系统的等效串联电阻中减去单独的所述初级单元的等效串联电阻以确定所述次级装置的等效串联电阻值。
16.根据权利要求14所述的方法,其中所述初级单元包括初级单元屏蔽体、初级单元磁体,并且所述初级单元振荡电路包括初级单元线圈,所述次级装置包括次级线圈、次级屏蔽体和次级友好寄生金属。
17.根据权利要求1所述的方法,其包括:
将所述次级装置放置在相对于所述初级单元的多个不同位置上;
以多个不同操作频率操作所述初级单元;
将多个不同负载连接至所述次级装置;
对于每个位置、操作频率和负载的组合,确定所述次级装置的等效串联电阻值;
基于所述次级装置的等效串联电阻值确定用于估计次级装置涡电流电力损失的涡电流电力损失系数。
18.一种用于设计带有电力统计的感应电力传输系统的方法,其包括:
提供带有用于传输非接触式能量的振荡电路的初级侧;
提供包括用于接收所述非接触式能量的次级线圈和与负载电通信的负载的次级侧;
改变所述初级侧与所述次级侧之间的距离;
改变所述次级侧的负载;
对于所述初级侧与所述次级侧之间的多个距离以及对于多个负载,测量在非接触式能量的传输期间的所述振荡电路中的初级侧的至少一个电路参数;
对于所述初级侧与所述次级侧之间的多个距离以及对于所述次级装置的多个负载,测量在非接触式能量的传输期间的所述次级侧的至少一个电路参数;
基于多个系数、所述振荡电路中的初级侧的所述至少一个电路参数以及所述次级侧的所述至少一个电路参数选择公式来描述在非接触式能量的传输期间的所述系统中的电力消耗;以及使用所测量的所述次级侧的电路参数和所测量的所述初级侧的电路参数来确定所述系数。
19.根据权利要求18所述的方法,其中确定所述系数包括通过对所述系统中的部件的物理观察以及基于电力损失的类型确定所述系数。
20.根据权利要求18所述的方法,其中确定所述系数包括通过曲线拟合来确定所述系数。
21.根据权利要求20所述的方法,其中使用多元多项式回归来执行所述曲线拟合。
22.根据权利要求18所述的方法,其包括将一个或多个系数存储在初级单元中以及将一个或多个系数存储在次级装置上。
23.根据权利要求18所述的方法,其中所述公式包括所述初级侧的电力损失的估计、所述次级侧的电力损失的估计以及由所述负载使用的电力的估计。
24.根据权利要求18所述的方法,其中所述公式包括所述感应电力传输系统中的电力损失作为所述初级侧的电路参数和所述次级侧的电路参数的函数的估计。
25.根据权利要求18所述的方法,其中,
对于所述初级单元中的多个操作频率,测量在非接触式能量的传输期间的所述次级侧的至少一个电路参数并且测量在非接触式能量的传输期间的所述振荡电路中的初级侧的至少一个电路参数。
26.根据权利要求18所述的方法,其中所述公式包括下列各项的估计:
初级侧磁滞电力损失;
初级侧涡电流电力损失;
初级侧电压电力损失;
初级侧电阻电力损失;以及
次级侧电力消耗。
27.根据权利要求26所述的方法,其中所述次级装置电力消耗包括:
次级侧涡电流电力损失;
次级侧电压电力损失;以及
次级侧电阻电力损失。
28.根据权利要求26所述的方法,其中所述公式包括次级侧涡电流电力损失和次级侧磁滞电力损失作为所述振荡电路中的电路参数的函数的估计。
29.根据权利要求18所述的方法,其中所述振荡电路中的电路参数包括所述振荡电路中的电流和电压中的至少一个。
30.根据权利要求18所述的方法,其包括:
对于所述初级侧与所述次级侧之间的每个距离,确定所述次级侧的等效串联电阻值;以及基于所述等效串联电阻值确定涡电流电力损失系数。
31.根据权利要求25所述的方法,其包括:
对于所述初级侧与所述次级侧之间的距离和操作频率的每个组合,确定所述次级装置的等效串联电阻值;
基于所述等效串联电阻值确定涡电流电力损失系数。
32.一种初级单元,其具有振荡电路和切换电路并且可操作用于产生用于将电力传输给至少一个次级装置的电磁场,所述至少一个次级装置与所述初级单元分开并且适于在所述次级装置处于所述初级单元附近时与所述场耦合使得电力在所述次级装置与所述初级单元之间没有直接导电接触的情况下由所述次级装置从所述初级单元感应地接收,所述初级单元包括:
用于测量所述初级单元中的输入电力的特征的传感器;
用于测量所述初级单元的振荡电路中的电力的特征的传感器;
用于接收来自所述至少一个次级装置的信息的接收器,其中,来自所述至少一个次级装置的信息包括次级装置ID、所述次级装置中的电力的特征的测量结果、所述次级装置中的电力损失的估计、一个或多个电力损失系数或其组合;
控制器,其被编程用于:
将所述感应电力传输系统中的电力消耗估计为至少是所测量的所述初级单元的振荡电路中的电力的特征的函数;
比较所测量的所述初级单元中的输入电力的特征、来自所述至少一个次级装置的信息以及所估计的电力消耗以通过与阈值比较确定有不可接受量的寄生金属存在于所述初级单元附近;以及
响应于所述不可接受量的寄生金属存在于所述初级单元附近的确定而限制或停止从所述初级单元的感应电力传输。
33.根据权利要求32所述的初级单元,其中估计电力消耗包括估计所述感应电力传输系统中的电力损失、估计由所述次级装置的负载使用的电力中的至少一个或其组合。
34.根据权利要求32所述的初级单元,其中估计电力消耗包括将所述感应电力传输系统中的电力损失估计为所测量的所述初级单元的振荡电路中的电力的特征和来自所述次级装置的信息的函数。
35.根据权利要求32所述的初级单元,其中所述切换电路在操作期间以在一系列操作频率之间变化的操作频率操作并且估计电力消耗包括将所述感应电力传输系统中的电力损失估计为所测量的所述初级单元的振荡电路中的电力的特征、来自所述次级装置的信息以及所述切换电路的操作频率的函数。
36.根据权利要求32所述的初级单元,其中估计电力消耗包括
估计初级单元磁滞电力损失;
估计初级单元涡电流电力损失;
估计初级单元电压电力损失;
估计初级单元电阻电力损失;以及
估计次级装置电力消耗。
37.根据权利要求36所述的初级单元,其中估计次级装置电力消耗包括:
估计次级装置涡电流电力损失;
估计次级装置电压电力损失;以及
估计次级装置电阻电力损失。
38.根据权利要求36所述的初级单元,其中估计次级装置电力损失包括估计次级装置涡电流电力损失以及将次级装置磁滞估计为所测量的所述初级单元的振荡电路中的电力的特征的函数。
39.根据权利要求32所述的初级单元,其中来自所述至少一个次级装置的信息包括用于同步所测量的所述初级单元中的输入电力的特征、来自所述至少一个次级装置的信息以及所估计的电力消耗的比较的同步信息。
40.根据权利要求32所述的初级单元,其中所述输入电力的特征包括所述初级单元中在所述切换电路和所述振荡电路之前的电流或电压。
41.根据权利要求32所述的初级单元,其中所述振荡电路中的电力的特征包括所述振荡电路中的电流或电压。
42.根据权利要求32所述的初级单元,其中比较所测量的所述初级单元中的输入电力的特征、来自所述至少一个次级装置的信息以及所估计的电力消耗以确定有不可接受量的寄生金属存在于所述初级单元附近包括:
基于所述初级单元中的输入电力的特征和来自所述至少一个次级装置的信息计算总电力消耗;以及
通过检测所计算的总电力消耗与超过所述阈值的所估计的电力消耗之间的差来确定有异物存在于所述初级单元附近。
43.根据权利要求32所述的初级单元,其包括在所计算的总电力消耗与所估计的电力消耗之间的差超过所述阈值时确定不可接受量的寄生金属存在于所述初级单元附近。
CN201180016987.0A 2010-02-08 2011-02-08 输入寄生金属检测 Active CN102823101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510251612.2A CN105048643B (zh) 2010-02-08 2011-02-08 输入寄生金属检测

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30234910P 2010-02-08 2010-02-08
US61/302,349 2010-02-08
US61/302349 2010-02-08
PCT/US2011/023994 WO2011097608A2 (en) 2010-02-08 2011-02-08 Input parasitic metal detection

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510251612.2A Division CN105048643B (zh) 2010-02-08 2011-02-08 输入寄生金属检测

Publications (2)

Publication Number Publication Date
CN102823101A CN102823101A (zh) 2012-12-12
CN102823101B true CN102823101B (zh) 2015-06-17

Family

ID=44354347

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510251612.2A Active CN105048643B (zh) 2010-02-08 2011-02-08 输入寄生金属检测
CN201180016987.0A Active CN102823101B (zh) 2010-02-08 2011-02-08 输入寄生金属检测

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510251612.2A Active CN105048643B (zh) 2010-02-08 2011-02-08 输入寄生金属检测

Country Status (7)

Country Link
US (4) US8620484B2 (zh)
JP (4) JP5869497B2 (zh)
KR (2) KR101839588B1 (zh)
CN (2) CN105048643B (zh)
GB (1) GB2490074B (zh)
TW (3) TWI636634B (zh)
WO (1) WO2011097608A2 (zh)

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839588B1 (ko) * 2010-02-08 2018-03-22 필립스 아이피 벤쳐스 비.브이. 입력 기생 금속 검출
US9671444B2 (en) 2011-02-01 2017-06-06 Fu Da Tong Technology Co., Ltd. Current signal sensing method for supplying-end module of induction type power supply system
TWI642253B (zh) * 2017-09-14 2018-11-21 富達通科技股份有限公司 偵測受電模組之方法及供電模組
US10615645B2 (en) 2011-02-01 2020-04-07 Fu Da Tong Technology Co., Ltd Power supply device of induction type power supply system and NFC device identification method of the same
US9628147B2 (en) 2011-02-01 2017-04-18 Fu Da Tong Technology Co., Ltd. Method of automatically adjusting determination voltage and voltage adjusting device thereof
US10630113B2 (en) 2011-02-01 2020-04-21 Fu Da Tong Technology Co., Ltd Power supply device of induction type power supply system and RF magnetic card identification method of the same
TWI655824B (zh) * 2018-04-18 2019-04-01 富達通科技股份有限公司 感應式電源供應器之金屬異物檢測方法及其供電模組
US10312748B2 (en) 2011-02-01 2019-06-04 Fu Da Tong Techology Co., Ltd. Signal analysis method and circuit
TWI568125B (zh) 2015-01-14 2017-01-21 富達通科技股份有限公司 感應式電源供應器之供電模組及其電壓測量方法
US10038338B2 (en) 2011-02-01 2018-07-31 Fu Da Tong Technology Co., Ltd. Signal modulation method and signal rectification and modulation device
US11128180B2 (en) 2011-02-01 2021-09-21 Fu Da Tong Technology Co., Ltd. Method and supplying-end module for detecting receiving-end module
US10673287B2 (en) 2011-02-01 2020-06-02 Fu Da Tong Technology Co., Ltd. Method and supplying-end module for detecting receiving-end module
US10574095B2 (en) 2011-02-01 2020-02-25 Fu Da Tong Technology Co., Ltd. Decoding method for signal processing circuit and signal processing circuit using the same
TWI577108B (zh) * 2016-05-13 2017-04-01 富達通科技股份有限公司 感應式電源供應器及其金屬異物檢測方法
US10289142B2 (en) 2011-02-01 2019-05-14 Fu Da Tong Technology Co., Ltd. Induction type power supply system and intruding metal detection method thereof
US9600021B2 (en) 2011-02-01 2017-03-21 Fu Da Tong Technology Co., Ltd. Operating clock synchronization adjusting method for induction type power supply system
US9831687B2 (en) 2011-02-01 2017-11-28 Fu Da Tong Technology Co., Ltd. Supplying-end module for induction-type power supply system and signal analysis circuit therein
US10056944B2 (en) 2011-02-01 2018-08-21 Fu Da Tong Technology Co., Ltd. Data determination method for supplying-end module of induction type power supply system and related supplying-end module
TWI570427B (zh) * 2015-10-28 2017-02-11 富達通科技股份有限公司 感應式電源供應器及其金屬異物檢測方法
KR20120102316A (ko) * 2011-03-08 2012-09-18 삼성전자주식회사 무선 전력 송수신 시스템
WO2012127335A1 (en) * 2011-03-21 2012-09-27 Koninklijke Philips Electronics N.V. Calculating power loss for inductive power transmission
US9882426B2 (en) * 2011-06-01 2018-01-30 Samsung Electronics Co., Ltd. Method and apparatus for detecting efficiency of wireless power transmission
DE102011105063B4 (de) * 2011-06-21 2023-09-21 Airbus Operations Gmbh Detektion eines Fremdkörpers in einem induktiven Übertragungsweg
JP5940784B2 (ja) * 2011-09-09 2016-06-29 国立大学法人埼玉大学 移動体用非接触給電装置
DE102011113336B4 (de) * 2011-09-15 2020-10-22 Sew-Eurodrive Gmbh & Co Kg Anordnung zur Überwachung einer Anordnung zur induktiven Energieübertragung von einem stationären Anlagenteil an ein Mobilteil
US9450648B2 (en) * 2011-10-13 2016-09-20 Integrated Device Technology, Inc. Apparatus, system, and method for detecting a foreign object in an inductive wireless power transfer system
US9551805B2 (en) * 2011-10-13 2017-01-24 Integrated Device Technology, Inc. Apparatus, system, and method for detecting a foreign object in an inductive wireless power transfer system via coupling coefficient measurement
JP5838768B2 (ja) 2011-11-30 2016-01-06 ソニー株式会社 検知装置、受電装置、非接触電力伝送システム及び検知方法
CN116111736A (zh) * 2011-12-16 2023-05-12 奥克兰联合服务有限公司 感应功率传输系统和方法
US9270134B2 (en) * 2012-01-27 2016-02-23 Medtronic, Inc. Adaptive rate recharging system
US10682520B2 (en) 2012-01-27 2020-06-16 Medtronic, Inc. Managing recharge power for implantable medical devices
JP5903624B2 (ja) * 2012-03-09 2016-04-13 パナソニックIpマネジメント株式会社 非接触電力伝達装置の駆動方法及び非接触電力伝達装置
JP5885074B2 (ja) * 2012-03-26 2016-03-15 株式会社Ihi 非接触電力伝送装置及び方法
US9431989B2 (en) * 2012-03-30 2016-08-30 Panasonic Intellectual Property Management Co., Ltd. Power transmitting device, electronic equipment and wireless power transmission system
JP5966538B2 (ja) * 2012-04-10 2016-08-10 ソニー株式会社 受電装置、受電装置の制御方法、および、給電システム
JP5757269B2 (ja) * 2012-04-12 2015-07-29 株式会社デンソー 非接触給電装置
KR102185160B1 (ko) * 2012-05-02 2020-12-02 애플 인크. 유도선 전력 전송 시스템에서 수신기를 탐지하고 식별하기 위한 방법들
WO2013165261A2 (en) 2012-05-02 2013-11-07 Powerbyproxi Limited Methods for detecting and identifying a receiver in an inductive power transfer system
DE202013012730U1 (de) 2012-06-22 2018-12-02 Sony Corporation Verarbeitungsvorrichtung
JP5915904B2 (ja) * 2012-06-22 2016-05-11 ソニー株式会社 処理装置、処理方法、及び、プログラム
DE102012210930A1 (de) * 2012-06-27 2014-01-02 Robert Bosch Gmbh Energieübertragungsanordnung und Verfahren zum Betreiben der Energieübertragungsanordnung
KR101950688B1 (ko) 2012-07-09 2019-02-21 삼성전자주식회사 무선 전력 송신기 및 그 제어 방법
KR102074475B1 (ko) * 2012-07-10 2020-02-06 지이 하이브리드 테크놀로지스, 엘엘씨 무선 전력 전송 시스템에서 이물질 감지 장치 및 방법
KR101962667B1 (ko) * 2012-07-12 2019-03-27 삼성전자주식회사 무선 전력 송신기, 무선 전력 수신기 및 각각의 제어 방법
DE102012107916A1 (de) * 2012-08-28 2014-03-06 Fujitsu Technology Solutions Intellectual Property Gmbh Verfahren zur Bestimmung eines Ersatzwerts einer primärseitigen Leistungsaufnahme eines Netzteils, Computersystem und Computerprogrammprodukt
US10173539B2 (en) 2012-08-31 2019-01-08 Siemens Aktiengesellschaft Battery charging system and method for cableless charging of a battery with voltage and current sensors on both the primary and secondary sides and a DC-DC converter on the primary side involved in an efficiency calibration power loop
TWI565176B (zh) * 2012-09-28 2017-01-01 Wow Tech Corp Non - contact induction transmission equipment
ES2838648T3 (es) * 2012-10-16 2021-07-02 Koninklijke Philips Nv Transferencia de potencia inductiva inalámbrica
JP6696771B2 (ja) 2012-11-05 2020-05-20 アップル インコーポレイテッドApple Inc. 誘導結合型の電力伝送方法及びシステム
EP2730451A1 (en) * 2012-11-13 2014-05-14 Alcatel Lucent A device and a method for controlling an induction coil
US9287718B2 (en) * 2013-03-01 2016-03-15 Nokia Technologies Oy Method, apparatus, and computer program product for foreign object detection parameter and charging data communication with wireless charging capable battery pack
CN103887985B (zh) 2013-04-12 2019-05-10 台湾快捷国际股份有限公司 无线感应式电源供应器的控制装置及控制方法
JP2014225961A (ja) * 2013-05-16 2014-12-04 ソニー株式会社 検知装置、給電システム、および、検知装置の制御方法
JP2014230443A (ja) * 2013-05-24 2014-12-08 三洋電機株式会社 無接点給電方法
JP6166598B2 (ja) 2013-06-26 2017-07-19 キヤノン株式会社 送電装置、受電装置、無線電力伝送システム、制御方法、及びプログラム
JP2015012632A (ja) * 2013-06-26 2015-01-19 キヤノン株式会社 送電装置、制御方法、及びプログラム
KR102107768B1 (ko) * 2013-07-24 2020-05-07 엘지이노텍 주식회사 보조 전원을 내장한 무선 충전 장치와 보조 전원 장치
US9929601B2 (en) * 2013-08-23 2018-03-27 Qualcomm Incorporated Apparatus and method for lost power detection
JP6179276B2 (ja) * 2013-08-28 2017-08-16 富士通株式会社 情報処理装置及び電源監視回路
JP6387222B2 (ja) * 2013-08-28 2018-09-05 ソニー株式会社 給電装置、受電装置、給電システム、および、給電装置の制御方法
US9882437B2 (en) * 2013-08-28 2018-01-30 Sony Corporation Power feeding apparatus, power receiving apparatus, power feeding system, and method of controlling power feeding
DE202014011252U1 (de) 2013-08-28 2018-11-06 Sony Corporation Leistungseinspeisungsvorrichtung, Leistungsempfangsvorrichtung und Leistungseinspeisungssystem
KR102166687B1 (ko) * 2013-10-31 2020-10-16 엘지전자 주식회사 무선 전력 전송 장치 및 그 제어 방법
CN104659922B (zh) * 2013-11-18 2017-01-18 立锜科技股份有限公司 电力计算的方法
EP2876770B1 (de) * 2013-11-22 2016-08-17 TOSHIBA Electronics Europe GmbH Verfahren zur kabellosen Übertragung einer Leistung
US10031165B2 (en) 2013-12-23 2018-07-24 Qualcomm Technologies International, Ltd. Wireless charging performance measurement
US10447061B2 (en) * 2014-01-16 2019-10-15 Mediatek Inc. Method for performing wireless charging control of an electronic device with aid of variant slot timing and simple response indicating acknowledgement, and associated apparatus
US9941751B2 (en) * 2014-01-27 2018-04-10 Mediatek Inc. Method for performing wireless charging control of an electronic device with aid of predetermined data in non-volatile memory, and associated apparatus
JP6160504B2 (ja) * 2014-02-20 2017-07-12 トヨタ自動車株式会社 受電装置
US10664772B1 (en) 2014-03-07 2020-05-26 Steelcase Inc. Method and system for facilitating collaboration sessions
US9716861B1 (en) 2014-03-07 2017-07-25 Steelcase Inc. Method and system for facilitating collaboration sessions
PL3407466T3 (pl) 2014-03-25 2020-06-15 Koninklijke Philips N.V. Bezprzewodowe indukcyjne przesyłanie mocy
US9634494B2 (en) * 2014-03-25 2017-04-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Power amplifier for wireless power transmission
US9939539B2 (en) * 2014-04-04 2018-04-10 Texas Instruments Incorporated Wireless power receiver and/or foreign object detection by a wireless power transmitter
JP6619546B2 (ja) * 2014-04-25 2019-12-11 ローム株式会社 電力供給装置、acアダプタ、acチャージャ、電子機器および電力供給システム
US9179066B1 (en) * 2014-05-31 2015-11-03 Apple Inc. Temperature compensation for sensors
US9380682B2 (en) 2014-06-05 2016-06-28 Steelcase Inc. Environment optimization for space based on presence and activities
US9766079B1 (en) 2014-10-03 2017-09-19 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US9955318B1 (en) 2014-06-05 2018-04-24 Steelcase Inc. Space guidance and management system and method
US11744376B2 (en) 2014-06-06 2023-09-05 Steelcase Inc. Microclimate control systems and methods
US10433646B1 (en) 2014-06-06 2019-10-08 Steelcaase Inc. Microclimate control systems and methods
US10614694B1 (en) 2014-06-06 2020-04-07 Steelcase Inc. Powered furniture assembly
EP2955814B1 (en) 2014-06-13 2021-08-18 Nokia Technologies Oy A foreign object detection manipulation method
JP6630680B2 (ja) 2014-06-13 2020-01-15 ノキア テクノロジーズ オーユー 異物検出法の実行頻度を決定する方法
US10193372B2 (en) * 2014-09-02 2019-01-29 Apple Inc. Operating an inductive energy transfer system
JP6359924B2 (ja) * 2014-09-17 2018-07-18 トヨタ自動車株式会社 非接触送受電システム
DE102014219964A1 (de) * 2014-10-01 2016-04-07 Robert Bosch Gmbh Verfahren zur Fremdobjekterkennung für eine Induktionsladevorrichtung und Induktionsladevorrichtung
US9852388B1 (en) 2014-10-03 2017-12-26 Steelcase, Inc. Method and system for locating resources and communicating within an enterprise
CN105790324B (zh) * 2014-12-16 2020-02-14 财团法人车辆研究测试中心 无线充电系统及其金属异物检测方法
SE541339C2 (en) 2014-12-19 2019-07-16 Nok9 Ip Ab A mobile device tester for precise inductive power measurement and a calibration unit therefor
US10153665B2 (en) 2015-01-14 2018-12-11 Fu Da Tong Technology Co., Ltd. Method for adjusting output power for induction type power supply system and related supplying-end module
US9815381B2 (en) * 2015-02-27 2017-11-14 Qualcomm Incorporated Systems, methods, and apparatus for partial electronics integration in vehicle pads for wireless power transfer applications
CN112564299B (zh) 2015-03-04 2024-03-05 苹果公司 感应功率发射器
KR20170132868A (ko) 2015-04-02 2017-12-04 파워바이프록시 리미티드 유도성 전력 전송기
US10733371B1 (en) 2015-06-02 2020-08-04 Steelcase Inc. Template based content preparation system for use with a plurality of space types
CN106451815B (zh) * 2015-08-06 2021-06-11 松下知识产权经营株式会社 送电装置以及无线功率传输系统
US10199881B2 (en) 2015-10-23 2019-02-05 Mediatek Inc. Robust foreign objects detection
EP3709470A1 (en) 2015-11-19 2020-09-16 Apple Inc. Inductive power transmitter
CN107026516B (zh) * 2016-02-01 2022-04-05 恩智浦美国有限公司 无线充电系统中的接收机移除检测
US10530196B2 (en) 2016-02-05 2020-01-07 Texas Instruments Incorporated Methods and apparatus for power loss calibration in a wireless power system
JP6311736B2 (ja) * 2016-03-22 2018-04-18 Tdk株式会社 給電装置およびワイヤレス電力伝送装置
WO2017176128A1 (en) 2016-04-04 2017-10-12 Powerbyproxi Limited Inductive power transmitter
KR20170118571A (ko) * 2016-04-15 2017-10-25 엘지이노텍 주식회사 Fo 검출 방법 및 그를 위한 장치 및 시스템
US9921726B1 (en) 2016-06-03 2018-03-20 Steelcase Inc. Smart workstation method and system
US10291193B2 (en) * 2016-09-02 2019-05-14 Texas Instruments Incorporated Combining power amplifiers at millimeter wave frequencies
US20180091001A1 (en) * 2016-09-28 2018-03-29 Witricity Corporation Mitigating False Detection of Foreign Objects in Wireless Power Systems
JP6877953B2 (ja) * 2016-10-28 2021-05-26 キヤノン株式会社 非接触給電装置、非接触給電装置の制御方法、プログラム
JP7181214B2 (ja) 2016-12-06 2022-11-30 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置
KR102605047B1 (ko) * 2016-12-08 2023-11-24 엘지이노텍 주식회사 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
US10264213B1 (en) 2016-12-15 2019-04-16 Steelcase Inc. Content amplification system and method
JP7353178B2 (ja) 2017-03-07 2023-09-29 パワーマット テクノロジーズ リミテッド 無線電力充電用のシステム
EP3373413B1 (en) 2017-03-07 2023-08-02 Powermat Technologies Ltd. System for wireless power charging
JP7278217B2 (ja) 2017-03-07 2023-05-19 パワーマット テクノロジーズ リミテッド 無線電力充電用のシステム
WO2018163177A1 (en) 2017-03-07 2018-09-13 Powermat Technologies Ltd. System for wireless power charging
EP3393009B1 (en) * 2017-04-21 2019-11-13 MediaTek Inc. Detecting foreign objects in wireless power transfer systems
CN106972651B (zh) * 2017-05-03 2019-10-15 南京农业大学 一种电动汽车无线充电异物检测系统
US10732251B2 (en) * 2017-07-07 2020-08-04 The Regents Of The University Of Michigan Wireless power transfer metering
US11108277B2 (en) * 2017-08-25 2021-08-31 Apple Inc. Wireless power transfer control based on required and received power error
US10581282B2 (en) * 2017-08-30 2020-03-03 Nxp Usa, Inc. Methods and systems for foreign objection detection in wireless energy transfer systems
KR102391649B1 (ko) * 2017-09-04 2022-04-27 현대자동차주식회사 이물질 검출 방법, 이를 이용하는 무선 전력전송 제어 장치 및 무선 전력전송 장치
EP3591805A1 (en) * 2018-07-03 2020-01-08 Koninklijke Philips N.V. Power transmitter and method of operation therefor
CN110945745B (zh) 2018-07-19 2023-09-01 联发科技(新加坡)私人有限公司 无线功率传输系统中的异物侦测
EP3637583A1 (en) * 2018-10-09 2020-04-15 Koninklijke Philips N.V. Wireless power transfer
CN111245107B (zh) * 2018-11-28 2024-03-19 集成装置技术公司 无线电力传送系统中利用线圈电流感测的增强型异物检测
US11527920B2 (en) * 2018-11-28 2022-12-13 Integrated Device Technology, Inc. Enhanced foreign object detection with coil current sensing in wireless power transfer systems
CN114928177A (zh) 2018-11-30 2022-08-19 韦特里西提公司 用于高功率无线功率系统中的低功率激励的系统和方法
CN111371189A (zh) 2018-12-26 2020-07-03 恩智浦美国有限公司 在具有复杂谐振电路的无线充电系统中确定q因数
JP7047782B2 (ja) * 2019-01-11 2022-04-05 オムロン株式会社 送電装置の制御装置、送電装置、及び非接触電力伝送システム
US11695271B2 (en) 2019-05-24 2023-07-04 Witricity Corporation Protection circuits for wireless power receivers
KR102210577B1 (ko) 2019-07-26 2021-02-02 이종욱 에어컨 냉매 배관의 메쉬 감지방법
KR20220044781A (ko) * 2019-08-07 2022-04-11 스트리커 코포레이션 무선 충전 시스템을 위한 외래 물체 검출
WO2021041574A1 (en) 2019-08-26 2021-03-04 Witricity Corporation Control of active rectification in wireless power systems
US11811242B1 (en) * 2019-09-16 2023-11-07 Apple Inc. Loss-split modeling for wireless power transfer
JP7375824B2 (ja) * 2019-10-11 2023-11-08 株式会社村田製作所 ワイヤレス充電固体電池モジュール
KR20210089529A (ko) 2020-01-08 2021-07-16 삼성전자주식회사 무선 충전 중에 이물질을 검출하는 무선 충전 방법 및 시스템
US11695270B2 (en) 2020-01-29 2023-07-04 Witricity Corporation Systems and methods for auxiliary power dropout protection
CN115244816A (zh) 2020-03-06 2022-10-25 韦特里西提公司 无线电力系统中的有源整流
WO2022103490A1 (en) * 2020-11-11 2022-05-19 Medtronic, Inc. Detecting heating of implanted coil hermetic package when misaligned
KR20230162624A (ko) * 2021-03-26 2023-11-28 엘지전자 주식회사 무선 전력 전송 시스템에서 커플링 인자를 활용하는방법 및 장치
US20220320911A1 (en) * 2021-03-30 2022-10-06 Apple Inc. Wireless Power Systems With Shared Inductive-Loss Scaling Factors
WO2023004398A1 (en) * 2021-07-21 2023-01-26 Microchip Technology Incorporated Object detection in wireless charging systems and related systems, methods, and devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1954472A (zh) * 2004-05-11 2007-04-25 斯普莱希鲍尔有限公司 控制感应功率传输系统

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659092B2 (ja) 1985-04-15 1994-08-03 ソニー株式会社 フレ−ムシンクロナイザ−
US4654573A (en) * 1985-05-17 1987-03-31 Flexible Manufacturing Systems, Inc. Power transfer device
US4800328A (en) * 1986-07-18 1989-01-24 Inductran Inc. Inductive power coupling with constant voltage output
NL9101590A (nl) 1991-09-20 1993-04-16 Ericsson Radio Systems Bv Stelsel voor het laden van een oplaadbare accu van een draagbare eenheid in een rek.
JPH08251843A (ja) * 1995-03-13 1996-09-27 Fuji Electric Co Ltd 非接触給電装置
JPH09103037A (ja) 1995-10-05 1997-04-15 Nippon Ido Tsushin Kk 給電装置、被給電装置および給電システム
US5734254A (en) * 1996-12-06 1998-03-31 Hewlett-Packard Company Battery pack and charging system for a portable electronic device
JPH10215530A (ja) 1997-01-28 1998-08-11 Matsushita Electric Works Ltd 非接触電力伝送装置
DE19741279A1 (de) 1997-09-19 1999-03-25 Salcomp Oy Vorrichtung zum Aufladen von Akkumulatoren in einem elektrischen Gerät
DE19836401A1 (de) 1997-09-19 2000-02-17 Salcomp Oy Salo Vorrichtung zum Aufladen von Akkumulatoren
DE19837675A1 (de) * 1998-08-19 2000-02-24 Nokia Technology Gmbh Ladevorrichtung für Akkumulatoren in einem mobilen elektrischen Gerät mit induktiver Energieübertragung
DE29816725U1 (de) * 1998-09-17 1999-01-14 Chao Wen Chung Ladungsvorrichtung für mobile Telefone
JP2000295796A (ja) 1999-04-02 2000-10-20 Tokin Corp 非接触電力供給装置
US7126450B2 (en) * 1999-06-21 2006-10-24 Access Business Group International Llc Inductively powered apparatus
US7212414B2 (en) * 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
JP2001275282A (ja) 2000-03-28 2001-10-05 Sharp Corp 非接触による電力及び信号伝達装置
JP3507764B2 (ja) * 2000-04-24 2004-03-15 シャープ株式会社 電気機器
DE10119283A1 (de) * 2001-04-20 2002-10-24 Philips Corp Intellectual Pty System zur drahtlosen Übertragung elektrischer Leistung, ein Kleidungsstück, ein System von Kleidungsstücken und Verfahren zum Übertragen von Signalen und/oder elektrischer Leistung
JP2003011734A (ja) * 2001-04-26 2003-01-15 Denso Corp 車両用電気機器取付構造
JP2003264934A (ja) 2002-03-08 2003-09-19 Denso Wave Inc 非接触式充電システム、充電装置及び被充電機器
GB0210886D0 (en) * 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
WO2004015885A1 (en) 2002-08-12 2004-02-19 Mobilewise, Inc. Wireless power supply system for small devices
US8183827B2 (en) * 2003-01-28 2012-05-22 Hewlett-Packard Development Company, L.P. Adaptive charger system and method
US20050007106A1 (en) * 2003-05-23 2005-01-13 Jentek Sensors, Inc. Hybrid wound/etched winding constructs for scanning and monitoring
NZ528542A (en) 2003-09-29 2006-09-29 Auckland Uniservices Ltd Inductively-powered power transfer system with one or more, independently controlled loads
US7233137B2 (en) * 2003-09-30 2007-06-19 Sharp Kabushiki Kaisha Power supply system
GB2414121B (en) * 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
JP2008039394A (ja) 2004-11-29 2008-02-21 Univ Nihon 金属検知装置の電磁誘導センサ
JP4774217B2 (ja) * 2005-02-15 2011-09-14 高石 好 電力伝送装置、電力伝送方法
KR100554889B1 (ko) * 2005-03-21 2006-03-03 주식회사 한림포스텍 무접점 충전 시스템
HRP20211554T1 (hr) * 2007-03-22 2021-12-24 Powermat Technologies Ltd. Nadzorni uređaj učinkovitosti za induktivni prijenos snage
JP2008312434A (ja) * 2007-05-11 2008-12-25 Seiko Epson Corp コイル装置、それを用いた受電装置及び送電装置並びに電子機器
DE112008001763T5 (de) 2007-07-09 2010-04-29 Mitsubishi Electric Corporation Spracherkennungsvorrichtung und Navigationssystem
JP2009027781A (ja) * 2007-07-17 2009-02-05 Seiko Epson Corp 受電制御装置、受電装置、無接点電力伝送システム、充電制御装置、バッテリ装置および電子機器
WO2009014125A1 (ja) * 2007-07-23 2009-01-29 Universal Device Technology Co., Ltd. 充電池ユニットとそのための電力伝送システム及び電力伝送方法
US8884468B2 (en) * 2007-12-21 2014-11-11 Access Business Group International Llc Circuitry for inductive power transfer
JP4893689B2 (ja) * 2008-05-09 2012-03-07 セイコーエプソン株式会社 受電装置、電子機器、無接点電力伝送システム、および送電装置
US8629650B2 (en) * 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
WO2010062198A1 (en) 2008-11-26 2010-06-03 Auckland Uniservices Limited Bi-directional inductive power transfer
TWM369581U (en) * 2009-05-27 2009-11-21 shi-chong Chen Wireless electrical energy transmission charger
JP2010284006A (ja) * 2009-06-05 2010-12-16 Nec Tokin Corp 非接触電力伝送装置
JP5499608B2 (ja) * 2009-10-06 2014-05-21 パナソニック株式会社 非接触充電器
KR101839588B1 (ko) * 2010-02-08 2018-03-22 필립스 아이피 벤쳐스 비.브이. 입력 기생 금속 검출
US9178369B2 (en) * 2011-01-18 2015-11-03 Mojo Mobility, Inc. Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1954472A (zh) * 2004-05-11 2007-04-25 斯普莱希鲍尔有限公司 控制感应功率传输系统

Also Published As

Publication number Publication date
JP6515142B2 (ja) 2019-05-15
US20170063165A1 (en) 2017-03-02
JP2017195771A (ja) 2017-10-26
JP6782325B2 (ja) 2020-11-11
CN105048643B (zh) 2018-08-03
JP2016042788A (ja) 2016-03-31
KR20180030723A (ko) 2018-03-23
TW201143250A (en) 2011-12-01
GB201213946D0 (en) 2012-09-19
GB2490074B (en) 2014-02-19
TW201616782A (zh) 2016-05-01
WO2011097608A3 (en) 2012-04-26
JP5869497B2 (ja) 2016-02-24
CN105048643A (zh) 2015-11-11
WO2011097608A2 (en) 2011-08-11
KR20130002992A (ko) 2013-01-08
US8620484B2 (en) 2013-12-31
US10862335B2 (en) 2020-12-08
TWI636634B (zh) 2018-09-21
GB2490074A (en) 2012-10-17
KR101839588B1 (ko) 2018-03-22
TWI523366B (zh) 2016-02-21
JP2019110760A (ja) 2019-07-04
CN102823101A (zh) 2012-12-12
JP2013519355A (ja) 2013-05-23
US9524822B2 (en) 2016-12-20
US20210083522A1 (en) 2021-03-18
TW201707330A (zh) 2017-02-16
US20110196544A1 (en) 2011-08-11
US11888337B2 (en) 2024-01-30
JP6170187B2 (ja) 2017-07-26
TWI577103B (zh) 2017-04-01
KR101928904B1 (ko) 2018-12-14
US20140077616A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
CN102823101B (zh) 输入寄生金属检测
JP5069780B2 (ja) 誘導電力転送システムの制御
JP2013519355A5 (zh)
US11424647B2 (en) Foreign object detection in a wireless power transfer system
KR20120093358A (ko) 무선 전력 전송 장치
US11527920B2 (en) Enhanced foreign object detection with coil current sensing in wireless power transfer systems
US20090133942A1 (en) Power transmission control device, power transmitting device, electronic instrument, and non-contact power transmission system
TW201001867A (en) Inductive power transfer
KR20200064934A (ko) 무선 전력 전송 시스템들에서 코일 전류 감지로의 강화된 이물질 검출
US11418067B2 (en) Enhanced foreign object detection with coil current sensing in wireless power transfer systems
EP3285382B1 (en) Detection methods

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180607

Address after: Holland Ian Deho Finn

Patentee after: PHILPS intellectual property Enterprise Co., Ltd.

Address before: Michigan

Patentee before: ACCESS BUSINESS GROUP INTERNATIONAL LLC