JP7353178B2 - 無線電力充電用のシステム - Google Patents

無線電力充電用のシステム Download PDF

Info

Publication number
JP7353178B2
JP7353178B2 JP2019548393A JP2019548393A JP7353178B2 JP 7353178 B2 JP7353178 B2 JP 7353178B2 JP 2019548393 A JP2019548393 A JP 2019548393A JP 2019548393 A JP2019548393 A JP 2019548393A JP 7353178 B2 JP7353178 B2 JP 7353178B2
Authority
JP
Japan
Prior art keywords
relay
coil
operating frequency
transmitter
coupling coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019548393A
Other languages
English (en)
Other versions
JP2020511918A (ja
JP2020511918A5 (ja
Inventor
シャーマン,イタイ
グルズマン,イリヤ
マッハ,エリザー
サルハブ,アミール
ベン-イツァク,シャロン
カントール,アヤ
Original Assignee
パワーマット テクノロジーズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パワーマット テクノロジーズ リミテッド filed Critical パワーマット テクノロジーズ リミテッド
Publication of JP2020511918A publication Critical patent/JP2020511918A/ja
Publication of JP2020511918A5 publication Critical patent/JP2020511918A5/ja
Priority to JP2023151468A priority Critical patent/JP2023169308A/ja
Application granted granted Critical
Publication of JP7353178B2 publication Critical patent/JP7353178B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H04B5/24
    • H04B5/79

Description

本開示の主題は、無線電力充電システムに関する。より詳細には、本開示の主題は、媒体を介した誘導充電および自己較正のための方法に関する。
関連出願の相互参照
本出願は、米国特許法第119条(e)の下で以下の同時係属仮特許出願からの優先権を請求し、同仮特許出願を全ての目的で参考文献として援用する。
a. 2017年3月7日に出願された、Itay Sherman、Elieser Mach、Ilya Gluzman、Amir Salhuvによる「Large Range Inductive Tx」という名称の米国仮特許出願第62/467,903号。
b. 2017年7月24日に出願された、Itay Sherman、Elieser Mach、Sharon Ben-Itzhak、Amir Salhuvによる「Smart Inductive extensions」という名称の米国仮特許出願第62/535,987号。
c. 2017年11月13日に出願された、Itay Sherman、Elieser Mach、Amir SalhuvおよびAya Kantorによる「Under the table inductive Tx additional topics-extension」という名称の米国仮特許出願第62/584,919号。
d. 2018年1月7日に出願された、Itay Sherman、Elieser MachおよびAmir Salhuvによる「Under the table Inductive Tx design topics second extension」という名称の米国仮特許出願第62/614,422号。
幅広い種類の場所において、劇的な配備増に導かれる、無線電力充電システムに対する需要が増えつつあることで、送信器と受信器との間の有効充電距離を増大させる必要性が増している。市販のシステムでは、そのようなシステムの送信器と受信器との間の最大距離が約10ミリメートルに制限されている。
無線電力充電システムは、レストラン、コーヒーショップ、空港、バス発着所;駅、銀行、学校、図書館、ホテル、公用建築物等、などの公共施設に通常配備されている。典型的には、システムは、ユーザが接近可能である、テーブル、棒材等などの、表面の最上部上に据え付けられており、したがって、装飾的な外観、および危険のない設備が求められる。一方でこれらの要件、他方で距離制限を満たすには、配線が表面の最上部上に配索されること、ならびに距離制限のために表面をドリル加工することが必要となる。いくつかの事例では、そのような市販のシステムの送信器は、表面の切欠き穴の内部に据え付けられることができるが、これは、顧客の備品に損傷を与えることに加えて、設備を複雑にし、費用を上昇させる。
明らかに、そのような市販の解決策は、消費者市場では所望されていない。さらに、これらの利用可能な解決策の無線電力充電水準は、15ワット未満を要求する手持ち型デバイスを充電することに限定される。
本開示の主題の第1の態様によれば、コイルを有し、デバイスに充電するための電力を誘導的に伝送するように作られたリレーと、コイル、およびデバイスに充電するための電力をリレーに誘導的に送信するように構成されたコントローラを有する送信器とを備えるシステム内の動的な較正方法であって、送信器およびリレーが、媒体によって隔てられており、方法は、最小および最大の動作周波数、動作周波数に対する電力増大の方向;最小および最大のデューティサイクル;最小および最大の動作振幅;およびそれらの何らかの組合せから成る群から選択される動作パラメータを決定することを含み、動作パラメータおよびピング周波数が、送信器動作の動的測定および較正の間にコントローラによって実行される計算に基づいて決定される。
いくつかの例示的実施形態では、較正は、送信器のコイルとリレーのコイルとの間の結合係数、およびそれらのジョイント共振周波数を決定することをさらに含む。
いくつかの例示的実施形態では、動作パラメータは、結合係数および主共振周波数に基づいて決定される。
いくつかの例示的実施形態では、測定は、動作周波数を掃引して、動作周波数ごとに出力された交流電流を測定しながら、送信器を動作させることをさらに含む。
特に定義されない限り、本明細書において使用される全ての技術的および科学的用語は、本開示の主題が属する技術の当業者によって一般的に理解されるのと同じ意味を有する。本明細書において記載されるものと類似または同等の方法および材料は、本開示の主題の実践または試験で使用されることができるが、適切な方法および材料を以下に記載する。矛盾する場合、定義を含む明細書が制御する。さらに、材料、方法、および例は、説明するためのものにすぎず、制限的であるようには意図されていない。
記載される開示の主題のいくつかの実施形態は、添付の図面を参照しながら、ほんの一例として記載される。これより特に図面を詳細に参照するにあたり、示される詳細は、一例として、本開示の主題の好適な実施形態の例証的な考察を目的とするものにすぎず、開示の主題の原理および概念上の態様についての最も有用な、かつ容易に理解される記述であると信じられるものを提供するために提示されていることを強調しておく。この点に関して、開示の主題の構造細部を、開示の主題の基本的な理解に必要なものより詳細に示そうとは試みられてはなく、記述を図面と合わせて読むことで、開示の主題のいくつかの形態が、実際に具現化される方法が、当業者には明らかになろう。
開示の主題のいくつかの例示的実施形態による、無線電力充電システムの設備の断面図を示す。 開示の主題のいくつかの例示的実施形態による、別の無線電力充電システムの設備の断面図を示す。 開示の主題のいくつかの例示的実施形態による、媒体を介した無線電力充電用のシステムのブロック線図を示す。 開示の主題のいくつかの例示的実施形態による、自己較正のための方法の流れ図を示す。
開示の主題の少なくとも1つの実施形態を詳細に説明する前に、開示の主題は、その適用において、以下の記述で説明されるまたは図面に図示される構造の詳細、および構成要素の配置に限定されないことを理解されたい。開示の主題は、他の実施形態でも可能である、またはさまざまな方法で実践される、もしくは遂行されることが可能である。さらに、本明細書において使用される言い回しおよび専門用語は、説明を目的としており、制限的とみなされてはならないことを理解されたい。図面は、概括的には正確な縮尺ではない。明暸性のために、非必須要素が省略された図面もある。
用語「備える」、「備えること」、「含む」、「含むこと」、および「有すること」は、それらの同根語とともに、「含むこと、しかしこれに限定されるわけではない」ことを意味する。用語「で構成されること」は、「含み、かつこれに限定されること」と同じ意味を有する。
用語「で本質的に構成されること」は、付加的な成分、段階、および/または部分が、請求される組成物、方法、または構造の基本的および新規な特性を実質的に変更しない場合に限り、組成物、方法、または構造は、付加的な成分、段階、および/または部分を含む可能性があることを意味する。
本明細書で使用される場合、コンテクストが特に明確に指図しない限り、単数形「a」、「an」、および「the」は、複数の言及を含む。例えば、用語「合成物」または「少なくとも1つの合成物」は、それらの混合物を含む複数の合成物を含む可能性がある。
本出願を通して、本開示の主題のさまざまな実施形態は、適用範囲フォーマットの中で提示され得る。適用範囲フォーマット内の説明は、単に便宜上、および簡潔にするためのものであることを理解されるべきであり、開示の主題の範囲上の柔軟性のない制限として解釈されてはならない。したがって、適用範囲の説明は、明確に開示される全ての可能な部分範囲、ならびにその適用範囲の中の個別的な数値を有すると考えられなければならない。
明暸性のために、別の実施形態との関連で記載される、開示の主題の特定の特徴は、単一の実施形態の中に組み合わせて提供されてもよいことを理解されたい。これとは逆に、簡潔さのために、単一の実施形態との関連で記載される、開示の主題のさまざまな特徴は、さらに、別々に、もしくは何らかの適切な下位組合せで、または開示の主題の何らかの他の実施形態において適切であるように提供されてもよい。さまざまな実施形態との関連で記載される特定の特徴は、実施形態が、そうした要素がなければ動作不能になるのでない限り、そうした実施形態の必須の特徴と考えられるべきではない。
次に、開示の主題のいくつかの例示的実施形態による、無線電力充電システムの設備の断面図を示す図1を参照する。無線電力充電システムは、送信器(Tx)100および少なくとも1つのリレー200を備えることができる。
いくつかの例示的実施形態では、Tx100は、媒体10の一方の側に取り付けられることができ、他方で、リレー200は、媒体10の反対側に取り付けられることができる。媒体10は、例えば木、可塑性花崗岩、大理石、それらの組合せ等などの、電気を導通しないどのような材料で作られてもよい。本開示では、媒体10は、公共の場所でユーザが接近することができるテーブル、机、棒材等などの、表面を指していることに留意されよう。例えば:レストラン、コーヒーショップ、空港、バス発着所;駅、銀行、学校、図書館、ホテル、公用建築物等。
いくつかの例示的実施形態では、Tx100は、送信器コイル(Lt)110、送信器コンデンサ(Ct)130、送信器フェライト(Tx-ferrite)119、および送信器電子回路(Tx-elec.)150を備え、全て、ファスナ102によって媒体10に固定され得る送信器エンクロージャ(Tx enclosure)101の内部に組み込まれている。
いくつかの例示的実施形態では、リレー200は、リレーコイル(Lr)210、リレーフェライト219、およびリレーコンデンサ(Cr)230を備えることができ、全て、媒体10の反対側に固定され得るリレーエンクロージャ201の中に組み込まれている。エンクロージャ201は、マット、パッド、ソーサ、コースタ、それらの組合せ等の形状および形状因子を有していてもよい。リレー200のエンクロージャ201は、接着剤または何らかの他の方法で媒体10に固定されることができ、これは、リレー200およびTx100が、媒体10の両側から相互に重なることを保証する。リレー200およびTx100は、Lt110およびLr210が、図1に図示されるように、2つの間のインダクタンスを最適化するために、向かい合うように実質的に位置合わせされるべきであるように、相互に重なり合うことに留意されよう。
いくつかの例示的実施形態では、Tx100は、電源(PS:power supply)160(図示せず)によって電力を供給されていて、リレー200上に置かれる誘導的(無線)充電デバイス20のためにリレー200を利用するように構成されることができる。デバイス20は、タブレット、ラップトップ、多機能電話、または何らかの充電可能な可搬式ハンドセットなどのユーザのデバイスであってもよく、誘導電力を受容して、デバイス20の電池を充電するように構成された組込みコイル22を備える。組込みコイル22は、上で列挙されたデバイスの標準的受信器のコイルを指し、典型的には、この標準的受信器のコイルは、およそ40ミリメートルの直径を有することに留意されたい。
本開示の中の構成要素Lt110、Lr210/Lr310、およびコイル22の専門用語は、関連仮特許出願の第1のTxコイル、第2のTxコイル、およびRxコイルにそれぞれ対応していることに留意されたい。
Lr210およびLt110と同様の、コイル22およびLr210は、有効な充電判定基準の1つを満たすために、実質的に相互に向かい合って重なることができる、すなわち、コイル22およびLr210の中心は、位置合せされることができる。位置合せを確実にするために、リレー200のエンクロージャ201は、有効な充電を得るように、リレー200の最上部上にデバイス20を配置するのに最適な場所をユーザに指示するレイアウトに印を付けられることができる。しかしながら、図1に図示されるように、デバイス20が、リレー200の最上部上に正確に配置されていない場合であっても、無線電力充電システムは、電力充電を提供するように適合されることができる。
いくつかの例示的実施形態では、Lr210およびLt100は両方とも、100mmより大きい直径を有する平坦な螺旋空心コイルであってもよい。そのような大きいコイルを利用することで、媒体10の30ミリメートル以上の厚さにもかかわらず、Lr210とLt100との間の比較的高度な結合が可能になる。図1に描写される実施形態では、Lr210とLt100との間の結合係数は、0.25より大きくなり得る。典型的なコイル22とLr210との間の結合は、図1に描写される実施形態では、0.15より大きくなり得る。
いくつかの例示的実施形態では、Tx100は、送信器フェライト(Tx-ferrite)119を備える。Tx-ferrite119は、透磁性及び磁心損失の適切な磁気的特性を備えたフェライト材でできた層であることができる。Tx-ferrite119を利用する1つの技術的理由は、Tx-electronics150を誘導エネルギーから防護するためのバッファを提供することである。Tx-ferrite119を利用する別の技術的理由は、リレー200に面する磁場、したがって、Lt110のインダクタンスを増大させるためであり得る。厚さ、可撓性、脆性、その組合せ等などのTx-ferrite119の特性は、本開示のシステムが提供される用途によって決められ得る。例えば、厚さおよび媒体10が作られている材料。Lt110が、円の形状を有する場合があるので、Tx-ferrite119の形状は、同様に、Lt110の外径以上の直径を有する円であり得る。あるいは、Lt110の外径が、幾何学的平面図形内の内接円であるのであれば、Tx-ferrite119は、何らかの幾何学的平面図形の形状を有する場合がある。
いくつかの例示的実施形態では、リレー200は、リレーフェライト219を備えていてもよい。リレーフェライト219は、Tx-ferrite119と同様のフェライト材で作られた層であってもよい。リレーフェライト219を利用する1つの技術的理由は、デバイス20の電子回路構成を誘導エネルギーから防護するためのバッファを提供するためである。リレーフェライト219を利用する別の技術的理由は、Tx100に面する磁場、したがって、Lr210のインダクタンスを増大させるためであり得る。リレーフェライト219は、Tx-ferrite119の特性に類似した特性を持っている。Lr210が、円の形状を有する場合があるので、リレーフェライト219の形状は、同様に、Lr210の外径以上の直径を有する円であり得る。あるいは、Lr210の外径が、幾何学的平面図形内の内接円であるのであれば、リレーフェライト219は、何らかの幾何学的平面図形の形状を有する場合がある。
リレーフェライト219は、中心に位置している切欠きを必要とすることに留意されたい。切欠きのサイズは、デバイス20のコイル22などの、充電可能なデバイスの典型的な受信器コイルの外径と等しくても、またはそれよりわずかに大きくてもよい。切欠きの形状は、Lr210とコイル22との間で磁束の通過を可能にするために、コイル22形状を取り囲む、円または何らかの幾何学的表面であってもよい。
開示の主題のいくつかの例示的実施形態では、少なくとも1つの共振コンデンサ(Ct)130は、Lt110に直列で接続されることができ、少なくとも1つの共振コンデンサ(Cr)230は、Lr210に直列で接続されることができる。したがって、共振コンデンサは、それぞれのコイルの内径空間の中に置かれる。あるいは、したがって、共振コンデンサは、それぞれのコイルの外径空間の隣に、または関係するエンクロージャ内の他の場所に置かれることができる。
本開示のリレーフェライト219は、市販の標準規格伝達コイルを用いてコイル22の挙動をよりよくシミュレートするために、コイル22およびLr210の結合係数を増大させ、さらに、本開示のシステムでは所望されない、Lt110からコイル22へのいくらかの直接結合を低減させる。さらに、Tx100およびリレー200両方の共振コンデンサは、システム動作点、コイル22装荷の依存度を安定させ、電力伝送の高効率を可能にすることを目的とする。いくつかの例示的実施形態では、Lt110およびCt130(すなわちTx100LC回路)の共振周波数は、コイル22などの典型的なコイルの共振周波数(およそ100kHz)よりかなり低く、Lr210およびCr230(すなわちリレー200LC回路)の共振周波数より大幅に低くなるように設定されることができる。
いくつかの例示的実施形態では、Tx100とリレー200LC回路の組合せは、負荷が存在していないとき、2つの異なる共振周波数、以下ジョイント共振周波数(JRF:joint resonance frequencies)を形成することができる。JRFの第1の共振周波数は、Tx100LC回路の共振周波数に近接していてもよいが、いずれの場合でも、それより低い。JRFの第2の共振周波数は、リレー200LC回路の共振周波数に近接していてもよいが、いずれの場合でも、それより高い。「Tx100およびリレー200LC回路の組合せ」という語句は、本開示では、図1に描写されたような、Tx100およびリレー200が相互に向かい合っており、電力がTx100に加えられている状態を指していることに留意される必要がある。第2の共振周波数、すなわちより高い共振周波数は、本開示システムでは主共振周波数(MRF:main resonance frequency)としてみなされるべきであることにさらに留意される必要がある。
Tx100LC回路およびリレー200LC回路の共振周波数は、JRFが、上にCoil22がない状態で、Tx100の所望される最大動作周波数より低い特定の範囲(標準的には20~50kHz)であるように調整され、コイル22共振周波数より高くなるような方法で設計される。
一例として、Lt110のインダクタンスは、およそ30μHであってもよく、Ct130のキャパシタンスは、およそ54kHzのTx100LC回路の共振周波数を提供する、およそ290μFであってもよい。他方で、Lr210のインダクタンスは、およそ60μHであってもよく、Ct130のキャパシタンスは、およそ106kHzのリレー200LC回路の共振周波数を提供するおよそ37.5nFであってもよい。そのような好ましい例示的実施形態では、システムMRFは、117kHz(すなわちリレー200LC回路の共振周波数の106kHzより高い)であってもよく、その場合、据え付けられたリレー200とTx110との間の間隙は、およそ30ミリメートルであり得る。さらに、Lt110およびLr210の外径は、およそ125ミリメートルであってもよく、他方で、フェライト219の切欠き直径は、およそ55ミリメートルであってもよい。
いくつかの例示的実施形態では、動作周波数(OPF:operating frequency)は、121kHz~140kHzの範囲であってもよく、範囲の低い方のOPFは、MRF、すなわち117kHzより4kHz高くなり得、最大周波数は、規制限度、すなわち145kHzより5kHz低くなり得る。あるいは、最大OPFは、MRFおよび規制最大周波数限度を下回って設定されてもよい。上記例のように類似のコイルを有する設備では、0.5”の媒体10の厚さを備えていて、MRFは、140kHzであってもよい。したがって、動作範囲は、115kHz~136kHzに設定されてもよく、最大周波数は、MRFより4kHz低く、規制限度より低い。
本開示のシステムは、共振周波数での動作を回避することを理解されたい。本開示システムの好適なOPFは、主共振周波数(MRF)より低いまたは高い周波数にシフトされる周波数の範囲にあることができる。
次に、開示の主題のいくつかの例示的実施形態による、別の無線電力充電システムの設備の断面図を示す図2を参照する。
いくつかの例示的実施形態では、Tx100は、媒体10の一方の側に取り付けられることができ、他方で、リレー300は、表面10の反対側に取り付けられることができる。媒体10は、例えば木、可塑性花崗岩、大理石、それらの組合せ等などの、電気を導通しないどのような材料ででも作られることができる。本開示では、媒体10は、公共の場所でユーザが接近することができるテーブル、机、棒材等などの、表面を指していることに留意されよう。例えば:レストラン、コーヒーショップ、空港、バス発着所;駅、銀行、学校、図書館、ホテル、公用建築物等。
いくつかの例示的実施形態では、Tx100は、送信器コイル(Lt)110、送信器コンデンサ(Ct)130、送信器フェライト(Tx-ferrite)119、および送信器電子回路(Tx-elec.)150を備え、全て、ファスナ102によって媒体10に固定され得る送信器エンクロージャ(Tx enclosure)101の内部に組み込まれている。
いくつかの例示的実施形態では、リレー300は、リレーコイル(Lr)310、第2のリレーコイル(sLr)320、リレーフェライト319、第2のリレーフェライト329、およびリレーコンデンサ(Cr)330を備え、全て、媒体10の反対側に固定され得るリレーエンクロージャ301の中に組み込まれている。エンクロージャ301は、マット、パッド、ソーサ、コースタ、それらの組合せ等の形状および形状因子を有することができる。リレー300のエンクロージャ301は、リレー300およびTx100が、媒体10の両側から相互に重なることを保証する、接着剤または何らかの他の方法で媒体10に固定されることができる。リレー300およびTx100は、Lt110およびLr310が、図2に図示されるように、2つの間のインダクタンスを最適化するため向かい合うように実質的に位置合せされるべきであるように、相互に重なり合うことに留意されよう。
いくつかの例示的実施形態では、Tx100は、電源(PS)160(図2には図示されず、図3に図示される)によって電力を供給されていて、リレー300上に置かれる誘導的(無線)充電デバイス20のためにリレー300を利用するように構成されてもよい。デバイス20は、タブレット、ラップトップ、多機能電話、または何らかの充電可能な可搬式ハンドセットなどのユーザのデバイスであってもよく、誘導電力を受容して、デバイス20の電池を充電するように構成された組込みコイル22を備える。
開示の主題のいくつかの例示的実施形態では、リレー300は、Lr310と直列で電気的に接続されることができる二次リレーコイルsLr320をさらに含んでいてもよい。代わりに、Lr310は、2つのより平らな高さに位置している2つの部分に配置されることができ、内側コイル(すなわちsLr320)または代わりにLr310の部分は、Lt110に面するLr310の外側部分と比べて高くなっている。
コイル22およびsLr320は、実質的に相互に向かい合って重なることができる、すなわちコイル22およびsLr320の中心は、有効な充電判定基準の一方を満たすために、位置合せされる。位置合せのために、リレー300のエンクロージャ301は、有効な充電を得るためにリレー300の最上部上にデバイス20を配置するのに最適な場所をユーザに指示するレイアウトに印を付けられてもよい。しかしながら、図2に図示されるように、デバイス20が、リレー300の最上部上に正確に配置されていない場合であっても、無線電力充電システムは、電力充電を提供するように適合され得る。
いくつかの例示的実施形態では、Lr310およびLt100は両方とも、100mmより大きい直径を有する平坦な螺旋空心コイルであってもよく、一方で、sLr320は、同様に平坦な螺旋空心コイルを有していて、コイル22などの典型的な受信器コイルに適するより小さい直径を有していてもよい。そのような大きいコイルを利用することで、媒体10の30mm以上の厚さを克服するために、Lr310とLt100との間の比較的高度な結合が可能になる。図2に描写される実施形態では、Lr310とLt100との間の結合係数は、最大30ミリメートルの媒体厚さでは、0.25より大きくなり得る。典型的なコイル22とsLr320との間の結合は、図2に描写される実施形態では0.15より大きくなり得る。
第2のリレーフェライト329が、磁場を遮断する(下文でさらに詳細に記述される)ので、sLr320は、Lt110によって直接影響を及ぼされることはあり得ないが、Lr310およびsLr320が、直列に接続されているので、Lr310に誘導される同じ電流が、sLr320を流れることに留意されたい。
いくつかの例示的実施形態では、Tx100は、送信器フェライト(Tx-ferrite)119を備えていてもよい。Tx-ferrite119は、透磁性及び磁心損失の適切な磁気的な特性を備えたフェライト材でできた層であってもよい。Tx-ferrite119を利用する1つの技術的理由は、Tx-elec.150を誘導エネルギーから防護するためのバッファを提供するためであり得る。Tx-ferrite119を利用する別の技術的理由は、リレー300に面する磁場、したがって、Lt110のインダクタンスを増大させるためであり得る。厚さ、可撓性、脆性、その組合せ等などのTx-ferrite119特性は、本開示のシステムが提供され得る用途によって決められ得る。例えば、厚さおよび媒体10が作られる材料。Lt110が、円の形状を有する場合があるので、Tx-ferrite119の形状は、同様に、Lt110の外径以上の直径を有する円であり得る。あるいは、Lt110の外径が、幾何学的平面図形内の内接円であるのであれば、Tx-ferrite119は、何らかの幾何学的平面図形の形状を有する場合がある。
いくつかの例示的実施形態では、リレー300は、リレーフェライト319を備えていてもよい。リレーフェライト319は、Tx-ferrite119に類似したフェライト材で作られた層であってもよい。リレーフェライト319を利用する1つの技術的理由は、デバイス20の電子回路構成を誘導エネルギーから防護するためのバッファを提供するためであり得る。リレーフェライト319を利用する別の技術的理由は、Tx100に面する磁場、したがって、Lr310のインダクタンスを増大させるためである。リレーフェライト319は、Tx-ferrite119の特性に類似した特性を持つことができる。Lr310が、円の形状を有する場合があるので、リレーフェライト319の形状は、同様に、Lr310の外径以上の直径を有する円であり得る。あるいは、Lr310の外径が、幾何学的平面図形内の内接円であるのであれば、リレーフェライト319は、何らかの幾何学的平面図形の形状を有することができる。
リレーフェライト319は、中心に位置している切欠きを必要とし得ることに留意されたい。切欠きのサイズは、デバイス20のコイル22などの、充電可能なデバイスの典型的な受信器コイルの外径と等しくても、またはわずかに大きくてもよい。切欠きの形状は、Lr310とコイル22との間で磁束の通過を可能にするために、コイル22形状を取り囲む、円または何らかの幾何学的平面であってもよい。
開示の主題のいくつかの例示的実施形態では、リレー300は、Lt110によってsLr320に誘導される磁場を遮断し、コイル22に向かうsLr320インダクタンスを強化するように構成された第2のリレーフェライト329をさらに備える。第2のリレーフェライト329は、Tx-ferrite119およびリレーフェライト319の特性に類似した特性を持っている。形状フェライト329は、リレーフェライト319の切欠き形状と等しくても、またはわずかに大きくてもよい。実際的には、リレーフェライト319の切欠きは、Lr310の内径の内部に、そして同じ平面に位置しているフェライト329として使用されることができ、一方でsLr320は、フェライト229の最上部上に位置していてもよい。
開示の主題のいくつかの例示的実施形態では、少なくとも1つの共振コンデンサ(Ct)130は、Lt110に直列で接続されることができ、少なくとも1つの共振コンデンサ(Cr)330は、Lt310に直列で接続されてもよい。したがって、共振コンデンサは、それぞれのコイルの内径空間の内部に置かれてもよい。あるいは、したがって、共振コンデンサは、それぞれのコイルの外径空間の隣に、または関係するエンクロージャ内の他の場所に置かれることができる。
本開示のリレーフェライト319は、市販の標準規格伝達コイルを用いてコイル22の挙動をよりよくシミュレートするために、コイル22およびLr310の結合係数を増大させ、さらに、本開示のシステムでは所望されない、Lt110からコイル22へのいくらかの直接結合を低減させる。さらに、Tx100およびリレー300両方の共振コンデンサは、システム動作点、コイル22装荷の依存度を安定させ、電力伝送の高効率を可能にすることを目的とする。いくつかの例示的実施形態では、Lt110およびCt130(すなわちTx100LC回路)の共振周波数は、典型的なコイル22の共振周波数(およそ100kHz)よりかなり低く、Lr310およびCr330(すなわちリレー300LC回路)の共振周波数より大幅に低くなるように設定されてもよい。
いくつかの例示的実施形態では、Tx100とリレー300LC回路の組合せは、負荷が存在していないとき、2つの異なる共振周波数、以下共振周波数(JRF)を形成することができる。JRFの第1の共振周波数は、Tx100LC回路の共振周波数に近接している場合があるが、いずれの場合でも、それより低いようになる。JRFの第2の共振周波数は、リレー300LC回路の共振周波数に近接している場合があるが、それより高いようになる。「Tx100およびリレー300LC回路の組合せ」という語句は、本開示では、図2に描写されたような、Tx100およびリレー300が相互に向かい合っており、電力がTx100に加えられている状態を指していることに留意される必要がある。第2の共振周波数、すなわちより高い共振周波数は、本開示システムでは主共振周波数(MRF)としてみなされるべきであることにさらに留意される必要がある。
Tx100LC回路およびリレー300LC回路の共振周波数は、JRFが、上にCoil22がない状態で、Tx100の所望される最大OPFより低い特定の範囲(標準的には20~50kHz)であるように調整され、コイル22共振周波数より高くなるような方法で設計される。
1つの好適な例示的実施形態では、Lt110のインダクタンスは、およそ30μHであることができ、Ct130のキャパシタンスは、およそ54kHzのTx100LC回路の共振周波数を提供するおよそ290μFであることができる。他方で、Lr310のインダクタンスは、およそ60μHであることができ、Ct130のキャパシタンスは、およそ106kHzのリレー300LC回路の共振周波数を提供するおよそ37.5nFであることができる。そのような好適な例示的実施形態では、システムMRFは、117kHz(すなわちリレー300LC回路の共振周波数の106kHzより高い)であることができ、その場合、据え付けられたリレー300とTx110との間の間隙が、およそ30ミリメートルであることができる。さらに、Lt110およびLr310の外径は、およそ125ミリメートルであってもよく、他方で、Lr320の外径は、およそ55ミリメートルであってもよい。
いくつかの例示的実施形態では、OPFは、121kHz~140kHzの間の範囲であり、範囲の低い方のOPFは、MRF、すなわち117kHzより4kHz高くなることができ、最大周波数は、規制限度、すなわち145kHzより5kHz低くなることができる。あるいは、最大OPFは、MRFおよび規制最大周波数限度を下回って設定されることができる。本明細書で上記した例のように類似したコイルを有する設備では、0.5”の媒体厚さを備えていて、MRFは、140kHzであることができる。したがって、動作範囲は、115kHz~136kHzに設定されることができ、最大周波数は、MRFより4kHz低く、規制限度より低い。
次に、開示の主題のいくつかの例示的実施形態による、媒体を介した無線電力充電用のシステムのブロック線図を示す図3を参照する。媒体を介した無線電力充電用のシステムは、PS160、Tx100送信器、およびリレー200もしくはリレー300のどちらかを備える。
いくつかの例示的実施形態では、システムは、図1および図2のデバイス20などの、ユーザの充電可能なデバイスにリレー200またはリレー300を介して充電するためにTx100を利用するように適合されることができる。リレー200およびリレー300の両方とも、充電エネルギーをデバイス20等に無線で送信するための中継器として作用する受動的な電子回路であることができる。リレー200は、図1に描写されるような、LC共振回路を形成する、少なくとも1つのコイル(誘導子)および1つのコンデンサを備えることができる。インダクタンスおよびデバイス20のコイル22との結合を強化するために、代替リレー、すなわちリレー300が、提供されることができる。リレー300は、図2に描写される回路などのLC共振回路を形成する、少なくとも2つのコイルおよび1つのコンデンサを備える。
いくつかの例示的実施形態では、Tx100は、図1および図2にそれぞれ描写されるように、リレー200またはリレー300のどちらかのコイルに電流を誘導するために構成される送信器電子回路(Txelect)150、少なくとも1つのLx110コイル、およびコンデンサCt130を備えることができる。
いくつかの例示的実施形態では、Tx-elect150は、コントローラ151、フルまたはハーフブリッジドライバ152、直流電流センサ153、直流電圧センサ154、および交流電流センサ155を備える。
コントローラ151は、中央処理ユニット(CPU:central processing unit)、マイクロプロセッサ、電子回路、集積回路(IC:integrated circuit)等であることができる。さらにまたは代替的に、コントローラ151は、デジタル信号プロセッサ(DSP:digital signal processor)またはマイクロコントローラなどの特定のプロセッサ用に書き込まれた、または移植されたファームウェアとして実装されることができる、または、フィールドプログラマブルゲートアレイ(FPGA:field programmable gate array)または特定用途向け集積回路(ASIC:application specific integrated circuit)などのハードウェアまたは設定可能ハードウェアとして実装されることができる。コントローラ151は、Tx110、またはその下位構成要素のいずれかによって要求される計算を行うために利用されることができる。
開示の主題のいくつかの例示的実施形態では、コントローラ151は、以下のパラメータを決定するように構成される:
a. 直流電圧センサ154の結果を取得するおよび測定することによって、PS160にわたる直流電圧。
b. 直流電流センサ153の結果を取得するおよび測定することによって、PS160によって供給される直流電流。
c. 交流電流センサ155の結果を取得するおよび測定することによって、Lt110に供給される交流電流。あるいは、出力交流電流は、直流電流センサ153を用いて電源からドライバに流れる瞬時電流を感知することによって決定されることができる。
交流電流用のパラメータを決定することは、ピーク電流、絶対電流の平均値、RMS電流、基本振動の振幅、およびそれらの何らかの組合せ等を含むことができることに留意されたい。
いくつかの例示的実施形態では、コントローラ151は、半導体メモリ構成要素(図示せず)を備える。メモリは、例えば、フラッシュメモリ、ランダムアクセスメモリ(RAM:random-access memory)、プログラマブル読出し専用メモリ(PROM:programable read only memory)、リプログラマブルメモリ(FLASH)、およびそれらの何らかの組合せ等などの、永続的または揮発性メモリであってもよい。
いくつかの例示的実施形態では、メモリは、フルまたはハーフブリッジドライバ152を制御するパルス幅変調(PWM:pulse width modulation)信号を決定することに関連付けられた作用を行うためにコントローラ151を起動するプログラムコードを保持する。ドライバ152は、Lt110を通って流れる電流のOPFおよび/またはデューティサイクルを調節することによって、Lt110を通って流れる出力電流、すなわちTx100によって提供された電力を調整することができる。いくつかの例示的実施形態では、コントローラ151で生成されるPWM信号は、デバイス20などの電子機器を無線充電する必要性を満たすために、変調を調整する。代替実施形態では、直流電源の振幅が、制御されてもよい。
PWM信号周波数およびデューティサイクルは、前述したように、OPF範囲の中でコントローラ151によって設定されることができることに留意されたい。さらに、コントローラ151は、デバイス20の電力要求に基づいて、OPF範囲の中でOPFを変更することができる。
いくつかの例示的実施形態では、コントローラ151は、接続性ソフトウェア、モニター情報、構成および制御情報、および本開示システムの充電管理に関連付けられる適用を保持するためにメモリを利用することができる。
いくつかの例示的実施形態では、コントローラ151は、以下の通信規格、パワーマターズアライアンス(PMA:power matters alliance);無線パワーコンソーシアム(WPC:wireless power consortium)、およびAirFuel Allianceに従うプロトコルに基づいて、デバイス20と通信するように構成されることができる。これらの通信方式によれば、これらに限定するわけではないが、コントローラ151は、充電サービスを許可して、調整することに関してユーザを認証するために、デバイス20からユーザの証明書を得るように構成されることができる。さらにまたは代替的に、コントローラ151は、デバイス20から所要電力を得るようにさらに構成されることができる。
以下方法の説明を簡素化するために、リレー200およびリレー300は、「リレー」と呼ばれ、さらに、コイルLr210およびLr310は、「Lr」と呼ばれる。以下の方法は、リレー200およびリレー300の両方、およびそれらの関係する下位構成要素に適用されることに留意される必要がある。
開示の主題によって扱われる技術的問題のいくつかは、実際のJRF上での未知の設備環境、Tx100とリレーとの間の結合係数、およびその結果OPFを決定することの影響である。Lt110およびLrコイルに関する所望のJRFは、受動構成要素の設計に画定されることができるという事実にもかかわらず、実際のJRFおよび結合係数は、各設備の中のさまざまな環境に影響を受ける可能性がある。例えば、Lt110とLrコイルとの間の間隙などの変量、コイルの近くに置かれる磁気/リアクタンス素子、受動構成要素の製造変動、媒体が作られている材料、およびそれらの何らかの組合せ等。
いくつかの技術的解決策は、コントローラ151によって実行される動的較正方法を前もって決めることによって獲得される。方法は、JRFを決定すること、結合係数を計算すること、OPF用の範囲を決定することを(これらに限定するわけではないが)含む。いくつかの例示的実施形態では、電子機器(デバイス20)が、リレー上に置かれていないとき、動的較正方法が、実行され得る。さらにまたは代替的に、動的較正方法は、リレー上に置かれた電気機器を用いて実行され得るが、デバイス20は、その電気機器に電源を供給しない。
次に、開示の主題のいくつかの例示的実施形態による、自己較正のための方法の流れ図を示す図4を参照する。
段階401では、ジョイント共振周波数(JRF)が、決定される。いくつかの例示的実施形態では、予想JRFは、Tx100およびLC共振回路の選択された共振周波数、ならびにそれらの結合係数に基づいて計算されることができる。負荷がリレー上に存在しない場合には、Tx110側から見たインピーダンスは、以下の式によって与えられ得る:
Figure 0007353178000001

上式では、
Figure 0007353178000002

および
Figure 0007353178000003


は、TX100の共振周波数を示し、wは、レーの共振周波数を示す
wは、動作周波数を示す
trは、コイルLt110とコイルLrとの間の結合を示す。
いくつかの例示的実施形態では、Ztotalが最小であるとき、JRFを計算することができる、したがって:
Figure 0007353178000004

そして寄生的抵抗を無視した後:
Figure 0007353178000005
したがって、上記の式を単純化した結果得られた
Figure 0007353178000006
は、最小点を示すことができる。一例として、Tx100の共振点は、超低値、したがって、
Figure 0007353178000007

に設定されることができ、結合係数は、
Figure 0007353178000008

である。その結果、Yは、0.18にほぼ等しく、したがって、MRF(wjr)、すなわち、主共振周波数は、1.1wにほぼ等しく、wは、リレーの共振周波数である。
他の例示的実施形態では、予想JRFは、周波数掃引法によって決定される。周波数掃引法では、コントローラ151は、電力キャリア振幅を最小に設定して、予想OPF範囲全体にスワイプを行う。その後、コントローラ151は、これらの周波数ごとにTx100LC共振回路の最大電圧および電流を記録して、最も高い電圧およびまたは電流が観察された周波数になるJRFを決定する。
段階402では、結合係数が、決定される。Tx100とリレーとの間の正確な結合係数(k)は、本開示のシステムでOPPを決定するのに必要であることに留意される必要がある。前述したように、kは、各設備の異なる環境係数によって影響を受ける可能性があり、したがって、サイト間で変化する可能性があり、共振周波数自体に基づいていない場合もあり、したがって、それは、サイト上で自動的に決定されてもよいことにさらに留意される必要がある。いくつかの例示的実施形態では、kの決定は、周波数走査およびLt110の電圧または電流測定、ならびに駆動信号に対する電流位相に基づくことができる。
いくつかの好適な実施形態では、コントローラ151は、段階401に描写されたようなMRFを走査して、MRFからわずかに外れた2つの周波数を選択する。次いで、これらの2つの点(wおよびw)での電流および位相を測定する。これらの測定に基づいて、コントローラ151は、2つの点(ZおよびZ)での複合インピーダンスを計算する。計算では、コントローラ151は、そのメモリの中にプレロードされている、Lt110のインダクタンス値を取得する。さらにまたは代替的に、Lt110のインダクタンス値は、追加の較正手順によって導出されることができる。
段階401で論じられるインピーダンス式に基づいて、Tx110から見られるインピーダンス(Z)は、kを抽出するために利用され得る以下の式で表される。wおよびw点(角振動数)で行われた測定において、値Zは、これらの点ではZおよびZを含むことに留意されたい。
Figure 0007353178000009

上式では、wは、MRFを示し、
Figure 0007353178000010

Figure 0007353178000011

Figure 0007353178000012
いくつかの例示的実施形態では、リレー共振周波数は、以下によって与えられる:
Figure 0007353178000013

Figure 0007353178000014
さらにまたは代替的に、kは、以下の式を用いて取得される:
Figure 0007353178000015

Figure 0007353178000016

Figure 0007353178000017

Figure 0007353178000018

Figure 0007353178000019
いくつかの例示的実施形態では、コントローラ151は、ドライビングクロックとして48Mhzクロックの整数境界を使用する。一例として、125kHzOPF周辺の最小周波数段階は、125KHz-48MHz/(48MHz/125KHz+1)=384Hzと計算され得る。この例に基づいて、wは、MRF+384Hzであり、wは、MRF-384Hzである。
いくつかの例示的実施形態では、代替的な方法が、kを決定するために用いられてもよい。この方法では、コントローラ151は、JRFの低い周波数fj1および高い周波数fj2を決定するために、それらが、Lt110の最大電流で表現され得る際に、段階401を描写する中で論じられたように周波数掃引法を用いる。さらにまたは代替的に、コントローラ151は、Lt110の最小電流で、またはその近くで発生する可能性があるLrの共振周波数fを決定するのに、同じ周波数掃引法を用いる。Lt110の共振周波数(f)は、計算に基づいて、または工場較正に基づいて、知られていると仮定されることに留意されたい。いくつかの例示的実施形態では、kは、以下の式から導出される:
Figure 0007353178000020

Figure 0007353178000021

Figure 0007353178000022

Figure 0007353178000023
段階403では、動作パラメータが、決定される。いくつかの例示的実施形態では、動作パラメータは、OPF範囲、デューティサイクル、初期化ピング周波数(ping)、OPF範囲方向(DIR)、およびそれらの何らかの組合せ等を含む。
市販の無線電力送信システムは、特定の所定の動作周波数、振幅、およびデューティサイクル範囲を使用することに留意されたい。これらのシステムは、デバイス20などの電気機器が、知られている有界の特性を有するという仮定のもとで機能する。したがって、これらのシステムの特定の動作パラメータは、送信器特有の共振、ならびに電気機器に適切であり得る物理的なコイルトポロジーに基づいている。
これに反して、本開示のアーキテクチャは、送信機能性を、Tx100とリレー200/300との間に分配することが特徴である。したがって、動作パラメータは、設備によって左右され、サイト間で変わる可能性があり、したがって、各設備において自動的に決定され得る。
開示の主題のいくつかの例示的実施形態では、コントローラ151は、動作パラメータを決定するために、段階401および402で取得された、結合係数k、JRF、およびMRFを利用する。kおよびJRF(fj1;fj2)は、特有の設備特性ならびに構成要素許容差を示すものであり得ることを理解されたい。据え付けられるような特定のデバイスのための動作範囲は、上記パラメータに基づいて計算されることができる。
いくつかの例示的実施形態では、動作周波数(OPF)範囲は、決定されることができる。Tx100のOPF範囲は、最小動作周波数(Fmin)と最大動作周波数(Fmax)との間に境界を付けられることができる。OPF範囲は、前の段階で取得されたfj2およびkに基づいて決定されることができ、FminおよびFmaxは、k依存fj2から特定のオフセットとして選択され得る。いくつかの例示的実施形態では、OPF範囲のオフセット(DIR)(すなわちfminおよびfmax)は、正または負のどちらかであり得る。正のDIRは、OPF範囲が、fj2より高いことを表すが、負のDIRは、OPF範囲が、fj2より低いことを表す。
1つの例示的実施形態では、DIR符号は、以下の基準、k<0.5の場合、DIR=1、およびk≧0.5の場合、DIR=-1に基づいて決定されることができる。さらにまたは代替的に、DIRは、Fmaxを、無線電力送信用の調整最大周波数を示す特定の周波数Ftopより下に保つためには負である可能性がある。
好適な例示的実施形態では、OPF範囲は、以下の式に基づいて決定され得る:
Figure 0007353178000024

Figure 0007353178000025

上式では、c1、c2、c3、c4は、コントローラ151メモリの中に保持されており、異なる負荷タイプのための特定の最小および最大の電圧プロファイルを示す定数である。
いくつかの例示的実施形態では、初期化ピングの周波数は、選択されたFminからFmaxまでの範囲内であることができ、以下の式に基づいて決定され得る。
Figure 0007353178000026
C5およびC6も同様に、コントローラ151メモリの中に保持されており、充電表面の指示された場所の上に置かれた典型的電気機器上に特定の電圧を発生させる要件を満たしながら、fminとfmaxの範囲でFpingを発生させるように構成された定数である。いくつかの例示的実施形態では、典型的電気機器上に特定の電圧を発生させることは、すべての予想電気機器の適切な動作にとって十分な電圧を保証しながら、どのような予想電気機器であっても損傷を与えることを回避するように適合されることができる。
さらにまたは代替的に、補助保護方法が、リレー上に、またはTx100の近くに置かれる物体への潜在的損傷を回避するために、ピングを実行する前に提供されることができる。
いくつかの例示的実施形態では、動作デューティサイクル範囲は、画定されることができる。動作デューティサイクル範囲は、結合係数kに基づいて、最小動作デューティサイクル(Dmin)と最大動作デューティサイクル(Dmax)との間に境界を付けられることができる。デューティサイクルは、フル/ハーフブリッジドライバ152を制御するPWM信号を用いて、Tx100に電力を出力するように指図することができる。許容デューティサイクル範囲(DminからDmaxまで)は、フルOPF範囲に対して画定されることができる、または、それに対して異なる範囲を有する可能性がある、またはOPFもしくは周波数範囲ごとに画定される異なる範囲を有する可能性があるFminおよびFmaxを除いたすべてのOPF範囲に対する単一範囲を含むことができる。
結合係数kおよびJFRへの特定の閾値関係は、特定の電圧の検出、異常動作の電流閾値、過電圧、過電流、異物検出、およびそれらの何らかの組合せ等に関して導出され得ることを理解されよう。
結合係数kとJFRとの間の何らかの他の関係は、充電されている電気機器を示す追加のパラメータを取得することに関して導出され得ることをさらに理解されよう。例えば:Q係数、最大電力、コイルインダクタンス、整流電圧標的、およびそれらの何らかの組合せ等。これらのパラメータのいずれかまたはそれらの組合せは、OPFの定義に影響を与える可能性がある。
本開示システムは、特定の結合係数範囲で動作するように設計されたものなので、指定された範囲外の(より高いまたはより低い)結合係数を提供する設備の検出は、重要となることをさらに理解されよう。その場合、設置者は、警告を受けて、問題を軽減するべく適切な行動をとることができる。最大許容結合係数より高い結合係数の場合、設置者は、底部ユニット設備にスペーサを加えること、または、より低い、より上のコイルを、結合係数を低減させるために位置をわずかにシフトさせて据え付けることができる。結合係数が低すぎる場合、設置者は、広い間隙および低い結合を補償するために、より薄い媒体10を選択すること、またはより高い電圧電源もしくはより大きいコイルを使用することができる。決定された結合係数は、Lt110とLrとの間の特定の間隙に、後方に変換される場合もある。
上で詳述された構成要素は、例えばコントローラ151によって、または別のプロセッサによって実行される、相互関係のあるコンピュータ命令の1つまたは複数のセットとして実施されてもよい。構成要素は、何らかのプログラミング言語で、そして何らかのコンピューティング環境下でプログラムされる、1つまたは複数の実行可能ファイル、ダイナミックライブラリ、スタティックライブラリ、方法、関数、サービス等として配置され得る。
本開示の主題は、システム、方法、および/またはコンピュータプログラム製品であってもよい。コンピュータプログラム製品は、プロセッサに本開示の主題の態様を遂行させるためのコンピュータ可読プログラム命令をそこに有するコンピュータ可読記憶媒体(または複数の媒体)を含むことができる。
コンピュータ可読記憶媒体は、命令実行デバイスによって使用される命令を保持および記憶することができる有形のデバイスであることができる。コンピュータ可読記憶媒体は、例えば、これらに限定するわけではないが、電子記憶デバイス、磁気記憶デバイス、光学記憶デバイス、電磁記憶デバイス、半導体記憶デバイス、または前述のものの何らかの適切な組合せであってもよい。コンピュータ可読記憶媒体のさらなる特定の例の網羅的ではない一覧は、以下を含む:可搬式コンピュータディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM:read-only memory)、消去可能なプログラマブル読取り専用メモリ(EPROM:erasable programmable read-only memoryまたはフラッシュメモリ)、スタティックランダムアクセスメモリ(SRAM:static random access memory)、可搬式コンパクトディスクによる読み取り専用メモリ(CD-ROM:compact disc read-only memory)、デジタル多用途ディスク(DVD:digital versatile disk)、メモリスティック、フロッピディスク、穿孔カードまたはそこに記録される命令を有する溝の中の隆起構造物などの、機械的に符号化されたデバイス、および前述のものの何らかの適切な組合せ。本明細書で用いられるコンピュータ可読記憶媒体は、電波、または他の自由伝播電磁波、導波管または他の伝送媒体を通る電磁波(例えば、光ファイバケーブルを通る光パルス)、またはワイヤを通って送信される電気信号などの、それ自体で一時的信号であると解釈されるべきではない。
本明細書において記述されるコンピュータ可読プログラム命令は、コンピュータ可読記憶媒体からそれぞれの計算/処理デバイスに、またはネットワーク、例えばインターネット、ローカルエリアネットワーク、広域ネットワーク、および/または無線ネットワークを介して外部コンピュータもしくは外部記憶デバイスにダウンロードされることができる。ネットワークは、銅製伝送ケーブル、光学伝送ファイバ、無線通信等、ルータ、ファイアウォール、スイッチ、ゲートウェイコンピュータ、および/またはエッジサーバを含むことができる。それぞれの計算/処理デバイスの中のネットワークアダプタカードまたはネットワークインターフェースは、ネットワークからコンピュータ可読プログラム命令を受信し、それぞれの計算/処理デバイスの中のコンピュータ可読記憶媒体内の記憶装置にコンピュータ可読プログラム命令を転送する。
本開示の主題の動作を遂行するためのコンピュータ可読プログラム命令は、アセンブラ命令、命令セットアーキテクチャ(ISA:instruction-set-architecture)命令、機械命令、機械依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、C++等などのオブジェクト指向プログラミング言語、および「C」プログラミング言語もしくは類似のプログラミング言語などの従来型の手続きプログラミング言語を含む1つまたは複数のプログラミング言語の何れかを組み合わせて書き込まれたソースコードもしくはオブジェクトコードのどちらかであってもよい。コンピュータ可読プログラム命令は、完全にユーザのコンピュータ上で、独立型ソフトウェアパッケージとして、一部分をユーザのコンピュータ上で、一部分をユーザのコンピュータ上、そして一部分を遠隔コンピュータ上で、または完全に遠隔コンピュータもしくはサーバ上で実行してもよい。後者のシナリオでは、遠隔コンピュータは、ローカルエリアネットワーク(LAN:local area network)もしくは広域ネットワーク(WAN:wide area network)を含むどんな種類のネットワークを通してでも、ユーザのコンピュータに接続され得る、または外部コンピュータへの接続が、(例えばインターネットサービスプロバイダーを使用してインターネットを通して)作られてもよい。いくつかの実施形態では、例えばプログラマブルロジック回路構成、フィールドプログラマブルゲートアレイ(FPGA)またはプログラマブルロジックアレイ(PLA:programmable logic arrays)を含む電子回路構成は、本開示の主題の態様を行うために、コンピュータ可読プログラム命令の状態情報を利用して、電子回路構成を個人化することによって、コンピュータ可読プログラム命令を実行することができる。
本開示の主題の態様は、本明細書において、開示の主題の実施形態による、方法、装置(システム)、およびコンピュータプログラム製品の流れ図説明および/またはブロック線図を参照しながら記載される。流れ図説明および/またはブロック線図のそれぞれのブロック、および流れ図説明、および/またはブロック線図の中のブロックの組み合わせは、コンピュータ可読プログラム命令によって実施されることができることを理解されたい。
これらのコンピュータ可読プログラム命令は、コンピュータまたは他のプログラマブルデータ処理装置のプロセッサを利用して行われる命令が、流れ図および/またはブロック線図の1つまたは複数のブロックの中に明記された機能/作用を実施するための手段を作成するように、機械を作り出すために、汎用コンピュータ、専用コンピュータ、または他のプログラマブルデータ処理装置のプロセッサに提供されることができる。これらのコンピュータ可読プログラム命令は、その中に記憶された命令を有するコンピュータ可読記憶媒体が、流れ図および/またはブロック線図の1つまたは複数のブロックに明記された機能/作用の態様を実施する命令を含む製品を備えるように、コンピュータ、プログラマブルデータ処理装置、および/または他のデバイスに特定の様式で機能するように指示することができるコンピュータ可読記憶媒体の中にさらに記憶されていてもよい。
コンピュータ可読プログラム命令は、コンピュータ、他のプログラマブル装置、または他のデバイス上で実行する命令が、流れ図および/またはブロック線図の1つまたは複数のブロックの中に明記された機能/作用を実施するように、一連の動作段階を、コンピュータ、他のプログラマブル装置、または他のデバイス上で行わせて、コンピュータ実施プロセスを生成するために、コンピュータ、他のプログラマブルデータ処理装置、または他のデバイス上にさらにロードされてもよい。
図中の流れ図およびブロック線図は、本開示の主題のさまざまな実施形態によるシステム、方法、およびコンピュータプログラム製品の可能な実装のアーキテクチャ、機能性、および動作を図示する。この点に関して、流れ図またはブロック線図の中のそれぞれのブロックは、明記された論理機能を実施するための1つまたは複数の実行可能命令を含むモジュール、セグメント、または命令の一部を表すことができる。いくつかの代替的実装では、ブロックの中に書き留められた機能は、図中に書き留められた順序とは異なる順序で発生してもよい。例えば、連続して示される2つのブロックは、実際には、実質的に同時発生的に実行されてもよく、またはブロックは、関係している機能性によっては、逆順で実行されることもあり得る。ブロック図、および/または流れ図説明のそれぞれのブロック、およびブロック図および/または流れ図説明の中のブロックの組み合わせは、明記される機能または作用を行う、または特殊目的ハードウェアおよびコンピュータ命令の組み合わせを遂行する特殊目的ハードウェアベースシステムによって実施されることができることにさらに留意されよう。
本明細書において使用される専門用語は、特定の実施形態を説明するためのものにすぎず、開示の主題を制限することを目的としていない。本明細書で使用される場合、単数形「a」、「an」、および「the」は、コンテクストが特に明確に指示しない限り、さらに複数形も含むように意図されている。用語「備える」および/または「備えること」は、本仕様で使用されるとき、表示された特徴、整数、段階、動作、要素、および/または構成要素の存在を明記するものであるが、1つまたは複数の他の特徴、整数、段階、動作、要素、構成要素、および/またはその群の存在または追加を排除していないことをさらに理解されたい。
下記の特許請求の範囲の中の対応する構造物、材料、作用、および全ての手段または段階プラス機能素子の等価物は、明確に請求されるように、他の請求される要素と組み合わせて機能を行うためのどのような構造、材料、または作用でも含むように意図されている。本開示の主題の記載は、図解および説明のために提示されてきたが、網羅的であるようには、または開示された形態の開示の主題に限定されるようには意図されていない。開示の主題の範囲および精神から逸脱することのない、多くの修正および変更が、当業者には明らかとなろう。実施形態は、開示の主題の原理および実際の適用を最もうまく説明するために、そして、他の当業者が、想定される特定の用途に適しているようにさまざまな変更を加えたさまざまな実施形態に関する開示の主題を理解することを可能にするために、選択されて記載された。

Claims (9)

  1. コイルを有し、デバイスに充電するための電力を誘導的に伝送するように適合されたリレーと、コイル、および前記デバイスに無線で充電するための電力を前記リレーに誘導的に送信するように構成されたコントローラを有する送信器とを備えるシステム内の動的な較正方法であって、前記送信器および前記リレーが、媒体によって隔てられており、前記方法が、
    前記送信器のコイルと前記リレーのコイルとの間の結合係数(k)を決定することであって、前記結合係数(k)が、前記送信器のコイルと前記リレーのコイルとの間の第1のジョイント共振周波数(fj1)および第2のジョイント共振周波数(fj2)に基づいて決定されることと、
    前記結合係数(k)に基づいて、最小の動作周波数(fmin)および最大の動作周波数(fmax)を有する動作周波数範囲を決定することであって、前記動作周波数範囲が、前記第2のジョイント共振周波数(f j2 )と、前記動作周波数範囲が前記第2のジョイント共振周波数(f j2 )より高いかまたは低いことを示すオフセットとに基づいて決定されることと、
    を備える、方法。
  2. 前記動作周波数範囲内の動作周波数を掃引して、動作周波数ごとの出力交流電流(AC)を測定しながら、前記送信器を動作させること
    をさらに備える、請求項1に記載の方法。
  3. 前記結合係数(k)および前記第2のジョイント共振周波数(fj2)の関数としてピング周波数が決定される、請求項1に記載の方法。
  4. デバイスに無線で充電するための電力を誘導的に伝送するための方法であって、前記方法が、
    送信器のコイルとリレーのコイルとの間の結合係数(k)を決定することと、
    前記結合係数(k)に基づいて動作周波数範囲を決定することであって、前記動作周波数範囲が、それぞれ、最小の動作周波数(fmin)および最大の動作周波数(fmax)によって境界されており、前記動作周波数範囲が、ジョイント共振周波数(f)と、前記動作周波数範囲が前記ジョイント共振周波数(f)より高いかまたは低いことを示すオフセットとに基づいて決定されることと、
    前記送信器から前記リレーに電力を誘導的に送信することと、
    前記動作周波数範囲に従って、前記リレーから前記デバイスに、前記デバイスに充電するための電力を誘導的に伝送することであって、前記送信器および前記リレーが、媒体によって隔てられていることと、
    を備える、方法。
  5. 前記結合係数(k)および前記ジョイント共振周波数(f )の関数として、前記デバイスの1つ以上の要件に整合するピング周波数を決定すること
    をさらに備える、請求項4に記載の方法。
  6. 前記動作周波数範囲内の動作周波数を掃引して、動作周波数ごとの出力交流電流(AC)を測定しながら、前記送信器を動作させること
    をさらに備える、請求項4に記載の方法。
  7. 充電システムであって、
    送信器と、
    リレーと、
    前記送信器のコイルと前記リレーのコイルとの間の結合係数(k)を決定するように構成された第1の回路構成であって、前記結合係数(k)が、前記送信器のコイルと前記リレーのコイルとの間の第1のジョイント共振周波数(fj1)および第2のジョイント共振周波数(fj2)に基づいて決定される、第1の回路構成と、
    前記結合係数(k)に基づいて動作周波数範囲を決定するように構成された第2の回路構成と、
    を備える、充電システムであり、
    前記送信器が、前記リレーに電力を送信するように構成され、
    前記リレーが、前記動作周波数範囲に従って、デバイスに充電する電力を誘導的に伝送するように構成され、前記送信器および前記リレーが、媒体によって隔てられている、充電システム。
  8. 前記第1の回路構成が、前記送信器のコイルと前記リレーのコイルとの間の第1のジョイント共振周波数(fj1)および第2のジョイント共振周波数(fj2)に基づいて前記結合係数(k)を決定するようにさらに構成され、
    前記動作周波数範囲が、それぞれ、最小の動作周波数(fmin)および最大の動作周波数(fmax)によって境界されており、前記動作周波数範囲が、前記結合係数(k)と、前記第2のジョイント共振周波数(fj2)と、前記動作周波数範囲が前記第2のジョイント共振周波数(fj2)より高いかまたは低いことを示すオフセットとに基づいて決定される、
    請求項7に記載の充電システム。
  9. 前記送信器を動作させて、前記動作周波数範囲内の動作周波数を掃引するように構成された第3の回路構成と、
    動作周波数ごとの出力交流電流(AC)を測定するように構成された第4の回路構成と、
    をさらに備える、請求項7に記載の充電システム。
JP2019548393A 2017-03-07 2018-03-07 無線電力充電用のシステム Active JP7353178B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023151468A JP2023169308A (ja) 2017-03-07 2023-09-19 無線電力充電用のシステム

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201762467903P 2017-03-07 2017-03-07
US62/467,903 2017-03-07
US201762535987P 2017-07-24 2017-07-24
US62/535,987 2017-07-24
US201762584919P 2017-11-13 2017-11-13
US62/584,919 2017-11-13
US201862614422P 2018-01-07 2018-01-07
US62/614,422 2018-01-07
PCT/IL2018/050258 WO2018163170A1 (en) 2017-03-07 2018-03-07 System for wireless power charging

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023151468A Division JP2023169308A (ja) 2017-03-07 2023-09-19 無線電力充電用のシステム

Publications (3)

Publication Number Publication Date
JP2020511918A JP2020511918A (ja) 2020-04-16
JP2020511918A5 JP2020511918A5 (ja) 2021-04-15
JP7353178B2 true JP7353178B2 (ja) 2023-09-29

Family

ID=63447424

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019548393A Active JP7353178B2 (ja) 2017-03-07 2018-03-07 無線電力充電用のシステム
JP2023151468A Pending JP2023169308A (ja) 2017-03-07 2023-09-19 無線電力充電用のシステム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023151468A Pending JP2023169308A (ja) 2017-03-07 2023-09-19 無線電力充電用のシステム

Country Status (5)

Country Link
US (2) US11271429B2 (ja)
JP (2) JP7353178B2 (ja)
KR (2) KR20230151983A (ja)
CN (1) CN110771005B (ja)
WO (1) WO2018163170A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714960B2 (en) * 2015-12-22 2020-07-14 Intel Corporation Uniform wireless charging device
EP3373414B1 (en) 2017-03-07 2019-10-23 Powermat Technologies Ltd. System for wireless power charging
CN110785912A (zh) 2017-03-07 2020-02-11 鲍尔马特技术有限公司 用于无线电力充电的系统
EP4297242A3 (en) 2017-03-07 2024-02-28 Powermat Technologies Ltd. System for wireless power charging
KR20230151983A (ko) 2017-03-07 2023-11-02 파워매트 테크놀로지스 엘티디. 무선 전력 충전 시스템
KR102550056B1 (ko) * 2017-08-18 2023-06-30 삼성전자주식회사 무선 충전용 중계 코일을 포함하는 커버 또는 그것을 포함하는 전자 장치
CN112868162A (zh) 2018-05-31 2021-05-28 鲍尔马特技术有限公司 确定q因子的系统和方法
US11146108B2 (en) * 2018-06-15 2021-10-12 Nuvolta Technologies (Hefei) Co., Ltd. Demodulation apparatus and method for wireless power transmitter
US11750030B2 (en) * 2019-04-16 2023-09-05 Aira, Inc. Coil driving in wireless charging system
KR20210089906A (ko) * 2020-01-09 2021-07-19 삼성전자주식회사 무선 전력 공유 기능을 빠르게 실행하는 전자 장치 및 그 방법
KR20210101705A (ko) * 2020-02-10 2021-08-19 삼성전자주식회사 무선 충전 방법 및 이를 지원하는 전자 장치
EP4020757A1 (en) * 2020-12-22 2022-06-29 Koninklijke Philips N.V. Wireless power transfer
WO2022203481A1 (ko) * 2021-03-26 2022-09-29 엘지전자 주식회사 무선 전력 전송 시스템에서 커플링 인자를 활용하는 방법 및 장치
US11750037B2 (en) 2021-06-22 2023-09-05 Nucurrent, Inc. Dynamic operation adjustment in wireless power transfer system
WO2022271885A1 (en) * 2021-06-22 2022-12-29 Nucurrent, Inc. Dynamic operation adjustment in wireless power transfer system
US11456627B1 (en) 2021-06-22 2022-09-27 Nucurrent, Inc. Dynamic operation adjustment in wireless power transfer system
KR102650006B1 (ko) * 2021-08-17 2024-03-25 (주)와이파워원 무선 충전을 위한 급전장치의 출력전력 제어 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504387A (ja) 2008-09-27 2012-02-16 ウィトリシティ コーポレーション 無線エネルギー伝達システム
US20140265617A1 (en) 2013-03-15 2014-09-18 Witricity Corporation Wireless energy transfer
JP2014204603A (ja) 2013-04-08 2014-10-27 ソニー株式会社 給電装置および給電システム
JP2014207796A (ja) 2013-04-15 2014-10-30 日産自動車株式会社 非接触給電装置及びその制御方法
WO2016157758A1 (ja) 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 非接触給電装置、プログラム、非接触給電装置の制御方法、および非接触電力伝送システム

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US8169185B2 (en) 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US7989986B2 (en) * 2006-03-23 2011-08-02 Access Business Group International Llc Inductive power supply with device identification
US8004235B2 (en) * 2006-09-29 2011-08-23 Access Business Group International Llc System and method for inductively charging a battery
WO2008093334A2 (en) 2007-01-29 2008-08-07 Powermat Ltd Pinless power coupling
CA2711489A1 (en) 2008-01-07 2009-07-16 David W. Baarman Inductive power supply with duty cycle control
US8981598B2 (en) * 2008-07-02 2015-03-17 Powermat Technologies Ltd. Energy efficient inductive power transmission system and method
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
JP2010193598A (ja) 2009-02-17 2010-09-02 Nippon Soken Inc 非接触給電設備および非接触給電システム
JP5681947B2 (ja) 2009-08-13 2015-03-11 パナソニックIpマネジメント株式会社 無線電力伝送装置、ならびに無線電力伝送装置を備える発電装置および発電システム
KR20110062841A (ko) 2009-12-04 2011-06-10 한국전자통신연구원 무선 전력 전송 장치
CN105048643B (zh) 2010-02-08 2018-08-03 飞利浦知识产权企业有限公司 输入寄生金属检测
CN102823109B (zh) 2010-04-13 2015-01-28 富士通株式会社 电力供给系统、送电器及受电器
US8451083B2 (en) 2010-05-31 2013-05-28 Tdk Corporation Coil component and method of manufacturing the same
US8970070B2 (en) * 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP5789790B2 (ja) 2010-09-10 2015-10-07 パナソニックIpマネジメント株式会社 送電装置および無線電力伝送システム
WO2012058466A1 (en) 2010-10-29 2012-05-03 Qualcomm Incorporated Wireless energy transfer via coupled parasitic resonators
US9356659B2 (en) 2011-01-18 2016-05-31 Mojo Mobility, Inc. Chargers and methods for wireless power transfer
US10141770B2 (en) 2011-01-18 2018-11-27 Mojo Mobility, Inc. Powering and/or charging with a plurality of protocols
JP2013021886A (ja) 2011-07-14 2013-01-31 Sony Corp 給電装置、給電システム、車両および電子機器
EP2735085B1 (en) * 2011-07-21 2020-12-30 UT-Battelle, LLC Regulation control and energy management scheme for wireless power transfer
JP5940784B2 (ja) 2011-09-09 2016-06-29 国立大学法人埼玉大学 移動体用非接触給電装置
EP2754222B1 (en) 2011-09-09 2015-11-18 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9479227B2 (en) 2011-09-13 2016-10-25 Samsung Electronics Co., Ltd. Wireless electromagnetic receiver and wireless power transfer system
US9450648B2 (en) 2011-10-13 2016-09-20 Integrated Device Technology, Inc. Apparatus, system, and method for detecting a foreign object in an inductive wireless power transfer system
JP5839232B2 (ja) 2012-04-11 2016-01-06 株式会社デンソー 非接触給電装置
KR101848303B1 (ko) 2012-07-10 2018-04-13 삼성전자주식회사 전력 전송을 제어하기 위한 방법 및 이를 위한 전력 송신기
US9410823B2 (en) 2012-07-13 2016-08-09 Qualcomm Incorporated Systems, methods, and apparatus for detection of metal objects in a predetermined space
KR101615669B1 (ko) 2012-10-11 2016-05-11 파워매트 테크놀로지스 엘티디. 디지털 메시지들을 동시에 송신하기 위한 유도 전력 송신 시스템 및 방법
WO2014083015A1 (en) 2012-11-29 2014-06-05 Koninklijke Philips N.V. Wireless inductive power transfer
US9667322B2 (en) 2012-12-28 2017-05-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and system for wireless power transfer calibration
JP6199058B2 (ja) * 2013-03-25 2017-09-20 日東電工株式会社 無線電力伝送によって電力供給される被給電機器の受電電圧制御方法、当該受電電圧制御方法によって調整された無線電力伝送装置、及び、その無線電力伝送装置の製造方法
BR112014029281B1 (pt) * 2013-08-07 2023-01-31 Koninklijke Philips N.V Aparelho para um sistema de transferência de energia sem fio e método de operação de um sistema de transferência de energia sem fio incluindo um transmissor de energia e um receptor de energia
JP6144176B2 (ja) * 2013-10-15 2017-06-07 日東電工株式会社 磁界空間を形成可能な無線電力伝送装置及びその形成方法
US9692238B2 (en) * 2014-02-18 2017-06-27 Panasonic Corporation Wireless power transmission system and power transmitting device
KR102145497B1 (ko) 2014-02-26 2020-08-14 주식회사 히타치엘지 데이터 스토리지 코리아 무선 전력 전송 방법 및 장치
EP3661015A1 (en) * 2014-03-25 2020-06-03 Koninklijke Philips N.V. Wireless inductive power transfer
RU2674436C2 (ru) 2014-03-31 2018-12-10 Конинклейке Филипс Н.В. Беспроводная индуктивная передача энергии
CN106256069B (zh) 2014-05-02 2018-12-14 Ls电线有限公司 无线电力中继装置以及无线电力传输系统
ES2912302T3 (es) 2014-06-24 2022-05-25 Samsung Electronics Co Ltd Procedimiento para transmitir una señal mediante un transmisor de potencia inalámbrico y transmisor de potencia inalámbrico
US10110018B2 (en) 2014-12-23 2018-10-23 Intel Corporation Wireless power repeating
US10491042B2 (en) 2015-05-03 2019-11-26 Powermat Technologies Ltd. Wireless power transmission
JP6458198B2 (ja) 2015-07-21 2019-01-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 同期された電力測定による誘導無線電力伝送
WO2017054869A1 (en) 2015-09-30 2017-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Wirelessly chargeable device and wireless-charging device
EP3411936B1 (en) 2016-02-02 2019-12-25 Koninklijke Philips N.V. Device, power transmitter and methods for wireless power transfer
US20170353046A1 (en) 2016-06-02 2017-12-07 Qualcomm Incorporated Modular and assemblable wireless charging system and device
CN106218429B (zh) * 2016-08-03 2019-02-01 中国地质大学(武汉) 超导发射型电动车无线充电系统
EP3373414B1 (en) 2017-03-07 2019-10-23 Powermat Technologies Ltd. System for wireless power charging
EP4297242A3 (en) 2017-03-07 2024-02-28 Powermat Technologies Ltd. System for wireless power charging
KR20230151983A (ko) 2017-03-07 2023-11-02 파워매트 테크놀로지스 엘티디. 무선 전력 충전 시스템
CN110785912A (zh) 2017-03-07 2020-02-11 鲍尔马特技术有限公司 用于无线电力充电的系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504387A (ja) 2008-09-27 2012-02-16 ウィトリシティ コーポレーション 無線エネルギー伝達システム
US20140265617A1 (en) 2013-03-15 2014-09-18 Witricity Corporation Wireless energy transfer
JP2014204603A (ja) 2013-04-08 2014-10-27 ソニー株式会社 給電装置および給電システム
JP2014207796A (ja) 2013-04-15 2014-10-30 日産自動車株式会社 非接触給電装置及びその制御方法
WO2016157758A1 (ja) 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 非接触給電装置、プログラム、非接触給電装置の制御方法、および非接触電力伝送システム

Also Published As

Publication number Publication date
CN110771005B (zh) 2023-11-14
US20220200353A1 (en) 2022-06-23
JP2020511918A (ja) 2020-04-16
US11271429B2 (en) 2022-03-08
KR102561310B1 (ko) 2023-07-27
CN110771005A (zh) 2020-02-07
US20200328617A1 (en) 2020-10-15
JP2023169308A (ja) 2023-11-29
KR20190137795A (ko) 2019-12-11
WO2018163170A1 (en) 2018-09-13
KR20230151983A (ko) 2023-11-02

Similar Documents

Publication Publication Date Title
JP7353178B2 (ja) 無線電力充電用のシステム
JP7373995B6 (ja) 無線電力充電用のシステム
JP7278217B2 (ja) 無線電力充電用のシステム
JP7406376B2 (ja) 無線電力充電用のシステム
CN103329397B (zh) 无线能量传递系统
US11218030B2 (en) System and method for determining Q factor
EP3373412A1 (en) System for wireless power charging

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220526

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230919

R150 Certificate of patent or registration of utility model

Ref document number: 7353178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150