EP2075349B1 - Alliages d'aluminure de titane - Google Patents

Alliages d'aluminure de titane Download PDF

Info

Publication number
EP2075349B1
EP2075349B1 EP08020431.6A EP08020431A EP2075349B1 EP 2075349 B1 EP2075349 B1 EP 2075349B1 EP 08020431 A EP08020431 A EP 08020431A EP 2075349 B1 EP2075349 B1 EP 2075349B1
Authority
EP
European Patent Office
Prior art keywords
phase
alloy
lamellar structures
lamellae
composite lamellar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08020431.6A
Other languages
German (de)
English (en)
Other versions
EP2075349A2 (fr
EP2075349A3 (fr
Inventor
Michael Oehring
Fritz Appel
Jonathan Paul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Original Assignee
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH filed Critical Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Priority to EP09010152.8A priority Critical patent/EP2145967B1/fr
Priority to EP11187502.7A priority patent/EP2423341B1/fr
Publication of EP2075349A2 publication Critical patent/EP2075349A2/fr
Publication of EP2075349A3 publication Critical patent/EP2075349A3/fr
Application granted granted Critical
Publication of EP2075349B1 publication Critical patent/EP2075349B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the invention relates to an alloy based on, in particular using melt or powder metallurgy produced titanium aluminides, preferably based on ⁇ (TiAl).
  • Titanium aluminide alloys are characterized by low density, high strength and good corrosion resistance. In the solid state, they have domains with hexagonal ( ⁇ ), biphasic structures ( ⁇ + ⁇ ) and cubic body-centered ⁇ -phase and / or ⁇ -phase.
  • alloys are interesting, which are based on an intermetallic phase ⁇ (TiAl) with tetragonal structure and in addition to the majority phase ⁇ (TiAl) and minority components of the intermetallic phase ⁇ 2 (Ti 3 Al) with hexagonal structure.
  • These ⁇ -titanium aluminide alloys are characterized by properties such as low density (3.85 - 4.2 g / cm 3 ), high elastic modulus, high strength and creep resistance up to 700 ° C, making them a lightweight material for high temperature applications make attractive. Examples of this are turbine blades in aircraft engines and in stationary gas turbines, valves in engines and hot gas fans.
  • ⁇ -titanium aluminide alloys are highly anisotropic due to their deformation and fracture behavior, but also because of the microstructural anisotropy of the preferred lamellar structure or duplex structure.
  • different powder metallurgy and forming methods and combinations of these production methods are used.
  • a titanium aluminide alloy which has a structurally and chemically homogeneous structure.
  • the majority phases ⁇ (TiAl) and ⁇ 2 (Ti 3 Al) are finely dispersed.
  • the disclosed titanium aluminide alloy with an aluminum content of 45 atom% is characterized by exceptionally good mechanical properties and high-temperature properties.
  • Titanium aluminides based on ⁇ are generally characterized by relatively high strengths, high elastic moduli, good oxidation and creep resistance with low density at the same time. Due to these properties, TiAl alloys are to be used as high-temperature materials. Such applications are severely impaired by the very low plastic deformability and the low fracture toughness. Here, strength and deformability, as with many other materials, behave inversely to each other. As a result, especially the technically interesting high-strength alloys are often particularly brittle. To remedy these very disadvantageous properties, extensive investigations were carried out to optimize the microstructure.
  • titanium aluminides have been softened mainly by additions of boron, which lead to the formation of titanium borides (cf. TT Cheng, in: Gamma Titanium Aluminides 1999, Eds. Y.-W. Kim, DM Dimiduk, MH Loretto, TMS, Warrendale PA, 1999, p. 389 , such as Y.-W. Kim, DM Dimiduk, in: Structural Intermetallics 2001, Eds. KJ Hemker, DM Dimiduk, H. Clemens, R. Darolia, H. Inui, JM Larsen, VK Sikka, M. Thomas, JD Whittenberger, TMS, Warrendale PA, 2001, p. 625 .)
  • TAKEYAMA MASAO ET AL Phase equilibria among ⁇ , ⁇ 2, ⁇ and y phases in ternary Ti-AI-X systems at elevated temperatures
  • TITANIUM '95 SCI-ENCE AND TECHNOLOGY, PROCEEDINGS OF THE WORLD CONFERENCE ON TITANIUM, 8TH , Birmingham, UK, OCT. 22-26, 1995, INSTITUTE OF MATERIALS, LONDON, UK, Vol. 1, Jan. 1, 1995 (1995-01-01), pages 294-301, XP009178047 Titanium aluminides described with a composition of titanium-38, aluminum-6, niobium, which are produced by arc melting.
  • the samples are homogenized at 1350 ° C for two hours and then quenched in a water bath. Subsequently, the material is tempered at temperatures between 1100 ° Celsius and 1200 ° Celsius in an argon atmosphere and quenched after a certain holding time in ice water.
  • the object of the invention is to provide a titanium aluminide alloy having a fine grain morphology, in particular in the nanometer range. Furthermore, the object is to provide a component with a homogeneous alloy and a use of this alloy.
  • an intermetallic compound or alloy based on, in particular using melt or powder metallurgy produced, titanium aluminides, preferably based on ⁇ (TiAl), in the following composition: Ti - 38 atom % al - 5 to 10 atom % Nb .
  • the composite having B19-phase and ⁇ -phase composite lamellar structures in each lamella of the composite lamellar structures, wherein the volume ratio of the B19 phase and the ⁇ -phase are each in a lamella of the composite lamellar structures between 0.05 and 20, in particular between 0.1 and 10, wherein the B19 phase is formed by shear conversion of the ⁇ -phase, wherein the lamellae of the composite lamellar structures, the phase ⁇ 2 -Ti 3 Al in a proportion of up to 20 %, wherein the lamellae of the composite lamellar structures are surrounded by lamellae of the ⁇ (TiAl) type and wherein the lamellae of the composite lamellar structures have a volume fraction of more than 10% of the alloy, the alloy being developed thereby in that the composition optionally has (0.1 to 1 at.%) B (boron) and / or (0.1 to 1 at.%) C (carbon).
  • Such composite lamellar structures can be prepared in alloys by known manufacturing technologies, ie, casting, forming, and powder technologies.
  • the alloys are characterized by extremely high strength and creep resistance combined with high ductility and fracture toughness.
  • alloys are provided which are used as a lightweight material for high temperature applications, e.g. Turbine blades or engine and turbine components are suitable.
  • the alloys are produced using casting metallurgy, melt metallurgy or powder metallurgy techniques, or using these methods in combination with forming techniques.
  • the alloys are characterized by that they have a very fine microstructure and high strength and creep resistance, while having good ductility and fracture toughness, especially over alloys without the composite lamellar structures.
  • other additives for example, of refractory elements
  • the crystallographic lattices of these two phases are mechanically unstable to homogeneous shear processes, which can lead to lattice transformations. This property is mainly due to the anistropic bonding and the symmetry of the cubic body-centered lattice. The inclination of the ⁇ or B2 phase to the lattice transformation is thus pronounced.
  • various orthorhombic phases can be formed, including, in particular, phases B19 and B33.
  • the invention is based on the idea of utilizing these lattice transformations by shear conversion for additional refining of the microstructure of the titanium aluminide alloys. Such a method is not yet known for titanium aluminide alloys in the scientific literature. In the case of the abovementioned alloys, shearing transformations also prevent brittle phases such as ⁇ , ⁇ 'and ⁇ ", which are extremely disadvantageous for the mechanical material properties.
  • the alloys are further characterized in that the corresponding composition has composite lamellar structures with the B19 phase and ⁇ phase in each lamella, the lamellae being surrounded by the TiAl ⁇ phase.
  • the ratio, in particular the volume ratio, of the B19 phase and ⁇ -phase in each case is between 0.05 and 20, in particular between 0.1 and 10.
  • the ratio, in particular the volume ratio, of the B19 phase and ⁇ phase is in each case in a lamella between 0.2 and 5, in particular between 0.25 and 4.
  • a particularly fine microstructure in the alloy composition is characterized in that the ratio, in particular the volume ratio, of the B19 phase and ⁇ -phase in each case in a lamella between 0.75 and 1.25, in particular between 0.8 and 1.2, preferably between 0.9 and 1.1, is.
  • the alloys are further distinguished by the fact that the lamellae of the composite lamellar structures have a volume fraction of more than 20% of the total alloy.
  • the fine lamellar structure is retained in the composite structures, if the lamellae of the composite lamellar structures TiAl have the phase ⁇ 2 -Ti 3 Al in a proportion of up to 20%, in particular the (volume) ratio of the B19 phase and ⁇ phase in the lamellae remain unchanged and constant.
  • the alloys are suitable as high-temperature lightweight materials for components exposed to temperatures of up to 800 ° C.
  • the object is achieved by a method for producing an alloy described above using melt or powder metallurgy techniques, wherein after the production of the alloy to an intermediate product further heat treatment of the intermediate at temperatures above 900 ° C, preferably above 1000 ° C, especially at temperatures between 1000 ° C and 1200 ° C, for a predetermined period of time of more than 60 minutes, preferably more than 90 minutes, is carried out, and subsequently the heat-treated alloy with a predetermined cooling rate of more than 0.5 ° C per minute is cooled, the process being developed by cooling the heat-treated alloy at a predetermined cooling rate between 1 ° C per minute to 20 ° C per minute, preferably to 10 ° C per minute.
  • the object of the invention is achieved by a component which is produced from an alloy according to the invention, wherein in particular the alloy is produced by melt or powder metallurgical methods or techniques.
  • the alloys based on a ⁇ -TiAl intermetallic compound provide lightweight (high temperature) materials or components for use or for use in heat engines such as internal combustion engines, gas turbines, aircraft engines.
  • alloys according to the invention described above, for the production of a component.
  • the alloys having the above-mentioned compositions are preferably produced by using conventional metallurgical casting methods or by powder-metallurgical techniques known per se, and can be processed, for example, by hot forging, hot pressing and hot rolling.
  • the composite lamellar structures are shown below using an alloy with a composition Ti - 42 At% Al - 8.5 At% Nb.
  • Fig. 1a shows a picture of the Gedemandgleiter, which was taken with the aid of a transmission electron microscope is.
  • the overview in Fig. 1 shows that the composite lamellar structures in Fig. 1 with T, have a streaky contrast to the structures surrounding the structures of the ⁇ -phase.
  • Fig. 1 b shows a recording of the alloy structure with a higher magnification, wherein it can be seen that the modulated composite lamellar structures (reference symbol T) are surrounded by the ⁇ -phases or embedded in the ⁇ -phase.
  • Fig. 1c a cast structure of the same alloy Ti-42 atom% Al-8.5 Atom% Nb is shown, in which also a composite lamellar structure (reference T) is formed, which is surrounded by the ⁇ -phase.
  • Fig. 2a shows in a high-resolution representation the atomic structure of the composite lamellar structures above the ⁇ -phase.
  • the composite lamellar structures consist of the ordered B19 phase and the disordered ⁇ -phase, which adjoin the ⁇ phases (in the lower region). From the recording in Fig. 2a It can be seen that the composite lamellar structures contain the two crystallographically different phases B19 and ⁇ / B2, which are arranged at intervals of a few nanometers.
  • the composite lamellar structures contain phases B19 and ⁇ , both of which are considered ductile.
  • the volume ratio of B19 phases and ⁇ phases in a composite lamellar structure is 0.8 to 1.2. Due to the ductile phases B19 and ⁇ , the structure in the Essentially from well deformable lamellae, which are embedded in the relatively brittle ⁇ -phase.
  • FIG. 2b The illustration of a B19 structure is shown with an enlarged view.
  • the corresponding diffractogram, from the in Fig. 2b shown section and is characteristic of the B19 structure is in Fig. 2c shown.
  • Fig. 3 is an electron micrograph of a crack C of the above alloy shown.
  • the image shows that the crack C is deflected at the modulated composite lamellar structures (T), and that the composite lamellar structures form ligaments that can bridge the crack edges.
  • T modulated composite lamellar structures
  • Such a behavior differs significantly from the crack propagation in the previously known Ti-Al alloys, in which a gap fracture occurs in the microscopic scale considered here.
  • crack propagation is impeded on account of the formed composite lamellar structures.
  • the alloys may be formed by the technologies known for TiAl alloys, i. via melt metallurgy, forming technologies and powder metallurgy. For example, alloys are melted in an electric arc furnace and remelted several times and then subjected to a heat treatment.
  • the production methods known for primary cast blocks made from TiAl alloys, vacuum arc melting, induction melting or plasma melting can also be used for the production.
  • hot isostatic pressing may be used as the densification process at temperatures of 900 ° C to 1300 ° C or heat treatments in the temperature range of 700 ° C to 1400 ° C or a combination of these treatments to close pores and to adjust a microstructure in the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Claims (9)

  1. Alliage à base d'aluminures de titane, en particulier fabriqué au moyen de procédés de fusion ou de métallurgie des poudres, de préférence à base de γ (TiAl), selon la composition suivante : Ti 38 % At . de Al 5 à 10 % At . Nb ,
    Figure imgb0004

    dans lequel la composition comprend des structures à lamelles composites ayant une phase B19 et une phase ß dans chaque lamelle des structures à lamelles composites, dans lequel le rapport de volume de la phase B19 et de la phase ß, dans chaque lamelle des structures à lamelles composites, est compris entre 0,05 et 20 , en particulier entre 0,1 et 10, la phase B19 étant formée par conversion en cisaillement de la phase ß, dans lequel les lamelles des structures à lamelles composites présentent la phase ∝2-Ti3Al avec une proportion allant jusqu'à 20%, les lamelles des structures à lamelles composites étant entourées par des lamelles du type γ (TiAl) et dans lequel les lamelles des structures à lamelles composites ont un pourcentage volumique de plus de 10% de l'alliage, caractérisé en ce que la composition comprend (0,1 à 1 % At.) de B (bore) et / ou (0,1 à 1 % At.) de C (carbone).
  2. Alliage selon la revendication 1, caractérisé en ce que le rapport, en particulier le rapport en volume, de la phase B19 et de la phase ß est compris dans chaque lamelle entre 0,2 et 5, en particulier entre 0,25 et 4.
  3. Alliage selon la revendication 1 ou la revendication 2, caractérisé en ce que le rapport, en particulier le rapport en volume, de la phase B19 et de la phase ß est compris dans chaque lamelle entre (1/3) et 3, en particulier entre 0,5 et 2.
  4. Alliage selon la revendication 1 ou la revendication 3, caractérisé en ce que le rapport, en particulier le rapport en volume, de la phase B19 et de la phase ß est compris dans chaque lamelle entre 0,75 et 1,25, en particulier entre 0,8 et 1,2, de préférence entre 0,9 et 1,1.
  5. Alliage selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les lamelles des structures à lamelles composites sont entourées des deux côtés par des lamelles de type γ (TiAl).
  6. Alliage selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les lamelles des structures à lamelles composites représentent une fraction volumique de plus de 20% de l'alliage.
  7. Procédé de production d'un alliage selon l'une quelconque des revendications 1 à 6 fabriqué au moyen des techniques de fusion ou de métallurgie des poudres, dans lequel, après la production de l'alliage pour obtenir un produit intermédiaire, un autre traitement thermique du produit intermédiaire est mise en oeuvre à des températures supérieures à 900°C, de préférence supérieure à 1000°C, en particulier à des températures comprises entre 1000°C et 1200°C, pendant une période de temps prédéterminée de plus de 60 minutes, de préférence de plus de 90 minutes, l'alliage ayant subi le traitement thermique étant ensuite refroidi à une vitesse de refroidissement prédéterminée de plus de 0,5°C par minute, caractérisé en ce que l'alliage traité thermiquement est ensuite refroidi à une vitesse de refroidissement prédéterminée comprise entre 1°C par minute et 20°C par minute, de préférence de 10°C par minute.
  8. Composant constitué d'un alliage selon l'une quelconque des revendications 1 à 6, dans lequel, en particulier, l'alliage est fabriqué au moyen de procédés ou de techniques de fusion ou de métallurgie des poudres.
  9. Utilisation d'un alliage selon l'une quelconque des revendications 1 à 6 pour la préparation d'un composant.
EP08020431.6A 2007-12-13 2008-11-25 Alliages d'aluminure de titane Not-in-force EP2075349B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09010152.8A EP2145967B1 (fr) 2007-12-13 2008-11-25 Alliages d'aluminure de titane
EP11187502.7A EP2423341B1 (fr) 2007-12-13 2008-11-25 Alliages d'aluminure de titane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007060587A DE102007060587B4 (de) 2007-12-13 2007-12-13 Titanaluminidlegierungen

Related Child Applications (3)

Application Number Title Priority Date Filing Date
EP09010152.8A Division EP2145967B1 (fr) 2007-12-13 2008-11-25 Alliages d'aluminure de titane
EP09010152.8A Division-Into EP2145967B1 (fr) 2007-12-13 2008-11-25 Alliages d'aluminure de titane
EP11187502.7A Division-Into EP2423341B1 (fr) 2007-12-13 2008-11-25 Alliages d'aluminure de titane

Publications (3)

Publication Number Publication Date
EP2075349A2 EP2075349A2 (fr) 2009-07-01
EP2075349A3 EP2075349A3 (fr) 2009-09-09
EP2075349B1 true EP2075349B1 (fr) 2016-03-09

Family

ID=40527708

Family Applications (3)

Application Number Title Priority Date Filing Date
EP08020431.6A Not-in-force EP2075349B1 (fr) 2007-12-13 2008-11-25 Alliages d'aluminure de titane
EP11187502.7A Not-in-force EP2423341B1 (fr) 2007-12-13 2008-11-25 Alliages d'aluminure de titane
EP09010152.8A Not-in-force EP2145967B1 (fr) 2007-12-13 2008-11-25 Alliages d'aluminure de titane

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP11187502.7A Not-in-force EP2423341B1 (fr) 2007-12-13 2008-11-25 Alliages d'aluminure de titane
EP09010152.8A Not-in-force EP2145967B1 (fr) 2007-12-13 2008-11-25 Alliages d'aluminure de titane

Country Status (10)

Country Link
US (3) US20090151822A1 (fr)
EP (3) EP2075349B1 (fr)
JP (1) JP5512964B2 (fr)
KR (1) KR20090063173A (fr)
CN (1) CN101457314B (fr)
BR (1) BRPI0806979A2 (fr)
CA (1) CA2645843A1 (fr)
DE (1) DE102007060587B4 (fr)
IL (1) IL195756A0 (fr)
RU (1) RU2466201C2 (fr)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215631A (ja) * 2008-03-12 2009-09-24 Mitsubishi Heavy Ind Ltd TiAl基合金及びその製造方法並びにそれを用いた動翼
DE102009050603B3 (de) * 2009-10-24 2011-04-14 Gfe Metalle Und Materialien Gmbh Verfahren zur Herstellung einer β-γ-TiAl-Basislegierung
WO2012041276A2 (fr) 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Alliage tial résistant à la chaleur
DE102011110740B4 (de) * 2011-08-11 2017-01-19 MTU Aero Engines AG Verfahren zur Herstellung geschmiedeter TiAl-Bauteile
EP2620517A1 (fr) 2012-01-25 2013-07-31 MTU Aero Engines GmbH Alliage TiAl thermostable
US20130248061A1 (en) * 2012-03-23 2013-09-26 General Electric Company Methods for processing titanium aluminide intermetallic compositions
CN103320648B (zh) * 2012-03-24 2017-09-12 通用电气公司 铝化钛金属间组合物
US10597756B2 (en) 2012-03-24 2020-03-24 General Electric Company Titanium aluminide intermetallic compositions
KR101261885B1 (ko) * 2012-07-25 2013-05-06 한국기계연구원 베타-감마상을 포함하는 층상 구조의 타이타늄-알루미늄계 합금
RU2502824C1 (ru) * 2012-11-13 2013-12-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ термообработки отливок из сплавов на основе гамма алюминида титана
DE102012222745A1 (de) 2012-12-11 2014-06-12 MTU Aero Engines AG Einkristalline Turbinenschaufel aus Titanaluminid
WO2014115921A1 (fr) * 2013-01-23 2014-07-31 한국기계연구원 Alliage de titane-aluminium présentant une résistance aux hautes températures et une résistance à l'oxydation améliorées
EP2969319A4 (fr) 2013-03-15 2016-11-09 United Technologies Corp Procédé permettant de fabriquer un composant de turbine en aluminure de titane gamma
CN103484701B (zh) * 2013-09-10 2015-06-24 西北工业大学 一种铸造钛合金晶粒细化的方法
CN103773981B (zh) * 2013-12-25 2016-06-29 西安西工大超晶科技发展有限责任公司 一种高Nb-TiAl基合金的熔炼方法
CN103820697B (zh) * 2014-03-10 2016-08-17 北京工业大学 一种多元合金化β相凝固高Nb-TiAl合金及其制备方法
CN103834844B (zh) * 2014-03-12 2016-08-24 北京工业大学 一种V、Mn合金化β相凝固高Nb-TiAl合金及其制备方法
CN103820672B (zh) * 2014-03-12 2017-05-03 北京工业大学 一种Cr、Mn合金化β相凝固高Nb‑TiAl合金及其制备方法
CN103820674B (zh) * 2014-03-12 2016-05-25 北京工业大学 一种W、Mn合金化β相凝固高Nb-TiAl合金及其制备方法
CN103820677B (zh) * 2014-03-12 2016-03-02 北京工业大学 一种含Mn高Nb新型β-γTiAl金属间化合物材料及其制备方法
CN103820675A (zh) * 2014-03-12 2014-05-28 北京工业大学 一种含V高Nb新型β-γTiAl金属间化合物材料及其制备方法
JP6439287B2 (ja) * 2014-06-18 2018-12-19 株式会社デンソー 運転支援装置、運転支援方法、画像補正装置、画像補正方法
RU2592657C2 (ru) * 2014-12-29 2016-07-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный сплав на основе титана и изделие, выполненное из него
RU2621500C1 (ru) * 2015-12-21 2017-06-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Интерметаллический сплав на основе TiAl
CN105624465A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车发动机叶片
CN105441715A (zh) * 2015-12-29 2016-03-30 青岛博泰美联化工技术有限公司 一种汽车增压涡轮
EP3249064A1 (fr) 2016-05-23 2017-11-29 MTU Aero Engines GmbH Fabrication additive de composants haute temperature en tial
CN105970026A (zh) * 2016-05-31 2016-09-28 黄河科技学院 一种轻质合金材料及其制备方法
CN106148739B (zh) * 2016-06-29 2018-02-06 西安西工大超晶科技发展有限责任公司 一种含铌Ti3Al合金铸锭的制备方法
WO2018043187A1 (fr) 2016-09-02 2018-03-08 株式会社Ihi Alliage ti-al et son procédé de fabrication
CN106367624B (zh) * 2016-09-12 2017-10-13 江苏大学 高抗酸蚀Y微合金化TiAl基合金
CN106367633A (zh) * 2016-09-12 2017-02-01 江苏大学 高抗酸蚀La2O3微合金化的TiAl基合金
RU2633135C1 (ru) * 2016-11-11 2017-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Интерметаллический сплав на основе TiAl
KR101890642B1 (ko) 2016-12-14 2018-08-22 안동대학교 산학협력단 파괴 인성 및 크리프 저항성이 향상된 Ti-Al-Nb-V계 합금의 제조방법
KR101888049B1 (ko) 2016-12-14 2018-08-13 안동대학교 산학협력단 파괴 인성 및 크리프 저항성이 향상된 Ti-Al-Nb-Fe계 합금의 제조방법
US20180230822A1 (en) * 2017-02-14 2018-08-16 General Electric Company Titanium aluminide alloys and turbine components
CN107034384A (zh) * 2017-04-26 2017-08-11 东北大学 一种热变形加工能力优异的低成本钛铝基合金
CN107475595A (zh) * 2017-07-10 2017-12-15 江苏鑫龙化纤机械有限公司 一种聚乙烯纤维干热牵伸箱电加热管用合金材料
CN107699738A (zh) * 2017-09-29 2018-02-16 成都露思特新材料科技有限公司 一种细晶TiAl合金及其制备方法、航空发动机、汽车
WO2019103539A1 (fr) * 2017-11-24 2019-05-31 한국기계연구원 Alliage à base de titane et d'aluminium pour impression 3d, ayant d'excellentes caractéristiques à haute température et procédé de fabrication associé
KR102095463B1 (ko) * 2018-05-24 2020-03-31 안동대학교 산학협력단 우수한 고온 성형성을 가지는 TiAl계 합금 및 이를 이용한 TiAl계 합금 부재의 제조방법
EP3943627A4 (fr) 2019-03-18 2022-11-16 IHI Corporation Matériau d'alliage d'aluminure de titane pour forgeage à chaud, procédé de forgeage pour matériau d'alliage d'aluminure de titane, et corps forgé
EP3974551B1 (fr) * 2019-05-23 2023-12-13 IHI Corporation Alliage tial et son procédé de production
CN110438369A (zh) * 2019-09-18 2019-11-12 大连大学 一种高硬度、高氧化性Ti-Al-Nb-Re合金的制备方法
US20240043978A1 (en) 2021-04-16 2024-02-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Tial alloy for forging, tial alloy material, and method for producing tial alloy material
EP4353855A1 (fr) * 2021-06-09 2024-04-17 IHI Corporation Alliage tial, poudre d'alliage tial, composant d'alliage tial et leur procédé de production
CN115261657B (zh) * 2022-08-03 2023-02-28 南京铖联激光科技有限公司 高温合金的制备方法及其制备装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734794B2 (ja) * 1991-03-15 1998-04-02 住友金属工業株式会社 Ti−Al系金属間化合物基合金の製造方法
JP3310680B2 (ja) * 1991-09-25 2002-08-05 三菱重工業株式会社 金属間化合物基耐熱合金
CN1023133C (zh) * 1991-12-31 1993-12-15 北京科技大学 铌钛铝系金属间化合物耐热高温材料
JPH05320791A (ja) * 1992-05-15 1993-12-03 Mitsubishi Heavy Ind Ltd Ti−Al系金属間化合物合金
DE4224867A1 (de) * 1992-07-28 1994-02-03 Abb Patent Gmbh Hochwarmfester Werkstoff
JPH06116692A (ja) * 1992-10-05 1994-04-26 Honda Motor Co Ltd 高温強度の優れたTiAl系金属間化合物およびその製造方法
JPH06116691A (ja) * 1992-10-05 1994-04-26 Mitsubishi Materials Corp TiAl金属間化合物系Ti合金の熱処理法
US5296056A (en) * 1992-10-26 1994-03-22 General Motors Corporation Titanium aluminide alloys
JPH06346173A (ja) * 1993-06-11 1994-12-20 Mitsubishi Heavy Ind Ltd Ti−Al系金属間化合物基合金
JPH07197154A (ja) * 1994-01-10 1995-08-01 Mitsubishi Heavy Ind Ltd TiAl系合金及びその製法
JPH08199264A (ja) * 1995-01-19 1996-08-06 Mitsubishi Heavy Ind Ltd TiAl系金属間化合物基合金
JP3332615B2 (ja) * 1994-10-25 2002-10-07 三菱重工業株式会社 TiAl系金属間化合物基合金及びその製造方法
JP3374553B2 (ja) * 1994-11-22 2003-02-04 住友金属工業株式会社 Ti−Al系金属間化合物基合金の製造方法
DE4443147A1 (de) * 1994-12-05 1996-06-27 Dechema Korrosionsbeständiger Werkstoff für Hochtemperaturanwendungen in sulfidierenden Prozeßgasen
US5558729A (en) * 1995-01-27 1996-09-24 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
JPH1161298A (ja) * 1997-08-18 1999-03-05 Natl Res Inst For Metals TiAl金属間化合物基合金とその製造方法
DE19735841A1 (de) * 1997-08-19 1999-02-25 Geesthacht Gkss Forschung Legierung auf der Basis von Titanaluminiden
US6174387B1 (en) * 1998-09-14 2001-01-16 Alliedsignal, Inc. Creep resistant gamma titanium aluminide alloy
JP2000199025A (ja) * 1999-01-05 2000-07-18 Mitsubishi Heavy Ind Ltd TiAl系金属間化合物基合金およびその製造方法、タ―ビン部材およびその製造方法
DE10351946A1 (de) * 2003-03-21 2004-10-07 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Verfahren zur Behandlung der Oberfläche eines aus einer AL-Legierung, insbesondere TiAL-Legierung bestehenden Bauteiles sowie die Verwendung organischer Halogenkohlenstoffverbindungen oder in einer organischen Matrik eingebundener Halogenide
DE102004056582B4 (de) * 2004-11-23 2008-06-26 Gkss-Forschungszentrum Geesthacht Gmbh Legierung auf der Basis von Titanaluminiden
GB0616566D0 (en) * 2006-08-19 2006-09-27 Rolls Royce Plc An alloy and method of treating titanium aluminide
CN101011705A (zh) * 2007-01-31 2007-08-08 哈尔滨工业大学 含元素钇的TiAl金属间化合物板材的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKEYAMA MASAO ET AL: "Phase equilibria among .alpha., .alpha.2, .beta. and .gamma. phases in ternary Ti-Al-X systems at elevated temperatures", TITANIUM '95: SCIENCE AND TECHNOLOGY, PROCEEDINGS OF THE WORLD CONFERENCE ON TITANIUM, 8TH, BIRMINGHAM, UK, OCT. 22-26, 1995, INSTITUTE OF MATERIALS, LONDON, UK, vol. 1, 1 January 1995 (1995-01-01), pages 294 - 301, XP009178047 *

Also Published As

Publication number Publication date
RU2008149177A (ru) 2010-06-20
RU2466201C2 (ru) 2012-11-10
EP2145967A2 (fr) 2010-01-20
BRPI0806979A2 (pt) 2010-04-20
US20140010701A1 (en) 2014-01-09
JP2009144247A (ja) 2009-07-02
US20090151822A1 (en) 2009-06-18
EP2075349A2 (fr) 2009-07-01
EP2423341A1 (fr) 2012-02-29
EP2145967B1 (fr) 2013-07-24
EP2423341B1 (fr) 2013-07-10
CN101457314B (zh) 2013-07-24
EP2075349A3 (fr) 2009-09-09
DE102007060587B4 (de) 2013-01-31
JP5512964B2 (ja) 2014-06-04
US20100000635A1 (en) 2010-01-07
EP2145967A3 (fr) 2010-04-21
CA2645843A1 (fr) 2009-06-13
IL195756A0 (en) 2009-11-18
CN101457314A (zh) 2009-06-17
DE102007060587A1 (de) 2009-06-18
KR20090063173A (ko) 2009-06-17

Similar Documents

Publication Publication Date Title
EP2075349B1 (fr) Alliages d'aluminure de titane
EP1819838B1 (fr) Alliage a base d'aluminures de titane
AT509768B1 (de) Verfahren zur herstellung eines bauteiles und bauteile aus einer titan-aluminium-basislegierung
DE102013002483B4 (de) Nickel-Kobalt-Legierung
DE2264997C2 (de) Ausscheidungshärtbare Eisen-Nickel-Legierung
DE60110294T2 (de) TiAl-basierte Legierung, Verfahren zu deren Herstellung und Rotorblatt daraus
EP2742162B1 (fr) Procédé de fabrication des composants en tial forgés
DE10024343A1 (de) Bauteil auf Basis von gamma-TiAl-Legierungen mit Bereichen mit gradiertem Gefüge
DE60302108T2 (de) Ausscheidungsgehärtete Kobalt-Nickel-Legierung mit guter Wärmebeständigkeit sowie zugehörige Herstellungsmethode
EP2905350A1 (fr) Alliage TiAl haute température
DE102019100250A1 (de) Aluminium-legierung und verfahren zur herstellung
EP3553193A1 (fr) Alliage tial à haute température riche en al
DE2649529A1 (de) Umformbare legierung auf kobalt- nickel-chrom-basis und verfahren zu seiner herstellung
DE102009039344B4 (de) Verbundwerkstoff sowie Verfahren zur Herstellung
EP3091095A1 (fr) Superalliage à base de nickel sans rhénium à faible densité
EP0587960B1 (fr) Fabrication de matériaux du type aluminiure de fer
DE112016003045T5 (de) Gussmaterial und Verfahren zur Herstellung eines Gussmaterials
EP2339595B1 (fr) Matériau d'alliage de mémoire de forme magnétique
WO2012041276A2 (fr) Alliage tial résistant à la chaleur
WO2021005062A1 (fr) Alliage comprenant des structures eutectiques fines, en particulier nano-eutectiques, et production de celui-ci
AT509343B1 (de) Aluminiumlegierung
DE102016116244A1 (de) Magnesiumlegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090926

17Q First examination report despatched

Effective date: 20091105

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUER MATERIAL

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151022

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 779596

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013893

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160610

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160709

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013893

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161124

Year of fee payment: 9

26N No opposition filed

Effective date: 20161212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20161122

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081125

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 779596

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191125

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191120

Year of fee payment: 12

Ref country code: FR

Payment date: 20191121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191126

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008013893

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201125

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201125