EP1364409A2 - Verfahren zum herstellen von metallischen bitleitungen für speicherzellenarrays, verfahren zum herstellen von speicherzellenarrays und speicherzellenarray - Google Patents
Verfahren zum herstellen von metallischen bitleitungen für speicherzellenarrays, verfahren zum herstellen von speicherzellenarrays und speicherzellenarrayInfo
- Publication number
- EP1364409A2 EP1364409A2 EP02757712A EP02757712A EP1364409A2 EP 1364409 A2 EP1364409 A2 EP 1364409A2 EP 02757712 A EP02757712 A EP 02757712A EP 02757712 A EP02757712 A EP 02757712A EP 1364409 A2 EP1364409 A2 EP 1364409A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- memory cell
- gate
- cell array
- word lines
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000003491 array Methods 0.000 title description 12
- 238000002513 implantation Methods 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 238000001465 metallisation Methods 0.000 claims abstract description 10
- 230000002093 peripheral effect Effects 0.000 claims description 20
- 229910021332 silicide Inorganic materials 0.000 claims description 14
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 14
- 125000006850 spacer group Chemical group 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 238000011049 filling Methods 0.000 claims description 6
- 239000011810 insulating material Substances 0.000 claims description 6
- 229920005591 polysilicon Polymers 0.000 claims description 3
- 230000005669 field effect Effects 0.000 claims description 2
- 238000002955 isolation Methods 0.000 claims description 2
- 238000000059 patterning Methods 0.000 claims 2
- 239000007943 implant Substances 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract 2
- 150000004767 nitrides Chemical class 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000010405 reoxidation reaction Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- -1 tungsten nitride Chemical class 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910001295 No alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/40—EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
Definitions
- the present invention relates to methods of metallic bit lines for memory cell arrays, methods for producing memory cell arrays which have such metallic bit lines, and to memory cell arrays produced thereby.
- the present invention relates to methods and devices which are suitable for planar EEPROMs for so-called “stand-alone” applications and for so-called “embedded” applications.
- SONOS silicon-oxide-nitride-oxide-silicon
- bit lines designed as diffusion areas become increasingly high-resistance with decreasing structure size, since the diffusion depth must also be scaled in order to counteract the risk of a punch-through between adjacent bit lines.
- the problem here is that higher-impedance bit lines only allow smaller cell blocks, so that the degree of utilization decreases here and the advantage of the smaller memory cells, which are purchased as a result of greater process expenditure, disappears.
- the object of the present invention is to provide methods and devices which allow the implementation of very compact memory cells even in larger cell blocks.
- This task is accomplished through a method of manufacturing
- the present invention provides methods for fabricating bit lines for a memory cell array, comprising the following steps:
- the metallizations being insulated from the gate region layer by the insulating spacer layers.
- the inventive method for producing a memory cell array has the following steps:
- word lines which are substantially perpendicular to the bit lines and which are each connected to a plurality of gate regions, the gate regions being produced when the word lines are generated by appropriately structuring the remaining parts of the gate region layer.
- the metallic bit lines are produced by performing a Ti or co-silicide process on the exposed substrate regions which have previously been subjected to a source / drain implantation, which can also be referred to as a bit line implantation.
- a source / drain implantation which can also be referred to as a bit line implantation.
- the later gate structures are preferably provided with a hard mask, which preferably consists of nitride.
- the regions subjected to the source / drain implantation serve as the source / drain regions of the memory transistors, the siliconization of these regions serving as a metallic bit line.
- the gate areas or gate structures that In the method according to the invention, they are initially designed as strips running along the bit line. When the word lines are generated, they are etched, preferably by dry etching, in relation to them.
- peripheral transistors can also be produced in areas outside the memory cell array using the method according to the invention.
- both peripheral transistors with so-called
- Single work function gates in which all polycrystalline gate areas are of a doping type, and also with so-called dual work function gates, in which the doping type of the polycrystalline gate area is based on the channel type, i.e. H. is adapted to the doping type of the source-drain regions can be realized.
- a memory cell array according to the invention comprises the following features:
- Word lines which are arranged in a first direction with respect to the memory cell array and are electrically conductively connected to gate regions of the memory cells;
- Bit lines that run in a second direction substantially perpendicular to the first direction between the memory cells
- bit lines are formed by metallic structures generated directly on source / drain regions of the memory cells, and wherein isolation means are provided between the metallic structures of the bit lines and the gate regions of the memory cells.
- the present invention thus creates methods for producing memory cell arrays with metallic bit lines that are self-aligned to gate structures, and memory cell arrays with such bit lines. Furthermore, according to the invention, self-aligned gate structures are produced for metallic word lines.
- the present invention also enables advantageous integration in terms of process technology with regard to a parallelization of memory cell array and peripheral circuit structures.
- the present invention enables large cell blocks with minimal periphery and thus high cell efficiency by producing metallic or metallized bit lines and furthermore by producing metallic or metallized word lines.
- the bit lines can be made so narrow that a cell area of 4F 2 can be realized, where F indicates the line width possible with a lithography technique used, line widths of 140 n being achieved with current lithography technologies.
- the bit line level and the word line level can be used as a metallic wiring level.
- the method according to the invention can also be combined with both the single work function technology and the dual work function technology.
- 1 shows a plan view of a section of a memory cell array
- 2 shows a schematic cross-sectional view of a layer sequence in an initial stage of the method according to the invention
- FIG. 3 shows a schematic plan view of a substrate section with bit line recess regions
- 4a to 4c are schematic cross-sectional views for explaining a first exemplary embodiment of the method according to the invention for producing a memory cell array
- FIG. 5 shows a schematic cross-sectional view of an intermediate stage in the production of a peripheral transistor according to the first exemplary embodiment
- 6a and 6b are schematic cross-sectional views of an advanced manufacturing stage to illustrate the course of word and bit
- FIG. 7 is a schematic cross-sectional view of an advanced manufacturing stage with respect to a peripheral transistor according to the first embodiment
- FIGS. 6a and 6b are schematic cross-sectional views corresponding to FIGS. 6a and 6b for a second exemplary embodiment of a method according to the invention for producing a memory cell array;
- FIG. 9 shows a schematic cross-sectional view corresponding to FIG. 7 for the second exemplary embodiment
- 10a and 10b are schematic cross-sectional views for explaining the generation of metallic word lines in the second exemplary embodiment.
- FIG. 11 is a schematic cross-sectional view for illustrating a peripheral transistor produced according to the second exemplary embodiment.
- FIG. 1 schematically shows sections of two word lines 2 which run perpendicular to bit lines 4, so that the word lines 2 form a grid structure together with the bit lines 4.
- the dashed lines represent the metallic bit lines 4 according to the invention, while the solid lines 8 represent the source / drain implantation region on which the metallic bit lines are formed.
- respective memory cells 6 are arranged below the word lines 2 between the bit lines 4.
- the gate areas are located under the word lines, while the diffusion areas or source / drain implantations arranged under the bit lines define the source / drain areas of a respective cell.
- the metallic bit lines, and also the word lines are preferably formed using a siliconization.
- a siliconization Such methods are known as siliciding, in which a suitable metal, for example cobalt, titanium, alloys thereof, or also nickel or tungsten, is first applied to silicon, whereupon one Temperature treatment is carried out. The temperature treatment causes a chemical reaction between the applied metal and the silicon, whereby a silicide layer is generated on the silicon. This generation of a metallic silicide layer on silicon is referred to as siliciding.
- a so-called polycide method for generating the word lines of the memory cell array and for generating the gate Structures of the peripheral transistors used.
- Polycide processes are understood to mean those processes in which an entire polycrystalline silicon layer is first applied or deposited, whereupon a WSi layer is deposited as an alloy over the entire surface of the polycrystalline silicon layer. Subsequently, a hard mask, preferably made of nitride, is generally applied to the WSi layer. The hard mask is subsequently structured using phototechnical processes, whereupon the WSi layer and the underlying polycrystalline silicon are etched in order to produce the desired structures.
- tungsten nitride layer is first applied to a polycrystalline silicon layer and then a tungsten layer.
- the tungsten nitride layer acts as a diffusion barrier, so that no tungsten silicide, ie no alloy, is created, but rather a correspondingly low-resistance, pure metal structure.
- DJ C ⁇ ⁇ 0 ⁇ O ⁇ • ⁇ DJ d H ⁇ - ⁇ C ⁇ ⁇ ⁇ - rt ⁇ ⁇ ⁇ - ⁇ j ⁇ ⁇ d «N 1 H 00 er O ⁇ li - li ⁇ ? d DJ Hi ⁇ d ⁇ - s: C ⁇ DJ 0- H d iQ ⁇ - ⁇ - 0 d ⁇ Hl
- CMP chemical mechanical polishing
- the p- and n-wells for the later CMOS area in the periphery of the memory cell array and the wells for the memory cells are produced by masked boron and phosphorus implantation and subsequent healing , The scatter oxide is then removed.
- a polysilicon layer serving as a gate region layer is first deposited onto this structure, on which in turn a nitride layer is deposited.
- a schematic cross-sectional view of a section of the resulting layer sequence in the memory cell area is shown in FIG. 2.
- a transistor trough 12 is formed in a silicon substrate 10.
- the described ONO triple layer 20, which consists of lower oxide layer 14, nitride layer 16 and upper oxide layer 18, is formed on transistor well 12. Outside the memory cell area, this ONO triple layer is replaced by a gate oxide.
- a polycrystalline layer 22, for example with a thickness of 100 nm, is formed on the ONO triple layer 20.
- a photo technique is carried out in order to produce elongate recesses 26 in the nitride layer 24, which run along the bit lines to be produced later, as shown in FIG. 3. These recesses 26 further define strips 28 along the later bit lines, which contribute to the definition of the later gate structures.
- the lacquer used in the phototechnology is stripped, whereupon the polycrystalline one
- bit line recesses 30 are formed in the nitride layer 24 and the polycrystalline layer 22, is shown in FIG. 4a.
- strip-shaped gate regions 34 are produced in the same, which extend along the later bit lines.
- This implantation is optional. In the case of n-channel memory transistors, this is preferably a boron implantation with a concentration of, for example, 1 ⁇ 10 14 crrf 3 .
- the implantations 32 serve, on the one hand, to generate a hard pn junction with the bit line implantations or source-drain implantations, which are produced later. On the other hand, the generation of the doped regions 32 results in under-scattering under the gate edge and thus penetration under the channel, so that an increased punch strength can be achieved thereby.
- Such an implantation 32 is particularly advantageous when 2-bit memory cells such as they are described, for example, in the Boaz Eitan document described above, are to be realized.
- insulating spacer layers 36 are produced on the side surfaces of the strip-shaped polycrystalline regions 34 and the parts of the nitride layer 24 arranged thereon using known methods.
- Source / drain implantations are formed through the openings in the ONO three-layer structure 20, in the case of n-channel memory transistors preferably by implantation with arsenic, a doping concentration of 3 ⁇ 10 15 cm 3.
- the source / drain implantations 38 run along the later ones Bit lines and can therefore also be referred to as bit line implantations.
- the entire ONO three-layer structure 20 does not have to be removed, but that the implantation can be carried out, for example, through the lower oxide layer 14, which then serves as a scattering oxide.
- the implantation is carried out through the lower oxide layer 14, this must subsequently be removed in order to to expose the upper surface of the substrate 12 in the region in which the source / drain implantation was carried out and in which the metallic bit lines are to be formed.
- a metal is deposited for a self-aligned siliconization, preferably Ti, Co or alloys thereof. This is followed by the tempering required for siliconization and then the removal of the non-siliconized material.
- the metallizations 40 shown in FIG. 4b are generated on the source / drain implantations 38, which represent the metallic bit lines 40.
- the remaining spaces are then filled with an insulating material 42, preferably using an oxide deposition (TEOS).
- TEOS oxide deposition
- the resulting surface is then subjected to planarization, for example using reactive ion etching or preferably a CMP technique, in which case the very hard nitride layer can serve as a mechanical grinding stop.
- the resulting structure is shown schematically in cross section in Fig. 4b.
- the nitride still present on the strip-shaped gate region 34 which is denoted by the reference symbol 44 in FIG. 4b, is first removed by wet chemistry, for which purpose hot phosphoric acid is preferably used.
- a layer structure composed of a second polycrystalline layer 46, a metallic layer 48 and a hard mask 50, preferably nitride is produced on the resulting structure.
- the second polycrystalline layer 46 is formed by deposition, while the metallic layer 48 is formed by deposition of WSi.
- a layer sequence of polycrystalline silicon, tungsten nitride and tungsten can be produced here, as was explained above.
- the nitride layer 50 is generated as a hard mask by a deposition.
- the layer structure resulting in the peripheral region from the method steps described above is shown in FIG. 5, the ONO three-layer structure 20 being replaced by a gate oxide layer 52 in the peripheral region, as described above.
- a photo technique is subsequently carried out in order to structure the word lines within the cell array and the gate regions in the hard mask 50 in the periphery.
- the word line structure consisting of first polycrystalline layer 22, second polycrystalline layer 46 and metal layer 48 is then etched with high selectivity to oxide.
- An optional anti-punch implantation is then carried out between the word lines, for example using a suitable photo technique.
- FIG. 6a A sectional view of the resulting structure defined by arrows A in FIG. 4c is shown in FIG. 6a, while a sectional view defined by arrows B is shown in FIG. 6b. 6a, the above-mentioned anti-punch implantations are designated by the reference symbol 54.
- FIG. 7 shows a gate stack of such a transistor gate consisting of first polycrystalline layer 22, second poly ⁇ crystalline layer 46, metallic layer 48 and remaining hard mask layer 50 is shown.
- Vu II t ⁇ ⁇ ⁇ DJ d O ⁇ OH ⁇ j O ⁇ 0 ⁇ - 0- ⁇ O t ⁇ 0 a - d rt ⁇ rt O o ⁇ ⁇ ⁇ - ⁇ - ⁇ DJ 0 d vQ ⁇ - zd C ⁇ iQ ⁇ d 0 1 DJ d ⁇ er a ⁇ ⁇ • • ⁇ ⁇ • - er 2 d 0- D ⁇ rt d J 2 rt ⁇
- the reoxidation is preferably carried out before the LDD implantation, so that an oxide produced thereby over the source / drain regions can serve as scatter oxide for the LDD implantation.
- Anisotropic etching processes remove the oxide generated on the horizontal surfaces during reoxidation.
- nitride spacer layers 62 are produced on the oxide layers 60, whereupon further oxide spacer layers 64 are applied to the lateral surfaces, see FIG. 11, which lead to a complete filling 66 of the word line interstices in the memory cell region.
- the design of the spacer layers or the choice of material thereof depends on the dielectric strength of the peripheral transistors to be produced.
- the outer oxide spacer layers 64 are in turn preferably produced by a conformal oxide deposition (from TEOS), whereupon the oxide deposited on horizontal surfaces is subsequently removed by anisotropic etching. With this etching, the remaining parts of the hard mask 56 are simultaneously removed, so that the remaining areas of the second polycrystalline layer 46 are exposed.
- a conformal oxide deposition from TEOS
- anisotropic etching With this etching, the remaining parts of the hard mask 56 are simultaneously removed, so that the remaining areas of the second polycrystalline layer 46 are exposed.
- a salicide process is subsequently carried out in order to provide both the word lines in the memory cell area and the gate stacks in the peripheral area with a metallization layer 70.
- a metal, Ti, Co or alloys thereof is first applied over the entire surface, whereupon an annealing step is carried out in order to produce the silicide layers 70.
- silicide layers 72 are also produced on the source / drain regions of the peripheral transistors.
- the parts of the applied metal layer which do not undergo a chemical reaction with silicon during the annealing step are preferably removed using a wet etching process. At this point it should be noted that during the tempering step of the siliconization also a
- Diffusion of the doping introduced into the second polycrystalline layer 46 during the implantation of the HDD regions 68 takes place in the first polycrystalline layer 22.
- the gate regions ie the gate polysilicon, can be p + -doped in the region of the memory cell array, which can have advantages with regard to the behavior of the memory cells.
- the present invention thus enables an advantageous process engineering integration of the generation of metallic bit lines, and metallic word lines, for memory cell arrays, which enables the construction of large cell blocks with a minimal cell area of the individual cells.
- the present invention further enables extensive
- Source / drain implantation 10 silicon substrate 12 transistor wells 14 lower oxide layer 16 nitride layer 18 upper oxide layer 20 ONO structure 22 polycrystalline silicon 24 hard mask layer 26 recesses in nitride layer 28 strips
- bit line recesses 32 doped regions 34 strip-shaped gate regions 36 insulating spacer layers 38 source / drain implantations 40 metallic bit line 42 insulating material / oxide 44 nitride 46 remaining on gate regions 46 second polycrystalline layer 48 metallic layer 50 hard mask 52 gate oxide layer 54 antipunch implantation 56 Oxide hard mask layer 58 LDD implantation 60 reoxidation layer 62 nitride spacer layer 64 outer oxide spacer layer 66 word line interstice filling 68 HDD implantation 70 silicide layer 72 Silicide layer on source / drain areas
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10110150 | 2001-03-02 | ||
| DE10110150A DE10110150A1 (de) | 2001-03-02 | 2001-03-02 | Verfahren zum Herstellen von metallischen Bitleitungen für Speicherzellenarrays, Verfahren zum Herstellen von Speicherzellenarrays und Speicherzellenarray |
| PCT/EP2002/001508 WO2002080275A2 (de) | 2001-03-02 | 2002-02-13 | Speicherzellenarrays und deren herstellungssverfahren |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1364409A2 true EP1364409A2 (de) | 2003-11-26 |
Family
ID=7676114
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP02757712A Withdrawn EP1364409A2 (de) | 2001-03-02 | 2002-02-13 | Verfahren zum herstellen von metallischen bitleitungen für speicherzellenarrays, verfahren zum herstellen von speicherzellenarrays und speicherzellenarray |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US6686242B2 (enExample) |
| EP (1) | EP1364409A2 (enExample) |
| JP (1) | JP2004530296A (enExample) |
| KR (1) | KR100608407B1 (enExample) |
| CN (1) | CN100336227C (enExample) |
| AU (1) | AU2002338242A1 (enExample) |
| DE (1) | DE10110150A1 (enExample) |
| TW (1) | TW540141B (enExample) |
| WO (1) | WO2002080275A2 (enExample) |
Families Citing this family (85)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6768165B1 (en) | 1997-08-01 | 2004-07-27 | Saifun Semiconductors Ltd. | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
| US6584017B2 (en) | 2001-04-05 | 2003-06-24 | Saifun Semiconductors Ltd. | Method for programming a reference cell |
| US6566194B1 (en) * | 2001-10-01 | 2003-05-20 | Advanced Micro Devices, Inc. | Salicided gate for virtual ground arrays |
| US7098107B2 (en) * | 2001-11-19 | 2006-08-29 | Saifun Semiconductor Ltd. | Protective layer in memory device and method therefor |
| US6700818B2 (en) * | 2002-01-31 | 2004-03-02 | Saifun Semiconductors Ltd. | Method for operating a memory device |
| US6706595B2 (en) * | 2002-03-14 | 2004-03-16 | Advanced Micro Devices, Inc. | Hard mask process for memory device without bitline shorts |
| US20030181053A1 (en) * | 2002-03-20 | 2003-09-25 | U-Way Tseng | Method of manufacturing a nonvolatile memory cell with triple spacers and the structure thereof |
| TWI291748B (en) * | 2002-03-20 | 2007-12-21 | Macronix Int Co Ltd | Method and structure for improving reliability of non-volatile memory cell |
| US6777725B2 (en) * | 2002-06-14 | 2004-08-17 | Ingentix Gmbh & Co. Kg | NROM memory circuit with recessed bitline |
| US8080453B1 (en) | 2002-06-28 | 2011-12-20 | Cypress Semiconductor Corporation | Gate stack having nitride layer |
| US7256083B1 (en) * | 2002-06-28 | 2007-08-14 | Cypress Semiconductor Corporation | Nitride layer on a gate stack |
| US6917544B2 (en) * | 2002-07-10 | 2005-07-12 | Saifun Semiconductors Ltd. | Multiple use memory chip |
| KR100452037B1 (ko) * | 2002-07-18 | 2004-10-08 | 주식회사 하이닉스반도체 | 반도체 소자의 제조방법 및 그 소자 |
| DE10239491A1 (de) * | 2002-08-28 | 2004-03-18 | Infineon Technologies Ag | Verfahren zur Herstellung vergrabener Bitleitungen in einem Halbleiterspeicher |
| US6773988B1 (en) * | 2002-09-13 | 2004-08-10 | Advanced Micro Devices, Inc. | Memory wordline spacer |
| US6815274B1 (en) * | 2002-09-13 | 2004-11-09 | Taiwan Semiconductor Manufacturing Co. | Resist protect oxide structure of sub-micron salicide process |
| US7049188B2 (en) * | 2002-11-26 | 2006-05-23 | Advanced Micro Devices, Inc. | Lateral doped channel |
| DE10258194B4 (de) * | 2002-12-12 | 2005-11-03 | Infineon Technologies Ag | Halbleiterspeicher mit Charge-trapping-Speicherzellen und Herstellungsverfahren |
| DE10258420B4 (de) * | 2002-12-13 | 2007-03-01 | Infineon Technologies Ag | Verfahren zur Herstellung einer Halbleiterspeichereinrichtung mit Charge-trapping-Speicherzellen und vergrabenen Bitleitungen |
| DE10259783A1 (de) * | 2002-12-19 | 2004-07-15 | Infineon Technologies Ag | Verfahren zur Verbesserung der Prozessschrittfolge bei der Herstellung von Halbleiterspeichern |
| US7178004B2 (en) * | 2003-01-31 | 2007-02-13 | Yan Polansky | Memory array programming circuit and a method for using the circuit |
| US7142464B2 (en) | 2003-04-29 | 2006-11-28 | Saifun Semiconductors Ltd. | Apparatus and methods for multi-level sensing in a memory array |
| DE10324052B4 (de) * | 2003-05-27 | 2007-06-28 | Infineon Technologies Ag | Verfahren zur Herstellung eines Halbleiterspeichers mit Charge-Trapping-Speicherzellen |
| JP4818578B2 (ja) * | 2003-08-06 | 2011-11-16 | ルネサスエレクトロニクス株式会社 | 不揮発性半導体記憶装置およびその製造方法 |
| US7123532B2 (en) * | 2003-09-16 | 2006-10-17 | Saifun Semiconductors Ltd. | Operating array cells with matched reference cells |
| US7371637B2 (en) * | 2003-09-26 | 2008-05-13 | Cypress Semiconductor Corporation | Oxide-nitride stack gate dielectric |
| US7041545B2 (en) * | 2004-03-08 | 2006-05-09 | Infineon Technologies Ag | Method for producing semiconductor memory devices and integrated memory device |
| US6989320B2 (en) * | 2004-05-11 | 2006-01-24 | Advanced Micro Devices, Inc. | Bitline implant utilizing dual poly |
| US7317633B2 (en) | 2004-07-06 | 2008-01-08 | Saifun Semiconductors Ltd | Protection of NROM devices from charge damage |
| US7095655B2 (en) * | 2004-08-12 | 2006-08-22 | Saifun Semiconductors Ltd. | Dynamic matching of signal path and reference path for sensing |
| US20060084219A1 (en) * | 2004-10-14 | 2006-04-20 | Saifun Semiconductors, Ltd. | Advanced NROM structure and method of fabrication |
| US7638850B2 (en) * | 2004-10-14 | 2009-12-29 | Saifun Semiconductors Ltd. | Non-volatile memory structure and method of fabrication |
| US20060146624A1 (en) * | 2004-12-02 | 2006-07-06 | Saifun Semiconductors, Ltd. | Current folding sense amplifier |
| US8125018B2 (en) | 2005-01-12 | 2012-02-28 | Spansion Llc | Memory device having trapezoidal bitlines and method of fabricating same |
| CN1838328A (zh) * | 2005-01-19 | 2006-09-27 | 赛芬半导体有限公司 | 擦除存储器阵列上存储单元的方法 |
| US7186607B2 (en) * | 2005-02-18 | 2007-03-06 | Infineon Technologies Ag | Charge-trapping memory device and method for production |
| JP4275086B2 (ja) * | 2005-02-22 | 2009-06-10 | Necエレクトロニクス株式会社 | 不揮発性半導体記憶装置の製造方法 |
| US7405441B2 (en) * | 2005-03-11 | 2008-07-29 | Infineon Technology Ag | Semiconductor memory |
| US8053812B2 (en) | 2005-03-17 | 2011-11-08 | Spansion Israel Ltd | Contact in planar NROM technology |
| US20060223267A1 (en) * | 2005-03-31 | 2006-10-05 | Stefan Machill | Method of production of charge-trapping memory devices |
| US7341909B2 (en) * | 2005-04-06 | 2008-03-11 | Micron Technology, Inc. | Methods of forming semiconductor constructions |
| US7341956B1 (en) | 2005-04-07 | 2008-03-11 | Spansion Llc | Disposable hard mask for forming bit lines |
| US7285499B1 (en) | 2005-05-12 | 2007-10-23 | Advanced Micro Devices, Inc. | Polymer spacers for creating sub-lithographic spaces |
| US7208373B2 (en) * | 2005-05-27 | 2007-04-24 | Infineon Technologies Ag | Method of forming a memory cell array and a memory cell array |
| US20060281255A1 (en) * | 2005-06-14 | 2006-12-14 | Chun-Jen Chiu | Method for forming a sealed storage non-volative multiple-bit memory cell |
| EP1746645A3 (en) * | 2005-07-18 | 2009-01-21 | Saifun Semiconductors Ltd. | Memory array with sub-minimum feature size word line spacing and method of fabrication |
| DE102005038939B4 (de) * | 2005-08-17 | 2015-01-08 | Qimonda Ag | Halbleiterspeicherbauelement mit oberseitig selbstjustiert angeordneten Wortleitungen und Verfahren zur Herstellung von Halbleiterspeicherbauelementen |
| US7668017B2 (en) | 2005-08-17 | 2010-02-23 | Saifun Semiconductors Ltd. | Method of erasing non-volatile memory cells |
| US20070096199A1 (en) * | 2005-09-08 | 2007-05-03 | Eli Lusky | Method of manufacturing symmetric arrays |
| US20080025084A1 (en) * | 2005-09-08 | 2008-01-31 | Rustom Irani | High aspect ration bitline oxides |
| US7221138B2 (en) | 2005-09-27 | 2007-05-22 | Saifun Semiconductors Ltd | Method and apparatus for measuring charge pump output current |
| US7642158B2 (en) | 2005-09-30 | 2010-01-05 | Infineon Technologies Ag | Semiconductor memory device and method of production |
| US20070082446A1 (en) * | 2005-10-07 | 2007-04-12 | Dominik Olligs | Methods for fabricating non-volatile memory cell array |
| US7432178B2 (en) * | 2005-10-21 | 2008-10-07 | Advanced Micro Devices, Inc. | Bit line implant |
| US20070120180A1 (en) * | 2005-11-25 | 2007-05-31 | Boaz Eitan | Transition areas for dense memory arrays |
| US7538384B2 (en) * | 2005-12-05 | 2009-05-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Non-volatile memory array structure |
| US7368350B2 (en) | 2005-12-20 | 2008-05-06 | Infineon Technologies Ag | Memory cell arrays and methods for producing memory cell arrays |
| US7352627B2 (en) * | 2006-01-03 | 2008-04-01 | Saifon Semiconductors Ltd. | Method, system, and circuit for operating a non-volatile memory array |
| US7808818B2 (en) * | 2006-01-12 | 2010-10-05 | Saifun Semiconductors Ltd. | Secondary injection for NROM |
| US20070173017A1 (en) * | 2006-01-20 | 2007-07-26 | Saifun Semiconductors, Ltd. | Advanced non-volatile memory array and method of fabrication thereof |
| US7692961B2 (en) * | 2006-02-21 | 2010-04-06 | Saifun Semiconductors Ltd. | Method, circuit and device for disturb-control of programming nonvolatile memory cells by hot-hole injection (HHI) and by channel hot-electron (CHE) injection |
| US8253452B2 (en) * | 2006-02-21 | 2012-08-28 | Spansion Israel Ltd | Circuit and method for powering up an integrated circuit and an integrated circuit utilizing same |
| US7760554B2 (en) * | 2006-02-21 | 2010-07-20 | Saifun Semiconductors Ltd. | NROM non-volatile memory and mode of operation |
| US7638835B2 (en) | 2006-02-28 | 2009-12-29 | Saifun Semiconductors Ltd. | Double density NROM with nitride strips (DDNS) |
| US7811935B2 (en) * | 2006-03-07 | 2010-10-12 | Micron Technology, Inc. | Isolation regions and their formation |
| US7408222B2 (en) * | 2006-03-27 | 2008-08-05 | Infineon Technologies Ag | Charge trapping device and method of producing the charge trapping device |
| US7531867B2 (en) * | 2006-03-27 | 2009-05-12 | Infineon Technologies Ag | Method for forming an integrated memory device and memory device |
| US7701779B2 (en) * | 2006-04-27 | 2010-04-20 | Sajfun Semiconductors Ltd. | Method for programming a reference cell |
| US7678654B2 (en) * | 2006-06-30 | 2010-03-16 | Qimonda Ag | Buried bitline with reduced resistance |
| US7790516B2 (en) * | 2006-07-10 | 2010-09-07 | Qimonda Ag | Method of manufacturing at least one semiconductor component and memory cells |
| US7608504B2 (en) * | 2006-08-30 | 2009-10-27 | Macronix International Co., Ltd. | Memory and manufacturing method thereof |
| US7605579B2 (en) * | 2006-09-18 | 2009-10-20 | Saifun Semiconductors Ltd. | Measuring and controlling current consumption and output current of charge pumps |
| US20080081424A1 (en) * | 2006-09-29 | 2008-04-03 | Josef Willer | Method of production of a semiconductor memory device and semiconductor memory device |
| US20080111182A1 (en) * | 2006-11-02 | 2008-05-15 | Rustom Irani | Forming buried contact etch stop layer (CESL) in semiconductor devices self-aligned to diffusion |
| US8252640B1 (en) | 2006-11-02 | 2012-08-28 | Kapre Ravindra M | Polycrystalline silicon activation RTA |
| US20080150011A1 (en) * | 2006-12-21 | 2008-06-26 | Spansion Llc | Integrated circuit system with memory system |
| US8536640B2 (en) | 2007-07-20 | 2013-09-17 | Cypress Semiconductor Corporation | Deuterated film encapsulation of nonvolatile charge trap memory device |
| US9018693B2 (en) | 2007-07-20 | 2015-04-28 | Cypress Semiconductor Corporation | Deuterated film encapsulation of nonvolatile charge trap memory device |
| US7691751B2 (en) * | 2007-10-26 | 2010-04-06 | Spansion Llc | Selective silicide formation using resist etchback |
| CN101587863B (zh) * | 2008-05-23 | 2011-03-23 | 中芯国际集成电路制造(上海)有限公司 | 用于基于sonos的快闪存储的多晶硅栅极蚀刻方法和器件 |
| JP5390822B2 (ja) * | 2008-10-02 | 2014-01-15 | スパンション エルエルシー | 半導体装置及び半導体装置の製造方法 |
| KR101194872B1 (ko) * | 2010-04-19 | 2012-10-25 | 에스케이하이닉스 주식회사 | 반도체 기억 장치 |
| US8441063B2 (en) * | 2010-12-30 | 2013-05-14 | Spansion Llc | Memory with extended charge trapping layer |
| US8546226B2 (en) * | 2011-07-25 | 2013-10-01 | United Microelectronics Corp. | SONOS non-volatile memory cell and fabricating method thereof |
| US9006827B2 (en) * | 2011-11-09 | 2015-04-14 | International Business Machines Corporation | Radiation hardened memory cell and design structures |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2755613B2 (ja) | 1988-09-26 | 1998-05-20 | 株式会社東芝 | 半導体装置 |
| EP0368097A3 (en) | 1988-11-10 | 1992-04-29 | Texas Instruments Incorporated | A cross-point contact-free floating-gate memory array with silicided buried bitlines |
| US5238855A (en) * | 1988-11-10 | 1993-08-24 | Texas Instruments Incorporated | Cross-point contact-free array with a high-density floating-gate structure |
| JP2893894B2 (ja) * | 1990-08-15 | 1999-05-24 | 日本電気株式会社 | 不揮発性メモリ及びその製造方法 |
| US5270240A (en) * | 1991-07-10 | 1993-12-14 | Micron Semiconductor, Inc. | Four poly EPROM process and structure comprising a conductive source line structure and self-aligned polycrystalline silicon digit lines |
| US5246874A (en) * | 1992-06-02 | 1993-09-21 | National Semiconductor Corporation | Method of making fast access AMG EPROM |
| KR100277267B1 (ko) * | 1992-11-25 | 2001-02-01 | 사와무라 시코 | 반도체 불휘발성 메모리 및 그 제조방법 |
| US5292681A (en) * | 1993-09-16 | 1994-03-08 | Micron Semiconductor, Inc. | Method of processing a semiconductor wafer to form an array of nonvolatile memory devices employing floating gate transistors and peripheral area having CMOS transistors |
| US5439835A (en) * | 1993-11-12 | 1995-08-08 | Micron Semiconductor, Inc. | Process for DRAM incorporating a high-energy, oblique P-type implant for both field isolation and punchthrough |
| US5467308A (en) | 1994-04-05 | 1995-11-14 | Motorola Inc. | Cross-point eeprom memory array |
| US5838041A (en) * | 1995-10-02 | 1998-11-17 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device having memory cell transistor provided with offset region acting as a charge carrier injecting region |
| KR100199382B1 (ko) * | 1996-06-27 | 1999-06-15 | 김영환 | 플래쉬 메모리 소자의 제조방법 |
| US5768192A (en) * | 1996-07-23 | 1998-06-16 | Saifun Semiconductors, Ltd. | Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping |
| DE19631147C2 (de) * | 1996-08-01 | 2001-08-09 | Siemens Ag | Nichtflüchtige Speicherzelle |
| US5679591A (en) | 1996-12-16 | 1997-10-21 | Taiwan Semiconductor Manufacturing Company, Ltd | Method of making raised-bitline contactless trenched flash memory cell |
| TW463331B (en) * | 1997-09-26 | 2001-11-11 | Programmable Microelectronics | Self-aligned drain contact PMOS flash memory and process for making same |
| EP0986100B1 (en) | 1998-09-11 | 2010-05-19 | STMicroelectronics Srl | Electronic device comprising EEPROM memory cells, HV transistors, and LV transistors with silicided junctions, as well as manufacturing method thereof |
| EP1017097A1 (en) * | 1998-12-29 | 2000-07-05 | STMicroelectronics S.r.l. | Manufacturing method of salicide contacts for non-volatile memory |
| JP2001044391A (ja) * | 1999-07-29 | 2001-02-16 | Fujitsu Ltd | 半導体記憶装置とその製造方法 |
| US6117730A (en) | 1999-10-25 | 2000-09-12 | Advanced Micro Devices, Inc. | Integrated method by using high temperature oxide for top oxide and periphery gate oxide |
-
2001
- 2001-03-02 DE DE10110150A patent/DE10110150A1/de not_active Withdrawn
- 2001-07-26 US US09/917,867 patent/US6686242B2/en not_active Expired - Lifetime
-
2002
- 2002-02-13 EP EP02757712A patent/EP1364409A2/de not_active Withdrawn
- 2002-02-13 JP JP2002578576A patent/JP2004530296A/ja active Pending
- 2002-02-13 KR KR1020037011519A patent/KR100608407B1/ko not_active Expired - Fee Related
- 2002-02-13 AU AU2002338242A patent/AU2002338242A1/en not_active Abandoned
- 2002-02-13 WO PCT/EP2002/001508 patent/WO2002080275A2/de not_active Ceased
- 2002-02-13 CN CNB028058798A patent/CN100336227C/zh not_active Expired - Fee Related
- 2002-03-01 TW TW091103791A patent/TW540141B/zh not_active IP Right Cessation
Non-Patent Citations (1)
| Title |
|---|
| See references of WO02080275A2 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2004530296A (ja) | 2004-09-30 |
| US20020132430A1 (en) | 2002-09-19 |
| WO2002080275A3 (de) | 2003-01-30 |
| AU2002338242A1 (en) | 2002-10-15 |
| KR100608407B1 (ko) | 2006-08-03 |
| CN1502134A (zh) | 2004-06-02 |
| US6686242B2 (en) | 2004-02-03 |
| TW540141B (en) | 2003-07-01 |
| DE10110150A1 (de) | 2002-09-19 |
| KR20030088444A (ko) | 2003-11-19 |
| CN100336227C (zh) | 2007-09-05 |
| WO2002080275A2 (de) | 2002-10-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1364409A2 (de) | Verfahren zum herstellen von metallischen bitleitungen für speicherzellenarrays, verfahren zum herstellen von speicherzellenarrays und speicherzellenarray | |
| DE10129958B4 (de) | Speicherzellenanordnung und Herstellungsverfahren | |
| DE112004003060B4 (de) | Halbleitervorrichtung mit einem Feld aus Flashspeicherzellen sowie zugehöriges Betriebsverfahren und Prozess zum Herstellen einer System-on-Chip-Vorrichtung in einem Halbleitersubstrat | |
| DE102005014507B4 (de) | Halbleiterspeicher mit Ladungseinfangspeicherzellen und dessen Herstellungsverfahren | |
| DE102011082851B4 (de) | Bauelement umfassend eine Zelle mit einem ersten Transistor und einem zweiten Transistor in Reihenschaltung | |
| DE10039441A1 (de) | Speicherzelle, Speicherzellenanordnung und Herstellungsverfahren | |
| EP1307920A2 (de) | Speicherzelle, speicherzellenanordnung und herstellungsverfahren | |
| EP0783181A1 (de) | Elektrisch programmierbare Speicherzellenanordnung und Verfahren zu deren Herstellung | |
| EP0838092B1 (de) | Elektrisch schreib- und löschbare festwertspeicherzellenanordnung und verfahren zu deren herstellung | |
| EP1518277B1 (de) | Verfahren zur herstellung eines nrom-speicherzellenfeldes | |
| EP1514304B1 (de) | Verfahren zur herstellung einer nrom-speicherzellenanordnung | |
| EP1068644B1 (de) | Speicherzellenanordnung und verfahren zu ihrer herstellung | |
| DE102005008058A1 (de) | Verfahren zum Herstellen von Halbleiterspeicherbauelementen und integriertes Speicherbauelement | |
| EP0864177B1 (de) | Festwert-speicherzellenanordnung und verfahren zu deren herstellung | |
| DE102011082803A1 (de) | EEPROM-Zelle | |
| DE102006008503B4 (de) | Verfahren zur Herstellung von nichtflüchtigen Speicherzellen | |
| EP1623459B1 (de) | Bitleitungsstruktur sowie verfahren zu deren herstellung | |
| DE102006003393B4 (de) | Verfahren zur Kontaktierung von Bitleitungen für nicht-flüchtige Speicherzellen | |
| DE102005020342B4 (de) | Verfahren zur Herstellung von Ladungseinfang-Speicherbauelementen | |
| DE10153493A1 (de) | Floatinggatespeicherzelle, Verfahren zu deren Herstellung un Halbleiterspeichereinrichtung | |
| DE19604260C2 (de) | Festwert-Speicherzellenvorrichtung und ein Verfahren zu deren Herstellung | |
| DE102004052141B4 (de) | Verfahren zum Herstellen einer Halbleiterstruktur | |
| DE102006023439B4 (de) | Halbleiterspeicherbauelement und Herstellungsverfahren für das Halbleiterspeicherbauelement | |
| DE102005027713B4 (de) | Halbleiterspeicherbauelement und Herstellungsverfahren | |
| WO2001024258A1 (de) | Verfahren zur herstellung von integrierten halbleiter-festwertspeichern - rom |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20030827 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20090901 |